SQOL to Stream with S2S: An Automatic Benchmark
Generator for the Java Stream API

Filippo Schiavio
filippo.schiavio@usi.ch
Universita della Svizzera italiana
Lugano, Switzerland

Abstract

The Java Stream API was introduced in Java 8, allowing de-
velopers to express computations in a functional style by
defining a pipeline of data-processing operations. Despite the
growing importance of this API, there is a lack of benchmarks
specifically targeting stream-based applications. Instead of
designing and implementing new ad-hoc workloads for the
Java Stream API, we propose to automatically translate exist-
ing data-processing workloads. To this end, we present S25,
an automatic benchmark generator for the Java Stream APIL.
S2S is a SQL query compiler that converts existing workloads
designed for relational databases to stream-based code. We
use S2S to generate BSS, the first benchmark suite for the
Java Stream APL

CCS Concepts: « Software and its engineering — Source
code generation.

Keywords: SQL Query Compilation, Code Generation, Java
Stream API, Automatic Benchmark Generation

ACM Reference Format:

Filippo Schiavio, Andrea Rosa, and Walter Binder. 2022. SQL to
Stream with S2S: An Automatic Benchmark Generator for the
Java Stream APL In Proceedings of the 21st ACM SIGPLAN Interna-
tional Conference on Generative Programming: Concepts and Expe-
riences (GPCE °22), December 06—07, 2022, Auckland, New Zealand.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3564719.
3568699

1 Introduction

The Java Stream API [26] was introduced in Java 8 to allow
developers to express a pipeline of data-processing opera-
tions on collections of elements called streams. The API eases
the implementation of data transformations expressed with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
GPCE 22, December 06—07, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9920-3/22/12...$15.00
https://doi.org/10.1145/3564719.3568699

Andrea Rosa
andrea.rosa@usi.ch
Universita della Svizzera italiana
Lugano, Switzerland

Walter Binder
walter.binder@usi.ch
Universita della Svizzera italiana
Lugano, Switzerland

a functional, concise and declarative style while keeping the
advantages of Java as an object-oriented language with an
imperative paradigm. Moreover, the API allows one to easily
and automatically parallelize stream processing by calling
just a single operation. For these reasons, the Java Stream
API is increasingly used by Java applications [30].

Despite the growing importance of the Java Stream API,
after ten years since its release, there is a lack of bench-
marks specifically targeting stream-based applications. To
the best of our knowledge, the only established benchmark
suite including workloads that use the Java Stream API is
Renaissance [27], which however contains only three stream-
based applications that are not representative of a realistic
use of streams’ and are therefore little suitable for evaluation
needs. Other well-known benchmark suites for Java, such
as DaCapo [4] or SPECjvm2008 [7], were released before
the availability of the Java Stream API, while others (such
as SPECjbb2015 [6]) target runtimes (Java 7) not supporting
streams. Such a lack of benchmarks makes it very hard for
researchers and language developers to analyze and improve
the performance of the Java Stream API. Indeed, many tech-
niques [1, 3, 15, 17, 20, 29] have been proposed to improve
the performance of the Java Stream API, but all of them have
been evaluated on a simple set of micro-benchmarks that
have been manually implemented or crawled by the authors,
which is a non-effortless process. We believe that researchers
and Java developers working on optimizing the Stream API
would benefit from benchmark suite composed of workloads
fully dedicated to the Java Stream API.

Our work aims at mitigating the long-standing absence
of benchmarks specific to the Java Stream API Instead of
designing a new benchmark suite from scratch—which is
known to be challenging and extremely time consuming [40]—
we resort to a different approach. The idea behind of our
work is that the relational database community has already
designed many data-processing workloads. Examples include
TPC-H [36], TPC-DS [35], TPC-C [34], TPCx-BB [37], Start
Schema Benchmark (SSB) [23], CH-benCHmark [5] and Join
Order Benchmark (JOB) [18], all of which are composed of
a multitude of queries expressed in the SQL language. Since

IThe Renaissance benchmarks use the Java Stream API to simulate
games (scrabble) or solve combinatorial problems (mnemonics and par-
mnemonics), which do not reflect a realistic use of streams.

https://orcid.org/0000-0001-9023-0720
https://orcid.org/0000-0002-6467-0113
https://orcid.org/0000-0002-2477-2182
https://doi.org/10.1145/3564719.3568699
https://doi.org/10.1145/3564719.3568699
https://doi.org/10.1145/3564719.3568699

GPCE ’22, December 06-07, 2022, Auckland, New Zealand

the Java Stream API has been specifically designed to ex-
ecute data-processing operations, such workloads seem a
natural fit to be used as benchmarks for the API, if they are
translated from SQL to Java code making use of streams.
To this end, we present S2S, the first automatic bench-
mark generator for the Java Stream API (Section 2). 2 At its
core, S2S is a SQL query compiler that produces Java source
code that makes use of the Java Stream API. S2S takes a
SQL query as input and converts it into an equivalent Java
code using streams via a template-based code-generation
technique (Section 3). As output, S2S produces a Java ap-
plication that enables the translated code to be easily and
readily used as benchmark thanks to the integration with the
Java Microbenchmark Harness (JMH) [11]. We used S2S to
generate BSS, the first benchmark suite for the Java Stream
API, obtained by applying our tool to all the SQL queries
used as benchmarks by the stream-fusion engine [32] (Sec-
tion 4). We complement the paper with a review of related
work (Section 5) and our concluding remarks (Section 6).

