
Département d’Informatique, groupe Télécom
Université de Fribourg (Suisse)

Towards Active Network Management with
Ecomobile,

an Ecosystem-inspired Mobile Agent Middleware

Design, Implementation, Simulation and Application to Optical Networks

THESE

présentée à la Faculté des Sciences de l’Université de Fribourg (Suisse)

pour l’obtention du grade de Doctor scientiarum informaticarum

Daniel Rossier-Ramuz
Ing. info. dipl. EPFL

de
Montagny-les-Monts (FR)

Thèse No. 1392

2002

Imprimerie Uni-Print, Université de Fribourg

Accepté par la Faculté des Sciences de l’Université de Fribourg (Suisse) sur la proposition de

Prof. Marino Widmer Université de Fribourg, Suisse Président du Jury

Prof. Beat Hirsbrunner Université de Fribourg, Suisse Directeur de thèse
Dr. Rudolf Scheurer Université de Fribourg, Suisse Co-directeur

Prof. Samuel Pierre Ecole Polytechnique de Montréal, Canada Premier rapporteur
Dr. Daniel Rodellar Swisscom Innovations AG, Berne, Suisse Second rapporteur

Fribourg, le 21 Octobre 2002

Le Directeur de thèse: Le Doyen:

Prof. Beat Hirsbrunner Prof. Dionys Baeriswyl

 A Catherine, Aline, Emilie, …

 A mon Parrain

iii

Résumé

Les futurs réseaux optiques multicouches utilisant le multiplexage en longueur d'onde permettront dans
un proche avenir l'introduction de nouveaux services optiques à valeur ajoutée. Le réseau de transport
passif conventionnel se transformera ainsi en une couche de transport active et intelligente. Le succès de
ces nouveaux services dépendra toutefois de l'efficacité, de la résilience et de la programmabilité de
l'infrastructure de gestion mise à la disposition des opérateurs de réseaux et des fournisseurs de service.
Une approche de gestion traditionnelle et purement centralisée ne permet pas d'intégrer les contraintes
d'hétérogénéité et de dynamicité inhérentes à ces nouveaux réseaux et doit par conséquent évoluer en
direction d’une gestion décentralisée et auto-adaptative.

L'introduction d'agents logiciels autonomes est une technique prometteuse, flexible et particulièrement
bien adaptée à ce type de système distribué. Des agents réactifs capables de se déplacer dans le réseau
permettent d'utiliser des approches bio-inspirées comme celles issues du comportement émergent.

Dans le cadre de ce travail, nous avons développé un intergiciel appelé Ecomobile, composé d’agents
mobiles qui appliquent des principes observés dans des écosystèmes naturels, afin de disséminer et
d'activer des tâches coopératives de gestion de réseau. Dans cette perspective, nous avons analysé le
comportement d'une communauté d'agents mobiles en examinant l'évolution de leur population, leur
propagation, la fréquence de visite des nœuds et des liens, ainsi que différentes stratégies de
dissémination de tâches intelligentes dans diverses topologies de réseaux de transport.

Après avoir étudié différents systèmes d'agents mobiles intégrant des modèles de navigation
déterministes et stochastiques, nous avons élaboré un modèle original d'agent réactif en séparant les
modèles de coordination et de navigation, qui constituent le schéma de comportement mobile, du modèle
computationel, qui correspond aux tâches opérationnelles. L'implémentation d'un écosystème artificiel
constitué de ces agents mobiles a été réalisée à l'aide d'un formalisme de programmation réactive.

Les tâches opérationnelles génériques proposées dans notre recherche permettent la composition de
tâches de gestion complexes. La réponse de notre écosystème à l'insertion dynamique de ces tâches
génériques a été simulée et analysée. Afin de déployer Ecomobile dans un réseau actif, nous avons utilisé
une plateforme d'agent compatible FIPA appelée Jade. Le développement d'une agence particulière sous
forme d’un agent Jade offre aux agents mobiles un environnement d'exécution adéquat et leur fournit les
services de migration nécessaires.

En guise de conclusion, nous avons établi une translation de la sémantique d'Ecomobile dans un
environnement défini par un nœud de réseau comprenant différentes fonctions optiques de conversion et
de routage de longueur d'onde. La définition et l'implémentation d'un service de protection différenciée à
l'aide d'une tâche opérationnelle devrait enfin ouvrir la voie à des améliorations et des innovations dans le
domaine de la gestion des réseaux de transport optiques multicouches grâce à Ecomobile.

Mots-clé: gestion de réseau distribuée, agents mobiles, écosystème artificiel, systèmes réactifs, réseaux
optiques

v

Abstract

The future multi-layer optical networks based on wavelength division multiplexing technology will lead
to the creation of new value-added optical services, which is bound to transform the traditional passive
transport network into an active and intelligent transport layer. The successful deployment of these
complex networking services and the possibility of subjecting them to a dynamic control, however,
strongly depend on the management infrastructure, on its resilience and its ability to react to network
changes. In this context, traditional platform-centred management systems have lost their attractiveness: a
distributed decentralised and self-adaptive network management should constitute an ideal approach, in
order to deal with the complexity of a heterogeneous, scalable and continuously evolving network
environment.

According to this perspective, the recourse to autonomous software agents can now be considered as
one of the most promising and flexible of the distributed processing techniques. The development of
reactive agents acting as mobility-oriented individuals benefits from bio-inspired approaches such as
emergent behaviour. The powerful dynamic and active mechanisms characterizing the evolution of
mobile reactive agents enhance the network infrastructure and lead to a self-organizing knowledge-based
network environment.

In order to address the numerous challenging issues related to the management of future multi-layer
transport networks, we propose to develop an ecosystem-inspired mobile agent middleware called
Ecomobile, intended for the dissemination and the activation of cooperative management tasks. Particular
emphasis will be laid on the transport network management and several topics related to the population of
mobile agents will be discussed, such as their propagation within the network infrastructure, the
frequency of node and link visits or the dissemination of intelligent tasks.

After having identified the main characteristics of conventional mobile multi-agent systems based upon
deterministic and stochastic migration strategies, which are particularly relevant to the field of distributed
control, we have decided to adopt a novel agent architecture based upon a clear separation between the
mobile behaviour scheme composed of the navigation and coordination model, on the one hand, and the
task objectives, which refer to the agent's operational behaviour or to the computational model, on the
other hand. The implementation of the ecosystem is realized with a reactive programming formalism.

The generic task objective models we have elaborated correspond to basic networking functions and
are intended for the compositional building of more sophisticated tasks. The response of the ecosystem to
the dynamic insertion of task objectives will be analyzed by means of a simulation. The deployment of
our middleware into active nodes will be achieved with the FIPA-compliant Jade agent platform, in
which the Ecomobile agency provides the mobile agents with the necessary requirements for their
migration and for the execution of the task objectives.

We will finally show that the Ecomobile middleware can be applied in the field of optical transport
network management by means of a pertinent mapping of the Ecomobile semantics onto the optical
network environment. The definition and the implementation of a new value-added differentiated
protection service into a multi-layer optical network should eventually pave the way for further
improvements and innovations in the field of transport network management.

Keywords: distributed network management, mobile agents, artificial ecosystem, reactive systems,
optical network

vii

Acknowledgements

The achievement of this thesis has been possible thanks to the involvement of several key persons.
I would like to express my deep gratitude to:

- Prof. Beat Hirsbrunner, for accepting to trust me and to give me the opportunity to perform this
research work under his supervision and in a stimulating academic environment;

- Dr. Rudolf Scheurer, for supervising my work, for supporting me and for the encouraging
discussions which allowed me to overcome the difficulties encountered during my scientific
investigations;

- Dr. Hermann Gysel (Swisscom Fixnet), for giving me the opportunity to start this thesis in a
continuously evolving industrial environment;

- Mr. Dipl.-Ing. Andreas Dürsteler (Swisscom Innovations), for trusting me and for giving me
access to Swisscom's solid infrastructure, for his patience and his kindness, and for allowing me
to reach contractual agreements with Swisscom Innovations;

- Olivier, Sergio, Amine and the colleagues of the Department of Informatics, for all the exciting
and constructive discussions on the topic of mobile agents and network management,
… and for accepting me in their football team;

- and, last but not least, my wife Catherine, for her precious contribution towards transforming my
manuscript into a readable "English-styled" document and, before all, for her patience and her
love, which allowed me to overcome my doubts and to quiet down during many sleepless nights.

ix

TABLE OF CONTENTS

Résumé ... iii

Abstract...v

Acknowledgements .. vii

List of Figures ... xiii

List of Tables ...xv

Abbreviations ... xvii

Introduction..1

Part I Technology Insight .. 5

Chapter 1 Mobile Agents and Network Management..7
1.1 NETWORK MANAGEMENT SYSTEMS ... 8

1.1.1 General Components.. 8
1.1.2 Centralised versus Decentralised Network Management.. 11
1.1.3 Distributed Management by Delegation .. 13

1.2 SOFTWARE AGENTS... 13
1.2.1 Intelligent Agents ... 13
1.2.2 Mobile Agents... 17
1.2.3 Mobility Functions.. 19
1.2.4 Agent Standards .. 19

1.3 MOBILE PROCESSING IN NETWORK MANAGEMENT ... 22
1.3.1 Main Characteristics of Mobile Agent Based Approaches... 23
1.3.2 The Wave Technology.. 28

1.4 ACTIVE NETWORK MANAGEMENT ... 29
1.4.1 Active Networks ... 30
1.4.2 Ad-hoc Networks ... 31
1.4.3 The Terminodes... 31

1.5 AGENT PLATFORMS ... 32
1.5.1 FIPA-OS .. 33
1.5.2 Jade ... 33

1.6 SUMMARY AND DISCUSSION.. 35
Chapter 2 Engineering Mobile Multi-agent Systems...39

2.1 THE COMPUTATIONAL MODEL... 40
2.1.1 Task Patterns ... 41
2.1.2 Tightly and Loosely Coupled Task Model ... 42

2.2 THE COORDINATION MODEL ... 43
2.2.1 Interaction Patterns ... 43
2.2.2 Blackboard .. 44
2.2.3 Mobility Oriented Coordination.. 44

2.3 THE NAVIGATION MODEL... 46
2.3.1 Location Concept, Migration and Itinerary .. 47
2.3.2 Migration Patterns ... 48
2.3.3 Pre-planned Navigation .. 49
2.3.4 Stochastic Navigation ... 49

2.4 EMERGENT BEHAVIOUR ... 50
2.4.1 AntNet .. 51

x

2.4.2 SynthECA ... 52
2.5 OUR CLASSIFICATION OF MOBILE MAS ... 53
2.6 SIMULATING MOBILE MAS .. 54
2.7 SUMMARY ... 56

Part II Design, Implementation and Simulation .. 59

Chapter 3 The Conceptual Framework of Ecomobile .. 61
3.1 FUNDAMENTALS OF ECOMOBILE ... 62

A Threefold Architecture... 62
3.2 NODE ENVIRONMENT... 64

3.2.1 The Agency .. 65
3.2.2 The Place.. 65
3.2.3 The Blackboard.. 66

3.3 THE M-AGENT .. 66
3.4 THE MOBILE BEHAVIOUR SCHEME ... 68

3.4.1 Notations ... 69
3.4.2 Reactive Behaviours ... 70
3.4.3 Low Diffusion.. 74
3.4.4 High Diffusion... 75

3.5 TASK OBJECTIVES ... 76
3.5.1 Lifecycle and Callbacks.. 77
3.5.2 Rule-based Task Objectives ... 83
3.5.3 Wrapper and Interactions with Task Objectives .. 84

3.6 SAMPLES OF GENERIC TASK OBJECTIVES ... 86
3.6.1 Travelling in a network ... 86
3.6.2 Monitoring ... 87
3.6.3 The Node Inspector .. 87
3.6.4 Path Selection .. 88
3.6.5 The Exhaustive Path Finder .. 89
3.6.6 On-line Routing .. 91

3.7 OVERVIEW OF THE INTERACTIONS IN ECOMOBILE ... 93
3.8 SUMMARY ... 94

Chapter 4 Implementation with Reactive Programming and Deployment 97
4.1 REACTIVE PROGRAMMING... 98
4.2 THE JUNIOR FRAMEWORK ... 99

4.2.1 The Reactive Machine.. 100
4.2.2 The Reactive Instructions .. 101
4.2.3 Fair Threads ... 102
4.2.4 Towards a Reactive Operating System .. 103

4.3 MAPPING OF THE MBS ON REACTIVE INSTRUCTIONS .. 104
4.3.1 A Causality Problem in the Φinterference- Φdwelling Scheme .. 104
4.3.2 The MBS-low and the MBS-high as Reactive Programs ... 106

4.4 DEPLOYMENT WITH JADE .. 108
4.4.1 Ecomobile Agency .. 108
4.4.2 The LEAP Project.. 111
4.4.3 Considerations about Efficiency and Scalability.. 112

4.5 THE MOBILITY SUPPORT WITH FIPA-OS ... 113
4.6 SUMMARY ... 114

Chapter 5 Simulation and Results .. 117
5.1 THE GNMT FRAMEWORK ... 117

5.1.1 Introduction ... 117
5.1.2 The Core GNMT Network Model.. 118

5.2 NOTATION, METRICS AND ASSUMPTIONS... 120
5.3 BEHAVIOURAL ANALYSIS OF THE MBS... 121

5.3.1 Node Visit Frequency ... 121
5.3.2 Link Visit Frequency ... 124
5.3.3 Population and Stability.. 127

5.4 BEHAVIOURAL ANALYSIS OF TASK OBJECTIVES .. 131

xi

5.4.1 TO_Travel ... 131
5.4.2 TO_PathSelect... 132
5.4.3 TO_ExhaustivePathFinder... 133
5.4.4 TO_Routing .. 134
5.4.5 Discussion... 136

5.5 SUMMARY ... 136
Part III Application to Optical Networks: A Case Study 139

Chapter 6 The Optical Transport Network ...141
6.1 AN OVERVIEW OF OPTICAL NETWORK COMPONENTS ... 142

6.1.1 Time and Wavelength Division Multiplexing... 142
6.1.2 Optical Nodes... 142

6.2 THE ROUTING AND WAVELENGTH ASSIGNMENT PROBLEM .. 144
6.3 MANAGING OPTICAL NETWORKS .. 145

6.3.1 The Digital Wrapper .. 146
6.3.2 The Automatic Switched Optical Network... 146
6.3.3 Active Management .. 149

6.4 SUMMARY ... 149
Chapter 7 Towards Active OTN Management ...151

7.1 THE OPTIMA PROJECT .. 151
7.2 DEPLOYING ECOMOBILE INTO ACTIVE OPTICAL NODES.. 152

7.2.1 Optical Agents .. 152
7.2.2 Place Semantics .. 153

7.3 INTELLIGENT WAVELENGTH SERVICES ... 154
7.3.1 The Optical VPN .. 154
7.3.2 On-demand Provisioning.. 155
7.3.3 Protection and Restoration in the OTN ... 155

7.4 DIFFERENTIATED PROTECTION SERVICES ... 156
7.4.1 The Network Model ... 156
7.4.2 Quality-of-Protection (QoP) and DPS Formulation ... 157
7.4.3 DPS-oriented Task Objective .. 160
7.4.4 Experiments and Results ... 163

7.5 SUMMARY ... 165
Conclusions ...167

Appendix A The GNMT Simulation Framework..173
A.1 INTRODUCTION ... 173
A.2 THE GNMT KERNEL .. 175

A.2.1 The Core GNMT Network Model .. 176
A.2.2 Routing Algorithms .. 180
A.2.3 Intelligent Wavelength Services.. 180
A.2.4 Dynamic Simulation .. 182

A.3 PRIVATE EXTENSIONS.. 184
A.3.1 The IP Layer ... 184

A.4 CONCLUSIONS .. 184
Bibliography ..185

Curriculum Vitae ...187

References ...189

xiii

List of Figures
Figure 1-1. Interactions between manager, agent and MIB... 9
Figure 1-2. CORBA-based approach towards network management integrating TMN/SNMP agents 11
Figure 1-3. A TMN-based centralised approach for the optical transport network .. 12
Figure 1-4. Two famous agent models: the deliberative agent (left) and the reactive agent (right)............. 16
Figure 1-5. Mobile agent environment (left) and communication between agent systems (right) 18
Figure 1-6. Agent system reference model of FIPA. ... 20
Figure 1-7. General architecture of OMG-MASIF mobile agent system.. 21
Figure 1-8. Integration of the FIPA mobility support with OMG-MASIF... 22
Figure 1-9. MCE Components... 24
Figure 1-10. Active node infrastructure.. 30
Figure 2-1. UML Model of task behaviours in Jade... 42
Figure 2-2. Places and location concept ... 47
Figure 2-3. Ants making decisions based on the strength of the pheromone trail .. 51
Figure 3-1. Ecomobile: an instantiation of abstraction models.. 63
Figure 3-2. Active node environment with respect to Ecomobile.. 65
Figure 3-3. Places intra-/inter-agency connectivity and partial connectivity matrix... 66
Figure 3-4. M-agent Architecture .. 67
Figure 3-5. UML Diagram of M-agent components in Ecomobile... 68
Figure 3-6. MBS Low Diffusion - M-agent λy interacting with λx .. 74
Figure 3-7. MBS High Diffusion - M-agent λy interacting with λx ... 75
Figure 3-8. State and Callbacks-based Transition Diagram in TO Lifecycle .. 77
Figure 3-9. Macros definition in SDL .. 79
Figure 3-10. SDL Diagram from the state TO_S_INIT.. 80
Figure 3-11. SDL Diagram from the state TO_S_READY ... 81
Figure 3-12. SDL Diagram from the state TO_S_ACTIVATED .. 81
Figure 3-13. SDL Diagram from the state TO_S_SUSPENDED_FOR_MIGRATION.................................... 82
Figure 3-14. SDL Diagram from the state TO_S_SUSPENDED .. 83
Figure 3-15. Interactions between MBS, task objective wrappers ... 85
Figure 3-16. A pre-planned navigation TO model ... 89
Figure 3-17. Interactions in Ecomobile .. 94
Figure 4-1. Instant and reaction in the reactive model.. 98
Figure 4-2. Reactive machine in Junior ... 100
Figure 4-3. Interleaving of Reactive Instructions.. 103
Figure 4-4. A causality problem in reactive behaviours.. 105
Figure 4-5. Contraction of the interference-dwelling scheme into a unique reaction 106
Figure 4-6. UML diagram of the Ecomobile agency model.. 109
Figure 4-7. M-agent migration from one reactive machine to the other .. 110
Figure 4-8. Interactions between the Ecomobile components during migration .. 111
Figure 5-1. Core GNMT network model inspired from the ITU-T and ISO models. 119
Figure 5-2. The Square network (MBS-low, phiDwelling=5, phiMigration=10) .. 122
Figure 5-3. The Square network (MBS-high, phiDwelling=5, phiMigration=10)... 122
Figure 5-4. The Fantasy network (MBS-low, phiDwelling=5, phiMigration=10) ... 123
Figure 5-5. The Swiss Network (MBS-low, phiDwelling=5, phiMigration=10) .. 124
Figure 5-6. Number of M-agents arriving (first value) and leaving (second value) with MBS-low.............. 125
Figure 5-7. Overload of meeting opportunities (phiDwelling=5, phiMigration=10) .. 125

