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Résumé 

 

Les futurs réseaux optiques multicouches utilisant le multiplexage en longueur d'onde permettront dans 
un proche avenir l'introduction de nouveaux services optiques à valeur ajoutée. Le réseau de transport 
passif conventionnel se transformera ainsi en une couche de transport active et intelligente. Le succès de 
ces nouveaux services dépendra toutefois de l'efficacité, de la résilience et de la programmabilité de 
l'infrastructure de gestion mise à la disposition des opérateurs de réseaux et des fournisseurs de service. 
Une approche de gestion traditionnelle et purement centralisée ne permet pas d'intégrer les contraintes 
d'hétérogénéité et de dynamicité inhérentes à ces nouveaux réseaux et doit par conséquent évoluer en 
direction d’une gestion décentralisée et auto-adaptative.  

L'introduction d'agents logiciels autonomes est une technique prometteuse, flexible et particulièrement 
bien adaptée à ce type de système distribué. Des agents réactifs capables de se déplacer dans le réseau 
permettent d'utiliser des approches bio-inspirées comme celles issues du comportement émergent.  

Dans le cadre de ce travail, nous avons développé un intergiciel appelé Ecomobile, composé d’agents 
mobiles qui appliquent des principes observés dans des écosystèmes naturels, afin de disséminer et 
d'activer des tâches coopératives de gestion de réseau. Dans cette perspective, nous avons analysé le 
comportement d'une communauté d'agents mobiles en examinant l'évolution de leur population, leur 
propagation, la fréquence de visite des nœuds et des liens, ainsi que différentes stratégies de 
dissémination de tâches intelligentes dans diverses topologies de réseaux de transport. 

Après avoir étudié différents systèmes d'agents mobiles intégrant des modèles de navigation 
déterministes et stochastiques, nous avons élaboré un modèle original d'agent réactif en séparant les 
modèles de coordination et de navigation, qui constituent le schéma de comportement mobile, du modèle 
computationel, qui correspond aux tâches opérationnelles. L'implémentation d'un écosystème artificiel 
constitué de ces agents mobiles a été réalisée à l'aide d'un formalisme de programmation réactive. 

Les tâches opérationnelles génériques proposées dans notre recherche permettent la composition de 
tâches de gestion complexes. La réponse de notre écosystème à l'insertion dynamique de ces tâches 
génériques a été simulée et analysée. Afin de déployer Ecomobile dans un réseau actif, nous avons utilisé 
une plateforme d'agent compatible FIPA appelée Jade. Le développement d'une agence particulière sous 
forme d’un agent Jade offre aux agents mobiles un environnement d'exécution adéquat et leur fournit les 
services de migration nécessaires. 

En guise de conclusion, nous avons établi une translation de la sémantique d'Ecomobile dans un 
environnement défini par un nœud de réseau comprenant différentes fonctions optiques de conversion et 
de routage de longueur d'onde. La définition et l'implémentation d'un service de protection différenciée à 
l'aide d'une tâche opérationnelle devrait enfin ouvrir la voie à des améliorations et des innovations dans le 
domaine de la gestion des réseaux de transport optiques multicouches grâce à Ecomobile. 

 
Mots-clé: gestion de réseau distribuée, agents mobiles, écosystème artificiel, systèmes réactifs, réseaux 
optiques
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Abstract 

 

The future multi-layer optical networks based on wavelength division multiplexing technology will lead 
to the creation of new value-added optical services, which is bound to transform the traditional passive 
transport network into an active and intelligent transport layer. The successful deployment of these 
complex networking services and the possibility of subjecting them to a dynamic control, however, 
strongly depend on the management infrastructure, on its resilience and its ability to react to network 
changes. In this context, traditional platform-centred management systems have lost their attractiveness: a 
distributed decentralised and self-adaptive network management should constitute an ideal approach, in 
order to deal with the complexity of a heterogeneous, scalable and continuously evolving network 
environment. 

According to this perspective, the recourse to autonomous software agents can now be considered as 
one of the most promising and flexible of the distributed processing techniques. The development of 
reactive agents acting as mobility-oriented individuals benefits from bio-inspired approaches such as 
emergent behaviour. The powerful dynamic and active mechanisms characterizing the evolution of 
mobile reactive agents enhance the network infrastructure and lead to a self-organizing knowledge-based 
network environment.  

In order to address the numerous challenging issues related to the management of future multi-layer 
transport networks, we propose to develop an ecosystem-inspired mobile agent middleware called 
Ecomobile, intended for the dissemination and the activation of cooperative management tasks. Particular 
emphasis will be laid on the transport network management and several topics related to the population of 
mobile agents will be discussed, such as their propagation within the network infrastructure, the 
frequency of node and link visits or the dissemination of intelligent tasks. 

After having identified the main characteristics of conventional mobile multi-agent systems based upon 
deterministic and stochastic migration strategies, which are particularly relevant to the field of distributed 
control, we have decided to adopt a novel agent architecture based upon a clear separation between the 
mobile behaviour scheme composed of the navigation and coordination model, on the one hand, and the 
task objectives, which refer to the agent's operational behaviour or to the computational model, on the 
other hand. The implementation of the ecosystem is realized with a reactive programming formalism.  

The generic task objective models we have elaborated correspond to basic networking functions and 
are intended for the compositional building of more sophisticated tasks. The response of the ecosystem to 
the dynamic insertion of task objectives will be analyzed by means of a simulation. The deployment of 
our middleware into active nodes will be achieved with the FIPA-compliant Jade agent platform, in 
which the Ecomobile agency provides the mobile agents with the necessary requirements for their 
migration and for the execution of the task objectives. 

We will finally show that the Ecomobile middleware can be applied in the field of optical transport 
network management by means of a pertinent mapping of the Ecomobile semantics onto the optical 
network environment. The definition and the implementation of a new value-added differentiated 
protection service into a multi-layer optical network should eventually pave the way for further 
improvements and innovations in the field of transport network management. 

 
Keywords: distributed network management, mobile agents, artificial ecosystem, reactive systems, 
optical network
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Introduction 

 

Over the last decade, the extraordinary development of the World Wide Web has led to the creation of 
new multi-media services and enterprise applications which are continuously evolving to support more 
and more facilities. These new services require far more complex network characteristics than simply 
enough bandwidth: flexibility, reliability, scalability, fast reaction to network changes, and balanced 
trade-off between quality and cost by means of customized Quality-of-Service (QoS) constitute the 
essential properties of future telecommunication networks. 

The deregulation of the telecommunication market implies the definition of new business models 
leading service providers, which sell customers network services, and network operators, which supply 
service providers with a network infrastructure, to evolve as distinct parties in a highly competitive 
environment. The service providers, on the one hand, wish to create and modify services in a dynamic 
way, to establish flexible Service Level Agreements (SLA) with variable QoS parameters, and to monitor 
real-time service status and performance; the network operators, on the other hand, must be able to plan, 
create and provision new services, to manage multiple, customer-tailored SLAs, to track and report SLA 
QoS performance, to establish and manage network policies, and finally to provide for secure network 
access [BTS+01]. 

The competitiveness of network operators consequently relies on their ability to create value-added 
services within the existing as well as the future infrastructure and to deal with new customer 
requirements. The migration from traditionally passive transport networks to adaptive and intelligent 
components, and the ensuing intelligent transport network, directly result from these transformations. In 
this context, Wavelength Division Multiplexing (WDM) based optical networks and Fiber to the Home 
(FTTH) technology associated to the creation of advanced interactive services, such as digital television 
services, will probably constitute one of the major revolutions in the telecommunication landscape during 
the next decades. 

The optical transport network is expected to transport data streams at a bit rate exceeding 1 Tbit/s on a 
single link in the near future and, according to predictions, at a bit rate of 10 Tbit/s by 2010 [LDA+98]. 
From the point of view of the network operator, optical networks supporting networking functions in the 
optical domain appear to be the most attractive technology for the creation of new customer-oriented 
services. 

Performance of these complex networking services however strongly depends on the management 
infrastructure, on its resilience and on its capability to react to network changes. In traditional network 
management, for example, management information is predefined and standardized, which makes future 
updating difficult and troublesome. In the future, traditional platform-centred network and service 
management systems will not meet the expectations of future multi-layer transport networks any more. 
Inherently distributed management systems will have to match new paradigms implying that a substantial 
portion of network control and network knowledge is no longer centralized in management systems. In 
this perspective, decentralised and self-adaptive network management should constitute the ideal 
approach meeting expectations of network operators and coping with a heterogeneous and continuously 
evolving network environment. 
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The software agent paradigm, which is currently gaining increasing attention in the scientific community, 
arises from the convergence of several disciplines like distributed artificial intelligence, biology, software 
engineering and telecommunications, and entails powerful mechanisms for the development, by means of 
intelligent and mobile agents, of complex distributed systems, such as network management applications. 
An intelligent agent may be defined as an encapsulated computing system situated in the network 
environment and able to exhibit flexible and autonomous behaviour in order to fulfil its design objectives 
[J01]. Intelligent agents are characterized by their social behaviour and interactions; they exchange 
knowledge, goals, skills, and plans in order to make jointly short and long-term decisions to solve 
complex problems. An agent may also have the ability to move that is, to move its code and data from 
one location to another in order to accomplish its task progressively, in which case it places control and 
management software processes dynamically at the most appropriate locations within the 
telecommunication environment [MRK96]. The transfer of a large amount of data between a manager and 
remote entities can thus be avoided; mobile agents can also continue their work when the connection is 
temporarily interrupted. Since they enable both temporal and spatial distribution of management 
activities, mobile agents are particularly well suited to the intelligent adaptation of services, as well as to 
advanced service interworking and integration. In the context of network management, the mobile agent 
approach entails a further advantage: while network management protocols must continuously be 
developed in order to resolve new emerging problems, the resort to mobile agents makes network 
management protocols between the managing station and the managed device obsolete [ZZ98]. 

Although mobile agents are perfectly adequate for network management systems, this novel approach 
raises important open issues mainly concerning the proliferation of agents within the network 
environment and the control of their density, which may have an influence on their overall performance, 
as well as on their internal architecture, which often radically differs from one task implementation to the 
other according to different mobility approaches. 

The mobility paradigm and its application to transport network management systems constitute the 
main subjects of this dissertation, in which we are trying to show that agent mobility associated to 
network infrastructure may contribute to the elaboration of an intelligent transport network and may thus 
facilitate the design and deployment of network management tasks within such networks. Our basic 
approach consists in considering mobile agents and the network environment as an artificial ecosystem, in 
which the network infrastructure can be considered as its biotope, i.e. the environment made up of 
resources, and the mobile agents can be referred to its biocenose, or the individuals' society. This 
approach allows us to benefit from self-organisation properties which emerge from any natural 
ecosystem, in order to guarantee the stability and the efficient investigation of the infrastructure for the 
execution of network management tasks, in particular. 

The deployment of mobile agent systems into large-scale network devices raises a number of open 
issues which will be addressed in our work. In this perspective, manufacturers such as 3Com, Cisco or 
Nortel Networks have announced the development of network devices endowed with increasing 
computing resources and liable to support an embedded Java Virtual Machine (JVM). In this context, 
Active Networks (AN) technology provides an interesting architectural framework to transform usual 
passive network nodes into programmable nodes in which code can be dynamically installed and 
automatically configured. The concept of active network management as it is developed in this thesis 
refers to a fully decentralised management; this kind of management leads network components to be 
active, like active nodes in AN; more generally, active components must be capable of dynamically 
hosting software entities and enabling their activation in an appropriate and secure execution 
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environment. In the case of legacy systems, the active node may be composed of a local proxy interacting 
with legacy components. 

MOTIVATIONS 

This thesis has been realized at the University of Fribourg in an industrial collaborative context involving 
Swisscom Innovations, the research and development unit of Swisscom Ltd, in Bern, Switzerland, which is 
the major Swiss telecommunication operator. The initial motivation of this thesis stems from the 
necessity to explore new solutions towards the efficient management of the future WDM-based optical 
transport network. Unlike other network technologies, WDM optical networks deal with large numbers of 
heterogeneous network components presenting different capabilities and limitations such as 
optoelectronic conversion, partial matrix switching, wavelength conversion, etc. This diversity makes the 
implementation of traditional networking algorithms into conventional network management systems 
particularly complex. The optical layer constitutes the lowest network layer transporting several Tbit/s of 
client-independent data on a single fibre, which involves serious survivability issues, so that the 
management system is obviously a vital component of WDM optical networks. 

As we have seen, the approach adopted in the context of this work focuses on the software agent 
technology and, in particular, on mobile agents. Previous investigations from the research community in 
this domain have led us to believe that mobile agents navigating within the network infrastructure in 
accordance with physical constraints and impairments induce powerful reactive mechanisms and provide 
a natural software engineering approach to the development of conventional network management tasks, 
as well as of more sophisticated algorithms devoted to the resource control of optical networks. 

The emerging mobile agent technology raises a number of challenging issues, mainly concerning 
architecture, self-adaptability and pragmatic implementation. This is the reason why we have decided to 
concentrate our efforts on the development of a mobile agent based software infrastructure specifically 
devoted to transport network management applications. We propose to place particular emphasis on the 
development of a mobile multi-agent system able to support a combination of various mobility-oriented 
approaches which implement both the deterministic migration strategy used by delegation mobile agents 
and the stochastic migration strategy used by mobile agents exhibiting emergent behaviour. 

This document is an account of the conception and elaboration of the mobile agent middleware which 
we have called Ecomobile. Since Ecomobile is intended to be implemented within large-scale transport 
networks, particular attention must be drawn to the ongoing efforts in the field of standardization. In this 
perspective, strong emphasis will be placed on existing and evolving agent standards, such as the 
Foundation of Intelligent Physical Agents (FIPA); neither should we neglect to deal with legacy network 
management systems built on top of existing standardized frameworks, such as TMN or SNMP. 

Rather than a deep and pure theoretical study devoted to a specific subject, this thesis reflects 
exploratory work and must be seen as an attempt to identify and to develop issues related to mobile agent 
based network management systems: we have chosen to develop the issues which seemed most relevant 
to our target application from a network operator perspective. In this context, the development of 
Ecomobile, which constitutes the central part of this thesis, should provide a powerful self-adaptive 
framework for the implementation of bio-inspired algorithms intended for the resource control of future 
optical networks. The development of such algorithms is an important objective of the OPTIMA1 project 
for which this thesis constitutes a preparatory work. 

                                                      
1 OPTical network management with Intelligent and Mobile Agents (see Section 7.1) 
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GUIDELINES 

This document is divided into three main sections: the first part, which is devoted to the technology 
insight, is composed of Chapters 1 and 2. The second part, which contains Chapters 3, 4 and 5, describes 
the design, implementation and simulation of Ecomobile, while the final part of this document is devoted 
to optical network management, our use case study presented in Chapters 6 and 7. 

Chapter 1 contains a description of conventional approaches considered in today's network 
management systems. Our summary of the most significant mobile agent based approaches is followed by 
a survey of several popular agent platforms.  

Chapter 2 presents a decomposition of mobile multi-agent systems into three abstraction models: the 
computational, the coordination and the navigation models. This decomposition implies a refinement of 
mobile agent systems modelling with respect to their main characteristics and leads to the particular 
architectural model of Ecomobile, in which the coordination and navigation models forming the mobile 
behaviour scheme are separated from the computational model forming the task objective. We will then 
proceed to describe a particular bio-inspired approach which points out the interactions of our mobile 
agents with their local environment 

The main components of our middleware are introduced in Chapter 3. We shall first introduce the 
Ecomobile model and its main components in order to examine the conceptual framework, which is based 
on mobile behaviour schemes on the one hand, and on the task objectives on the other hand. We shall then 
describe the ecosystem principles that have been retained for the control of the mobile agent population. 
After the computational model consisting in the task objective has been thoroughly examined, some 
generic task objective models corresponding to basic network management functions, and which can be 
used for the compositional building of more sophisticated tasks, will be presented. 

Chapter 4 is devoted to the realization of the Ecomobile concepts by means of reactive programming. 
Different issues related to the implementation of reactive behaviours into reactive instructions will be 
pointed out and we shall finally propose a viable deployment of Ecomobile within a FIPA-compliant 
environment by means of the Jade agent platform. 

Chapter 5 begins with a short introduction to the Generic Network Management Tool (GNMT), which 
has been developed in the context of this thesis. GNMT provides a functional simulation framework for 
the study of agent-based solutions intended for multi-layer optical network management. Simulation 
results issued from various experiments performed with GNMT on different network configurations will 
then be discussed and a behavioural analysis of the ecosystem and of its response to the dynamic insertion 
of specific task objectives will also be examined. 

The basis elements of optical networks are presented in Chapter 6, which introduces the optical 
network components and networking functions, as well as current approaches towards the management of 
the Optical Transport Network (OTN). Optical networks constitute our main application domain. 

Chapter 7 provides an overview of emerging optical services and shows how our infrastructure can be 
implemented into optical components by means of a pertinent mapping of the Ecomobile semantics. We 
then present the implementation and the simulation results for a task objective dedicated to a new 
value-added differentiated protection service. 

In our conclusions, we finally point out open issues and possible extensions to Ecomobile for future 
research activities. 
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Chapter 1 
Mobile Agents and Network Management 

 

In this work we present a reactive mobile agent based middleware called Ecomobile which is partially 
inspired from principles issued from natural ecosystems. Ecomobile is tailored to a decentralized network 
management with particular emphasis on future transport networks, such as optical networks. The 
different issues which will be addressed in this thesis are concerned with the realization of a 
self-organized population of mobile entities, the composition of network-oriented tasks with an efficient 
dispersal of these tasks within the network infrastructure and the deployment of Ecomobile into active and 
heterogeneous network components, such as optical nodes with different capabilities. 

The conceptual approach that we have adopted to design Ecomobile consists in taking into account 
different approaches using mobile agent technology for network management which turned out to be 
particularly relevant, from our point of view, to the development of an intelligent transport network. In 
order to place Ecomobile in its context, according to past and present research, we wish to develop along 
this chapter a number of basic concepts around mobile agents and network management. 

Network management aims at deploying, integrating, and coordinating all the resources necessary in 
order to configure, monitor, test, analyze, evaluate, and control the communication network, so that 
service-level objectives are met at a reasonable cost [BBB+99].  

The design and the implementation of new network management systems inevitably rely on existing 
object-oriented and distributed technologies with open interfaces. Interoperability between network 
entities involved in management processes is ensured by the adoption of international standards1. The 
Object Management Group (OMG)2 and the International Telecommunication Union (ITU)3 - jointly with 
the International Organization for Standardization (ISO)4 - provide object-oriented approaches and 
architectural frameworks for open distributed systems, and therefore play a central role in the 
development of network components and management systems. However, the implementation choice 
advocated in the context of most standards is left open to the manufacturers and leads to a considerable 
amount of proprietary software components obviously raising a large number of interoperability issues. 

In this chapter, we propose to examine how network management systems are traditionally 
implemented. We shall also have a look at the most famous mobile agent based approaches which enable 
to address the management of transport networks in a perspective of interoperability with existing 
network technologies and the migration towards a decentralized approach for a highly dynamic, scalable 
and heterogeneous network infrastructure5. 

                                                      
1 We do not make any difference between standards and recommendations, which are considered as 
equivalent. 
2 http://www.omg.org 
3 http://www.itu.int 
4 http://www.iso.org 
5 In this chapter, we do not yet deal with optical network management, which constitutes the main topic 
of Chapters 6 and 7. 

http://www.omg.org
http://www.itu.int
http://www.iso.org
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1.1 NETWORK MANAGEMENT SYSTEMS 

1.1.1 General Components 
Network Management Systems (NMS) - also called Operational Support Systems (OSS) - provide the 
network operators with the operational functions necessary to control the network resources on the one 
hand and with the service management on the other hand. Network components are interconnected 
according to specific network topologies and are subject to various configuration changes. In future 
networks, an efficient NMS will have to be increasingly distributed, flexible, scalable, and able to support 
inter-networking with heterogeneous systems [E712_99].  

Since software entities may be located everywhere in the network, from the manager console to the 
network devices supplied by the manufacturers, a network management system is inherently distributed 
over the network. The fact that most network management applications require a distributed infrastructure 
does not mean, however, that the management logic, the intelligence itself, is distributed. In this context, 
the approach is based upon a centralized management. 

Network management systems have been influenced by the Open System Interconnection (OSI) layered 
model1, for several years, which has led to the definition of two popular and word-wide spread 
frameworks: the Telecommunication Management Network (TMN) from ITU-T [M3100_96] – used for 
the management of the transport network - and the Simple Network Management Protocol (SNMP) from 
the Internet Engineering Task Force2 (IETF) [C+93] – used for the management of Internet networks.  

MANAGER-AGENT PARADIGM 

TMN and SNMP rely on a client-server (C/S) communication model between a manager (OSI manager) 
and an agent (OSI agent). The manager is responsible for maintaining the global view of the entire 
network and for providing the operator with the control functions; the manager is located in the 
management applications and communicates with the manageable resources. Each manageable resource 
is subordinated to an OSI agent which is responsible for the access to the locally available attributes and 
functions for management purposes. In this context, the resource may refer to hardware (network card, 
physical port, etc.) or abstract components, such as end-to-end connections or switching matrixes. 

The manageable resources in the network are called managed objects and are described by a collection 
of attributes and functions. Managed objects are manipulated by the OSI manager via the OSI agents 
through a standardized protocol (CMIP/SNMP) using a standardized notation, respectively 
(GDMO/SMI). The managed objects can be defined in an object-oriented way so that the managed object 
model gives a logical representation of the manageable entity. The managed objects are stored in a 
Management Information Base (MIB) which is generally located at the same place as the agents and the 
managers. The general communication architecture between manager and agent is depicted on Figure 1-1. 

                                                      
1 OSI reference model ISO/IEC 7498 available at http://www.iso.org 
2 http://www.ietf.org 

http://www.iso.org
http://www.ietf.org
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Figure 1-1. Interactions between manager, agent and MIB 

According to the manager-agent communication model and the C/S paradigm, the agent acts as the server 
while the manager acts as the client, so that additional entities can easily have access to the MIB - i.e. to 
the device configuration - by declaring themselves clients to the corresponding agent. In a mobile agent 
system perspective, the MIB is part of the environment of mobile entities and can be accessed by 
querying the OSI agent in charge of the MIB through a C/S communication model. 

The manager-agent model is a platform-centred approach relying on a pure client-server paradigm; it 
entails drawbacks in scalability, reliability, efficiency and flexibility, and is therefore unsuitable for large 
and heterogeneous networks [BPW98]. Consequently, the deployment of new value-added services in 
future transport networks, for example, reveals to be difficult in the context of this model. 

Finally, management based on the manager-agent model is focused on monitoring network 
infrastructures rather than on managing the applications delivered by the network. On the other hand, the 
popularity and the world-wide spread of such NMS force the future NMS generations to deal with legacy 
systems and to consider them as part of the environment in which they have to interact. The NMS must 
therefore become increasingly open and flexible to handle numerous types of interfaces. 

 

The successful deployment of a new NMS into current telecommunication networks will strongly depend 
on its ability to deal with the management interfaces of existing components and technologies. A proper 
access to the interfaces will enable the NMS to reach the MIBs or any location-dependent information. 

Nowadays, distributed NMS are mainly developed on top of two pre-dominant distributed 
technologies: CORBA on the one hand and Java RMI on the other hand. 

CORBA 

The Common Object Request Broker Architecture (CORBA) from the Object Management Group 
(OMG)1 provides an open, scalable and flexible distributed system framework which is promoted by 
ITU-T and by the TeleManagement forum2 [NMF98].  

                                                      
1 http://www.omg.org 
2 The TeleManagement Forum (TM Forum) is a non-profit global organization that provides leadership, 
strategic guidance and practical solutions to improve the management and operation of communications 
services. Further information available at http://www.tmforum.org 

http://www.omg.org
http://www.tmforum.org
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The central component of CORBA is the Object Request Broker (ORB). ORB encompasses the entire 
communication infrastructure necessary to identify and locate objects, handle connection management 
and deliver data. In general, the ORB is not required to be a single component; it is simply defined by its 
interfaces. The ORB Core is the most crucial part of the Object Request Broker; it is responsible for the 
communication of requests issued from the client to the server and vice-versa. The interface of serving 
objects is described in a platform-neutral language called Interface Description Language (IDL). 
Attributes and method signatures belonging to remote objects are expressed in IDL. 

The basic functionality provided by the ORB consists in passing the requests from the clients to the 
object implementations on which they are invoked. In order to make a request the client can communicate 
with the ORB core either through the IDL stub or through the Dynamic Invocation Interface (DII). The 
stub provides the mapping between the client's implementation language and the ORB core. As long as 
the implementation of the ORB supports this mapping, the client can be written in any language. The 
ORB core then transfers the request to the object implementation which receives the request as an 
invocation through either an IDL skeleton, or a dynamic skeleton. 

Underneath the ORB, the Internet Inter-ORB Protocol (IIOP) enables the client/server to exchange 
information using IP networks.  

JAVA RMI 

SUN Microsystems propose the Remote Invocation Method (RMI)1 for Java based distributed 
applications. The server and the client are fully programmed in Java and usually reside on different Java 
virtual machines. RMI provides a naming service and relies on the Java native security mechanisms. 

The interoperability between RMI and CORBA objects can be addressed through IIOP. The 
combination of RMI and IIOP (RMI-IIOP) enables a Java client to deal with a CORBA server for 
example. In a more general case, RMI-IIOP allows programmers to develop CORBA applications for the 
Java platform without using IDL to describe remote interfaces, and to directly take advantage of RMI 
features such as passing object by value between application components; the CORBA programming 
model only supports passing object by reference. 

CORBA AND TMN/SNMP INTERWORKING 

Joint Inter-Domain Management (JIDM)2 is a technology that defines how network management 
components based on TMN and SNMP can interoperate with CORBA based components. The 
interoperability first requires a definition of model equivalencies between the two domains. This 
definition is given in the Specification Translation document [JIDM97], which explains how information 
models can be translated from one representation to another (ASN.1/GDMO to/from IDL). A second 
document [JIDM98], called Interaction Translation, defines how to perform OSI-like (and SNMP like) 
services in CORBA. An overall architecture of a CORBA-based management system is depicted on 
Figure 1-2. 

JIDM actually provides a way to develop Java objects able to deal with the OSI agents. The 
implementation of mobile agent systems, mostly developed in the Java language in a legacy 
TMN/SNMP-based network component, can be achieved through the use of a proxy and a JIDM gateway 
so that the communication between the mobile agent and the OSI agent becomes possible. 

                                                      
1 http://java.sun.com/rmi 
2 http://www.jidm.org 

http://java.sun.com/rmi
http://www.jidm.org
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Figure 1-2. CORBA-based approach towards network management integrating TMN/SNMP agents 

A fully CORBA-based NMS may be possible if all network elements implement CORBA agents; 
generally, standardized distributed object technologies allow manufacturers to develop low-cost platforms 
and tools. However, the large investments of network operators in traditional systems based on 
CMIP/SNMP will compromise such an approach. Two scenarios therefore have to be considered: either 
the network element supports CORBA interfaces and provides defined IDL-based information models, or 
the network element does not support CORBA; in this case, a JIDM gateway on the manager side can 
perform necessary translations, so that managing object-oriented applications can seamlessly access 
managed objects in a common way. According to this approach, we can envisage to implement mobile 
agents which are able to deal with - and to control - legacy managed objects. 

As we will explain in Section 1.2, most agent platforms are implemented on top of a CORBA or RMI 
system. 

1.1.2 Centralised versus Decentralised Network Management 
Network management systems are usually composed of a manager implementing most of the service 
logic. The information concerning network resources is retrieved from the network by querying the agents 
residing in the network devices. When an alarm occurs, the manager is informed by the agent and the 
whole decision making is performed at the manager level; it is a centralised system. 

A centralised system approach based on a manager-centric approach gives a complete picture of the 
network. Using that information, the system can easily implement algorithms leading to global optima in 
case of allocation of network resources or load-balancing for example. Such an approach generally 
requires message-passing mechanisms imposing a large overhead. It is also more vulnerable to system 
collapse when failure occurs, i.e. there is no localised control policy in action and control only occurs via 
the central management system [Shu00]. 

It has been previously established that most NMS currently use a platform-centred client-server 
paradigm which does not fit the emerging communication networks any more, and in particular the 
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transport network. Figure 1-3 shows an example of an optical transport network managed by a 
TMN-based NMS. In TMN, the communication between the manager and the agents is achieved via a 
separate Data Communication Network (DCN). The agents are physically implemented in the optical 
devices whereas the manager resides at the operator level. 
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Figure 1-3. A TMN-based centralised approach for the optical transport network 

A simple example of the drawbacks of a centralised approach can be illustrated with the following 
scenario: let us suppose an end-to-end client connection from node S to node D; during the running 
connection, a layer of an intermediate node fails, so that the wavelength transporting client data is not 
available any more. All the optical devices involved in the connection from node S to node D 
immediately detect a problem due to the absence of any signal and raise an alarm; according to the state 
of the local MIB, the residing agent of each node then informs the manager via the DCN. Consequently, 
the client systems also detect the problem and generate a service disruption alarm on the customer side. 
At this moment only, the manager can start an alarm correlation process in order to analyze the received 
alarm messages, to identify the defect node and to take appropriate action. According to the number of 
components involved in a connection, the manager obviously has to face a considerable amount of 
messages and may require complex algorithms. The manager will then send the re-configuration 
decisions back to the agent, including possible interaction with the customer equipments for 
synchronization purposes. Service restoration may consequently require significant time and thus have 
serious consequences on business costs. 
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On the contrary, a decentralised NMS do not require any communication with a manager; in other 
words, there are no critical components related to the network management. The decision logic – namely 
the intelligence – has to be implemented within the network component itself with the appropriate 
knowledge of the running service. A local processing in the network devices considerably reduces the 
number of alarm messages which have to be sent to the manager and customer equipments in case of 
failure. It favours fast reaction speed and rapid service restoration, so that the customer does not realize 
that there has been any service disruption.  

Decentralised approaches, however, entail drawbacks of their own: a lot of computational entities are 
distributed over the network, and deploying and controlling these entities is not trivial; it is also more 
difficult to reach global optima. 

Generally, centralisation presents serious limitations on scalability and resiliency of management. If 
the number of network components, the number of managed objects, or the speed of the network 
increases, or if management communications rates are bounded, the system quickly becomes 
unmanageable [KKL99]. When the network topology changes – i.e. network devices are added or 
removed - the legacy NMS experiences problems with the synchronisation of its MIB with the actual state 
of the network. Furthermore, the service logic is often implemented at the design time, which makes 
future changes difficult. 

1.1.3 Distributed Management by Delegation 
Distributed Management by Delegation (MbD) has been proposed as an alternative NMS allowing to 
achieve decentralised network management [YGY91][GY95]. MbD is based on the notion of delegation 
agents. Delegation agents are programs that can be dispatched to remote processes and dynamically 
linked and executed under local or remote control. They are used to perform tasks such as real-time 
monitoring, analysis and control of network resources. MbD relies on the concept of elastic processing 
and on an application-layer protocol called Remote Delegation Protocol (RDP). An elastic process is 
defined as an executing incarnation of a program that can be modified, extended and/or contracted during 
its execution by means of delegation agents. The delegators use RDP to transfer the code of a delegation 
agent to an elastic process and to control its execution. RDP also makes the communications between 
delegating processes possible. Examples of operations supported by RDP are: delegate/delete, 
instantiate/terminate, suspend/resume and getstate/setstate.  

Distributed MbD can be used to distribute the management logic into network components. The 
delegated agents enhance a network component and its OSI agents with advanced processing so that 
management operations – configuration, monitoring, fault detection – can take place in the device itself. 
Several delegated agents can be dynamically instantiated and cooperate with one another. 

1.2 SOFTWARE AGENTS 
Intelligent and mobile agents constitute a natural extension of the MbD concept through the addition of 
advanced interaction mechanisms and knowledge manipulation, two important research fields of 
distributed artificial intelligence. 

1.2.1 Intelligent Agents 
Intelligent agents result from the conjunction of two major research streams: distributed artificial 
intelligent and software engineering. This approach includes numerous research works in other fields 
such as decision theory, network communication, biology and psychology. Intelligent agents are 
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considered as the most promising approach to address issues related to distributed applications in the 
rapidly expanding communication industry [HaB99].  

As we focus on network management, our analysis will be restricted to specific properties of 
Multi-Agent System (MAS) which are relevant to the definition and the implementation of management 
functions such as resource allocation, routing, monitoring and fault detection. In this thesis, mobile MAS 
refer to multi-agent systems composed of mobile agents. From the point of view of implementation, we 
shall focus on Java-based MAS because of the current world-wide adoption of Java in the development 
of agent systems. In addition to RMI, the Java virtual machine provides efficient mechanisms for code 
serialization that are intensively exploited by mobile agent systems. 

There is no world-wide adopted definition of what an intelligent agent is. We can however propose a 
working definition of agents and intelligence as follows: "Intelligent agents are defined as being a 
software program that can perform specific tasks for a user and possesses a degree of intelligence that 
permits it to perform parts of its tasks autonomously and to interact with its environment in a useful 
manner." In this context, "The intelligence means that the agent is provided with knowledge of the user's 
wishes and also makes use of this knowledge" [BZW98]. 

It is commonly accepted that an intelligent agent must have the following properties [WJ95]: 

Autonomy – the agent is capable of following its goal autonomously that is, without interactions or 
commands from the environment. The agent must have both control over its actions and internal states, 
and be provided with the resources and capabilities required to perform its tasks. 

Reactivity – the agent is capable of reacting appropriately to influences or information from its 
environment. The agent must therefore possess its own internal environment model in order to be able to 
react to changes in its environment. 

Pro-activity – Under specific circumstances, the agent can take the initiative to perform appropriate 
actions. For example, a predictive system will lead the agent to make decisions automatically in order to 
reach better performance. 

Social ability – the agent is able to communicate with other agents and to interact with its environment in 
order to fulfil its tasks. At the agent level, there is no distinction between client and server, although the 
underlying mechanism resorts to the previously described distributed system architecture. The social 
ability also refers to the ability of an agent society to perform a common ultimate goal although the agent 
itself has no knowledge of this goal. 

In addition to these properties, an agent can be mobile, so that mobile agents can migrate from one 
location to another. If it is not mobile, the agent is a stationary agent. Additional features such as proxy, 
rational, unpredictable, transparent and accountable, etc. [OMG0] may characterize the intelligent agent, 
but they are not considered in this thesis. 

We believe that the agent's social ability constitutes a fundamental property making the agent 
intelligent and achieving self-organization in distributed environments. Social ability enables the agents to 
exchange information – also called knowledge – with other agents in a structured way, so that the 
multi-agent system exhibits a "social" behaviour and organizes itself in order to reach the objectives 
assigned to the agents. The agents must therefore have a representation of their environment, as well as 
capabilities to "understand" messages issued by other agents.  

Communication in MAS is achieved by means of an Agent Communication Language (ACL), thanks to 
which the agents are able to "discuss". The speech act theory and other research fields in Artificial 
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Intelligence focusing on communication within human societies have provided agent communication with 
communicative acts – or performatives – which clearly separate the intention or the action defined by the 
message from the message content itself. The agents are endowed with the ACL and can therefore 
perform conversations with other agents and participate in coordinated activities. These interactions can 
be associated with different approaches, according to the individual agent behaviour. Either the agent acts 
as a self-interested entity competing with the other agents, or the agent's activities participate in the 
elaboration and achievement of common objectives in a cooperative or collaborative way [HB01].  

We therefore propose to alter the above-mentioned definition of intelligence and to integrate the agent's 
ability to deal with other agents in a coordinated way so that the whole system exhibits social behaviour. 

While distributed systems are generally based on a top-down approach, multi-agent systems promote a 
bottom-up process during the development phase that is, they concentrate on the form of the actual agents 
instead of being primarily concerned with the division of problems. Multi-agent systems should therefore 
not be developed for a specific task, but for the common solution of problems. According to this 
approach, the extension of the system with new agents does not require the existing infrastructure to be 
changed or the running agents to be interrupted so that the current system can be improved and new 
functionalities can easily be added. This perspective of extensive collaboration mechanisms allows 
services to be composed dynamically; experiments in that direction are conducted within the Agentcities 
project (see Section 1.5), for example. 

AGENT MODEL 

Beside the communication and interaction mechanisms proper to multi-agent systems, the implementation 
of the agent behaviour can follow different approaches according to the agent model.  

A famous agent model is the deliberative agent introduced by Rao and Georgeff [RG+95] and based on 
the Belief-Desire-Intention (BDI) model [WJ95][PNJ99]. The deliberative agent has an internal 
representation of the environment (belief). The efforts undertaken by the agent to attain its goals result 
from its desires. Desires are typically generated in response to changes in the environment or interactions 
with other agents; a special process then selects specific desires that will become the agent's intentions for 
future endeavours.  

Another architecture model based on reactive agents has been proposed by Brooks [Bro86] and is 
mainly inspired from robotics and reactive systems: this quite simple architecture is composed of 
different competence modules linked with sensors (input, perception of the environment) and actuators 
(output, actions in the environment). Information can be exchanged between the competence modules and 
the reaction to external changes occurs faster than in the deliberative agent model. 

Both models are depicted on Figure 1-4. 
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Figure 1-4. Two famous agent models: the deliberative agent (left) and the reactive agent (right) 

In the field of network management, multi-agent systems implementing advanced negotiation 
mechanisms often resort to the deliberative agent model. In this context, market-based approaches are 
used to negotiate bandwidth or Quality-of-Service in telecommunication networks. The agents enter a 
virtual market place and negotiate goods. Examples of projects in this area are IMPACT1, in which agents 
negotiate bandwidth in an ATM network, and SHUFFLE2 in which agents manage the interactions 
between service providers and network operators. In the latter case, the agent model is a hybrid 
deliberative/reactive agent model called Interrap architecture. 

Deliberative agents are stationary agents; they generally have a respectable code size and are not 
suitable for migration; the objectives for which they are designed generally do not require explicit 
mobility within the network. These agents nevertheless play an important role in the network since they 
are able to reason on a large data size, to make predictions, to compute and to activate action plans, so 
that they can be regarded as "more intelligent" than reactive agents, intelligence also referring in this 
context to the interaction mechanisms taking place within the multi-agent system. 

ONTOLOGY 

In the context of intelligent agents, ontology is a collection of terms and rules defining and governing a 
certain domain. Agents use ontologies to limit the scope of their interactions and focus on a specific 
semantic world; ontologies are therefore important components of the agent communication. The set of 
terms and rules is then described by means of a content language such as Semantic Language (SL0)3 or 
XML/RDF as an integral part of the ACL. 

INTELLIGENT AGENTS AND OSI AGENTS 

In the previous sections, we have introduced the OSI agent which provides and controls the access to 
managed objects (MIB). The term "agent" in this case denotes a process which has its own execution 
context, internal state and data, which is able to react to specific external events, such as alarms or 
notifications, and which can communicate with a manager. OSI agents however must not be considered as 
intelligent agents as they rely on a pure client-server paradigm and do not support any form of social 

                                                      
1 http://www.acts-impact.org 
2 http://www.ist-shuffle.org 
3 FIPA SL Content Language Specification available at http://www.fipa.org 

http://www.acts-impact.org
http://www.ist-shuffle.org
http://www.fipa.org
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ability in interaction with other agents. OSI agents are autonomous processes which implement a simple 
computational model based on a finite state machine most of the time. 

INTELLIGENT AGENTS IN NETWORK MANAGEMENT 

Intelligent agents have been considered for network management in numerous research projects1 [HB99]. 
As we have already seen, multi-agent systems may be used to negotiate network resources such as 
bandwidth or QoS in a fully dynamic and automatic way [GJ98]. The automatic negotiations take place 
between user agents, resource agents, brokering agents, etc. Network resource utilisation is optimized and 
the resource price is kept as low as possible with respect to the objectives and contractual agreements 
pre-established between the client, the service and the network provider through a Service Level 
Agreement (SLA). This approach has been considered for example in IP and ATM networks, and more 
recently in UMTS networks [LRD+00]; in the latter, the negotiation takes place between business entities 
such as service providers and network operators.  

Among other things, intelligent agents are also investigated for on-line routing algorithms. A possible 
approach consists in defining a hierarchical society of intelligent agents which are responsible for 
maintaining the route configuration dynamically between multiple management domains [CFF99]. 

Despite their significant contribution towards a decentralized network management, stationary 
intelligent agents may require extensive computing resources when they are dedicated to long-term 
planning for example, and their deployment is not easy since dynamic remote instantiation of an agent is 
generally not allowed by the agent platform; the agent therefore needs to be instantiated manually in 
appropriate network locations where it must reside; upgrading a new release of agent code is 
consequently not trivial and requires human intervention at each agent site. 

The computational model of agents is one of the major issues addressed in this thesis as will be shown 
in Chapter 3; we propose to decouple the agent's tasks from the agent lifecycle so that the tasks can be 
loaded dynamically without any intervention on network devices.  

1.2.2 Mobile Agents 
The mobile agent paradigm has received particular attention over the last few years and the community of 
researchers concerned with this subject is growing steadily. Mobile code, as well as mobile agents, will be 
a critical near-term part of the Internet because it provides a general framework in which distributed 
information-oriented applications can be implemented in a natural and efficient way with advanced useful 
features [KG99]. The mobile agent technology can be considered as a powerful extension of the object-
oriented paradigm [E712_98]. Considering mobile agents in network management entails numerous 
advantages: mobile agents reduce the requirements regarding traffic load and regarding the availability of 
the underlying networks, they reduce the time and effort required for the installation, operation, and 
maintenance of service intelligence for resource control and management; they allow on demand 
provisioning of customized services and they lead to more decentralized realization of service control and 
management software, by bringing control or management agents as close as possible to the resources 
[BHM98][BPW98]. In that sense, mobile agents match perfectly the distributed Management by 
Delegation (MbD) approach described in Section 1.1.3. 

                                                      
1 An excellent overview of project activities concerning intelligent agents for network management can 
be found in [HB01]. 
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Mobile agents are closer to reactive agents than deliberative agents. Reactive agents are generally 
small, having a reasonable code size with a low processing time, and are used for modelling mobile 
entities (robots). The completion of objectives in a mobile agent system consequently relies on the 
mobility paradigm rather than on reasoning. If mobile agents require more processing, such as reasoning 
mechanisms using a rule engine for example, they need to delegate the reasoning task to a local stationary 
component requiring further interactions with the environment. 

We therefore emphasise that mobile agents must be able to interact with stationary agents by sharing a 
common environment. As we will discover in the implementation part of this document (Section 4.4), 
mobile and stationary agents can share a common agent platform. 

The mobility paradigm enhances multi-agent systems with new capabilities such as migration, cloning, 
emergent behaviour or meeting-based coordination. These functions will be exploited in Ecomobile to 
address several issues related to mobile multi-agent behaviour, such as population size, dissemination and 
activation of tasks, inter-agent coordination and inter-tasks cooperation. 

The agents' mobility allows the code, state and data to be moved from one location to another; the agent 
is executed in an agent system which provides migration, security, localisation and additional services 
facilities. The location of a mobile agent can refer to the agent system location (physical mobility) or to a 
virtual location within the same agent system (virtual mobility). 

 Figure 1-5 shows a general environment of a mobile MAS as proposed by the OMG-MASIF 
specification (see Section 1.2.4). 
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Figure 1-5. Mobile agent environment (left) and communication between agent systems (right) 

The agent system can manage one or several places depending on the application and the organisational 
architecture; the communication infrastructure relies on standard distributed system technologies. 

An efficient implementation of a mobile MAS will therefore depend on the ability of network devices 
to host the agent system or to interact with external operating systems (for example via a proxy)1. 

                                                      
1 An overview of mobile agents based applications can be found in [PieJan01]. 



Chapter 1 
Mobile Agents and Network Management 

 

19 

1.2.3 Mobility Functions 
In addition to the concepts developed in Section 1.2.1 devoted to Intelligent Agents, the mobility 
paradigm refers to a wide range of new concepts. Migration is undoubtedly the most important of these 
concepts. Migration allows an agent to move from one location – or place – to another, the place being a 
physical place – a node, a network device, a machine – or a virtual place, in which case the application 
requires specific semantics of place; for instance, a place can represent a class of service, a type of 
communication channel, a specific medium, etc. The migration of a mobile agent requires the agent 
system to support execution stopping, state collection, data serialisation and transfer, data de-serialisation 
and execution resuming. From this point of view, mobile agents strongly rely on mobile code technology. 

Another important concept is agent cloning: the agent can clone itself that is, a new mobile agent is 
created as a copy of the parent. A pure cloning operation implies that the cloned agent has the same 
behaviour (code) and the same knowledge (data) as the parent agent. A post-cloning operation can 
initialize specific values in the cloned agent which starts its lifecycle in the same execution environment 
as the parent. Its location can however be different, according to the agent systems; some of them offer 
the possibility to start the execution of a child agent in a location different from the parent's one. 

Spatial and/or meeting-based coordination mechanisms are new concepts issued from mobile MAS: 
since mobile agents are moving within the network, they can meet other agents everywhere in the 
network. Emergent behaviour, which is related to the coordination of the mobile MAS, will be detailed in 
Chapter 2. All these concepts will be explained and developed over this thesis.  

1.2.4 Agent Standards 
Agent standards enable the interoperability between agent platforms so that intelligent agents can 
communicate and achieve their objectives according to standardized specifications. The development of 
agent standards in telecommunication is therefore a sine qua non condition for the successful deployment 
of software agents in large-scale networks. In this section, we examine the two most popular agent 
standards: FIPA and OMG-MASIF. 

FIPA 

The Foundation for Intelligent Physical Agents (FIPA)1 was formed in 1996 to produce software 
standards for heterogeneous interacting agents and agent-based systems. Currently, FIPA appears to be 
the dominant standards organization in the area of agent technology. Important efforts have been made to 
address the inter-operability issues between the agent platforms. Figure 1-6 presents the overall 
architecture of an agent system as specified by FIPA. The message transport is the main underlying 
mechanism devoted to the ACL-based communication between agents; at this stage, mobile agents are not 
supported. The message transport itself relies on standard communication techniques used by distributed 
system framework such as CORBA or Java RMI. 

Both Agent Management System (AMS) and Directory Facilitator (DF) are FIPA agents: the AMS is 
responsible for the core management activities of the agent platform whereas the DF acts as a yellow page 
service. Agents are registered in the DF and can be localised from their types by other agents. In addition, 
the agent communication is ensured through the Message Transport System (MTS) including the Message 
Transport Protocol (MTP) and the Agent Communication Channel (ACC) which directly provide agents 

                                                      
1 http://www.fipa.org 

http://www.fipa.org
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with specific services for communication. The ACC may access information provided by the other agent 
platform services such as the AMS and DF to carry out its message transport tasks. 

From the communication point of view, the agents can interact via intra-platform communication; all 
agents participating in the interaction are managed by the same platform; they reside in the same node. 
On the other hand, the agents can be distributed over several nodes; in this case, they interact via an 
inter-platform communication mechanism. In both cases, agents communicate via ACL messages and use 
the services provided by the ACC. 

In addition to the agent system reference model, there are FIPA specifications concerned with ACL 
message format, ontology, interaction protocols, etc.  
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Figure 1-6. Agent system reference model of FIPA. 

Although mobile agents are currently not supported by FIPA, we can find a specification for the 
minimum requirements and technologies allowing agents to take advantage of mobility. The specification 
includes a wrapping mechanism for existing mobile agent systems in order to promote interoperability 
[FIPA01]. In short, the specification defines mobility protocols addressing: 1) agent migration, 2) agent 
cloning and 3) agent invocation.  