2 S2S Architecture

S2S is a SQL query compiler that generates Java source code
making use of the Java Stream API to express query compu-
tation. In this section, we describe the architecture of S2S and
discuss the details of its components. Figure 1 illustrates the
execution flow of the benchmark generation process used by
our tool. From a user prospective, using S2S is straightfor-
ward. To generate a benchmark, S2S needs very little user
input, which is a database schema definition, a dataset for
that schema and a SQL query to be converted into Java code.
The schema and the dataset can be automatically retrieved
from a connection URL defined with any JDBC [28] driver.

Once invoked, S2S first connects to the database with
the provided connection and starts executing queries on
the database to retrieve its table names and schemas, which
will be converted to Java classes responsible of holding the
data and retrieving the rows from the database, forming
an in-memory database (step 1 in Figure 1). Then, before
translating a SQL query into Java code, the query needs to
be parsed, validated, and converted into a query plan, i.e.,
a representation of the query specifying the order and the
implementation of each operator composing the query. In
this way, query translation can be performed by traversing
the query plan (step 2). Then, S2S translates the query plan
into a Java class by converting the query operators into
Java source code that makes use of the Stream API (step 3).
Finally, S2S generates a JUnit [33] test for the translated
query, as well as a benchmark leveraging JMH [11] as a
harness (step 4).

We now provide additional details for each step involved
in the described process.

2528 is available at https://github.com/usi-dag/S2S/releases/tag/v0.0.1.

Filippo Schiavio, Andrea Rosa, and Walter Binder

In-memory DB generation. This step creates a Java class
to retrieve and store the database tables into Java object
arrays, acting as an in-memory database, and mostly involves
a data-type translation schema from SQL types to Java ones.
To create the in-memory database, S2S retrieves a list of
tables from the original database using the JDBC connection
provided as input. For each table, S2S determines its name
and schema. Similarly to many object-relational mapping
systems, S2S uses such information to create a Java class C;
for each SQL table t.

When generating the Java classes modeling the database
schema, S2S needs to map SQL types to Java ones. Currently,
S2S supports the SQL types INT, BIGINT, DOUBLE, CHAR (fixed-
size string), VARCHAR (variable-size string), and DATE, which
are converted into the Java types int, long, double, String
(for both CHAR and VARCHAR) and java.sql.Date, respectively.

Then, S2S generates a class (here called DB) to model a
simple in-memory database. The DB class contains a field for
each database table t typed as array of C;. Moreover, the DB
class generates code to retrieve the records for each table in
the database.

Query planning. A query plan is usually represented as a
tree, where internal nodes represent query operators and the
leaves represents the tables involved in the query. The query
plan specifies the order in which commutative operators
should be executed (e.g., joins). All the query operators are
physical ones, i.e., their implementation is specified in the
query plan (e.g., a join can be implemented as nested-loop
join or hash join).

Similarly to many existing query engines [10, 31], S2S
uses Apache Calcite [2], a state-of-the-art open-source query
planner, for query parsing and planning. The query plan gen-
erated by Calcite is composed of the following SQL operators
(discussed in more details in Section 3): table scan, projection,
predicate, aggregate, sort, limit, nested-loop join, and hash
join. Table scan operators are the leaves of the query plan,
while other operators are internal nodes. In particular, join
operators (both nested-loop join and hash join) have exactly
two children, all remaining operators have exactly one child.

Query compilation. After the creation of all the Java
classes handling the data schema, S2S begins the process
of translating SQL queries into Java code. Currently, S2S
supports the SQL operators listed in Table 1, arithmetic and
logical expressions, as well as the aggregation functions
COUNT, SUM, MIN, MAX and AVG. For each input query g, S2S
generates a Java class with a single exec method M, that
takes as input an instance of the class DB. All the code emitted
for a given query will be included by S2S in this method.

Moreover, S2S generates the code so that all the streams
created within such method do not escape it. In this way, the
benchmarks generated by our tool can be used to evaluate

3To simplify source-code generation, we leverage Java records [25].

https://github.com/usi-dag/S2S/releases/tag/v0.0.1

SQL to Stream with S2S: An Automatic Benchmark Generator for the Java Stream API

In-memory DB Table classes

GPCE ’22, December 06-07, 2022, Auckland, New Zealand

generation DB class

JDBC
URL

Query

I Javat i Test and benchmark JUnit Test
implementation .
(Stream API) generation JMH Benchmark

Figure 1. Execution flow of S2S. Parallelogram shape denote inputs and outputs while boxes denote the internal steps of S2S.

Table 1. Mapping between SQL operators and Java Stream
API methods.

SQL operator Stream method

Table scan .of

Projection .map

Predicate .filter

Limit Jlimit

Sort .sorted

Aggregate .collect(custom)

Nested-loop join .{toList, flatMap}

Hash join .{collect(groupingBy), flatMap}

optimizations on the Stream API based on static analyses [1,
20], which often cannot deal with streams that are not created
and executed in a single method, though there are static
analyses of streams that do not have such a limitation [15, 16],
being based on interprocedural analyses.

Additional details about the query compilation will be
discussed in Section 3.

Test and benchmark generation. After query compila-
tion, we aim at ensuring that the translated code is semanti-
cally equivalent to the provided query through testing. To
this end, S2S generates a JUnit [33] test for each translated
query, which verifies that the result of a query g is equivalent
to the original one. To do so, S2S executes q on the generated
in-memory database using the Calcite engine and retrieves
back its result set, which we use as expected result. Then, the
correspondent method M, is executed by passing as param-
eter an instance of the DB class and the result is compared
to the expected result. Finally, S2S generates a benchmark
leveraging JMH [11] as a harness.