List of Figures

xiv

Figure 5-8. Link frequency visit with the heuristic-based waiting time function ... 126
Figure 5-9. Example of the evolution of the M-agent population size over time.. 127
Figure 5-10. Evolution of the M-agent population over time (phiMigration=10)... 129
Figure 5-11. M-agent population in the Swiss network (33 nodes) .. 130
Figure 5-12. Population size with constant waiting time (MBS-high, phiDwelling=5, phiMove=10)........... 131
Figure 5-13. Analysis of C(t) and D(t) of TO_Travel with MBS-low and MBS-high....................................... 132
Figure 5-14. Path completion over time .. 133
Figure 5-15. Finding all network paths between two nodes .. 134
Figure 5-16. Convergence speed, mean context size and diffusion ratio... 135
Figure 6-1. Four basic networking functions in the optical domain .. 143
Figure 6-2. The three section layers defined by ITU-T and the digital wrapper... 146
Figure 6-3. The ASON Management planes .. 147
Figure 7-1. Place semantics in the context of the basic optical functions... 153
Figure 7-2. Two-layers network model with virtual and physical topology.. 157
Figure 7-3. Two-dimensional interactions influencing the quality of protection ... 158
Figure 7-4. Evolution of the QoP according to the number of SN(t) and SL(t) (α,β = 1.0, ω = 0.3) 159
Figure 7-5. Working and protection paths in the optical VPN (dashed lines) and resulting allocation in the

OTN.. 164
Figure 7-6. TO-related metrics for the DPS task objective .. 165
Figure A-1. Modules in GNMT .. 174
Figure A-2. A GUI snapshot of the GNMT .. 174
Figure A-3. GNMT kernel: classes tree with root packages .. 175
Figure A-4. General structure of packages in the model part .. 176
Figure A-5. Core GNMT network model inspired from the ITU-T and ISO models. 177
Figure A-6. UML Diagram of the core GNMT network model (package iiuf.gnmt.model) 178
Figure A-7. Multi-layer management with Access Point Manager in GNMT .. 180
Figure A-8. UML Diagram of the OTN layer ... 181
Figure A-9. XML and binding with Java objects... 183

xv

List of Tables
Table 1-1. Summary of agent platforms and properties ... 34
Table 2-1. Taxonomy of coordination models with their spatial/temporal coupling... 46
Table 2-2. Abstraction models of different mobile MAS ... 54
Table 3-1. Task objectives callbacks and user methods.. 78
Table 3-2. An example of a task objective in Ilog JRules... 84
Table 3-3. A simple TO model to travel in the network... 86
Table 3-4. A generic monitoring TO model ... 87
Table 3-5. A node inspector TO model.. 88
Table 3-6. TO model for an exhaustive path finder in a network .. 90
Table 3-7. On-line routing TO model.. 92
Table 4-1. The method react() of the reactive machine (MachineImpl.java) activating a reaction 100
Table 4-2. Implementation sample of a Φ-behaviour with a reactive instruction ... 104
Table 4-3. Description of MBS using the dynamic insertion of reactive instructions..................................... 107
Table 7-1. The TO_QoP task objective ... 162
Table A-1. List of simulation commands.. 182
Table A-2. Example of a XML script... 183

xvii

Abbreviations

AC Agent Context
ACC Agent Communication Channel
ACL Agent Communication Language
AMS Agent Management System
AN Active Networks
ASON Automatic Switched Optical Network
DCN Data Communication Network
BDI Belief-Desire-Intention
CMIP Common Management Information Protocol
CORBA Common Object Request Broker Architecture
DF Directory Facilitator
DPS Dynamic Protection Set-up
ECC Embedded Communication Channel
FIPA Foundation for Intelligent Physical Agents
GMPLS Generalized Multi-Protocol Label Switching
GNMT Generic Network Management Tool
IETF Internet Engineering Task Force
ITU International Telecommunication Union
JIDM Joint Inter-Domain Management
JVM Java Virtual Machine
IDL Interface Description Language
M-Agent Mobile Agent
MAS Multi-Agent System
MASIF Mobile Agent Services Interoperability Facility
MBS Mobile Behaviour Scheme
MbD Management by Delegation
MIB Management Information Base
MMS Mobility Management System
MO Managed Object
MPLS Multiprotocol Label Switching
MTP Message Transport Protocol
MTS Message Transport System
NMS Network Management System
OMG Object Management Group
OPTIMA OPTical network management with Intelligent and Mobile Agent
OSI Open Systems Interconnect
OSS Operational Support Systems
OTN Optical Transport Network
QoP Quality of Protection
QoS Quality of Service
RCL Relative Capacity Loss
RDP Remote Delegation Protocol
RMI Remote Method Invocation
RWA Routing and Wavelength Assignment
SLA Service Level Agreement
SNMP Simple Network Management Protocol
TDM Time Division Multiplexing
TMN Telecommunication Management Network
TO Task Objective
UPI Universal Place Identifier
VPN Virtual Private Network
WDM Wavelength Division Multiplexing
XML eXtended Mark-up Language

1

Introduction

Over the last decade, the extraordinary development of the World Wide Web has led to the creation of
new multi-media services and enterprise applications which are continuously evolving to support more
and more facilities. These new services require far more complex network characteristics than simply
enough bandwidth: flexibility, reliability, scalability, fast reaction to network changes, and balanced
trade-off between quality and cost by means of customized Quality-of-Service (QoS) constitute the
essential properties of future telecommunication networks.

The deregulation of the telecommunication market implies the definition of new business models
leading service providers, which sell customers network services, and network operators, which supply
service providers with a network infrastructure, to evolve as distinct parties in a highly competitive
environment. The service providers, on the one hand, wish to create and modify services in a dynamic
way, to establish flexible Service Level Agreements (SLA) with variable QoS parameters, and to monitor
real-time service status and performance; the network operators, on the other hand, must be able to plan,
create and provision new services, to manage multiple, customer-tailored SLAs, to track and report SLA
QoS performance, to establish and manage network policies, and finally to provide for secure network
access [BTS+01].

The competitiveness of network operators consequently relies on their ability to create value-added
services within the existing as well as the future infrastructure and to deal with new customer
requirements. The migration from traditionally passive transport networks to adaptive and intelligent
components, and the ensuing intelligent transport network, directly result from these transformations. In
this context, Wavelength Division Multiplexing (WDM) based optical networks and Fiber to the Home
(FTTH) technology associated to the creation of advanced interactive services, such as digital television
services, will probably constitute one of the major revolutions in the telecommunication landscape during
the next decades.

The optical transport network is expected to transport data streams at a bit rate exceeding 1 Tbit/s on a
single link in the near future and, according to predictions, at a bit rate of 10 Tbit/s by 2010 [LDA+98].
From the point of view of the network operator, optical networks supporting networking functions in the
optical domain appear to be the most attractive technology for the creation of new customer-oriented
services.

Performance of these complex networking services however strongly depends on the management
infrastructure, on its resilience and on its capability to react to network changes. In traditional network
management, for example, management information is predefined and standardized, which makes future
updating difficult and troublesome. In the future, traditional platform-centred network and service
management systems will not meet the expectations of future multi-layer transport networks any more.
Inherently distributed management systems will have to match new paradigms implying that a substantial
portion of network control and network knowledge is no longer centralized in management systems. In
this perspective, decentralised and self-adaptive network management should constitute the ideal
approach meeting expectations of network operators and coping with a heterogeneous and continuously
evolving network environment.

Introduction

2

The software agent paradigm, which is currently gaining increasing attention in the scientific community,
arises from the convergence of several disciplines like distributed artificial intelligence, biology, software
engineering and telecommunications, and entails powerful mechanisms for the development, by means of
intelligent and mobile agents, of complex distributed systems, such as network management applications.
An intelligent agent may be defined as an encapsulated computing system situated in the network
environment and able to exhibit flexible and autonomous behaviour in order to fulfil its design objectives
[J01]. Intelligent agents are characterized by their social behaviour and interactions; they exchange
knowledge, goals, skills, and plans in order to make jointly short and long-term decisions to solve
complex problems. An agent may also have the ability to move that is, to move its code and data from
one location to another in order to accomplish its task progressively, in which case it places control and
management software processes dynamically at the most appropriate locations within the
telecommunication environment [MRK96]. The transfer of a large amount of data between a manager and
remote entities can thus be avoided; mobile agents can also continue their work when the connection is
temporarily interrupted. Since they enable both temporal and spatial distribution of management
activities, mobile agents are particularly well suited to the intelligent adaptation of services, as well as to
advanced service interworking and integration. In the context of network management, the mobile agent
approach entails a further advantage: while network management protocols must continuously be
developed in order to resolve new emerging problems, the resort to mobile agents makes network
management protocols between the managing station and the managed device obsolete [ZZ98].

Although mobile agents are perfectly adequate for network management systems, this novel approach
raises important open issues mainly concerning the proliferation of agents within the network
environment and the control of their density, which may have an influence on their overall performance,
as well as on their internal architecture, which often radically differs from one task implementation to the
other according to different mobility approaches.

The mobility paradigm and its application to transport network management systems constitute the
main subjects of this dissertation, in which we are trying to show that agent mobility associated to
network infrastructure may contribute to the elaboration of an intelligent transport network and may thus
facilitate the design and deployment of network management tasks within such networks. Our basic
approach consists in considering mobile agents and the network environment as an artificial ecosystem, in
which the network infrastructure can be considered as its biotope, i.e. the environment made up of
resources, and the mobile agents can be referred to its biocenose, or the individuals' society. This
approach allows us to benefit from self-organisation properties which emerge from any natural
ecosystem, in order to guarantee the stability and the efficient investigation of the infrastructure for the
execution of network management tasks, in particular.

The deployment of mobile agent systems into large-scale network devices raises a number of open
issues which will be addressed in our work. In this perspective, manufacturers such as 3Com, Cisco or
Nortel Networks have announced the development of network devices endowed with increasing
computing resources and liable to support an embedded Java Virtual Machine (JVM). In this context,
Active Networks (AN) technology provides an interesting architectural framework to transform usual
passive network nodes into programmable nodes in which code can be dynamically installed and
automatically configured. The concept of active network management as it is developed in this thesis
refers to a fully decentralised management; this kind of management leads network components to be
active, like active nodes in AN; more generally, active components must be capable of dynamically
hosting software entities and enabling their activation in an appropriate and secure execution

Introduction

3

environment. In the case of legacy systems, the active node may be composed of a local proxy interacting
with legacy components.

MOTIVATIONS

This thesis has been realized at the University of Fribourg in an industrial collaborative context involving
Swisscom Innovations, the research and development unit of Swisscom Ltd, in Bern, Switzerland, which is
the major Swiss telecommunication operator. The initial motivation of this thesis stems from the
necessity to explore new solutions towards the efficient management of the future WDM-based optical
transport network. Unlike other network technologies, WDM optical networks deal with large numbers of
heterogeneous network components presenting different capabilities and limitations such as
optoelectronic conversion, partial matrix switching, wavelength conversion, etc. This diversity makes the
implementation of traditional networking algorithms into conventional network management systems
particularly complex. The optical layer constitutes the lowest network layer transporting several Tbit/s of
client-independent data on a single fibre, which involves serious survivability issues, so that the
management system is obviously a vital component of WDM optical networks.

As we have seen, the approach adopted in the context of this work focuses on the software agent
technology and, in particular, on mobile agents. Previous investigations from the research community in
this domain have led us to believe that mobile agents navigating within the network infrastructure in
accordance with physical constraints and impairments induce powerful reactive mechanisms and provide
a natural software engineering approach to the development of conventional network management tasks,
as well as of more sophisticated algorithms devoted to the resource control of optical networks.

The emerging mobile agent technology raises a number of challenging issues, mainly concerning
architecture, self-adaptability and pragmatic implementation. This is the reason why we have decided to
concentrate our efforts on the development of a mobile agent based software infrastructure specifically
devoted to transport network management applications. We propose to place particular emphasis on the
development of a mobile multi-agent system able to support a combination of various mobility-oriented
approaches which implement both the deterministic migration strategy used by delegation mobile agents
and the stochastic migration strategy used by mobile agents exhibiting emergent behaviour.

This document is an account of the conception and elaboration of the mobile agent middleware which
we have called Ecomobile. Since Ecomobile is intended to be implemented within large-scale transport
networks, particular attention must be drawn to the ongoing efforts in the field of standardization. In this
perspective, strong emphasis will be placed on existing and evolving agent standards, such as the
Foundation of Intelligent Physical Agents (FIPA); neither should we neglect to deal with legacy network
management systems built on top of existing standardized frameworks, such as TMN or SNMP.

Rather than a deep and pure theoretical study devoted to a specific subject, this thesis reflects
exploratory work and must be seen as an attempt to identify and to develop issues related to mobile agent
based network management systems: we have chosen to develop the issues which seemed most relevant
to our target application from a network operator perspective. In this context, the development of
Ecomobile, which constitutes the central part of this thesis, should provide a powerful self-adaptive
framework for the implementation of bio-inspired algorithms intended for the resource control of future
optical networks. The development of such algorithms is an important objective of the OPTIMA1 project
for which this thesis constitutes a preparatory work.

1 OPTical network management with Intelligent and Mobile Agents (see Section 7.1)

Introduction

4

GUIDELINES

This document is divided into three main sections: the first part, which is devoted to the technology
insight, is composed of Chapters 1 and 2. The second part, which contains Chapters 3, 4 and 5, describes
the design, implementation and simulation of Ecomobile, while the final part of this document is devoted
to optical network management, our use case study presented in Chapters 6 and 7.

Chapter 1 contains a description of conventional approaches considered in today's network
management systems. Our summary of the most significant mobile agent based approaches is followed by
a survey of several popular agent platforms.

Chapter 2 presents a decomposition of mobile multi-agent systems into three abstraction models: the
computational, the coordination and the navigation models. This decomposition implies a refinement of
mobile agent systems modelling with respect to their main characteristics and leads to the particular
architectural model of Ecomobile, in which the coordination and navigation models forming the mobile
behaviour scheme are separated from the computational model forming the task objective. We will then
proceed to describe a particular bio-inspired approach which points out the interactions of our mobile
agents with their local environment

The main components of our middleware are introduced in Chapter 3. We shall first introduce the
Ecomobile model and its main components in order to examine the conceptual framework, which is based
on mobile behaviour schemes on the one hand, and on the task objectives on the other hand. We shall then
describe the ecosystem principles that have been retained for the control of the mobile agent population.
After the computational model consisting in the task objective has been thoroughly examined, some
generic task objective models corresponding to basic network management functions, and which can be
used for the compositional building of more sophisticated tasks, will be presented.

Chapter 4 is devoted to the realization of the Ecomobile concepts by means of reactive programming.
Different issues related to the implementation of reactive behaviours into reactive instructions will be
pointed out and we shall finally propose a viable deployment of Ecomobile within a FIPA-compliant
environment by means of the Jade agent platform.

Chapter 5 begins with a short introduction to the Generic Network Management Tool (GNMT), which
has been developed in the context of this thesis. GNMT provides a functional simulation framework for
the study of agent-based solutions intended for multi-layer optical network management. Simulation
results issued from various experiments performed with GNMT on different network configurations will
then be discussed and a behavioural analysis of the ecosystem and of its response to the dynamic insertion
of specific task objectives will also be examined.

The basis elements of optical networks are presented in Chapter 6, which introduces the optical
network components and networking functions, as well as current approaches towards the management of
the Optical Transport Network (OTN). Optical networks constitute our main application domain.

Chapter 7 provides an overview of emerging optical services and shows how our infrastructure can be
implemented into optical components by means of a pertinent mapping of the Ecomobile semantics. We
then present the implementation and the simulation results for a task objective dedicated to a new
value-added differentiated protection service.

In our conclusions, we finally point out open issues and possible extensions to Ecomobile for future
research activities.