Little work towards the development of a FIPA compliant mobility framework has been accomplished 
so far. For example, a special agent called Mobility Management System (MMS) has been designed to 
provide mobile agents with mobility services [Mak00]; in this work, however, it is unclear how the 
mobile agents are defined in terms of architecture and how they physically migrate from one location to 
another. 

Nevertheless, current FIPA specifications, under certain conditions, perfectly fit the requirements to 
deploy mobile agents in a FIPA environment as we will discover with the deployment of Ecomobile in 
Section 4.4 and with the FIPA-mob project in Section 4.5. 
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OMG-MASIF 

In 1997, the OMG released a draft version of the Mobile Agent System Interoperability Facilities 
(MASIF)1 [MAF98]. MASIF proposes a specification of the communication infrastructure as well as 
interfaces defined in IDL to access mobility services in order to promote the interoperability and the 
diversity of mobile agent platforms. From the interoperability and heterogeneity perspective, OMG 
follows the same objectives as FIPA. The objectives in term of requirements and functionalities are 
clearly different, however. Whereas FIPA is concerned with a message based communication 
infrastructure, MASIF has to take into account the migration of the agent and must consequently focus on 
the way to dynamically create the agent that is, to instantiate a new object at the right place and with the 
right class. 
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Figure 1-7. General architecture of OMG-MASIF mobile agent system 

On Figure 1-7, the MASIF architecture appears to be a hierarchical organisation of regions, agencies and 
places [BM98]. The place is a context within an agent system in which an agent can execute its tasks and 
provide local access control to mobile agents. A place is associated with a location, which consists of the 
place name and the address of the agent system within which the place resides. The agency represents the 
agent system itself or is the core part of the agent system. At a higher level, the region is a set of agent 
systems that have the same authority, but are not necessary of the same type.  

Considering its origin, MASIF strongly relies on a CORBA architecture and therefore on the ORB. The 
services provided by the region, agency and place are defined through IDL interfaces; the most important 
interfaces are the MAFFinder and the MAFAgentSystem: whereas the MAFFinder supports the 
localisation of agents, agent systems and places in the scope of a region or in the whole environment, the 
MAFAgentSystem interface provides operations for the management and transfer of agents. In MASIF, the 
agent's migration requires the transfer of the agent class so that the agent can be properly instantiated. 
Different mechanisms are proposed to achieve the class transfer. Either the agent class (including all 
dependent classes) are automatically transferred when the migration is invoked or, when the class is not 
known to the destination agent system yet, the class is transferred on demand. 

                                                      
1 Originally, MASIF was called Mobile Agent Facility (MAF) by OMG 
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In this thesis, we borrow the concept of agency from MASIF and define it as the entity responsible for 
providing the mobile agents with mobility services and with the execution environment. We define the 
place as location concept and coordination space. These concepts will be described in details in  
Chapter 3. 

INTEGRATION OF FIPA WITH MASIF 

In the previous sections, we have presented the ongoing efforts realised by FIPA and OMG to promote 
the interoperability between agent platforms. Thanks to these efforts, agents residing on different nodes 
should be able to communicate even if they are not using the same agent system. In a powerful 
exploitation of agent based applications, mobile agents are expected to interact with stationary agents, 
using an ACL language for example. This kind of interoperability however suffers from the lack of 
standards. Whereas the agent reference model defined by FIPA does not depend on any implementation, 
MASIF heavily relies on CORBA; furthermore, most mobile agent platforms are developed in Java and 
rely on its serialization mechanism. No standards for agent transport and agent encoding are available at 
the moment. Still, FIPA has proposed a specification for mobility support by combining the agent 
platform with the MASIF architecture, as described in Figure 1-8. The AMS fits the MAFAgentSystem, 
the DF fits the MAFFinder and communication relies on ORB-IIOP. 
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Figure 1-8. Integration of the FIPA mobility support with OMG-MASIF 

The relationships between FIPA and MASIF components depicted on the figure require particular 
attention because they are not to be considered as direct agent-to-agent interactions; whereas the FIPA 
components correspond to FIPA agents, the MASIF components correspond to IDL interfaces 
(MAFAgentSystem and MAFFinder) which do not include implementation, on the one hand, and to the 
ORB, on the other hand. The associations therefore express a functional equivalency rather than a 
communication scheme. 

At the moment, there is no further activity concerning MASIF, whereas FIPA gathers a growing 
community of agent researchers. This is why we believe that a successful deployment of mobile MAS 
will depend on the adoption of a clear concept of the mobility paradigm by the FIPA community and on 
the definition of new specifications in this area.  

1.3 MOBILE PROCESSING IN NETWORK MANAGEMENT 
In this section, we shall first present the various mobile agent based approaches which have been 
considered to implement management functions for different network environments. We will then try to 
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highlight the most important characteristics of each mobile agent based solution in order to define a range 
of interesting properties; our reflections will lead to the choice of three abstraction models and to their 
implementation in Chapter 2. 

Particular emphasis will be laid on future network technologies in which the management of resources 
and services constitutes a particularly interesting field of application and which provide rational execution 
environments for the support of mobile MAS. 

1.3.1 Main Characteristics of Mobile Agent Based Approaches 
Mobile agents for network management constitute an emerging research field and new projects related to 
this domain constantly appear in academic and industrial research labs. Although it seems impossible to 
give an exhaustive account of this research in the scope of this work, we will try to cover the most 
important approaches for mobile agent based network management relevant to the context of Ecomobile. 

THE PERPETUUM MOBILE PROCURA PROJECT 

The Perpetuum Mobile Procura (PMP) Project [Bie97][Riv00] from Carleton University in Ottawa 
(Canada) aimed at the implementation of mobile agents for the management of networks. Although the 
concepts developed in the scope of this project are generic enough for any kind of fixed network, the 
project mainly focused on IP networks. 

In the context of this project, a taxonomy of mobile code leads to the definition of various kinds of 
mobile agents [BP98] which are supposed to evolve in the same infrastructure in order to fulfil all the 
functional areas defined by the OSI management model: fault, accounting, configuration, performance, 
and security management. Since the project is concerned with IP networks, the agents have the capability 
to deal with SNMP agents. 

We now propose an overview of the main agents defined in the PMP project. 

The netlet is a mobile agent supposed to move in the network in a permanent way by executing specific 
tasks in each visited node and therefore never terminates. Typical applications of netlets are automatic 
network discovery and network monitoring. The development of netlets implies considering various 
concerns such as security and density control: the proliferation of netlets in the network has to be avoided; 
migration patterns or policies also have to be elaborated in order to determine how the agents can migrate. 

The deglets are used to perform a specific task in a network node and can consequently be associated to 
the concept of delegation agent in MbD. In the context of PMP, deglets are typically used to interact with 
OSI agents (CMIP/SNMP agents).   

The extlet is a downloadable or uploadable code extension that expands the receiving party, but does not 
extend its interface protocol . 

The servlet1 is an uploadable code extension that expands the capabilities of a remote server by extending 
its interface protocol. 

The applet2 is a mobile code that represents a downloadable application. 

                                                      
1 Servlet reflects concepts which are similar to Java Servlet technology. 
2 Applet is similar to Java applet technology, in which the application code is moving from a Web server 
to a Web client. 
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The piglet is a mobile code that has been intercepted and maliciously altered.  

All these agents run in an environment called Mobile Code Environment (MCE), which is depicted on 
Figure 1-9 and which provides several components, such as a mobile code daemon, a migration facility, 
an interface to managed resources, a communication facility, and a security facility. It has to be noted that 
the MCE does not explicitly rely on existing standards.  
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Figure 1-9. MCE Components 

It is assumed that a mobile code daemon runs within a Java virtual machine on each network component. 
The Virtual Managed Component (VMC) provides get, set, event and notification facilities with an access 
control list mechanism used to enforce security. VMCs are designed to contain MIB and vendor-related 
information.  

The MCE has been extended to support the standard DPI1 protocol in order to enhance the interaction 
of mobile agents with SNMP agents [PWW00]. Thus, it is possible to use a DPI-based MCE for the 
automatic configuration of permanent virtual circuits in heterogeneous ATM networks. 

 

Let us now examine typical scenarios introducing netlets and deglets. 
A combination of netlets and deglets can be used to create and maintain a network model subject to 

dynamic changes [WPB99][WPB+98].  
By network model, we understand a representation of the different Network Elements (NEs) at a 

network management workstation with their available interfaces to management functions. The software 
components which provide mobile agents with interfaces are assumed to be vendor-dependent and 

                                                      
1 Distributed Protocol Interface (DPI) is an extension of SNMP agents that permits the dynamic addition, 
deletion or replacement of management variables in the network component's SNMP MIB without 
requiring recompilation of the SNMP agent. 
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implemented into a local Java virtual machine; the protocol used for interaction with the resources may 
therefore be proprietary.  

The netlets are injected into the network from a network management workstation and visit the network 
elements, using either a pre-configured itinerary or a default migration strategy based on auto-discovery 
mechanisms. For example, the agent is given an itinerary of devices to visit that has been generated by the 
action of a standard network discovery algorithm, or the agent simply follows the default migration path 
connecting mobile code daemons in the network, which is assumed to form a logically connected graph. 
Additional rules can be statically or dynamically implemented to influence the migration when necessary.  

The netlets has the ability to spawn a "configuration" deglet. The network element state is then copied 
into the deglet which interacts with the local NE to get the information required for the NE's 
configuration. The "configuration" deglet in turn spawns a "model provisioning" agent which 
immediately moves towards the network management workstation in order to update the network model. 
The "configuration" deglet dies in the local NE.  

Such an approach to the dynamic network configuration and monitoring problem has been also 
proposed, for example, with the Distributed Network Management and Monitoring System (DNMMS) 
architecture [Sha98]. Whereas an Embassy based on the proxy pattern is deployed in each network node 
and provides mobile agents with local interfaces, the CountryBase acts as a Web manager which is able to 
inject mobile agents within the network in order to perform specific tasks. 

SWARM INTELLIGENCE 

While the MCE enables the transfer of code from one component in the network to another and the 
principle of delegation provides a reason to use it, it does not provide for distributed problem solving 
groups or societies of agents. In this perspective, it is interesting to study an approach based on Swarm 
Intelligence [WP99] which has been adopted as an underlying mechanism for fault detection and 
localisation in networks. Swarm Intelligence is a property of systems composed of unintelligent agents of 
limited individual capabilities that collectively exhibit intelligent behaviour. This emergent behaviour is 
studied in Chapter 2.  

In Swarm Intelligence, netlets act as "insects" which have the ability to deposit a chemical track in the 
environment that is, in the network node. Other agents are influenced during their migration in response 
to this chemical message, so that fault detection and location determination can actually arise as a result 
of the trail-laying behaviour of simple problem agents. The concentration of the chemical message is 
influenced by the change in value of the characteristic of the monitored service: the modification of the 
concentration depends on whether the change of this value is considered as beneficial to the service, in 
which case the chemical track will be "evaporated", or detrimental to the service, in which case the 
chemical track will be reinforced. A problem occurs when the chemical trail reaches certain limits. In this 
case, the agent can take appropriate action by informing the management workstation or by 
re-configuring the network. 

 

Another approach towards fault detection consists in building an extended version of netlets – called 
smartlets – which includes reasoning mechanisms and therefore improves the analysis and filtering of 
alarms and associated data [EB99]. The smartlet interacts with the VMC to collect status data concerning 



 
Mobile Processing in Network Management 

 

26 

the network component. A JESS1 parser object is then created and used to parse the data collected and to 
apply the inference engine producing a set of decisions and conclusions about the status of this network 
and the origin of the faults. Results are then returned to the smartlet, by filtering and correlating the 
alarms, the smarlet localizes faults and isolates them. The output of this procedure is a set of network 
addresses of the network components generating the faults; the smartlet is then able to visit the defect 
components. 

Fault diagnosis and network reconfiguration obviously constitute a central part of an NMS in which 
distributed Artificial Intelligence (AI) may significantly improve data processing, since it provides 
powerful reasoning techniques, particularly useful to process large amount of data, and the capacity to 
distribute processing over multiple systems. The quantity of information exchanged across the network 
may however lead to serious drawbacks and therefore constitutes a trade-off between efficiency and 
accuracy [Lec95]. In this context, we consider interactions between mobile agents and stationary 
"reasoning" agents as a necessary requirement for the elaboration of a flexible mobile agent based NMS.   

MOBILE AGENTS IN INTELLIGENT NETWORKS AND MOBILE NETWORKS 

Although Intelligent Networks (IN) and mobile networks do not constitute our major concern, we 
consider that it is necessary to expose the mobile agents based techniques used for their management 
from the perspective of generic agent design, so that we can benefit from these advantages in order to 
develop Ecomobile. 

Intelligent2 Networks (IN) constitutes an architectural framework for the rapid and uniform 
provisioning of advanced telecom services overstepping the Plain Old Telephone Service (POTS), such as 
call forwarding, private numbering plan, incoming call screening, etc. IN services are based on additional 
service logic and data, on top of different switched telecommunication networks. Centralized service 
nodes, called Service Control Points (SCPs), control the bearer switching nodes known as Service 
Switching Points (SSPs) which provide only the basic call processing capabilities. This control is 
achieved by means of the international Signalling System No.7 (SS7) network. A dedicated outband 
signalling network is set up for this purpose. The IN Application Protocol (INAP) is implemented on top 
of the SS7 network and enables "real-time" connections between the switches and the service node. 

In [BrM98][BBC+98], a mobile agent based approach is proposed to provide IN networks with 
advanced services such as the call forwarding service provision and the a MA-based Virtual Private 
Network (VPN) service. The former allows the users to initiate an automatic routing of incoming calls to 
other destination devices, depending on the time of the day or on specific events, whereas the latter allows 
the customers to define a VPN on top of an IN infrastructure; the customer's lines, connected to different 
switches, constitute the VPN. In both cases, the mobile agent systems have been implemented with the 
Grasshopper agent platform (see Section 1.5 and consequently rely on MASIF. Several agencies are 
deployed, i.e. the Switch, End User, Customer and Provider agencies. Considering the reuse of the 
existing IN switching nodes, including the existing call models and IN interfaces, appropriate adaptation 
units have to be provided within the agencies, in order to handle the translation of INAP request coming 
from SSPs into object method invocations of the agents implementing the service features on a remote 

                                                      
1 Java Expert System Shell (JESS) - http://herzberg.ca.sandia.gov/jess - see also section 1.5.2. 
2 In this case, the term "intelligent" refers to the capabilities of IN to process the call services in a fully 
automatic way; it is not related to the concept of "intelligent agent". 

http://herzberg.ca.sandia.gov/jess
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SCP, or even within an SSP/service node, and vice versa. IN networks can benefit from translation 
mechanisms similar to those found in CMIP/SNMP (see Section 1.1.1). 

The mobile agents that have been developed for IN networks are similar to delegation agents or deglets. 
They are pre-configured by the customer, launched at the required place in the network and perform a 
configuration task in the different network devices by using specific gateways. Eventually, they can 
monitor the connections and react in case a problem appears or the switch needs to be re-configured. 
They do not exhibit any particular behaviour or cooperation ability. 

Since mobile agents perform task locally, they are particularly useful when the connection between 
nodes is not permanently guaranteed as in mobile networks like GSM and UMTS. In this kind of 
network, the transmission quality changes during the connection and the transmission can temporarily 
disappear. When the connection is dropped, the agent can continue to execute its task in the mobile device 
and decide to migrate once the connection has been restored. 

For example, mobile agents are proposed for managing the Virtual Home Environment (VHE) in 
UMTS networks. The VHE provides the user with a service environment which does not depend on his 
current location or on the home provider. A general approach of a mobile agent based VHE management 
using the MASIF architecture – agencies at the different business entities, with mobile agents migrating 
between end-user mobile devices and the provider - can be found in [HMW99]. In this context, mobile 
agents are mainly used as "configuration" agents and they do not exhibit any particular behaviour. 

Future heterogeneous networks will support more and more multiple independent channels with respect 
to customer requirements, different multiplexing techniques will be implemented and the routing 
mechanism will have to rely on accurate knowledge of the network connectivity. 

As mobile networks require dynamic updates of the network state regarding the connectivity and the 
modularity of mobile agents, the latter's ability to monitor the network continuously makes them very 
attractive as regards routing information management. We propose to examine a mobile agent based 
approach devoted to managing ad-hoc networks, called MITAgent. 

THE MITAGENT PROJECT 

An approach based on a population of cooperating mobile agents has been proposed at the MIT 
[MKM99][MKM98][KMM99]. Although this approach remains applicable to other networks, it suits 
mobile networks perfectly, and is particularly favourable in ad-hoc networks (see Section 1.4.2). Since 
this research was originally proposed at the MIT, we propose to refer to it as MITAgents. 

The experiments were performed with discrete simulation and conducted on a network of nodes 
modelled as radio-frequency transceivers distributed on a two-dimensional space. Adjacent nodes could 
exchange routing information in the same way than IP routers. Three kinds of agents have been 
implemented: random agents, conscientious agents and superconscientious agents, according to the 
degree of collaboration required. 

Random agents do not collaborate with one another and migrate randomly within the network, while 
conscientious agents exchange knowledge when they meet within a node; although they assimilate the 
data, they base their movement decisions entirely on their own first-hand experience. As for 
superconscientious agents, they use both first-hand and peer-obtained information to make movement 
decisions. Results have shown that the cooperation between conscientious agents significantly increases 
the system's performance. Superconscientious agents are still more efficient than conscientious agents but 
only in a small population: when they meet, they exchange the necessary knowledge used for subsequent 
migration decisions. After several meeting events and knowledge exchange – the number of meetings 
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increases with the size of population -, superconscientious agents tend to choose identical paths to migrate 
because their internal knowledge is the same. 

The number of agents living in the network is fixed at the beginning of the simulation and the 
communication between agents is instantaneous; no deployment on an agent platform has been 
considered. 

DISCUSSION 

In the approaches we have just described, mobile agent systems can be divided into two categories 
according to the agents' behaviour. 

The first category relates to reactive agents which purely act as delegation agents (deglets or agents for 
IN services) and exhibit the following properties: ability to transport customer-profile information and to 
deal with SNMP/OSI agents, absence of interaction scheme and simple lifecycle (single activation and 
then disappearance from the system). In most cases, they visit nodes with a pre-planned itinerary. 

The second category relates to reactive agents which populate the network and run continuously. The 
agents' population remains fixed so that, if an agent disappears from the network because of a network 
failure, for example, the population of agents is reduced, which might lead to dramatic performance 
issues. Because of their continuous presence within the network, these agents are more appropriate for 
inter-agent cooperation mechanisms. 

In this thesis, we propose a particular mobile MAS architecture dealing with these two kinds of agent in 
a transparent way.  

1.3.2 The Wave Technology 
The Wave technology is an interesting approach tackling a wide range of distributed problems and using 
mobile processing techniques; it is particularly well suited to the simulation of mobile entities. Wave can 
be used for any kind of distributed problems beyond the field of network management. 

The Wave technology relies on an interpreted programming language which is based on parallel and 
asynchronous spreading of a special recursive program code, known as "waves", in computer networks. 
The waves navigate in the existing networks or create new virtual knowledge networks (KNs) reflecting 
the structure and organization of the worlds to be modelled or controlled [S99]. Although conceived 
several years ago, only recently was the Wave technology actually recognized as a valuable emerging 
technology addressing distributed problems in an open environment. Although Wave is not actually a 
mobile agent technology, it implements several concepts which are similar to those introduced in our 
work, that is: 

• An efficient framework for investigation, simulation and efficient control of distributed, open 
and self-organized systems, 

• Mobility as a key concept for the support of distributed applications 
• Mobility functions, such as cloning or meeting-based coordination 

Wave basically requires a virtual network of interconnected nodes that is dynamically created by the 
program. Once the network has been created, the program can navigate freely and has access to the node 
environment. 

Spatial variables are defined within a node to store information or within the wave itself to constitute 
its internal knowledge. Spatial variables belong to one of the two following categories: task variables and 
environmental variables. Task variables are defined inside the wave (frontal variables) or inside the node 
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(nodal variables) as shared information used by algorithms, whereas environmental variables are used for 
information specific to the node environment. According to our previous reflections, we can propose the 
following analogy: frontal variables correspond to mobile agent variables, nodal variables correspond to 
variables stored by the agent platform1, and environmental variables can be associated to the MIB. 

Let us examine a Wave program corresponding to the implementation of a breadth-first parallel spread. 
This type of spread creates asynchronously and in parallel a breadth-first spanning tree covering all the 
network's nodes of the network. The pseudo-code is expressed as follows:  
  
 Start in some node as a current node 
 Repeat from all current nodes: 
   If the current node is not marked, mark it 
   Otherwise, halt this branch 
 Hop through all links (broadcast) to neighbouring nodes 
   (excluding the predecessor node from which the current 
    node has been reached) 
 Every node reached becomes a current node 

A possible equivalent code in Wave – iterative version - is the following:  
 
 DIRECT #C. 
 REPEAT ( 
   INDIVISIBLE (Node_mark == NONE. Node_mark = 1). 
   TERMINAL = CONTENT. 
    ANY ## ANY 
 ) 

Finding the simple shortest path tree in a network can be expressed in Wave as follows:  

 @#a.F=0.RP(N~,F<N.N=F.N1=P.$.F+L) 

As it appears in our examples, the Wave language relies on a cryptic notation with a set of keywords 
executed through an interpreter. The navigation mechanism is based on spread-based navigation patterns 
allowing exhaustive exploration of the knowledge network with variable depth degrees.  

Among the research activities around the Wave technology and mobile agents, we can mention a recent 
contribution in the field of multipoint-to-point routing with QoS guarantees using mobile agents 
[GLV01]. 

 

In this section, we have mainly focused on mobile processing techniques tailored for network 
management; most approaches propose conceptual frameworks and have been simulated in a simple 
network configuration. We now propose to concentrate on the next generation of network infrastructures, 
which provide active components and are thus particularly relevant to the use and the deployment of 
mobile agent based solutions.  

1.4 ACTIVE NETWORK MANAGEMENT 
Recent advances in active network technology as well as the emergence of new mobile devices including 
an execution environment based on a micro Java virtual machine, for example, encourage us to 
investigate towards a realistic implementation of Ecomobile into the network environment. In this thesis, 
active network management refers to a general approach devoted to network management systems based 
on active nodes and mobile agent technology; active nodes, in this context, can be considered as a 

                                                      
1 We will see later on that such variables can be stored in a blackboard (section 2.2.2). 
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network node capable of hosting and executing client code. An active node can be composed of a passive 
node connected to a local proxy which encompass the execution environment. 

Active Networks (AN) and ad-hoc networks, which are introduced in the next sections, can help us to 
achieve this goal. 

1.4.1 Active Networks 
The basic idea of Active Networks is to move the service code to the network's nodes instead of leaving 
the service logic outside the transport network. AN transform ordinary passive network nodes into 
programmable nodes and are able to support a variety of service models, so that there is no specification 
regarding service definition beyond the recently defined AN architectural framework. 

The concept of AN strongly refers to mobile code in a simple way; the program is considered as small 
and is deployed in active nodes via a capsule which is sometimes called active packet. 

The AN architecture model [Cal99] is quite general and consists of a set of active nodes connected by a 
variety of network technologies. Each active node is composed of the Node Operating System (NodeOS), 
the Execution Environment (EE) and the Active Application (AA), as depicted on Figure 1-10.  

EE 1 EE 2 IPv6Execution
Environments

Mgmnt
EE

security
enforcement

engine policy DB
Node OS

Active
Applications

storechannels  
Figure 1-10. Active node infrastructure 

Each EE exports a programming interface or virtual machine that can be programmed or controlled by 
packets directed towards it. Several EEs can be placed inside an active node. The NodeOS implements the 
core functionalities required to manage the resources provided by the network element; functionalities 
include transmission, computing and storage; in addition to that, each node has a management EE which 
supports control functions such as the maintenance of the node's security policy database, the support for 
the loading of new EEs for the updating and configuring of existing EEs, and the support for the 
instantiation of network management services arising from remote locations. Inter-EE communication is 
also supported via a standard loopback output channel. 

Active Nodes therefore appear to be ideal candidates for the implementation of mobile agent based 
applications: they support the transfer of code via capsules, and ensure reliable communication channels 
as well as a secure access to the local database; they also support several execution environments, so that 
active applications can be divided into different categories according to their application domain.  

The deployment of mobile agent systems into AN is still at an early stage and raises several issues 
[Kar00] such as security, performance, safety, garbage collection, platform independence, etc. In our 
context, a possible approach would consist in the implementation of an agent platform acting as an active 
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application, so that agents have their own execution environment, an agent platform running in a specific 
EE; a specific communication channel between active nodes might be dedicated to the communication 
between the agents. Generally, this approach however implies dealing with small software components to 
reduce the local processing and to keep the memory in the active node at a reasonable size. 

ANTS AND JANOS 

ANTS and Janos are two Java-oriented operating systems for AN [THL01]. They both implement the 
NodeOS and EE layers of the active node model described above, and provide a resource-aware Java 
Virtual Machine called JanosVM. Janos is designed to prevent separate active applications from 
interfering with one another and to provide node administrators with strong control over active 
applications' resource usage. A critical challenge in the design of such an environment is to ensure that 
features are provided at the appropriate level and that there is no redundancy among the components. 
Furthermore, Janos must support the execution of untrusted code near the lowest level of packet receipt 
and dispatch; safety and security also constitute important issues in AN. Several similar OS are currently 
under development.  

1.4.2 Ad-hoc Networks 
Currently, ad-hoc networks are mostly based on Wireless LAN technology (WLAN) and rely on the IEEE 
standard (IEEE 802.11) in the ad-hoc mode. In this type of network, computers are brought together to 
form a network "on the fly". The network does not reveal any structure or any fixed points, and each node 
is usually able to communicate with every other node [ZP97]. The basic architecture is composed of a 
Basic Service Set (BSS) consisting of two or more wireless nodes, or stations (STAs), which are able to 
recognize one another and to establish communication. The set of stations belonging to a BSS 
communicate on a peer-to-peer level sharing a cell coverage area. 

Consequently, the location of mobile devices in the network topology of ad-hoc networks changes 
continuously. Routing algorithms therefore face a new challenge in terms of optimization and 
implementation in the area of ad-hoc networks. In this context, the MITAgent (see Section 1.3.1) approach 
based on cooperative mobile agents seems very promising, provided the infrastructure required to execute 
mobile agents remains minimal and the agents themselves do not exceed a certain size. 

1.4.3 The Terminodes 
The Terminode project1 is a long-term Swiss research project (2000-2010) which aims at studying and 
prototyping large-scale and self-organized mobile ad hoc networks. Terminode designates a mobile 
terminal which acts as a node and as a terminal at the same time. The project lays particular emphasis on 
the self-organization of a highly co-operative network of terminodes (mobile PC, walkie-talkies, PDA, 
mobile phones, etc.). As in ad-hoc networks, each terminode participates in a virtual network and is 
required to forward management information, such as geographical coordinates or routing information, to 
other nodes. In some cases, the terminode can act as a service provider for other terminodes [BBC+01]. 

One of the major issues in the context of ad-hoc networks relates to the mobility management and the 
huge amount of information which has to be exchanged between terminodes for this purpose. A solution 
based on a Virtual Home Region (VHR) has been proposed [HLG+01], so that a neighbourhood of 

                                                      
1 http://www.terminodes.org 
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terminodes can register to a local VHR in order to retrieve information by means of a SNMP-like 
protocol; however, this approach leads to the introduction of a partial centralized management and could 
therefore result in scalability problems. 

The business model emerging from a terminode network raises further difficulties: since the entire 
function set for resource control and service management is left to the responsibility of the terminodes 
themselves, the presence of an operator becomes superfluous, so that the realistic deployment of 
terminodes constitutes an important challenge from the business perspective.  

Although the terminodes aim at building a virtual network in a highly self-organized and distributed 
environment, it appears that mobile agents have not been directly considered in this approach yet, to the 
best of our knowledge. 

1.5 AGENT PLATFORMS 
Agent platforms – or agent systems – provide intelligent and mobile agents with an execution 
environment, agent operations, security services and environmental facilities. Ideally, the agent platform 
should be able to deal with both stationary and mobile agents.  

For several years, a considerable amount of agent platforms have been developed by academic and 
industrial organisations; most of these platforms resulted from research projects and therefore had a 
relatively short period of development. An excellent summary of agent platforms and corresponding 
features can be found in the Agentlink project1.  

There are basically two kinds of agent platforms: mobile agent platforms and FIPA agent platforms. 
Mobile agent platforms provide the agent with mobility services such as migration, localisation, cloning 
or place management, whereas FIPA agent platforms implement the FIPA agent reference model and 
related components. As FIPA does not support mobility, these agent platforms are not per se compatible 
with a mobile agent approach. A list of mobile agent platforms with comparisons between their respective 
performance levels can be found in [PCV99]. 

The implementation of the agent model is achieved though an intra-agent activity model which depends 
on the agent platform. For example, such a model can rely on a multi-thread mechanism making the agent 
able to process messages in a fully asynchronous way. Additionally, some specific methods can be 
invoked by the agent platform to inform the agent about external events. Such methods are called 
callback methods or simply callbacks. 

Among the most complete and available mobile agent platforms, Aglet2, an open source project of IBM, 
and Grasshopper3, which was the first Java-based MASIF-compliant mobile agent platform, are worth 
mentioning. Both platforms fully support mobile agents through underlying Java mechanisms – 
serialization and transport over RMI-IIOP; they provide migration facilities and mechanisms operating in 
a full asynchronous message or event based communication model. Although the agent model does not 
refer to a specific architecture, the intra-agent activities make use of specific callbacks or listeners to 
control the agent behaviour (migration, cloning, location, etc.). Further development of Aglet and 
Grasshopper has been neglected, so that these platforms have not been adapted to the last release of FIPA 
specifications. 

                                                      
1 http://www.agentlink.org 
2 http://aglets.sourceforge.net 
3 http://www.grasshopper.de 

http://www.agentlink.org
http://aglets.sourceforge.net
http://www.grasshopper.de
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In this thesis, we aim at developing a mobile agent infrastructure which can be deployed in a 
FIPA-compliant environment with minimal requirements for mobility functions. In this perspective, we 
will try to consider only FIPA agent platforms in order to minimize the local resource consumption for 
agent facilities and to avoid interoperability issues between mobile and stationary agents. 

FIPA-OS1 and Jade2 are two FIPA - but not MASIF - compliant agent platforms; they are frequently 
updated to support the last specification revisions and are currently widely used in the academic world as 
well as in the industry. 

1.5.1 FIPA-OS 
Originally developed by Nortel Networks, FIPA-OS was the first publicly open source project in agent 
technology. FIPA-OS is fully developed in Java and continuously improved over new releases. This 
agent platform is currently used in the scope of several collaborative research projects such as EU 
projects or industrial projects. 

A FIPA-OS agent inherits from a root class which contains the underlying requirements for the 
inter-agent communication; the ACL message processing is achieved by means of dynamic invocation of 
handle callbacks. RMI is used for intra-platform communication and IIOP for inter-platform 
communication.  

The intra-agent activity model relies on tasks based on a conversation and task model; a conversation 
defines a communication scheme between a pair of agents and consists of the collection of ACL 
messages, whose sequence is defined by the FIPA interaction protocols. A conversation manager can 
handle several tasks belonging to a single agent in a fully asynchronous way making an agent able to 
drive several conversations at the same time. Such an implementation makes FIPA-OS compliant with the 
FIPA reference model as far as the inter-agent asynchronous communication is concerned. However, the 
intra-agent activity model which is implemented by means of a multi-thread concurrency model 
complicates the development and the validation of co-operative approaches, so that the simulation of 
multi-agent systems intended to be deployed in a FIPA-OS platform is difficult to achieve (see Section 
2.5). 

Several add-ons have been developed around FIPA-OS such as a spy application, a remote agent 
starting application, a HTTP transport mechanism, etc. Moreover, a micro-FIPA-OS is being developed 
for PDAs and mobile device applications. 

1.5.2 Jade 
Jade is a freely downloadable Java agent platform and is fully compliant with the last revision of FIPA 
specifications. Unlike FIPA-OS, the intra-agent activity model defined in Jade is based upon a 
non-pre-emptive concurrency model. A Jade agent is implemented with a Java thread, which enables 
asynchronous inter-platform communication as specified by FIPA; it can implement one or several 
behaviours3: while intra-agent activities are synchronous, inter-agent communication relies on an 
asynchronous process. The behaviours are executed in a thread-per-agent concurrency model in which 
there is no stack to be saved; they are managed by an internal scheduler that implements a round-robin 
non-pre-emptive policy among all the behaviours available in the ready queue of an agent [BPR99]. The 

                                                      
1 http://fipa-os.sourceforge.net 
2 http://jade.cselt.it 
3 In Jade, a process becomes a behaviour. 
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synchronous characteristic of cooperative processes makes Jade an attractive agent platform for the agent 
behaviour. More details about Jade behaviours are given in Section 2.1.1. 

Jade uses the notion of container to locate the agents within the platform; the agents' mobility is 
supported between containers, but only within a single agent platform. 

Jade furthermore integrates the Java Expert System Shell (JESS)1, which is a rule engine and scripting 
environment written entirely in Java and originally inspired by the CLIPS2 expert system shell. With 
JESS, the agent can reason on its internal knowledge, use declarative rules and make appropriate decision 
plans. Alarm correlation constitutes an interesting application of a rule-based language filtering alarms 
rapidly and making appropriate decisions. 

As shown in Table 1-1, most platforms are open source, which brings considerable advantages in terms 
of code improvement and quality. The access to the code source also provides helpful facilities to 
examine in details the implementation which is a pre-requisite for allowing successful deployment in 
telecommunication networks [BDW01].  

 
Agent 

Platform 
Mobility 

Functions 
Intra-agent 

Activity Model FIPA MASIF Source 
Available 

Aglet Yes Event-based 
Listeners Partially Partially Open Source 

Grasshopper Yes Callbacks 
IDL Partially Up-to-date On demand 

FIPA-OS No Conversation and 
task model FIPA2000 No Open Source 

Jade Intra-platform Synchronous 
Behaviours FIPA2000 No Open Source 

Table 1-1. Summary of agent platforms and properties 

Since our system does not require a mobile agent platform, we propose to use Jade as agent platform and 
to design a FIPA agent acting as an agency and providing the agents with an execution environment and 
other mobility services. This architectural choice brings three major advantages; on the one hand, we 
avoid extra-overhead on the agent platform caused by the complexity of mobility functions; on the other 
hand, our FIPA agency fully benefits from FIPA ongoing activities; this agency is also able to 
communicate with other stationary agents. 

Other development and research activities concerning agent platforms are the object of an European 
project called Agentcities3. This project aims at deploying an open world-wide network of 
FIPA-compliant agent platforms accessible through the public Internet. On top of these platforms, 
different agents are deployed and provide other agents with various services. The basic idea of Agentcities 
is to experiment agent technology and the composition of services with particular emphasis on the 
platform interoperability. 

                                                      
1 http://herzberg.ca.sandia.gov/jess 
2 http://www.ghg.net/clips/CLIPS.html 
3 More information available at http://www.agentcities.org 

http://herzberg.ca.sandia.gov/jess
http://www.ghg.net/clips/CLIPS.html
http://www.agentcities.org
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1.6 SUMMARY AND DISCUSSION 
Nowadays, telecommunication networks are controlled by network management systems mainly based on 
TMN or SNMP. Both frameworks stem from the OSI model, rely on a client-server paradigm, and 
implement a manager-agent communication model. The agent, which controls a collection of managed 
objects describing every manageable resource in the network, from physical resources to client 
connections, interacts with a manager in which the entire service logic is executed. 

The manager-agent model originally leads to the adoption of a centralized network management which 
unfortunately does not fit the inherent distributed environment of future transport networks in terms of 
scalability, flexibility and rapid time-to-market service deployment. The mobile agent technology allows 
the implementation of a decentralised management approach based on the principle of management by 
delegation. Considering mobile agents in telecommunication networks entails several advantages, among 
which the reduction of message processing between distributed entities limiting the bandwidth required 
for management purposes, the local processing enabling fast reaction to external changes, the design of 
distributed applications in which the management logic supposes the visit of several nodes, a significant 
improvement in terms of scalability and robustness, etc. 

In our work, mobile agents are considered as a specific class of intelligent agents using advanced 
communication mechanisms and exhibiting properties such as autonomy, reactivity, pro-activity and 
social behaviour.  

 

The mobility paradigm introduces new functions such as migration, cloning and various interaction 
schemes. Mobile and stationary agents are supposed to evolve in a common environment in which they 
interact in order to form a powerful multi-agent system. As they imply the transfer of code and data, 
mobile agents should be small enough to avoid an undesirable usage of bandwidth and they consequently 
match a reactive agent model rather than a deliberative model with reasoning mechanisms.  

Different mobile agent based approaches for network management have been presented in this chapter: 
delegation agents (deglets) and netlets are two important classes of mobile agents belonging to a 
particular mobile code environment called MCE and implementing two kinds of agent behaviour; deglets, 
on the one hand, are used to perform a specific task in a network component which generally interacts 
with a resident OSI agent which is in charge of the manipulation of managed objects stored in the MIB 
and which can provide the mobile agent with necessary information; netlets, on the other hand, can form a 
population of mobile agents which continuously migrate within the network; they suit monitoring or 
topology discovery functions and can interact to exchange knowledge in order to improve their efficiency. 

We have also presented MITAgent which is another approach purely based on direct communication 
between mobile agents travelling in the network to discover the topology and to build a network map. In 
this approach, mobile agents can exchange internal routing information in order to improve the system 
performance. MITAgent is particularly well suited to ad-hoc networks in which the network topology 
changes frequently because of the user's mobility. 

In opposition to direct communication, an approach based on Swarm Intelligence resorts to a 
population of netlets in order to detect a problem in the network. In this behaviour scheme, mobile agents 
are considered as "small insects" which have the ability to deposit a chemical track in their environment 
giving information about the network state. The other members of the population then "read" the track 
and adapt their behaviour to the strength of chemical information.  
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Mobile multi-agent systems based on these agent behaviours have also been considered in various 
network technologies. Customer-profiled mobile agents have been developed to deploy new value-added 
services in Intelligent Networks, for example. In 3G networks (UMTS), mobile agents can manage the 
virtual home environment of mobile users in a proper way.  

Finally we have laid particular emphasis on Active Networks, because their ability to transport code and 
to provide a rational execution environment qualifies them as an ideal environment for mobile agents. 

In the telecommunication world, the deployment of agent platforms in heterogeneous environments 
strongly relies on standards. Although it has been stated that FIPA is the reference organisation for the 
elaboration of standards in agent technology, FIPA does not support agent mobility yet. In addition to 
FIPA, the OMG has released the MASIF specifications devoted to the interoperability of CORBA-based 
mobile agent platforms. 

Mobile agents are executed in an environment provided by the agent platforms. A wide range of 
(mobile) agent platforms are presently available, but only a few are still being developed to implement the 
standardized architectures. Aglet from IBM and Grasshopper are two examples of mobile agent platforms 
freely downloadable from Internet; unfortunately, they are not upgraded to new standards and to the new 
Java development environment (JDK 1.3.x). FIPA-OS and Jade are two other popular agent platforms 
offering an excellent implementation of FIPA standards; but they do not support mobile agents. As we 
will show in the following chapters, a FIPA agent platform is sufficient to implement Ecomobile's 
mobility requirements. 

 

Despite the promising capabilities of mobile multi-agent systems, a lot of issues remain to be solved in 
order to achieve successful deployment of mobile agents in telecommunication networks. This problem is 
mainly due to the immaturity of the technology itself. For example, the different approaches presented in 
this chapter lead to different agent architectures and different agent systems, which makes their 
implementation in a standard-driven network infrastructure very difficult and leaves the specialists with a 
number of challenges in terms of scalability. The number of agents inside a population which has a strong 
impact on the system performance on the one hand and on the proliferation of mobile entities on the other 
hand, is also particularly difficult to control. 

Since mobile agent technology is used in the scope of Internet applications, the intrusion of viruses 
constitutes a real threat: agents are made of code and data, so that a virus can be "inserted" in the 
population and activated in the network nodes, leading the entire network to misbehave or even collapse. 
However, security does not constitute a critical issue in the context of network management, as the agents 
themselves are supposed to evolve in an operator controlled environment and are not meant to be directly 
used by other Internet users. In Ecomobile, the infrastructure itself - for example active nodes in AN - and 
the agent platform deal with most security aspects by exploiting the underlying Java mechanisms. 

The deployment of mobile agent systems also depends on their relying on standards such as FIPA or 
MASIF. Activities in that perspective are still emerging and need to be strengthened. In this context, the 
adoption of new business models by the network operators and the equipment vendors has to be clarified. 
Mobile agents inevitably lead to the dynamic installation of code in network components, so that the 
management and service logic is removed from the equipment vendors' full responsibility, although it can 
still be managed by the network operators themselves. In spite of numerous advantages provided by the 
installation of customized code in the devices from the point of view of the network operators, it is not 
certain that vendors are ready to accept such open environments. 
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Finally, we have observed that Active Networks, intelligent agents and mobile agents, which constitute 
three of the fundamental research areas characteristic of this thesis, gather three distinct researcher 
communities.  Although the objectives pursued are sometimes similar, there is not, at the moment, any 
real attempt to establish collaborative research work towards the elaboration of standards, on the one 
hand, and the definition of a rational framework which could avoid the proliferation of protocols and data 
structures, on the other hand. In this thesis, we also aim at contributing to a unified view of the concepts 
of Active Networks, intelligent agents and mobile agents. 

 

The next chapter of this thesis is devoted to the identification of three abstraction models for mobile agent 
systems, which will allow us to design a flexible infrastructure for active network management. We 
propose to consider three different approaches: deglets in MCE, MITAgent and AntNet, a similar powerful 
mobile agent approach based on Swarm Intelligence or emergent behaviour. 
 





 

39 

 

Chapter 2 
Engineering Mobile Multi-agent Systems 

 

In order to design and simulate an efficient mobile multi-agent system supporting intelligent tasks for 
network management, especially in the context of a highly dynamic and changing network environment, 
we will first have to identify its architectural components and to understand all the interactions taking 
place among them; in this perspective, the design of a scalable and flexible mobile multi-agent system 
leads us to apply a separation of concerns. 

We believe that the success of future NMS will depend on their ability to react adequately to external 
changes in the environment, including modifications regarding the network environment (addition or 
removal of network devices in network topology,  dynamic client connections, network failures, changes 
in the quality of services, etc.). The reactivity of mobile multi-agent systems appears optimal when most 
of the information managed by the mobile agents is issued from the environment defined by the agent 
system or by the network infrastructure which includes logical information, such as client connections or 
services description, and is stored in a local MIB, for example. In fact, we favour mobile MAS 
approaches promoting agent architectures in which the operational behaviour essentially requires 
environmental information.   

In order to deal with the separation of concerns, it is necessary to elaborate a comprehensive 
methodology for the development of (mobile) MAS; the development of this methodology, however, is 
still at an early stage. Although ongoing research is oriented towards an Agent-Oriented Software 
Engineering (AOSE)1 the mobility paradigm is not often considered in the design of intelligent agents: 
the agent working group2 of OMG, for example, is currently working on an extension of the Unified 
Modelling Language (UML); it aims at supporting agent modelling and related interactions by 
introducing new formalisms. The result is the Agent-UML (AUML) language [OPB00]. In a similar 
perspective, the MESSAGE project [E907_01] focuses on the elaboration of a methodology centred on 
the agent-oriented realisation of telematic services and telecommunication applications. 

The extension of the Open Distributed Processing (ODP) reference model [G851_96] defined by 
ITU-T with an adequate mapping of the MASIF concepts [MG01] constitutes an interesting approach 
towards the design of mobile MAS. For this purpose, the Architecture Description Language (ADL) has 
been introduced and defined as a UML profile called the MASIF-DESIGN. Recent work proposes 
attractive endeavours towards formalisms based on Petri nets [XD00]. CO-OPN/2 [HuB01], for example, 
is a formal component-oriented modelling language which can be used to model distributed applications 
involving mobile agent technology. 

Although these formal methods tend to favour the design and testing of robust mobile agent 
applications, the complex behaviours of mobile MAS remain difficult to formalize. For this reason, we 
have chosen to emphasize a pragmatic approach based on experiments and using a reactive programming 
paradigm for a fine-grained control of asynchronous interactions inherent to the agent behaviours on the 
one hand and to provide the agents with an efficient cooperative environment on the other hand. This 
approach will be described in Chapter 4. 

                                                      
1 http://www.jfipa.org/AgentOrientedSoftwareEngineering 
2 See http://www.objs.com/agent 

http://www.jfipa.org/AgentOrientedSoftwareEngineering
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In this chapter, we focus on the three fundamental abstractions governing any mobile MAS: the task - 
that is, the agent's specific goal, the migration – which refers to the agent's mobility, and the interactions 
– which designate the communication mechanisms between the mobile agents. We propose to define the 
three following abstraction models: the computational model (task design), the navigation model 
(migration design) and the coordination model (interaction design). 

To illustrate the characteristics of each abstraction model, we will mainly refer to three different classes 
of mobile MAS architectures derived from the mobile agents based network management approaches 
which have been briefly introduced in Chapter 1: the MCE deglet approach, a mobile agent which must 
perform a specific task - the AntNet, an ant behaviour inspired system similar to a population of MCE 
netlets using Swarm Intelligence and communicating indirectly through their environment and the 
MITAgent, a population of cooperating agents exchanging routing information. 

In this chapter, we shall also mention different design patterns proposed and supported by the Aglet 
mobile agent platform. 

2.1 THE COMPUTATIONAL MODEL 
We define the computational model as the part of the agent architecture that focuses on the mobile agent's 
operational behaviour, the agent task or goal. In the context of network management, typical tasks are 
configuration, monitoring, information retrieval from OSI agents, fault detection or routing tables 
updating. In order to achieve these objectives, the agents must be able to migrate, to communicate with 
other agents and with the environment, and to perform computation on internal data. The agents actually  
need to execute specific functions – or methods – to activate migration, to access the local environment 
and to contact other agents by using coordination mechanisms. The computational model therefore uses 
the methods provided by the agent system to determine how a specific task can be implemented.  

The serialization mechanism, RMI, the facilities for transferring classes and the security framework 
presently make Java the ideal programming language on which the computational model can rely. Still, 
rule-based languages and rule engines can also be used to provide the computational model with a 
powerful reasoning framework which is particularly useful for alarm correlation for example1. 

Most mobile agent systems, such as Aglet or Grasshopper, provide agents with platform-specific 
methods such as moveTo(), clone(), sendMessage(). These methods can be called at any time 
during the agent execution. Other methods such as onActivation(), onArrival(), 
onDisposal(), etc. are automatically called by the agent platform; they are known as callbacks, and 
allow the agent to be informed of external changes, such as departure or arrival from/to somewhere. 
These methods generally cover all the aspects of the agent's behaviour. 

The adoption of a design pattern [GHJ+95] for mobile agents constitutes an interesting approach 
towards reducing the dependencies between the models during the mobile agents' design phase. Design 
patterns belong to a high-level abstraction of the problem description. Practical solutions based on design 
patterns require parameterization leading to a particular instantiation which makes behaviour changes 
during the runtime difficult. 

We shall now introduce a few examples of task patterns characterizing different operational 
behaviours. 