3 Query Compilation

Here we describe the technical details of the translation
from SQL queries to Java code done by S2S. Similarly to
existing SQL query compilers [2, 22, 31, 39], S2S translates a
query by visiting its query plan, which is done by the visitor
component of S2S, i.e., an instance of the visitor pattern. The
visitor maintains a state composed of three components:

e v.body: a string that contains the partially-generated
method body implementing the given query.

e v.elemType: a string containing the type name of the
stream elements.

e v.decl: a list of strings representing variable declara-
tions referred by the generated method body.

When visiting each operator (excluding table scans), the
visitor can assume that v.body ends with a piece of code
representing an expression of type Stream<T> and that the
name of the stream elements type T is stored in the field
v.elemType. From now on, we will refer to such an invariant
as state assumption.

In general, once the visitor visits a node in the query
plan, it first recursively visits its children in depth-first order.
Then it generates the code implementing the current opera-
tor and appends it to v.body. Thanks to the state assumption,
each generated stream operation can be simply appended
to v.body forming a chain of method calls. Finally, it sets
v.elemType as the type name of the stream elements, result-
ing from the generated stream operation so that the state
assumption holds. Some query operators (e.g., predicate) do
not change the element type. In this case, the visitor leaves
unchanged v.elemType. For the remaining query operators,
such stream element type is a class generated by the visitor.

Figure 2 shows a pseudo-code algorithm describing the
S2S’ query compiler. We now provide more details on the
template-based code-generation approach used by S2S which
implements the mapping between SQL query operators and
stream operations shown in Table 1, focusing on how the
visit of each operator mutates v.body, v.elemType and v.decl.

Table Scan (Figure 2, lines 2 — 5). Since the visit is per-
formed in depth-first order, and table scans are always the
leaves of a query plan, table scan is always the first visited
operator. During the visit to a table scan for a table ¢, the
state is modified for the first time.

We note that during the first step of our approach (in-
memory DB generation), a class Ct has been created as a
representation of ¢ and the DB class contains a field named ¢
and typed as Ct[]. v.elemType is set to the name of the class
Ct generated during the first phase, and v.body is set to the
value Arrays.stream(db.t). This state mutation respects the
state assumption mentioned above, since the value of v.body
is an expression of type Stream<T> where T is the class Ct.

Projection (Figure 2, lines 7 — 13). Since a projection
p defines a mapping between tuples through a sequence of
expressions, the visitor must generate a new class as a type

GPCE ’22, December 06-07, 2022, Auckland, New Zealand

1 visit(Operator op) = op match {

2 case TableScan scan {

3 elemType = scan.type

4 body = "Arrays.stream(db.{scan.name})"

5 }

6

7 case Projection proj {

8 visit(proj.child)

9 cls = genDataClass(proj.type)

10 es = join(',', map(genExpr, proj.exprs))

11 elemType = cls.name;

12 body += ".map(row -> new {cls.name}({es}))"

13 }

14

15 case Predicate pred {

16 visit(pred.child)

17 expr = genExpr(pred.expr)

18 body += ".filter(row -> {expr})"

19 }

20

21 case Limit limit {

22 visit(limit.child)

23 body += ".limit({limit.value})"

24 3}

25

26 case Sort sort {

27 visit(sort.child)

28 comparator = genComparatorExpr(sort)

29 decl.append("comp", comparator)

30 body += ".sorted(comp)"

31 3

32

33 case Aggregate agg {

34 visit(agg.child)

35 aggClass = genAggregatorClass(agg)

36 elemType = aggClass.name

37 if(!agg.hasGrouping) {

38 body += ".collect({aggClass.collector})"

39 body = "Stream.of ({body})"

40 } else {

41 keysClass = genDataClass(agg.keyType)

42 body += ".collect(Collectors.groupingBy(

43 {keyClass.name}::new,

44 aggClass.collector

45)).values().stream()"

46 }

47 3}

48

49 case NestedLoopJoin join {

50 bVisitor = new Visitor ()

51 bVisit = bVisitor.visit(join.left)

52 buildBody = bVisit.body + ".toList();"

53

54 visit(join.right)

55 joinedClass = genDataClass(join.type)

56 elemType = joinedClass.name

57 decl.append("left", buildBody)

58 body += // probe side as shown in Figure 3

59 1

60

61 case HashJoin join {

62 bVisitor = new Visitor ()

63 bVisit = bVisitor.visit(join.left)

64 buildBody = bVisit.body + ".collect(
Collectors.groupingBy{join.leftKey3});"

65

66 visit(join.right)

67 joinedClass = genDataClass(join.type)

68 elemType = joinedClass.name

69 decl.append("empty", "emptyList()")

70 decl.append("left", buildBody)

71 body += // probe side as shown in Figure 4

72 1

73}

Figure 2. Pseudo-code algorithm to convert SQL queries
into stream-based Java source code.

Filippo Schiavio, Andrea Rosa, and Walter Binder

for the mapped tuples. To this end, the visitor infers the types
of the given projection expressions and generates a Java
record Cp to hold these types, setting v.elemType to Cp. Then,
the visitor converts each SQL expression in the projection
into a Java expression. Finally, it appends to v.body a call to
the map operations as .map(row -> new Cp(el,e2,...,en))
where e1,e2, .. .,en are the generated expressions.