Part I

Technology Insight

7

Chapter 1
Mobile Agents and Network Management

In this work we present a reactive mobile agent based middleware called Ecomobile which is partially
inspired from principles issued from natural ecosystems. Ecomobile is tailored to a decentralized network
management with particular emphasis on future transport networks, such as optical networks. The
different issues which will be addressed in this thesis are concerned with the realization of a
self-organized population of mobile entities, the composition of network-oriented tasks with an efficient
dispersal of these tasks within the network infrastructure and the deployment of Ecomobile into active and
heterogeneous network components, such as optical nodes with different capabilities.

The conceptual approach that we have adopted to design Ecomobile consists in taking into account
different approaches using mobile agent technology for network management which turned out to be
particularly relevant, from our point of view, to the development of an intelligent transport network. In
order to place Ecomobile in its context, according to past and present research, we wish to develop along
this chapter a number of basic concepts around mobile agents and network management.

Network management aims at deploying, integrating, and coordinating all the resources necessary in
order to configure, monitor, test, analyze, evaluate, and control the communication network, so that
service-level objectives are met at a reasonable cost [BBB+99].

The design and the implementation of new network management systems inevitably rely on existing
object-oriented and distributed technologies with open interfaces. Interoperability between network
entities involved in management processes is ensured by the adoption of international standards1. The
Object Management Group (OMG)2 and the International Telecommunication Union (ITU)3 - jointly with
the International Organization for Standardization (ISO)4 - provide object-oriented approaches and
architectural frameworks for open distributed systems, and therefore play a central role in the
development of network components and management systems. However, the implementation choice
advocated in the context of most standards is left open to the manufacturers and leads to a considerable
amount of proprietary software components obviously raising a large number of interoperability issues.

In this chapter, we propose to examine how network management systems are traditionally
implemented. We shall also have a look at the most famous mobile agent based approaches which enable
to address the management of transport networks in a perspective of interoperability with existing
network technologies and the migration towards a decentralized approach for a highly dynamic, scalable
and heterogeneous network infrastructure5.

1 We do not make any difference between standards and recommendations, which are considered as
equivalent.
2 http://www.omg.org
3 http://www.itu.int
4 http://www.iso.org
5 In this chapter, we do not yet deal with optical network management, which constitutes the main topic
of Chapters 6 and 7.

http://www.omg.org
http://www.itu.int
http://www.iso.org

Network Management Systems

8

1.1 NETWORK MANAGEMENT SYSTEMS

1.1.1 General Components
Network Management Systems (NMS) - also called Operational Support Systems (OSS) - provide the
network operators with the operational functions necessary to control the network resources on the one
hand and with the service management on the other hand. Network components are interconnected
according to specific network topologies and are subject to various configuration changes. In future
networks, an efficient NMS will have to be increasingly distributed, flexible, scalable, and able to support
inter-networking with heterogeneous systems [E712_99].

Since software entities may be located everywhere in the network, from the manager console to the
network devices supplied by the manufacturers, a network management system is inherently distributed
over the network. The fact that most network management applications require a distributed infrastructure
does not mean, however, that the management logic, the intelligence itself, is distributed. In this context,
the approach is based upon a centralized management.

Network management systems have been influenced by the Open System Interconnection (OSI) layered
model1, for several years, which has led to the definition of two popular and word-wide spread
frameworks: the Telecommunication Management Network (TMN) from ITU-T [M3100_96] – used for
the management of the transport network - and the Simple Network Management Protocol (SNMP) from
the Internet Engineering Task Force2 (IETF) [C+93] – used for the management of Internet networks.

MANAGER-AGENT PARADIGM

TMN and SNMP rely on a client-server (C/S) communication model between a manager (OSI manager)
and an agent (OSI agent). The manager is responsible for maintaining the global view of the entire
network and for providing the operator with the control functions; the manager is located in the
management applications and communicates with the manageable resources. Each manageable resource
is subordinated to an OSI agent which is responsible for the access to the locally available attributes and
functions for management purposes. In this context, the resource may refer to hardware (network card,
physical port, etc.) or abstract components, such as end-to-end connections or switching matrixes.

The manageable resources in the network are called managed objects and are described by a collection
of attributes and functions. Managed objects are manipulated by the OSI manager via the OSI agents
through a standardized protocol (CMIP/SNMP) using a standardized notation, respectively
(GDMO/SMI). The managed objects can be defined in an object-oriented way so that the managed object
model gives a logical representation of the manageable entity. The managed objects are stored in a
Management Information Base (MIB) which is generally located at the same place as the agents and the
managers. The general communication architecture between manager and agent is depicted on Figure 1-1.

1 OSI reference model ISO/IEC 7498 available at http://www.iso.org
2 http://www.ietf.org

http://www.iso.org
http://www.ietf.org

Chapter 1
Mobile Agents and Network Management

9

Agent

Manager

Managed
entities

MIB

MIB

Queries and
directives

Responses and
notifications

Figure 1-1. Interactions between manager, agent and MIB

According to the manager-agent communication model and the C/S paradigm, the agent acts as the server
while the manager acts as the client, so that additional entities can easily have access to the MIB - i.e. to
the device configuration - by declaring themselves clients to the corresponding agent. In a mobile agent
system perspective, the MIB is part of the environment of mobile entities and can be accessed by
querying the OSI agent in charge of the MIB through a C/S communication model.

The manager-agent model is a platform-centred approach relying on a pure client-server paradigm; it
entails drawbacks in scalability, reliability, efficiency and flexibility, and is therefore unsuitable for large
and heterogeneous networks [BPW98]. Consequently, the deployment of new value-added services in
future transport networks, for example, reveals to be difficult in the context of this model.

Finally, management based on the manager-agent model is focused on monitoring network
infrastructures rather than on managing the applications delivered by the network. On the other hand, the
popularity and the world-wide spread of such NMS force the future NMS generations to deal with legacy
systems and to consider them as part of the environment in which they have to interact. The NMS must
therefore become increasingly open and flexible to handle numerous types of interfaces.

The successful deployment of a new NMS into current telecommunication networks will strongly depend
on its ability to deal with the management interfaces of existing components and technologies. A proper
access to the interfaces will enable the NMS to reach the MIBs or any location-dependent information.

Nowadays, distributed NMS are mainly developed on top of two pre-dominant distributed
technologies: CORBA on the one hand and Java RMI on the other hand.

CORBA

The Common Object Request Broker Architecture (CORBA) from the Object Management Group
(OMG)1 provides an open, scalable and flexible distributed system framework which is promoted by
ITU-T and by the TeleManagement forum2 [NMF98].

1 http://www.omg.org
2 The TeleManagement Forum (TM Forum) is a non-profit global organization that provides leadership,
strategic guidance and practical solutions to improve the management and operation of communications
services. Further information available at http://www.tmforum.org

http://www.omg.org
http://www.tmforum.org

Network Management Systems

10

The central component of CORBA is the Object Request Broker (ORB). ORB encompasses the entire
communication infrastructure necessary to identify and locate objects, handle connection management
and deliver data. In general, the ORB is not required to be a single component; it is simply defined by its
interfaces. The ORB Core is the most crucial part of the Object Request Broker; it is responsible for the
communication of requests issued from the client to the server and vice-versa. The interface of serving
objects is described in a platform-neutral language called Interface Description Language (IDL).
Attributes and method signatures belonging to remote objects are expressed in IDL.

The basic functionality provided by the ORB consists in passing the requests from the clients to the
object implementations on which they are invoked. In order to make a request the client can communicate
with the ORB core either through the IDL stub or through the Dynamic Invocation Interface (DII). The
stub provides the mapping between the client's implementation language and the ORB core. As long as
the implementation of the ORB supports this mapping, the client can be written in any language. The
ORB core then transfers the request to the object implementation which receives the request as an
invocation through either an IDL skeleton, or a dynamic skeleton.

Underneath the ORB, the Internet Inter-ORB Protocol (IIOP) enables the client/server to exchange
information using IP networks.

JAVA RMI

SUN Microsystems propose the Remote Invocation Method (RMI)1 for Java based distributed
applications. The server and the client are fully programmed in Java and usually reside on different Java
virtual machines. RMI provides a naming service and relies on the Java native security mechanisms.

The interoperability between RMI and CORBA objects can be addressed through IIOP. The
combination of RMI and IIOP (RMI-IIOP) enables a Java client to deal with a CORBA server for
example. In a more general case, RMI-IIOP allows programmers to develop CORBA applications for the
Java platform without using IDL to describe remote interfaces, and to directly take advantage of RMI
features such as passing object by value between application components; the CORBA programming
model only supports passing object by reference.

CORBA AND TMN/SNMP INTERWORKING

Joint Inter-Domain Management (JIDM)2 is a technology that defines how network management
components based on TMN and SNMP can interoperate with CORBA based components. The
interoperability first requires a definition of model equivalencies between the two domains. This
definition is given in the Specification Translation document [JIDM97], which explains how information
models can be translated from one representation to another (ASN.1/GDMO to/from IDL). A second
document [JIDM98], called Interaction Translation, defines how to perform OSI-like (and SNMP like)
services in CORBA. An overall architecture of a CORBA-based management system is depicted on
Figure 1-2.

JIDM actually provides a way to develop Java objects able to deal with the OSI agents. The
implementation of mobile agent systems, mostly developed in the Java language in a legacy
TMN/SNMP-based network component, can be achieved through the use of a proxy and a JIDM gateway
so that the communication between the mobile agent and the OSI agent becomes possible.

1 http://java.sun.com/rmi
2 http://www.jidm.org

http://java.sun.com/rmi
http://www.jidm.org

Chapter 1
Mobile Agents and Network Management

11

CORBA agent

Managed object
implementationManaged object

implementationManaged object
implementation

SNMP GDMO/SMI

IDL

Managing applications

DII IDL
stubs

ORB
interface

Static IDL
skeleton

Dynamic
skeleton

ORB core

Object
adapter

Network element

OSI
agent

Network
element

JIDM
Gateway

SMI Structure of Management Information
CMIP Common Management Information Protocol
CORBA Common Object Request Broker Architecture
DII Dynamic Invocation Interface
GDMO Guidelines for the Definition of Managed Objects

IDL Interface Description Language
IIOP Internet Inter-ORB Protocol
ORB Object Request Broker
OSI Open Systems Interconnection
SNMP Simple Network Management Protocol

IIOP

(Proxy)

Figure 1-2. CORBA-based approach towards network management integrating TMN/SNMP agents

A fully CORBA-based NMS may be possible if all network elements implement CORBA agents;
generally, standardized distributed object technologies allow manufacturers to develop low-cost platforms
and tools. However, the large investments of network operators in traditional systems based on
CMIP/SNMP will compromise such an approach. Two scenarios therefore have to be considered: either
the network element supports CORBA interfaces and provides defined IDL-based information models, or
the network element does not support CORBA; in this case, a JIDM gateway on the manager side can
perform necessary translations, so that managing object-oriented applications can seamlessly access
managed objects in a common way. According to this approach, we can envisage to implement mobile
agents which are able to deal with - and to control - legacy managed objects.

As we will explain in Section 1.2, most agent platforms are implemented on top of a CORBA or RMI
system.

1.1.2 Centralised versus Decentralised Network Management
Network management systems are usually composed of a manager implementing most of the service
logic. The information concerning network resources is retrieved from the network by querying the agents
residing in the network devices. When an alarm occurs, the manager is informed by the agent and the
whole decision making is performed at the manager level; it is a centralised system.

A centralised system approach based on a manager-centric approach gives a complete picture of the
network. Using that information, the system can easily implement algorithms leading to global optima in
case of allocation of network resources or load-balancing for example. Such an approach generally
requires message-passing mechanisms imposing a large overhead. It is also more vulnerable to system
collapse when failure occurs, i.e. there is no localised control policy in action and control only occurs via
the central management system [Shu00].

It has been previously established that most NMS currently use a platform-centred client-server
paradigm which does not fit the emerging communication networks any more, and in particular the

Network Management Systems

12

transport network. Figure 1-3 shows an example of an optical transport network managed by a
TMN-based NMS. In TMN, the communication between the manager and the agents is achieved via a
separate Data Communication Network (DCN). The agents are physically implemented in the optical
devices whereas the manager resides at the operator level.

λ1...λn

λ1...λn

λ1...λn

Data Communication Network

TMN

Optical Network Element with add/drop capabilities (OXC/OADM)

Optical Line Amplifier

Client system Client system Client system

λ1...λn,
λ1...λn,

Client system

S
D

Agent Agent
Agent

Agent

Operations System
(Manager)

S: Source node
D: Destination node

End-to-end client connection

Failure

λ1...λn

λ1...λn

λ1...λn

Data Communication Network

TMN

Optical Network Element with add/drop capabilities (OXC/OADM)

Optical Line Amplifier

Client system Client system Client system

λ1...λn,
λ1...λn,

Client system

S
D

Agent Agent
Agent

Agent

Operations System
(Manager)

S: Source node
D: Destination node

End-to-end client connection

Failure

Figure 1-3. A TMN-based centralised approach for the optical transport network

A simple example of the drawbacks of a centralised approach can be illustrated with the following
scenario: let us suppose an end-to-end client connection from node S to node D; during the running
connection, a layer of an intermediate node fails, so that the wavelength transporting client data is not
available any more. All the optical devices involved in the connection from node S to node D
immediately detect a problem due to the absence of any signal and raise an alarm; according to the state
of the local MIB, the residing agent of each node then informs the manager via the DCN. Consequently,
the client systems also detect the problem and generate a service disruption alarm on the customer side.
At this moment only, the manager can start an alarm correlation process in order to analyze the received
alarm messages, to identify the defect node and to take appropriate action. According to the number of
components involved in a connection, the manager obviously has to face a considerable amount of
messages and may require complex algorithms. The manager will then send the re-configuration
decisions back to the agent, including possible interaction with the customer equipments for
synchronization purposes. Service restoration may consequently require significant time and thus have
serious consequences on business costs.

Chapter 1
Mobile Agents and Network Management

13

On the contrary, a decentralised NMS do not require any communication with a manager; in other
words, there are no critical components related to the network management. The decision logic – namely
the intelligence – has to be implemented within the network component itself with the appropriate
knowledge of the running service. A local processing in the network devices considerably reduces the
number of alarm messages which have to be sent to the manager and customer equipments in case of
failure. It favours fast reaction speed and rapid service restoration, so that the customer does not realize
that there has been any service disruption.

Decentralised approaches, however, entail drawbacks of their own: a lot of computational entities are
distributed over the network, and deploying and controlling these entities is not trivial; it is also more
difficult to reach global optima.

Generally, centralisation presents serious limitations on scalability and resiliency of management. If
the number of network components, the number of managed objects, or the speed of the network
increases, or if management communications rates are bounded, the system quickly becomes
unmanageable [KKL99]. When the network topology changes – i.e. network devices are added or
removed - the legacy NMS experiences problems with the synchronisation of its MIB with the actual state
of the network. Furthermore, the service logic is often implemented at the design time, which makes
future changes difficult.

1.1.3 Distributed Management by Delegation
Distributed Management by Delegation (MbD) has been proposed as an alternative NMS allowing to
achieve decentralised network management [YGY91][GY95]. MbD is based on the notion of delegation
agents. Delegation agents are programs that can be dispatched to remote processes and dynamically
linked and executed under local or remote control. They are used to perform tasks such as real-time
monitoring, analysis and control of network resources. MbD relies on the concept of elastic processing
and on an application-layer protocol called Remote Delegation Protocol (RDP). An elastic process is
defined as an executing incarnation of a program that can be modified, extended and/or contracted during
its execution by means of delegation agents. The delegators use RDP to transfer the code of a delegation
agent to an elastic process and to control its execution. RDP also makes the communications between
delegating processes possible. Examples of operations supported by RDP are: delegate/delete,
instantiate/terminate, suspend/resume and getstate/setstate.

Distributed MbD can be used to distribute the management logic into network components. The
delegated agents enhance a network component and its OSI agents with advanced processing so that
management operations – configuration, monitoring, fault detection – can take place in the device itself.
Several delegated agents can be dynamically instantiated and cooperate with one another.

1.2 SOFTWARE AGENTS
Intelligent and mobile agents constitute a natural extension of the MbD concept through the addition of
advanced interaction mechanisms and knowledge manipulation, two important research fields of
distributed artificial intelligence.

1.2.1 Intelligent Agents
Intelligent agents result from the conjunction of two major research streams: distributed artificial
intelligent and software engineering. This approach includes numerous research works in other fields
such as decision theory, network communication, biology and psychology. Intelligent agents are

Software Agents

14

considered as the most promising approach to address issues related to distributed applications in the
rapidly expanding communication industry [HaB99].

As we focus on network management, our analysis will be restricted to specific properties of
Multi-Agent System (MAS) which are relevant to the definition and the implementation of management
functions such as resource allocation, routing, monitoring and fault detection. In this thesis, mobile MAS
refer to multi-agent systems composed of mobile agents. From the point of view of implementation, we
shall focus on Java-based MAS because of the current world-wide adoption of Java in the development
of agent systems. In addition to RMI, the Java virtual machine provides efficient mechanisms for code
serialization that are intensively exploited by mobile agent systems.

There is no world-wide adopted definition of what an intelligent agent is. We can however propose a
working definition of agents and intelligence as follows: "Intelligent agents are defined as being a
software program that can perform specific tasks for a user and possesses a degree of intelligence that
permits it to perform parts of its tasks autonomously and to interact with its environment in a useful
manner." In this context, "The intelligence means that the agent is provided with knowledge of the user's
wishes and also makes use of this knowledge" [BZW98].

It is commonly accepted that an intelligent agent must have the following properties [WJ95]:

Autonomy – the agent is capable of following its goal autonomously that is, without interactions or
commands from the environment. The agent must have both control over its actions and internal states,
and be provided with the resources and capabilities required to perform its tasks.