                                                      
1 Further information about reasoning systems and mobile agents at http://www.etcee.com/research/ki 
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2.1.1 Task Patterns 
In the mobile agent's world, the Master/Slave design pattern, supported by Aglet, constitutes a 
fundamental task pattern [LO98] allowing a master mobile agent (MCE netlet-like for example) to 
delegate a task to a slave agent (MCE deglet-like for example). 

Like other design patterns, the Master/Slave pattern resorts to the inheritance to abstract the behaviour-
related methods (initializeTask() / doTask()). The slave agent moves to a destination host, 
performs the assigned task, and sends the task's result back. The master agent can delegate several slave 
agents in parallel, in which case the master agent is responsible for processing messages resulting from 
the slave agents. 

A major drawback of the Master/Slave pattern is that the slave's behaviour is fixed at design time; 
because of the inheritance-based pattern, a mobile agent can not be transformed into a slave agent and can 
not easily be assigned new tasks to perform. 

The Plan design pattern, which is an extension of the Master/Slave pattern, supports a workflow 
concept and organizes multiple tasks to be performed in sequence or in parallel by multiple agents; 
reusability of tasks, dynamic assignment of tasks to mobile agents and even task composition are 
promoted. The Plan pattern however requires a considerable amount of messages between slave and 
master agents and may lead to strong bandwidth consumption. 

The Jade agent platform [BCT+02] provides another approach towards a task design with generic 
behaviours. Based on message exchanges between agents1, several behaviour schemes corresponding to 
various task types are defined and enable multiple interactions with other agents. The overall behaviours 
are depicted on Figure 2-1. 

                                                      
1 Jade does not currently support physical mobility, since no standards for inter-platform mobility have 
been defined yet. 
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Models a generic 
task

Models a complex task 
i.e. a task that is made 
up by composing a 
number of other tasks

SimpleBehaviour
Models a simple task 
i.e. a task that is not 
composed of sub-tasks

FSMBehaviour

registerState()
registerTransition()

SequentialBehaviour

addSubBehaviour()

ParallelBehaviour

addSubBehaviour()

OneShotBehaviour
CyclicBehaviour

action()

Behaviour

<<abstract>> action()
<<abstract>> done()
onStart()
onEnd()
block()
restart()

CompositeBehaviour

0..*0..*

Models an atomic 
task  (its done() 
method returns true)

Models a cyclic task 
(its done() method 
returns false)

Models a complex task 
whose sub-tasks 
corresponds to the 
activities performed in the 
states of a Finite State 
Machine

Models a complex task 
whose sub-tasks are 
executed sequentially

Models a complex task 
whose sub-tasks are 
executed concurrently

 

Figure 2-1. UML Model of task behaviours in Jade 

The behaviours are divided into two main categories: simple and composite behaviour. A simple 
behaviour consists in a task that is activated only once and cannot be blocked - oneShotBehaviour - or in a 
cyclically activated task. A composite behaviour is made up of several behaviours according to a 
parent-child relationship; it may consist of a sequential behaviour - SequentialBehaviour - which executes 
the sub-behaviours sequentially and terminates when all sub-behaviours have been executed. On the 
contrary, parallel behaviour - ParallelBehaviour - allows the developer to implement sub-behaviours 
which can be executed in a non-deterministic order. Finally, a behaviour can be described with a finite 
state machine (FSM); the parent behaviour controls the transitions between the FSM states and activates 
the behaviours corresponding to the current state. 

2.1.2 Tightly and Loosely Coupled Task Model 
According to the agent task model, dependencies between the operational behaviour on the one hand and 
the mobility and cooperation of the agent task on the other hand, appear at various levels, which makes 
the task more or less complex to design. In order to categorize the various task architectures with respect 
to these concerns, we propose to distinguish the tightly coupled task model from the loosely coupled task 
model: when the task model needs some direct dependencies with the other models so that the task itself 
has an influence on the agent migration or the agent-to-agent interactions, the task is tightly coupled with 
the navigation and coordination models. On the contrary, when the task model does not directly depend 
on the other models, the task is loosely coupled with the navigation and coordination models. The 
migration and the coordination scheme however can naturally have an impact on the operational 
behaviour. As the coordination mechanisms are controlled by the task itself (and the underlying inter-
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agent communication is managed by the agent system), the cooperation mechanisms between the agents 
often imply a tightly coupled task model. 

According to this definition, we can assume that most location-aware tasks based on active migration 
are tightly coupled tasks which manage their migration decision internally, including the invocation of a 
moveTo(destination) method. Delegation agents such as MCE deglets, for example, implement their task 
by means of pre-computed paths; mobile agents implementing such a task model have to perform an 
operation at a specific node or at a collection of pre-defined nodes. It may however happen that the task 
does not need to migrate according to a pre-planned itinerary, but just navigates within the network 
topology with the assistance of an auto-discovery mechanism. As long as the navigation model supports 
an auto-discovery mechanism and fully controls the activation of the agent migration, the task remains 
loosely coupled and is simply activated at every node as a callback, independently from the location. An 
example of this behaviour appears in MCE netlets, a population of mobile agents living within the 
network and particularly well suited to monitoring functions.  

As we will see in the next sections, the location of information necessary for migration and 
coordination plays a central role in loosely coupled task models. 

2.2 THE COORDINATION MODEL 
Coordination, which deals with the management of dependencies between activities, is a central problem 
in any dynamic system composed of interacting activities [Sch01]. Numerous research works have 
resulted in the definition of several coordination models and corresponding coordination languages, such 
as the Encapsulation Coordination Model (ECM) and its associated language STL++ [SCH99], for 
example, which mainly aims at separating coordination abstractions from the computation.  

Coordination, which allows the mobile agents to cooperate and therefore to exchange knowledge, plays 
a central role in the scope of our research. Examples of mobile MAS exploiting coordination between 
agents are MITAgent (meeting-oriented coordination) and MCE netlets with Swarm Intelligence (indirect 
coordination) for example. 

Although the interaction logic is generally embedded inside the mobile agent, code mobility introduces 
additional complexity in the coordination scheme, but indirect coordination provides a new interesting 
way to manage interactions between mobile agents. 

In this section, we also introduce the software components required for the implementation of efficient 
coordination mechanisms. 

2.2.1 Interaction Patterns 
In order to address coordination problems in mobile agent applications, we propose to begin by 
considering general interaction schemes likely to intervene in these applications and which could provide 
an efficient way of decoupling the agent task from the coordination model. Although they rely on 
coordination mechanisms, interaction patterns are not limited to the strict context of coordination models: 
they propose cooperation schemes which can be directly mapped to a specific problem. Interaction 
patterns consequently tend to promote a decoupling between the coordination model and the 
computational model and therefore favour loosely coupled task models.  

The following sample design patterns are supported by Aglet. The Meeting pattern provides a way for 
two or more mobile agents to initiate local interaction at a given host. The Locker pattern defines a private 
storage space for data left by an aglet before it is temporarily dispatched to another destination. The 
Messenger pattern defines a surrogate mobile agent carrying a remote message from one agent to another. 
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The Finder pattern defines a mobile agent that provides services for naming and locating agents with 
specific capabilities. The Organized Group pattern composes mobile agents into groups whose members 
all travel together. 

2.2.2 Blackboard 
The blackboard is an important environmental component used as a shared information space in which 
mobile agents can read or write information. In addition to mobile agents themselves, other agents or 
external users may access the blackboard through a GUI interface in order to write messages informing a 
specific agent or to influence the general behaviour of the whole agent population, so that the blackboard 
can be used for indirect interactions – or indirect coordination - between mobile agents. 

According to this description, the blackboard is essentially a passive entity. Still, it can be extended 
with a reactive blackboard model enabling the implementation of programmable reactions activated in 
response to the agents-blackboard interactions [CLZ97]. Reactive blackboards entail several advantages: 
they can be used to implement specific local policies for the interactions between the agents and the node 
environment, to achieve better control and to prevent the local node from the intrusion of malicious 
agents; it can also be used to implement specific resources management policies to reach better efficiency 
in agent execution. An example of mobile agent environment experimenting reactive blackboards is 
MARS [CabLZ00]. 

Basically, the location of the blackboard is not subject to any specific limitation; however, in order to 
preserve communication resources and to improve scalability, an architectural choice may consist in 
associating each hosting environment with a single blackboard so that the mobile agent has access to the 
local blackboard only. 

2.2.3 Mobility Oriented Coordination 
The coordination models for mobile applications can be divided into four main categories: direct 
coordination, meeting-oriented coordination, blackboard-based coordination and Linda-like coordination 
[CaLZ00]. In addition to these categories, a taxonomy based on the degrees of spatial and temporal 
coupling induced by the coordination models is introduced: spatially coupled coordination models require 
the interacting entities to share a common name space; on the contrary, spatially uncoupled models 
enforce anonymous interactions. Temporally coupled coordination models imply synchronization of the 
entities involved in the communication, temporally uncoupled coordination models enforce asynchronous 
interactions. 

DIRECT COORDINATION 

In a direct coordination model, agent-to-agent interactions require the partners involved in the 
communication to be named explicitly and generally rely on a client-server communication model using 
Java RMI or CORBA, for example. This is the reason why direct coordination models imply both spatial 
and temporal coupling. 

This approach allows a mobile agent to have full control of its environment constituted of distributed 
components: communications are issued directly and their semantics is not influenced by external entities 
such as the hosting execution environments. Moreover, and according to the direct coordination models, 
each agent has the capacity to link services dynamically to a server localized in a single execution 
environment, thus providing the flexibility and adaptability required in a heterogeneous and dynamic 
environment. 
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Direct coordination models however present several drawbacks as regards agent-to-agent interactions: 
the localization of agents, for example, may introduce complex routing schemes and location 
management may lead to residual information being left onto the nodes. Furthermore, in this kind of 
model, a high number of interactions require a stable network connection which makes communication 
highly dependent on network reliability and nullifies the advantages of using mobile agents [CabrLZ00]. 

In the context of Ecomobile, a direct coordination model is proposed for agent-to-environment 
interactions only. 

MEETING-ORIENTED COORDINATION 

Meeting-oriented coordination models define spatially uncoupled models. Mobile agents can 
communicate at local meeting points, as long as they reside in the same node. The synchronization 
between the participants may be realized by means of a rendezvous mechanism. 

The agents are not required to name the interacting entities; however, they need to be informed of a 
common meeting name, in which case they can not maintain the anonymity of full spatial uncoupling. 
Since the schedule and the position of agents can generally not be predicted, these models also imply a 
high risk of missed interactions. 

A typical application of meeting-oriented coordination appears in the MITAgent approach, for example: 
mobile agents continuously travel within the network to discover the connectivity and exchange their 
knowledge during occasional meetings. 

As we will see in Chapter 3, Ecomobile realizes full spatially uncoupled meeting-oriented coordination 
for agent-to-agent interactions. 

BLACKBOARD-BASED COORDINATION 

In blackboard-based coordination models, agents interact via a blackboard. In this context, there is no 
restriction concerning the blackboard location. Messages can be left on blackboards, no matter where the 
corresponding receivers are or when they read the messages. Interactions are consequently fully 
temporally uncoupled, but remain spatially coupled, since agents must agree on a common message 
identifier to communicate and exchange data. According to this definition, blackboard-based coordination 
does not support anonymous messages. Apart from a common message identification between the emitter 
and the receiver, no other restriction is imposed regarding the message recipient, which may be an agent 
or a group of agents. 

Agent-to-environment interactions can be facilitated by the use of a blackboard storing environment-
specific information; for example, a stationary agent can be queried to prepare or possibly to pre-process 
information retrieved from the local environment and to place them in the blackboard, so that mobile 
agents can avoid time-consuming interactions with the stationary agent. 

LINDA-LIKE AND FULLY INDIRECT COORDINATION 

The inter-agent coordination model based on Linda1 requires a particular shared data space called tuple 
space, in which the agents store and retrieve information by means of associative mechanisms. The 
information is described with tuples, a data structure adapted to pattern-matching algorithms. Linda 
defines several primitives to store and to retrieve information from the tuple space. 

                                                      
1 http://www.cs.yale.edu/Linda/linda.html 
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Linda-like coordination models enforce full uncoupling requiring neither temporal nor spatial 
agreement. Unlike blackboard-based coordination, these models support anonymous messages. This kind 
of model suits large-scale mobile agent applications in which the hosting environment is sometimes 
difficult to manage, as in Internet applications, for example. However, Linda-like coordination increases 
the communication overhead in proportion to the number of interactions with the tuple space; access 
requests may imply several message exchanges between agent and tuple space. 

The taxonomy of coordination models with their spatial and temporal coupling is summarized in Table 
2-1. We have also highlighted the categories to which Ecomobile can be associated. 

 

  Temporal 
  Coupled Uncoupled 

Coupled 
Direct, 

Ecomobile (agent-to-
environment) 

Blackboard-based 

Spatial 
Uncoupled Meeting-oriented, 

Ecomobile (agent-to-agent)
Linda-like,  

fully indirect 

Table 2-1. Taxonomy of coordination models with their spatial/temporal coupling 

In order to deal with a mobility paradigm based on a pure local processing approach, we propose to 
extend the Linda-like coordination model to a fully indirect coordination model. In addition to spatial and 
temporal uncoupling, a blackboard is defined locally in each hosting environment and allows mobile 
agents to deposit and to retrieve information in a complete anonymous way that is, without any message 
identifier, agent identifier, blackboard or tuple space identifier. This approach focuses on the agent-to-
environment interactions within the hosting environment (agent system) and avoids unnecessary overload 
of message-passing as well as requests between agents or a shared information space. The inter-node 
communication channel needed for mobile MAS purposes can be consequently used for agent migration 
only. 

Fully indirect coordination favours a strong usage of the mobility paradigm and reduces the client-
server communication to the hosting environment. Apart from migration functions, the agent task only 
needs methods to access the environment and tends to design loosely coupled tasks as far as the 
computational model is concerned. Still, fully indirect coordination only suits a particular kind of mobile 
MAS based on emergent behaviour (see Section 2.4). 

2.3 THE NAVIGATION MODEL 
The navigation model can be associated with the mobile agents' migration strategy, which most of the 
time depends on the application: the agent task requires a specific migration scheme and establishes 
dependencies between the navigation model and the computational model. 

This dependency scheme implies severe limitations on the deployment of large-scale mobile agent 
systems. Implementing two network management functions such as monitoring and configuring, for 
example, leads distinct families of mobile agents to require different migration strategies. In the end, the 
mobile MAS exhibits several families of mobile agents, each with a specific mobile behaviour, resulting 
in a totally unorganized population of mobile agents, at least from the point of view of a macro-society, 
this proliferation of agents steadily causing considerable degradation of the network performance.  
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In Ecomobile, we deal with the issues related to multiple navigation models by proposing a reduction of 
dependencies between the agents' mobile behaviour and their tasks. We are now proceeding to introduce 
the location concept and the related mobility components; migration patterns will then be shortly 
analysed, before we examine two fundamentally different navigation models, namely the pre-planned and 
the stochastic navigation model. 

2.3.1 Location Concept, Migration and Itinerary 
Mobile agents migrate from one location to another. The location is defined as a static place and is 
considered as part of the hosting environment managed by the agent system. One or several places can 
co-exist in the same environment. According to the application, they can be statically created by the agent 
system or dynamically created by the mobile agents themselves when necessary; connection or customer 
profile related places may have an existence with different durations. Each place is identified by a unique 
address and may be combined with a node address, or a URL in case of Internet applications. 

In Grasshopper, a place can be associated with specific functions which mobile agents resort to. In 
Jade, the place is considered as a simple agent container. Places can be defined by a semantics which 
generally depends on the application itself; they can represent different authorities or business entities, 
they can limit the agent-to-environment interactions in an environmental scope defining a place for each 
MIB, for example, or they can represent a virtual network of nodes mapping a group of places within 
each node; in the latter case, places are interconnected according to a virtual (or logical) topology that 
may reflect a physical topology. Figure 2-2 shows an example of interconnected places. 

Agent System 

P1 P3

P2

P4

Agent System

P1 P3

P2

P4
Agent System

P1

P2

P3

Agent System

P1 P3

P2

P4

 
Figure 2-2. Places and location concept 

When the migration is performed between places belonging to the same agent system, it can be associated 
with virtual or logical mobility but, when places belong to different agent systems, the migration 
represents a form of physical mobility [RSP00]. 

From the point of view of mobile code, two kinds of migrations are possible, i.e. weak and strong 
migration [CLZ00]. 

WEAK MIGRATION 

The transfer of mobile agents generally uses weak migration and involves preserving the code and data 
state during migration. Usually, a migration method - moveTo(destination) for example - is invoked by 
the agent, and provokes the agent to be stopped, serialized, transferred and resumed in the destination 
node. The resuming operation requires to re-start the code or to invoke a specific callback method of the 



 
The Navigation Model 

 

48 

agent – resume(), for example. The invocation of this method is made by the agent system which is 
responsible for the code transfer. 

STRONG MIGRATION 

Strong migration appears to be a new concept fitting certain kind of network-unaware applications, such 
as load-balancing applications. When a mobile agent has to be moved to another execution environment 
during its execution on behalf of the agent system because its execution is not appropriate on the running 
environment any more, the agent code must be transferred with its execution state (program counter) so 
that the agent can be resumed exactly where it was suspended: strong migration allows this transfer. This 
technique is much more complicated than weak migration because it requires to extract and restore the 
computational state (in particular, the call stack and the program counter) whenever the migration request 
occurs anywhere in the code. 

However, most network management tasks are performed locally and do not require strong migration, 
as the execution state can be preserved by using internal variables; the invocation of the resume() 
agent method will then perform the appropriate action based on the state variables. Weak migration is 
easily implemented with Java whereas strong migration requires adaptations of the Java virtual machine. 

 

The agent system deals with the mobile agents' migration. Any migration request, however, can be 
initiated by the agent itself (active migration) or by the agent system (passive migration). Active 
migration is used in most mobile agent based applications, in which agents are autonomous entities 
initiating their own migration. In principle, passive migration is used when the agent system itself decides 
to move an agent without its knowing because the execution environment is not convenient any longer, 
for example, or because the agent is executing functions which are not appropriate to the local 
environment. When passive migration is synchronous, weak migration fulfils the agent transfer, whereas 
asynchronous passive migration calls for strong migration.  

In the most simple case, the agent destination requires a single hop migration but, when the destination 
is not directly connected to the current place, it requires a multi-hop migration. In case of a multi-hop 
migration, the agent system may use routing algorithms to determine the best trip. 

The itinerary, which is another component of the mobility paradigm, is simply a list of places that the 
agent can store as part of its internal knowledge; it can be a pre-computed path that the mobile agent will 
follow during its migration. A history of visited locations can be built by the agent in order to constitute a 
future itinerary back to the initial location (boomerang effect). 

2.3.2 Migration Patterns 
Migration design patterns are proposed to implement the mobile agents' migration strategy; they authorize 
a decoupling between the agent task and the navigation model. Both of the following patterns are 
supported by Aglet.  

The Itinerary pattern provides the mobile agent with a travel plan: the Itinerary object is initialized 
with a list of destinations to be visited sequentially and a reference to the mobile agents; the itinerary can 
thus be shared by several agents. The Itinerary object must be completed before the agents start their 
travel. 

The Forwarding pattern is a particular object residing in the agent system, which forwards newly 
arrived mobile agents automatically to another host. 
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2.3.3 Pre-planned Navigation 
A mobile agent's itinerary can be pre-computed by the agent itself or by an external entity (agent or agent 
system). If the itinerary remains stable during the travel, the agent reads the list of locations sequentially 
and performs specific actions. The mobility of the agent therefore follows a deterministic navigation 
model. The itinerary may however be pro-actively refined during the agent trip according to a migration 
planning process located in the places visited by the agent. To illustrate this approach, we propose an 
adapted version of the shopping scenario [CCM+98]: suppose a user is looking for a specific available 
resource known to be offered by n+1 nodes. The probability pi that node i has the resource available is 
known and independent for different nodes; still, it takes a given time ti to perform queries within the 
node in order to determine whether the resource is available or not; going from node i to node j requires 
travel time lij. Given that information, and considering that the mobile agent starts and ends at node 0, 
what is the minimal expected time to find the item or to conclude that it is not available? 

In order to deal with the agent migration-planning problem which is described in this scenario, mobile 
agents can interact with a local stationary agent to estimate the probabilities of success based on local 
knowledge: the node agent activates a decision-making module and returns a modified itinerary to the 
mobile agent. In this case, the agent's mobility follows a non-deterministic navigation model, which is 
also considered when the agent system has to compute a multi-hop routing scheme because the 
destination requested by the mobile agent is not immediately communicated to the agent system.  

Both deterministic and non-deterministic pre-planned navigation models are strongly associated to the 
agent task, so that these navigation models are not compatible with loosely coupled tasks.  

2.3.4 Stochastic Navigation 
Stochastic navigation essentially implies a non-deterministic behaviour from the mobility point of view:  
mobile agents read information from the blackboard or query a stationary agent in order to retrieve local 
attributes; then, they perform the required action and update the local data. Finally, when the agent is 
ready to migrate, the environmental information may be sufficient to compute its destination without 
taking the operational behaviour into account. This model enables mobile agents to be more reactive to 
environmental changes. 

This approach appears particularly interesting in the context of the computational model: since the 
navigation model purely depends on information managed by the hosting environment, and not by the 
mobile agent itself, the computational model supports a loosely coupled task model. The navigation 
model actually has full control on the migration strategy as well as on the migration activation: although 
the navigation model resorts to active migration, the mobile agent supports a synchronous passive 
migration as far as the task is concerned. Stochastic navigation models are therefore particularly fitted to 
support the implementation of mobile MAS which must reflect the current state of the network, such as 
monitoring agents systems (MCE netlets), discovery agents systems and all the approaches based on the 
emergent behaviour presented in the next section.  

In spite of their highly reactive behaviour, stochastic navigation models are not adapted to delegation 
agents or destination-based agents. The probabilistic selection of destinations actually makes the mobile 
agent's trajectory difficult to predict and might drive the agent through a considerable amount of node 
visits before it reaches its final destination.  
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2.4 EMERGENT BEHAVIOUR 
In this section, we deal with an innovative engineering approach relying on collective phenomena to 
implement mobile MAS and to achieve a global task by virtue of emergence and self-organization.  

In Section 1.3.1, we have briefly described a mobile MAS based on the notion of Swarm Intelligence. 
In systems endowed with the property of Swarm Intelligence [BW89], unintelligent agents with limited 
individual capabilities collectively exhibit intelligent behaviour. This bio-inspired approach draws its 
model from evolutionary biology and from the study of ecosystems such as bacteria, ants or bees 
societies: it turns out that these societies exhibit social coherence although the individuals' behaviour is 
mainly stochastic. This kind of behaviour is known as emergent behaviour. Still, it has to be mentioned 
that, since the observation of the system is influenced by an important subjective component related to the 
observer's cognitive properties, the term of emergence remains controversial [CLC99]. 

In this area, significant research efforts have focused on ants societies. Ants are relatively simple 
insects that have a very limited amount of memory, are almost blind, and apparently exhibit random 
behaviour. A colony of ants is however able to perform complex tasks such as forming bridges, building 
and protecting their nest, regulating nest temperature, searching areas for food, finding the shortest routes 
to food and exploiting the richest available food source [SHMar99].  

One of the questions raised by biologists was how ants can manage to establish the shortest paths from 
their colony to feeding sources and backwards. Observations have shown that the medium used to 
communicate information among ants and to influence their trajectory, consisted of special chemical trails 
called pheromone: ants mark the path with pheromone laid on the ground in varying quantities. When 
isolated ants encounter this pheromone trail, they follow it and thus reinforce it with their own pheromone 
[DMC96]. 

In the context of mobile MAS, mobile agents "mimic" the ants' behaviour. Ants and agents exhibit 
common characteristics [WhP99]: although no single agent has a global view of the world, a population 
of single agents evolving in the same environment give evidence of emergent behaviour leading to the 
fulfilment of the task. Moreover, direct agent-to-agent interaction is replaced by a communication 
paradigm relying on simple time-dependent environmental signals resembling pheromone trails in an ants 
colony; signals usually decay in time. Finally, the strength of chemical trails provides the driving force 
for migration patterns.  

This communication model is also called stigmergy. Stigmergy can be defined as a form of indirect 
communication taking place among individuals by means of modifications induced in their environment. 
Two kinds of stigmergy have been observed: sematectonic stigmergy involves a change in the physical 
characteristics of the environment; this change can be compared to the modification of an ant nest each 
time an ant brings its ball of mud on top of it. According to sign-based stigmergy, on the contrary, the 
chemical substance deposited in the environment makes no direct contribution to the ultimate goal, but is 
used to influence the individuals' subsequent behaviour in order to reach the goal. 

Since no single agent is entrusted with any critical mission, mobile MAS based on emergent behaviour 
can be considered as robust systems: if an agent should disappear from the population, the rest of the 
population would be able to pursue its work. As far as the abstraction models are concerned, mobile MAS 
based on stigmergetic communication rely on fully indirect coordination in a stochastic navigation model.  

In the next sections, we describe two approaches resorting to emergent behaviour for distributed 
network management purposes: AntNet and SynthECA, which are particularly well-adapted to the 
development of a self-organized and self-tuned mobile agents population like Ecomobile. 
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2.4.1 AntNet 
AntNet, which has been the object of numerous research works, is a mobile MAS aiming at the adaptive 
set-up of routing tables in communications networks [CD98]. It has to be noted that this approach refers 
to a more general optimisation technique called Ant Colony Optimisation (ACO)1. 

Routing in packet-switched networks (such as IP networks) is subject to various problems: the 
information, i.e. the routing tables, and the decision system are completely distributed;  the session arrival 
and data generation process is generally non-stationary and stochastic; several conflicting performance 
measures are usually taken into account for the quality of service, such as throughput and average packet 
delay; finally, the constraints imposed by the underlying network technology are difficult to implement. A 
mobile MAS approach seems to be particularly adequate to deal with all these routing problems inherent 
to packet-switched networks. 

AntNet resorts to ant-like mobile agents travelling in the network, using the same medium as the data 
traffic, and implementing distributed stigmergetic control. When they visit nodes, they "read" the 
environment and make a decision concerning their next destination; the environment can be associated to 
the ant's pheromone trail. Before leaving the node, the agent modifies the environment, and thus 
reinforces the decision, contributing to the migration decision of future visiting agents. Figure 2-3 shows 
the principle of the ants' navigation model. The ants decisions are based on link costs: the pheromone 
strength is actually influenced by two factors, the number of ants which travel on a link and the quantity 
of pheromone deposited by the ant. In this example, path length is given by the link costs: the shorter the 
path the stronger the pheromone trails. 

Right?
Left? 2

3

3

1

 
Figure 2-3. Ants making decisions based on the strength of the pheromone trail 

We now propose to examine the different steps of a simplified version of the algorithm in order to 
identify the main characteristics related to the abstraction models. 

AntNet defines two kinds of mobile agents: forward and backward ants. Each node includes a routing 
table Тk which contains probabilistic entries; Тk defines the probabilistic routing policy currently adopted 
at node k: for each possible destination d and for each neighbour node n, Тk stores a probability value Pnd 
expressing the benefit of choosing n as the next node when the destination node is d under the current 
network-wide routing policy. 

                                                      
1 http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html 

http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html
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At regular intervals, a forward ant is launched from each network node towards a destination node to 
discover a feasible, low-cost path to that node and to investigate the load status of the network. Forward 
ants share their queues with data packets and experience the same traffic loads. Destinations are selected 
locally according to the data traffic patterns generated by the local workload. While they are travelling 
toward their destination nodes, the agents memorize their paths as well as the traffic conditions; they also 
store as internal knowledge the itinerary corresponding to the visited nodes and the time elapsed since the 
launching time. 

At each node, every forward ant selects a node among all neighbouring nodes according to the 
probability computed as the normalized sum of the probabilistic entry in the routing table. When the 
destination node has been reached, the forward ant creates a backward ant, to which its memory is 
transferred, and dies. The backward ant follows the path discovered by the forward ant in the opposite 
direction. It is assumed that backward ants do not share the same queue as data traffic but use higher 
priority queues since the routing tables must be quickly updated. The backward ant updates the routing 
table of each visited node. 

DISCUSSION 

Further reflection on AntNet reveals that this model relies on stigmergetic communication in a fully 
indirect coordination model, since no agent-to-agent interaction is required and since an agent can interact 
only with the local blackboard associated to the agent place, in which the ants deposit and "read" the 
pheromone. 

AntNet is ruled by a model combining stochastic and deterministic pre-planned navigation. Forward 
ants mainly use environmental information to decide on their next destination, so that the agents' 
objective is to follow a path until they have reached their final destination, the path being determined by 
data traffic conditions on the one hand and by probabilistic values computed from the pheromone quantity 
on the other hand. Although the migration function of forward ants relies only on traffic conditions and 
network availability at the beginning of the process, – so that the task could be separated from the 
migration function and thus become a loosely coupled task – the migration decision will however, after a 
certain time, depend on the pheromonal information appearing in each node. Since the migration decision 
is based upon predictive functions and strongly depends on the nature of the task to be performed, the 
computational model of forwards ants is actually based on tightly coupled task and forwards ants rely on 
a stochastic navigation model. 

On the contrary, backward ants need to access their internal knowledge, namely the itinerary, in order 
to perform the migration from the destination to the source in a deterministic way (boomerang effect). 
Backward ants therefore rely on a pre-planned navigation model. 

2.4.2 SynthECA 
The SynthECA approach [Whi00] is based on sign-based stigmergy and can be considered as a 
generalization of AntNet. SynthECA is not only devoted to a routing process, but is also useful for fault 
location and planning. The chemical messages used for indirect communication between mobile agents 
have two attributes: a label and a concentration [WhP99]. The different possible labels lead to a 
classification of distinct chemical tracks according to the type of agents that must sense the signal; the 
three types of signals are: a routing chemical (r-chemical), a reliability chemical (R-chemical) and a 
quality of service chemical (qos-chemical).  
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Mobile agents sensing the r-chemical discover the connection path according to a logic which is similar 
to the logic revealed in AntNet. When a path has emerged, an allocator agent traverses the path and 
assigns resource to the connection; a quality-of-service (QoS) sensing agent then monitors the end-to-end 
path allocated to the connection and adapts the chemical intensity in accordance with the path quality. If a 
problem occurs along a specific connection at a specific node, the quality of service will be significantly 
deteriorated and qos-agents will drop qos-chemical so that the node responsible for the problem can be 
identified. It is assumed that the network resources are shared among several connections which 
participate in the reinforcement of the qos-chemical trails, provided the connection is affected with a 
quality reduction caused by the same problem. A qos-location-agent which senses the qos-chemical 
constantly migrates towards higher concentrations of qos-chemical. When the defect device has been 
identified, a R-chemical is dropped at its location in order to influence the routing and planning agents 
which will be in charge of diagnosing and solving the problem by re-configuring the fault device with an 
alternative connection path. R-chemicals can be used to drive the planning process along with an 
additional chemical resulting from network congestion (c-chemical). The R-agent is a planning agent 
supervising a reliability threshold for each network device and making adequate decisions regarding 
potential problems. 

Mobile agents in SynthECA have a common architecture: they include emitters, receptors, chemistry, a 
migration decision function and a memory. Emitters and receptors allow the agent to sense and to change 
the chemical in the environment; the chemistry defines a set of chemical reactions which can be 
performed by the agent by means of internal information stored in a memory on the one hand, and of the 
sensed chemical on the other hand. The migration decision function, which implements the agent's 
migration strategy, allows the agent to hill climb in the direction of increasing concentrations of 
chemicals sensed either probabilistically or deterministically. 

DISCUSSION 

In SynthECA as in AntNet, there is no direct communication between mobile agents; the behaviour of the 
mobile MAS strictly depends on the environment characterized by the network parameters and by the 
chemical messages controlled by the agents themselves and reflecting the network state as regards the 
implemented functions; routing, for example, is concerned with availability and QoS, fault detection deals 
with operational state of devices, etc. Depending on the process, the migration function implements 
stochastic navigation with routing agents or pre-planned navigation, in which the description of the 
current connection is required, since qos-agents monitor the connections. 

2.5 OUR CLASSIFICATION OF MOBILE MAS 
According to the definition of abstraction models introduced in this chapter, we propose in Table 2-2 a 
classification of the mobile MAS which have been presented so far. It has to be noted that system 
architectures have been considered in the primary architecture and in the functionalities for which they 
have been originally designed. Most of them are perfectly extendable to support other functionalities, 
implying additional dependencies between abstraction models. 
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 Computational Model Coordination Model Navigation Model 

MCE netlets Loosely coupled task Direct Stochastic 
MCE deglets Tightly coupled task No coordination Pre-planned 

AntNet Tightly coupled task Fully indirect Stochastic/ 
Pre-planned 

MITAgent Loosely coupled task Meeting-oriented Stochastic 
SynthECA Tightly coupled task Fully indirect Stochastic 

Table 2-2. Abstraction models of different mobile MAS 

The classification of MAS with respect to their computational model is based on the following 
assumptions: netlets are able to interact with one another independently from their location, as long they 
can be identified, so that they implement a direct coordination model. While netlets travel along the links 
according to the network topology, and the tasks implemented in netlets generally look like monitoring 
functions and do not influence the migration, deglets are considered as delegation agents for general 
purposes and, in spite of the possible introduction of design patterns, implement tightly coupled tasks.  

AntNet entails two kinds of agents: forward ants implement a stochastic navigation model, whereas 
backward ants, which are closer to delegation agents, follow a deterministic pre-planned navigation 
model. AntNet and SynthECA implement a fully indirect coordination model, using stigmergetic 
coordination and describing emergent behaviour. Since the migration decision is based on predictive 
functions depending on the agent objective, these two approaches however do not support a coupled task 
model. 

In the MITAgent approach, cooperating agents exchange routing information according to a meeting-
oriented coordination model; the agent task can be limited to knowledge transfer and internal knowledge 
updating; finally, the migration decision relies on local network information only and enables simple 
auto-discovery mechanisms. MITAgent consequently follows a loosely coupled task model. 

Whereas direct coordination and meeting-oriented coordination enable agent-to-agent interactions, a 
(fully) indirect coordination model can also be considered in this context. Since there is no direct 
communication between the agents, knowledge exchange between agents however remains impossible 
unless it is transferred via the environment. This mechanism therefore requires the agents to be identified 
so that the information can be addressed to the agent requiring it. 

2.6 SIMULATING MOBILE MAS 
The implementation of abstraction models dedicated to mobile MAS for network management obviously 
requires an important effort with respect to simulation. Simulation plays a central role during the 
elaboration of mobile MAS and is motivated by the necessity to analyse the behaviour of mobile agents in 
response to particular stimulations. Simulation results are required to validate the architectural design, to 
make a performance evaluation compared to a reference model, and to receive a feedback from the MAS 
in order to detect pathological behaviours. The simulation results finally lead the system to be improved: 
the architecture can be adapted or the agent parameters can be tuned. 

The simulation of a mobile MAS, which is composed of several autonomous mobile entities running in 
parallel and performing agent-to-agent and agent-to-environment interactions, remains a complicated 
task. Moreover, a behavioural simulation should not be affected by external parameters, such as CPU 
power, thread scheduling policy or memory. Different approaches have been proposed to meet this 



Chapter 2 
Engineering Mobile Multi-agent Systems 

 

55 

challenge [UK01]: JAMES [UTT00] - a Java-based Agent Modelling Environment for Simulation - is a 
simulation framework for multi-agent systems which provides the means to describe variable structure 
models and their distributed parallel execution. While the model design consists in a hierarchical 
compositional construction of models which can be either atomic or coupled, the coupled model makes 
the interaction between components possible. Although JAMES was originally designed for supporting 
deliberative agents, recent work has shown a possibility to use the JAMES formalism to simulate mobile 
agents by mapping the location concept onto coupled models [UKL02]; although the agent code does not 
move, the reconfiguration of the different models leads to migration simulation. A complete study of 
multi-agent systems simulation is beyond the scope of this work; however, we have to focus on different 
aspects which are obviously relevant to the simulation and deployment of mobile agent based network 
management system. The simulation framework - or simulator - must take into account the target 
environment of the mobile MAS, including the agent system's (agent platform's) components and relevant 
services. 

Without going into details, three main scenarios are possible: in the first case, "everything" is 
simulated. This option is particularly useful during the first steps of the agent behaviour design; a 
minimum set of functions in the agent system is simulated. In the second case, the simulator does not 
simulate the agent system but interacts with a single instance of an agent platform running in the same 
environment as the simulator; in this case, physical mobility is replaced by logical mobility which is 
"simulated" within the same agent platform. Finally, the simulator can deal with several agent platforms 
which are physically distributed over a network; a similar approach is supported by JAMES, for example; 
according to this option, coordinators are necessary to keep the distributed simulations synchronized with 
the main simulator. 

In order to capture the agent behaviour in response to the environmental changes, the network 
conditions also have to be taken into account and simulated1. Whereas IP network simulation is rather 
simple, optical networks or UMTS networks, for example, are much more difficult to simulate because of 
the complexity of the network itself in terms of capabilities, dynamic components and physical 
constraints. In order to simulate the network infrastructure, we have developed the Generic Network 
Management Tool (GNMT) (see Appendix A). More details about the simulation environment are given 
in Chapter 5. 

Like the agent system, the network environment can be fully simulated on a central machine or 
distributed over several machines. A network environment combining a part of real network devices and a 
part of simulated devices may also lead to cost effective validation of the mobile MAS since, depending 
on the network technology which has to be simulated, hardware devices can be expensive or not available 
yet. 

The transition from a simulated environment to a real implementation is a critical stage in the 
elaboration of mobile MAS. Although a mobile MAS can produce interesting results from the point of 
view of the simulation, it however remains uncertain whether the implementation of the MAS in real 
network conditions using agent platforms should lead to the same conclusions. The integration of mobile 
agents in a real agent system may also raise various architectural issues influencing their performance. 

Our work is focused on a functional validation of the mobile MAS behaviour: real-time aspects are not 
considered. We propose to use the Jade agent platform in order to deploy our middleware, and the 

                                                      
1 The term of simulation is sometimes understood as "partial emulation" of a network device or of an 
agent system, for example.  
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execution environment of the mobile agents will be controlled by a FIPA agent, called agency, which also 
implements the simulation environment. The high-level architecture of mobile MAS implies several 
intermediate components, such as a Java virtual machine, an agent platform or a NodeOS, which, we shall 
see, make the performance difficult to assess.  

The problem of simulation and deployment of Ecomobile is mainly addressed in Chapter 4. 

2.7 SUMMARY 
In order to build an efficient NMS based on mobile MAS, we have introduced three abstraction models 
which contribute to a separation of concerns.  

The computational model focuses on the agent task's operational behaviour. The definition of the 
tightly and loosely coupled task models classifies the agent task according to its dependencies with the 
other models: we have seen that a loosely coupled task model leads to a powerful abstraction of mobility 
functions and therefore facilitates the task design.  

The coordination model focuses on the interactions taking place in the mobile MAS. By means of 
advanced communication mechanisms, mobile agents can improve their capacity to tackle complex 
problems by exchanging knowledge or regulating their population. The mobility paradigm introduces new 
possibilities in the coordination schemes, such as meeting-oriented or blackboard-based coordination. 
Although the separation between computation and coordination has been treated in a wide range of 
research works, the impact of the mobility paradigm on the coordination and the computational model 
remains an exciting challenge.  

Finally, the navigation model focuses on the agent's migration strategy and the migration functions. 
The taxonomy of navigation models which has been proposed focuses on the difference between the pre-
planned and the stochastic navigation model. While the former is dedicated to deterministic mobile 
behaviours, as with delegation agents, the latter resorts to environmental information for the migration 
and thus promotes loosely coupled task models. 

Another interesting approach associated with the mobility paradigm has been presented in this chapter: 
according to the emergent behaviour, mobile agents can deposit specific chemical messages in the 
environment in order to influence the behaviour of other agents. Stigmergetic communication stems from 
biological observations of insects colonies and reveals a promising approach towards network 
management1. 

A behavioural study of a large-scale population of mobile agents requires a simulation framework able 
to manage the agent interactions on the one hand, and the environmental interactions on the other hand; 
the network environment in which the mobile MAS will be deployed must also be partially simulated so 
that all the aspects of the abstraction models can be validated. As we have seen, full simulation does not 
resort to an agent platform, although certain components of the agent platform must be considered in 
order to facilitate the deployment on the target environment. According to a second scenario, the 
simulator is combined with the target agent platform. Virtual locations can then be implemented to 
simulate the nodes geographically spread in the network and to use logical mobility for the agent 
migration. 

                                                      
1 In this context, emergent behaviour is currently under investigation in the OPTIMA project; further 
details are given in section 7.1. 
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Designing mobile multi-agent systems is generally difficult because of the numerous agent-to-agent 
and agent-to-environment interactions taking place and the dependencies between the different system 
abstractions. According to the present state of the art, the design of mobile multi-agent systems is not 
supported by any clear methodological framework: developing a specific task often imposes a particular 
agent architecture with specific behaviours. The design of a mobile MAS implementing a loosely coupled 
task model for generic objectives remains an important issue. 
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Chapter 3 
The Conceptual Framework of Ecomobile 

 

In this chapter, we wish to introduce the notion of artificial ecosystem as a framework composed of 
mobile agents evolving in a network infrastructure. We will focus on certain evolutionary aspects of 
biological systems and will try to apply them to our ecosystem. The notion of ecosystem stems from the 
science of ecology and can be defined as follows: 

"An ecosystem is a grouping of plants, animals, microbes, etc., living in an explicit unit of space and 
interacting with one another and with their environment." (Department of Environmental Science and 
Policy, University of California, Davis)1 

An ecosystem as a whole has the ability to coordinate and has something in common with evolutionary 
systems whose evolution is purposeless and acts on populations of species, to gain performance despite 
individuals' activity. However, at the moment, artificial systems are separated from ecosystems in the 
sense that they are not coupled with the ecosystems; artificial systems by themselves do not have an 
ability to adapt. "The real value of evolutionary systems is to create artificial systems that function as part 
of ecosystems" [Num95]. 

Based on ecosystem principles, the Decentralized Information Ecosystem Technology (DIET) [M+01] 
proposes to define lightweight agents called infohabitants, which only have the capability to 
communicate, and to develop a framework supporting a population of infohabitants as a basis for agent-
based applications resorting to economic interactions and market-based computation. In [GF01], the 
notion of computational ecosystems is defined as a framework creating and maintaining value-adding 
chains of e-services with particular emphasis on the coordination and control of participating parties.  

In Chapter 2, we have seen that mobile MAS exhibit a number of fundamental characteristics inherent 
to any society of living individuals: for example, they can move freely within a delimited environment 
and can interact with it as well as with each other. In fact, the mobility paradigm, which appears to 
illustrate the underlying behaviour of any well organized society, has several direct effects, such as the 
dispersal of the individuals in their physical environment or the fact that they exhibit different behaviours 
depending on their location. From the point of view of indirect effects, the mobility paradigm inherently 
contributes to the self-organisation of the environment, including self-regulation of the population. This 
property results from the moving agents' different geographic positions. 

We have also introduced three abstraction models related to the design phase of mobile multi-agent 
systems: the computational, navigation and coordination models. This separation of concerns will allow 
us to define the conceptual approach of Ecomobile. In the present chapter, we propose to define 
Ecomobile as an artificial ecosystem in which a community of mobile agents living in the network 
infrastructure interact in an environment represented by the network nodes and links. Ecomobile acts as a 
mobile middleware for the dispersal and the activation of intelligent tasks in an active network 
infrastructure intended for fully decentralised network management. The regulation of the agent 
population and its self-adaptability to physical network constraints such as connectivity, are two essential 
properties which lead to an equilibrium in the system. 

                                                      
1 http://www.des.ucdavis.edu/classes/ESP10/ecoservices.pdf 

http://www.des.ucdavis.edu/classes/ESP10/ecoservices.pdf
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Our approach is mainly driven by the characteristics issued from the abstraction models; considering 
our objectives, we have adopted the minimal requirements of the mobility functions in order to avoid 
extra-overhead due to the support of obsolete services in the agent architecture and in the agent system. 
The architecture of Ecomobile has resulted in a particular model leading to the use of a common agent 
architecture for transport networks; our infrastructure also supports multiple operational behaviours based 
on different approaches like emergent behaviour. 

In the beginning, we will introduce the Ecomobile model and its main components. Ecosystem 
principles leading to the population regulation will be then presented and we will try to identify 
elementary behaviours which may be observed in a society of mobile individuals living in a same 
environment. The combination of these simple ecological behaviours will determine the individuals' 
lifecycle, including their interactions with one another and with the physical environment. We will finally 
present samples of generic task objectives characterizing the operational behaviour of our mobile agents. 

3.1 FUNDAMENTALS OF ECOMOBILE 
Ecomobile is an ecosystem-inspired mobile agent middleware, that is an ecosystem housing a population 
of mobile entities continuously living within the network environment and respecting the network 
topology and physical limitations. Any changes occurring in the system must consequently be supported 
by the agent community. 

It is assumed that each network component is able to host an agent system on top of a virtual machine 
or operating system like the active nodes in Active Networks, for example. The agent system can also be 
located close to the node in a separate machine, in which case it should be able to access the local 
environment through a proxy. 

Such a population of mobile agents is obviously useless unless they can be programmed and lead to the 
implementation of specific tasks. The infrastructure is called a middleware because it constitutes an 
intermediate layer between the physical resources and the applications themselves. The tasks are 
deposited in the ecosystem environment by an external entity, either manually or automatically. The 
population of mobile agents is then responsible for loading the tasks, disseminating them within the 
network and activating them periodically. These mechanisms will be explained in details in the following 
sections. 

A Threefold Architecture 
In Ecomobile, the mobile MAS is composed of three distinct active components: the agency acting as the 
mobile agent system, the mobile agent, and the specific task or operational behaviour. Since the task is 
physically separated from the mobile agent itself, Ecomobile can be regarded as a threefold architecture. 
According to the abstraction models, the mobile agent itself implements both the navigation and the 
coordination model to form the Mobile Behaviour Scheme (MBS), whereas the Task Objective (TO) 
refers to the operational behaviour and therefore to the computational model. MBS and TO constitute a 
particular instantiation of the abstraction models. It can also be said that the population of mobile agents 
is the substratum implementing the ecosystem-related concepts of the MBS. The Ecomobile model is 
depicted on Figure 3-1. 
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Engineering Models Ecomobile Model
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Figure 3-1. Ecomobile: an instantiation of abstraction models 

As can be seen on this figure, the task in our model is clearly separated from the agent itself, so that 
Ecomobile appears to constitute an innovative approach: although the task patterns presented in the 
previous chapter allow the designer to make a distinction between the operational behaviour and the rest 
of the agent activities, the architecture finally results in the implementation of a single entity, the mobile 
agent. In Ecomobile, the ecosystem is activated even though no task has been implemented; the 
middleware is both mobile and active. The task objective, which corresponds to the operational behaviour 
or the application itself, is inserted into the ecosystem environment and becomes part of it; the place 
where the task has been deposited can be visited by any agent of the population: when an agent discovers 
the task objective, it loads the task into its context and activates it. In order to guarantee this functionality, 
it is necessary to make sure that the environment is regularly visited by the agent society so that the agent 
behaviour influences the dissemination of the task within the network and activates it at different 
locations. The density of the population and the population size therefore play an important role in the 
successful realization of this approach; the more often the nodes are visited, the more often the tasks are 
executed. The task objectives have no direct influence on the agent population. 