Predicate (Figure 2, lines 15 — 19). Since filtering does
not alter the element type in a given stream, visiting a predi-
cate does not require mutating v.elemType or generating a
new class. Similarly to a projection, a predicate holds a SQL
expression which is converted into a Java expression. How-
ever, the SQL expression hold by a predicate cannot have an
arbitrary return type as in the case of projections, but it must
return a boolean value. This requirement is checked at query-
validation time. Once the boolean expression e is converted,
the visitor appends to v.body the code . filter(row -> e).

Limit (Figure 2, lines 21 — 24). The visit to the limit op-
erator is straightforward since it does not require to generate
a class, mutate v.elemType and convert any expression. The
visitor simply appends to v.body to code .1imit(n).

Sort (Figure 2, lines 26 — 31). Also the visit to the sort op-
erator does not require to generate a new class or to mutate
v.elemType. The sort operator holds a sequence of expres-
sions which define the ordering constraints. The visitor con-
verts these SQL expressions into Java lambda expressions and
uses them to form a java.util.Comparator instance. Finally,
the visitor appends to v.body the code .sorted(c) where c
is a reference to the generated comparator.

Aggregate (Figure 2, lines 33 — 47). Aggregate nodes
represent both grouped and not-grouped aggregations, de-
pending on whether the group-by clause is used in the query.
Grouped aggregations can project the result of aggregation
functions and the grouped fields, whilst not-grouped ag-
gregations can project only through aggregation functions.
Translating an aggregate operator into methods of the Java
Stream API is more challenging than the previously men-
tioned operators. This is motivated by the lack of a declara-
tive interface in the Java Stream API which allows projecting
the result of multiple aggregation functions. Indeed, while
the Java Stream API offers methods which evaluate single
aggregations, such as Stream.count, Stream.min, Stream.max,
there is no direct way to express a sequence of aggregations,
as one can simply obtain with a SQL query like the following
(not-grouped) aggregation: SELECT min(x), avg(y) FROM T.

Due to such missing feature, S2S converts aggregations
using the method Stream.collect(Collector), as shown in
Table 1. A collector [24] in Java is a result container specified
by four functions that together allows accumulating entries.
In particular, the functions allow to create a new container
(supplier()), to update the container by incorporating a new
entry (accumulator()), to combine two containers into one

SQL to Stream with S2S: An Automatic Benchmark Generator for the Java Stream API

(combiner()) and to perform a final transformation on the
container once all entries have been processed (finisher()).
To translate an aggregate operator, S2S generates a new class
with a method for each of the abovementioned function and
derives a collector from the generated class.

Once the class implementing the aggregation has been
generated, the visitor performs a state mutation. In particular,
v.elemType is set to the name of the generated class (which
here we call Agg), while the mutation of v.body depends on
whether the aggregation is grouped or not. In both cases,
since Stream.collect is a terminal operator (i.e., it does not
return a stream, but the result container of the aggregation),
in order to respect the state assumption, the result of the
collect method call needs to be wrapped into a new stream.

For not-grouped aggregations, the visitor simply appends
to v.body the code .collect(Agg.collector()), where the
method Agg.collector() refers to the mentioned collector
derived from the class Agg. Then, it wraps the stream result
into a new stream with a single element by mutating v.body
to Stream.of (v.body). In case of grouped aggregations, the
visitor first generates a class KeysRecord for the keys (i.e., the
fields used to perform the grouping), and then it appends to
v.body the following code:

.collect(Collectors.groupingBy(
row -> new KeysRecord(row),
Agg.collector ()

)).values().stream()

To preserve the state assumption, S2S wraps the map values
into a new stream by adding the code .values().stream().

Joins (Figure 2, lines 49 — 72). In contrast to the other
SQL operators, joins have two children in a query plan, hence
the visitor needs to handle such a different structure. S2S
supports two join implementations, namely hash join (com-
monly used when the join condition is an equality among
fields) and nested-loop join (used for other arbitrary join
conditions). For both join implementations, the left child is
called build side, while the right child is called probe side. To
avoid executing the pipeline of operators which compose
each join side more than once, the implementation of both
joins materializes the tuples from the build side into an in-
termediate data structure B. Then, the implementation scans
the probe side and, for each element p, finds all the matching
pairs (p, b), b € B for which the join condition holds.

When visiting both join implementations, S2S first creates
a new visitor v2 which is used to visit the build side. Then,
the original visitor v takes v2.body appending to it the code
for materializing that side into B. We denote C,; the resulting
code. Then, v.decl is set to v2.decl with appended a new
declaration for B, initialized with the code C,;,. Finally, v visits
the probe side of the join, and appends to v.body a call to the
flatMap method defined in the Java Stream API, which takes
care of selecting the join matching pairs (p, b) by accessing

GPCE ’22, December 06-07, 2022, Auckland, New Zealand

List list = left.tolList(); // build side

// probe side

right.flatMap(r -> list
.stream()
.filter(l -> joinCondition(l, r))
.map(l -> mapping(l, r)));

N U W=

Figure 3. Template for the nested-loop join operator.

List empty = Collections.emptylList();

// build hashmap for build side
Map<K, List> map = left.collect(
Collectors.groupingBy(leftKey));

return right.flatMap(r -> // probe side
map.getOrDefault(rightKey(r), empty)
.stream()
.map(l -> mapping(l, r)));

OO0 UT W =

—_

Figure 4. Template for the hash join operator.

B, as further discussed in the next paragraphs, which discuss
the difference w.r.t. the two join implementations.

Nested-loop join (Figure 2, lines 49 — 59). The build side
of a nested-loop materializes its tuple into a list L;. Then, the
operator pipeline on the probe side is executed and, for each
element p, the whole list L, is scanned. For each element b in
Ly, a pair of tuple (p, b) is created and if such pair passes the
join condition, then it will be an output row of the nested-
loop join.