Reactivity – the agent is capable of reacting appropriately to influences or information from its
environment. The agent must therefore possess its own internal environment model in order to be able to
react to changes in its environment.

Pro-activity – Under specific circumstances, the agent can take the initiative to perform appropriate
actions. For example, a predictive system will lead the agent to make decisions automatically in order to
reach better performance.

Social ability – the agent is able to communicate with other agents and to interact with its environment in
order to fulfil its tasks. At the agent level, there is no distinction between client and server, although the
underlying mechanism resorts to the previously described distributed system architecture. The social
ability also refers to the ability of an agent society to perform a common ultimate goal although the agent
itself has no knowledge of this goal.

In addition to these properties, an agent can be mobile, so that mobile agents can migrate from one
location to another. If it is not mobile, the agent is a stationary agent. Additional features such as proxy,
rational, unpredictable, transparent and accountable, etc. [OMG0] may characterize the intelligent agent,
but they are not considered in this thesis.

We believe that the agent's social ability constitutes a fundamental property making the agent
intelligent and achieving self-organization in distributed environments. Social ability enables the agents to
exchange information – also called knowledge – with other agents in a structured way, so that the
multi-agent system exhibits a "social" behaviour and organizes itself in order to reach the objectives
assigned to the agents. The agents must therefore have a representation of their environment, as well as
capabilities to "understand" messages issued by other agents.

Communication in MAS is achieved by means of an Agent Communication Language (ACL), thanks to
which the agents are able to "discuss". The speech act theory and other research fields in Artificial

Chapter 1
Mobile Agents and Network Management

15

Intelligence focusing on communication within human societies have provided agent communication with
communicative acts – or performatives – which clearly separate the intention or the action defined by the
message from the message content itself. The agents are endowed with the ACL and can therefore
perform conversations with other agents and participate in coordinated activities. These interactions can
be associated with different approaches, according to the individual agent behaviour. Either the agent acts
as a self-interested entity competing with the other agents, or the agent's activities participate in the
elaboration and achievement of common objectives in a cooperative or collaborative way [HB01].

We therefore propose to alter the above-mentioned definition of intelligence and to integrate the agent's
ability to deal with other agents in a coordinated way so that the whole system exhibits social behaviour.

While distributed systems are generally based on a top-down approach, multi-agent systems promote a
bottom-up process during the development phase that is, they concentrate on the form of the actual agents
instead of being primarily concerned with the division of problems. Multi-agent systems should therefore
not be developed for a specific task, but for the common solution of problems. According to this
approach, the extension of the system with new agents does not require the existing infrastructure to be
changed or the running agents to be interrupted so that the current system can be improved and new
functionalities can easily be added. This perspective of extensive collaboration mechanisms allows
services to be composed dynamically; experiments in that direction are conducted within the Agentcities
project (see Section 1.5), for example.

AGENT MODEL

Beside the communication and interaction mechanisms proper to multi-agent systems, the implementation
of the agent behaviour can follow different approaches according to the agent model.

A famous agent model is the deliberative agent introduced by Rao and Georgeff [RG+95] and based on
the Belief-Desire-Intention (BDI) model [WJ95][PNJ99]. The deliberative agent has an internal
representation of the environment (belief). The efforts undertaken by the agent to attain its goals result
from its desires. Desires are typically generated in response to changes in the environment or interactions
with other agents; a special process then selects specific desires that will become the agent's intentions for
future endeavours.

Another architecture model based on reactive agents has been proposed by Brooks [Bro86] and is
mainly inspired from robotics and reactive systems: this quite simple architecture is composed of
different competence modules linked with sensors (input, perception of the environment) and actuators
(output, actions in the environment). Information can be exchanged between the competence modules and
the reaction to external changes occurs faster than in the deliberative agent model.

Both models are depicted on Figure 1-4.

Software Agents

16

In
te

ra
ct

io
n

Manager

Input
(perception)

Output
(actions)

Information
receiver

Planner

Intentions

Desires
Goals

Knowledge base
(symbolic environment model)

Reasoner

SchedulerExecutor

Se
ns

or
s

Input
(perception)

Competence
module

A
ct

ua
to

rs

Competence
module

Competence
module

Output
(actions)

Figure 1-4. Two famous agent models: the deliberative agent (left) and the reactive agent (right)

In the field of network management, multi-agent systems implementing advanced negotiation
mechanisms often resort to the deliberative agent model. In this context, market-based approaches are
used to negotiate bandwidth or Quality-of-Service in telecommunication networks. The agents enter a
virtual market place and negotiate goods. Examples of projects in this area are IMPACT1, in which agents
negotiate bandwidth in an ATM network, and SHUFFLE2 in which agents manage the interactions
between service providers and network operators. In the latter case, the agent model is a hybrid
deliberative/reactive agent model called Interrap architecture.

Deliberative agents are stationary agents; they generally have a respectable code size and are not
suitable for migration; the objectives for which they are designed generally do not require explicit
mobility within the network. These agents nevertheless play an important role in the network since they
are able to reason on a large data size, to make predictions, to compute and to activate action plans, so
that they can be regarded as "more intelligent" than reactive agents, intelligence also referring in this
context to the interaction mechanisms taking place within the multi-agent system.

ONTOLOGY

In the context of intelligent agents, ontology is a collection of terms and rules defining and governing a
certain domain. Agents use ontologies to limit the scope of their interactions and focus on a specific
semantic world; ontologies are therefore important components of the agent communication. The set of
terms and rules is then described by means of a content language such as Semantic Language (SL0)3 or
XML/RDF as an integral part of the ACL.

INTELLIGENT AGENTS AND OSI AGENTS

In the previous sections, we have introduced the OSI agent which provides and controls the access to
managed objects (MIB). The term "agent" in this case denotes a process which has its own execution
context, internal state and data, which is able to react to specific external events, such as alarms or
notifications, and which can communicate with a manager. OSI agents however must not be considered as
intelligent agents as they rely on a pure client-server paradigm and do not support any form of social

1 http://www.acts-impact.org
2 http://www.ist-shuffle.org
3 FIPA SL Content Language Specification available at http://www.fipa.org

http://www.acts-impact.org
http://www.ist-shuffle.org
http://www.fipa.org

Chapter 1
Mobile Agents and Network Management

17

ability in interaction with other agents. OSI agents are autonomous processes which implement a simple
computational model based on a finite state machine most of the time.

INTELLIGENT AGENTS IN NETWORK MANAGEMENT

Intelligent agents have been considered for network management in numerous research projects1 [HB99].
As we have already seen, multi-agent systems may be used to negotiate network resources such as
bandwidth or QoS in a fully dynamic and automatic way [GJ98]. The automatic negotiations take place
between user agents, resource agents, brokering agents, etc. Network resource utilisation is optimized and
the resource price is kept as low as possible with respect to the objectives and contractual agreements
pre-established between the client, the service and the network provider through a Service Level
Agreement (SLA). This approach has been considered for example in IP and ATM networks, and more
recently in UMTS networks [LRD+00]; in the latter, the negotiation takes place between business entities
such as service providers and network operators.

Among other things, intelligent agents are also investigated for on-line routing algorithms. A possible
approach consists in defining a hierarchical society of intelligent agents which are responsible for
maintaining the route configuration dynamically between multiple management domains [CFF99].

Despite their significant contribution towards a decentralized network management, stationary
intelligent agents may require extensive computing resources when they are dedicated to long-term
planning for example, and their deployment is not easy since dynamic remote instantiation of an agent is
generally not allowed by the agent platform; the agent therefore needs to be instantiated manually in
appropriate network locations where it must reside; upgrading a new release of agent code is
consequently not trivial and requires human intervention at each agent site.

The computational model of agents is one of the major issues addressed in this thesis as will be shown
in Chapter 3; we propose to decouple the agent's tasks from the agent lifecycle so that the tasks can be
loaded dynamically without any intervention on network devices.

1.2.2 Mobile Agents
The mobile agent paradigm has received particular attention over the last few years and the community of
researchers concerned with this subject is growing steadily. Mobile code, as well as mobile agents, will be
a critical near-term part of the Internet because it provides a general framework in which distributed
information-oriented applications can be implemented in a natural and efficient way with advanced useful
features [KG99]. The mobile agent technology can be considered as a powerful extension of the object-
oriented paradigm [E712_98]. Considering mobile agents in network management entails numerous
advantages: mobile agents reduce the requirements regarding traffic load and regarding the availability of
the underlying networks, they reduce the time and effort required for the installation, operation, and
maintenance of service intelligence for resource control and management; they allow on demand
provisioning of customized services and they lead to more decentralized realization of service control and
management software, by bringing control or management agents as close as possible to the resources
[BHM98][BPW98]. In that sense, mobile agents match perfectly the distributed Management by
Delegation (MbD) approach described in Section 1.1.3.

1 An excellent overview of project activities concerning intelligent agents for network management can
be found in [HB01].

Software Agents

18

Mobile agents are closer to reactive agents than deliberative agents. Reactive agents are generally
small, having a reasonable code size with a low processing time, and are used for modelling mobile
entities (robots). The completion of objectives in a mobile agent system consequently relies on the
mobility paradigm rather than on reasoning. If mobile agents require more processing, such as reasoning
mechanisms using a rule engine for example, they need to delegate the reasoning task to a local stationary
component requiring further interactions with the environment.

We therefore emphasise that mobile agents must be able to interact with stationary agents by sharing a
common environment. As we will discover in the implementation part of this document (Section 4.4),
mobile and stationary agents can share a common agent platform.

The mobility paradigm enhances multi-agent systems with new capabilities such as migration, cloning,
emergent behaviour or meeting-based coordination. These functions will be exploited in Ecomobile to
address several issues related to mobile multi-agent behaviour, such as population size, dissemination and
activation of tasks, inter-agent coordination and inter-tasks cooperation.

The agents' mobility allows the code, state and data to be moved from one location to another; the agent
is executed in an agent system which provides migration, security, localisation and additional services
facilities. The location of a mobile agent can refer to the agent system location (physical mobility) or to a
virtual location within the same agent system (virtual mobility).

 Figure 1-5 shows a general environment of a mobile MAS as proposed by the OMG-MASIF
specification (see Section 1.2.4).

Operating
System

Communication
Infrastructure

Place

Agent Agent

Place

Agent

Agent
System

Operating
System

Communication
Infrastructure

Place

Agent

Agent
System

Operating
System

Communication
Infrastructure

Place

Agent
System

Network

Agent

Figure 1-5. Mobile agent environment (left) and communication between agent systems (right)

The agent system can manage one or several places depending on the application and the organisational
architecture; the communication infrastructure relies on standard distributed system technologies.

An efficient implementation of a mobile MAS will therefore depend on the ability of network devices
to host the agent system or to interact with external operating systems (for example via a proxy)1.

1 An overview of mobile agents based applications can be found in [PieJan01].

Chapter 1
Mobile Agents and Network Management

19

1.2.3 Mobility Functions
In addition to the concepts developed in Section 1.2.1 devoted to Intelligent Agents, the mobility
paradigm refers to a wide range of new concepts. Migration is undoubtedly the most important of these
concepts. Migration allows an agent to move from one location – or place – to another, the place being a
physical place – a node, a network device, a machine – or a virtual place, in which case the application
requires specific semantics of place; for instance, a place can represent a class of service, a type of
communication channel, a specific medium, etc. The migration of a mobile agent requires the agent
system to support execution stopping, state collection, data serialisation and transfer, data de-serialisation
and execution resuming. From this point of view, mobile agents strongly rely on mobile code technology.

Another important concept is agent cloning: the agent can clone itself that is, a new mobile agent is
created as a copy of the parent. A pure cloning operation implies that the cloned agent has the same
behaviour (code) and the same knowledge (data) as the parent agent. A post-cloning operation can
initialize specific values in the cloned agent which starts its lifecycle in the same execution environment
as the parent. Its location can however be different, according to the agent systems; some of them offer
the possibility to start the execution of a child agent in a location different from the parent's one.

Spatial and/or meeting-based coordination mechanisms are new concepts issued from mobile MAS:
since mobile agents are moving within the network, they can meet other agents everywhere in the
network. Emergent behaviour, which is related to the coordination of the mobile MAS, will be detailed in
Chapter 2. All these concepts will be explained and developed over this thesis.

1.2.4 Agent Standards
Agent standards enable the interoperability between agent platforms so that intelligent agents can
communicate and achieve their objectives according to standardized specifications. The development of
agent standards in telecommunication is therefore a sine qua non condition for the successful deployment
of software agents in large-scale networks. In this section, we examine the two most popular agent
standards: FIPA and OMG-MASIF.

FIPA

The Foundation for Intelligent Physical Agents (FIPA)1 was formed in 1996 to produce software
standards for heterogeneous interacting agents and agent-based systems. Currently, FIPA appears to be
the dominant standards organization in the area of agent technology. Important efforts have been made to
address the inter-operability issues between the agent platforms. Figure 1-6 presents the overall
architecture of an agent system as specified by FIPA. The message transport is the main underlying
mechanism devoted to the ACL-based communication between agents; at this stage, mobile agents are not
supported. The message transport itself relies on standard communication techniques used by distributed
system framework such as CORBA or Java RMI.

Both Agent Management System (AMS) and Directory Facilitator (DF) are FIPA agents: the AMS is
responsible for the core management activities of the agent platform whereas the DF acts as a yellow page
service. Agents are registered in the DF and can be localised from their types by other agents. In addition,
the agent communication is ensured through the Message Transport System (MTS) including the Message
Transport Protocol (MTP) and the Agent Communication Channel (ACC) which directly provide agents

1 http://www.fipa.org

http://www.fipa.org

Software Agents

20

with specific services for communication. The ACC may access information provided by the other agent
platform services such as the AMS and DF to carry out its message transport tasks.

From the communication point of view, the agents can interact via intra-platform communication; all
agents participating in the interaction are managed by the same platform; they reside in the same node.
On the other hand, the agents can be distributed over several nodes; in this case, they interact via an
inter-platform communication mechanism. In both cases, agents communicate via ACL messages and use
the services provided by the ACC.

In addition to the agent system reference model, there are FIPA specifications concerned with ACL
message format, ontology, interaction protocols, etc.

Software

Agent Platform

Agent
Agent

Management
System

Directory
Facilitator

Message Transport System

Agent Platform

Message Transport System
Agent

Communication
Channel

Agent
Communication

Channel

Figure 1-6. Agent system reference model of FIPA.

Although mobile agents are currently not supported by FIPA, we can find a specification for the
minimum requirements and technologies allowing agents to take advantage of mobility. The specification
includes a wrapping mechanism for existing mobile agent systems in order to promote interoperability
[FIPA01]. In short, the specification defines mobility protocols addressing: 1) agent migration, 2) agent
cloning and 3) agent invocation.

Little work towards the development of a FIPA compliant mobility framework has been accomplished
so far. For example, a special agent called Mobility Management System (MMS) has been designed to
provide mobile agents with mobility services [Mak00]; in this work, however, it is unclear how the
mobile agents are defined in terms of architecture and how they physically migrate from one location to
another.

Nevertheless, current FIPA specifications, under certain conditions, perfectly fit the requirements to
deploy mobile agents in a FIPA environment as we will discover with the deployment of Ecomobile in
Section 4.4 and with the FIPA-mob project in Section 4.5.

Chapter 1
Mobile Agents and Network Management

21

OMG-MASIF

In 1997, the OMG released a draft version of the Mobile Agent System Interoperability Facilities
(MASIF)1 [MAF98]. MASIF proposes a specification of the communication infrastructure as well as
interfaces defined in IDL to access mobility services in order to promote the interoperability and the
diversity of mobile agent platforms. From the interoperability and heterogeneity perspective, OMG
follows the same objectives as FIPA. The objectives in term of requirements and functionalities are
clearly different, however. Whereas FIPA is concerned with a message based communication
infrastructure, MASIF has to take into account the migration of the agent and must consequently focus on
the way to dynamically create the agent that is, to instantiate a new object at the right place and with the
right class.

Region

Object Request Broker (ORB)

Agency

Place

Basic
Agency
Services

Enhanced
Agency
Services

MAF
Agent
System

MAF
Finder

Mobile Agents

Figure 1-7. General architecture of OMG-MASIF mobile agent system

On Figure 1-7, the MASIF architecture appears to be a hierarchical organisation of regions, agencies and
places [BM98]. The place is a context within an agent system in which an agent can execute its tasks and
provide local access control to mobile agents. A place is associated with a location, which consists of the
place name and the address of the agent system within which the place resides. The agency represents the
agent system itself or is the core part of the agent system. At a higher level, the region is a set of agent
systems that have the same authority, but are not necessary of the same type.

Considering its origin, MASIF strongly relies on a CORBA architecture and therefore on the ORB. The
services provided by the region, agency and place are defined through IDL interfaces; the most important
interfaces are the MAFFinder and the MAFAgentSystem: whereas the MAFFinder supports the
localisation of agents, agent systems and places in the scope of a region or in the whole environment, the
MAFAgentSystem interface provides operations for the management and transfer of agents. In MASIF, the
agent's migration requires the transfer of the agent class so that the agent can be properly instantiated.
Different mechanisms are proposed to achieve the class transfer. Either the agent class (including all
dependent classes) are automatically transferred when the migration is invoked or, when the class is not
known to the destination agent system yet, the class is transferred on demand.

1 Originally, MASIF was called Mobile Agent Facility (MAF) by OMG

Mobile Processing in Network Management

22

In this thesis, we borrow the concept of agency from MASIF and define it as the entity responsible for
providing the mobile agents with mobility services and with the execution environment. We define the
place as location concept and coordination space. These concepts will be described in details in
Chapter 3.