From that description, it appears that the agent is not aware of the task description and that, 
reciprocally, the task has no effect on the agent behaviour, as far as the migration and coordination 
mechanisms are concerned. The task is loaded and activated by the MBS so that there is a dependency 
relationship only from the MBS to the TO. The agent task consequently relies on a loosely coupled task 
model (see Section 2.1.2). The impact of the dependency between the MBS and the TO will be shown 
further down in this chapter. 

This type of architecture also leads to the mobile agent and the task objective having distinct lifecycles: 
the task objective does not depend on the existence of one mobile agent in particular but can be 
transported by different mobile agents during its lifecycle. Whereas the task can be loaded by any 
individual in the ecosystem, it can also be offloaded into the environment on behalf of the mobile agent or 
of the task itself. Once it has returned to the environment, the task is suspended until another agent of the 
population loads it again and pursues its execution over the network.   

Consequently, the mobile agents of the ecosystem are used in order to transport and to activate the task 
objectives. The MBS also controls the task dissemination within the network by means of a cloning 
mechanism and enables the cooperation between the task objectives themselves. The Ecomobile approach 
has a profound effect on the structure of the computational model: since the task has no influence on the 
mobile agents' destination, the decisions concerning the TO's current location belong to the task objective 
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itself. If the next destination given by the MBS is not satisfactory, the task can "leave" the agent, i.e. 
decide to be offloaded at its current location. The mobile agents' statistical visits, which emerge from the 
self-regulatory population property of the ecosystem, will allow the task to be reloaded and propagated to 
the expected destination. 

The threefold architecture of Ecomobile consequently defines two logical navigation planes: the 
navigation of mobile agents and the navigation of task objectives;  mobile agents and task objectives can 
have different trajectories; while the mobile agent can implement a stochastic navigation model with 
active migration, any navigation model can be implemented at the task objective level; the task objective 
will however resort to a synchronous passive migration.  

Ecomobile has been implemented in Java1, which is currently the most efficient object-oriented 
programming language in software agent technology; Java is platform-independent and provides efficient 
mechanisms such as serialization, RMI communication, security framework and dynamic class loading 
mechanisms; the most popular agent platforms are therefore implemented in Java. 

3.2 NODE ENVIRONMENT 
The presentation of Ecomobile principles first requires to introduce the nodal environment, which is 
mainly composed of several model-specific components, such as the agency, the place and the 
blackboard. Mobile agents in Ecomobile are called M-agents; a description of their architecture will then 
allow us to examine in details the Ecomobile model and the ecosystem-inspired approach. 

The organizational architecture within an active node2 is depicted on Figure 3-2. The MIB contains the 
component's managed objects accessible to the mobile agents through a specific OSI agent, for example, 
or any control unit. The execution environment is generally a Java virtual machine; a FIPA agent platform 
runs on top of it. Further details concerning this part of the system are outlined in the section devoted to 
the issue of deployment (4.4).  

                                                      
1 http://www.sun.com/java 
2 In this context, active node refers to a node capable of hosting external code and providing an execution 
environment, such as active node in Active Networks; a proxy can deal with legacy passive nodes (see 
Section 1.4). 

http://www.sun.com/java
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Figure 3-2. Active node environment with respect to Ecomobile 

The main Ecomobile components are the Agency, the Blackboards and the Places. They are described 
in the next sections. 

3.2.1 The Agency 
The Agency is a FIPA agent which implements the Ecomobile components; it may co-exist with other 
stationary agents. The agency provides Ecomobile with an adequate mobile agent environment different 
from the active node's execution environment. The agency is responsible for managing the Ecomobile 
environment containing the blackboards and the places; it governs the M-agent activities and manages the 
agent-to-agent and agent-to-environment interactions, so that security policies and access control can be 
implemented into the agency. Communication between the agency and the OSI agents can be provided by 
JIDM gateways, for example (see Section 1.1.1). The agency also provides the mobility services 
necessary for the M-agent migration. The migration itself is achieved between the Ecomobile agencies via 
a specific ACL message and protocol.  

Details concerning the execution environment for the M-agents and the deployment of the FIPA agency 
are given in Chapter 4. 

3.2.2 The Place 
The place, in Ecomobile, has two main functions: at first, the place is used as a basic location concept; 
M-agents migrate from place to place. Secondly, the place is used as a coordination space between 
M-agents. Let us now examine in details the two notions. 

Places are interconnected to form the intra-agency and the inter-agency connectivity. The intra-agency 
connectivity allows M-agents to migrate virtually within an agency, whereas the inter-agency 
connectivity allows them to migrate physically from one node to another. M-agents use place identifiers 
called Universal Place Identifiers (UPI), which are defined as follows:  

 UPI ::= (NodeAddr, PlaceID)  where NodeAddr is the node's physical address (e.g. MAC  or IP address) 
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The PlaceID has to be unique within a same platform so that UPI results in a unique identifier for the 
whole network. The agency maintains a connectivity matrix describing the place topology. According to 
the UPI, the agency determines whether the agent has to be migrated physically or not. Inter-agency 
connectivity can be retrieved from any place via the agency. 

The connectivity matrix depicted on Figure 3-3, which is a subset of the full matrix, is simply defined 
as follows: 

f(UPIa, UPIb) = 1 if there is a link between UPIa and UPIb 

In this matrix, the asymmetry therefore corresponds to unidirectional links. 
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Figure 3-3. Places intra-/inter-agency connectivity and partial connectivity matrix 

In Ecomobile, priority is given to the mobility paradigm, and M-agents are not allowed to communicate 
unless they reside in the same location. In the context of our work, the place semantics is a mapping 
leading to the reflection of the physical and logical connectivity of the network and implying that, in the 
most simple case, each node is associated to a place, so that the place connectivity corresponds to the 
node connectivity.  

In Section 7.2.2, we propose to map a place semantics matching the wavelength planes; a place per 
wavelength is defined and the intra-agency connectivity matches the wavelength switching matrix.  

3.2.3 The Blackboard 
Each place is associated to a passive blackboard which is part of the ecosystem environment and allows 
M-agents to deposit information intended for other agents. Each M-agent only has visibility on the 
blackboard associated to the place in which it resides. The blackboard is also used as a repository for the 
task objectives. 

3.3 THE M-AGENT 
An M-agent is a mobile agent considered as an individual in the ecosystem. The general architecture of an 
M-agent, which is depicted on Figure 3-4, reveals two distinct parts: the MBS and the Agent Context. The 
MBS implements the navigation and coordination models and is defined at the design time; subsequent 
dynamic modifications in the behaviour are possible by means of self-adaptive functions, which are 
currently not implemented in Ecomobile: we propose to examine the ecosystem behaviour with a fixed 
implementation of MBS.  
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Unlike the MBS, the agent context constitutes the dynamic part of an M-agent. The tasks which are 
deposited into a blackboard are loaded dynamically into the agent context; since the agent population 
does not depend on the TO, the existence of the ecosystem does not depend on any task1. 

M-agent

Agent Context (AC)

Blackboard

τ1 τ2

τ3

τn : Task Objective
Mobile Behavior Scheme (MBS)

f(φ1, φ2, …φn)

Dynamically 
loaded/offloaded

TO Wrapper

τ

 
Figure 3-4. M-agent Architecture 

Figure 3-5 reveals a simplified version of the UML class diagram representing the M-agent's major 
components. For the sake of readability, only the important operations are depicted in the model, and their 
arguments have not been included. 

The central component is the M-agent class, which represents the mobile agent itself, and actually 
implements the Mobile Behaviour Scheme (MBS). The M-agent class inherits from a class called 
LambdaAgent2, which refers to optical agents that is,  a mobile agent able to travel along a wavelength; 
the agent's transport occurs through the multiplexing of a specific communication channel in the overhead 
structure of the optical frame [RS99]. LambdaAgent implements common functionalities for M-agents, 
such as the execution of multiple MBS, for example, or the interaction with the environment. 

                                                      
1 This characteristic allows us to designate the ecosystem as a middleware, on top of which the task 
objective will be programmed with an appropriate computational model. 
2 This root class is related to the initial motivation of our work namely, the development of an intelligent 
optical transport network. 
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Figure 3-5. UML Diagram of M-agent components in Ecomobile 

The M-agent also contains an agent context (class AgentContext), which is defined as the container 
dedicated to task objectives. Initially, the agent context is empty and will be filled with the task objectives 
found in the blackboard associated to the current M-agent location. The agent context defines the methods 
applied to the whole container. The role of these methods will be clarified along the subsequent sections. 
The task objective wrapper (class TOWrapperInterface) provides the agent context with an interface 
to the task objective which can be expressed in Java or in a rule-based language such as JESS for 
example. The wrapper is discussed in 3.5.3.  

The objects, or variables, moving with the M-agent, are called frontal objects, the objects in the agency 
which are specific to Ecomobile are known as nodal objects and the objects specific to the local node as 
environmental objects; these denominations are based on the Wave terminology introduced in Section 
1.3.2. 

A Java task objective extends a base class used for Java-based tasks, called TOJava, which defines 
the callbacks invoked by the MBS. These methods are used to express the dependency between the MBS 
and the TO. TOJava includes a special method in order to serialize itself and to be deposited in the 
blackboard. Other kinds of TO can be formulated in other languages such as rule-based languages; for 
example, the class TOWrapperIlr provides an interface to Ilog JRules language (see Section 3.5.2). 

We now proceed to examine in details the MBS and the task objectives. 

3.4 THE MOBILE BEHAVIOUR SCHEME 
According to our mobile middleware, the mobility paradigm reveals a "living" society of software agents 
navigating constantly within the network. In Ecomobile, the agents' birth and death leads to an emergent 
self-regulatory phenomenon; our particular architecture model leads to the design of particular bio-
inspired behaviours accommodating the dissemination and activation of complex network management 
tasks within the network infrastructure. 
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The MBS describes the M-agent behaviour from the point of view of navigation and agent-to-agent 
interaction; it defines eight Reactive Behaviours (RB or Φ-behaviours) characterizing the activities of the 
ecosystem individuals, such as migration, self-reproduction, action, etc., on the one hand, and activities 
implying interactions with other individuals, such as communication or competition, on the other hand. 
The term reactive will be explained in Section 4.3. 

Ecology enlightens the impact of the individuals' behaviour on the ecosystem population: the 
competition between individuals in a natural ecosystem, in particular, plays a fundamental role in the self-
regulation of the population. Competition can appear between individuals belonging to the same species, 
in which case it is known as intraspecific competition, or belonging to different species, in which case it 
is called interspecific competition [BHT90]. We aim at exploiting a particular kind of competition called 
territoriality, in order to address the problem of the density control and of the size of mobile agents' 
population size. Territoriality is defined as an interference1-based intraspecific competition occurring 
between members of the same species for the control of territories. The significance of territoriality lies in 
the fact that individuals of a territorial species that fail to obtain a territory often make no contribution 
whatsoever to future generations. Consequently, the density-dependent birth and mortality rate leads the 
territoriality to have a particularly powerful regulatory influence on the populations concerned2. 

This highly interesting density-dependent and self-regulatory property leads us to propose the design of 
a mobile behaviour scheme approximating the territoriality paradigm issued from the ecosystem theory, 
and based on active interference between individuals. Such a design requires a judicious combination of 
Φ-behaviours. In our context, the territory refers to the network node. 

3.4.1 Notations 
A number of definitions are now introduced in order to formalize the description of Φ-behaviours. Most 
of the following functions are time-dependent; for simplification reasons, we have omitted the time in 
their arguments. 

Let us assume the following definitions: 
 
 λi M-agent i 
 P ::= { λ1, λ2, λ3, … } Population of M-agents 
 Φi Reactive behaviour i 
 τi Task objective i 
 τi(λj){callback} Invocation of a TO callback by the MBS on τi on M-agent j (see 3.5.1) 
 AC(λi):: = {τ1, τ2, … τn}  Agent context of M-agent i 
 θ(λi) Gives the behavioural function currently executed by M-agent i 

 Pl(λi) Gives the actual location for M-agent i by means of the 
  Universal Place Identifier (UPI) for M-agent i 

 Ref(λi) Gives the reference to another M-agent which is stored in M-agent i 
 Dest(λi) Calculate the next destination (UPI) of M-agent i by means of 
  the connectivity matrix 
 Bl(UPIa):: = {τ1, τ2, … τn} Designates the TOs in the blackboard attached to place UPIa 

                                                      
1 Interference is a kind of competition between individuals interacting directly. 
2 In ecology, territoriality is a particularly important and widespread asymmetric intraspecific 
competition. 
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An M-agent can execute only one Φ-behaviour at the same time. All the Φ-behaviours can be 
parameterized and changed dynamically. 

In the following section, we use the above definitions in order to express the influence of Φ-behaviours 
on the M-agent architecture and thus to define a semi-formal description of the reactive behaviours. 

3.4.2 Reactive Behaviours 
The reactive behaviours (Φ-behaviours) represent the primary ecological behavioural functions that an 
M-agent can perform in the ecosystem; there are eight Φ-behaviours:  

 φbirth  Birth of an M-agent (1) 
 φmigration  Migration of an M-agent (2) 
 φaction  Activation of task objectives  (3) 

  (an M-agent performing Φaction can not be "seen" by other agents) 
 φinterference  Competition with another M-agent using direct interaction  (4) 
 φabsorption  Absorption of all resources (knowledge) of another M-agent  (5)  
 φclone  Cloning of an M-agent (6) 
 φdwelling Dwelling at the current location; no special action is performed (7) 
  (The agent is able to sense another interfering M-agent) 
 φdeath  Death of an M-agent. (8) 

It has to be noted that we have renamed certain Φ-behaviours previously presented in [RSH01] and 
[RS02]. The following Φ-behaviours are concerned by these changes: φmigration (previously φmove), φaction 
(previously φexec), φinterference (previously φcontact), φabsorption (previously φmerge) and φdwelling (previously φwait). 

The following Φ-behaviour descriptions reflect the behaviours implemented into Ecomobile; we also 
discuss possible variations in their implementation. The main actions are given within square brackets and 
separated by a semi-colon.  

(1) φbirth 
The Φbirth behaviour corresponds to the birth of an M-agent: an M-agent is introduced into the ecosystem 
at a specific place. 

 
Pre-conditions: < « > (A new agent is created in the location UPIa) 
φbirth(λi) ::= [ P := P » { λi } ; AC(λi) = « ; Pl(λi) = UPIa ] 

Since the M-agent appears as a new individual in the ecosystem, a monitoring function is triggered during 
the execution of this behaviour, so that we can keep track of the population size during the simulation. 

(2) φmigration 

The Φmigration behaviour allows M-agents to move from one place to another; it implies active migration 
with a single-hop destination given by UPIb. 

This behaviour, which implements the M-agents' migration strategy, plays a central role in the 
ecosystem behaviour. The migration function calculates the M-agent's next destination by means of the 
connectivity matrix defined in the agency. In Ecomobile, the mapping semantics involves synchronization 
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between the connectivity matrix and the underlying network infrastructure; the removal of a network link 
leads to the removal of the corresponding link in the connectivity matrix. 

According to the computational model defined in Ecomobile, migration is not influenced by the task 
objectives in any way.  

 
Pre-conditions: < Pl(λi) ∫ UPIb > 

φmigration(λi) ::= [ Dest(λi) = UPIb ;  ∀τj ∈ AC(λi) => τj(λi){beforeMigration} ; Pl(λi) = UPIb ]  

The above expression shows that the task objectives are informed of the next destination before 
migrating, so that they remain able to perform any specific action; if the destination is not convenient, for 
example, the TO can offload itself in the blackboard. 

The migration function retrieves the possible destinations from the agency and makes a random 
decision based on these destinations; the destination function Dest() determines whether the destination 
has already been pre-computed in another Φ-behaviour like Φclone. 

According to a different migration strategy, the destination could also be selected by means of a 
"round-robin" mechanism operated on the list of available output ports; this approach allows the network 
to be explored in a more efficient manner. 

The migration time is computed randomly. In case of intra-platform migration (virtual migration), the 
simulation time is set to 0; more information concerning the time reference is given in Section 4.1. 

(3) φaction 

This behavioural function performs loading and activation of task objectives: the agent first looks for 
eventual TOs in the blackboard, loads them into its context and activates them. All TOs present in the 
agent context are then activated via the TO wrapper. 

 
Pre-conditions: < Pl(λi) = UPIa > 

φaction(λi) ::= [ AC(λi) := AC(λi) » Bl(UPIa) ; ∀τj ∈ AC(λi) => τj(λi){cooperate, activate} ]  

Once the activation of these task objectives has been initiated by the M-agent, it can not be interrupted 
any more. At each TO activation, two callbacks are invoked: the first one enables an inter-TO cooperation 
(see 3.5.3) while the second one is used to activate the TO. 

Several approaches are possible in order to implement this behaviour. Depending on the local 
processing power, we can imagine starting a thread per each TO in order to improve the performance. In 
this case, the agent context has to wait until all TOs threads are terminated. In our implementation, 
however, the TOs are executed atomically and sequentially. With regards to the computational model, the 
order of TO activation is not specified that is, the TOs can not make assumptions on their execution order. 

An execution time can be also introduced for simulation purposes; the time spent to perform the tasks 
may therefore temporarily and locally influence the ecosystem behaviour. In our simulation however, we 
assume fast TO execution and do not consider the execution time since it may be included in the 
migration time. 

(4) φinterference 
This behaviour allows an M-agent to interfere actively and directly with another co-residing target 
M-agent: the first agent enquires about the presence of any other M-agent at the same place; the only 
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condition for the success of the interference is that the target M-agent is performing the φdwelling 
behavioural function. 

 
Pre-conditions: < Pl(λi) = Pl(λj) ; θ(λj) = φdwelling > 
φinterference(λi) ::= [ Ref(λi) := λj ]  

According to the above expression, the interference mechanism occurs through direct coupling between 
two M-agents resorting to a meeting-oriented coordination paradigm (see 2.2.3). The interfering agent 
receives the reference to the sensed agent. If several M-agents are present in the same place, the 
interfering agent makes a random selection. The concept of territoriality leads interactions to occur 
between a pair of individuals. 

(5) φabsorption 

This behaviour allows an M-agent to "absorb" the resource that is, the knowledge belonging to another 
M-agent: in other words, this operation consists in transferring the entire agent context from one M-agent 
to the other.  

 
Pre-conditions: < Pl(λi) = Pl(λj) ; Ref(λi) = λj > 

φabsorption(λi) ::= [ AC(λi) := AC(λi) » AC(λj) ; ∀τk ∈ AC(λi) => τk(λi){cooperate} ]  

The insertion of new task objectives into the current agent context of the surviving M-agent (λi) will 
trigger the inter-TO cooperation mechanism (see Section 3.5.3). 

(6) φclone 

The cloning operation allows an M-agent to create a replication of itself; the cloned M-agent (offspring) 
contains the same knowledge as the parent. The child's next destination may however differ from the 
parent's one; although the destination UPIb is assigned to the clone, the M-agent does not perform any 
migration in this behaviour.  

 
Pre-conditions: < Pl(λi) = UPIa > 
φclone(λi) ::= [λj ::= λi; P := P » { λj }; AC(λj) = AC(λi); Dest(λj) := UPIb ]  

The cloning operation is usually related to the concept of migration because it generally becomes 
necessary for the agents to clone themselves in order to improve the exploration process within the 
network; load-balancing between several machines, for example, can be achieved simply with successive 
cloning operations [SSC+98]. In Ecomobile, the cloning operation naturally matches the individuals' 
reproduction mechanism inherent to ecosystem principles; according to this mechanism, the offspring is 
used to disseminate replica of task objectives within the network and to provide a birth contribution in the 
self-regulated M-agent population. 

The number of clones itself strongly depends on the migration strategy: each new cloned M-agent is 
assigned a destination and must consequently not be re-computed in the migration behaviour (φmigration). 

As in Φmigration, different cloning strategies are possible. It could for example be decided that the 
M-agent is cloned to the link by which the parent has arrived; moreover, a clone could also be generated 
in the direction which will subsequently be taken by the parent agent. Finally, the parent destination needs 
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to be established during this operation so that the next call to φmigration will be in line with the cloning 
strategy.  

According to the strategy which has been chosen, the population size can be subject to serious 
variations which could eventually influence the propagation rate of task objectives; in Ecomobile, the 
MBS has been conceived to generate clones for all the available output links, including the parent's 
arrival link; however, no clone to the parent's destination is generated. In other words, the number of 
clones equals the nodal degree. 

(7) φdwelling 

This behaviour makes the agent able to sense the environment and therefore to react to the presence of 
another agent. From an ecological behaviour point of view, the agent is simply spending some time in its 
environment doing nothing particular. 

 
Pre-conditions: < Pl(λi) = UPIa > 
φdwelling(λi) ::= [ « ]  
 

The waiting time, which actually gives the M-agent an opportunity to meet other M-agents, has been 
proposed in co-evolutionary agent systems [SS99], for example, developed for multiple node and span 
failure restoration. A mechanism called Early-Route Completion (ERC) allows two mobile agents to meet 
at an intermediate node and to exchange route information. This strategy resembles the MITAgent 
approach. The meeting opportunity can also be improved by means of a probabilistic waiting time. 

In Ecomobile, the waiting time can be either fixed or calculated dynamically. Effects of the waiting 
time on the ecosystem behaviour are discussed in Section 5.3.3 

(8) φdeath 

The Φdeath behaviour corresponds to the death of an M-agent that is, its removal from the ecosystem; the 
population size is updated by the monitoring function. 

 
Pre-conditions: < « > 
φdeath(λi) ::=[ Pl(λi) = « ; AC(λi) := «; P := P \ { λi } ]  

The M-agent disappears from its current place, including all TOs present in the agent context at the death 
time. 

 

It appears from the previous definitions that each Φ-behaviour has its own set of parameters making the 
agents able to accommodate various conditions during the ecosystem lifetime. Density control, for 
example, can be more finely tuned by adjustment of the waiting time for the Φdwelling behaviour or the 
number of generated clones. The number of ecosystem parameters obviously makes an exhaustive 
behavioural analysis impossible. In order to limit our investigations to a reasonable number of 
behaviours, we have chosen a particular subset of parameter values which will be discussed in Chapter 5. 

We now describe two different mobile behaviour schemes approximating the territoriality paradigm 
and therefore leading to a density-dependent self-regulatory population of M-agents.  
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3.4.3 Low Diffusion 
Mobile behaviour schemes can assume a variety of forms; we have chosen to present two MBS which 
exhibit interesting results from the point of view of simulation (see Chapter 5). We shall begin with a 
MBS describing a simple M-agent behaviour based on the territoriality paradigm. 

In this MBS, the agent starts migration directly after its birth (Φbirth). When it has reached a new place, 
it activates the Φaction behaviour, which consists in loading the possible task objectives present in the 
associated blackboard into its context. The agent, which "defends" its territory (its place), enquires if 
another M-agent is currently residing in the same place: it senses a visible M-agent, as defined by 
Φinterference, provided the sensed agent is performing a Φdwelling behaviour. 

The M-agent can then perform two different actions depending on whether another M-agent has been 
sensed or not. In case of success, the sensing agent performs a Φabsorption which implies a transfer of all 
TOs from the sensed agent into its agent context, irrespective of the task nature. In the proposed MBS, the 
sensed agent dies (Φdie) whereas the agent enriched with the new knowledge leaves the current place 
towards another place (Φmigration) in order to "conquer" other nodes1. If the M-agent fails to sense another 
agent, it performs a Φclone behaviour and continues its migration over the network. 

Since the diffusion of the M-agents within the network is relatively "slow", this kind of mobile 
behaviour scheme is called low diffusion - or MBS-low. This MBS-low is depicted on Figure 3-6. 
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Figure 3-6. MBS Low Diffusion - M-agent λy interacting with λx 

As we have seen, the above described MBS leads to M-agent cloning, unless a co-residing agent can be 
contacted. According to the meeting opportunities, the network exploration can occur at various speeds: 

                                                      
1 In this context, "conquering" the network simply means exploring the nodes; no specific mark is 
deposited by the M-agent in its environment. 
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when a contacted M-agent has died, the surviving M-agent follows one of the possible output links, 
leaving the other links unexplored for the time being1. 

3.4.4 High Diffusion 
The second MBS we introduce is rather similar to the first one, with the exception of two modifications: 
in order to ensure that no other agent is sharing its location place during a certain time (defined by 
Φdwelling), the M-agent iterates the interference-absorption scheme as shown on Figure 3-7. 

According to the size of the agent context, the quantity of knowledge or task objectives transferred is 
therefore higher than in the previous MBS.  

This behaviour may result in the consecutive elimination of an important amount of agents in a short 
time; in order to compensate for the high mortality rate of this iterative process, the M-agent activates a 
cloning process before leaving the node so that all the available output links are investigated by the 
M-agents at the migration time. This behaviour, which is similar to a breadth-first parallel search, leads to 
a faster diffusion of M-agents and allows exhaustive exploration of the network. This is why this mobile 
behaviour scheme is referred to as high diffusion - or MBS-high.  
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Figure 3-7. MBS High Diffusion - M-agent λy interacting with λx 

The interesting diffusion property of this MBS, however, does not guarantee superior system 
performance. The simulation has shown that the MBS-high leads to a reasonable increase in population 
size. Still, the variation of the birth and mortality rates are important, so that more processing time is 
required to achieve the creation and removal of M-agents. 

                                                      
1 As explained in the definition of Φmigration (see Section 3.4.2), the migration strategy can contribute to a 
better exploration of the network. 



 
Task Objectives 

 

76 

The interference-absorption loop causes another side effect: according to the network topology, a 
node's high connectivity degree can lead an M-agent to waste an indefinite period of time in this loop 
because of the high number of M-agent visits. The task objectives loaded in the M-agent are compelled to 
stay in the current place because of this immobility. In order to avoid this problem, we propose to 
implement a heuristic-based waiting time function into the Φdwelling behaviour; the heuristics, which is 
based on the number of M-agents arriving at a node, compared to the number of agents leaving the node, 
is explained in Section 5.3.2. 

3.5 TASK OBJECTIVES  
In the previous sections, we have discussed the agent behaviour from the navigation and coordination 
point of view; we have defined two mobile behaviour schemes characterizing a particular ecosystem 
behaviour called territoriality. We now propose to examine in details the Task Objective (TO), which 
describes the operational behaviour; in other words we are going to concentrate on the characteristics of 
the computational model.  

A TO describes a particular task, a network management function in our context, which is defined by 
means of a programming language such as Java, a rule-based language or any interpreted language like 
Wave, for example; each task actually represents a specific class with respect to object-oriented 
conventions. A TO can therefore have frontal objects constituting the task's knowledge and moving with 
the agent in a persistent way. A TO can be multiply instantiated by the M-agents within the network, as 
the ecosystem is able to handle multiple instances of task objectives, irrespective of the tasks' nature. The 
TOs themselves have to be informed whether interactions can take place between TO instances of the 
same class or even between different classes. An interaction mechanism is activated by the MBS at a 
certain moment of the agent lifecycle and allows the TOs to intelligently cooperate1 in order to 
accomplish the overall goal. 

TOs are initially deposited into blackboards; they are loaded dynamically by the ecosystem via 
M-agents and are spread in the network automatically through the invocation of the standard Java 
clone() method. Decisions on the TO lifecycle and its own trajectory within the network only depend 
on the TO itself; the TO can leave the M-agent and be put back into the blackboard by means of an 
offloading mechanism. If the TO claims to be persistent, during its initialization, the M-agent can decide 
to offload the TO, as it may happen that no sufficient place is available to put the TO in the agent context 
during the absorption phase for example. When the TO is not persistent, the M-agent simply ignores it. 

According to the computation model, the TO design relies on a loosely coupled task model and 
imposes particular key concepts, such as the current location, for example, which is transferred by the 
MBS; furthermore, the passive migration of a TO may also require specific decisions about its 
destination. 

The cooperation, which is asynchronously activated by the MBS, must be designed so that it does not 
depend on the time. Finally, the TO is informed of the agent's destination right before the migration, and 
it may decide to leave the M-agent if the destination is not appropriate. Although the TO does not invoke 
the cloning mechanism, it has to duplicate its frontal objects appropriately. 

The next sections outline the characteristics of the TO such as its lifecycle, programming language and 
interactions between the MBS and the TO. 
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3.5.1 Lifecycle and Callbacks 
In the Ecomobile model, the mobile behaviour scheme leads to a self-regulated population of M-agents, 
so that the number of agents does not depend on the task objectives. This approach however results in a 
particular trade-off between the number of agents and their size: the task objectives are loaded into the 
agent context of the M-agent and therefore contribute to its size2. 

A possible approach towards the control of the TO lifecycle consists in resorting to an energy concept 
[Bau99] developed for mobile agents to control their garbage collection; the algorithms can be 
implemented at a TO level. In the beginning, the TO has a certain amount of energy; every time the agent 
accedes local resources, it consumes some of this energy. Once the TO has run out of energy, it becomes 
an "orphan" and can be removed by a "garbage collection" task objective. According to this approach, the 
automatic dispersal of TOs and their cooperation mechanisms allow them to gain control over a particular 
class of TOs. 

Each TO can implement different lifecycle strategies. Callbacks allow the TOs to manage their 
lifecycle. The TOs inform their wrapper whether they are still alive, or if they have to be discarded. In 
Ecomobile, each TO owns an internal state associated to the agent behaviour; this state is managed by the 
wrapper in accordance with the MBS.  

The different states of a task objective are depicted on Figure 3-8. 

TO_S_INIT

TO_S_SUSPENDED

TO_S_DISCARDEDTO_S_SUSPENDED_FOR_MIGRATION

TO_S_READYTO_S_ACTIVATED

beforeMigration()

beforeMigration()

activate()

init()

activate()

resume()

resume()

resume()

activate()

beforeMigration()/cooperate()

beforeMigration()

beforeMigration()/cooperate()

beforeMigration()/cooperate()

cooperate() cooperate()

 
Figure 3-8. State and Callbacks-based Transition Diagram in TO Lifecycle 

Transitions from one state to another are performed by the callbacks implementing the TO behaviour. The 
states TO_S_SUSPENDED and TO_S_SUSPENDED_FOR_MIGRATION are associated to serialized 

                                                                                                                                                                           
1 In this context, cooperation refers to a general interaction scheme and does not exclude "competition" 
between TOs. 
2 The agent context can manage a number of task objectives up to a certain limit.  
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instances of the TOs that have been offloaded in the blackboard. State TO_S_DISCARDED refers to a 
task objective which is not alive any more. In the following, TO states and callbacks are subject to a 
detailed description. TO callbacks are introduced in Table 3-1 and are defined in the root class TOJava. 
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// Callbacks 
public Boolean init(TOWrapperInterface wrapper); 
public Boolean activate(TOWrapperInterface wrapper); 
public Boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO); 
public Boolean resume(TOWrapperInterface wrapper); 
public Boolean beforeMigration(TOWrapperInterface wrapper); 
 
// Called when the task objective must be cloned 
public Object clone(); 
 
// TO user methods 
public void setPersistent(Boolean state); 
public void cleanEnv(TOWrapperInterface wrapper); 
public void offload(TOWrapperInterface wrapper); 
public void setPriority(int priority); 
public void discard(); 

Table 3-1. Task objectives callbacks and user methods 

In all the callbacks, the task objective wrapper is passed as an argument in order to inform the TO of the 
current location and, as far as beforeMigration() is concerned, the next destination; the wrapper 
includes a reference to the agency so that information about the local environment can be retrieved. All 
the callbacks return a boolean telling the wrapper if the TO is discarded; when the TO wishes to be 
discarded, the wrapper informs the agent context that the task objective must be removed. 

In Ecomobile, the inter-TO cooperation provides an efficient mechanism in order to perform 
knowledge exchange between different instances of task objectives and in order to avoid knowledge 
redundancy; it therefore plays a central role in the regulation of the agent context size. The cooperation 
mechanism relies on a master/slave paradigm between two TOs; the callback cooperate() provides 
the master TO with a reference to a slave TO. Master and slave TOs can belong to different TO classes; 
the master is responsible for checking the class in order to perform the cooperation task. The master can 
process an information exchange or simply influence the behaviour of the slave; it can, for example, use 
the discard() method to "kill" the slave; the master can finally decide to remove itself from the 
system so that the slave can continue to live. 

The current implementation of Ecomobile imposes the following assumption:  

τmaster{cooperate(τslave)} = τslave{cooperate(τmaster)} 

This expression indicates that the cooperation methods of the master/slave TOs should be symmetric. 
However, this limitation is not too severe, since most cooperation methods aim at exchanging, merging or 
synchronizing activities between TOs belonging to the same family. 

The cooperation mechanism is activated by the MBS; as can be seen on the state diagram, the 
cooperate() callback can be invoked when the TO is in the following states: TO_S_READY, 
TO_S_ACTIVATED and TO_S_SUSPENDED_FOR_MIGRATION. 
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The cloning behaviour - Φclone - invokes the method clone() of the TO. According to this method, all 
the frontal objects which are not "cloneable" by the Java clone()1 method must be explicitly 
duplicated. 

The different states are now examined in detail by means of Specification and Description Language 
(SDL) diagrams. For the sake of readability, and since the TO lifecycle depends on task-dependent 
implementation choice, we have used a simplified notation within the SDL diagrams, which is not always 
compliant with standard SDL semantics. A comprehensive overview of SDL can be found in [Hog89]. 
We now introduce three SDL macros (Activate, BeforeMigration and Cooperate) which will be used in 
the subsequent diagrams. 
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Figure 3-9. Macros definition in SDL 

Each callback is followed by a task-dependent implementation choice. The selection of possible variants 
is represented within the diagram by means of the diamond shape; it is not part of the implementation. All 
activities following the callback entry point are performed during the callback execution. The method 
offload(), for example, can be used at any time during the callback execution. 

                                                      
1 See the Object class in the Java API documentation (http://java.sun.com/j2se/1.3/docs/api/index.html). 

http://java.sun.com/j2se/1.3/docs/api/index.html
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TO_S_INIT 

The initial state of a newly created TO instance actually depends on the originator; when the user 
manually deposits a TO in the blackboard, the TO enters state TO_S_INIT. When a TO instance is 
offloaded by the M-agent, a new instance of the TO is created in the state TO_S_SUSPENDED or 
TO_S_SUSPENDED_FOR_MIGRATION accordingly. 

On the SDL diagram depicted on Figure 3-10, the formal parameter refers to the initial state of the TO. 
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isResumed:=false
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OTHERWISE

TO_S_SUSPENDED

TO_S_SUSPENDED_
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Figure 3-10. SDL Diagram from the state TO_S_INIT 

When the TO has been loaded by a M-agent and instantiated in the agent context, the callback init() is 
called by the MBS and the TO enters state TO_S_READY.  

In the init() method, the TO first decides via a cleanEnv() method whether the TO must be 
removed from the environment or not; if it must be removed, the TO is loaded only once (one shot 
loading) so that other M-agents subsequently visiting the place do not come across it any more; the TO 
dispersal within the network can also be improved by keeping the TO in its blackboard so that other 
M-agents can load it and disseminate it. 

The TO persistence - enabled by the setPersistent() method - indicates if the task objective 
must temporarily be saved, in case the M-agent has no place in its context any more. Since the number of 
TO instances within the ecosystem may be sufficient to guarantee the TO's further existence, whether 
persistence is required or not depends on the task implementation. 

In addition to these methods, the TO can set a priority - setPriority() - and perform initialization 
of frontal objects. During TO transfer phases, when the agent context size has reached its maximal limit, 
low-priority TOs will be temporarily offloaded first, while high-priority TOs will be preserved as much as 
possible in the agent context. 

Since setPersistent() and setPriority() are optional and have to be considered at the 
same semantic level as cleanEnv(), these methods are not depicted on the SDL diagram. 



Chapter 3 
The Conceptual Framework of Ecomobile 

 

81 

TO_S_READY 

TO_S_READY (Figure 3-11) indicates that the TO is ready to be activated by the Φaction behaviour. The 
TO activation is performed at each node visit, via the method activate() (SDL macro Activate) and 
can not be interrupted by another M-agent.  

Activate

TO_S_READY

Cooperate
(TO_S_SUSPENDED)

TO_S_DISCARDED

a a

b

Process TO;

discard(TO)

2(5)

 
Figure 3-11. SDL Diagram from the state TO_S_READY 

During the execution, a TO instance can decide to deposit a copy of itself into the environment by means 
of the user method offload(). The TO instance residing in the blackboard is then suspended until the 
next activation while the running instance remains active in the agent context and continues its work. 

Once the TO execution is finished, it can decide to leave the M-agent by simply returning false at the 
end of the callback, in which case the M-agent removes the TO from its context; dissemination and 
cloning of this TO instance will consequently be stopped. 

In this state, the TO can also be triggered by the cooperate() callback (SDL macro Cooperate); the 
master TO involved in the inter-TO cooperation mechanism can also decide to discard the TO. 

TO_S_ACTIVATED 

Once the TO has been executed, it enters TO_S_ACTIVATED (Figure 3-12) and is temporary suspended 
until the MBS induces a migration. 
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discard(TO)
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Figure 3-12. SDL Diagram from the state TO_S_ACTIVATED 
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The beforeMigration() callback allows the TO to decide whether it can remain alive in the M-
agent and thus migrate with the agent, whether it has to be offloaded, or if it terminates. When the TO has 
migrated, it will immediately re-enter TO_S_READY for further activations. 

As in TO_S_READY, the TO can be triggered by cooperate() or be discarded during the 
cooperation mechanism. 

TO_S_SUSPENDED_FOR_MIGRATION 

This state (Figure 3-13) is used to designate a task objective which has been offloaded just before 
migration: the TO is then loaded by another M-agent and can determine once more, via the 
beforeMigration() callback (SDL macro BeforeMigration), whether the next destination is 
appropriate or not. 

TO_S_SUSPENDED_
_FOR_MIGRATION

BeforeMigration
a

TO_S_DISCARDED

Process TO;

discard(TO)

4(5)

Cooperate
(TO_S_SUSPENDED)

a

b

 
Figure 3-13. SDL Diagram from the state TO_S_SUSPENDED_FOR_MIGRATION 

A TO can be loaded and offloaded cyclically until the destination matches its requirements.  
The TO can also be triggered by cooperate() or be discarded during the inter-TO cooperation 

mechanism. 

TO_S_SUSPENDED 

A task objective is in the state TO_S_SUSPENDED (Figure 3-14) if and only if the TO itself has invoked 
the offload() callback.  
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Figure 3-14. SDL Diagram from the state TO_S_SUSPENDED 

The TO will be reactivated through the resume() callback in which the TO can decide to offload once 
more or to continue its execution. 

TO_S_DISCARDED 

When the TO is removed from the agent context and not offloaded, it enters the state 
TO_S_DISCARDED. The MBS then proceeds to its disposal. A TO is discarded when it terminates or it is 
discarded by another TO. 

3.5.2 Rule-based Task Objectives 
As we have seen, task objectives can easily be developed in Java. However, a object-oriented language 
does not necessarily suit all kinds of reasoning-based applications. A rule-based language would be more 
appropriate in order to achieve an alarm filtering, for example. When facts and rules are used in a 
common framework, the inter-TO cooperation makes a real "fusion" of the knowledge easier; internal 
mechanisms of the rule engine automatically lead to an adequate merging of facts and rules. 

In [RSH01], we have experienced the development of TOs with a particular rule engine supplied by 
Ilog1 and known as JRules, which provides an efficient implementation of the Rete algorithm [FC82] and 
facilities for manipulating Java objects directly in the rules, so that the objects of the agent context can be 
accessed without any particular problem. The corresponding rule-based language enables interactions 
with Java objects and supports most features of well-known rule engines such as CLIPS or JESS2. 

                                                      
1 http://www.ilog.com - has also provided a graphical library for the development of the Generic Network 
Management Tool (see Appendix A) 
2 http://www.ghg.net/clips and http://herzberg.ca.sandia.gov/jess 

http://www.ilog.com
http://www.ghg.net/clips
http://herzberg.ca.sandia.gov/jess
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The interface between the Java based MBS and such a rule engine is achieved through the TO wrapper 
that maps the agent context operation onto the JRules concepts. The objects related to this rule engine are 
now briefly defined. 

The working memory, in which the facts are stored, and the agenda, in which the valid rules are 
instantiated, are two important components used by the rules engine in JRules. The facts correspond to 
Java objects and are simply deposited into the working memory when the assert operation has been 
invoked. Once the inference engine has been activated, all the valid rules which are stored in the agenda 
are fired. In other words, when the conditions of a rule become true, an instance of the corresponding rule 
is left in the agenda and the rule is considered as valid; the action part of the rule will be executed at 
the activation time. 

The general description of a rule can be expressed by the following statement: 
 

rule ruleName { when {  ... conditions ... }    then    {   ... actions .... } } 
 
Without going into details, we propose to describe a short example (Table 3-2) of a JRule TO storing 

the itinerary and terminating when a cycle has been detected. A more sophisticated TO for routing 
purposes in optical networks has been proposed in [RoRS01]. 
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rule BuildItinerary { 
  when { 
    Activation(); 
  } then { 
    assert NodeTuple(?context.wrapper.getAgency().getLocalNode().getAddr(),  
                     ?context.prevAddr); 
  } 
}; 
 
rule DetectCycle { 
  when { 
    collect NodeTuple(addr equals 
                      ?context.wrapper.getAgency().getLocalNode().getAddr()) 
    where (size() > 1); 
  } then { 
    ?context.wrapper.discard(); 
  } 
}; 

Table 3-2. An example of a task objective in Ilog JRules 

According to the first rule, the itinerary is stored in the working memory via the assert statement. The 
fact Activation() becomes true whenever the activation of the task objective is performed. The 
object called NodeTuple contains a node address and a reference to the previous visited node address so 
that it remains possible to keep track of the itinerary. The context referred by ?context allows facts and 
rules to access to a space of variables associated to the working memory. 

The second rule shows how a cycle can be detected when the itinerary has been built; it is activated 
right after the creation of new NodeTuple facts. In case of a cycle, the wrapper.discard() 
method is called so that the task objective including facts and rules disappears from the agent context. 

3.5.3 Wrapper and Interactions with Task Objectives 
The wrapper enables interactions between the mobile behaviour scheme and the TOs; it also provides the 
TOs with a reference to the local agency giving access to nodal objects, such as a rule engine or a 
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blackboard, as well as to the local node environment. In addition, and when it is possible, the wrapper 
stores  the next destination retrieved by the TO. 

The wrapper is linked to a specific TO and therefore migrates with the M-agent. The wrapper 
functionalities consist in mapping the agent context operations onto a specific language and its related 
mechanisms, in order to manage the internal state of the task objective and to handle the storage 
mechanism by means of the blackboard; the storage mechanism allows a task objective to read or save a 
task objective properly, for example.  

Figure 3-15 reveals two types of wrapper; the Java wrapper simply invokes corresponding callbacks 
within the TO, whereas the Ilr (Ilog JRules) wrapper contains specific frontal objects, such as a working 
memory used to store facts and rules related to the TO; this memory is also responsible for the activation 
of the external rule engine which has to be instantiated in the agency. A rule engine usually requires an 
important code size and should not be considered as mobile. 
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Figure 3-15. Interactions between MBS, task objective wrappers 

According to the Figure 3-15, the mobile behaviour scheme interacts with the TO within the three Φ-
behaviours (Φaction, Φabsorption, Φmigration). The callbacks are activated by these behaviours and give the TO a 
reference to the wrapper containing the above-mentioned information.  

Moreover, the cloning process requires still another interaction which consists in the original clone() 
method; in the wrapper and the TO, this operation does not correspond to any particular behaviour and 
must only contain statements for frontal object initialization necessary to achieve the cloning. We have 
actually experienced some difficulties designing a TO and controlling its propagation when considering 
conditional TO cloning based on internal decisions. Only the MBS should therefore drive the cloning of 
TOs. This is the reason why the clone() method is not considered as a TO callback. 

As far as the cooperate() callback is concerned, the master/slave coupling may be performed by 
means of different TOs using different languages; a Java TO, for example, can be coupled to a JRules 
TO. In this case, an intermediate slave TO has to be created by the wrapper in the corresponding language 
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of the master TO, so that the cooperation can be performed in a common language; this technique has not 
been implemented into Ecomobile yet. 

3.6 SAMPLES OF GENERIC TASK OBJECTIVES 
In this section, we present a couple of basic TOs which can be considered as TO models for network 
management tasks. These simple TOs have been designed according to the computational model of 
Ecomobile and make compositional building of complex task objectives possible. 

These TO samples will show how it is possible to implement different operational behaviours mainly 
corresponding to the underlying functions of the different mobile MAS approaches exposed in Chapter 1 
and Chapter 2; they can be used for delegation agents, MITAgent or in approaches based on emergent 
behaviour based approaches. 

For simplification reasons, we assume that, in the task objectives we present, a single place is 
associated to a single node and that the Universal Place Identifier (UPI) only consists in the node address. 

3.6.1 Travelling in a network 
The basic task objective TO_Travel described in Table 3-3 builds a cycle-free itinerary in a continuous 
process; the TO lifecycle relies on the cooperation mechanism. When two task objectives meet, their 
itinerary is compared; the TO whose itinerary is contained in the other is simply discarded. 
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public class TO_Travel extends TOJava {     
   
  private Vector itinerary;    // Itinerary as frontal object 
   
  public TO_Travel() { itinerary = new Vector(); } 
  public Object clone() { … tells how to clone (copy of itinerary) } 
  
  public boolean activate(TOWrapperInterface wrapper) { 
    if (itinerary.contains(wrapper.getAgency().getLocalNode().getAddr())) 
      itinerary.clear(); 
     
    itinerary.add(wrapper.getAgency().getLocalNode().getAddr()); 
    return true;   
  } 
   
  public boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO) { 
    if (otherTO instanceof TO_Travel) { 
      TO_Travel _other = (TO_Travel) otherTO;    
     
      if (itinerary.contains(_other.itinerary))  
        _other.discard();  
      else if (_other.itinerary.contains(itinerary)) 
        return false;  
    } 
  } 
   
  public void init(TOWrapperInterface wrapper) { 
    cleanEnv(wrapper);    // One shot loading 
    setPriority(10);      // Maximum priority 
    setPersistent(true);  // In case of overloaded AC, TO is offloaded in env. 
  } 
} 

Table 3-3. A simple TO model to travel in the network 

All the frontal objects are placed in the declarative part of the class. In TO_Travel, only the itinerary (3) 
has to be maintained by the TO itself. In init() (27), the task objective removes itself from the 
environment by means of the cleanEnv() method (28), so that the TO is loaded only once. Maximum 
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priority (29) is not relevant in this context, but persistence (30) indicates that the TO must be saved in the 
blackboard when the agent context is full. 

The cooperate() callback (16) eliminates the TOs which have the same knowledge (17-24) that is, 
the same itinerary; this strategy avoids exponential growth of the agent context. The cooperation 
mechanism still plays an important role in the self-regulation of the average agent context size. 

This task objective relies on a stochastic navigation model since its trajectory only depends on the 
M-agent's movement and therefore on the network environment; in the TO's callbacks, there is no 
migration-related decision. 

A behavioural simulation of this task objective is presented in Section 5.4.1. 
From now on, only the relevant callbacks are described; the constructor and clone() methods are not 

depicted any more. 

3.6.2 Monitoring 
The monitoring function, which handles fault and performance management, naturally constitutes a major 
function in network management. The task objective presented in Table 3-4 is dedicated in particular to 
monitoring tasks examining the node periodically; it does not have to be plugged into the device. 

Each monitoring task must be defined as a different TO_Monitor class.  
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public class TO_Monitor extends TOJava {     
   
 public boolean activate(TOWrapperInterface wrapper) {         
    // Monitoring function 
    // …  
    return true; 
  } 
   
  public boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO) { 
    if (otherTO instanceof TO_Monitor) 
      otherTO.discard(); 
     
    return true; 
  } 
}   

Table 3-4. A generic monitoring TO model 

In this task objective, the cooperate() method kills the slave TO regardless of its internal knowledge 
(10-11). The particular monitoring function must be implemented in activate(). 