Such a behavior is implemented with the Java Stream API
as shown in the template reported in Figure 3. In particu-
lar, the placeholder left represents the code generated by
visiting the build side with the visitor v2, the assignment
to the list variable is added mutating v.decl. Placeholder
right represents the code generated by visiting the build
side with v, and the call to flatMap is the mutation of v.body
performed by the visitor. Also, the parametric class B in the
declaration is set to the value v2.elemType. We note that the
mapping function, which is here omitted for brevity, creates
elements of a generated class T which contains the fields
from both join children. v.elemType is then set to T.

Hash join (Figure 2, lines 61 — 72). Generating the code
for the hash-join operator is very similar to the case of nested-
loop joins. The algorithm differs from the previous one in
finding the matching pairs. In case of nested-loop joins, the
build side is materialized into a list which is fully scanned
for each element in the probe side, while in case of hash
joins the build side is materialized into an hash map and
matching pairs are found by performing a hash lookup on
that map. In particular, the code-generation template for
hash join is depicted in Figure 4. Placeholders left, right,
mapping have the same meaning as in the case of nested-loop
joins. Hash joins also require to generate code for extracting

GPCE ’22, December 06-07, 2022, Auckland, New Zealand

WITH top_orders AS (
SELECT * FROM orders
WHERE o_orderdate >= DATE '1995-12-01"'
ORDER BY o_totalprice DESC
LIMIT 1000)

SELECT SUM(o_totalprice)

FROM lineitem, top_orders

WHERE 1_shipdate >= DATE '1995-12-01'
AND o_orderkey = 1l_orderkey

Figure 5. Original definition of Q8 in SQL.

the map keys used for finding matching pairs. To this end,
the visitor creates a Java record (C) with the fields used in
the key. Placeholders leftKey and rightKey in the template
represent the generated code which creates an instance of
C from an element of the build side stream and probe side
stream, respectively.

4 Use Case: Generating BSS with S2§

In this section, we present a use case to demonstrate the ca-
pabilities of S2S in generating benchmarks from SQL queries.
With S2S, we generated BSS, which to the best of our knowl-
edge is the first benchmark suite for the Java Stream API.
BSS has been obtained by running S2S on a set of queries
that have been proposed as benchmarks by the authors of
the stream-fusion engine [32]. The queries are based on the
dataset of TPC-H [36]. The original benchmark suite is com-
posed of 7 queries; however, there is no query that makes use
of all SQL operators. With the goal of presenting a complete
example of query compilation that involves the translation
of each SQL operator, we created another query (here called
Q8) listed in Figure 5. The query is inspired by the combina-
tion of two original queries, Q5 and Q7. In the following text,
we describe the query-compilation process performed by
S2S on Q8, which exemplifies the code-generation approach
described in Section 3. ¢

The class generated by S2S taking Q8 as input is depicted
in Figure 6. The query plan is composed as follows. The root
is an aggregate (sum(o_totalprice)) node, followed by a join
operator with a join condition (o_orderkey = 1_orderkey).
The build side of the join is a projection (1_orderkey), fol-
lowed by a predicate (on 1_shipdate) and a table scan (on
lineitem). The probe side of the join is a limit followed by a
sort (by field o_totalprice in descending order) that is fol-
lowed by a projection (of fields o_orderkey, o_totalprice).

The query-plan visit first goes down to the join operator,
then a new visitor (v2) is created to handle the build side, gen-
erating code that creates the join hash map hm (lines 26-28
in Figure 6). Then, the first visitor (v) appends to v.decl the
declarations of E (defined in v2) and hm, the latter is obtained
by appending the grouping collector to v2.body (line 29). We

4BSS is composed of all the 8 translated queries and is publicly available at
https://github.com/usi-dag/BSS/releases/tag/v0.0.1.

Filippo Schiavio, Andrea Rosa, and Walter Binder

note that the method Collectors.groupingBy (used in line 29)
returns a collector that groups the stream elements accord-
ing to the given classification function, accumulating the
result into a map (hash map by default). Now, v can visit the
probe side, going down to the table scan (on order), where
it sets v.body to Arrays.stream(db.orders). Then, it visits
the predicate operator, generating a call to filter (line 32),
and the projection operator, which generates a call to map
(line 33). Then, by visiting the sort operator, v generates the
declaration for the Comparator instance (line 3) and appends
to v.body a call to sorted (line 34). Then, the limit operator
is visited, appending to v.body a call to 1imit (line 35).

At this point, the probe side has been completely visited,
and v appends to v.body the call to flatMap to join the probe
side with the build side (lines 36-39). Finally, the aggregate
node is visited, generating the class that takes care of evalu-
ating the aggregation (class Agg in the code, lines 9-22), and
appending to v.body the call to collect (line 40).

5 Related Work

The lack of suitable benchmarks for specific evaluation needs
is a long-standing problem in the research community, as
demonstrated by the rich presence of research work propos-
ing new techniques to synthetize custom benchmarks auto-
matically. Joshi et al. [13] propose a framework that automati-
cally generate benchmarks starting from CPU-level workload
characteristics provided as input. Zheng et al. [40] locate real-
world applications hosted on GitHub and exhibiting user-
defined behavior, using their unit tests to drive benchmark-
ing workloads. Van Ertvelde et al. [38] generate benchmarks
based on the CPU behavior of existing closed-source appli-
cations without revealing proprietary information. Bell et
al. [12] aim at creating short running workloads from actual
applications. Automatic benchmark generation has also been
proposed for specific domains, such as I/O-intensive parallel
computations [9], bug detection [14], predictive machine-
learning models [8], and matrix operations [19].