INTEGRATION OF FIPA WITH MASIF

In the previous sections, we have presented the ongoing efforts realised by FIPA and OMG to promote
the interoperability between agent platforms. Thanks to these efforts, agents residing on different nodes
should be able to communicate even if they are not using the same agent system. In a powerful
exploitation of agent based applications, mobile agents are expected to interact with stationary agents,
using an ACL language for example. This kind of interoperability however suffers from the lack of
standards. Whereas the agent reference model defined by FIPA does not depend on any implementation,
MASIF heavily relies on CORBA; furthermore, most mobile agent platforms are developed in Java and
rely on its serialization mechanism. No standards for agent transport and agent encoding are available at
the moment. Still, FIPA has proposed a specification for mobility support by combining the agent
platform with the MASIF architecture, as described in Figure 1-8. The AMS fits the MAFAgentSystem,
the DF fits the MAFFinder and communication relies on ORB-IIOP.

AMS DF

MTS

MAFAgentSystem MAFFinder ORB

Communication Channel (ORB)

MASIF-compliant
access point

FIPA
Agent Platform

Figure 1-8. Integration of the FIPA mobility support with OMG-MASIF

The relationships between FIPA and MASIF components depicted on the figure require particular
attention because they are not to be considered as direct agent-to-agent interactions; whereas the FIPA
components correspond to FIPA agents, the MASIF components correspond to IDL interfaces
(MAFAgentSystem and MAFFinder) which do not include implementation, on the one hand, and to the
ORB, on the other hand. The associations therefore express a functional equivalency rather than a
communication scheme.

At the moment, there is no further activity concerning MASIF, whereas FIPA gathers a growing
community of agent researchers. This is why we believe that a successful deployment of mobile MAS
will depend on the adoption of a clear concept of the mobility paradigm by the FIPA community and on
the definition of new specifications in this area.

1.3 MOBILE PROCESSING IN NETWORK MANAGEMENT
In this section, we shall first present the various mobile agent based approaches which have been
considered to implement management functions for different network environments. We will then try to

Chapter 1
Mobile Agents and Network Management

23

highlight the most important characteristics of each mobile agent based solution in order to define a range
of interesting properties; our reflections will lead to the choice of three abstraction models and to their
implementation in Chapter 2.

Particular emphasis will be laid on future network technologies in which the management of resources
and services constitutes a particularly interesting field of application and which provide rational execution
environments for the support of mobile MAS.

1.3.1 Main Characteristics of Mobile Agent Based Approaches
Mobile agents for network management constitute an emerging research field and new projects related to
this domain constantly appear in academic and industrial research labs. Although it seems impossible to
give an exhaustive account of this research in the scope of this work, we will try to cover the most
important approaches for mobile agent based network management relevant to the context of Ecomobile.

THE PERPETUUM MOBILE PROCURA PROJECT

The Perpetuum Mobile Procura (PMP) Project [Bie97][Riv00] from Carleton University in Ottawa
(Canada) aimed at the implementation of mobile agents for the management of networks. Although the
concepts developed in the scope of this project are generic enough for any kind of fixed network, the
project mainly focused on IP networks.

In the context of this project, a taxonomy of mobile code leads to the definition of various kinds of
mobile agents [BP98] which are supposed to evolve in the same infrastructure in order to fulfil all the
functional areas defined by the OSI management model: fault, accounting, configuration, performance,
and security management. Since the project is concerned with IP networks, the agents have the capability
to deal with SNMP agents.

We now propose an overview of the main agents defined in the PMP project.

The netlet is a mobile agent supposed to move in the network in a permanent way by executing specific
tasks in each visited node and therefore never terminates. Typical applications of netlets are automatic
network discovery and network monitoring. The development of netlets implies considering various
concerns such as security and density control: the proliferation of netlets in the network has to be avoided;
migration patterns or policies also have to be elaborated in order to determine how the agents can migrate.

The deglets are used to perform a specific task in a network node and can consequently be associated to
the concept of delegation agent in MbD. In the context of PMP, deglets are typically used to interact with
OSI agents (CMIP/SNMP agents).

The extlet is a downloadable or uploadable code extension that expands the receiving party, but does not
extend its interface protocol .

The servlet1 is an uploadable code extension that expands the capabilities of a remote server by extending
its interface protocol.

The applet2 is a mobile code that represents a downloadable application.

1 Servlet reflects concepts which are similar to Java Servlet technology.
2 Applet is similar to Java applet technology, in which the application code is moving from a Web server
to a Web client.

Mobile Processing in Network Management

24

The piglet is a mobile code that has been intercepted and maliciously altered.

All these agents run in an environment called Mobile Code Environment (MCE), which is depicted on
Figure 1-9 and which provides several components, such as a mobile code daemon, a migration facility,
an interface to managed resources, a communication facility, and a security facility. It has to be noted that
the MCE does not explicitly rely on existing standards.

NC

MCD

MCE

MCD

MCE

NC

NCVMC

Kernel
(Managed Resources)

MCE

MCM

MCD MF

NC Network Component
MCD Mobile Code Daemon
MCE Mobile Code Environment

(including a Java Virtual Machine)
MF Migration Facility
MCM Mobile Code Manager
VMC Virtual Managed Component

Compressed code

Mobile agent

Figure 1-9. MCE Components

It is assumed that a mobile code daemon runs within a Java virtual machine on each network component.
The Virtual Managed Component (VMC) provides get, set, event and notification facilities with an access
control list mechanism used to enforce security. VMCs are designed to contain MIB and vendor-related
information.

The MCE has been extended to support the standard DPI1 protocol in order to enhance the interaction
of mobile agents with SNMP agents [PWW00]. Thus, it is possible to use a DPI-based MCE for the
automatic configuration of permanent virtual circuits in heterogeneous ATM networks.

Let us now examine typical scenarios introducing netlets and deglets.
A combination of netlets and deglets can be used to create and maintain a network model subject to

dynamic changes [WPB99][WPB+98].
By network model, we understand a representation of the different Network Elements (NEs) at a

network management workstation with their available interfaces to management functions. The software
components which provide mobile agents with interfaces are assumed to be vendor-dependent and

1 Distributed Protocol Interface (DPI) is an extension of SNMP agents that permits the dynamic addition,
deletion or replacement of management variables in the network component's SNMP MIB without
requiring recompilation of the SNMP agent.

Chapter 1
Mobile Agents and Network Management

25

implemented into a local Java virtual machine; the protocol used for interaction with the resources may
therefore be proprietary.

The netlets are injected into the network from a network management workstation and visit the network
elements, using either a pre-configured itinerary or a default migration strategy based on auto-discovery
mechanisms. For example, the agent is given an itinerary of devices to visit that has been generated by the
action of a standard network discovery algorithm, or the agent simply follows the default migration path
connecting mobile code daemons in the network, which is assumed to form a logically connected graph.
Additional rules can be statically or dynamically implemented to influence the migration when necessary.

The netlets has the ability to spawn a "configuration" deglet. The network element state is then copied
into the deglet which interacts with the local NE to get the information required for the NE's
configuration. The "configuration" deglet in turn spawns a "model provisioning" agent which
immediately moves towards the network management workstation in order to update the network model.
The "configuration" deglet dies in the local NE.

Such an approach to the dynamic network configuration and monitoring problem has been also
proposed, for example, with the Distributed Network Management and Monitoring System (DNMMS)
architecture [Sha98]. Whereas an Embassy based on the proxy pattern is deployed in each network node
and provides mobile agents with local interfaces, the CountryBase acts as a Web manager which is able to
inject mobile agents within the network in order to perform specific tasks.

SWARM INTELLIGENCE

While the MCE enables the transfer of code from one component in the network to another and the
principle of delegation provides a reason to use it, it does not provide for distributed problem solving
groups or societies of agents. In this perspective, it is interesting to study an approach based on Swarm
Intelligence [WP99] which has been adopted as an underlying mechanism for fault detection and
localisation in networks. Swarm Intelligence is a property of systems composed of unintelligent agents of
limited individual capabilities that collectively exhibit intelligent behaviour. This emergent behaviour is
studied in Chapter 2.

In Swarm Intelligence, netlets act as "insects" which have the ability to deposit a chemical track in the
environment that is, in the network node. Other agents are influenced during their migration in response
to this chemical message, so that fault detection and location determination can actually arise as a result
of the trail-laying behaviour of simple problem agents. The concentration of the chemical message is
influenced by the change in value of the characteristic of the monitored service: the modification of the
concentration depends on whether the change of this value is considered as beneficial to the service, in
which case the chemical track will be "evaporated", or detrimental to the service, in which case the
chemical track will be reinforced. A problem occurs when the chemical trail reaches certain limits. In this
case, the agent can take appropriate action by informing the management workstation or by
re-configuring the network.

Another approach towards fault detection consists in building an extended version of netlets – called
smartlets – which includes reasoning mechanisms and therefore improves the analysis and filtering of
alarms and associated data [EB99]. The smartlet interacts with the VMC to collect status data concerning

Mobile Processing in Network Management

26

the network component. A JESS1 parser object is then created and used to parse the data collected and to
apply the inference engine producing a set of decisions and conclusions about the status of this network
and the origin of the faults. Results are then returned to the smartlet, by filtering and correlating the
alarms, the smarlet localizes faults and isolates them. The output of this procedure is a set of network
addresses of the network components generating the faults; the smartlet is then able to visit the defect
components.

Fault diagnosis and network reconfiguration obviously constitute a central part of an NMS in which
distributed Artificial Intelligence (AI) may significantly improve data processing, since it provides
powerful reasoning techniques, particularly useful to process large amount of data, and the capacity to
distribute processing over multiple systems. The quantity of information exchanged across the network
may however lead to serious drawbacks and therefore constitutes a trade-off between efficiency and
accuracy [Lec95]. In this context, we consider interactions between mobile agents and stationary
"reasoning" agents as a necessary requirement for the elaboration of a flexible mobile agent based NMS.

MOBILE AGENTS IN INTELLIGENT NETWORKS AND MOBILE NETWORKS

Although Intelligent Networks (IN) and mobile networks do not constitute our major concern, we
consider that it is necessary to expose the mobile agents based techniques used for their management
from the perspective of generic agent design, so that we can benefit from these advantages in order to
develop Ecomobile.

Intelligent2 Networks (IN) constitutes an architectural framework for the rapid and uniform
provisioning of advanced telecom services overstepping the Plain Old Telephone Service (POTS), such as
call forwarding, private numbering plan, incoming call screening, etc. IN services are based on additional
service logic and data, on top of different switched telecommunication networks. Centralized service
nodes, called Service Control Points (SCPs), control the bearer switching nodes known as Service
Switching Points (SSPs) which provide only the basic call processing capabilities. This control is
achieved by means of the international Signalling System No.7 (SS7) network. A dedicated outband
signalling network is set up for this purpose. The IN Application Protocol (INAP) is implemented on top
of the SS7 network and enables "real-time" connections between the switches and the service node.

In [BrM98][BBC+98], a mobile agent based approach is proposed to provide IN networks with
advanced services such as the call forwarding service provision and the a MA-based Virtual Private
Network (VPN) service. The former allows the users to initiate an automatic routing of incoming calls to
other destination devices, depending on the time of the day or on specific events, whereas the latter allows
the customers to define a VPN on top of an IN infrastructure; the customer's lines, connected to different
switches, constitute the VPN. In both cases, the mobile agent systems have been implemented with the
Grasshopper agent platform (see Section 1.5 and consequently rely on MASIF. Several agencies are
deployed, i.e. the Switch, End User, Customer and Provider agencies. Considering the reuse of the
existing IN switching nodes, including the existing call models and IN interfaces, appropriate adaptation
units have to be provided within the agencies, in order to handle the translation of INAP request coming
from SSPs into object method invocations of the agents implementing the service features on a remote

1 Java Expert System Shell (JESS) - http://herzberg.ca.sandia.gov/jess - see also section 1.5.2.
2 In this case, the term "intelligent" refers to the capabilities of IN to process the call services in a fully
automatic way; it is not related to the concept of "intelligent agent".

http://herzberg.ca.sandia.gov/jess

Chapter 1
Mobile Agents and Network Management

27

SCP, or even within an SSP/service node, and vice versa. IN networks can benefit from translation
mechanisms similar to those found in CMIP/SNMP (see Section 1.1.1).

The mobile agents that have been developed for IN networks are similar to delegation agents or deglets.
They are pre-configured by the customer, launched at the required place in the network and perform a
configuration task in the different network devices by using specific gateways. Eventually, they can
monitor the connections and react in case a problem appears or the switch needs to be re-configured.
They do not exhibit any particular behaviour or cooperation ability.

Since mobile agents perform task locally, they are particularly useful when the connection between
nodes is not permanently guaranteed as in mobile networks like GSM and UMTS. In this kind of
network, the transmission quality changes during the connection and the transmission can temporarily
disappear. When the connection is dropped, the agent can continue to execute its task in the mobile device
and decide to migrate once the connection has been restored.

For example, mobile agents are proposed for managing the Virtual Home Environment (VHE) in
UMTS networks. The VHE provides the user with a service environment which does not depend on his
current location or on the home provider. A general approach of a mobile agent based VHE management
using the MASIF architecture – agencies at the different business entities, with mobile agents migrating
between end-user mobile devices and the provider - can be found in [HMW99]. In this context, mobile
agents are mainly used as "configuration" agents and they do not exhibit any particular behaviour.

Future heterogeneous networks will support more and more multiple independent channels with respect
to customer requirements, different multiplexing techniques will be implemented and the routing
mechanism will have to rely on accurate knowledge of the network connectivity.

As mobile networks require dynamic updates of the network state regarding the connectivity and the
modularity of mobile agents, the latter's ability to monitor the network continuously makes them very
attractive as regards routing information management. We propose to examine a mobile agent based
approach devoted to managing ad-hoc networks, called MITAgent.

THE MITAGENT PROJECT

An approach based on a population of cooperating mobile agents has been proposed at the MIT
[MKM99][MKM98][KMM99]. Although this approach remains applicable to other networks, it suits
mobile networks perfectly, and is particularly favourable in ad-hoc networks (see Section 1.4.2). Since
this research was originally proposed at the MIT, we propose to refer to it as MITAgents.

The experiments were performed with discrete simulation and conducted on a network of nodes
modelled as radio-frequency transceivers distributed on a two-dimensional space. Adjacent nodes could
exchange routing information in the same way than IP routers. Three kinds of agents have been
implemented: random agents, conscientious agents and superconscientious agents, according to the
degree of collaboration required.

Random agents do not collaborate with one another and migrate randomly within the network, while
conscientious agents exchange knowledge when they meet within a node; although they assimilate the
data, they base their movement decisions entirely on their own first-hand experience. As for
superconscientious agents, they use both first-hand and peer-obtained information to make movement
decisions. Results have shown that the cooperation between conscientious agents significantly increases
the system's performance. Superconscientious agents are still more efficient than conscientious agents but
only in a small population: when they meet, they exchange the necessary knowledge used for subsequent
migration decisions. After several meeting events and knowledge exchange – the number of meetings

Mobile Processing in Network Management

28

increases with the size of population -, superconscientious agents tend to choose identical paths to migrate
because their internal knowledge is the same.

The number of agents living in the network is fixed at the beginning of the simulation and the
communication between agents is instantaneous; no deployment on an agent platform has been
considered.

DISCUSSION

In the approaches we have just described, mobile agent systems can be divided into two categories
according to the agents' behaviour.

The first category relates to reactive agents which purely act as delegation agents (deglets or agents for
IN services) and exhibit the following properties: ability to transport customer-profile information and to
deal with SNMP/OSI agents, absence of interaction scheme and simple lifecycle (single activation and
then disappearance from the system). In most cases, they visit nodes with a pre-planned itinerary.

The second category relates to reactive agents which populate the network and run continuously. The
agents' population remains fixed so that, if an agent disappears from the network because of a network
failure, for example, the population of agents is reduced, which might lead to dramatic performance
issues. Because of their continuous presence within the network, these agents are more appropriate for
inter-agent cooperation mechanisms.

In this thesis, we propose a particular mobile MAS architecture dealing with these two kinds of agent in
a transparent way.

1.3.2 The Wave Technology
The Wave technology is an interesting approach tackling a wide range of distributed problems and using
mobile processing techniques; it is particularly well suited to the simulation of mobile entities. Wave can
be used for any kind of distributed problems beyond the field of network management.

The Wave technology relies on an interpreted programming language which is based on parallel and
asynchronous spreading of a special recursive program code, known as "waves", in computer networks.
The waves navigate in the existing networks or create new virtual knowledge networks (KNs) reflecting
the structure and organization of the worlds to be modelled or controlled [S99]. Although conceived
several years ago, only recently was the Wave technology actually recognized as a valuable emerging
technology addressing distributed problems in an open environment. Although Wave is not actually a
mobile agent technology, it implements several concepts which are similar to those introduced in our
work, that is:

• An efficient framework for investigation, simulation and efficient control of distributed, open
and self-organized systems,

• Mobility as a key concept for the support of distributed applications
• Mobility functions, such as cloning or meeting-based coordination

Wave basically requires a virtual network of interconnected nodes that is dynamically created by the
program. Once the network has been created, the program can navigate freely and has access to the node
environment.

Spatial variables are defined within a node to store information or within the wave itself to constitute
its internal knowledge. Spatial variables belong to one of the two following categories: task variables and
environmental variables. Task variables are defined inside the wave (frontal variables) or inside the node

Chapter 1
Mobile Agents and Network Management

29

(nodal variables) as shared information used by algorithms, whereas environmental variables are used for
information specific to the node environment. According to our previous reflections, we can propose the
following analogy: frontal variables correspond to mobile agent variables, nodal variables correspond to
variables stored by the agent platform1, and environmental variables can be associated to the MIB.