3.6.3 The Node Inspector  
The node inspector task objective consists in implementing a particular task, or service, into the node 
component; the service is activated during M-agent visits. Unlike TO_Monitor, this task objective is 
offloaded at each place-related blackboard; therefore, the task does not travel along the links but 
continues to reside within the node, so that it can maintain the knowledge specific to each node. 

When a node fails, the links with the neighbouring nodes consequently fail and the place connectivity  
matrix is updated; once the node has been re-installed and the Ecomobile agency has been informed about 
the inter-place connectivity, the task objective of connected places will be re-installed automatically.  

This task objective can be used in the context of TOs' operational management, for example, such as 
garbage collection functions or TO class management (see Section 4.4.1). Table 3-5 shows the details of 
TO_NodeInspector. 
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public class TO_NodeInspector extends TOJava { 
   
  // Frontal objects 
  private boolean resident = false; 
   
  public boolean activate(TOWrapperInterface wrapper) { 
    wrapper.getAgency().getBlackboard().theContent().put("TO_Inspector", "ok");     
    resident = true; 
     
    // Execute specific task ... 
         
    offload(wrapper);  // Save the resident TO - can fall asleep again :-)     
    resident = false;  // For subsequent diffusion  
    return true;       // Keep living for investigation 
  } 
   
  // Ensure only one TO in the agent context 
  public boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO) {  
    if (otherTO instanceof TO_NodeInspector) {              
      if (((TO_NodeInspector) otherTO).resident)                   
        return false; 
       
      otherTO.discard(); 
    }     
    return true;  // Still alive 
  } 
     
   // Will check if the output links must be investigated 
  public boolean beforeMigration(TOWrapperInterface wrapper) {      
    if (wrapper.getAgency().getBlackboard().content().containsKey(wrapper.destination())
      return false; 
    
    wrapper.getAgency().getBlackboard().content().put(wrapper.destination()(), "ok"); 
    // Re-init internal knowledge if necessary … 
    return true; 
  } 
 
  public void resume(TOWrapperInterface wrapper) {    
    cleanEnv(wrapper);  // Ensure the presence of only one TO 
  } 
} 

Table 3-5. A node inspector TO model 

In activate() (6), the task objective is offloaded (12) after its specific processing; in order to avoid 
having multiple instances of the TO in the blackboard, the resume() callback (38), which is invoked 
when the TO has been suspended and re-loaded by another M-agent, performs a cleanEnv() (39) in 
order to remove the TO from the blackboard. For each place, there is a single instance of 
TO_NodeInspector. The cooperation mechanism (19-25) avoids the redundancy between several TOs; the 
beforeMigration() callback controls the propagation of the task objective towards the 
neighbouring nodes (30-35). 

In order to determine whether each place has been investigated or not, a particular nodal object (34) is 
deposited into the blackboard; this indicator allows the task objective to be installed pro-actively when a 
new connection has been set up. 

3.6.4 Path Selection  
While the previous task objectives rely on a stochastic navigation model implemented by the mobile 
behaviour scheme, the TO model which we are about to examine must have a pre-planned itinerary. In 
this particular model, the path corresponds to a list of nodes initialized in the TO without intermediate 
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nodes. Operational behaviours which are similar to delegation agents can be implemented by means of 
this TO model. 
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public class TO_PathSelect extends TOJava { 
   
  // Frontal objects 
  private Vector itinerary;          // Internal trajectory 
  private Vector path;               // Path to follow 
            
  public boolean activate(TOWrapperInterface wrapper) { 
    GenericNode currentNode = wrapper.getAgency().getLocalNode(); 
     
    // Check if the node belongs to the path 
    if (currentNode.getAddr().equals((String) path.firstElement())) { 
              
      path.removeElementAt(0);        // Prepare the next node to search 
       
      if (path.isEmpty()) {         
        // Do something useful with the path nodes …          
        return false;   // Finished 
      }       
    }         
         
    itinerary.add(currentNode.getAddr());  // Store the current location 
    offload(wrapper);                      // Offload for subsequent destinations 
    return true;                           // Keep alive 
  } 
     
  public boolean beforeMigration(TOWrapperInterface wrapper) { 
    // Disappear only if the next destination is not appropriate 
    if (!wrapper.destination().equals((String) path.firstElement())) 
      return false; 
     
    cleanEnv(wrapper);    // We continue our trip; it is not necessary to stay here 
    return true; 
  } 
 
  public boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO) { 
    // Check for only one instance, such as in TO_Monitor …  
  } 
   
  public void init(TOWrapperInterfaceInterface wrapper) { 
    // …     
    // Here is the pre-defined path 
    path.add("Geneve"); path.add("Lausanne"); path.add("Bulle"); 
    path.add("Fribourg"); path.add("Bern"); path.add("Basel");   
    // … 
  }    
} 

Figure 3-16. A pre-planned navigation TO model 

TO_PathSelect resorts to the following principle: the TO is offloaded (22) and remains resident, 
whenever its destination does not correspond to the one expected (28-29) according to the path 
description (42-43) defined in init(); this simple mechanism allows the TO to progress node by node 
towards its destination; the progression is controlled by the beforeMigration() callback (26). The 
visit frequency and the migration strategy obviously have an impact on the performance attained in this 
approach; a behavioural simulation is presented in Section 5.4.2. 

3.6.5 The Exhaustive Path Finder 
The exhaustive path finder task objective, which is a bit more complex than the above-studied TOs, 
enables an exhaustive search for all cycle-free paths in a network from one source node to a destination 
node. This TO gives the opportunity to look for alternative paths leading to better Quality-of-Service; this 
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task objective, however, may induce considerable execution delay due to the exponential growth of the 
paths number related to the size of the network topology; an adequate problem-related heuristics should 
be implemented into the cooperation mechanism so that the number of paths can be reduced; such an 
approach will be presented in the context of TO_Routing (see Section 3.6.6). 
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public class TO_ExhaustivePathFinder extends TOJava { 
   
  // Frontal objects 
  private Vector itinerary;          // Internal trajectory 
  private Vector path;               // Path to follow 
  private String src, dest;          // Source and destination 
  private String _id;                // Allows the TO instance to be identified 
        
  public boolean activate(TOWrapperInterface wrapper) { 
    GenericNode currentNode = wrapper.getAgency().getLocalNode(); 
     
    if (isResumed()) return true; 
 
    if (currentNode.getAddr().equals(dest)) {    
      itinerary.add(currentNode.getAddr()); 
                 
      // Do something useful with the discovered path (we have reached the dest.) 
      return false; 
    } 
     
    itinerary.add(currentNode.getAddr()); 
     
    Vector _outs = getAgency().getPlacesOut();  // Get the UPIs of connected places 
    Vector toExplore = new Vector(); 
     
    for (Iterator _i = _outs.iterator(); _i.hasNext(); ) {       
      String addr = ((Port) _i.next()).getPeerNode().getAddr(); 
       
      if (!itinerary.contains(addr)) toExplore.add(addr); // Detect a cycle 
    } 
     
    if (toExplore.isEmpty()) return false;  // No interest to go further 
 
    _id = this.toString();  // _id will be the same for future clones 
    wrapper.getAgency().getBlackboard().theContent().put(_id, toExplore); 
    offload(wrapper); 
     
    return true;   
  } 
      
  public boolean beforeMigration(TOWrapperInterface wrapper) { 
    // This is a particular nodal object used by this TO 
    Vector toExplore = (Vector) wrapper.getAgency().getBlackboard().theContent().get(_id);
     
    // Still some destination to explore? 
    if (toExplore == null) {  cleanEnv(wrapper);  return false; } 
     
    // Next destination is not visited yet? 
    if (!toExplore.contains(wrapper.getNextDest().getDestination())) 
      return false; // This destination is not interesting for me. 
     
    // Update the vector of possible destination 
    toExplore.remove(wrapper.getNextDest().getDestination()); 
    if (toExplore.isEmpty()) { 
      wrapper.getAgency().getBlackboard().theContent().remove(_id); 
      cleanEnv(wrapper); 
    }     
    return true; 
  } 
   
  public void init(TOWrapperInterface wrapper) { 
    // …     
    src = "Geneve"; dest = "Lugano"; 
  }  
} 

Table 3-6. TO model for an exhaustive path finder in a network 
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This task objective aims at investigating all the output links of each node; the corresponding investigation 
algorithm resorts to a specific nodal object toExplore (24, 43) containing a list of node addresses still 
remaining to be explored and identified by a TO instance identifier _id (34): once the TO decides to 
select a specific link and continues its exploration, the corresponding peer node address is removed from 
its list (55).  

Each task objective must keep track of its itinerary in order to extract all the paths; as suggested in 
Table 3-6, this TO does not resort to any cooperation mechanism: each new instance of the TO generated 
towards a particular direction must survive until the destination has been reached.  

In Chapter 2, we have seen that the migration strategy in the stochastic navigation model relies on 
environmental information, which facilitates the implementation of loosely coupled tasks. The task 
objective TO_ExhaustivePathFinder perfectly illustrates this model; the destinations to be investigated 
have to be stored outside the task objective and therefore outside the agent. If this information were stored 
as frontal object, the MBS cloning mechanism would imply a duplication of the destination list. As the 
task objective can not influence the agent migration, it would be difficult to synchronize the knowledge of 
all the TO instances in order to avoid multiple investigations of a same link. As we have already 
mentioned, however, the TOs must have distinct trajectories. In order to control the migration information 
concerning the task objective, we store a reference to the TO as a nodal object associated to its list of 
remaining destinations. This data structure is built in the activate() callback and updated in the 
beforeMigration() callback. The structure is removed from the blackboard when all the 
destinations have been investigated. A behavioural analysis of this task objective is presented in Section 
5.4.3. 

3.6.6 On-line Routing  
On-line routing in transport networks is a basic function which is used for a wide range of management 
functions: allocating a path, restoring a service via an alternative path, pre-computing protection paths, 
monitoring connections while trying to optimize the QoS, etc. 

This task objective is devoted to a routing function updating the routing tables continuously according 
to the TO exploration. As we have seen in the MITAgent approach in Section 1.3.1, resorting to the 
cooperation mechanism in order to exchange routing information considerably improves the performance 
of this function. The routing mechanism implemented into the task objective described in Table 3-7 
consists in maintaining a routing table describing all the destinations which can be reached from the 
current node. In the TO model, link cost and distance are not taken into account. Additional information 
related to routing cost can be added as frontal object; it can then be compared to the local information 
present in the routing table. Such a TO may be used to implement wavelength assignment algorithms, for 
example (see Chapter 7); wavelength connectivity is intrinsically guaranteed by the task objectives' 
migration over the wavelength within the network. 
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public class TO_Routing extends TOJava { 
   
  // Internal knowledge 
  private Vector itinerary;           
  private int maxItiLength; 
          
  public boolean activate(TOWrapperInterface wrapper) { 
    GenericNode currentNode = wrapper.getAgency().getLocalNode(); 
     
    // Retrieve the port (top-level) by which the TO has entered the node 
    Port issuingPort = (Port) wrapper.medium(); 
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    // If the itinerary is not empty, do update 
    if (itinerary.size() > 0) { 
       
      // First, process backwarding nodes if bi-directional links by  
      // updating with visited nodes 
      for (int i = itinerary.size()-1; i >= 0; i--) { 
         
        String addr = (String) itinerary.elementAt(i);   // Node address 
        if (!(currentNode.getAddr().equals(addr))) 
          // Update the internal table associated to the port issuingPort 
      } 
       
      // Then, process forwarding nodes, if any      
      boolean cont = true; 
      for (int i = itinerary.size()-1; (cont && (i >= 0)); i--) 
         
        if (((String) itinerary.elementAt(i)).equals(currentNode.getAddr())) { 
           
          // Find the right port 
          Port forwardingPort = currentNode.getPort((String) itinerary.elementAt(i+1)); 
           
          for (int j = i+1; j < itinerary.size(); j++) { 
            String addr = (String) itinerary.elementAt(j); 
             
            // Update the internal table associated to this port …  
          }                    
          cont = false;           
        }      
    } 
     
    // Check the size of the itinerary – a way to date the TO 
    if (itinerary.size() > maxItiLength) itinerary.clear(); 
     
    itinerary.add(currentNode.getAddr());         // Store the current location     
    return true; 
  } 
   
  // Cooperation between Task Objectives 
  public boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO) {          
    if (otherTO instanceof TO_Routing) {  
      TO_Routing _other = (TO_Routing) otherTO; 
          
      // Compare the itinerary knowledge 
      if (itinerary.containsAll(_other.itinerary))  
        other.discard(); 
      else if (_other.itinerary.containsAll(itinerary))       
        return false; 
    }              
    return true; 
  }    
   
  public void init(TOWrapperInterface wrapper) { 
    // …     
    maxItiLength = wrapper.getAgency().getLocalNode().numberNodes() / 2;     
  }   
} 

Table 3-7. On-line routing TO model 

At each node, there are two ways (16, 25) to update the routing table as it is depicted in the 
activate() callback. Since the TO uses the physical links to migrate, the itinerary stored in the TO 
directly reflects the reverse node connectivity when the links are bi-directional; when the links are uni-
directional, updating a routing table can be achieved only in case of a cycle, as described in the second 
part of activate(). 

The cooperation between the TOs consists in absorbing the knowledge of the task objective owning the 
smaller quantity of node addresses (56-59). In order to limit the itinerary length, the itinerary is reset 
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when a certain number of addresses have been collected (44); the number of network nodes divided by 
two gives an empiric estimation of the maximal itinerary size (66). 

3.7 OVERVIEW OF THE INTERACTIONS IN ECOMOBILE 
Figure 3-17 presents a summary of all the interactions involved in Ecomobile. The components 
considered in this context are the agency (FIPA Agency), the blackboard, the M-agent and the task 
objectives. 

AGENT-TO-AGENT INTERACTION 

This kind of interaction between two M-agents is managed by the MBS, which involves the Φintereference, 
Φdwelling and Φabsorption behaviours. Since mobile agents share an identical execution environment controlled 
by the agency, the two entities communicate via object referencing. The underlying synchronization 
mechanism relies on cooperative synchronous processes and will be explained in detail in Chapter 4. 
Agent-to-agent interaction implies interaction between the task objectives. 

TO-TO-TO INTERACTION 

Interactions between task objectives are managed in the agent context of the M-agent and involve the 
coupling of TOs according to a master/slave paradigm. The master TO obtains a reference to the slave TO 
and handles the knowledge transfer, after which the slave TO can be discarded. 

These interactions occur when new task objectives have been loaded into the agent context or, in case 
of successful interaction, when the knowledge has been transferred, the knowledge here referring to the 
whole set of task objectives. 

INTRA-AGENT INTERACTION 

Two components of the M-agent are involved in this interaction: the agent context on the one hand and 
the task objective wrapper on the other hand. The former invokes the methods of the wrapper which, in 
turn, activates the TO callbacks. The M-agent also maintains a reference to itself within the TO wrapper 
so that the TO can access the information relative to its current location as well as the agency, in order to 
deal with the local environment. 

AGENCY-TO-AGENT INTERACTION 

A reference to the agency is maintained within the M-agent so that the MBS can interact with the agency 
via specific methods 

The task objective interacts with the agency through its wrapper, which, as we have already shown, 
contains a reference to the M-agent. 
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Figure 3-17. Interactions in Ecomobile 

AGENT-TO-BLACKBOARD INTERACTION 

The MBS loads or offloads the task objectives into the blackboard associated to the current place; a task 
objective itself has no control over serialized TOs present in the blackboard. In order to reach its goal, the 
TO can however access the blackboard via the agency to manage nodal objects like those required to 
manage information related to a chemical trail, for example, needed for emergent behaviour based 
algorithms (see Section 2.4). 

AGENCY-TO-AGENCY INTERACTION 

This kind of interaction has not been discussed yet because it is related to the specific implementation of 
Ecomobile which will be detailed in Section 4.4. Agency-to-agency interactions allow the M-agents to 
move between the network nodes. The agency, which provides the M-agents' execution environment, is a 
FIPA-compliant agent, so that mobility is achieved through the exchange of ACL messages between 
agencies. 

3.8 SUMMARY 
In this chapter, we have presented the conceptual framework of Ecomobile. The identification of the three 
abstraction models presented in Chapter 2 have allowed us to propose an agent architecture based on the 
Mobile Behaviour Scheme (MBS) including the navigation and the coordination models, and the Task 
Objective (TO) related to the computational model. According to this model, mobile agents and task 
objectives have distinct lifecycles and different trajectories in the network.  

The implementation model of Ecomobile corresponds to a threefold architecture made up of the 
following active components: agency, mobile agent and task objective. 

In Ecomobile, the place is used as a location concept and a coordination space for the M-agents. 
Several places can be defined and interconnected within an agency in order to form a virtual network. 
Intra- and inter-agency connectivity enable both virtual and physical mobility. The information related to 
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the connectivity is kept in the agency via the Universal Place Identifier (UPI) and the connectivity matrix 
which, in this context, reflects the physical network topology. Finally, a passive blackboard is associated 
to each place and provides the M-agents with a shared repository for TO-related information and for the 
task objectives themselves. 

The mobile agent society is composed of mobile entities called M-agents which act as ecological 
individuals exhibiting particular behaviours called Φ-behaviours. The territoriality paradigm, which refers 
to a density-dependent intra-specific competition based on active interference between ecological 
individuals, plays a central role in the self-regulation of the M-agent population and allows us to 
implement a "living" ecosystem-inspired mobile agent middleware into the network infrastructure. Two 
different MBS have been proposed: MBS-low implements a simple interference-absorption scheme 
between two M-agents meeting at a place, and leads to occasional cloning; the diffusion of mobile agents 
is considered as relatively "slow". On the contrary, MBS-high implements an interference-absorption loop 
favouring a greater number of meeting opportunities, and followed by systematic M-agent cloning; the 
diffusion of M-agents is therefore considered as relatively "fast". 

While the MBS defines the M-agent's lifecycle within the network infrastructure, so that the ecosystem 
can adapt itself to network characteristics such as network topology, availability, quality of service, etc., 
and maintains a density-dependent self-regulated population size, the M-agent's operational behaviour is 
defined by intelligent tasks relying on cooperation mechanisms achieved by the task objectives. The TOs 
are deposited into a blackboard before they are dynamically loaded into the ecosystem by the M-agents. 
The task objective wrapper makes task objectives flexible enough to be described by means of different 
programming approaches, such as Java, or a rule-based language like Ilog JRules or JESS, or even 
Wave1. The particular computational model characterizing Ecomobile leads to a task design based on 
specific callbacks for the TO activation, migration and cooperation, on the associated current location and 
the next destination. These callbacks are regularly activated by the MBS. 

Generic operational behaviours have finally been described by means of task objective models; they 
correspond to basic functions defined for the management of transport networks and can be used for the 
compositional construction of more advanced network management functions. 

In order to take a further step in the development of Ecomobile, we have to implement the concepts 
presented in this chapter into an reactive execution environment, so that M-agents and task objectives can 
evolve and interact properly, with respect to the ecosystem behaviour defined in this chapter. The reactive 
programming paradigm introduced in Chapter 4 will help us to reach our goal. 

                                                      
1 Since to TOs are loaded dynamically, any interpreted language is perfectly suitable. 
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Chapter 4 
Implementation with Reactive Programming and 
Deployment 

 

The Ecomobile model developed in the previous chapter requires an adequate implementation so that the 
ecosystem behaviour can be finely simulated and analyzed. The response of our system to the dynamic 
insertion of task objectives will allow us to evaluate the system performance; it will also provide 
indicators related to the efficiency of the inter-TO cooperation, for example, or to the rapidity of their 
dissemination within the network. 

In an initial approach, Ecomobile has been implemented by means of Java threads. Although a 
mapping between the two concepts, threads as concurrent processes and mobile agents as autonomous 
entities, appeared to be natural, this approach induces a number of problems: the framework for the 
management of cooperative threads provided by the Java Virtual Machine (JVM) is not complete enough; 
components such as semaphore or rendezvous are not supported and require a third-party library for 
concurrent programming1 [Lea00]. Java threads moreover rely on the JVM scheduling policy, which is 
not standardized, so that in this context the hotspot JVM of the Java Development Kit (JDK) resorts to the 
scheduling policy of the underlying operating system.  

The considerable overhead required by the JVM to manage the threads and the pre-emptive scheduling 
policy would introduce undesirable dependencies on external factors, such as the type of the operating 
system, the CPU power of the machine running the simulation, or the memory size, and thus lead to a 
huge number of asynchronous interactions and non-deterministic effects. Therefore, although Java 
threads would allow a relative straightforward implementation of mobile agents with the help of an 
adequate third-party library, this approach is not very suitable for the complex analysis of mobile agent 
behaviour. 

In order to deal with these problems, we have opted for an approach based on a cooperative process-
based discrete-event implementation which actually seems more promising. Since Ecomobile can be 
considered as a reactive system, we propose to adopt a reactive programming paradigm to implement the 
M-agent behaviour. In this chapter, we will discover how reactive programming and an associated 
framework called Junior can lead to the efficient implementation of the mobile behaviour scheme of 
Ecomobile. 

As we have already pointed out in Chapter 3, the introduction of our simulated ecosystem into a 
transport network environment should lead to a realistic deployment of the Ecomobile components with 
particular attention to the non-deterministic effects due to multiple asynchronous interactions; still, the 
parallel behaviour which is inherent to the ecosystem, and in particular the asynchronous agent migration, 
should be maintained; in order to deal with these issues, we propose on the one hand to limit the 
asynchronous interactions in Ecomobile to the inter-agency communication, and to implement the 
Φ-behaviours of the different M-agents by means of a particular parallel construct on the other hand.  

In the present chapter, we wish to show that the agency services can be delegated to a FIPA agent in the 
Jade environment. The efficiency and scalability issues related to this approach will also be discussed. 

                                                      
1 See also http://gee.cs.oswego.edu/dl/cpj 

http://gee.cs.oswego.edu/dl/cpj
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4.1 REACTIVE PROGRAMMING 
The implementation of reactive systems [HP85][Bo00] by means of the reactive programming paradigm 
requires the introduction of new abstractions and new programming language components in order to be 
implemented. Reactive systems combine two essential characteristics: interacting permanently with their 
environment, they exhibit a cyclic behaviour and never terminate, but they should also be fast enough to 
timely react to changes induced by the environment. After being activated by the environment itself, a 
reactive system should therefore produce a corresponding reaction possibly modifying the environment, 
and then wait for subsequent activations. It appears from this definition that a reactive system can be 
decomposed into distinct steps, so that an implementation based on a synchronous model should be 
possible. 

Two fundamental notions defined in the scope of the reactive approach constitute the underlying 
mechanism addressing the synchronous concurrency: instant and reaction. An instant is defined as a 
logical instant of execution during which all the parallel components of a program perform one execution 
step that is, a reaction corresponding to that instant. The duration of an instant may vary from one 
reaction to the other; still, the environment must remain in a coherent state during the reaction, which 
means that an event considered as present during the reaction must be kept present until the end of the 
reaction.  

The succession of instants constitutes an efficient mechanism leading to the implementation of a time 
reference model which primary behaviours such as Φdwelling, for example, can resort to; corresponding to a 
fixed number of logical instants, the waiting time can remain identical even though the duration of a 
reaction may vary over the time. Such a time reference is therefore particularly useful while elaborating 
and debugging complex multi-agent system behaviour. 

As shown on Figure 4-1, a new instant begins at each activation time. 

Activation

Reaction Reaction Reaction

Activation Activation

Instant i+1 Instant i+2Instant i Virtual clock  
Figure 4-1. Instant and reaction in the reactive model 

A reactive program is decomposed into reactive instructions which can be executed within an instant. The 
concurrency model leads several reactive instructions belonging to different programs to share the same 
execution instant, so that instructions are interleaved and executed in a determined (sequential) order or 
an undefined (parallel) order. The events which are simply managed by reactive instructions enable inter-
process communication. An event constitutes non persistent data; it can be generated within an instant but 
is automatically reset at the beginning of the next instant. 

The definition of instants and events is bound to a general problem related to the parallel execution of 
reactive instructions in a synchronous concurrency model known as the causality problem [Hal93]. A 
causality problem may arise when parallel instructions are executed synchronously within the same 
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instant: an instruction instantaneously reacts to the absence of an event which is actually being generated 
in the same instant by another instruction; within the same instant, reactive instructions may consequently 
consider an event to be present or not present so that the system is placed in an incoherent state and 
favours non-deterministic behaviour. Meanwhile, reaction to the presence of an event does not raise any 
ambiguity. 

The causality problem can be overcome by means of delayed reaction to absence [BHS01]; the 
instruction testing for the absence of an event is postponed to the next instant so that it can make sure that 
the event is really absent; the strong coherence property, stating that during one instant, the same event 
cannot be tested as present by one component and as absent by another component, thus remains 
guaranteed. 

Several languages based on the reactive model are currently available, such as Esterel1, SL or 
Reactive-C2, for example. We now propose to describe the Junior framework which provides an excellent 
lightweight Java-based API for reactive programming. 

4.2 THE JUNIOR FRAMEWORK 
Junior (Jr), which has been developed in the scope of the MIMOSA project3 at INRIA4, provides a Java 
API based on formal semantics for reactive programming; its reasonable code size makes it a micro-
kernel, on top of which several extensions have been elaborated, such as the SugarCubes [BS02], a Java 
library providing extensions for the experiments on various reactive formalisms. An implementation of 
Junior called Senior has been developed for the Scheme programming language. 

Junior implements a reactive machine managing the execution of event-based reactive programs; 
reactive instructions use events to synchronize their execution in a cooperative way. The basic assumption 
in Junior is that the execution during an instant always converges on a stable state from which the next 
instant can start, so that no reactive instruction should enter an infinite loop5.  

In order to guarantee the strong coherence property described in the previous section and thus to solve 
the causality problem, Junior implements instantaneous reaction to presence and delayed reaction to 
absence; each event is instantaneously broadcast within an instant, so that processes concerned with this 
event can react immediately. 

Several implementations of Junior have been developed6: Rewrite, which is the first implementation of 
the Junior semantics [HSB99], is not as efficient as Replace, which avoids program re-buildings; Replace 
is close to SugarCubes. 

Let us now introduce the reactive machine and the reactive instructions, which are the basic 
components of Junior. 

                                                      
1 http://www-sop.inria.fr/meije/esterel/esterel-eng.html 
2 Information about SL and Reactive-C available at http://www-sop.inria.fr/mimosa/rp/ReactiveC 
3 More information about MIMOSA (Migration & Mobility: Semantics & Applications) available at 
http://www-sop.inria.fr/mimosa/rp 
4 Institut National de Recherche en Informatique et en Automatique, Sofia Antipolis, France 
5 In the present implementation of Junior, there is no automatic detection of possible ill-formed reactive 
instructions. 
6 In Ecomobile, we have considered Replace, version 2.1b1 (experimental). 

http://www-sop.inria.fr/meije/esterel/esterel-eng.html
http://www-sop.inria.fr/mimosa/rp/ReactiveC
http://www-sop.inria.fr/mimosa/rp
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4.2.1 The Reactive Machine 
The reactive machine provides the program with an execution environment and defines the global instants 
during which reactive instructions are executed; it is also responsible for broadcasting the events when 
they have been generated. A program is added in the reactive machine via the instruction add(), and the 
reaction is activated externally with the react() method, as depicted on Figure 4-2. Reactive 
instructions can be added once at the beginning of the program execution, or they can be added 
dynamically during the execution; they can also generate new instructions to be added into the reactive 
machine, for example. 

Dynamic adding
of reactive instructions

Activation
react()

add()
Reactive Machine

 
Figure 4-2. Reactive machine in Junior 

Reactive instructions are not re-entrant; their state is embedded and fully controlled by the reactive 
machine. In Junior, two kinds of reactive machines have been developed: Machine and SafeMachine. 
Whereas the former is intended to be run in a single thread, the latter can be used when several threads are 
involved in the execution of the reactive machine; a Java applet, for example, can manage the graphical 
interactions by means of several threads and therefore provoke uncontrolled interferences with the 
program execution.  
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public boolean react() { 
 
  performAddings();               // Check for new added instructions 
  if (terminated == false) {      // No instruction available 
    byte res = instant.rewrite(); // Perform instructions          
    env.newInstant();             // Prepare the next instant 
          
    if (res == TERM)               
      instant.body = new Instant(Jr.Nothing()); // Reset the program 
          
    terminated = (TERM == res);   // Program finished? 
  } 
  return terminated; 
} 

Table 4-1. The method react() of the reactive machine (MachineImpl.java) activating a reaction 
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The method react() detailed in Table 4-1 consists in performing the activation of all reactive 
instructions which have been prepared for the present instant.  

In the current version of Junior Replace v2.1, the reactive instructions attached to the object instant are 
unfortunately not removed from the stack when they have been completed; instructions are added in 
Junior according to a recursive scheme. In Ecomobile, for example, we have observed that the dynamic 
addition of instructions raises a stack overflow problem after only a few instants. This is the reason why 
we have added two lines in the react() method (lines 8 and 9) in Table 4-1 - in order to "clean" the 
instant object containing the program once all the reactive instructions belonging to an instant have been 
executed; in this case, the value returned by instant.rewrite() is TERM. It has to be noted that if a 
reactive instruction requires several instants, in particular when implementing a delay, the instant can not 
be cleaned and overflow problems can still happen. The authors of Junior, however, are developing a new 
version of Junior, called Storm, which will improve the processing of reactive instructions so that a huge 
amount of events and instructions will be supported. 

4.2.2 The Reactive Instructions 
In this section, we are trying to examine whether the Junior reactive instructions are fulfilling the 
requirements for the implementation of Ecomobile according to the reactive programming paradigm. In 
the Junior framework, all the instructions are defined statically in a class named Jre. The instructions 
themselves are defined by means of Java classes. Since a Junior program can be regarded as a reactive 
instruction itself, all the instructions inherit from the class Program. In order to improve readability, we 
have omitted to prefix each instruction with Jre in the next code fragments. 

(1) Seq(Program first, Program second) 

This instruction defines two reactive instructions which are executed sequentially and always in the same 
order (first, second). It has to be noted that each instruction may require several instants to accomplish its 
execution. 

(2) Par(Program first, Program second) 

Unlike the previous instruction (1), the Par() introduces the notion of parallelism between two reactive 
instructions; the execution order, which is not fixed, leads to an absence of determinism which is typical 
of the parallelism paradigm. Although the execution can choose non-deterministically two non-suspended 
instructions, the current implementation of Junior actually implements a deterministic order (left 
instruction, then right). However, if one of the two instructions is suspended, the non-suspended 
instruction will be executed before the end of the instant, which is not the case with the Seq() (1) 
instruction. The Par() instruction is also referred to as parallel construct. 

(3) Atom(Action action) 

This instruction allows the reactive instruction to interact with Java objects; the instruction is executed in 
an atomic way by the method execute(), as defined in the interface Action. 

(4) Generate(String event, Object value) 

The communication between reactive instructions can be performed via this instruction, which generates 
an event described by a specific String and is instantaneously broadcast by the reactive machine to 
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other reactive instructions belonging to the same instant. A value object can optionally be associated to an 
event so that the instructions waiting for a specific event can retrieve event-related information. 

In Ecomobile, the reaction to the presence of an M-agent is achieved by means of an event generation. 

(5) Until(String event, Program body) 

This instruction allows any reactive instruction to wait for a specific event; the program body is 
performed at each instant during which the event is absent; the program is also completed during the 
instant in which the event is present, but it then disappears and will not be executed in future instants. 

(6) Repeat(long count, Program body) 

This instruction implements finite loops; the program body is executed during a number of instants 
corresponding to the value of count. 

(7) Stop() 

This instruction allows the execution of a reactive instruction to be delayed to the next instant. For 
example, the following instructions can be used so that a particular event is expected during a certain 
amount of instants:  

Seq(Until("open", Repeat(10, Stop())), Atom(javaClassOpen)) 

It waits for the event open during a maximum of 10 instants; if no event occurs within this period, the 
reactive instruction is completed and removed from the program. The next instruction Atom() will be 
executed in any case; particular action can be performed according to an optional event-related value (see 
Generate() (4)). 

 

The dynamic insertion of reactive instructions is realized by means of the method add() issued from the 
reactive machine, which simply executes a Par() instruction performing the addition to the current 
instant-related program.  

The current version of the reactive machine does not allow instructions to be added in sequence; still, 
replacing the Par() (2) with the Seq() (1) instruction in the add() method makes a sequential 
insertion possible. 

4.2.3 Fair Threads 
As we have seen, the reactive programming paradigm and its synchronous cooperative model can be 
considered as an interesting alternative to Java threads. In Java, the lack of a clear thread semantics 
makes a thread-based concurrency model providing both pre-emptive and cooperative frameworks 
difficult to implement. Moreover, the semantics strongly depends on the underlying execution 
environment. In order to improve the Java thread mechanism, the authors of Junior have developed the 
concept of fair thread on top of the Junior kernel [Bou01], leading to the elaboration of a particular 
library called FairThread. 

According to this concept, a fair scheduler defines the execution phases during which there is an equal 
probability that threads will be executed, according to a strict round-robin algorithm; each thread must 
cooperate via the cooperate() method which suspends the thread execution and allows the scheduler 
to process other threads; the pre-emption can not occur in an uncontrolled way so that debugging is 
facilitated. Like reactive instructions, threads communicate via events. The fair scheduler ensures that 
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each event generated within a phase is broadcast to all threads started in the scheduler, so that each thread 
can "see" the events in exactly the same way. 

In the context of reactive programming, an execution phase corresponds to an instant and the 
cooperate() method corresponds to the Stop() reactive instruction; the semantics of the event is 
the same in both frameworks. However, from the efficiency point of view, reactive programming, which 
does not require context switching, is much more efficient; the instructions are simply interleaved, as 
shown on Figure 4-3, and events are broadcast to each instruction. 

Instruction i1

Two fair threads

i2

j1

j2 i2

j1

j2

i1

Corresponding 
reactive instructions  

Figure 4-3. Interleaving of Reactive Instructions 

The reactive programming paradigm is also preferred to an approach based on fair threads because it 
allows for a mapping between the Φ-behaviours and the reactive instructions. Besides, the 
implementation of Ecomobile with fair threads has revealed several drawbacks as far as scalability and 
performance are concerned, since the behavioural decomposition of the MBS leads to frequent context 
switching. Finally, memory overflow has led fair thread to fail after a few scheduling phases even with a 
reasonable number of network nodes. 

4.2.4 Towards a Reactive Operating System 
The Reactive Operating System (ROS) [Bo01] is a distributed operating system based upon the reactive 
model, which has been developed with SugarCubes. One of the major objectives of ROS is the support of 
mobile agents within a synchronous migration model. In this context, migration relies on a special 
reactive instruction called Freeze(), as well as on the RMI communication model. 

According to the ROS, mobile agents are composed of reactive instructions. The migration is initiated 
with a specific instruction (transfer), which can be part of the mobile agent program or which can be 
inserted dynamically. During the migration, the reactive instructions which are being executed are frozen 
as long as they are declared as freezable. Instructions which are not freezable are simply not authorized to 
migrate. The frozen instructions are then transferred via a RMI call to the ROS server. This approach 
leads to a selective migration of reactive instructions. 
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Although it is not based on a FIPA-compliant environment, the ROS functionality resembles the 
Ecomobile agency. However, since the migration in Ecomobile is initiated by a specific behaviour1 
(Φmigration) and resorts to ACL-based communication, the M-agent does not require a transfer of reactive 
instructions and, therefore, the instructions do not need to be freezable. Still, the agent restoration is 
performed by the agency, which involves the dynamic adding of a reactive instruction. Furthermore, 
whereas the ROS migration relies on synchronous transfer, the Ecomobile agency resorts to the FIPA 
asynchronous communication model.  

4.3 MAPPING OF THE MBS ON REACTIVE INSTRUCTIONS 
We are now ready to introduce the implementation of Ecomobile into the Junior framework. 

According to the previous sections, the reactive behaviours (Φ-behaviour) introduced in Ecomobile 
have  important similarities with reactive instructions. As we have seen in Section 3.4.1, the Φ-behaviours 
are mainly influenced by the environment and have to be executed atomically by the M-agents. The 
synchronous concurrency model implemented in Junior, which is used to manage cooperative 
instructions, allows us to map each Φ-behaviour onto an atomic reactive instruction. The parallel 
construct Par() allows several M-agents to be processed in a non-deterministic way at the same time 
and to reflect an appropriate behaviour at the ecosystem level. 

In Ecomobile, however, there is no reaction to absence; the active interference between M-agents 
implies that one M-agent tests the presence of another M-agent according to the Φintereference-Φdwelling 
scheme. 

The Φ-behaviours are activated via the execute() method (9) of the Action interface, according to 
the model shown on Table 4-2. The invocation of these behaviours is performed by the Atom() reactive 
instruction.  
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public class PhiBehaviour implements Action { 
     
  LambdaAgent _agent; 
        
  public PhiAction(LambdaAgent agent) { 
    _agent = agent; 
  } 
     
  public void execute(Environment env) { 
    _agent.phiAction();  // Perform Φ-behaviour 
  } 
} 

Table 4-2. Implementation sample of a Φ-behaviour with a reactive instruction 

The Φ-behaviours generate new reactive instructions dynamically, according to the MBS; further details 
concerning this matter are given in Section 4.3.2. 

4.3.1 A Causality Problem in the Φinterference- Φdwelling Scheme 
A simple mapping of Φ-behaviours onto reactive instructions may lead to a causality problem identical to 
the problem generated by the presence of events between several reactive instructions (see Section 4.1); 
in this context, however, the causality problem appears at the semantics level of reactive behaviours 
defined by the mobile behaviour scheme. The test for the presence of other M-agents may raise this high-

                                                      
1 The M-agent can not perform more than one reactive behaviour at a time. 



Chapter 4 
Implementation with Reactive Programming and Deployment 

 

105 

level problem. As depicted on Figure 4-4, several agents can enter the same behaviour at a same instant 
and pursue their lifecycle in a similar way, assuming that the reactive behaviours are configured 
identically. It has to be noted that, during any reaction, several instructions are executed in an 
undetermined order "simulating" the parallelism effect. The Φaction behaviour is not shown on the figure, 
since an M-agent performing this behavioural function can not be sensed by other M-agents.  

I-1 I I+2Jr Instant:

M-agent λ1 Фmigration Фinterference Фdwelling

I+3

M-agent λ2

M-agent λ3

…

Фmigration Фinterference Фmigration

Фmigration Фinterference Фmigration

I+1

Фdwelling

Фdwelling

Фmigration

Reaction  
Figure 4-4. A causality problem in reactive behaviours 

This synchronized behaviour introduces a causality problem: M-agents arriving at the same time ignore 
each other as if they were "blind"; according to the figure example, at instant I, the three M-agents λ1, λ2 
and λ3 arrive at the same place, perform the Φinterference behaviour and then, believing that no agent is 
present because no agent is performing a Φdwelling at this instant, the three agents perform a Φdwelling at the 
next instant according to the MBS and therefore continue to co-reside. This misleading behaviour is in 
contradiction with the territoriality paradigm, which the M-agents behaviour are supposed to exhibit 
according to the MBS (see Section 3.4): the territorial behaviour should actually lead any M-agent to 
react to the presence of another co-residing M-agent. The M-agent's improper reaction hampers the self-
regulation of the agent population and this, as simulation has shown, leads to an exponential growth of 
the population. 

The problem can be solved by the contraction of the two reactive behaviours Φinterference and Φdwelling into 
a unique reactive instruction, so that the two behaviours are performed in the same instant, as shown on 
Figure 4-5. Each M-agent first tests the presence of another agent; if there is no agent, it directly activates 
the next behaviour, which consists in waiting, and is therefore considered by the other M-agents as 
present.  λ1 performs the two Φ-behaviours in the same instant. 
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I-1 I I+1Jr Instant:

M-agent λ1 Фinterference
Ф1

dwelling

I+2

M-agent λ2

M-agent λ3

…

Фinterference Фabsorption

Фinterference Фdwelling

Generate "sense λ1"

λ1 is not waiting any more

Contraction

Generate
“merge λ1”

Ф2
dwelling

{await “merge λ1”}{await “sense λ1”}
Фmigration

Фmigration

Фmigration

 
Figure 4-5. Contraction of the interference-dwelling scheme into a unique reaction 

It is important to highlight that, during a reaction, the execution order of identical Φ-behaviours may 
however lead to variations due to environmental changes induced by a single Φ-behaviour execution. In 
this context, the term reactive is fully justified. 

In this example, M-agent λ1 performs Φinteference, immediately followed by Φdwelling, at instant I. During 
the same instant, M-agent λ2 also performs Φinteference, and is able to react to the presence of M-agent λ1 by 
generating an appropriate sense event including a reference to the sensed M-agent λ1. Finally, M-agent λ3 
performs Φinteference and do not detect any M-agent since no M-agent is dwelling any more. 

The absorption phase requires M-agent λ1 to remain synchronized with M-agent λ2. This 
synchronization is actually achieved in the Φdwelling behaviour by expecting a merge event from M-agent 
λ2. The event will be generated once the absorption is finished. 

According to the MBS semantics, any coupling of reactive behaviours involving an event generation 
and a reaction to presence, as it is the case with Φinteference and Φdwelling, may lead to a causality problem 
which must be tackled by a Φ-behaviour contraction.  

4.3.2 The MBS-low and the MBS-high as Reactive Programs 
The mapping of the mobile behaviour scheme MBS-low/high is presented in Table 4-3. The reactive 
instructions begin with a capital letter (PhiBirth(), for example) and are defined according to Table 
4-2. The method add() performs the dynamic insertion of a reactive instruction into the reactive 
machine. This method actually prepares for the next instant.  
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public class M_agent extends LambdaAgent { 
 
  M_agent sensedAgent = null, sensingAgent = null; // References to another M-agent 
  boolean dwelling = false; 
     
  public void phiBirth() { add(Jre.Atom(new PhiMigration(this))); } 
 
  public void phiMigration(boolean afterMove) { 
    // Pre/post-migration processing … 
    add(Jre.Seq( Jre.Repeat(moveTime, Jre.Stop()), Jre.Atom(new PhiAction(this)) )); 
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  } 
 
  public void phiAction() { add(Jre.Atom(new PhiInterference(this))); } 
 
  public void phiInterference() { 
    // sensedAgent = reference to a co-residing M-agent  
  
    if (sensedAgent.isSensible()) {           // Is the agent sensible (dwelling) ? 
      sensedAgent.sensingAgent = this;        // Realize the coupling between agents 
            
      add(Jre.Seq(Jre.Generate("sense:"+otherAgent.getID()),  
          Jre.Atom(new PhiAbsorption(this)))); 
      return ;                                // Instruction terminated 
    }     
    phiDwelling(); // Contraction to avoid causality problem (it is not a react. inst.) 
  } 
     
  public void phiAbsorption() { 
    // … perform knowledge transfer 
     
    switch (MBSSelected) {                    // Next instruction depending on MBS 
      case MBSHighDiffusion: 
        add(Jre.Seq( Jre.Generate("merge:"+sensedAgent.getID()),  
                     Jre.Atom(new PhiInterference(this))) ); 
        break; 
         
      case MBSLowDiffusion: 
        add(Jre.Seq( Jre.Generate("merge:"+sensedAgent.getID()),  
                     Jre.Atom(new PhiMigration(this)))); 
        break; 
    } 
  } 
   
  public void phiDwelling() { 
    if (dwelling) { 
      dwelling = false; 
       
      if (sensingAgent != null)       // Any interfering M-agent? 
        add(Jre.Seq(Jre.Await("merge:"+getID()), Jre.Atom(new PhiDeath(this)))); 
      else { 
        add(Jre.Atom(new PhiClone(this))); 
        break;         
      } 
    } else {       
      dwelling = true; sensingAgent = null; 
            
      add(Jre.Seq(Jre.Until("sense:"+getID(),  
                  Jre.Repeat(_waitTime, Jre.Stop())), Jre.Atom(new PhiDwelling(this))));
    } 
  } 
  public void phiClone() { add(Jre.Atom(new PhiMigration(this))); } 
  public void phiDeath() { Jre.Atom(new Terminate(this)); } 
} 

Table 4-3. Description of MBS using the dynamic insertion of reactive instructions 

The appropriate type of MBS is defined by MBSSelected, which corresponds either to 
MBSHighDiffusion or to MBSLowDiffusion. The variable moveTime of the 
phiMigration() method (10) simulates the duration of the migration. Once the migration has been 
achieved, this method is called again in order to perform post-migration initialization and to add the next 
reactive instruction. In the method phiInterference(), the M-agent is querying the agency for the 
presence of a waiting agent performing the Φdwelling behaviour (16-18). When a sensing agent has been 
found, the M-agent generates a sense event containing the reference to the waiting agent (21). The 
phiAbsorption() method informs the sensed agent of the end of the knowledge transfer by 
generating a merge event (33, 38). According to the MBS type, the sensing M-agent will reiterate the 
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interference-absorption scheme (34) or leave the node and pursue its route (39), whereas the sensed 
M-agent will die (49). 

The next section is devoted to the deployment of Ecomobile in the Jade agent platform; we will 
proceed, in particular, to the analysis of the interactions between the reactive machine and the agency, and 
we will examine how the reactions are triggered. This part of the implementation is also concerned with 
the co-existence of mobile agents and stationary FIPA agents. 

4.4 DEPLOYMENT WITH JADE 
The deployment of Ecomobile components within the network infrastructure is achieved by means of a 
FIPA-compliant agent platform which is assumed to be installed in each network device. The agents' 
migration occurs via migration services provided by an agency which is itself a FIPA agent, so that the 
M-agents do not depend on any specific mobile agent platform: the agent platform provides our agents 
deployment with the necessary communication infrastructure as well as with an adequate security 
framework. 

This approach is characterized by asynchronous transfer of mobile agents between the network nodes 
and synchronous activation of the reactive machine instance which is present in each agency. In a pure 
simulated environment, there is only one reactive machine instance taking care of the physical migration 
of M-agents. In a real environment, on the contrary, the distribution of several agencies over the network 
and the asynchronous transfer of mobile agents involves several reactive machine instances executed in 
parallel; each machine manages its own instants without any form of synchronization. 

When the agent platform supports a synchronous intra-agent activity model, the deployment of the 
agency is facilitated because the processing of newly arriving mobile agents can be postponed. This 
requirement is fulfilled by the Jade agent platform (see Section 1.5.2). In the next section, we examine in 
detail the implementation of the agency with Jade. 

4.4.1 Ecomobile Agency 
Jade defines containers as places which host agents. Although Jade supports intra-platform mobility 
between containers, we do not use this feature in Ecomobile. The Ecomobile agency is a stationary FIPA 
agent registered in the main container1, which is created automatically at the starting time. The agency 
provides M-agents with a reactive machine, mobility services and controlled access to the local 
environment; it manages the places' configuration2 and its related connectivity matrix as well as the 
associated blackboards. These components are not only used by the MBS, but also in the task objectives 
context. 