Our tool differs from the above work as it is the first one to
allow automatic benchmark generation for the Java Stream
API, which related work does not target. Moreover, while
the above techniques typically require users to provide a
specification of the desired workload characterics as input,
S2S is based on a different approach, i.e., translating existing
SQL queries to stream-based Java applications, which makes
it possible to generate a large number of benchmarks for
the Java Stream API thanks to the vast availability of data-
processing workloads designed for relational databases.

6 Concluding Remarks

This paper presents S2S, an automatic benchmark generator
for the Java Stream API. S2S is a SQL query compiler able
to convert SQL queries into Java stream-based workloads
using a template-based code-generation approach. We use

https://github.com/usi-dag/BSS/releases/tag/v0.0.1

SQL to Stream with S2S: An Automatic Benchmark Generator for the Java Stream API

1 public class Query_8 {

2 Date const_@ = Date.valueOf("1995-12-01");

3 Comparator<P1> comp = Comparator.comparing((
P1 x) -> x.o_totalprice()).reversed();

4

5

6 record PO(...) {} // fields omitted
7 record JO(...) {} // fields omitted
8 record P1(...) {} // fields omitted
9 class Agg {

10 int sum_total;

11 void accumulate(JO row) {

12 sum_total += row.o_totalprice;

13 }

14 Agg combine (Agg other) {

15 sum_total += other.sum_total;

16 return this;

17 }

18 static Collector<Jo, Agg, Agg> collector(){

19 return Collectors.of(

20 Agg::new,Agg::accumulate,Agg::combine);

21

22 3}

23

24 public List<Agg> exec(DB db) {

25 List<P@> E = Collections.emptylList();

26 var hm = Arrays.stream(db.lineitem)

27 .filter(row -> (row.l_shipdate.
compareTo(const_0) >= 0))

28 .map(row -> new PO(...))

29 .collect(Collectors.groupingBy(row ->
row.l_orderkey()));

30

31 var stream = Arrays.stream(db.orders)

32 .filter(row -> (row.o_orderdate().
compareTo(const_0) >= 0))

33 .map(row -> new P1(...))

34 .sorted(comp)

35 .limit (1000)

36 .flatMap(r ->

37 hm.getOrDefault(r.o_orderkey(), E)

38 .stream()

39 .map(l -> new JO(...)))

40 .collect(Agg.collector());

41

42 return Stream.of(stream).tolList();

43

44 3

Figure 6. Code generated by S2S from query Q8 (Figure 5).

S2S to generate BSS, the first benchmark suite for the Java
Stream API, obtained by applying S2S on all the SQL queries
used as benchmarks by the stream-fusion engine. Thanks to
S2S, numerous benchmarks for the Stream API can be easily
generated by converting existing data-processing workloads
designed for relational databases.

Limitations. One limitation of our approach is that S2S
uses a pre-determined set of stream operations (see Table 1)
in the translation. While these operations are the most rel-
evant for data-processing benchmarks obtained from SQL
queries, an implication of our approach is that some opera-
tions of the Java Stream API will never be used by any work-
load resulting from S2S. Hence, the resulting benchmarks
cannot exercise all methods defined by the Java Stream APL

GPCE ’22, December 06-07, 2022, Auckland, New Zealand

Future Work. We plan to address the abovementioned
limitation as future work, by exploring alternative conver-
sions of SQL operators to Java streams with the goal of cover-
ing more operations defined by the Stream API. Such an ex-
tension would also allow measuring the performance differ-
ence among equivalent stream operations. Simple examples
of equivalent conversions are, e.g., implementing joins with
mapMulti instead of flatMap, using findFirst and findAny in
place of the 1imit(1) operator. Moreover, the exploration
of alternative conversions would immediately enable a per-
formance evaluation of the parallelism implemented in the
Stream API. Indeed, our approach conceptually already sup-
ports parallel streams, since all generated operations support
parallel evaluation. Thus, generating benchmarks for par-
allel streams would only require adding .parallel() in the
generated source code, that we will implement in a future
release.

While S2S was implemented as a compiler for relational
queries, it could be extended to support NoSQL queries (e.g.,
MongoDB [21]). Such an extension could also help in extend-
ing the coverage of the Java Stream API within the generated
benchmarks. Moreover, while S2S focuses on the Java Stream
API, the same approach could be reused to generate bench-
marks for LINQ and Scala Collections. In this setting, part
of the existing infrastructure could be reused, in particular
the in-memory DB population as well as the tests and bench-
marks generation. However, the query compiler should be
extended with a new backend that takes care of generating
code for a different language library.

As future work, we plan to generate a large and compre-
hensive benchmark suite for the Java Stream API by convert-
ing other established data-processing workloads. We plan
to use the new suite to conduct a performance analysis on
the Java Stream API; in particular, we plan to evaluate the
performance of the Java Stream API among different JDKs.

Acknowledgments

The work presented in this paper has been supported by
Oracle (ERO project 1332) and the Swiss National Science
Foundation (project 200020_188688).