Let us examine a Wave program corresponding to the implementation of a breadth-first parallel spread.
This type of spread creates asynchronously and in parallel a breadth-first spanning tree covering all the
network's nodes of the network. The pseudo-code is expressed as follows:

 Start in some node as a current node
 Repeat from all current nodes:
 If the current node is not marked, mark it
 Otherwise, halt this branch
 Hop through all links (broadcast) to neighbouring nodes
 (excluding the predecessor node from which the current
 node has been reached)
 Every node reached becomes a current node

A possible equivalent code in Wave – iterative version - is the following:

 DIRECT #C.
 REPEAT (
 INDIVISIBLE (Node_mark == NONE. Node_mark = 1).
 TERMINAL = CONTENT.
 ANY ## ANY
)

Finding the simple shortest path tree in a network can be expressed in Wave as follows:

 @#a.F=0.RP(N~,F<N.N=F.N1=P.$.F+L)

As it appears in our examples, the Wave language relies on a cryptic notation with a set of keywords
executed through an interpreter. The navigation mechanism is based on spread-based navigation patterns
allowing exhaustive exploration of the knowledge network with variable depth degrees.

Among the research activities around the Wave technology and mobile agents, we can mention a recent
contribution in the field of multipoint-to-point routing with QoS guarantees using mobile agents
[GLV01].

In this section, we have mainly focused on mobile processing techniques tailored for network
management; most approaches propose conceptual frameworks and have been simulated in a simple
network configuration. We now propose to concentrate on the next generation of network infrastructures,
which provide active components and are thus particularly relevant to the use and the deployment of
mobile agent based solutions.

1.4 ACTIVE NETWORK MANAGEMENT
Recent advances in active network technology as well as the emergence of new mobile devices including
an execution environment based on a micro Java virtual machine, for example, encourage us to
investigate towards a realistic implementation of Ecomobile into the network environment. In this thesis,
active network management refers to a general approach devoted to network management systems based
on active nodes and mobile agent technology; active nodes, in this context, can be considered as a

1 We will see later on that such variables can be stored in a blackboard (section 2.2.2).

Active Network Management

30

network node capable of hosting and executing client code. An active node can be composed of a passive
node connected to a local proxy which encompass the execution environment.

Active Networks (AN) and ad-hoc networks, which are introduced in the next sections, can help us to
achieve this goal.

1.4.1 Active Networks
The basic idea of Active Networks is to move the service code to the network's nodes instead of leaving
the service logic outside the transport network. AN transform ordinary passive network nodes into
programmable nodes and are able to support a variety of service models, so that there is no specification
regarding service definition beyond the recently defined AN architectural framework.

The concept of AN strongly refers to mobile code in a simple way; the program is considered as small
and is deployed in active nodes via a capsule which is sometimes called active packet.

The AN architecture model [Cal99] is quite general and consists of a set of active nodes connected by a
variety of network technologies. Each active node is composed of the Node Operating System (NodeOS),
the Execution Environment (EE) and the Active Application (AA), as depicted on Figure 1-10.

EE 1 EE 2 IPv6Execution
Environments

Mgmnt
EE

security
enforcement

engine policy DB
Node OS

Active
Applications

storechannels
Figure 1-10. Active node infrastructure

Each EE exports a programming interface or virtual machine that can be programmed or controlled by
packets directed towards it. Several EEs can be placed inside an active node. The NodeOS implements the
core functionalities required to manage the resources provided by the network element; functionalities
include transmission, computing and storage; in addition to that, each node has a management EE which
supports control functions such as the maintenance of the node's security policy database, the support for
the loading of new EEs for the updating and configuring of existing EEs, and the support for the
instantiation of network management services arising from remote locations. Inter-EE communication is
also supported via a standard loopback output channel.

Active Nodes therefore appear to be ideal candidates for the implementation of mobile agent based
applications: they support the transfer of code via capsules, and ensure reliable communication channels
as well as a secure access to the local database; they also support several execution environments, so that
active applications can be divided into different categories according to their application domain.

The deployment of mobile agent systems into AN is still at an early stage and raises several issues
[Kar00] such as security, performance, safety, garbage collection, platform independence, etc. In our
context, a possible approach would consist in the implementation of an agent platform acting as an active

Chapter 1
Mobile Agents and Network Management

31

application, so that agents have their own execution environment, an agent platform running in a specific
EE; a specific communication channel between active nodes might be dedicated to the communication
between the agents. Generally, this approach however implies dealing with small software components to
reduce the local processing and to keep the memory in the active node at a reasonable size.

ANTS AND JANOS

ANTS and Janos are two Java-oriented operating systems for AN [THL01]. They both implement the
NodeOS and EE layers of the active node model described above, and provide a resource-aware Java
Virtual Machine called JanosVM. Janos is designed to prevent separate active applications from
interfering with one another and to provide node administrators with strong control over active
applications' resource usage. A critical challenge in the design of such an environment is to ensure that
features are provided at the appropriate level and that there is no redundancy among the components.
Furthermore, Janos must support the execution of untrusted code near the lowest level of packet receipt
and dispatch; safety and security also constitute important issues in AN. Several similar OS are currently
under development.

1.4.2 Ad-hoc Networks
Currently, ad-hoc networks are mostly based on Wireless LAN technology (WLAN) and rely on the IEEE
standard (IEEE 802.11) in the ad-hoc mode. In this type of network, computers are brought together to
form a network "on the fly". The network does not reveal any structure or any fixed points, and each node
is usually able to communicate with every other node [ZP97]. The basic architecture is composed of a
Basic Service Set (BSS) consisting of two or more wireless nodes, or stations (STAs), which are able to
recognize one another and to establish communication. The set of stations belonging to a BSS
communicate on a peer-to-peer level sharing a cell coverage area.

Consequently, the location of mobile devices in the network topology of ad-hoc networks changes
continuously. Routing algorithms therefore face a new challenge in terms of optimization and
implementation in the area of ad-hoc networks. In this context, the MITAgent (see Section 1.3.1) approach
based on cooperative mobile agents seems very promising, provided the infrastructure required to execute
mobile agents remains minimal and the agents themselves do not exceed a certain size.

1.4.3 The Terminodes
The Terminode project1 is a long-term Swiss research project (2000-2010) which aims at studying and
prototyping large-scale and self-organized mobile ad hoc networks. Terminode designates a mobile
terminal which acts as a node and as a terminal at the same time. The project lays particular emphasis on
the self-organization of a highly co-operative network of terminodes (mobile PC, walkie-talkies, PDA,
mobile phones, etc.). As in ad-hoc networks, each terminode participates in a virtual network and is
required to forward management information, such as geographical coordinates or routing information, to
other nodes. In some cases, the terminode can act as a service provider for other terminodes [BBC+01].

One of the major issues in the context of ad-hoc networks relates to the mobility management and the
huge amount of information which has to be exchanged between terminodes for this purpose. A solution
based on a Virtual Home Region (VHR) has been proposed [HLG+01], so that a neighbourhood of

1 http://www.terminodes.org

http://www.terminodes.org

Agent Platforms

32

terminodes can register to a local VHR in order to retrieve information by means of a SNMP-like
protocol; however, this approach leads to the introduction of a partial centralized management and could
therefore result in scalability problems.

The business model emerging from a terminode network raises further difficulties: since the entire
function set for resource control and service management is left to the responsibility of the terminodes
themselves, the presence of an operator becomes superfluous, so that the realistic deployment of
terminodes constitutes an important challenge from the business perspective.

Although the terminodes aim at building a virtual network in a highly self-organized and distributed
environment, it appears that mobile agents have not been directly considered in this approach yet, to the
best of our knowledge.

1.5 AGENT PLATFORMS
Agent platforms – or agent systems – provide intelligent and mobile agents with an execution
environment, agent operations, security services and environmental facilities. Ideally, the agent platform
should be able to deal with both stationary and mobile agents.

For several years, a considerable amount of agent platforms have been developed by academic and
industrial organisations; most of these platforms resulted from research projects and therefore had a
relatively short period of development. An excellent summary of agent platforms and corresponding
features can be found in the Agentlink project1.

There are basically two kinds of agent platforms: mobile agent platforms and FIPA agent platforms.
Mobile agent platforms provide the agent with mobility services such as migration, localisation, cloning
or place management, whereas FIPA agent platforms implement the FIPA agent reference model and
related components. As FIPA does not support mobility, these agent platforms are not per se compatible
with a mobile agent approach. A list of mobile agent platforms with comparisons between their respective
performance levels can be found in [PCV99].

The implementation of the agent model is achieved though an intra-agent activity model which depends
on the agent platform. For example, such a model can rely on a multi-thread mechanism making the agent
able to process messages in a fully asynchronous way. Additionally, some specific methods can be
invoked by the agent platform to inform the agent about external events. Such methods are called
callback methods or simply callbacks.

Among the most complete and available mobile agent platforms, Aglet2, an open source project of IBM,
and Grasshopper3, which was the first Java-based MASIF-compliant mobile agent platform, are worth
mentioning. Both platforms fully support mobile agents through underlying Java mechanisms –
serialization and transport over RMI-IIOP; they provide migration facilities and mechanisms operating in
a full asynchronous message or event based communication model. Although the agent model does not
refer to a specific architecture, the intra-agent activities make use of specific callbacks or listeners to
control the agent behaviour (migration, cloning, location, etc.). Further development of Aglet and
Grasshopper has been neglected, so that these platforms have not been adapted to the last release of FIPA
specifications.

1 http://www.agentlink.org
2 http://aglets.sourceforge.net
3 http://www.grasshopper.de

http://www.agentlink.org
http://aglets.sourceforge.net
http://www.grasshopper.de

Chapter 1
Mobile Agents and Network Management

33

In this thesis, we aim at developing a mobile agent infrastructure which can be deployed in a
FIPA-compliant environment with minimal requirements for mobility functions. In this perspective, we
will try to consider only FIPA agent platforms in order to minimize the local resource consumption for
agent facilities and to avoid interoperability issues between mobile and stationary agents.

FIPA-OS1 and Jade2 are two FIPA - but not MASIF - compliant agent platforms; they are frequently
updated to support the last specification revisions and are currently widely used in the academic world as
well as in the industry.

1.5.1 FIPA-OS
Originally developed by Nortel Networks, FIPA-OS was the first publicly open source project in agent
technology. FIPA-OS is fully developed in Java and continuously improved over new releases. This
agent platform is currently used in the scope of several collaborative research projects such as EU
projects or industrial projects.

A FIPA-OS agent inherits from a root class which contains the underlying requirements for the
inter-agent communication; the ACL message processing is achieved by means of dynamic invocation of
handle callbacks. RMI is used for intra-platform communication and IIOP for inter-platform
communication.

The intra-agent activity model relies on tasks based on a conversation and task model; a conversation
defines a communication scheme between a pair of agents and consists of the collection of ACL
messages, whose sequence is defined by the FIPA interaction protocols. A conversation manager can
handle several tasks belonging to a single agent in a fully asynchronous way making an agent able to
drive several conversations at the same time. Such an implementation makes FIPA-OS compliant with the
FIPA reference model as far as the inter-agent asynchronous communication is concerned. However, the
intra-agent activity model which is implemented by means of a multi-thread concurrency model
complicates the development and the validation of co-operative approaches, so that the simulation of
multi-agent systems intended to be deployed in a FIPA-OS platform is difficult to achieve (see Section
2.5).

Several add-ons have been developed around FIPA-OS such as a spy application, a remote agent
starting application, a HTTP transport mechanism, etc. Moreover, a micro-FIPA-OS is being developed
for PDAs and mobile device applications.

1.5.2 Jade
Jade is a freely downloadable Java agent platform and is fully compliant with the last revision of FIPA
specifications. Unlike FIPA-OS, the intra-agent activity model defined in Jade is based upon a
non-pre-emptive concurrency model. A Jade agent is implemented with a Java thread, which enables
asynchronous inter-platform communication as specified by FIPA; it can implement one or several
behaviours3: while intra-agent activities are synchronous, inter-agent communication relies on an
asynchronous process. The behaviours are executed in a thread-per-agent concurrency model in which
there is no stack to be saved; they are managed by an internal scheduler that implements a round-robin
non-pre-emptive policy among all the behaviours available in the ready queue of an agent [BPR99]. The

1 http://fipa-os.sourceforge.net
2 http://jade.cselt.it
3 In Jade, a process becomes a behaviour.

http://fipa-os.sourceforge.net
http://jade.cselt.it

Agent Platforms

34

synchronous characteristic of cooperative processes makes Jade an attractive agent platform for the agent
behaviour. More details about Jade behaviours are given in Section 2.1.1.

Jade uses the notion of container to locate the agents within the platform; the agents' mobility is
supported between containers, but only within a single agent platform.

Jade furthermore integrates the Java Expert System Shell (JESS)1, which is a rule engine and scripting
environment written entirely in Java and originally inspired by the CLIPS2 expert system shell. With
JESS, the agent can reason on its internal knowledge, use declarative rules and make appropriate decision
plans. Alarm correlation constitutes an interesting application of a rule-based language filtering alarms
rapidly and making appropriate decisions.

As shown in Table 1-1, most platforms are open source, which brings considerable advantages in terms
of code improvement and quality. The access to the code source also provides helpful facilities to
examine in details the implementation which is a pre-requisite for allowing successful deployment in
telecommunication networks [BDW01].

Agent

Platform
Mobility

Functions
Intra-agent

Activity Model FIPA MASIF Source
Available

Aglet Yes Event-based
Listeners Partially Partially Open Source

Grasshopper Yes Callbacks
IDL Partially Up-to-date On demand

FIPA-OS No Conversation and
task model FIPA2000 No Open Source

Jade Intra-platform Synchronous
Behaviours FIPA2000 No Open Source

Table 1-1. Summary of agent platforms and properties

Since our system does not require a mobile agent platform, we propose to use Jade as agent platform and
to design a FIPA agent acting as an agency and providing the agents with an execution environment and
other mobility services. This architectural choice brings three major advantages; on the one hand, we
avoid extra-overhead on the agent platform caused by the complexity of mobility functions; on the other
hand, our FIPA agency fully benefits from FIPA ongoing activities; this agency is also able to
communicate with other stationary agents.

Other development and research activities concerning agent platforms are the object of an European
project called Agentcities3. This project aims at deploying an open world-wide network of
FIPA-compliant agent platforms accessible through the public Internet. On top of these platforms,
different agents are deployed and provide other agents with various services. The basic idea of Agentcities
is to experiment agent technology and the composition of services with particular emphasis on the
platform interoperability.

1 http://herzberg.ca.sandia.gov/jess
2 http://www.ghg.net/clips/CLIPS.html
3 More information available at http://www.agentcities.org

http://herzberg.ca.sandia.gov/jess
http://www.ghg.net/clips/CLIPS.html
http://www.agentcities.org

Chapter 1
Mobile Agents and Network Management

35

1.6 SUMMARY AND DISCUSSION
Nowadays, telecommunication networks are controlled by network management systems mainly based on
TMN or SNMP. Both frameworks stem from the OSI model, rely on a client-server paradigm, and
implement a manager-agent communication model. The agent, which controls a collection of managed
objects describing every manageable resource in the network, from physical resources to client
connections, interacts with a manager in which the entire service logic is executed.

The manager-agent model originally leads to the adoption of a centralized network management which
unfortunately does not fit the inherent distributed environment of future transport networks in terms of
scalability, flexibility and rapid time-to-market service deployment. The mobile agent technology allows
the implementation of a decentralised management approach based on the principle of management by
delegation. Considering mobile agents in telecommunication networks entails several advantages, among
which the reduction of message processing between distributed entities limiting the bandwidth required
for management purposes, the local processing enabling fast reaction to external changes, the design of
distributed applications in which the management logic supposes the visit of several nodes, a significant
improvement in terms of scalability and robustness, etc.

In our work, mobile agents are considered as a specific class of intelligent agents using advanced
communication mechanisms and exhibiting properties such as autonomy, reactivity, pro-activity and
social behaviour.

The mobility paradigm introduces new functions such as migration, cloning and various interaction
schemes. Mobile and stationary agents are supposed to evolve in a common environment in which they
interact in order to form a powerful multi-agent system. As they imply the transfer of code and data,
mobile agents should be small enough to avoid an undesirable usage of bandwidth and they consequently
match a reactive agent model rather than a deliberative model with reasoning mechanisms.

Different mobile agent based approaches for network management have been presented in this chapter:
delegation agents (deglets) and netlets are two important classes of mobile agents belonging to a
particular mobile code environment called MCE and implementing two kinds of agent behaviour; deglets,
on the one hand, are used to perform a specific task in a network component which generally interacts
with a resident OSI agent which is in charge of the manipulation of managed objects stored in the MIB
and which can provide the mobile agent with necessary information; netlets, on the other hand, can form a
population of mobile agents which continuously migrate within the network; they suit monitoring or
topology discovery functions and can interact to exchange knowledge in order to improve their efficiency.

We have also presented MITAgent which is another approach purely based on direct communication
between mobile agents travelling in the network to discover the topology and to build a network map. In
this approach, mobile agents can exchange internal routing information in order to improve the system
performance. MITAgent is particularly well suited to ad-hoc networks in which the network topology
changes frequently because of the user's mobility.

In opposition to direct communication, an approach based on Swarm Intelligence resorts to a
population of netlets in order to detect a problem in the network. In this behaviour scheme, mobile agents
are considered as "small insects" which have the ability to deposit a chemical track in their environment
giving information about the network state. The other members of the population then "read" the track
and adapt their behaviour to the strength of chemical information.