The agency, which is assumed to be embedded in each network node, involves the presence of a FIPA 
agent platform. Of course, other FIPA agents can seamlessly share the same platform. Our definition of 
M-agents implies that no direct FIPA-based ACL communication is possible between a mobile agent and 
a stationary agent. The agency, which is a FIPA agent and therefore has the possibility to process ACL 
messages, can provide M-agents with two different service types in order to achieve this kind of 
communication: a mediation service which enables the communication between M-agents and FIPA 

                                                      
1 Although there is no restriction to the use of other containers, the target container has to be designated 
by the agency when messages are exchanged so that the adoption of a single container name facilitates the 
addressing.  
2 Note that places are not Jade containers. 
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agents, or a morphing service which can transform an M-agent into a FIPA agent, and vice versa; this 
kind of service could be useful for the deployment within the network of high priority messages or tasks, 
and of sophisticated services implemented by means of a FIPA agents, for example. In this case, a task 
objective would contain the agent to be registered in the agent platform. The mediation and morphing 
services have not been implemented in Ecomobile yet; they are however considered in the FIPA-mob 
project (see Section 4.5). 

The intra-agency activities rely on a cyclic behaviour (class CyclicBehaviour) in which the 
action() callback method constitutes the main entry point; the method invocation is performed by the 
Jade kernel, which is the internal agent scheduler. In our agency, two operations are performed at each 
activation: the behaviour checks for available ACL messages; it then activates the reactive machine by 
performing a call to react(). The Jade cooperative behaviour model prevents the ongoing reaction 
from being pre-empted by incoming ACL messages. Once the reaction has been completed, the message 
will be buffered and processed by the MobilityService class. 

The Ecomobile agency model is depicted on Figure 4-6. 
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Figure 4-6. UML diagram of the Ecomobile agency model 

In the current state of the implementation, the transfer of the M-agents is achieved by means of an ACL 
message exchange between agencies. Jade provides the setContentObject() method of the 
ACLMessage class, which allows any kind of object to be transmitted in the message contents by means 
of serialization and encoding based on the Base64 format1. This mechanism, however, is not supported by 
FIPA yet. In Java, the de-serialization of a Java object requires the presence of the object class [Pi98]. 

                                                      
1 The "Base64" format, defined in RFC 1521, is used in MIME-encoded documents such as electronic 
mail messages with embedded images and audio files. More information at 
http://www.fourmilab.ch/webtools/base64 

http://www.fourmilab.ch/webtools/base64
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Since the Ecomobile agencies only have access to local information, the classes of task objectives also 
require to be transferred and dynamically bound to the JVM so that the agent context can properly 
de-serialize and instantiate the TOs. The TOs class transfer may rely on the same mechanisms used for 
agent migration provided by the agency, or can be controlled by a specific permanent TO management 
related task objective based on TO_Inspector, for example, which disseminate the classes within each 
agency. This kind of mechanism has not been implemented in the current version of Ecomobile; in the 
scope of our experiments, all TOs classes are visible by each agency. In the current release of the JVM 
(1.3.1_01), class unbinding is not possible and still remains an open issue [FM99]. 

Another approach addressing the problem of agent migration in a FIPA environment, which is being 
currently investigated by means of the FIPA-OS agent platform in the scope of the FIPA-mob project, 
will be introduced in Section 4.5. All the techniques used in the scope of this project can also be applied 
in a Jade environment. 

Finally, the message exchange between two agencies could be improved in a future extension with the 
adoption of XML as a contents language and a particular ontology defining the tag semantics specific to 
Ecomobile. Exchange of more structured information related to the connectivity matrix will then enable a 
proof validation of the information received from the underlying node in case of connectivity changes. 
This procedure is also useful to update the connectivity matrix when no automatic detection can be 
triggered by the active node. The ACL-based protocol governing M-agent migration could also rely on 
the same ontology.  

The environment of the Ecomobile agency with an illustration of the agent migration procedure is 
depicted on Figure 4-7.  
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Figure 4-7. M-agent migration from one reactive machine to the other 

We can for example assume that an M-agent requests the agency to move it: the Φmigration behaviour 
invokes the moveTo() method (1) provided by the agency, and informs the agent of its destination. The 
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agency uses the UPI to determine that an inter-agency migration is required. The agent is then directly 
embedded in an ACL message and immediately sent to the corresponding agency (2). The sender agency 
continues its activities while the remote agency stores the message in an internal buffer until the cyclic 
behaviour processes it. The agency then places the M-agent at the right place and resumes the execution 
of the M-agent by calling the method onWarmUp() (3). This method inserts into the reactive machine 
the Φ-behaviour (4) which will be executed at the next instant. The next behaviour is actually Φmigration 
again, and it is called to perform a post-migration behaviour; internal variables related to the destination 
can be updated by the M-agent itself. 

Another view of the interactions between the Ecomobile components is depicted on Figure 4-8. 
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Figure 4-8. Interactions between the Ecomobile components during migration 

The agency cyclically performs the activation of the reactive machine followed by a check (2') on the 
arrival of incoming ACL messages. If a message contains an M-agent, the agency puts it in the correct 
place (3) and activates it via the onWarmUp() method (4). At the moment, only migration messages 
have been implemented. 

4.4.2 The LEAP Project 
The Lightweight and Extensible Agent Platform (LEAP)1 is a project which aims at the realization of a 
FIPA platform that can be deployed seamlessly on any Java-enabled device endowed with sufficient 
resources and with a wired or wireless connection, such as PDAs and smart phones. LEAP significantly 
contributes to providing network devices with an embedded agent platform.  

LEAP is based on Jade and provides different kernel models, depending on the target environment in 
which the agent platform has to be deployed [BP01]. The target environment is characterized by one of 
the three different Java platforms provided by Sun: the Java 2 Enterprise Edition (J2EE), the Java 2 
Standard Edition (J2SE) and the Java 2 Micro Edition (J2ME). The latter is intended for portable devices 
and includes two configurations: Connected Device Configuration (CDC), for devices with memory and a 
processing power comparable to that of a small PC, and Connected Limited Device Configuration 
(CLDC), for connected devices with strict restrictions concerning resources. Each platform has its own 
virtual machine model. 

                                                      
1 http://leap.crm-paris.com 

http://leap.crm-paris.com
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LEAP can be deployed on all three target environments thanks to an optimized and lightweight kernel 
module that manages the platform and the intra-agent activities according to the Jade behaviour model, 
and thanks to a communication module which handles the heterogeneity of the communication protocols 
based on different Message Transport Protocols (MTPs). The LEAP agent platform has been tested with 
the following emulators and end user devices: Palm Vx and Palm emulator, Quartz emulator, Psion 5MX 
coupled through IrDA with a mobile phone to the Internet and Siemens-MIDP-Emulator for mobile 
phones. 

Several tests with Jade and LEAP have been performed on a small network of Unix machines and PCs; 
an Ecomobile agency has been launched within the main container on each host. We have chosen to use 
the MTP HTTP add-on to address the inter-platform communication, the intra-platform communication 
relying on RMI for Jade and, for LEAP, on a particular optimized protocol called Jade Internal Command 
Protocol (JICP), which is well suited to wireless links. These successful experiments have encouraged us 
to investigate the deployment of LEAP in the scope of a Java-based active node environment. Although 
active nodes are not limited by the same computing power and memory restrictions as mobile devices, the 
small footprint of the LEAP platform should facilitate its integration as an active application on top of 
operating systems such as Janos or ANTS (see Section 1.4.1). 

4.4.3 Considerations about Efficiency and Scalability 
We have measured the size of an M-agent transferred from one machine to another. When the agent 
context is empty that is, when no task objective has been loaded, the M-agent, which is Base64-encoded 
in an ACL message has a size of 1'028 bytes. Since the ACL message is fully specified by FIPA and since 
the encoded agent in the message contents is also standardized, the size of the M-agent does not depend 
on the underlying platform or machine. 668 bytes are added to the original 1'028 bytes to form the 
complete ACL message including sender and receiver addresses, ontology and language-related 
information. Because of its efficient computational model, the size of a serialized task objective is small; 
for example, the task TO_Routing is 472 bytes long. Assuming that the limit of task objectives within the 
agent context is 100 TOs, the maximal size of the agent context is 47'200 bytes, an M-agent is therefore 
inferior to 50 KBytes. 

Ecomobile relies on an agent platform and therefore depends on the scalability of the agent platform 
itself. As far as our middleware is concerned, the addition of a new node in the network implies the set-up 
of the agent platform on the one hand, and the installation of the agency on the other hand. Ideally, the 
active node should be delivered together with a FIPA agent platform and the connection of this node to its 
neighbours should trigger an automatic detection mechanism in the NodeOS (see Section 1.4.1), so that 
the agent platform could inform the agency about the new platform and could launch a dynamic 
installation of the Ecomobile agency. Unfortunately, FIPA would first have to support mobile code before 
it could support  such an automated agents deployment. Therefore, the agent still has to be started 
manually; an automatic update of the connectivity matrix can then be triggered by the NodeOS, which is 
aware of the intra/inter-node connectivity. 

The installation of new agencies requires a registration to the Agent Management System (AMS) and 
may even require a registration to the Directory Facilitator (DF). Although the connectivity matrix can 
replace the DF in Ecomobile, intelligent agents belonging to other systems could wish to be informed 
about the presence of an Ecomobile agency and this information can be provided by the DF as long as the 
agent has registered automatically or manually. 
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According to the FIPA reference model, the ACL message transport layer relies on the Agent 
Communication Channel (ACC) as well as on different Message Transport Protocols (MTPs). This 
layered architecture allows the agent to send messages in a transparent way: the agent only needs to know 
the agent name but does not require any information concerning the remote platform transport 
mechanism. The ACC must therefore be informed of the existence of remote platforms and of their 
MTPs. The dynamic platform registration is not supported yet in the current implementation of most 
agent platforms. 

4.5 THE MOBILITY SUPPORT WITH FIPA-OS 
In the previous section, we have presented a possible implementation of Ecomobile with Jade. The agent 
migration is achieved by means of an ACL message exchange between Ecomobile agencies. The mobility 
paradigm in a FIPA agent platform however raises a wide range of issues related to code migration, such 
as the security issue or the agent architecture.  

FIPA-OS is the agent platform which we have considered in the first place because it was the first 
publicly open source project on the one hand, and because of its adoption in the scope of the project 
Shuffle1 on the other hand. 

Still, the implementation of Ecomobile turned out to be more difficult to achieve with FIPA-OS than 
with Jade because of the asynchronous thread-based task model that defines the intra-agent activity in 
FIPA-OS. Two main problems actually remain to be solved: the processing of asynchronous messages 
should not pre-empt the reactive machine, and the reaction activation policy should be defined within the 
task; in particular, the absence of any reactive instruction in the machine should not trigger any reaction. 
In Jade, these two issues are obviously handled by the cooperative scheduling policy and by the cyclic 
behaviour model.  

Nevertheless, in the scope of the FIPA-mob project2, several investigations have been conducted in 
parallel with the development of Ecomobile towards the mobility support in the FIPA-OS agent platform. 
The FIPA-mob project aims at defining an agency implementing the minimal requirements to support the 
migration of mobile agents in a FIPA-compliant environment. An important related work is the mCode 
framework [Pie98], which relies on a flexible and general approach for the management of code transfer 
including multiple threads mobile agent. We can consider FIPA-mob as a subset of mCode functionalities 
dedicated to a specific agent synchronous execution environment. 

FIPA-mob was not originally intended to be applied to Ecomobile, and thus was not designed to 
implement a reactive machine. This project explores new agent models and includes extensive 
performance tests. Our investigations have shown that FIPA-mob actually yields an efficient mechanism 
for agent transportation, platform registration, while it defines a flexible agent architecture model. All 
these concepts can be adapted to the Jade platform. 

In FIPA-mob, the agency is called Mobility Management System (MMS): although it differs from the 
Ecomobile agency, it also pursues objectives similar to those of an existing work in this area [Mak00]. 
The mobile agent system supported by the MMS is fully based on a cooperative message-oriented 
interaction model: each communicative act between agents or between an agent and the MMS requires a 

                                                      
1 Shuffle is a EU project involving Swisscom Innovations, which aims at studying agent-based approaches 
for the control of UMTS resources (http://www.ist-shuffle.org). 
2 FIPA-MOB is a project realized in the scope of a diploma work in the Telecom Group at the Department 
of Informatics of the University of Fribourg (Switzerland). 

http://www.ist-shuffle.org
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specific message. As in Ecomobile, each place is associated to a blackboard in which messages are stored 
and processed by the MMS via a priority queue. The communication is bound to a place and does not 
permit any communication between places. Any agent can send a message to a particular agent, broadcast 
it to all agents or simply deposit an anonymous message. 

The transfer of mobile agents is achieved with a separate communication layer external to the agent 
platform and by means of a particular interaction protocol. In the current version of the MMS, the mobile 
agents are transferred via RMI according to a client-server model. The interaction protocol ensures that 
the remote MMS has agreed and is ready for the reception of an agent, and requests the agent class when 
necessary by means of a specific class loader (class MMSClassLoader); it can be extended with 
authentication and security mechanisms. 

The FIPA-mob project also uses a modified version of the ACC - called PaiACC1 - implementation in 
order to support an automated remote-platform ACC cross-registration. This change allows any platform 
to register to a foreign FIPA-OS platform without any re-configuration and therefore without any 
undesired reboot of the remote platform. This mechanism makes the MAS more scalable and allows the 
MMS to disregard the underlying MTP. 

In addition to migration services, the MMS provides a mediation service, which allows mobile agents 
to communicate with FIPA agents, and a morphing service which allows mobile agents to be transformed 
into FIPA agents, and vice versa; in this case, the agents exhibit a polymorphism property. The morphing 
mechanisms are currently under investigations. 

The evaluation of the approach suggested in FIPA-mob is still subject to the elaboration of specific 
metrics, such as migration and restoration time, as well as adequate measurement techniques.  

4.6 SUMMARY  
The reactive programming paradigm constitutes an efficient framework to tackle the complex issues 
raised by reactive systems such as Ecomobile; the Junior framework provides a Java-based library for 
reactive programming and implements a cooperative synchronous concurrency model allowing 
instantaneous reaction to the presence of an event and delayed reaction to absence. 

Junior has been considered to implement the mobile behaviour scheme by means of reactive 
instructions; the advantages of such an approach are twofold: while the ecosystem behaviour can be 
simulated and analyzed with a time-reference model based on the reaction instants, the architectural 
design of the reactive machine including the dynamic insertion of reactive instructions authorizes a 
scalable deployment of Ecomobile in an asynchronous distributed agent platform. 

As we have shown, the reactive behaviours can be mapped onto reactive instructions as long as a 
solution is found to the potential causality problem for the Φinterference- Φdwelling scheme; for example, the Φ-
behaviours involved in the interaction can be contracted into one reactive instruction. The implementation 
of Ecomobile into a reactive programming framework finally leads to further investigations towards a 
formal analysis of the ecosystem behaviour and to the definition of other types of MBS; in this context, 
tools automatically generating formal automata derived from a reactive program [Bou00] should be 
considered. 

                                                      
1 This modified ACC has been mainly elaborated by the Parallelism and Artificial Intelligence (PAI) 
Group at the Department of Informatics of the University of Fribourg (Switzerland). 
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Jade is a FIPA-compliant agent platform defining cooperative synchronous behaviours. Jade is 
therefore a privileged platform considering our objectives. As we have seen, the Ecomobile agency is an 
agent itself; it provides the M-agent with a reactive machine and with components such as places and 
blackboards. Consequently, it can be said that a (lightweight) mobile agent system is implemented into a 
stationary FIPA agent. Jade's cyclic behaviour, which triggers the machine's reaction, can deal with the 
asynchronous ACL messages used to transport the M-agents. The LEAP kernel,  which provides a small 
footprint of the agent platform for computing and for memory limited devices like mobile devices or 
PDAs, also resorts to the Jade mechanisms. Finally, a combination of an active node operating system 
with LEAP would allow Ecomobile to be deployed into active networks. 
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Chapter 5 
Simulation and Results 

 

The Ecomobile concepts have been implemented by means of the reactive programming framework 
described in Chapter 4. We now present a number of experiments with particular emphasis on 
adaptability to the different network topologies considered for transport networks. We have performed 
functional simulation of the threefold architecture of Ecomobile thanks to a specific framework called 
GNMT which is briefly described in the first section of this chapter and in Appendix A. All the 
components of our middleware have been simulated, from the agent system, which includes the reactive 
machine and the agency services, such as migration, connectivity matrix, etc., to the M-agents, including 
an implementation of the MBS-low/high, and of the task objectives with their instances in local 
blackboards. Since the physical migration and the network itself (nodes and links) are simulated, no agent 
platform has been used in these experiments. 

Three network topologies have been considered, namely the Square, the Fantasy and the Swiss 
network. Each of these topologies has distinct characteristics and constitutes an interesting network 
configuration for the study of the ecosystem behaviour. The experiments have been performed with 
different Φ-behaviours parameters so that their influence on the system's stability can be discussed along 
this chapter. 

The evaluation of the Ecomobile infrastructure obviously requires specific metrics adapted to behaviour 
analysis; according to our architectural model, there are two main categories of metrics: MBS-related 
metrics are specific to the M-agents general behaviour while TO-related metrics are specific to the task 
objectives. The MBS-related metrics can be divided into two subcategories: the metrics fully depending 
on the MBS, such as population size and visit frequency, and the metrics depending on the TO lifecycle, 
such as diffusion ratio and agent context size. Examples of TO-related metrics are "number of discovered 
paths" or "current Quality-of-Service". 

The response of Ecomobile to the dynamic insertion of task objectives has been analyzed through four 
generic TO models presented in Section 3.6: TO_Travel, TO_PathSelect, TO_ExhaustivePathFinder and 
TO_Routing. The TO-related metrics which are presented in this chapter have been developed in this 
context. 

5.1 THE GNMT FRAMEWORK  

5.1.1 Introduction 
The Generic Network Management Tool (GNMT) is a functional multi-layer network simulator which has 
been jointly developed by Swisscom Innovations and the Telecom Group of the Department of 
Informatics of the University of Fribourg. The GNMT development has been motivated by the primary 
objective of this thesis, which consisted in deploying intelligent and mobile agents in the optical transport 
network in order to address the complexity of network management and to build up an intelligent 
transport layer supporting new optical services. This is the reason why GNMT has been used as a 
simulation framework for Ecomobile. We can assume that multiple client layers may be interconnected to 
use the physical layer services. In this context, the simulator, which aims at supporting dynamic and 
asynchronous simulation with different traffic generators, provides a component-oriented framework 
which makes interactions between network layers possible.  
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The development of GNMT is part of the OPTIMA project (see Section 7.1) and is steadily becoming 
an open source project1. GNMT is related to similar projects like the open Network Management System 
project (open NMS)2, which aims at the creation of an enterprise grade network management platform, or 
like JavaSIM3, which is a component-oriented, compositional simulation environment. Both these 
projects are still at a developmental stage, but although they constitute interesting approaches, they do not 
meet our requirements as far as multi-layer transport network and mobile agent-based solutions are 
concerned. 

GNMT has been developed by means of the Model-View-Controller (MVC) design pattern [GHJ+95]. 
While the model relies on two different architecture types which will be detailed in Section 5.1.2, the 
view and the controller are presently based on a commercial third-party graphical library. GNMT 
supports both centralised and decentralised solutions, so that comparisons between these two approaches 
become possible. Centralised algorithms for optical path allocation, including routing algorithms, are 
currently being developed at Swisscom Innovations, whereas the simulator is used at the University of 
Fribourg for the implementation and the analysis of different approaches based upon mobile agent 
middleware, such as Ecomobile, and for the study of various deployment scenarios by means of FIPA 
agent platforms. A more detailed description of the GNMT framework and of its network model can be 
found in Appendix A. 

5.1.2 The Core GNMT Network Model 
The core GNMT network model is inspired by two different approaches characteristic of modelling layer 
networks: firstly, the generic functional architecture of ITU-T transport networks [G805_95] proposes a 
functional decomposition of the transport network in terms of layering and partitioning; while the 
layering deals with the separation between distinct transport technologies, the partitioning consists in 
subdividing the functional components within a single layer. This model supports multiple layers which 
can be interconnected according to a client-server relationship; in a layer network, the link connections 
formally provide connectivity between topologically adjacent sub-networks; they are provisioned by the 
services of a trail4 at another layer. This layer is known as the server layer, while the layer in which link 
connections are issued is called the client layer. 

The second approach is based on the ISO layered protocol model [T96]; it consists in a functional 
decomposition relying on a seven-layer protocol model. Since the ISO model was originally conceived 
within or around a single transport layer without any consideration for partitioning, it offers a perspective 
which is different from the approach proposed in the ITU-T model. The potential compatibility between 
the two models is still under discussion at the ITU-T. 

                                                      
1 http://gnmt.sourceforge.net 
2 http://www.opennms.org 
3 http://www.javasim.org 
4 A trail is defined as the combination of the connection information augmented with additional overhead 
information used to achieve the Operations, Administration and Maintenance (OAM) objectives. 

http://gnmt.sourceforge.net
http://www.opennms.org
http://www.javasim.org
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Figure 5-1. Core GNMT network model inspired from the ITU-T and ISO models. 

The abstract core GNMT network model of is a generic representation of the main network components 
contained in a multi-layer transport network. Each component must therefore be specialized according to 
the network technology which is being considered in the simulation. 

In the beginning, the network may be composed of multiple layers. A layer (class Layer) is defined as 
a collection of nodes associated with the same transport technology (IP, ATM, SDH, etc.) and therefore 
refers to a specific protocol. The layered model of the GNMT is composed of the lowest layer known as 
physical layer, on top of which logical or virtual layers are interconnected. 

Within the same layer, the node is designated as a layer entity (class LayerEntity) and represents 
any kind of network element such as a cross-connect, an optical switch, a router, etc. Layer entities are 
horizontally connected with links (class Link) according to a certain topology. In a client-server multi-
layer relationship, each layer entity belonging to the server layer can supply a collection of Access Points 
(APs) to other layer entities belonging to client layers (higher layers), so that the entities are vertically 
connected. According to the ITU-T model, the client layer entities, which have links to a server layer, 
correspond to Connection Points (CPs). Future releases of GNMT should allow a layer entity to 
implement several CPs. 

Still, layer entities can only be added in the physical layer; the construction of virtual layers is 
performed through a selection of nodes existing in the physical layer. The connection between nodes is 
established freely, so that each virtual layer may have its own topology. 

The concept of node (class Node)  gathers all the layer entities belonging to the same physical entity 
that is, the lowest-level node in the physical layer. The node actually establishes a relationship between 
the ITU-T model and the ISO layered protocol model. 

The port (class Port) is the abstract object which establishes a connection between two entities; it 
contains information related to the protocol and to direction property by means of the two attributes in 
and out, leading the links to be defined as uni/bi-directional. The port connectivity matrix (class 
PortConnectivity) gives information concerning the node connectivity and determines the 
association between input and output ports. 
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Diffusion ratio, i.e. propagation speed  (10) 
of the TO within the ecosystem  

Mean context size, i.e. number of  (11) 
TOs in the Agent Context

Deploying Ecomobile into a transport network therefore consists in placing an agency at each layer 
entity of the physical layer. The contents of the switching matrix have to be reflected in the agency's place 
connectivity matrix. 

5.2 NOTATION, METRICS AND ASSUMPTIONS 
This section defines the MBS-related metrics. TO-related metrics will be introduced in Section 5.4. The 
simulation results are presented graphically according to the following definition: the X-axis indicates the 
number of Junior instants (see Section 4.1) and thus reflects the temporal dimension, while the value of 
the metrics is depicted on the Y-axis. 

NOTATION 
 
λi an M-agent in the ecosystem population (1) 
AC(λi , t) Number of TOs in agent λi at time t (agent context) (2) 
τ(λi , t) Indicates if there is at least one task objective (3) 
 in λi, at time t  
 (0 if AC(λi , t)=0, 1 if AC(λi , t) > 0) 
MBS-low/high Mobile behaviour scheme with low/high diffusion (4) 

A detailed description of MBS-low/high (4) can be found in Section 3.4. 

METRICS 
 
P(t) Population size, i.e. number of M-agents at time t (5) 
V(Ni, t) Visit frequency of M-agents within the node Ni (6) 
AG(Ni, t) Number of agents present in node Ni (7) 
IN(Ni, Lj, t) Number of agents arriving via link Lj into node Ni (8) 
OUT(Ni, Lj, t) Number agents leaving from Ni via link Lj (9) 
 
 
 

 

 

 

 

The population size P(t) (5), the node visit frequency V(Ni, t) (6), the number of agents residing within a 
node (7) and the link visit frequency (8)+(9) do not directly depend on the task objectives themselves, 
except for the execution time. These metrics mainly depend on the mobile behaviour scheme; in other 
words, they are typically related to the basic ecosystem behaviour. On the contrary, the diffusion ratio 
D(t) (10) and the mean context size C(t) (11) strongly rely on the TO lifecycle. The inter-TO cooperation 
strategy, in particular, plays an important part as far as dissemination speed and regulation of the agent 
context size are concerned; unless cooperation has been defined, the context can grow exponentially and 
lead to performance degradation.  
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The measurement of D(t) and C(t) therefore provides an important feedback on the ecosystem 
behaviour, which can be used for tuning and improving the efficiency of the cooperation strategy. A 
possible extension of Ecomobile would consist in discovering how to automate this process. 

According to the MBS definition, the migration time, designated by phiMigration, the waiting time, 
designated by phiDwelling, and the execution time, designated by phiAction constitute the major 
ecosystem parameters. Details about the behavioural strategies are given in Section 3.4.2. 

We have performed several experiments with different values of ecosystem parameters; in this 
document, we propose to examine the Ecomobile behaviour with the following significant values: 
 

 phiMigration migration time for Φmigration - random value between 0 and {10, 20} 
 phiDwelling waiting time for Φdwelling - fixed value equals {0, 5, 15}  
 phiAction execution time for Φaction - 0, since we assume fast TO execution and 
  the execution time can be combined with the migration time. 

As will be described in Section 5.3.2, MBS-low implements a fixed waiting time value while MBS-high 
implements a heuristic-based waiting time function. Simulation based on the above values will be 
presented along this chapter. In most cases, the simulation has been performed during 10'000 reactions 
(instants).  

Since the network topology is composed of nodes and bi-directional single links, an M-agent can travel 
along a link in both directions; for the same reason, an M-agent which is leaving a node can also select 
the link from which it has arrived. 

5.3 BEHAVIOURAL ANALYSIS OF THE MBS 
Three network topologies have been defined for the analysis of the ecosystem behaviour in various 
network configurations: the Square network is a regular topology composed of 21 nodes and 32 links and 
exhibiting symmetric properties; regular topologies are frequently used in optical transport networks such 
as rings or circular topologies. The Fantasy network, which is composed of 18 nodes and 23 links, is a 
random network presenting an "exotic" connectivity scheme with different topology patterns (square, 
isolated nodes, bus, etc.). Finally, the Swiss network, composed of 33 nodes and 50 links, represents the 
optical transport network in Switzerland, in which each fibre is assumed to contain a single wavelength.  

In addition, we have experimented other topologies such as circular, multi-ring and random networks, 
with different values of ecosystem parameters. However, since simulation results for this kind of 
networks lead to the same conclusions as those presented in this chapter, they are not presented in this 
document.  

5.3.1 Node Visit Frequency 
Since task objectives are activated during the M-agents' node visits, the node visit frequency V(Ni, t)  
constitutes a major issue in Ecomobile, as well as in most mobile agent systems. The node visit frequency 
metric therefore has a deep impact on the system's performance. A node with a high nodal degree1, which 
is therefore regarded as a "critical" node, is also expected to receive more visits than a node with a low 
nodal degree so that actions implemented into the task objectives can be more frequently activated. The 
measurement results over 10'000 instants for a regular network regarding visit frequency, with MBS-low 

                                                      
1 The nodal degree of a node corresponds to the number of links connected to this node. 
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and MBS-high, is depicted respectively on Figure 5-2 and Figure 5-3. This metric turns out to be 
particularly useful when the simulation is performed for debugging purposes; an abnormal growth of this 
number can quickly be detected as an indication of an MBS deficiency. 
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Figure 5-2. The Square network (MBS-low, phiDwelling=5, phiMigration=10) 
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Figure 5-3. The Square network (MBS-high, phiDwelling=5, phiMigration=10) 

The value of AG(Ni, t) reflects the number of co-residing agents at the instant t; the value indicated on the 
figure corresponds to the last simulation instant. 

The simulation results have shown that the number of M-agent visits, in this kind of network, is inferior 
by a factor of about ten to the total amount of reactions; the value of the visit frequency moreover 
depends on the nodal degree. Although the MBS-high exhibits a breadth-first parallel search behaviour, it 
also reveals a lower visit frequency for the same simulation duration. This surprising outcome is the result 
of the interference-absorption loop characteristic of the MBS-high: the M-agent makes sure that no other 
agent resides in the same place over a period defined by the waiting time and thus spends more time 
within the node it is visiting. 

Similar differences can be observed between MBS-low and MBS-high regarding the other topologies; 
we will therefore present, for the next topologies, only simulation results based upon MBS-low. 
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Figure 5-4. The Fantasy network (MBS-low, phiDwelling=5, phiMigration=10) 

In the Fantasy network depicted on Figure 5-4, the visit frequency also appears to match the nodal 
degree. Although the network is asymmetric, the number of visits corresponds to a certain nodal degree 
reaching the same order of magnitude regardless of the node location. This interesting property results 
from the density-dependence property of the territoriality paradigm (see Section 3.4), on the one hand, 
and from the MBS definition on the other hand; the M-agents population is automatically regulated 
according to the visit frequency, which directly depends on the nodal degree; the cloning strategy defined 
in the MBS actually implies an investigation of all the links; the number of clones therefore equals the 
nodal degree. Obviously, this property can be observed when the migration time and the execution delay 
are statistically the same for each link and node. 

Finally, the Swiss network has been simulated; the results are presented on Figure 5-5. 
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Figure 5-5. The Swiss Network (MBS-low, phiDwelling=5, phiMigration=10) 

The first number represents V(Ni, t) while the second number is AG(Ni, t). As in the previous networks, the 
visit frequency depends on the nodal degree. 

5.3.2 Link Visit Frequency 
Whereas the visit frequency indicates the TOs' execution rate, the TOs' dissemination depends on the 
M-agents' movement. In this context, the number of agents arriving into a node and leaving it constitutes 
a precious indication. This metric is called link visit frequency. 

The TOs are efficiently disseminated within the network as long as the number of M-agents arriving at 
a node is approximately identical to the number of M-agents leaving it. This condition was met in most 
cases when we implemented MBS-low. Figure 5-6 indicates the values of IN(Ni, Lj, t) and OUT(Ni, Lj, t) 
for a portion of the Square network.  
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Figure 5-6. Number of M-agents arriving (first value) and leaving (second value) with MBS-low. 

However, turning to MBS-high, we could observe that the link visit frequency was not well distributed. 
When a node exhibits a high nodal degree, the interference-absorption loop of MBS-high may induce the 
M-agent to spend an infinite time within a node. The resulting overload of meeting opportunities leads the 
TOs belonging to the residing M-agent to be blocked. The agent context is also subject to numerous 
transfers which may cause a profusion of TOs to be offloaded into the blackboard. This effect is depicted 
on Figure 5-7: while a lot of agents are arriving into the central node, only a few agents are leaving. 
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Figure 5-7. Overload of meeting opportunities (phiDwelling=5, phiMigration=10) 
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In order to overcome this problem, we have introduced a specific heuristic-based waiting time function 
which is defined by the following expression: 
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The maximum waiting time could also be adjusted dynamically according to the variation of IN and OUT 
by means of linear functions, but this still remains to be experimented. 

The waiting time is now automatically adapted at each node. According to this expression, the 
difference between the number of arriving agents and the number of exiting agent must be less than a 
certain value1; if the difference exceeds this value, the waiting time is set to zero, so that the M-agent does 
not spend any more time expecting possible meetings. If the M-agents number is important, the 
interference-absorption loop remains efficient and continues to guarantee the population regulation. 

Figure 5-8 shows the new values according to the conditional waiting time. 
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Figure 5-8. Link frequency visit with the heuristic-based waiting time function 

It appears that the heuristic-based waiting time function described above has a particularly efficient 
balancing effect on the M-agents' migration. The number of exiting agents is now very close to the 
number of arriving agents. The same waiting time function could also be applied to MBS-low in order to 
slightly improve the link visit balancing effect, thus making the Φdwelling behaviour independent from the 
MBS. 

                                                      
1 This value has been determined empirically and is adequate for the three topologies. 
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5.3.3 Population and Stability 
We present simulation results concerning the evolution of the M-agent population over time; stability has 
been tested by means of trend lines and simple average calculation. 

The monitoring process, which consists in storing the metrics values every 10 instants, maintains the 
number of M-agents and updates it when the Φbirth and Φdeath behaviours have been performed. Figure 5-9 
illustrates the general evolution pattern when Ecomobile is started by launching an M-agent anywhere in 
the network.  
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Figure 5-9. Example of the evolution of the M-agent population size over time 

No M-agent is present at the beginning of each simulation and the population size is equal to zero. When 
the first M-agent starts its lifecycle in the network, it clones itself according to the MBS, and thus 
immediately contributes to the increase of the population; alternatively, meeting opportunities lead to the 
removal of agents and therefore contribute to the decrease of the population. 

The first instants of the simulation are dedicated to the exploration of the network; the population 
grows rapidly until the first meetings between M-agents occur. A few additional instants are still 
necessary before a relative stability can be attained. 

The evaluation of the ecosystem stability requires the observation of the population size average over a 
long period of time. In order to assess the mean value, we propose to use a polynomial trend line of order 
6 calculated with the least squares fit through the points representing the value of P(t). 

A more complex analysis of the ecosystem population and stability requires particular techniques 
referred to as population ecology, which provide different statistical approaches by means of data analysis 
techniques applied to temporal series, such as moving average or spectral analysis; this kind of 
investigation however remains out of scope of this work1. 

The M-agent population size in the Square and Fantasy networks respectively appears on Figure 5-10. 
The results reveal different graphic patterns according to the topology, to the MBS and to different values 
of Φdwelling. Behaviour has been analyzed for a waiting time both inferior and superior to the migration 
time (Φmigration) which has been fixed to 10 instants. The mobile behaviour scheme MBS-high implements 
the heuristic-based waiting time function described in Section 5.3.2. In order to evaluate the difference of 

                                                      
1 A thorough discussion of population ecology can be found at 
http://www.ento.vt.edu/~sharov/popechome/welcome.html 

http://www.ento.vt.edu/~sharov/popechome/welcome.html
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population size due to the introduction of our waiting time function, Figure 5-12 still illustrates the 
population size with MBS-high considering a constant waiting time. 
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FANTASY NETWORK (18 NODES) 
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Figure 5-10. Evolution of the M-agent population over time (phiMigration=10) 

Our observations start with the mean population size. Since the territorial behaviour of M-agents implies 
that each node is investigated by an M-agent "defending" its territory (see Section 3.4), the population 
size should approximate the number of nodes and grow when the migration time increases or when the 
waiting time decreases. 
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When phiDwelling is inferior to phiMigration, both MBS reveal a number of M-agents significantly 
superior to the number of nodes: the meeting opportunities are actually reduced because M-agents spend 
more time for migrating, and the cloning behaviour therefore occurs more frequently. The average 
number of M-agents is slightly higher in MBS-high than in MBS-low, because of the interference-
absorption loop with systematic cloning. This behaviour also brings about important variations at each 
reaction, i.e. high number of births and deaths. 

When phiDwelling exceeds phiMigration, MBS-low exhibits the best performance in terms of adequacy 
between the number of nodes and the population size. On the contrary, MBS-high reveals variations in the 
M-agent population which seem more difficult to explain. The graphic pattern first depends on the 
network topology: in regular networks like the Square network, the population size oscillates between its 
extreme values; the symmetric properties of the network combined with an important waiting time 
actually leads to a kind of lifecycle synchronism between all the M-agents. This synchronism effect does 
not appear in asymmetric networks like the Fantasy network, for example. 

Our simulation has revealed that the M-agent population fits the network size when phiDwelling 
exceeds phiMigration, in MBS-low. In the other cases, the population size is comprised between the 
network size and twice the network size. Since the population size is correlated to the node visit 
frequency, which therefore determines the frequency of task objective activations, it appears preferable to 
opt for a population size slightly bigger than the network size. A more important population size will also 
indirectly favour M-agents with lower agent context size, since the TO instances will be spread over the 
agent population. For these reasons, we have chosen to keep the value of the waiting time inferior to the 
migration time. 

We now propose to observe the impact of the migration time on the population in the Swiss network. 
Migration time is randomly computed between 0 and a maximum value (10 or 20 in this case). Figure 
5-11 presents the M-agent population. In this case, the simulation duration has been extended to 20'000 
instants. 
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Figure 5-11. M-agent population in the Swiss network (33 nodes) 

The population average is re-computed at each variation during the simulation. The increase of the 
migration time (or of the execution delay) obviously tends to favour an augmentation of the population, 
because agents which are migrating or performing a task cannot interfere with other agents. 

Still, MBS-low including a migration time inferior to the waiting time reveals a population of M-agents 
matching the number of nodes.  
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Figure 5-12 depicts the evolution of the population when the M-agent exhibits a MBS-high with 
constant waiting time. There is a difference of about 10 agents in the M-agent population between this 
diagram and the one corresponding to the heuristic-based waiting time function (see Figure 5-10). 
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Figure 5-12. Population size with constant waiting time (MBS-high, phiDwelling=5, phiMove=10) 

Although various scenarios with different waiting time and migration time have been considered for the 
analysis of the MBS, the experiments presented in Section 5.4 are based on the behavioural analysis of 
task objectives and are restricted to the simulation of M-agents implementing a waiting time of 5 instants 
and a migration time of 10 instants. Both MBS will be compared. 

5.4 BEHAVIOURAL ANALYSIS OF TASK OBJECTIVES 
This section is devoted to the study of the ecosystem response to the insertion of some of the task 
objective models presented in Section 3.6. The metrics defined in Section 5.2, in particular the mean 
context size C(t) and the diffusion ratio D(t), will help us to evaluate their performance. Based on these 
metrics, particular attention will be paid on the implementation strategy as regards the inter-TO 
cooperation and the TO lifecycle. Further TO-related metrics will be defined in the corresponding 
sections. 

According to the Ecomobile architecture, the task objectives are deposited into the blackboard of a 
particular place, i.e. of a particular node. As we have already seen, the M-agent population needs a few 
instants in order to reach an equilibrium so that it would not be appropriate to insert task objectives at the 
very beginning of the simulation. This is the reason why a mechanism has been implemented into the 
blackboard in order to program a delay for the loading of task objectives; according to the M-agent 
population analysis (see Section 5.3.3), we have associated a delay of 500 instants to each TO at the 
beginning of the simulation. It also has to be noted that the size limit of the agent context has been fixed 
to 100 TOs.  

The persistence mechanism used for all the TOs leads the M-agent, which has no available place for 
hosting TOs, to offload them into the blackboard. This strategy prevents the TOs from being untimely 
removed from the ecosystem; the complexity of the behavioural analysis is consequently reduced, and the 
TOs keep the entire control of their lifecycles. 

Finally, the Swiss network will constitute our major case study for these experiments; the three 
networks have been considered in the context of TO_Routing only. 

5.4.1 TO_Travel 
The TO_Travel task objective (see Section 3.6.1) successively builds cycle-free itineraries in a continuous 
way; these itineraries represent topology subsets. The cooperation mechanism removes redundant TOs 
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containing identical itineraries. When a cycle has been detected, the itinerary is re-initialized and the task 
objective continues its trip. Therefore, and according to the TO lifecycle, a TO can only be removed from 
the ecosystem during the cooperation phase by another TO instance. 

Figure 5-13 shows C(t) and D(t) for this particular TO model. 
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Figure 5-13. Analysis of C(t) and D(t) of TO_Travel with MBS-low and MBS-high 

The mean agent context size C(t) is characterized by an important difference between MBS-low and MBS-
high. The "high" diffusion of the latter favours a rapid exploration of different topology subsets; the 
M-agents are provided with TO instances owning distinct itineraries and consequently avoid their 
removal during the cooperation phase. On the contrary, MBS-low rapidly has to face TO instances having 
the same itinerary rapidly. 

The cooperation strategy implemented into the task objective typically consists in eliminating the TOs 
simultaneously evolving in the M-agents; knowledge redundancy appears after a certain time in this kind 
of TO when the TOs' itinerary is cleared and re-started; the itineraries being exempt of cycle, two meeting 
agents can not have identical itineraries. 

The diffusion ratio D(t) reveals the rapid TO dissemination when the M-agents have implemented the 
MBS-high. In both MBS, all the M-agents in the ecosystem contain at least one TO instance (D(t)=1) after 
750 instants. 

5.4.2 TO_PathSelect 
The TO_PathSelect task objective implements a pre-planned itinerary to be followed by the TO. The path 
is described in the TO's init() method (see Section 3.6.4). In order to evaluate the TO's performance, 
we propose to introduce a new metric called path completion which indicates how many pre-specified 
nodes have already been visited by the TO, compared to the total itinerary length. Figure 5-14 shows the 
number of instants required by the TO to reach its destination.  
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Figure 5-14. Path completion over time 

The simulation results clearly show that the MBS-high requires more instants than MBS-low to reach its 
destination: as we have seen, M-agents, and therefore task objective instances, spend more time within a 
node because of the interference-absorption loop. 

It has to be noted that, in this kind of TO model, the agent context is constantly equal to 1; the 
cooperation strategy guarantees that only one TO instance survives. 

5.4.3 TO_ExhaustivePathFinder 
The TO_ExhaustivePathFinder task objective is devoted to the extraction of all cycle-free topology 
subsets, or possible paths between two nodes given in the init() callback (see Section 3.6.5). Since 
each TO instance follows a different path, the co-operation mechanism does not step in. The blackboard 
is used to store internal knowledge of each TO instance and thus allows a systematic path investigation. 

In TO_ExhaustivePathFinder, a simple test has been added in order to extract the longest path; this test 
simply consists in comparing the number of nodes visited by the task objective instance that has reached 
its destination, to the current path length. The simulation results are depicted on Figure 5-15. 

This TO model, which does not implement any form of the Dijkstra algorithm or inter-TO 
collaboration, allows us to study the ecosystem behaviour with a minimal algorithm. 
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Figure 5-15. Finding all network paths between two nodes 

The longest path has been established after 2'500 instants only; additional constraints on the path, like 
path quality, availability, and so on, will obviously lead to an increase in the convergence time. 

The analysis of the agent context size and of the diffusion ratio reveals an important difference between 
MBS-low and MBS-high; in addition to the interference-absorption loop effect, we can observe that the 
general behaviour of the two MBS is significantly different: the systematic cloning mechanism of MBS-
high implies that the mean context size undergoes important variations, because the TO has strong control 
over its trajectory and the TO instances are therefore often offloaded and then reloaded; this effect also 
influences the diffusion ratio. 

According to this approach, the number of paths is generally high and strongly depends on the network 
topology; the number of paths may grow exponentially and considerable time is required to proceed to an 
exhaustive path search. The cooperation mechanism and additional nodal objects should improve the 
algorithms and reduce the number of instants; the introduction of labels as defined in Dijkstra algorithms, 
for example, provides a simple and efficient solution, so that the TO instance uses the local information to 
make immediate decisions. Whether it is necessary or not to improve the rapidity of convergence 
however depends on the type of application: an on-line monitoring process running parallel to working 
connections is not required to provide immediate responses. 

5.4.4 TO_Routing 
The TO_Routing task objective constitutes an important model for routing purposes (see Section 3.6.6); 
its behaviour has therefore been analyzed for the three network types. This TO is based on a stochastic 
navigation model and performs regular updates of the routing tables according to the connectivity 
discovered by the TOs. We assume that a routing table is present in each port (see Section 5.1.2) of each 
node, so that all the possible destinations linked to a certain output link can be determined, as happens 
with the OSPF routing algorithm. However, link-related metrics are specific to the network technology 
and they can be easily inserted into the TO body, so that they have not been considered in these 
experiments. 
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In order to measure the performance of TO_Routing, we have introduced a particular metrics called 
Connectivity Convergence (CC). CC(t) is defined as the number of entries of all the routing tables divided 
by the expected number of table entries. In the beginning, all tables are empty and CC(0)=0. CC(t)=1 
when all routing tables have been fully completed that is, when full connectivity has been discovered for 
each node.  

The cooperation strategy of this TO model consists in testing the itinerary and eliminating the slave 
instance whose knowledge is included in the master instance. 

The simulation results are presented on Figure 5-16; connectivity convergence, agent context size and 
diffusion ratio have been measured for the three networks. 

SQUARE NETWORK 

Connectivity convergence

0

0.2

0.4

0.6

0.8

1

500 700 900 1100 1300 1500

Time (#Jr Instant)

C
C

(t)

MBS low MBS high  

Context size 

0

20

40

60

80

100

120

500 700 900 1100 1300 1500
Time (#Jr Instant)

C
(t)

 

Diffusion rate

0

0.2

0.4

0.6

0.8

1

500 600 700 800 900 1000

Time (#Jr Instant)

D
(t)

 

FANTASY NETWORK 

Connectivity convergence

0

0.2

0.4

0.6

0.8

1

500 700 900 1100 1300 1500
Time (#Jr Instant)

C
C(

t)

MBS low MBS high  

Context size 

0

20

40

60

80

100

500 700 900 1100 1300 1500
Time (#Jr Instant)

C
(t)

 

Diffusion rate 

0

0.2

0.4

0.6

0.8

1

500 600 700 800 900 1000

Time (#Jr Instant)

D
(t)

 

SWISS NETWORK 

Connectivity convergence 

0

0.2

0.4

0.6

0.8

1

500 700 900 1100 1300 1500

Time (#Jr Instant)

CC
(t)

MBS low MBS high  

Context size

0

20

40

60

80

100

120

500 700 900 1100 1300 1500
Time (#Jr Instant)

C(
t)

 

Diffusion rate 

0

0.2

0.4

0.6

0.8

1

500 600 700 800 900 1000
Time (#Jr Instant)

D
(t)

 
Figure 5-16. Convergence speed, mean context size and diffusion ratio 

In this particular TO model, the connectivity convergence is approximately the same in both MBS; MBS-
high exhibits a better performance in regular networks. In larger networks, like the Swiss network, the 
convergence is similar between the two MBS. The mean context size however differs between the MBS. 
MBS-high reaches the maximum number of TOs during a certain time; the cooperation strategy then 
involves a natural reduction of the size and a re-building of the connectivity information. This renewal 
effect actually results from the combination of the cooperation strategy with the refreshment of the 
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itinerary, after a certain number of nodes have been reached. The analysis of this task objective reveals in 
particular that the inter-TO collaboration plays an important role in the regulation of the M-agent size. 

Finally, the diffusion ratio increases with similar speed in both MBS. When the maximum has been 
reached, the M-agent society continuously accounts for at least one task objective instance in each agent 
context according to the TO lifecycle. 

This TO might be improved by the exchange of the itinerary knowledge between two meeting agents, 
as in the MITAgent approach (see Section 1.3.1). 

5.4.5 Discussion 
As we have seen, the MBS-high does not generally exhibit better performance than the MBS-low. Two 
major reasons explain this phenomenon: the interference-absorption loop delays the M-agent in each 
network node on the one hand, and the agent context may lead to frequent TOs offload, temporarily 
suspending TO activity because of rapid growth of the mean context size, on the other hand. However, 
the task objectives are quickly disseminated in the network in the first instants of their lifecycle. MBS-
high can be thus considered for critical monitoring functions which do not resort to complex knowledge 
and do not require an extensive exploration of the network. The introduction of the non-deterministic 
migration present in MBS-low, on the contrary, turns out to be more efficient for the implementation of 
explorative task objectives. 