References

[1] Matteo Basso, Filippo Schiavio, Andrea Rosa, and Walter Binder. 2022.
Optimizing Parallel Java Streams. In ICECCS. 23-32. https://doi.org/
10.1109/iceccs54210.2022.00012

[2] Edmon Begoli, Jesus Camacho-Rodriguez, Julian Hyde, Michael J. Mior,
and Daniel Lemire. 2018. Apache Calcite: A Foundational Framework
for Optimized Query Processing Over Heterogeneous Data Sources.
In SIGMOD. 221-230. https://doi.org/10.1145/3183713.3190662

[3] Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. 2014.
Clash of the Lambdas. 1-11. https://doi.org/10.48550/arXiv.1406.6631

[4] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko

https://doi.org/10.1109/iceccs54210.2022.00012
https://doi.org/10.1109/iceccs54210.2022.00012
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.48550/arXiv.1406.6631

GPCE ’22, December 06-07, 2022, Auckland, New Zealand

Stefanovi¢, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. 2006. The DaCapo Benchmarks: Java Benchmarking Devel-
opment and Analysis. In OOPSLA. 169-190. https://doi.org/10.1145/
1167515.1167488

[5] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kem-
per, Stefan Krompass, Harumi Kuno, Raghunath Nambiar, Thomas
Neumann, Meikel Poess, Kai-Uwe Sattler, Michael Seibold, Eric Simon,
and Florian Waas. 2011. The Mixed Workload CH-BenCHmark. In
DBTest. 1-6. https://doi.org/10.1145/1988842.1988850

[6] Standard Performance Evaluation Corporation. 2022. SPECjbb2015.
https://www.spec.org/jbb2015/.

[7] Standard Performance Evaluation Corporation. 2022. SPECjvm2008.
https://www.spec.org/jvm2008.

[8] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.
2017. Synthesizing Benchmarks for Predictive Modeling. In CGO.
86-99. hitps://doi.org/10.1109/cg0.2017.7863731

[9] Meng Hao, Weizhe Zhang, You Zhang, Marc Snir, and Laurence T.
Yang. 2019. Automatic Generation of Benchmarks for I/O-intensive
Parallel Applications. J. Parallel and Distrib. Comput. 124 (2019), 1-13.
https://doi.org/10.1016/j.jpdc.2018.10.004

[10] Michael Hausenblas and Jacques Nadeau. 2013. Apache Drill: In-
teractive Ad-hoc Analysis at Scale. Big data 1, 2 (2013), 100-104.
https://doi.org/10.1089/big.2013.0011

[11] JMH Team. 2022. JMH. online. https://github.com/openjdk/jmh

[12] Lizy Kurian John. 2005. The Case for Automatic Synthesis of Miniature
Benchmarks. In MoBS. 4-8. https://doi.org/10.1145/1958746.1958748

[13] Ajay Joshi, Lieven Eeckhout, and Lizy K John. 2008. The Return of
Synthetic Benchmarks. In SPEC Benchmark Workshop.

[14] Vineeth Kashyap, Jason Ruchti, Lucja Kot, Emma Turetsky, Rebecca
Swords, Shih An Pan, Julien Henry, David Melski, and Eric Schulte.
2019. Automated Customized Bug-Benchmark Generation. In SCAM.
103-114. https://doi.org/10.1109/SCAM.2019.00020

[15] Raffi Khatchadourian, Yiming Tang, and Mehdi Bagherzadeh. 2020.
Safe Automated Refactoring for Intelligent Parallelization of Java 8
Streams. Science of Computer Programming 195 (2020), 1-24. https:
//doi.org/10.1016/j.scic0.2020.102476

[16] Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Syed
Ahmed. 2018. A Tool for Optimizing Java 8 Stream Software via
Automated Refactoring. In 2018 IEEE 18th International Working Con-
ference on Source Code Analysis and Manipulation (SCAM). IEEE, 34-39.
https://doi.org/10.1109/SCAM.2018.00011

[17] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smarag-
dakis. 2017. Stream Fusion, to Completeness. In POPL. 285-299.
https://doi.org/10.1145/3093333.3009880

[18] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons
Kemper, and Thomas Neumann. 2015. How Good Are Query Op-
timizers, Really? Proc. VLDB Endow. 9, 3 (2015), 204-215. https:
//doi.org/10.14778/2850583.2850594

[19] John McCalpin and Mark Smotherman. 1995. Automatic Benchmark
Generation for Cache Optimization of Matrix Operations. In ACM-SE.
195-204. https://doi.org/10.1145/1122018.1122054

[20] Anders Moller and Oskar Haarklou Veileborg. 2020. Eliminating Ab-
straction Overhead of Java Stream Pipelines Using Ahead-of-Time
Program Optimization. Proc. ACM Program. Lang. 4, OOPSLA (2020),
1-29. https://doi.org/10.1145/3428236

[21] MongoDB Team. 2020. The most popular database for modern apps
[MongoDB. https://www.mongodb.com/.

Filippo Schiavio, Andrea Rosa, and Walter Binder

[22] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans
for Modern Hardware. Proc. VLDB Endow. 4, 9 (2011), 539-550. https:
//doi.org/10.14778/2002938.2002940

[23] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak.
2009. The Star Schema Benchmark and Augmented Fact Table Indexing.
Springer-Verlag, 237-252. https://doi.org/10.1007/978-3-642-10424-
417

[24] Oracle. 2022. Class Collector. https://docs.oracle.com/en/java/javase/
18/docs/api/java.base/java/util/stream/Collector.html.

[25] Oracle. 2022. Class Record. https://docs.oracle.com/javase/specs/jls/
se18/html/jls-8.html#jls-8.10.

[26] Oracle. 2022. Package java.util.stream. https://docs.oracle.com/en/
java/javase/18/docs/api/java.base/java/util/stream/Stream.html.