Summary and Discussion

36

Mobile multi-agent systems based on these agent behaviours have also been considered in various
network technologies. Customer-profiled mobile agents have been developed to deploy new value-added
services in Intelligent Networks, for example. In 3G networks (UMTS), mobile agents can manage the
virtual home environment of mobile users in a proper way.

Finally we have laid particular emphasis on Active Networks, because their ability to transport code and
to provide a rational execution environment qualifies them as an ideal environment for mobile agents.

In the telecommunication world, the deployment of agent platforms in heterogeneous environments
strongly relies on standards. Although it has been stated that FIPA is the reference organisation for the
elaboration of standards in agent technology, FIPA does not support agent mobility yet. In addition to
FIPA, the OMG has released the MASIF specifications devoted to the interoperability of CORBA-based
mobile agent platforms.

Mobile agents are executed in an environment provided by the agent platforms. A wide range of
(mobile) agent platforms are presently available, but only a few are still being developed to implement the
standardized architectures. Aglet from IBM and Grasshopper are two examples of mobile agent platforms
freely downloadable from Internet; unfortunately, they are not upgraded to new standards and to the new
Java development environment (JDK 1.3.x). FIPA-OS and Jade are two other popular agent platforms
offering an excellent implementation of FIPA standards; but they do not support mobile agents. As we
will show in the following chapters, a FIPA agent platform is sufficient to implement Ecomobile's
mobility requirements.

Despite the promising capabilities of mobile multi-agent systems, a lot of issues remain to be solved in
order to achieve successful deployment of mobile agents in telecommunication networks. This problem is
mainly due to the immaturity of the technology itself. For example, the different approaches presented in
this chapter lead to different agent architectures and different agent systems, which makes their
implementation in a standard-driven network infrastructure very difficult and leaves the specialists with a
number of challenges in terms of scalability. The number of agents inside a population which has a strong
impact on the system performance on the one hand and on the proliferation of mobile entities on the other
hand, is also particularly difficult to control.

Since mobile agent technology is used in the scope of Internet applications, the intrusion of viruses
constitutes a real threat: agents are made of code and data, so that a virus can be "inserted" in the
population and activated in the network nodes, leading the entire network to misbehave or even collapse.
However, security does not constitute a critical issue in the context of network management, as the agents
themselves are supposed to evolve in an operator controlled environment and are not meant to be directly
used by other Internet users. In Ecomobile, the infrastructure itself - for example active nodes in AN - and
the agent platform deal with most security aspects by exploiting the underlying Java mechanisms.

The deployment of mobile agent systems also depends on their relying on standards such as FIPA or
MASIF. Activities in that perspective are still emerging and need to be strengthened. In this context, the
adoption of new business models by the network operators and the equipment vendors has to be clarified.
Mobile agents inevitably lead to the dynamic installation of code in network components, so that the
management and service logic is removed from the equipment vendors' full responsibility, although it can
still be managed by the network operators themselves. In spite of numerous advantages provided by the
installation of customized code in the devices from the point of view of the network operators, it is not
certain that vendors are ready to accept such open environments.

Chapter 1
Mobile Agents and Network Management

37

Finally, we have observed that Active Networks, intelligent agents and mobile agents, which constitute
three of the fundamental research areas characteristic of this thesis, gather three distinct researcher
communities. Although the objectives pursued are sometimes similar, there is not, at the moment, any
real attempt to establish collaborative research work towards the elaboration of standards, on the one
hand, and the definition of a rational framework which could avoid the proliferation of protocols and data
structures, on the other hand. In this thesis, we also aim at contributing to a unified view of the concepts
of Active Networks, intelligent agents and mobile agents.

The next chapter of this thesis is devoted to the identification of three abstraction models for mobile agent
systems, which will allow us to design a flexible infrastructure for active network management. We
propose to consider three different approaches: deglets in MCE, MITAgent and AntNet, a similar powerful
mobile agent approach based on Swarm Intelligence or emergent behaviour.

39

Chapter 2
Engineering Mobile Multi-agent Systems

In order to design and simulate an efficient mobile multi-agent system supporting intelligent tasks for
network management, especially in the context of a highly dynamic and changing network environment,
we will first have to identify its architectural components and to understand all the interactions taking
place among them; in this perspective, the design of a scalable and flexible mobile multi-agent system
leads us to apply a separation of concerns.

We believe that the success of future NMS will depend on their ability to react adequately to external
changes in the environment, including modifications regarding the network environment (addition or
removal of network devices in network topology, dynamic client connections, network failures, changes
in the quality of services, etc.). The reactivity of mobile multi-agent systems appears optimal when most
of the information managed by the mobile agents is issued from the environment defined by the agent
system or by the network infrastructure which includes logical information, such as client connections or
services description, and is stored in a local MIB, for example. In fact, we favour mobile MAS
approaches promoting agent architectures in which the operational behaviour essentially requires
environmental information.

In order to deal with the separation of concerns, it is necessary to elaborate a comprehensive
methodology for the development of (mobile) MAS; the development of this methodology, however, is
still at an early stage. Although ongoing research is oriented towards an Agent-Oriented Software
Engineering (AOSE)1 the mobility paradigm is not often considered in the design of intelligent agents:
the agent working group2 of OMG, for example, is currently working on an extension of the Unified
Modelling Language (UML); it aims at supporting agent modelling and related interactions by
introducing new formalisms. The result is the Agent-UML (AUML) language [OPB00]. In a similar
perspective, the MESSAGE project [E907_01] focuses on the elaboration of a methodology centred on
the agent-oriented realisation of telematic services and telecommunication applications.

The extension of the Open Distributed Processing (ODP) reference model [G851_96] defined by
ITU-T with an adequate mapping of the MASIF concepts [MG01] constitutes an interesting approach
towards the design of mobile MAS. For this purpose, the Architecture Description Language (ADL) has
been introduced and defined as a UML profile called the MASIF-DESIGN. Recent work proposes
attractive endeavours towards formalisms based on Petri nets [XD00]. CO-OPN/2 [HuB01], for example,
is a formal component-oriented modelling language which can be used to model distributed applications
involving mobile agent technology.

Although these formal methods tend to favour the design and testing of robust mobile agent
applications, the complex behaviours of mobile MAS remain difficult to formalize. For this reason, we
have chosen to emphasize a pragmatic approach based on experiments and using a reactive programming
paradigm for a fine-grained control of asynchronous interactions inherent to the agent behaviours on the
one hand and to provide the agents with an efficient cooperative environment on the other hand. This
approach will be described in Chapter 4.

1 http://www.jfipa.org/AgentOrientedSoftwareEngineering
2 See http://www.objs.com/agent

http://www.jfipa.org/AgentOrientedSoftwareEngineering
http://www.objs.com/agent

The Computational Model

40

In this chapter, we focus on the three fundamental abstractions governing any mobile MAS: the task -
that is, the agent's specific goal, the migration – which refers to the agent's mobility, and the interactions
– which designate the communication mechanisms between the mobile agents. We propose to define the
three following abstraction models: the computational model (task design), the navigation model
(migration design) and the coordination model (interaction design).

To illustrate the characteristics of each abstraction model, we will mainly refer to three different classes
of mobile MAS architectures derived from the mobile agents based network management approaches
which have been briefly introduced in Chapter 1: the MCE deglet approach, a mobile agent which must
perform a specific task - the AntNet, an ant behaviour inspired system similar to a population of MCE
netlets using Swarm Intelligence and communicating indirectly through their environment and the
MITAgent, a population of cooperating agents exchanging routing information.

In this chapter, we shall also mention different design patterns proposed and supported by the Aglet
mobile agent platform.

2.1 THE COMPUTATIONAL MODEL
We define the computational model as the part of the agent architecture that focuses on the mobile agent's
operational behaviour, the agent task or goal. In the context of network management, typical tasks are
configuration, monitoring, information retrieval from OSI agents, fault detection or routing tables
updating. In order to achieve these objectives, the agents must be able to migrate, to communicate with
other agents and with the environment, and to perform computation on internal data. The agents actually
need to execute specific functions – or methods – to activate migration, to access the local environment
and to contact other agents by using coordination mechanisms. The computational model therefore uses
the methods provided by the agent system to determine how a specific task can be implemented.

The serialization mechanism, RMI, the facilities for transferring classes and the security framework
presently make Java the ideal programming language on which the computational model can rely. Still,
rule-based languages and rule engines can also be used to provide the computational model with a
powerful reasoning framework which is particularly useful for alarm correlation for example1.

Most mobile agent systems, such as Aglet or Grasshopper, provide agents with platform-specific
methods such as moveTo(), clone(), sendMessage(). These methods can be called at any time
during the agent execution. Other methods such as onActivation(), onArrival(),
onDisposal(), etc. are automatically called by the agent platform; they are known as callbacks, and
allow the agent to be informed of external changes, such as departure or arrival from/to somewhere.
These methods generally cover all the aspects of the agent's behaviour.

The adoption of a design pattern [GHJ+95] for mobile agents constitutes an interesting approach
towards reducing the dependencies between the models during the mobile agents' design phase. Design
patterns belong to a high-level abstraction of the problem description. Practical solutions based on design
patterns require parameterization leading to a particular instantiation which makes behaviour changes
during the runtime difficult.

We shall now introduce a few examples of task patterns characterizing different operational
behaviours.

1 Further information about reasoning systems and mobile agents at http://www.etcee.com/research/ki

http://www.etcee.com/research/ki

Chapter 2
Engineering Mobile Multi-agent Systems

41

2.1.1 Task Patterns
In the mobile agent's world, the Master/Slave design pattern, supported by Aglet, constitutes a
fundamental task pattern [LO98] allowing a master mobile agent (MCE netlet-like for example) to
delegate a task to a slave agent (MCE deglet-like for example).

Like other design patterns, the Master/Slave pattern resorts to the inheritance to abstract the behaviour-
related methods (initializeTask() / doTask()). The slave agent moves to a destination host,
performs the assigned task, and sends the task's result back. The master agent can delegate several slave
agents in parallel, in which case the master agent is responsible for processing messages resulting from
the slave agents.

A major drawback of the Master/Slave pattern is that the slave's behaviour is fixed at design time;
because of the inheritance-based pattern, a mobile agent can not be transformed into a slave agent and can
not easily be assigned new tasks to perform.

The Plan design pattern, which is an extension of the Master/Slave pattern, supports a workflow
concept and organizes multiple tasks to be performed in sequence or in parallel by multiple agents;
reusability of tasks, dynamic assignment of tasks to mobile agents and even task composition are
promoted. The Plan pattern however requires a considerable amount of messages between slave and
master agents and may lead to strong bandwidth consumption.

The Jade agent platform [BCT+02] provides another approach towards a task design with generic
behaviours. Based on message exchanges between agents1, several behaviour schemes corresponding to
various task types are defined and enable multiple interactions with other agents. The overall behaviours
are depicted on Figure 2-1.

1 Jade does not currently support physical mobility, since no standards for inter-platform mobility have
been defined yet.

The Computational Model

42

Models a generic
task

Models a complex task
i.e. a task that is made
up by composing a
number of other tasks

SimpleBehaviour
Models a simple task
i.e. a task that is not
composed of sub-tasks

FSMBehaviour

registerState()
registerTransition()

SequentialBehaviour

addSubBehaviour()

ParallelBehaviour

addSubBehaviour()

OneShotBehaviour
CyclicBehaviour

action()

Behaviour

<<abstract>> action()
<<abstract>> done()
onStart()
onEnd()
block()
restart()

CompositeBehaviour

0..*0..*

Models an atomic
task (its done()
method returns true)

Models a cyclic task
(its done() method
returns false)

Models a complex task
whose sub-tasks
corresponds to the
activities performed in the
states of a Finite State
Machine

Models a complex task
whose sub-tasks are
executed sequentially

Models a complex task
whose sub-tasks are
executed concurrently

Figure 2-1. UML Model of task behaviours in Jade

The behaviours are divided into two main categories: simple and composite behaviour. A simple
behaviour consists in a task that is activated only once and cannot be blocked - oneShotBehaviour - or in a
cyclically activated task. A composite behaviour is made up of several behaviours according to a
parent-child relationship; it may consist of a sequential behaviour - SequentialBehaviour - which executes
the sub-behaviours sequentially and terminates when all sub-behaviours have been executed. On the
contrary, parallel behaviour - ParallelBehaviour - allows the developer to implement sub-behaviours
which can be executed in a non-deterministic order. Finally, a behaviour can be described with a finite
state machine (FSM); the parent behaviour controls the transitions between the FSM states and activates
the behaviours corresponding to the current state.

2.1.2 Tightly and Loosely Coupled Task Model
According to the agent task model, dependencies between the operational behaviour on the one hand and
the mobility and cooperation of the agent task on the other hand, appear at various levels, which makes
the task more or less complex to design. In order to categorize the various task architectures with respect
to these concerns, we propose to distinguish the tightly coupled task model from the loosely coupled task
model: when the task model needs some direct dependencies with the other models so that the task itself
has an influence on the agent migration or the agent-to-agent interactions, the task is tightly coupled with
the navigation and coordination models. On the contrary, when the task model does not directly depend
on the other models, the task is loosely coupled with the navigation and coordination models. The
migration and the coordination scheme however can naturally have an impact on the operational
behaviour. As the coordination mechanisms are controlled by the task itself (and the underlying inter-

Chapter 2
Engineering Mobile Multi-agent Systems

43

agent communication is managed by the agent system), the cooperation mechanisms between the agents
often imply a tightly coupled task model.

According to this definition, we can assume that most location-aware tasks based on active migration
are tightly coupled tasks which manage their migration decision internally, including the invocation of a
moveTo(destination) method. Delegation agents such as MCE deglets, for example, implement their task
by means of pre-computed paths; mobile agents implementing such a task model have to perform an
operation at a specific node or at a collection of pre-defined nodes. It may however happen that the task
does not need to migrate according to a pre-planned itinerary, but just navigates within the network
topology with the assistance of an auto-discovery mechanism. As long as the navigation model supports
an auto-discovery mechanism and fully controls the activation of the agent migration, the task remains
loosely coupled and is simply activated at every node as a callback, independently from the location. An
example of this behaviour appears in MCE netlets, a population of mobile agents living within the
network and particularly well suited to monitoring functions.

As we will see in the next sections, the location of information necessary for migration and
coordination plays a central role in loosely coupled task models.

2.2 THE COORDINATION MODEL
Coordination, which deals with the management of dependencies between activities, is a central problem
in any dynamic system composed of interacting activities [Sch01]. Numerous research works have
resulted in the definition of several coordination models and corresponding coordination languages, such
as the Encapsulation Coordination Model (ECM) and its associated language STL++ [SCH99], for
example, which mainly aims at separating coordination abstractions from the computation.

Coordination, which allows the mobile agents to cooperate and therefore to exchange knowledge, plays
a central role in the scope of our research. Examples of mobile MAS exploiting coordination between
agents are MITAgent (meeting-oriented coordination) and MCE netlets with Swarm Intelligence (indirect
coordination) for example.

Although the interaction logic is generally embedded inside the mobile agent, code mobility introduces
additional complexity in the coordination scheme, but indirect coordination provides a new interesting
way to manage interactions between mobile agents.

In this section, we also introduce the software components required for the implementation of efficient
coordination mechanisms.

2.2.1 Interaction Patterns
In order to address coordination problems in mobile agent applications, we propose to begin by
considering general interaction schemes likely to intervene in these applications and which could provide
an efficient way of decoupling the agent task from the coordination model. Although they rely on
coordination mechanisms, interaction patterns are not limited to the strict context of coordination models:
they propose cooperation schemes which can be directly mapped to a specific problem. Interaction
patterns consequently tend to promote a decoupling between the coordination model and the
computational model and therefore favour loosely coupled task models.

The following sample design patterns are supported by Aglet. The Meeting pattern provides a way for
two or more mobile agents to initiate local interaction at a given host. The Locker pattern defines a private
storage space for data left by an aglet before it is temporarily dispatched to another destination. The
Messenger pattern defines a surrogate mobile agent carrying a remote message from one agent to another.

The Coordination Model

44

The Finder pattern defines a mobile agent that provides services for naming and locating agents with
specific capabilities. The Organized Group pattern composes mobile agents into groups whose members
all travel together.

2.2.2 Blackboard
The blackboard is an important environmental component used as a shared information space in which
mobile agents can read or write information. In addition to mobile agents themselves, other agents or
external users may access the blackboard through a GUI interface in order to write messages informing a
specific agent or to influence the general behaviour of the whole agent population, so that the blackboard
can be used for indirect interactions – or indirect coordination - between mobile agents.

According to this description, the blackboard is essentially a passive entity. Still, it can be extended
with a reactive blackboard model enabling the implementation of programmable reactions activated in
response to the agents-blackboard interactions [CLZ97]. Reactive blackboards entail several advantages:
they can be used to implement specific local policies for the interactions between the agents and the node
environment, to achieve better control and to prevent the local node from the intrusion of malicious
agents; it can also be used to implement specific resources management policies to reach better efficiency
in agent execution. An example of mobile agent environment experimenting reactive blackboards is
MARS [CabLZ00].

Basically, the location of the blackboard is not subject to any specific limitation; however, in order to
preserve communication resources and to improve scalability, an architectural choice may consist in
associating each hosting environment with a single blackboard so that the mobile agent has access to the
local blackboard only.