The simulation of TO models has revealed that the agent context size is generally inferior to 100 task 
objectives, which confirms that Ecomobile is particularly well suited to the transfer of small agents that 
can perform complex tasks in spite of their size. 

The combination of two different M-agent societies, the first one implementing MBS-low, and the 
second MBS-high, may constitute an interesting approach improving the overall performance of 
Ecomobile. An internal monitoring function could be used in order to make decisions concerning the 
possible transfer of TOs from one type of society to another. More generally, this kind of behaviour 
resorts to the use of social laws leading to the control of agents by a particular population of agents acting 
as supervisors. 

5.5 SUMMARY 
The analysis of the Ecomobile infrastructure has led to the development of a simulation framework called 
GNMT. The network environment relies on a network model inspired from the transport architecture 
defined by ITU-T and by the ISO model. Each network node implements an Ecomobile agency, and all 
the components belonging to the conceptual framework of Ecomobile have been implemented in order to 
simulate a real environment. No agent platform has been considered during the simulation, but the 
deployment of our infrastructure with Jade has been extensively discussed in the previous chapter. The 
time reference model issued from the reactive approach defines the instant during which the reactive 
behaviours are being executed. 

Three kinds of network topology have been proposed: the Square, Fantasy and Swiss networks. Each 
network presents various topology configuration exhibiting different characteristics (regular/irregular, 
symmetric/asymmetric, etc.) as well as different network sizes. 

The simulation of Ecomobile was followed by a behavioural analysis based on MBS-related metrics, 
such as population size, node and link visit frequency. Different values of waiting time and migration 
time have been considered and their impact on the ecosystem behaviour has been shown. The particular 
issue related to the interference-absorption loop in MBS-high has prompted us to define a heuristic-based 
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waiting time function in order to achieve a better balance in the link visit frequency. A behavioural 
analysis of the task objectives has then been performed, based upon TO-related metrics such as agent 
context size and diffusion ratio. The TO_Travel, TO_PathSelect, TO_ExhaustivePathFinder and 
TO_Routing task objective models, which rely on different navigation models, have been simulated. In 
this context, specific metrics like path length, path completion and connectivity convergence have 
allowed preliminary evaluation of the tasks depending on the mobile behaviour scheme. The simulation 
has also allowed us to identify the parameters influencing the ecosystem behaviour as well as the 
response of the ecosystem to the insertion of task objectives. MBS-low, which contains a non-
deterministic migration function, leads to a better performance for task objectives requiring complex 
knowledge and extensive exploration of the network whereas MBS-high, which presents similarities to 
breadth-first parallel search algorithms, exhibits a rapid diffusion of task objectives during the first 
instants of the simulation and therefore allows a rapid deployment of monitoring tasks within the whole 
network, for example. 

Simulation on large scale networks still remains to be performed. We are also left with an open 
question related to the stability of the TO-related metrics: how does the mean agent context size evolve 
with regards to the network size, in case of the use of TO_Travel, for example? The territorial behaviour 
of M-agents might imply that the network size does not really influence the mean agent context size when 
the task objective itself does not depend on the number of nodes or on the network topology; this however 
remains to be proved. 

The important amount of simulated objects may also require the simulated environment to run on 
several machines. In this context, a relatively simple extension of GNMT would consist in coupling it 
with an agent platform (like Jade); the UPI-based address would then allow the M-agent to move from 
one simulation environment to another, by means of the real agency services. In this case, each GNMT 
instance would simulate a part of the network. 
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Chapter 6 
The Optical Transport Network 

 

The improvement of management solutions for the future Optical Transport Network (OTN) actually 
constitutes one of the initial motivations of this thesis aiming at the development of a mobile agent based 
infrastructure. Transport networks based on Synchronous Digital Hierarchy (SDH) or on Asynchronous 
Transmission Mode (ATM) used to be considered as the favourite transmission media networks. 
Advances in the field of wavelength multiplexing have recently made the optical network the most 
promising technology for the support of a multitude of services demanding high bandwidth, such as 
voice, audio, video and Internet traffic. Since the technology of optical devices is constantly evolving, the 
business and technical costs bound to the replacement of legacy components however make full upgrades 
of transport networks difficult. Future backbone1 optical networks will therefore have to cope with a wide 
range of multi-layer configurations and numerous heterogeneous network components. In this 
perspective, OTN is regarded as a physical layer able to support several types of clients, such as IP, SDH, 
ATM or Ethernet. 

The incredible growth of the bandwidth supported by a single optical fibre, as well the complexity of 
future IP/WDM mesh networks, however require the implementation of efficient mechanisms for the 
management of OTN, especially as far as reaction speed in case of fibre break and/or component damage 
are concerned. Network survivability has to be considered in a context of increased competition and 
deregulation as well as high expectations from the network users. In addition, the complexity of multi-
layer technologies and increased network capacities places stringent constraints on the network 
capabilities to recover from any type of failure [DWY99]. 

In spite of these critical issues related to the survivability of OTN, the emergence of advanced optical 
components, such as optical switches or transponders, allow the implementation of complex networking 
functions into the optical domain without the recourse to any optoelectronic conversion. Such transparent 
optical networks also promote the development of new value-added services and lead to the deployment 
of an attractive intelligent transport network, as long as they are endowed with appropriate management 
solutions. 

In the third and final part of this document, Ecomobile is applied to the management of optical 
networks. Particular emphasis will be laid on the semantics of places, which are defined so that efficient 
TOs can be implemented with respect to the physical constraints of optical transport networks. This 
chapter presents an overview of optical components and ongoing efforts in the field of network 
management. Chapter 7 will be devoted to the development of a new value-added service which can 
easily be implemented into task objectives. 

In the present chapter, we do not claim to cover all the problems related to optical networks, but we are 
trying to focus on a range of concepts that have already been considered in our research in order to 
implement an active optical network management. After having introduced the basic optical network 

                                                      
1 The backbone or core network is made of "large" transmission lines forming a major pathway within a 
network and carrying data gathered from the access or edge network that interconnects with the core 
network. 
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components, we shall present an overview of ongoing efforts towards the development of management 
techniques applied to OTN. 

6.1 AN OVERVIEW OF OPTICAL NETWORK COMPONENTS 
The architecture of OTN has initially been defined by ITU-T [G872_99] according to the generic 
functional architecture of ITU-T (see Section 5.1.2). Briefly, OTN is defined by three sub-layers which 
are the Optical Channel (OCh) layer, the Optical Multiplexing Section (OMS) layer and the Optical 
Transport Section (OTS) layer. The OCh layer can be regarded as a server layer on which any kind of 
rate-independent clients (e.g. IP, SDH, ATM, etc.) can request connections between two nodes; each 
client is associated to a single wavelength (or channel). The OMS layer guarantees the integrity of a 
wavelength group (λ-multiplex) and the OTS layer is the interface between the OMS and the physical 
medium (see Section 6.3.1). 

The following sections describe the main functionalities in optical network technology, which are 
Wavelength Division Multiplexing on the one hand and the optical nodes on the other hand. 

6.1.1 Time and Wavelength Division Multiplexing 
Time Division Multiplexing (TDM) allows several lower-speed data streams to take place in a high-speed 
data stream. Today, the highest transmission rate in commercially available systems amounts to about 10 
Gbit/s [RS98]. The rate of the multiplexed stream can be increased via an approach known as Optical 
Time Division Multiplexing (OTDM), which allows the multiplexing functions to be fully performed in 
the optical domain. The resulting multiplexed stream should increase to the level of rates close to 250 
Gbit/s. This technique, however, has not reached the stage of commercial implementations yet. 

Wavelength Division Multiplexing (WDM) allows several wavelengths to be multiplexed onto a single 
fibre. Wavelengths have distinct frequencies and do not interfere with one another provided they are kept 
sufficiently far apart. WDM can currently support up to 160 wavelengths, each of them transporting a 10 
Gbit/s data stream. 

TDM and WDM are complementary approaches; while WDM leads to the increase of the transmission 
capacity by means of multiple channels at different wavelengths, TDM allows several low-speed data 
streams to take place in high-speed channel. 

6.1.2 Optical Nodes 
Optical network components can be classified according to four networking functions which have an 
impact on management functions, namely add-drop multiplexing, wavelength routing, wavelength 
conversion and wavelength switching. These functions1 are depicted on Figure 6-1. Although they are all 
represented on a static basis for comprehension purposes, they can exhibit time-dependent dynamic 
behaviour.  

The Optical Add-Drop Multiplexing (OADM) function results in the insertion and removal of a specific 
wavelength from the optical fibre. OADM is typically used between backbone and access network. 

                                                      
1 In this chapter, we do not take into account optical network devices which are devoted to signal 
processing, such as amplifier or regenerator. Details about such components can be found in [RS98]. 
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The wavelength routing function (λ-routing) allows wavelengths to be routed from input fibres to 
output fibres. Routing a wavelength actually involves routing the complete set of connections embedded 
in the wavelength. A routing of lower connection granularity requires a conversion to the electronic 
domain so that TDM functions can be performed. The mechanism which consists in placing client 
connections in a wavelength is also known as grooming. 

The wavelength conversion function (λ-conversion) is performed via a transponder which converts a 
wavelength from a certain frequency to another frequency. This function serves adaptation purposes when 
interfaces are restricted to particular wavelengths. 

Finally, the wavelength switching function (λ-switching) allows any wavelength to be switched from 
one fibre to the other; this function is used for fast protection switching, for example. 

ADD/DROP

WAVELENGTH
CONVERSION

WAVELENGTH
ROUTING

fibre fibre

fibre fibre
fibre fibre

fibre fibre

SWITCHING fibre fibre

 
Figure 6-1. Four basic networking functions in the optical domain 

The elements realising these functions can operate in the optical domain without requiring 
optical/electrical conversion. WDM equipment generally implements a concatenation of these functions. 
Full optical components able to route any input to any output on any wavelength will gradually appear on 
the market, evolving through intermediate ranges of limited equipments. The switching matrix is still 
limited to the order of 32 x 32 optical wavelengths and the optical transponder does not provide full 
conversion between all the wavelengths. The heterogeneity of optical components exhibiting different 
capabilities in terms of optical functions leads to particular constraints, such as the wavelength continuity 
constraint, according to which a client connection has to follow one and only one wavelength along the 
optical path. This kind of constraint induces potential blocking problems on the allocation of client 
demands. Optical nodes limitations can however be overcome under certain conditions and for particular 
network topologies; optical rings for example, which are particularly well suited to build survivable 
networks, support limited wavelength conversions [RS97]. 

When optical nodes are able to perform functions fully in the optical domain, the nodes, or the network 
for all the nodes, are known as transparent nodes or as a transparent network, respectively. On the 
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contrary, nodes requiring optoelectronic conversion are known as opaque nodes; they are generally quite 
expensive and also hamper the evolution towards new services; they are also bit rate and format specific. 

The ability of optical nodes to perform networking functions within the optical domain enables optical 
paths to be allocated and routed in the OTN. We now introduce the resource allocation problem specific 
to optical networks.  

6.2 THE ROUTING AND WAVELENGTH ASSIGNMENT PROBLEM 
We define the lightpath as the optical path used for a client connection, i.e. the path between an optical 
source node and an optical destination node. A lightpath can rely on one or several wavelengths along the 
way. The Routing and Wavelength Assignment (RWA), which is concerned with the allocation of 
lightpaths in optical networking, is a central problem in the management of OTN.  

RWA can be divided into two sub-problems: the routing problem that is, discovering the route between 
two optical nodes, and the wavelength assignment problem that is, finding the best wavelength allocation 
along the discovered route. Routing in the optical layer differs from routing in other data networking 
technology on three main aspects [SCT01]: the network elements are only reconfigurable under specific 
constraints, i.e. adaptation to specific wavelength frequency and different connectivity levels; the 
transmission impairments or linear effects, such as dispersion or nonlinear effects with crosstalk between 
channels, may render certain routes unusable; finally, diversity is defined as the relationship between 
lightpaths: two lightpaths are said to be diverse if they have no single point of failure. Diversity is 
influenced by the fibres themselves, by wavelength topology and by location. Furthermore, two circuits 
may be considered as diverse in one application and not in another. It consequently appears that the 
routing problem in the optical layer imposes additional constraints which are related to the physical 
environment. 

From a theoretical point of view, the combination of the routing problem with the wavelength 
assignment problem leads to a solution minimising the number of wavelengths required in an optical 
network for a given traffic matrix. Both sub-problems are proved to be difficult to solve (NP-complete) 
and require specific heuristics. The RWA problem can actually be either static or dynamic. 

The static RWA is originally considered during the network design and planning process when 
business costs are at stake. Most of the algorithms proposed to solve RWA are therefore based on a 
centralised architecture according to which the entire network topology is known in advance. RWA 
requires a traffic matrix, which is normally issued by statistical data. An overview of algorithms and 
heuristics as well as the mathematical formulation of the static RWA problem can be found in [E709_99]. 
At this stage, no consideration about dynamicity is included: the working and the protection paths are 
established in a similar way, which remains possible as long as the traffic matrix does not significantly 
differ from reality and the client demands are static. As soon as the client demands become dynamic and 
the protection requirements begin to differ from one customer to the other, the protection paths and the 
working paths have to be computed by means of a dynamic version of the RWA. In this case, since the 
optical network including lasers and fibres is already deployed, the major issue is the blocking problem, 
which occurs when there is no available lightpath or wavelength to satisfy a client’s demand.  

Different client layers with various topology, such as SDH, ATM, GbE, or IP, will be supported by 
OTN. Therefore, the RWA problem must be adapted so that OTN can take the client requirements into 
account and deal with the client, or virtual, topology. Generally speaking, no satisfactory solution to the 
RWA problem combined with the requirements of the virtual topology has been proposed yet. 
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While the static RWA has already been studied for many years, the development of dynamic and 
distributed algorithms for RWA is still at an early stage [ZJS+01]. According to different approaches, it 
has been suggested to combine simultaneously routing and wavelength assignment [KL02], or to separate 
the routing problem from the wavelength assignment problem as proposed by the Distributed Relative 
Capacity Loss (DRCL) algorithm [ZJM00]. The DRCL approach does not make assumptions concerning 
the routing algorithms but provides an interesting distributed algorithm for the wavelength assignment 
part, which is mainly based on the static version (RCL).  

The complexity of dynamic RWA supporting multiple constraints complicates the realization of a fully 
decentralised network management. Although the ongoing efforts towards the management of OTN are 
mainly driven by IP packet-based client layers, the full integration of various client types also remains an 
important challenge. 

6.3 MANAGING OPTICAL NETWORKS 
Different approaches have been considered for the management of OTN. The first standardization efforts 
in this area have obviously been conducted by ITU-T, leading to the integration of optical components 
into the TMN framework (see Section 1.1.1) and the definition of corresponding GDMO objects 
representing the manageable resources of OTN, i.e. the optical network elements [G874_02]. The TMN 
approach introduces a separate communication channel known as the Data Communication Network 
(DCN), which isolates the management information flow from the transport network itself. As we have 
seen in Chapter 1, this approach mainly serves a centralised network management. 

A TDM-based Embedded Communication Channel (ECC) can also be introduced within OTN itself in 
order to transport management information from one optical node to the other, and finally to the manager. 
This mechanism has been extensively used in SDH [Sat96], for example, according to which some bytes 
of the section overhead are reserved for management purposes. The processing of these management 
bytes therefore requires a TDM function. A specific protocol can be implemented by means of the ECC in 
order to ensure the information exchange between the nodes. This approach, which is currently being 
considered in OTN for wavelength management (OCh layer), leads to the development of the digital 
wrapper (see following section). 

The Optical Supervisory Channel (OSC), which can be considered in addition to these management 
techniques, corresponds to a particular wavelength of a λ-multiplex that transports overhead related to 
management information regarding multi-wavelength optical signals. The OSC is therefore completely 
separated from client wavelengths. 

Besides, ongoing efforts within ITU-T and IETF are driven by business requirements for the effective 
integration of IP networks with OTN, which is also known as IP over WDM (IP/WDM) and leads to the 
development of the Automatic Switched Optical Network (ASON) for the ITU-T and of the Generalised 
Multi-Protocol Lambda Switching (GMPLS) framework, for the IETF. These technologies strongly rely 
on a general ECC-based technique according to which on-line management functions require the 
implementation of particular signalling-based protocols. 

In the perspective of a decentralised, flexible, scalable and self-adaptable management of OTN, we 
shall finally consider optical network elements as active optical nodes. We believe that the combination 
of Active Network technology with optical nodes constitutes an innovative approach. 
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6.3.1 The Digital Wrapper 
The digital wrapper has been introduced by Lucent Technologies1 at the end of the nineties as a way to 
provide a channel-associated optical channel overhead in OTN [NB99]. The proposal was submitted and 
approved by ITU-T and serves as a basis for the development of the OTN Node Network Interface 
(OTN-NNI)2. Although the digital wrapper is fully integrated into the optical node, it still defines a TDM 
frame structure composed of three main parts: the overhead, the payload and an optional Forward Error 
Correction (FEC) code, as depicted on Figure 6-2, which also presents the three section layers with the 
client layers. 

Optical Transport Section
Layer

Optical Multiplex Section
Layer

Optical Channel
Layer

OTN

IP

SDH Other

OSC (with a reserved λ)

Client payload FEC

Management bytes

Overhead

Ethernet

 
Figure 6-2. The three section layers defined by ITU-T and the digital wrapper 

The overhead is composed of several bytes reserved for management purposes as well as information 
related to the payload; it also contains unspecified bytes for future usage. The payload corresponds to the 
client data injected into the wavelength. The FEC is responsible for detection and correction of signal 
impairments occurring during the transmission; a regenerator will detect eventual malformed frames. The 
digital wrapper is not bound to any specific client type and thus promotes the realization of a transparent 
optical network. The only restriction concerning the payload is that the client signal must be a constant 
bit-rate digital signal.  

Certain bytes of the digital wrapper overhead can be used, without any restriction, for a dedicated ECC, 
in exactly the same way as in SDH management. This ECC could thus be used by Ecomobile for the 
transport of M-agents (see Section 7.2). 

6.3.2 The Automatic Switched Optical Network 
The Automatic Switched Optical Network (ASON) [ITU00] constitutes a significant step towards 
decentralised network management. It was originally conceived to dynamically allocate permanent and 
semi-permanent circuit-switched lightpaths within OTN via a specific user interface, and to support 

                                                      
1 http://www.lucent.com 
2 The OTN-NNI is specified in draft recommendation G.709. 

http://www.lucent.com
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automatic routing of lightpaths. The main interest of this approach is to reduce the considerable time 
devoted to provisioning in OTN that is mainly due to bureaucratic processes and manual human 
intervention at several points in the resource configuration. An automatic control can be performed by 
ASON, which spreads out topology knowledge and information related to capacity and availability within 
the network. The proposed implementation of ASON relies on two networking planes: the transport 
plane, corresponding to the OTN composed of optical switches - or more generally optical nodes 
implementing the different networking functions described in Section 6.1.2 - and fibres, and the control 
plane, which enables the transport of signalling between Optical Connection Controllers (OCCs). The 
logical architecture of ASON is depicted on Figure 6-3. 
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Figure 6-3. The ASON Management planes 

Signalling between optical switches and client equipment is exchanged through the Node-to-Node 
Interface (NNI), while service requests can be initiated by the customer himself via the User Network 
Interface (UNI). 

While central functions can take place in the management plane, the management logic can be partially 
distributed over the OCC, so that decentralised network management can be achieved at different degrees. 
When most of the management logic resides in the management plane, ASON can be regarded as a 
distributed signalling-based infrastructure conceived for OTN, which does not really differ from a 
traditional SNMP/CMIP approach (see Section 1.1.1). 

Although ASON aims at enhancing OTN with advanced management functions and therefore promotes 
the development of new "intelligent" optical services, such as fast provisioning, optical VPN, and on-line 
protection and restoration services, the ongoing development of ASON mainly focuses on the definition - 
and consequently on the standardization - of user and network interfaces. The elaboration of distributed 
algorithms specific to the control plane functions, such as automatic topology discovery or efficient multi-
constrained routing, for example, remain an important issue in the development of ASON [R+01]. 
Routing is performed on optical channels with a high granularity (high bit rate). More generally, the 
RWA implementation in the context of ASON still raises challenging issues due to the emergence of new 
customer-centric and topology-related requirements. 
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The Generalised Multi-Protocol Label Switching1 (GMPLS) framework proposed by the IETF, which 
was issued from the Internet world, follows the same logical architecture as the ASON. GMPLS consists 
in applying to the optical switches the MPLS control plane techniques used for IP networks, and in 
developing IP routing algorithms to manage lightpaths in the optical network. GMPLS is therefore 
strongly oriented towards IP over OTN (IP/WDM) and does not rely on an intelligent transparent OTN 
like ASON. 

OVERLAY AND PEER-TO-PEER MODEL 

Nowadays, optical networking obviously witnesses a trend towards the acceleration of IP/WDM networks 
development in order to support the constantly growing number of Internet services. In this context, 
GMPLS constitutes an efficient intermediate step towards integrated management of both IP and optical 
networks through the definition of appropriate control planes. Still, worldwide spread IP networks remain 
more simple to manage than optical networks from the point of view of the multi-carrier: while IP routers 
can perceive the topology outside their management domain and interact fully with foreign routers, 
optical switches require to be managed within an operator or carrier domain which cannot interact with 
foreign optical switches. This is the reason why the architectural model based on two different control 
planes managing the routers and the optical switches respectively actually leads to the definition of two 
signalling architectures known as overlay model and peer-to-peer model.  

According to the overlay model, the routers of the user domain "ask" the optical network for a 
connection or for other optical services according to a client-server model; OTN acts as the server of the 
provider domain whose different clients, such as IP, ATM or SDH, can access OTN through the UNI by 
means of appropriate signalling. The NNI enables signalling between the different optical switches within 
the OTN. The overlay model presents serious advantages for network operators because the user domain 
does not need to be aware of the optical topology, which can belong to different carriers. The router 
devices must however be compatible with ASON (or GMPLS) UNI provided by the carrier because of the 
two distinct control planes being used. The overlay model therefore implies restrictions from the network 
operator point of view in the choice of the network equipments. In addition, the limitation of network 
knowledge may result in a sub-optimal usage of network resources, as it is the case in any network 
configuration involving several layers.  

According to the peer-to-peer model, routers and optical switches share a uniform and unified control 
plane. In this case, the routers are endowed with a thorough knowledge of available OTN resources, 
which may raise important problems related to the interaction of multiple operator domains. The quantity 
of information to be processed and algorithms resulting from the integration of IP/WDM processing into 
a single network component also lead to increasing complexity in the network. It therefore appears that 
this kind of architecture entails serious drawbacks in terms of scalability. 

DISCUSSION 

The ASON and GMPLS approaches strongly rely on signalling and consequently entail important 
restrictions concerning the evolution of an intelligent OTN; since the elaboration of new value-added 
services is still at an early stage, it is difficult to determine the kind of services and profiles which will be  
required by the future OTN. The introduction of a SLA-based management, for example, could make the 

                                                      
1 ftp://ftp.isi.edu/in-notes/search.ietf.org/internet-drafts/draft-ietf-ccamp-gmpls-architecture-02.txt and 
http://www.lightreading.com 

ftp://ftp.isi.edu/in-notes/search.ietf.org/internet-drafts/draft-ietf-ccamp-gmpls-architecture-02.txt
http://www.lightreading.com
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management within the control plane much more complicated than expected. Besides, the 
signalling-based approach requires network equipments to implement the complete protocols and services 
at design time. Each extension or modification of the signalling will therefore require considerable 
changes in the network infrastructure with important business-related costs. Signalling therefore turns out 
to be inadequate in the case of a flexible and extensible OTN.  

 Unlike the digital wrapper, that enables a fast processing of the management information because of its 
integration to the optical channel layer, the above described approaches do not specify the frame structure 
of the optical channel. According to a control plane approach, it is therefore difficult to imagine that every 
manufacturer will adopt a similar implementation of the optical channel. 

A possible alternative solution would be to replace signalling by CORBA interfaces controlling the 
automatic setup of connections, alarm propagation, billing support, SLA management, etc. [Ger00]. This 
approach could however lead to a throwback to a traditional platform-centred TMN-like approach. 

6.3.3 Active Management 
A final technique applied to the management of OTN has to be described: in the context of our work, 
active management (see Section 1.4) in optical networks is an innovative approach emerging from the 
development of Ecomobile. Active management actually combines principles of the active network 
technology with the mobile agents paradigm developed in the previous chapters. Active management 
favours a decentralised network management characterized by fast reaction to external changes and by the 
capacity to deal with the physical constraints related to the infrastructure, so that it perfectly suits a 
transport network such as the OTN. Active management is not meant to replace architectures like ASON 
or GMPLS, but should rather be seen as a complementary approach enhancing the physical layer with 
advanced functionalities.  

Two distinct steps can be distinguished in the development of active management: the development of 
fully distributed algorithms implementing most of the management logic within the network nodes is 
followed by the implementation of these algorithms into the active optical nodes. To the best of our 
knowledge, mobile agents had not been considered in optical network management when we began this 
work. Nevertheless, a solution to the RWA problem relying on ACO (see Section 2.4.1) and therefore 
similar to AntNet has been proposed in [VS99]; the possibility of actually implementing this approach 
however still remains an open issue; the algorithms require a considerable processing time and resort to a 
global update of the pheromone which is not compatible with a decentralised management approach. 

The techniques related to active management will be developed and applied in Chapter 7. 

6.4 SUMMARY 
OTN is composed of a wide range of heterogeneous network devices which have the capability to 
perform networking functions fully in the optical domain, i.e. without optoelectronic conversion. Relying 
on wavelength division multiplexing, the optical nodes can process several wavelengths on a single fibre. 
The transport of several Tbit/s of data issued from different client layers on a single fibre and the 
implementation of networking functions into the optical domain make network management systems 
critical components of the transport network. The rapid evolution of the optical network domain 
consequently implies a decentralised management approach. 

The physical impairments and connectivity restrictions on transparent optical nodes make the RWA 
problem a central issue in the management of circuit-switched lightpaths. The problem becomes even 
more complex with the emergence of new optical services which have an impact on routing and 
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wavelength assignment. While the static RWA has proved to match the planning process of optical 
networks, the distributed implementation of the dynamic RWA dealing with dynamic traffic and on-line 
re-configuration is still at an early stage. 

The digital wrapper has been proposed by Lucent in order to improve the management of OTN; it 
defines a TDM structure in three parts which allows the optical channels to be managed independently 
from the client layers. The digital wrapper overhead encompasses a portion of bytes dedicated to 
management purposes and therefore makes the definition of ECCs possible. An optional FEC allows the 
signal to be monitored and re-processed within the regenerators. The development of a digital wrapper is 
also associated with the elaboration of the OTN-NNI. 

A logical architecture for an intelligent OTN has also been proposed by the ITU-T in the specification 
of ASON. This approach introduces a separation between the physical layer (transport plane) and the 
management functions (control plane). This separation involves the deployment of optical connection 
controllers for the implementation of the management logic. ASON is mainly characterized by the 
recourse to particular signalling between optical nodes themselves through the NNI and between optical 
nodes and the user through the UNI. 

In order to deal with growing demands and requirements emerging from the transport of up-and-
coming Internet applications over the optical fibre, the IETF has proposed to extend the IP/MPLS 
framework to the optical network by adapting the algorithms used within IP routers to the optical 
switches.
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Chapter 7 
Towards Active OTN Management 

 

In Chapter 1, we have presented an overview of the basic components specific to the optical transport 
network which constitutes the main target application of the middleware developed in this thesis. The 
new generation of optical nodes encourages the development of new advanced services within the 
transport network, steadily transforming the traditional point-to-point OTN into a service-enabled 
Automatic Switched Optical Network (ASON). The diversity and complexity of customer requirements as 
well as limitations related to optical devices however bring about new technical hurdles in the 
management of these services.  

The introduction of specific control planes, such as those proposed by ASON or GMPLS for the 
management of resource allocation and routing in the optical network would certainly favour the 
development of decentralised management systems; they would provide the NMS with information 
related to traffic engineering and network topology. However, the implementation of advanced algorithms 
achieving complex RWA in a dynamic situation still remains an important challenge in the management 
of OTN because of emerging requirements issued from a transparent multi-layer OTN and new customer 
requirements based on service level agreement. It also has to be noted that a signalling-based approach 
introduces potential interoperability issues between network devices issued from different vendors, and 
that the management logic must be implemented at the design phase. 

Active management, which constitutes a new paradigm liable to overcome current limitations of optical 
nodes, combines code migration and mobile agents on the one hand, with an active network enhancing 
optical switches with the necessary infrastructure hosting dynamic code on the other hand. An approach 
based on active management is obviously not straightforward from the business model point of view; the 
management logic is subject to the control of the network operator, whereas the hosting environment 
must be implemented into active nodes by the manufacturer according to industrial standards. 

In this chapter, we propose to examine how Ecomobile can be implemented efficiently within OTN and 
how its particular computational model leads to creation of new value-added services. After having 
introduced the OPTIMA project, which constitutes the predicted follow-up of this thesis, we will examine 
a possible way to deploy our mobile middleware in the optical layer, new intelligent wavelength services 
will be defined, and an example of an improved protection service will be given. 

7.1 THE OPTIMA PROJECT 
The OPTical network management with Intelligent and Mobile Agents (OPTIMA) project1 aims at 
improving the network survivability and flexibility of optical transport networks by studying and 
developing adaptive algorithms based on autonomous software agents. Four main aspects are emphasized: 
the coordination models based on bio-inspired approaches and collective intelligence (stigmergetic 
coordination), mobile agent platforms, modelling and simulation. 

                                                      
1 OPTIMA is currently a project funded by the Swiss National Science Foundation Science (SNF) - 
project nr. 2100-063717 (August 2001 - July 2003). 
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OPTIMA should result in a suitable coordination model and a simulation tool interacting with open 
mobile agent platforms and supporting irregular meshed network topologies, as well as multi-client 
scenarios (e.g. IP/WDM, AT/WDM) and different failure models. 

In this perspective, the development of Ecomobile, which provides a mobile agent middleware 
deployed in active optical nodes by means of a FIPA-compliant agent platform constitutes preliminary 
work to the OPTIMA project. The computational model leads to the implementation of adaptive 
algorithms and GNMT provides an adequate simulation environment.  

The design of task objectives could constitute one of the important tasks of the OPTIMA project. The 
RWA problem, for example, could be solved by the development of one TO for the routing problem and 
one TO for the wavelength assignment problem. In this context, the TO_Routing task objective model 
proposed in Section 3.6.6, makes the implementation of a distributed algorithm for wavelength 
assignment such as the DRCL (see Section 6.2) particularly straightforward; this implementation is 
currently under investigation. Since the TO handles a single routing table for each port, or for each link, it 
can be extended to store the corresponding RCL values.  

7.2 DEPLOYING ECOMOBILE INTO ACTIVE OPTICAL NODES 
In this section, we propose to examine an implementation of Ecomobile concepts into OTN. Our basic 
assumption is that optical nodes encompass an active node environment including a NodeOS, an EE (see 
Section 1.4.1), and an operating system enabling the development of Java-based active applications and 
the deployment of the agent platform (see Section 4.4). 

As far as the ASON/GMPLS logical architecture is concerned, Ecomobile can be regarded as an 
intermediate layer between physical layer and control plane, which provides the transport plane with 
appropriate knowledge concerning OTN; metrics specific to new value-added services such as QoP (see 
section 7.4.2) can be implemented by means of specific task objectives and give the control plane the 
information used for subsequent path allocation or reconfiguration. 

7.2.1 Optical Agents 
The implementation of mobile agents within the optical layer has led us to define optical agents [RS00] 
(or λ-agents) which are supposed to be integrated into the optical frame of the optical channel layer (see 
section 6.3.1). From the point of view of agent communication, we actually propose to use a portion of 
the digital wrapper overhead to install a specific ECC devoted to the ACC. An adequate MTP, resorting 
to an IP-based HTTP protocol for example, can then be installed so that Ecomobile agencies can 
exchange ACL messages. In the context of Ecomobile, optical agents correspond to M-agents1. 

With regards to the active node, information concerning the overhead and intended for Ecomobile can 
be extracted from the digital wrapper, transformed into active packets, and sent to the active application. 

Two classes of optical agents dedicated to OTN layers have been proposed to fit different applications: 
the λc-agent (channel agent), which is associated to a specific wavelength, suits wavelength-related 
functions, while the λm-agent (multiplex agent), which is associated to a single λ-multiplex, is appropriate 
for fibre-related functions like "finding disjoint routes". From the point of view of Ecomobile, this 
differentiation leads to distinct M-agent families evolving in the optical network in different ways and 
reflecting the network state at different granularity levels. 

                                                      
1 In our implementation, the M-agent class constitutes an extension of the LambdaAgent (see Section 3.3). 
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In order to define a simplified approach, it is possible to propose a single family of M-agents which 
evolves at the lower granularity level and is therefore similar to λc-agents, and to control the navigation 
within task objective by means of a local connectivity matrix, which implies a representative equivalence 
between physical environment and ecosystem environment; this context requires the definition of place 
semantics. 

7.2.2 Place Semantics 
WDM technology allows the transport of several independent wavelengths in a single optical fibre. We 
have seen in Chapter 1 that optical nodes can present different configuration types according to the 
implemented networking functions. The constraints imposed by the node configuration directly influence 
wavelength connectivity and therefore also routing. Each wavelength may therefore represent different 
sub-topologies also known as wavelength planes. Associated connections within a specific wavelength 
plane correspond to switching capabilities provided by the optical nodes whereas associated connections 
between wavelength planes correspond to conversion capabilities also provided by the optical nodes.  

According to this representation, each place can be associated with a specific wavelength, as depicted 
on Figure 7-1.  
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Figure 7-1. Place semantics in the context of the basic optical functions 

As far as the connectivity matrix of the Ecomobile agency is concerned, we propose to map the intra-
agency  connectivity onto the connections between wavelength planes and the inter-agency connectivity 
onto the connections within a single wavelength plane. Let us formally suppose that: 

 UPIa ::= (Nodem, λi)  (1) 
 UPIb ::= (Noden, λj) (2) 
 f(UPIx, UPIy) being the elements of the connectivity matrix (3) 

Then,  

 f(UPIa, UPIb) = 1 if and only if (Nodem ∫ Noden and λi = λj) or (Nodem = Noden and λi ∫ λj),  
 and there is an optical function performing the connection so that (Nodem, λi) ö (Noden, λj). 
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This kind of mapping matches the networking functions and allows the M-agent ecosystem environment 
to explore the physical agility of optical nodes in a more efficient way. According to the territoriality 
paradigm, the occupation of the environment by the M-agent population will also become more adequate 
when each place is not restricted to a single node; an overstated number of absorption and cloning 
behaviours can thus be avoided. It also has to be noted that fully tuneable and reconfigurable hybrid 
nodes allowing any input wavelength to be switched onto any output wavelength are not commercially 
available yet; optical nodes will gradually evolve from opaque to agile and transparent optical nodes 
[Rob01]. 

7.3 INTELLIGENT WAVELENGTH SERVICES 
In this section, we present an overview of the most popular optical network services which are currently 
being developed. At the beginning of our investigations, we defined the term of Intelligent Wavelength 
Services (IWS) to designate the services relying on the Ecomobile middleware1. We now propose to 
extend the IWS with optical services emerging in the optical networking community, such as optical VPN 
or on-demand provisioning. 

The development of new IWS will give customers new opportunities to take advantage of the optical 
infrastructure. In this context, the palette of services offered, their quick deployment, and the efficiency in 
their support constitute key differentiators for network operators [VSN+01]. The introduction of new IWS 
will also coincide with more sophisticated customer needs. The management of services leading towards 
the optical Internet consequently relies on the definition of formal metrics and particular attributes which 
are specific to OTN and which will allow customers and network operators to stand up for their reciprocal 
commitments. In this context, service differentiation allows carriers to meet their customer needs more 
satisfactorily; differentiated optical services also enable network providers to achieve end-to-end QoS by 
means of an optical parameter set capturing the quality and the reliability of the optical lightpath 
[GNS00]. The key factor of differentiation is consequently becoming more and more important, and it 
does not only require the verification of Service Level Agreements (SLA) between the customer and the 
network operator, but also between multiple network operators, or simply between the network operator 
and the service provider. The development of an SLA framework based on attributes driving the network 
architectural design and including cost, availability, protection switching time and propagation delay 
[BAG01], is still at an early stage. 

7.3.1 The Optical VPN 
The optical Virtual Private Network service provides a secure and manageable environment allowing a 
group of clients to fully exploit the flexibility of the switched intelligent optical network. In the optical 
VPN, customers can make a contract for a specific network resource such as link bandwidth, wavelength, 
and/or optical connection ports, and these resources can be controlled as if they were customer-owned. 
Additionally, the customer can specify requirements concerning protection or restoration services. The 
network provider then performs the optical connection statically or dynamically, taking into account the 
SLA. 

                                                      
1 The IWS also constitutes a GNMT package encompassing the OTN classes. 
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Customer requirements generally correspond to the virtual topology, i.e. a collection of nodes and links 
managed by client routers (IP, SDH component, etc.) and requiring to be mapped onto the OTN. The 
customer is normally deprived of any visibility in the underlying optical infrastructure, which remains 
under full control of the network provider. 

Optical VPNs can be used to support a variety of applications, including ISP edge router networks, 
content delivery among a network of servers, bandwidth trading between carriers and storage WANs for 
enterprise networking [BTS+01]. 

7.3.2 On-demand Provisioning 
While static bandwidth provisioning in OTN may require a long time (sometimes several days), and is 
rather dedicated to longer holding time circuit-switched connections, on-demand provisioning or fast 
provisioning aims at supporting the management of switched connections which have much shorter 
lifetime [E1116_01]. On-demand provisioning therefore requires the connection establishment time to be 
as short as possible. 

Like the optical VPN, this service may rely on SLA in which the customer specifies his requirements 
concerning bandwidth and client type, as well as those related to protection and restoration services. In 
the long term, customers should be able to ask for lightpaths by means of a Web interface. 

7.3.3 Protection and Restoration in the OTN 
The overall availability requirements can be evaluated to a percentage in the order of 99.999 percent, 
which implies that the network should not be dysfunctional for more than 6 minutes a year on average 
[GR00]. Network survivability is therefore a key factor in network design and management. With the 
introduction of IWS, new protection services can be proposed to the customers according to different 
service classes. From the network operator’s point of view, for example, lightpaths can fall into one of the 
following classes: some that must be protected by the optical layer, some that must not be protected, some 
that are indifferent to protection, others that may be protected on a best-effort basis, and finally low-
priority lightpaths that utilize protection bandwidth under normal circumstances and are pre-empted by 
protection of other lightpaths. In this thesis, particular emphasis has been placed on protection and 
restoration issues in OTN; we therefore propose to examine important aspects related to this topic in the 
context of a multi-layer OTN. 

There are two possible survivability strategies in optical networks, namely protection and restoration, 
which are mainly inspired from the SDH networks [MBN99].  

Protection can consist of two different schemes: dedicated protection (1+1) or shared protection (1:n, 
m:n). While the former requires disjoint paths, but not necessarily disjoint optical nodes, the latter 
reserves a certain amount of wavelengths as spare capacity for one or several working paths. An optical 
fibre can therefore share its wavelength capacity in both working and protection paths. Examples of 
optically protected rings are the Optical Channel Dedicated Protection Ring (OC-DPRing), the Optical 
Channel Shared Protection Ring (OC-SPRing), the Optical Multiplex Section Dedicated Protection Ring 
(OMS-DPRing) and the Optical Multiplex Section Shared Protection Ring (OMS-SPRing). In all these 
protection mechanisms, protection paths are pre-computed, so that the switching mechanism is performed 
in a short time frame (50ms) whenever a failure occurs. 

Unlike protection, restoration occurs immediately after the failure. In this case, the discovery of 
alternative paths may require some time. Restoration is generally proposed as an ultimate way to keep a 
service running in case of failure when no protection has been set up. The IP layer, for example, provides 
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a robust restoration mechanism based on packet re-routing in case of failure and integrated into the 
routing protocols. 

The dynamic re-configuration capability characteristic of optical switches allows the protection paths to 
be re-configured on-line during a live connection. Unlike working paths, protection paths can be re-
configured even when the running service is not aware of the operation. 

In the context of a multi-layer OTN, client layers may have their own protection strategy, like SDH 
layers, for example. The protection of both client and optical layer improves the overall survivability of 
the network since failures can be immediately detected and repaired at the correct layer, which limits the 
propagation of alarms to other layers; this protection scheme also constitutes the only way of avoiding 
intra-site connection failures between client equipments and optical equipments. 

Protection at the optical and client layers however requires particular attention to the mapping of virtual 
paths onto the OTN topology; inadequate mapping may lead to interoperability issues regarding the 
protection strategies in both layers; this phenomenon, which is known as failure propagation [Cro98], 
will be examined in section 7.4.  

Integrated survivability is a cost-effective solution providing telecommunication services in a multi-
layer network environment with differentiated levels of survivability [E718_01]. Multi-layer survivability 
raises two open issues which can be phrased as follows: what survivability functionality should be 
allocated at each layer? How should co-ordination between the network layers be defined? In the absence 
of co-ordination, unstable situations, undetermined network configurations and dynamics may actually 
occur. 

7.4 DIFFERENTIATED PROTECTION SERVICES  
In the present section, we introduce a new value-added protection service issued from Ecomobile by 
implementing a specific task objective. This kind of service is referred to as differentiated protection 
service and allows customers to ask for a certain protection level or protection quality for a particular 
optical VPN [RRS01]. 

Dissimilarities between VPN topology and physical topology regarding protection strategies may lead 
to service disruption in case of failure at the physical layer, even if the VPN is still provided with spare 
capacity. This interoperability problem leads to dependencies between VPN layer and physical layer 
which are called vertical dependencies. The VPN protection paths consequently need to be carefully 
mapped onto the physical network so that the vertical dependencies can be reduced and propagation 
failures in the VPN layer can be avoided. The complex NP-hard problem raised by this operation has 
been thoroughly investigated and static heuristic-based solutions have been presented in [CLG00]. The 
solutions which have been proposed however fail to meet the expectations related to a dynamic 
environment with fully distributed control. 

7.4.1 The Network Model 
The network model considered in our study is depicted in Figure 7-2 and consists of two layers, the 
client-transparent optical VPN, which corresponds to the virtual topology, and the OTN, which represents 
the physical topology.  The client VPN is not limited to a particular network technology; it simply claims 
to use a part of the underlying resources with restricted access. A VPN is composed of several end-to-end 
connections that may or may not be protected. In case of protected connections, the set of protection paths 
corresponds to the protection strategy attached to the connection. A VPN set can actually have several 
collections of working and protection paths.  
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Figure 7-2. Two-layers network model with virtual and physical topology 

Various protection levels are considered in both layers. The client can express his protection requirements 
in the form of a SLA, so that the task objective evaluating the protection configuration will be 
appropriately influenced in its choice of physical optical paths. 

In our network model, the protection strategy consists in supplying the protection path as required in 
the virtual topology. In case the client requests a SDH Working Path (WP1) between node B and node C, 
for example, the protection strategy consists in re-rerouting the traffic, using Protection Paths (PP1) via 
node A, in case of failure on link (B,C). 

According to our protection model, the Protection Paths (PPs) are set up dynamically. This operation 
might result in a combination of dedicated and shared protection paths, which means that the PP 
configuration could use the same fibres and could rely on the same nodes as the Working Path (WP), in 
which case the link would be protected against wavelength channel failure, but not against fibre failure. 
Intuitively, we can assume that the number of shared nodes and the number of shared links making up the 
protection path will impact on the protection quality. As the protection path configuration is subject to 
dynamic changes during the connection time, there might not be any protection path available for certain 
low-QoP based VPNs but, in case of failure, a restoration mechanism could be launched in order to 
preserve the connections. 

7.4.2 Quality-of-Protection (QoP) and DPS Formulation 
In the scope of our new protection service, the protection quality can be evaluated by means of the 
Quality-of-Protection (QoP) metric, a temporal metric for on-line assessment. In order to elaborate a QoP 
metric, we first need to define the entities of the optical layer which are subject to failures. The fibre 
actually reveals to be the least reliable component in the system [GR00], including the optical amplifiers 
deployed along the fibre. The other critical component is the entire node, which is composed of numerous 
transponder cards to interface with client layers and of all the fabric necessary for the realization of 
networking functions. This is the reason why we propose to define the following factors involved in the 
QoP metric: the amount of shared nodes of the protection path, the amount of shared links of the 
protection path, the horizontal dependencies between multiple domains, and the vertical dependencies 
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between the physical layer and the client layer. Horizontal and vertical dependencies are depicted on 
Figure 7-3. 
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Figure 7-3. Two-dimensional interactions influencing the quality of protection  

In order to calculate the QoP, we adopt a global network view involving interactions between multiple 
layers, as well as between multiple network operators. We assume that the business-related agreements 
are defined by means of SLAs. 

We propose the following definitions: 
 
i End-to-end client connection (WP and PP) (1) 
D Total of domain peers (2) 
SNi(t) Shared nodes at time t of connection i (3) 
SLi(t) Shared links at time t of connection i (4) 
ω Weight associated to shared nodes vs. shared links (given by the client) (5) 
αd Horizontal dependencies between the domain peer d (currently αd = 1.0) (6) 
βi(t) Vertical dependencies associated to connection i (7) 
TLi Total of fibre links along the path of connection i (WP+PP) (8) 
 

SN(t) (3) is the number of shared nodes along a protection path, SL(t) (4) the number of shared links 
(fibres) along a protection path. The shared link implies that the protection and working paths are on the 
same link using different wavelengths. A fibre break obviously entails the loss of all connections going 
through the fibre. Shared links are acceptable only in the case of optical channel malfunction within the 
optical node.  

SNi(t) and SLi(t) are time dependent and the configuration of protection paths can change over time. If 
SLi(t) is constantly equal to 0, it means that the protection path follows a dedicated (1+1) protection 
strategy. Moreover, if SNi(t) is equal to 0, the protection path uses disjoint nodes from those used in the 
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working path. Horizontal dependencies, which are more difficult to evaluate because of the role played by 
business parameters, will not be detailed in this thesis. 

Weight ω (5) gives the customer the opportunity to influence the importance given to shared nodes and 
links belonging to the protection path. This value may be determined from the customer’s own experience 
with a network operator. 

0 § α § 1 (6) is to be considered in case of multi-operators or multi-domains interactions. α is a 
constant value and refers to horizontal interactions. This factor can be used to assess the protection quality 
when several domains have to be traversed by an end-to-end connection. 

0 § β § 1 (7) is a time function assessing the respect of constraints related to the interoperability 
between the protection strategies of the client layer and OTN. β depends on client demands and can 
change dynamically according to the current configuration of protection paths. It is related to multi-layer 
interactions. A primary approach towards this function has been proposed in [RoRS01]. 

Let us define PNetworkFailure as the probability of a failure in the OTN layer (fibre cut, node malfunction) 
and PServiceFailure as the probability of a service disruption. 

The Dynamic Protection Set-up (DPS) problem is stated as follows: 

DPS: given an end-to-end connection, find a protection path that maximizes QoP(t), with 
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Figure 7-4. Evolution of the QoP according to the number of SN(t) and SL(t) (α,β = 1.0, ω = 0.3) 

0 § QoPi(t) § 1 (9) defines the quality of protection of the connection i at time t. 
From the customer’s point of view, the protection requirement can be expressed as the probability that 

the service will be disrupted. This can be simply computed as follows: 
PServiceFailure = PNetworkFailure * (1 - QoP) 

The PServiceFailure value, which may be part of the SLA between customer and network operator, can be 
monitored in a continuous way. If QoP is equal to 1, the protection is maximal and the probability that the 
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service will be interrupted is reduced to 0. Without any protection, QoP is equal to 0, and the probability 
of an interruption is equal to the probability of an intervention at the OTN layer. 