[27] Aleksandar Prokopec, Andrea Rosa, David Leopoldseder, Gilles Du-
boscq, Petr Tama, Martin Studener, Lubomir Bulej, Yudi Zheng, Alex
Villazén, Doug Simon, Thomas Wiirthinger, and Walter Binder. 2019.
Renaissance: Benchmarking Suite for Parallel Applications on the JVM.
In PLDI 31-47. https://doi.org/10.1145/3314221.3314637

[28] George Reese. 2000. Database Programming with JDBC and JAVA.
"O’Reilly Media, Inc.".

[29] Francisco Ribeiro, Jodo Saraiva, and Alberto Pardo. 2019. Java Stream
Fusion: Adapting FP Mechanisms for an OO Setting. In SBLP. 30-37.
https://doi.org/10.1145/3355378.3355386

[30] Eduardo Rosales, Andrea Rosa, Matteo Basso, Alex Villazon, Adri-
ana Orellana, Angel Zenteno, Jhon Rivero, and Walter Binder. 2022.
Characterizing Java Streams in the Wild. In 2022 26th International
Conference on Engineering of Complex Computer Systems (ICECCS).
IEEE, 143-152. https://doi.org/10.1109/iceccs54210.2022.00025

[31] Filippo Schiavio, Daniele Bonetta, and Walter Binder. 2021. Language-
Agnostic Integrated Queries in a Managed Polyglot Runtime. Proc.
VLDBEndow. 14, 8 (2021), 1414-1426. https://doi.org/10.14778/3457390.
3457405

[32] A. Shaikhha, M. Dashti, and C. Koch. 2018. Push vs. Pull-Based Loop
Fusion in Query Engines. Journal of Functional Programming 28 (2018),
539-550. https://doi.org/10.1017/50956796818000102

[33] Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary Gregory. 2011.
JUnit in Action, 2nd Edition. Manning Publications Company. https:
//doi.org/10.21019/9781582121994.ch9

[34] TPC. 2022. TPC-C. https://www.tpc.org/tpcc/default5.asp.

[35] TPC. 2022. TPC-DS. https://www.tpc.org/tpcds/default5.asp.

[36] TPC. 2022. TPC-H. https://www.tpc.org/tpch/default5.asp.

[37] TPC. 2022. TPCx-BB. https://www.tpc.org/tpcx-bb/default5.asp.

[38] L. Van Ertvelde and L. Eeckhout. 2010. Benchmark Synthesis for
Architecture and Compiler Exploration. In IEEE IISWC. 1-11. https:
//doi.org/10.1109/iiswc.2010.5650208

[39] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J Franklin, Scott Shenker, and
ITon Stoica. 2012. Resilient distributed datasets: A {Fault-Tolerant}
abstraction for {In-Memory} cluster computing. In 9th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 12).
15-28. https://doi.org/10.21236/ada575859

[40] Yudi Zheng, Andrea Rosa, Luca Salucci, Yao Li, Haiyang Sun, Omar
Javed, Lubomir Bulej, Lydia Y. Chen, Zhengwei Qi, and Walter Binder.
2016. AutoBench: Finding Workloads That You Need Using Pluggable
Hybrid Analyses. In SANER, Vol. 1. 639-643. https://doi.org/10.1109/
saner.2016.70

https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/1988842.1988850
https://www.spec.org/jbb2015/
https://www.spec.org/jvm2008
https://doi.org/10.1109/cgo.2017.7863731
https://doi.org/10.1016/j.jpdc.2018.10.004
https://doi.org/10.1089/big.2013.0011
https://github.com/openjdk/jmh
https://doi.org/10.1145/1958746.1958748
https://doi.org/10.1109/SCAM.2019.00020
https://doi.org/10.1016/j.scico.2020.102476
https://doi.org/10.1016/j.scico.2020.102476
https://doi.org/10.1109/SCAM.2018.00011
https://doi.org/10.1145/3093333.3009880
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/1122018.1122054
https://doi.org/10.1145/3428236
https://www.mongodb.com/
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1007/978-3-642-10424-4_17
https://doi.org/10.1007/978-3-642-10424-4_17
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/stream/Collector.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/stream/Collector.html
https://docs.oracle.com/javase/specs/jls/se18/html/jls-8.html#jls-8.10
https://docs.oracle.com/javase/specs/jls/se18/html/jls-8.html#jls-8.10
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/stream/Stream.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/stream/Stream.html
https://doi.org/10.1145/3314221.3314637
https://doi.org/10.1145/3355378.3355386
https://doi.org/10.1109/iceccs54210.2022.00025
https://doi.org/10.14778/3457390.3457405
https://doi.org/10.14778/3457390.3457405
https://doi.org/10.1017/s0956796818000102
https://doi.org/10.21019/9781582121994.ch9
https://doi.org/10.21019/9781582121994.ch9
https://www.tpc.org/tpcc/default5.asp
https://www.tpc.org/tpcds/default5.asp
https://www.tpc.org/tpch/default5.asp
https://www.tpc.org/tpcx-bb/default5.asp
https://doi.org/10.1109/iiswc.2010.5650208
https://doi.org/10.1109/iiswc.2010.5650208
https://doi.org/10.21236/ada575859
https://doi.org/10.1109/saner.2016.70
https://doi.org/10.1109/saner.2016.70

	Abstract
	1 Introduction
	2 S2S Architecture
	3 Query Compilation
	4 Use Case: Generating BSS with S2S
	5 Related Work
	6 Concluding Remarks
	References