The QoP of each individual connection in the VPN set is continuously assessed whenever protection 
paths emerge from the mobile agent ecosystem; the quality of protection can then be compared with the 
requirements specified in the SLA. Since our primary objective is to devise an adequate architecture and 
implementation for distributed solutions matching scalability and survivability requirements, the QoP 
optimisation for the total VPN set has not been investigated yet. 

7.4.3 DPS-oriented Task Objective 
According to the definition of QoP and the related DPS, we now propose to design the task objective 
implementing the new protection service. We assume that a customer wishes to establish a VPN 
connection and therefore requires a working and protection path according to a private protection 
strategy; these requirements will be embedded in the task objective.  

The TO_QoP, which is outlined in Table 7-1, is mainly inspired from the TO_Travel and 
TO_PathSelect TO models presented in section 3.6. The TO may be launched at any location in the 
network. The first objective of the TO instances will consequently consists in finding the source node and 
then in discovering a working path accommodating the working strategy constituted of a set of nodes. At 
this moment, the cooperation strategy may consist in checking itineraries and discarding TO instances 
with redundant information. When the destination node has been found, the working path will be initiated 
and the TO instance will travel back to the source node following the same stochastic navigation model 
than in the beginning; TO instances, at this time, know that the protection path has to be discovered. If 
such a TO instance should meet another TO instance focused on a working path (issued from the initial 
colony of TO instances), the latter will immediately be forced to re-initialize its itinerary and to perform 
the same job as the former. When the source node has been found again, TO instances looking for the 
protection path also prepare intermediate values in order to compute the QoP. When they reach the 
destination node, the QoP is computed with the discovered path and compared with the current QoP, if 
any. Then, the TO instances restart their job in order to find new protection paths. This process is endless; 
the colony of TO instances is evolving over time. 

Only relevant code is presented; the clone() method and the constructor are not revealed, and parts 
of the code which are not relevant to the understanding of the TO have been omitted in order to improve 
code readability. Finally, the class prefix for the two constants WORKING and PROTECTION is not 
mentioned: they belong to the class OptChannel. 
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public class TO_QoP extends TOJava{ 
   
  // Frontal objects 
  Vector itinerary, protStrategy, workingVPN; // Itinerary & customer requirements 
  int sn, sl;           // # shared nodes/links between working & protection path 
  int mode;             // Indicates if the TO looks for working or protection path 
  int cycle = 0;        // Check for cycle 
  boolean track;        // Path tracking indicator (source/destination target)  
   
  public boolean activate(TOWrapperInterface wrapper) { 
    String addr = (OTNNode) wrapper.getAgency().getLocalNode().getAddr(); 
     
    // _cd represents the connection descriptor for this connection (retrieved from 
    // the local node in the simulation). We do not show details about that. 
     
    // Check if this node belongs to the working path 
    if (addr.equals(_cd.getSourceNode())) { 
      initStrategy();      // We are at the beginning of the path 



Chapter 7 
Towards Active OTN Management 

 

161 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

      track = true;        // So, we are ready to discover the path 
    } 
  
    if (!track) return true;            // If we are not tracking a path, then continue 
                                        // to explore the network 
    
    if (_cd.isNodeIn(addr, WORKING)) {  // Check if the node already belongs to WP 
      sn++;                             // Will be used in the QoP calculation 
      if (mode == WORKING) {            // It is time to change the mode, no need  
        mode = PROTECTION;              // to find the WP, since already discovered 
        if (!addr.equals(_cd.getSourceNode())) { 
          initStrategy();               // If it is not the source node, we have to 
          track = false;                // find it in order to discover a PP. 
          return true; 
        } 
      } 
    }  
  
    // Check if the link is already used by the working path 
    if ((mode == PROTECTION) && !addr.equals(_cd.getSourceNode())) 
       
      // Do not forget to check for both directions! 
      if ((_cd.getLink((String) itinerary.lastElement(), addr, WORKING) != null) || 
          (_cd.getLink(addr, (String) itinerary.lastElement(), WORKING) != null)) 
         
        sl++;                           // Will be used in the QoP calculation 
     
    itinerary.add(addr);                // Store the current location 
     
    if ((mode == PROTECTION) && protStrategy.contains(addr))   // Check with requirements 
      protStrategy.remove(addr); 
    else if ((mode == WORKING) && workingVPN.contains(addr)) 
      workingVPN.remove(addr); 
     
    if (addr.equals(_cd.getDestNode()) &&      // Destination reached? Strategy ok? 
        (((mode == WORKING)    && workingVPN.isEmpty()) ||  
         ((mode == PROTECTION) && protStrategy.isEmpty()))) { 
             
      double QoP = _cd.computeQoP(itinerary.size()-1+_cd.quantLinks(WORKING), sn-2, sl);      
      if ((mode == WORKING) || (QoP > _cd.getQoP())) {      // Better QoP 
                
       // Close the current open connection and open the new one 
       // with the nodes stored in itinerary.         
       // … 
         
        track = false;      // Reset everything in order to discover other paths 
        initStrategy(); 
        mode = PROTECTION; 
      } 
    } 
    return true; 
  } 
   
  public boolean beforeMigration(TOWrapperInterface wrapper) { 
    if (itinerary.contains(wrapper.destination())) {     // Check for a cycle 
      cycle++;             // Cycle counter to check if it is a "dead end" 
      if (cycle <= 5) { 
        offload(wrapper);  // Offloaded in the blackboard for subsequent activations 
        return false;      // Bye bye M-agent ! 
      } else {         
        track = false;     // No possibility to avoid a cycle, so we reset everything 
        initStrategy(); 
      }       
    } 
    cycle = 0;        // The TO can continue, so we reset the cycle counter 
    return true;      // Keep alive 
  } 
     
  public boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO) { 
    TO_QoP _other = (TO_QoP) otherTO;       // Reference to the slave TO 
     
    if (!track && !_other.track) return false;   // Only one instance is sufficient 
    if (!(track && _other.track)) return true;   // In this case, no cooperation 
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    if ((mode == PROTECTION) && (_other.mode == WORKING)) {     // TO adaptation 
      _other.mode = PROTECTION; _other.initStrategy(); _other.track = false; 
       
    } else if ((mode == WORKING) && (_other.mode == PROTECTION)) { 
      mode = PROTECTION; initStrategy(); track = false; 
       
    } else if (itinerary.containsAll(_other.itinerary))  // Same itinerary?       
      _other.discard();     
    else if (_other.itinerary.containsAll(itinerary)) 
      return false; 
     
    return true; 
  } 
   
  // User method to initialize the customer requirements regarding strategy 
  public void initStrategy() { 
    workingVPN.clear(); protStrategy.clear();         // Clear the requirements 
         
    // Describe the working path of the client VPN and the protection strategy 
    workingVPN.add("Bern"); workingVPN.add("Zurich"); 
    protStrategy.add("Martigny"); protStrategy.add("Andermatt"); 
     
    sn = 0; sl = 0; itinerary.clear();                // Reset 
  } 
   
  public void init(TOWrapperInterface wrapper) { 
    setPriority(10); cleanEnv(wrapper); setPersistent(true);   // As usual… 
    // Other initialisation statements … 
         
    initStrategy();   // Prepare the client requirements 
     
    mode = WORKING;   // First, we want to discover a working path 
    track = false;    // Not sure to be in the source node; TO may be launched everywhere! 
  } 
} 

Table 7-1. The TO_QoP task objective 

It has to be noted that the VPN connection is described both by a source node and a destination node. The 
proposed TO_QoP task objective performs both working and protection path allocation based on the VPN 
connection requirements (112-113) given in the init() callback (118). This is the reason why the 
mode variable (6, 124) indicates the kind of path the TO instance is currently trying to discover, either 
WORKING or PROTECTION. In our simulation, we assume that the working path is allocated along 
wavelength 0 and the protection path on wavelength 1. 

Since the TO is continuously evolving within the network and can be launched everywhere, it is 
necessary to differentiate, by means of the track indicator (8), the TO instances from their final target. 
A source node target (track is false) TO instance will therefore navigate until the source node has 
been discovered whereas, a destination node target (track is true) TO instance is searching for the 
destination.  

In the PROTECTION mode, the activate() callback checks for shared nodes and links during its 
travel (25, 41); once the destination has been reached, the current QoP value is compared with the 
established protection path (57-58) and a re-configuration is performed in case it is necessary (60-62). 
The TO then continues its lifecycle by re-initializing its internal knowledge (64-66), navigating freely 
until the source node has been discovered for the beginning of a new exploration. Another strategy for 
going back to the source node may obviously consist in extending the task objective with the 
TO_PathSelect TO model (see Section 3.6.4) and initializing the reverse trajectory with the itinerary 
recorded in the TO. 
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The beforeMigration() method avoids cycles in the discovered path (73); if the TO instance 
finds itself in a dead end however, the callback will force the TO (79-80) to restart its exploration from 
the source node by means of an internal counter (cycle). The value of 5 has been chosen in accordance 
with the mean nodal degree of the Swiss network (see Section 5.3.1). 

The inter-TO cooperation strategy deals with redundant TO instances; when two source node target TO 
instances are detected, only one survives. The meeting of two TO instances with different targets implies 
that the source node target TO, which is in the WORKING mode, is changed into the PROTECTION mode 
and its target becomes the destination node (93-97). Finally, TO instances with identical itineraries are 
also discarded (99-102). 

Two different TOs may also be combined in order to implement the DPS task objective. While the first 
TO based on a TO_Monitor task objective model continuously monitors client connections’ shared nodes 
and links and stores QoP related information locally, another task objective resorting to a non-
deterministic pre-planned (working and protection strategy) navigation model (see Section 2.3.3) 
computes the protection path configuration by means of the current QoP values in each node. This 
approach is oriented towards emergent behaviour; it can be associated with the R-chemical and the R-
agent of the SynthECA approach presented in Section 2.4.2. 

7.4.4 Experiments and Results 
In this section, we examine the response of the ecosystem to the insertion of the TO_QoP task objective 
described in the previous sections. We have opted for the Swiss network composed of one fibre per link 
and containing two wavelengths. According to an initial approach, wavelength 0 is dedicated to the 
working path and wavelength 1 to the protection path. No additional restriction concerning the optical 
nodes has been introduced. 

The VPN connection is described by means of a node collection to be included for the working and 
protection paths which are embedded in the task objective as depicted in Figure 7-5. 

In order to discover a working path, the task objective has to rely on the constraints related to the 
customer VPN, i.e. the set of nodes (Bern, Zürich) which must appear along the working path.  The 
protection path (Martigny, Andermatt) follows the same mechanism. No shared node or link should 
appear at the client layer. 
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Figure 7-5. Working and protection paths in the optical VPN (dashed lines) and resulting allocation 

in the OTN 

Since there are no additional constraints regarding path length, the first TO instance reaching the 
destination triggers the activation of the working path. The task objective then discovers a protection path 
in the OTN meeting the customer’s requirements; a reconfiguration of the protection is performed each 
time a protection path leading to an improvement of the QoP is found. It has to be mentioned that the path 
length is not taken into account in the QoP either (see Section 7.4.2). As we can see on the figure, the 
mapping of virtual protection paths onto the physical topology unavoidably leads to a shared node and to 
a shared link. Figure 7-6 shows the values of the TO-related metrics with respect to this task objective. 
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Figure 7-6. TO-related metrics for the DPS task objective 

The task objective has been inserted after 500 instants, which corresponds to well-established stability of 
the ecosystem. As no constraint concerning the path length has been implemented, the discovery may lead 
to different paths, so that the QoP turns out to be higher for MBS-high than for MBS-low because of the 
slightly different working paths discovered in the two MBS. 

The agent context size appears to be very small in MBS-low. On the contrary, MBS-high presents 
significant, but nevertheless reasonable, context size differences. MBS-low is therefore preferable when a 
large number of client connections have to be processed. As stated in Chapter 5, MBS-low is generally 
more appropriate for explorative tasks, such as the TO_QoP task objective. However, further experiments 
remain to be carried out in order to determine when the TOs exhibit better performance with MBS-high 
than with MBS-low, as far as QoP is concerned. 

7.5 SUMMARY 
In the present chapter, an approach to implementing active management based on Ecomobile within the 
future optical transport network has been proposed. We have introduced the OPTIMA project, which 
aims at the study and the implementation of intelligent and mobile agent based approaches towards the 
management of the future OTN. In this perspective, Ecomobile provides an adequate mobile agent 
infrastructure devoted to the transport network management, and can be considered as the basis for 
OPTIMA. 

As we have seen, a combination of active network technology with enhanced optical nodes enables 
optical agents to be transported directly within the optical channel layer. The establishment of an ECC 
through a subset of the digital wrapper overhead and the recourse to an adequate MTP allows the agencies 
to exchange ACL-based messages between the optical nodes. Still, the deployment of Ecomobile into 
OTN requires an appropriate mapping of the place semantics. It has been proposed to associate intra-
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agency connectivity with the wavelength conversion function and inter-agency connectivity with 
wavelength switching in order to permit full investigation of the optical network by M-agents. 

The introduction of networking functions into the optical domain and the capacity of OTN to support 
various client layers leads to the creation of new optical services, such as optical VPN, on-demand 
provisioning and protection services, associated to the arrival of new business requirements. In this 
context, SLAs will induce network operators to create differentiated services and to manage new business 
models involving service provider and customer.  

The creation, deployment and management of value-added optical services can be achieved in the 
context of Ecomobile and of its particular computational model: the new value-added differentiated 
protection service based on the QoP metric presented in this thesis takes into account properties like the 
number of shared nodes and links between working and protection paths in order to evaluate the 
protection quality. This is the reason why we have developed the TO_QoP task objective, which deals 
with customer requirements regarding VPN connections, including the protection strategy. In the future, 
the vertical and horizontal interactions between network layers will also be investigated. The task 
objective performs allocation of working and protection path, and it appears that the QoP improves 
regularly. The behavioural analysis of this TO within a 2-wavelength Swiss network has shown that both 
MBS lead to a rapid convergence towards maximal QoP. 

According to our experiments, the development of optical services with Ecomobile does not require any 
change in the control plane, so that it does not affect the signalling implemented into the OCC. 
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The recent progress in optical network technology, the explosion of Internet traffic, the creation of new 
multi-media services and the emergence of new business models involving network operators and service 
providers bring about profound changes in the conception of a transport network; as future multi-layer 
optical networks will be able to support several Tbit/s of client data, traditional platform-centred network 
management systems no longer fit the inherently distributed environment of future transport networks in 
terms of scalability, flexibility and time-to-market service deployment. 

In this thesis, we have developed a self-adaptive mobile agent based infrastructure called Ecomobile in 
order to improve the management of future multi-layer WDM based optical transport networks. In the 
perspective of a decentralised management implemented into active components and of network resource 
control in a dynamic changing environment, we have considered a population of mobile agents in order to 
take advantage of powerful distributed and mobile processing techniques. Ecomobile allows us to deal 
with a number of issues related to the dissemination and activation of cooperative network management 
oriented tasks, which are not fully addressed by other mobile multi-agent systems. The network 
infrastructure is assumed to be composed of heterogeneous components and legacy systems. 

We started Chapter 1 with the analysis of various mobile agent based network management approaches 
in the context of different network technologies and we tried to identify their main characteristics 
regarding agent behaviour. We placed particular emphasis on Active Networks because of their ability to 
transport code and to provide a rational execution environment for mobile agents. In the development of 
agent-oriented applications for large-scale networks, particular attention must be paid to standardization 
efforts. In this context, we examined agent standards such as FIPA and OMG MASIF. Although FIPA 
does not support agent mobility yet, the rich collection of agent-oriented specifications and the continuous 
efforts towards the improvement and extension of these specifications place FIPA as the favourite 
standards organization for agent-based telecommunication applications. While most mobile agent based 
applications are in fact based on a very limited use of mobility, i.e. a mobility mostly restricted to the 
download and remote execution of code, agent mobility can be considered as an extension to the 
intelligent agent paradigm, although mobile agents are predicated on reactive and small agents and 
stationary agents on deliberative "big" agents. In this perspective, mobile agents have the possibility to 
interact with stationary agents in order to take advantage of any agent-based service. We finally stressed 
our contribution towards the adoption of a unified view of the concepts of Active Networks, intelligent 
agents and mobile agents. 

In Chapter 2, we identified three distinct abstraction models referring to the architecture of mobile 
agent systems: the computational, coordination and navigation models. The introduction of a loosely 
coupled task model allowed us to classify the dependencies involving the agent's operational behaviour 
together with the migration function and interaction schemes. We argued that the agent can implement 
loosely coupled task models when the information necessary for its migration is located within the 
environment, outside the agent itself. The development of a flexible and scalable mobile agent based 
network management system raises a number of issues addressed in Chapter 3. In most mobile agent 
systems, the number of agents is fixed and corresponds to an optimal size for the accomplishment of a 
specific task. According to our approach, the population of mobile agents and the network infrastructure 
are regarded as a whole, similar to an ecosystem composed of ecological individuals and their 
corresponding environment. We have therefore devised a novel agent architecture based on the three 
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identified abstraction models and constituted of two distinct parts: the Mobile Behaviour Scheme (MBS) 
and the Task Objective (TO).  

The mobile behaviour scheme was defined by means of reactive behaviours implementing the 
coordination and navigation models. Two mobile behaviour schemes were proposed in order to 
approximate the territoriality paradigm, an ecosystem principle referring to density-dependent intra-
specific competition based on active interference between ecological individuals. Territorial behaviour 
plays a central role in the self-regulation of the agent population and allowed us to implement a "living" 
ecosystem-inspired mobile agent middleware fully aware of the network infrastructure. 

The task objective, which is dynamically inserted into the mobile agent, represents the agent's 
operational behaviour; the TO has its own lifecycle and can be expressed in different programming 
languages, such as Java or rule-based languages like JRules, by means of specific wrappers. The 
particular computational model characterizing Ecomobile leads to a task design based on specific 
callbacks for the TO activation, migration and cooperation, the associated current location and the 
following destination. Still, we have proposed some generic TO models which correspond to basic 
functions of network transport management. 

Ecomobile radically differs from other mobile agent systems because a self-regulated society of mobile 
agents navigate within the network before any specific task has been implemented. The ability to 
dynamically load and to manage different TOs, by implementing loosely coupled task models with 
different migration strategies, makes our middleware a flexible and universal network-aware mobile agent 
system particularly well suited to develop intelligent and adaptive management systems.  

Our middleware relies on a threefold architecture involving the following active components: an 
agency, mobile agents called M-agents and implementing an MBS, and the task objectives, whose 
instances are stored in blackboards and in the M-agents. Similarities between Ecomobile and reactive 
systems have guided us to an implementation with a reactive programming formalism enabling discrete 
instant-based simulation; a synchronous cooperative approach significantly reduces the amount of non-
deterministic effects appearing during the deployment of the mobile MAS. In Chapter 4, we presented the 
Junior micro-kernel, which provides an efficient Java API for reactive programming. The mapping of 
reactive behaviours onto reactive instructions led us to examine potential causality problems and to 
propose adequate solutions. The deployment of Ecomobile is achieved by means of the Jade FIPA-
compliant agent platform which was originally intended for stationary FIPA agents; the migration of M-
agents and class transfer are performed through ACL message exchanges between corresponding 
agencies. The LEAP agent platform derived from Jade also provides an interesting lightweight embedded 
agent environment designed for small devices and constitutes a promising technology for the deployment 
of agents within active components. 

The deployment of mobile agents in accordance with this approach reveals several advantages: firstly, 
and thanks to the all-in-one agency model and its related synchronous execution environment, no 
additional resource-consuming components for the support of agent mobility, such as those present in 
other mobile agent platforms, are required. Stationary and mobile agents moreover share a common agent 
framework and can easily interact with each other; consequently, the local node resources will not be 
wasted because of the resort to several agent platforms. Finally, we promote the convergence towards a 
unique standard reference for intelligent and mobile agents in order to avoid undesirable misfits between 
different agent communities. In this context, FIPA turns out to be the most popular and promising agent 
organisation.  

 Chapter 5 introduces the Generic Network Management Tool (GNMT), which has been developed in 
the context of this thesis and is being transformed into an open source project. GNMT enables the 
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functional simulation of a multi-layer optical network and enhanced nodes in which an Ecomobile agency 
has been implemented. A behavioural analysis of the M-agent population as well as the response of the 
ecosystem to the dynamic insertion of task objectives have been performed. The reaction instant has been 
considered as the time reference model and several MBS-related metrics such as population size, node 
and link visit frequency, and TO-related metrics like agent context size and diffusion ratio, have been 
defined. We discussed and compared the results issued from three regular and irregular network 
topologies with two MBS, MBS-low and MBS-high; while the population size reveals to be stable and, 
with adequate parameter values, to approximate the network size, the task objectives also exhibit good 
performance. We found that MBS-low leads to a better performance for task objectives requiring complex 
knowledge and extensive exploration of the network, whereas MBS-high exhibits a rapid diffusion of task 
objectives during the first instants and consequently induces the rapid deployment of monitoring tasks 
within the whole network, for example. 

Since Ecomobile is characterized by self-adaptive and self-organising mechanisms evolving over time, 
our ecosystem is not really suited to the transfer of high-priority messages or tasks. In this case, the 
agency may be extended with mediation and morphing services in order to transfer messages or code 
directly via ACL messages. It also has to be noted that high priority messages in active networks can 
resort to special low-level active packets and thus avoid unwanted high-level processing. 

An overview of optical network technology was presented in Chapter 6. The optical transport network 
constitutes our main application domain in this thesis. Optical nodes encompass basic networking 
functions operating fully in the optical domain without requiring any optoelectronic conversion, and 
which can provide new capabilities in terms of wavelength routing. Recent advances in the definition of a 
digital wrapper supporting client-transparent payloads within the optical channel structure encourage 
further investigations towards active optical nodes integrating an embedded communication channel in 
the wrapper overhead for the transport of so-called optical (mobile) agents.  

The routing and wavelength assignment constitutes a major problem in optical networking; although 
the problem has been extensively discussed in its static form, the dynamic RWA including the 
development of distributed algorithms remains an important field of research. In Chapter 7, a possible 
implementation of RWA into optical networks with Ecomobile by means of specific task objectives was 
suggested. This active management approach allowed us to develop a new differentiated protection 
service and its associated Quality-of-Protection (QoP) metric, which takes into account horizontal and 
vertical dependencies in multi-layer optical networks, as a part of the customer SLA. We tried tow show 
that a simple task objective may lead to an efficient implementation of a new value-added service and that 
Ecomobile can therefore improve the management of optical networks and contribute to a future 
enhanced control plane. 

Although the development of Ecomobile has been primarily devoted to transport network management, 
our middleware can be considered in a wide range of applications which give a central role to network 
intelligence. For instance, future content delivery networks intended for a huge amount of information 
related to interactive digital television will require self-organizing intelligent management solutions 
enabling providers to broadcast contents in a rational way. This kind of service also includes applications 
referring to service composition, in which logic is transferred from one location to another. In this 
context, Ecomobile provides an ideal infrastructure for investigating mobile information and application 
management.  
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Another range of applications is associated to the emerging autonomic computing  paradigm devised by 
IBM1 and mainly inspired from the autonomic function of the human central nervous system. A typical 
objective in this novel approach consists in developing distributed networks that are largely self-
managing, self-diagnostic, and transparent to the user. The infrastructure and ecosystem-inspired concepts 
presented in this thesis may significantly contribute to this vision of future computing.  

OPEN ISSUES 

The current implementation of Ecomobile leaves a certain number of open issues. A statistical framework 
specific to population ecology should lead to a more fine-grained analysis of the ecosystem stability. 
Further investigations with different topologies and different network sizes should also be performed in 
order to confirm the density properties and the ecosystem stability revealed by our simulation results. At 
the current stage of our experiments, it is difficult to predict the evolution of certain TO-metrics in the 
case of large-scale networks, such as agent context size. 

The current publicly available implementation of the Junior reactive machine should be improved in 
order to support a larger number of parallel instructions: the dynamic addition of reactive instructions 
relies on a recursive mechanism which may lead to a stack overflow problem when numerous M-agents 
are involved. An alternative way to overcome this limitation would consist in modifying the source code 
in order to implement tables or queues for handling reactive instructions. In this context, the authors of 
Junior are also working on a new version called Storm, which should provide significant improvements 
towards the processing of a huge number of events and instructions. 

Finally, the transfer of code in Java requires the presence of classes in the remote agency. In particular, 
the TO classes must be transferred, so that TOs can be de-serialized by the M-agent context. Although 
classes can be transferred when it is necessary and although they can be loaded dynamically in the virtual 
machine, Java unfortunately does not allow a class to be unloaded. This problem is common to other 
mobile agent systems and remains to be solved in future versions of the JVM. 

FUTURE WORK 

The study of large-scale networks of 100 nodes or more, with various connectivity degrees, constitutes 
the next step of our investigations. In addition to the waiting time, we also intend to investigate dynamic 
adaptation under certain conditions according to other parameters in reactive behaviours, such as the 
number of clones. Improving the MBS itself by means of automatic switching between MBS-low and 
MBS-high in order to tune the ecosystem behaviour more finely and therefore to increase the TO 
performance, also constitutes one of our objectives. A statistical analysis of node visits, i.e. the frequency 
of TOs activation, would also provide helpful information for the measurement of TO performance and 
for its improvement. The development of a monitoring tool could finally provide a way to observe the 
ecosystem behaviour in real networks and to tune parameters in the environment dynamically in order to 
influence the agent population. 

The validation of our system can be achieved by means of a simulated active node environment with 
the LEAP agent platform. A Java node operating system could be examined on top of the NodeOS for the 
construction of reliable active packets. Anchored in reactive systems, the formalization of Ecomobile 
based on SDL or Petri-nets and by means of partial ordering techniques would also clarify the influence 
of ecosystem parameters and allow us to define further MBS. The introduction of sexual reproduction as a 

                                                      
1 http://www.research.ibm.com/autonomic 
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new reactive behaviour could reveal a new interesting way to explore the network and to disseminate the 
TOs efficiently.  

The development of new task objectives for the management of optical networks constitutes one of the 
objectives of the OPTIMA project. Joint efforts of Swisscom Innovations and the University of Fribourg 
should lead to the elaboration of different state-of-the-art distributed RWA algorithms by means of task 
objectives. These algorithms could then be compared with centralised RWA algorithms currently 
supported by GNMT. The computational model of Ecomobile should allow us to combine several RWA 
algorithms with adequate parameterization. Specific rule-based task objectives will also be developed in 
the scope of an ongoing project dealing with the management of optical SLAs. 

Last but not least, it could be interesting to invest some time and efforts in order to manage the 
complexity of a terminode network (see Section 1.4.3). In this final perspective, the combination of 
Ecomobile with a MITAgent approach (see Section 1.3.1) and the implementation of lightweight software 
components within the terminodes can be considered as one of the many possible future extensions of this 
thesis. 
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Appendix A 
The GNMT Simulation Framework 

 

The present appendix aims at giving an overview of the simulation framework developed in the scope of 
this thesis. This chapter will serve as a basis for a future technical report [Ros02]. 

Generic Network Management Tool (GNMT) is a joint development effort of the Telecom Group 
(Department of Informatics of the University of Fribourg) and Swisscom Innovations (Bern), in 
Switzerland. Initially, the GNMT project was intended for the simulation of Ecomobile within an optical 
transport network infrastructure. In this appendix we will describe the GNMT architecture and each 
module in terms of Java classes and functionalities. 

A.1 INTRODUCTION 
GNMT is a 100% Java-based functional simulation tool dedicated to the study of new network-oriented 
technologies such as agent-based distributed network management or Active Networks applications. Since 
it is developed in Java, GNMT is not intended for real-time simulation. The GNMT framework provides 
a multi-layer network simulated environment in which the components of different layers can interact 
with each other and implement various capabilities and constraints. GNMT was originally designed to 
provide stationary and mobile multi-agent systems such as Ecomobile with an semi-emulated 
heterogeneous and dynamic network environment. Hybrid centralised and decentralised management 
approaches can be supported simultaneously.  

In GNMT, the underlying transport network is assumed to be a WDM-based optical network on top of 
which different layers, such as IP, SDH or ATM, can be added. Each layer may have its own management 
philosophy and interactions between layers rely on a particular interaction model. All the elements will be 
detailed in this document. 

The GNMT framework is divided into two component-oriented parts: the kernel and the private 
extensions. The kernel includes all the classes related to the core GNMT network model and basic user 
interfaces for simple simulations, while the private extensions refer to packages developed in the scope of 
students contributions at Swisscom Innovations. 

GNMT is currently evolving to become an open source project1. The kind of public licence to be used 
is still under discussion and the official distribution including the kernel classes will be available as soon 
as these license-related issues have been clarified. Figure A-1 presents an overview of the existing 
packages. 

The Scalable TeRabit Optical NetworkinG (STRONG) and the INNOVATE projects are two 
extensions to GNMT, which have been developed at Swisscom Innovations. They contain both kernel and 
private extensions; classes and functionalities belonging to the different parts however remain to be 
determined. 

                                                      
1 http://gnmt.sourceforge.net 

http://gnmt.sourceforge.net
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Figure A-1. Modules in GNMT 

The core GNMT network model consists of abstract classes and basic functionalities extended and 
implemented by each layer. Basically, each network layer technology (OTN, ASON, IP/MPLS) 
corresponds to a particular package. Classes required for dynamic simulation, OSPF-like routing 
algorithms and the Ecomobile middleware constitute further distinct packages. 

Figure A-2 gives a snapshot of the graphical interface of the GNMT tool including two windows: a 
physical optical network topology and the related traffic matrix. 

 
Figure A-2. A GUI snapshot of the GNMT 



Appendix A 
The GNMT Simulation Framework 

 

175 

The GNMT root model is based on the Model-View-Controller (MVC) design pattern [GHJ+95] 
supported by the Swing architecture; Swing is a Graphical User Interface (GUI) component kit, part of 
the Java Foundation Classes (JFC) integrated into Java 2 platform. In our context, MVC allows for a 
separation between classes specific to the network and simulation model (Model), classes specific to the 
graphical components used by the GUI (View), and classes specific to user interactions involving mouse, 
keyboard and screen (Controller).  

The current implementation of GNMT however does not rely on a fully MVC implementation yet 
[Zbi01]; the graphical components are handled by means of a commercial third-party library, called Ilog 
JTGO1, which provides efficient network-oriented graphical components and facilities for the 
management of user interactions. The replacement of the Ilog library by an open graphical components 
library developed at the University of Fribourg is currently under investigation and will lead to a fully 
MVC implementation. 

A.2 THE GNMT KERNEL 
The minimal set of GNMT classes and functionalities necessary to perform a simple simulation belongs 
to the GNMT kernel which is freely available according to the open source philosophy. This section 
outlines the different packages forming the kernel. 

The root tree structure is depicted on Figure A-3; the main package entry is called iiuf.gnmt ("iiuf" for 
"Institute of Informatics of the University of Fribourg"). In the near future, the kernel root package will be 
renamed to edu.diuf.gnmt in order to differentiate from the private extensions and to match with the new 
name of the department (Department of Informatics). 

 
Figure A-3. GNMT kernel: classes tree with root packages 

The model, view and controller packages implement the MVC design pattern. The view and 
controller packages contain the same package organization as the model package. In this section, 
we mainly focus on the model package, as the other packages are currently being re-designed. The data 
package contains sample network topologies described in XML. The editor package contains the main 
class (Editor.java) of the application whereas the util package contains diverse auxiliary routines and 
mathematical structures.  

The tree structure of the model package is depicted on Figure A-4. The abstract classes of the core 
GNMT network model belong to the model package. The routing package contains generic routing 
algorithms whereas the simul package contains the necessary classes for dynamic simulation. This 

                                                      
1 http://www.ilog.de/products/jtgo 

http://www.ilog.de/products/jtgo
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package is subdivided into a publicly accessible kernel part (packages iiuf.gnmt.X), which is part of 
the GNMT kernel, whereas the private extensions part (packages com.swisscom.gnmt.X) consists in 
an extension specific to Swisscom Innovations. 

 
Figure A-4. General structure of packages in the model part 

The abstract classes of the core GNMT network model belong to the model package. The routing 
package contains generic routing algorithms whereas the simul package contains the necessary classes 
for dynamic simulation. This package is subdivided into a publicly accessible kernel part (packages 
iiuf.gnmt.X), which is part of the GNMT kernel, whereas the private extensions part (packages 
com.swisscom.gnmt.X) consists in an extension specific to Swisscom Innovations. 

A.2.1 The Core GNMT Network Model 
This package describes the GNMT network model that is made of abstract classes which have to be 
extended and implemented into layer subclasses. 

Our model relies on a combination of two different approaches that are characteristic for modelling 
layered networks; first of all, the generic functional architecture of ITU-T transport networks [G805_95] 
proposes a functional decomposition of the transport network in terms of layering and partitioning; while 
the layering deals with the separation between distinct transport technologies, the partitioning consists in 
subdividing the functional components within a single layer. This model supports multiple layers which 
can be interconnected according to a client-server relationship; in a layer network, the link connections 
formally provide connectivity between topologically adjacent sub-networks; they are provisioned by the 
services of a trail1 at another layer. This layer is known as the server layer, while the layer in which link 
connection requests are issued is called the client layer. 

                                                      
1 A trail is defined as the combination of the connection information augmented with additional overhead 
information used to achieve the Operations, Administration and Maintenance (OAM) objectives. 
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The second approach is based on the ISO/OSI layered protocol model [T96]; it consists in a functional 
decomposition based on a seven-layer protocol model. Since the ISO model was originally conceived 
within or around a single transport layer without any consideration for partitioning, it offers a perspective 
which is different from the approach proposed in the ITU-T model. The potential compatibility between 
the two models is still under discussion at the ITU-T. The overall core GNMT network model is depicted 
in Figure A-5. 

The abstract core GNMT network model is a generic representation of the main network components 
constituting a multi-layer transport network. Each component must therefore be specialized according to 
the network technology which is being considered in the simulation. 

In GNMT, a client demand is synonymous with client connection, or simply connection, and is defined 
as a general service associated to each layer. 

P hys .

Node

Link

Connection
PortPort

PortConnectivity

Access  
Point

LayerEntity

Layer

 
Figure A-5. Core GNMT network model inspired from the ITU-T and ISO models. 

The abstract core GNMT network model is a generic representation of the main network components 
taking place in a multi-layer transport network. Each component must therefore be specialized according 
to the network technology which is being considered in the simulation. 

In GNMT, a client demand is synonymous with client connection, or simply connection, and is defined 
as a general service associated to each layer. 

IIUF.GNMT.MODEL 

In the beginning, the network may be composed of multiple layers. A layer is defined as a collection of 
nodes associated with the same transport technology (IP, ATM, SDH, etc.) and therefore refers to a 
specific protocol. The layered model of GNMT is composed of the lowest layer called physical layer on 
top of which logical or virtual layers are interconnected. Each layer can implement a different 
management approach based on centralised management, i.e. the management logic is placed at the layer 
level, or decentralised management in which case the management logic is placed in each layer node and 
relies on a signalling protocol or any kind of information exchange mechanisms. Figure A-6 presents an 
overview of the classes belonging to the model package; the UML diagram only contains classes and 
relationships, as well as basic attributes and operations. 
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Figure A-6. UML Diagram of the core GNMT network model (package iiuf.gnmt.model) 

The Network class contains all the network layers likely to be used in GNMT. A layer (class Layer) is 
composed of LayerEntity objects characterizing network nodes within the layer. Node functionalities 
and related management logic must be implemented into layer entities. The Node object represents an 
OSI node, i.e. a node which encompasses several layer entities belonging to different layers. The 
particularity of these layer entities is that they are placed at the same location, i.e. the positioning of the 
layer entities of a specific node is determined by the position of the layer entity in the physical layer. Such 
an approach allows a node to be regarded as an OSI node in which several protocol layers are 
implemented. According to this definition, a layer entity is the intersection of an OSI node with its layer. 
In order to avoid confusion, we plan to rename the Node class as OSINode and the LayerEntity 
class as Node. 

In the current version of the GNMT, there is only one kind of network, called OTNNetwork (see 
Section A.2.3), in which the optical transport network constitutes the physical layer; the client layers can 
be either IP/MPLS, ASON, or a generic VPN. The physical layer remains the unique layer in which layer 
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entities can be created; these nodes can then be reported to an upper layer by simply “attaching” nodes 
from the physical layer (optical layer) to the client layer, so that the corresponding nodes in the client 
layer include layer-specific functionalities. As a consequence, a client layer can only have a subset of 
network nodes of lower layers. The network topology, i.e. links between layer entities, can then be freely 
defined in each layer. 

Layer entities (nodes at layer level) within the same layer are linked by means of Link objects. Links 
can be aggregated into a LinkAggregation object so that multiple links or channels can be defined 
between two layer entities. Interactions between layers are addressed using access points that will be 
explained later on. 

The Port class defines a general abstract port which groups several links (including link 
aggregations). The port itself can be hierarchically organised. At the time of a link creation, the link is 
assigned to a "top-level" port which is automatically created. Then, the designer can associate the link to 
different ports. For example, an optical fibre can be associated to a port aggregation, which in turns 
contains several optical channel associated ports. Port attributes (in, out) indicate the link direction and 
thus tells whether the link is uni/bi-directional. In addition, a PortProfile object is associated to each 
port in order to hold specific attributes depending on the port type, such as wavelength frequency, 
bandwidth, and so on. 

Routing can be achieved by means of the PortConnectivity object, which indicates which input 
ports can be routed to output ports. Switching information can be introduced statically before the 
simulation and/or dynamically during the simulation. The flexible notion of port permits a group of links 
to be routed at a time: a port can aggregate several links or even several ports. 

In GNMT, the edition of nodes and links within a specific layer defines the network topology, which 
corresponds to network components and their physical or logical connectivity. Nothing about client 
connections is specified in a network topology. Connections, i.e. client connection/demand requests, are 
introduced by means of a Connection object when a topology has been designed; they can be either 
configured manually, directly by editing each connection link, or by means of a XML file or of a traffic 
matrix; connections can also be automatically generated thanks to a demand generator. Since the 
connection semantics and related algorithms strongly depend on the layer, the connection algorithms are 
not defined in the core model, but stored in a package called demand and located in each layer. 

Finally, the Access Point Manager (APM) (class AccessPointMgr) enables interactions between 
multiple layers (vertical interactions). The concept relies on the access and connection points as defined 
in the ITU-T model according to a client-server paradigm. In our model, the APM manages a collection 
of layer entities belonging to the upper layer, those entities acting as connection points. Each layer entity 
therefore includes an APM. 
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Figure A-7. Multi-layer management with Access Point Manager in GNMT 

Only one APM has been implemented so far; however, future releases of GNMT will allow a layer entity 
to manage several APMs so that different node-related services can be distinctly provided to client layers. 

A.2.2 Routing Algorithms 

IIUF.GNMT.MODEL.ROUTING 

This package contains conventional routing algorithms. Currently, only the Open Shortest Path First 
(OSPF) algorithm has been implemented and is used by the ASON package. 

A.2.3 Intelligent Wavelength Services 

IIUF.GNMT.MODEL.IWS 

This package contains all the components related to the optical transport network, including intelligent 
services such as ASON, on the one hand, and Ecomobile, on the other hand.  

IIUF.GNMT.MODEL.IWS.OTN 

The Optical Transport Network (OTN) layer defines the optical components of the physical layer, as 
depicted on Figure A-8. 

Besides the OTN layer, the OTNNetwork class is used by GNMT to create the multi-layer network 
environment at the starting point; an OTNNetwork contains an instance of each layer liable to be used in 
the network configuration. Consequently, it is not possible to have more than one instance of each layer. 

The OTNLayer is composed of optical nodes, fibres and optical channels. Optical nodes refer to a 
general optical component implementing optical functions. 
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Figure A-8. UML Diagram of the OTN layer 

The links are described by optical channels (class OptChannel) and fibres (class Fibre). A fibre is 
considered as a LinkAggregation which can contain several OptChannel. Like links, optical ports 
are organized hierarchically. For commodity reasons, an implementation choice has led to the definition 
of the top-level port (class OTNPort) as a container, in which two PortAggregation instances are 
stored, one gathering optical fibres, another gathering optical channels. Each fibre contains references to 
embedded optical channels.  

Two corresponding profiles have been defined, FibrePortProfile and 
OptChannelPortProfile respectively. These two profiles allows a link to be uniquely identified. 
A fibre or an optical channel can be retrieved according to a particular profile; when the profile is equal to 
null, whichever link, actually the first element of the container, is returned. 

IIUF.GNMT.MODEL.IWS.OTN.DEMAND 

The connections that take place in OTN are defined in this package. A connection is defined by a 
connection descriptor (class IWSConnection) which defines a client connection entirely by means of 
link descriptors (class LinkDescriptor). A connection descriptor may contain both working and 
protection paths. The source and destination nodes are given in the connection descriptor and the links 
can be entered manually or be generated automatically by the corresponding routing algorithms. 

Connections can be configured by means of a traffic matrix. In the otn.demand package, for 
example, the simulation is profiled and started from the traffic matrix. Each layer can define its own 
traffic matrix. 
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When interactions between several layers take place, the upper layers request the lower layers to which 
they are interconnected for client connections. This model basically corresponds to the overlay model 
considered in GMPLS. 

IIUF.GNMT.MODEL.IWS.ASON 

The Automatic Switched Optical Network (ASON) package contains an implementation of different 
centralised algorithms (layer level) related to the Routing and Wavelength Assignment (RWA) problem 
[Mah01][Stu02] for both transparent and opaque optical nodes. 

Routing algorithms are: Fixed Routing, Fixed-alternate routing, and Adaptive Routing (Least-
congested-path (LCP) and Least-Loaded (LL)). Wavelength assignment algorithms are: Random, First 
Fit, Least-used, Most-used, Opaque. Further information concerning these algorithms is out of the scope 
of this document. 

IIUF.GNMT.MODEL.IWS.ECOMOBILE  
 
This package contains the implementation of Ecomobile. 

A.2.4 Dynamic Simulation  

IIUF.GNMT.MODEL.SIMUL 

With GNMT, it is possible to perform a dynamic simulation by means of a XML script file containing 
specific commands [Roc01] in order to create nodes, remove nodes, create links, remove links, simulate a 
fibre cut, etc. This mechanism is also used to store and restore network topologies within GNMT.  

At the beginning of the simulation the XML script is entirely read and all commands are stored in a 
priority queue according to their execution order. The commands are performed according to an event-
based scheduling. The available XML commands are described in Table A-1. 

 

Command Description Status 

ADD_NODE Add a node in the topology Implemented 

REMOVE_NODE Remove a node Not implemented 

ADD_LINK Add a link in the topology (wavelength + fibre) Implemented 

REMOVE_LINK Remove a link Not implemented 

ADD_DEMAND Open a connection between two nodes Implemented 

GENERATE_DEMANDS Turns on the demand generator according to 
specific distribution 

Implemented 

FAILURE Simulate a failure at a node or at a link Not implemented 

Table A-1. List of simulation commands 

When a network topology has to be saved, a script file is automatically generated. Each node and link is 
described by the ADD_NODE and ADD_LINK commands respectively, with attributes indicating their 
graphical position, type, etc. The topology can then be restored by playing the script file. 
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The XML data structure is defined by means of a DTD file which describes the syntax and grammar of 
each command and attribute. The DTD file is then processed by a third-party framework called Zeus1, and 
a Java class is produced for each XML tag. Resulting classes are put in a sub-package called 
dtdObjects placed in the demand package associated to each layer. The overall process generating 
Java classes and using XML file is depicted on Figure A-9. 

DTD Objects
(Java)

DTD Objects
(Java)

Marshall process
(Zeus library functions)

Write to 
file

Read 
from file

Unmarshall process
(Zeus library functions)

XML fileDTD file
Generate Bindings

(Zeus library functions)

DTD Objects
(Java)

DTD Objects
(Java)

Running
simulation

 
Figure A-9. XML and binding with Java objects 

Table A-2 shows an example of an XML script file containing the creation of one node and one fibre with 
two wavelengths. The attribute exec_order indicates the place within the priority queue in which the 
command takes place. 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

<?xml version="1.0" encoding="UTF-8" ?>  
 
<XMLFILE>  
 
<ADD_NODE name="Node8" coordy="30.0" coordx="259.0" exec_order="1" />  
 
<ADD_LINK type="FIBRE" exec_order="9" node_dest="Node1" num_of_lambdas="2" node_orig="Node3"> 
<LAMBDA status="IDLE" wavelength_ID="0" />  
<LAMBDA status="IDLE" wavelength_ID="1" />  
</ADD_LINK>  
 
<DELAY time="20" exec_order="33" />  
 
</XMLFILE> 

Table A-2. Example of a XML script 

The simul package is composed of a kernel part and a private extension part. The event-based 
scheduler, the mechanisms used for processing XML files and the demand generation based upon Poisson 
distribution are considered as the kernel part, whereas the other distributions, such as On-Off process and 
Fractal Renewal processes, are private extensions. 

                                                      
1 Zeus is freely downloadable at http://zeus.enhydra.org 

http://zeus.enhydra.org
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A.3 PRIVATE EXTENSIONS 

A.3.1 The IP Layer 

IIUF.GNMT.MODEL.IP 

This package integrates previous work achieved in the Innovate project [Jia01] at Swisscom Innovations. 
This project aimed at simulating MPLS Traffic Engineering (TE) techniques with the Constraint Based 
Routing (CBR) algorithm. In this context, the simulation of a IP over WDM network, implementing both 
peer-to-peer and overlay models, has been realized. 

This package illustrates a kind of private extensions that can be developed in the GNMT framework. 

A.4 CONCLUSIONS 
In this appendix, we have presented an overview of the GNMT functional simulation framework and its 
main components, namely the core GNMT network model, packages related to the kernel and private 
extensions part. GNMT currently becomes an open source project so that the kernel part will be publicly 
accessible. However, the type of licence to be used is still under consideration. 

GNMT has been originally developed in order to implement Ecomobile and to perform simulations 
within an optical network environment. In addition, several private extensions have been developed in 
order to evaluate routing and wavelength assignment algorithms, on the one hand, and IP/MPLS related 
algorithms, on the other hand. These extensions have been developed during student work at Swisscom 
Innovations. 

The GNMT design relies on a Model-View-Controller design pattern. The graphical objects resort to a 
commercial third-party library called Ilog JTGO which provides nice features for drawing nodes and 
links. In particular, the framework provides facilities to handle link aggregation. The graphical part of 
GNMT is currently being re-designed by means of a non-commercial framework in the perspective of the 
open source release. 

The core GNMT network model stems from two main network models: the ITU-T  transport network 
model and the OSI model. The combination of these two models makes the simulation of multi-layer 
network possible. Currently, GNMT implements the optical transport network layer as the physical layer 
on top of which different layers, such as IP/MPLS, or generic VPN can be simulated. The demand 
generator enables dynamic traffic according to specific call distribution. 

Possible improvement of GNMT would consist in using a basic desktop-oriented framework such as 
Netbeans1 or IBM Eclipse2 in order to benefit from standard functionalities for data manipulation, window 
management, file handling, etc. 

 

                                                      
1 http://www.netbeans.org 
2 http://www.eclipse.org 

http://www.netbeans.org
http://www.eclipse.org
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