2.2.3 Mobility Oriented Coordination
The coordination models for mobile applications can be divided into four main categories: direct
coordination, meeting-oriented coordination, blackboard-based coordination and Linda-like coordination
[CaLZ00]. In addition to these categories, a taxonomy based on the degrees of spatial and temporal
coupling induced by the coordination models is introduced: spatially coupled coordination models require
the interacting entities to share a common name space; on the contrary, spatially uncoupled models
enforce anonymous interactions. Temporally coupled coordination models imply synchronization of the
entities involved in the communication, temporally uncoupled coordination models enforce asynchronous
interactions.

DIRECT COORDINATION

In a direct coordination model, agent-to-agent interactions require the partners involved in the
communication to be named explicitly and generally rely on a client-server communication model using
Java RMI or CORBA, for example. This is the reason why direct coordination models imply both spatial
and temporal coupling.

This approach allows a mobile agent to have full control of its environment constituted of distributed
components: communications are issued directly and their semantics is not influenced by external entities
such as the hosting execution environments. Moreover, and according to the direct coordination models,
each agent has the capacity to link services dynamically to a server localized in a single execution
environment, thus providing the flexibility and adaptability required in a heterogeneous and dynamic
environment.

Chapter 2
Engineering Mobile Multi-agent Systems

45

Direct coordination models however present several drawbacks as regards agent-to-agent interactions:
the localization of agents, for example, may introduce complex routing schemes and location
management may lead to residual information being left onto the nodes. Furthermore, in this kind of
model, a high number of interactions require a stable network connection which makes communication
highly dependent on network reliability and nullifies the advantages of using mobile agents [CabrLZ00].

In the context of Ecomobile, a direct coordination model is proposed for agent-to-environment
interactions only.

MEETING-ORIENTED COORDINATION

Meeting-oriented coordination models define spatially uncoupled models. Mobile agents can
communicate at local meeting points, as long as they reside in the same node. The synchronization
between the participants may be realized by means of a rendezvous mechanism.

The agents are not required to name the interacting entities; however, they need to be informed of a
common meeting name, in which case they can not maintain the anonymity of full spatial uncoupling.
Since the schedule and the position of agents can generally not be predicted, these models also imply a
high risk of missed interactions.

A typical application of meeting-oriented coordination appears in the MITAgent approach, for example:
mobile agents continuously travel within the network to discover the connectivity and exchange their
knowledge during occasional meetings.

As we will see in Chapter 3, Ecomobile realizes full spatially uncoupled meeting-oriented coordination
for agent-to-agent interactions.

BLACKBOARD-BASED COORDINATION

In blackboard-based coordination models, agents interact via a blackboard. In this context, there is no
restriction concerning the blackboard location. Messages can be left on blackboards, no matter where the
corresponding receivers are or when they read the messages. Interactions are consequently fully
temporally uncoupled, but remain spatially coupled, since agents must agree on a common message
identifier to communicate and exchange data. According to this definition, blackboard-based coordination
does not support anonymous messages. Apart from a common message identification between the emitter
and the receiver, no other restriction is imposed regarding the message recipient, which may be an agent
or a group of agents.

Agent-to-environment interactions can be facilitated by the use of a blackboard storing environment-
specific information; for example, a stationary agent can be queried to prepare or possibly to pre-process
information retrieved from the local environment and to place them in the blackboard, so that mobile
agents can avoid time-consuming interactions with the stationary agent.

LINDA-LIKE AND FULLY INDIRECT COORDINATION

The inter-agent coordination model based on Linda1 requires a particular shared data space called tuple
space, in which the agents store and retrieve information by means of associative mechanisms. The
information is described with tuples, a data structure adapted to pattern-matching algorithms. Linda
defines several primitives to store and to retrieve information from the tuple space.

1 http://www.cs.yale.edu/Linda/linda.html

http://www.cs.yale.edu/Linda/linda.html

The Navigation Model

46

Linda-like coordination models enforce full uncoupling requiring neither temporal nor spatial
agreement. Unlike blackboard-based coordination, these models support anonymous messages. This kind
of model suits large-scale mobile agent applications in which the hosting environment is sometimes
difficult to manage, as in Internet applications, for example. However, Linda-like coordination increases
the communication overhead in proportion to the number of interactions with the tuple space; access
requests may imply several message exchanges between agent and tuple space.

The taxonomy of coordination models with their spatial and temporal coupling is summarized in Table
2-1. We have also highlighted the categories to which Ecomobile can be associated.

 Temporal
 Coupled Uncoupled

Coupled
Direct,

Ecomobile (agent-to-
environment)

Blackboard-based

Spatial
Uncoupled Meeting-oriented,

Ecomobile (agent-to-agent)
Linda-like,

fully indirect

Table 2-1. Taxonomy of coordination models with their spatial/temporal coupling

In order to deal with a mobility paradigm based on a pure local processing approach, we propose to
extend the Linda-like coordination model to a fully indirect coordination model. In addition to spatial and
temporal uncoupling, a blackboard is defined locally in each hosting environment and allows mobile
agents to deposit and to retrieve information in a complete anonymous way that is, without any message
identifier, agent identifier, blackboard or tuple space identifier. This approach focuses on the agent-to-
environment interactions within the hosting environment (agent system) and avoids unnecessary overload
of message-passing as well as requests between agents or a shared information space. The inter-node
communication channel needed for mobile MAS purposes can be consequently used for agent migration
only.

Fully indirect coordination favours a strong usage of the mobility paradigm and reduces the client-
server communication to the hosting environment. Apart from migration functions, the agent task only
needs methods to access the environment and tends to design loosely coupled tasks as far as the
computational model is concerned. Still, fully indirect coordination only suits a particular kind of mobile
MAS based on emergent behaviour (see Section 2.4).

2.3 THE NAVIGATION MODEL
The navigation model can be associated with the mobile agents' migration strategy, which most of the
time depends on the application: the agent task requires a specific migration scheme and establishes
dependencies between the navigation model and the computational model.

This dependency scheme implies severe limitations on the deployment of large-scale mobile agent
systems. Implementing two network management functions such as monitoring and configuring, for
example, leads distinct families of mobile agents to require different migration strategies. In the end, the
mobile MAS exhibits several families of mobile agents, each with a specific mobile behaviour, resulting
in a totally unorganized population of mobile agents, at least from the point of view of a macro-society,
this proliferation of agents steadily causing considerable degradation of the network performance.

Chapter 2
Engineering Mobile Multi-agent Systems

47

In Ecomobile, we deal with the issues related to multiple navigation models by proposing a reduction of
dependencies between the agents' mobile behaviour and their tasks. We are now proceeding to introduce
the location concept and the related mobility components; migration patterns will then be shortly
analysed, before we examine two fundamentally different navigation models, namely the pre-planned and
the stochastic navigation model.

2.3.1 Location Concept, Migration and Itinerary
Mobile agents migrate from one location to another. The location is defined as a static place and is
considered as part of the hosting environment managed by the agent system. One or several places can
co-exist in the same environment. According to the application, they can be statically created by the agent
system or dynamically created by the mobile agents themselves when necessary; connection or customer
profile related places may have an existence with different durations. Each place is identified by a unique
address and may be combined with a node address, or a URL in case of Internet applications.

In Grasshopper, a place can be associated with specific functions which mobile agents resort to. In
Jade, the place is considered as a simple agent container. Places can be defined by a semantics which
generally depends on the application itself; they can represent different authorities or business entities,
they can limit the agent-to-environment interactions in an environmental scope defining a place for each
MIB, for example, or they can represent a virtual network of nodes mapping a group of places within
each node; in the latter case, places are interconnected according to a virtual (or logical) topology that
may reflect a physical topology. Figure 2-2 shows an example of interconnected places.

Agent System

P1 P3

P2

P4

Agent System

P1 P3

P2

P4
Agent System

P1

P2

P3

Agent System

P1 P3

P2

P4

Figure 2-2. Places and location concept

When the migration is performed between places belonging to the same agent system, it can be associated
with virtual or logical mobility but, when places belong to different agent systems, the migration
represents a form of physical mobility [RSP00].

From the point of view of mobile code, two kinds of migrations are possible, i.e. weak and strong
migration [CLZ00].

WEAK MIGRATION

The transfer of mobile agents generally uses weak migration and involves preserving the code and data
state during migration. Usually, a migration method - moveTo(destination) for example - is invoked by
the agent, and provokes the agent to be stopped, serialized, transferred and resumed in the destination
node. The resuming operation requires to re-start the code or to invoke a specific callback method of the

The Navigation Model

48

agent – resume(), for example. The invocation of this method is made by the agent system which is
responsible for the code transfer.

STRONG MIGRATION

Strong migration appears to be a new concept fitting certain kind of network-unaware applications, such
as load-balancing applications. When a mobile agent has to be moved to another execution environment
during its execution on behalf of the agent system because its execution is not appropriate on the running
environment any more, the agent code must be transferred with its execution state (program counter) so
that the agent can be resumed exactly where it was suspended: strong migration allows this transfer. This
technique is much more complicated than weak migration because it requires to extract and restore the
computational state (in particular, the call stack and the program counter) whenever the migration request
occurs anywhere in the code.

However, most network management tasks are performed locally and do not require strong migration,
as the execution state can be preserved by using internal variables; the invocation of the resume()
agent method will then perform the appropriate action based on the state variables. Weak migration is
easily implemented with Java whereas strong migration requires adaptations of the Java virtual machine.

The agent system deals with the mobile agents' migration. Any migration request, however, can be
initiated by the agent itself (active migration) or by the agent system (passive migration). Active
migration is used in most mobile agent based applications, in which agents are autonomous entities
initiating their own migration. In principle, passive migration is used when the agent system itself decides
to move an agent without its knowing because the execution environment is not convenient any longer,
for example, or because the agent is executing functions which are not appropriate to the local
environment. When passive migration is synchronous, weak migration fulfils the agent transfer, whereas
asynchronous passive migration calls for strong migration.

In the most simple case, the agent destination requires a single hop migration but, when the destination
is not directly connected to the current place, it requires a multi-hop migration. In case of a multi-hop
migration, the agent system may use routing algorithms to determine the best trip.

The itinerary, which is another component of the mobility paradigm, is simply a list of places that the
agent can store as part of its internal knowledge; it can be a pre-computed path that the mobile agent will
follow during its migration. A history of visited locations can be built by the agent in order to constitute a
future itinerary back to the initial location (boomerang effect).

2.3.2 Migration Patterns
Migration design patterns are proposed to implement the mobile agents' migration strategy; they authorize
a decoupling between the agent task and the navigation model. Both of the following patterns are
supported by Aglet.

The Itinerary pattern provides the mobile agent with a travel plan: the Itinerary object is initialized
with a list of destinations to be visited sequentially and a reference to the mobile agents; the itinerary can
thus be shared by several agents. The Itinerary object must be completed before the agents start their
travel.

The Forwarding pattern is a particular object residing in the agent system, which forwards newly
arrived mobile agents automatically to another host.

Chapter 2
Engineering Mobile Multi-agent Systems

49

2.3.3 Pre-planned Navigation
A mobile agent's itinerary can be pre-computed by the agent itself or by an external entity (agent or agent
system). If the itinerary remains stable during the travel, the agent reads the list of locations sequentially
and performs specific actions. The mobility of the agent therefore follows a deterministic navigation
model. The itinerary may however be pro-actively refined during the agent trip according to a migration
planning process located in the places visited by the agent. To illustrate this approach, we propose an
adapted version of the shopping scenario [CCM+98]: suppose a user is looking for a specific available
resource known to be offered by n+1 nodes. The probability pi that node i has the resource available is
known and independent for different nodes; still, it takes a given time ti to perform queries within the
node in order to determine whether the resource is available or not; going from node i to node j requires
travel time lij. Given that information, and considering that the mobile agent starts and ends at node 0,
what is the minimal expected time to find the item or to conclude that it is not available?

In order to deal with the agent migration-planning problem which is described in this scenario, mobile
agents can interact with a local stationary agent to estimate the probabilities of success based on local
knowledge: the node agent activates a decision-making module and returns a modified itinerary to the
mobile agent. In this case, the agent's mobility follows a non-deterministic navigation model, which is
also considered when the agent system has to compute a multi-hop routing scheme because the
destination requested by the mobile agent is not immediately communicated to the agent system.

Both deterministic and non-deterministic pre-planned navigation models are strongly associated to the
agent task, so that these navigation models are not compatible with loosely coupled tasks.

2.3.4 Stochastic Navigation
Stochastic navigation essentially implies a non-deterministic behaviour from the mobility point of view:
mobile agents read information from the blackboard or query a stationary agent in order to retrieve local
attributes; then, they perform the required action and update the local data. Finally, when the agent is
ready to migrate, the environmental information may be sufficient to compute its destination without
taking the operational behaviour into account. This model enables mobile agents to be more reactive to
environmental changes.

This approach appears particularly interesting in the context of the computational model: since the
navigation model purely depends on information managed by the hosting environment, and not by the
mobile agent itself, the computational model supports a loosely coupled task model. The navigation
model actually has full control on the migration strategy as well as on the migration activation: although
the navigation model resorts to active migration, the mobile agent supports a synchronous passive
migration as far as the task is concerned. Stochastic navigation models are therefore particularly fitted to
support the implementation of mobile MAS which must reflect the current state of the network, such as
monitoring agents systems (MCE netlets), discovery agents systems and all the approaches based on the
emergent behaviour presented in the next section.

In spite of their highly reactive behaviour, stochastic navigation models are not adapted to delegation
agents or destination-based agents. The probabilistic selection of destinations actually makes the mobile
agent's trajectory difficult to predict and might drive the agent through a considerable amount of node
visits before it reaches its final destination.

Emergent Behaviour

50

2.4 EMERGENT BEHAVIOUR
In this section, we deal with an innovative engineering approach relying on collective phenomena to
implement mobile MAS and to achieve a global task by virtue of emergence and self-organization.

In Section 1.3.1, we have briefly described a mobile MAS based on the notion of Swarm Intelligence.
In systems endowed with the property of Swarm Intelligence [BW89], unintelligent agents with limited
individual capabilities collectively exhibit intelligent behaviour. This bio-inspired approach draws its
model from evolutionary biology and from the study of ecosystems such as bacteria, ants or bees
societies: it turns out that these societies exhibit social coherence although the individuals' behaviour is
mainly stochastic. This kind of behaviour is known as emergent behaviour. Still, it has to be mentioned
that, since the observation of the system is influenced by an important subjective component related to the
observer's cognitive properties, the term of emergence remains controversial [CLC99].

In this area, significant research efforts have focused on ants societies. Ants are relatively simple
insects that have a very limited amount of memory, are almost blind, and apparently exhibit random
behaviour. A colony of ants is however able to perform complex tasks such as forming bridges, building
and protecting their nest, regulating nest temperature, searching areas for food, finding the shortest routes
to food and exploiting the richest available food source [SHMar99].

One of the questions raised by biologists was how ants can manage to establish the shortest paths from
their colony to feeding sources and backwards. Observations have shown that the medium used to
communicate information among ants and to influence their trajectory, consisted of special chemical trails
called pheromone: ants mark the path with pheromone laid on the ground in varying quantities. When
isolated ants encounter this pheromone trail, they follow it and thus reinforce it with their own pheromone
[DMC96].

In the context of mobile MAS, mobile agents "mimic" the ants' behaviour. Ants and agents exhibit
common characteristics [WhP99]: although no single agent has a global view of the world, a population
of single agents evolving in the same environment give evidence of emergent behaviour leading to the
fulfilment of the task. Moreover, direct agent-to-agent interaction is replaced by a communication
paradigm relying on simple time-dependent environmental signals resembling pheromone trails in an ants
colony; signals usually decay in time. Finally, the strength of chemical trails provides the driving force
for migration patterns.

This communication model is also called stigmergy. Stigmergy can be defined as a form of indirect
communication taking place among individuals by means of modifications induced in their environment.
Two kinds of stigmergy have been observed: sematectonic stigmergy involves a change in the physical
characteristics of the environment; this change can be compared to the modification of an ant nest each
time an ant brings its ball of mud on top of it. According to sign-based stigmergy, on the contrary, the
chemical substance deposited in the environment makes no direct contribution to the ultimate goal, but is
used to influence the individuals' subsequent behaviour in order to reach the goal.

Since no single agent is entrusted with any critical mission, mobile MAS based on emergent behaviour
can be considered as robust systems: if an agent should disappear from the population, the rest of the
population would be able to pursue its work. As far as the abstraction models are concerned, mobile MAS
based on stigmergetic communication rely on fully indirect coordination in a stochastic navigation model.

In the next sections, we describe two approaches resorting to emergent behaviour for distributed
network management purposes: AntNet and SynthECA, which are particularly well-adapted to the
development of a self-organized and self-tuned mobile agents population like Ecomobile.

Chapter 2
Engineering Mobile Multi-agent Systems

51

2.4.1 AntNet
AntNet, which has been the object of numerous research works, is a mobile MAS aiming at the adaptive
set-up of routing tables in communications networks [CD98]. It has to be noted that this approach refers
to a more general optimisation technique called Ant Colony Optimisation (ACO)1.

Routing in packet-switched networks (such as IP networks) is subject to various problems: the
information, i.e. the routing tables, and the decision system are completely distributed; the session arrival
and data generation process is generally non-stationary and stochastic; several conflicting performance
measures are usually taken into account for the quality of service, such as throughput and average packet
delay; finally, the constraints imposed by the underlying network technology are difficult to implement. A
mobile MAS approach seems to be particularly adequate to deal with all these routing problems inherent
to packet-switched networks.

AntNet resorts to ant-like mobile agents travelling in the network, using the same medium as the data
traffic, and implementing distributed stigmergetic control. When they visit nodes, they "read" the
environment and make a decision concerning their next destination; the environment can be associated to
the ant's pheromone trail. Before leaving the node, the agent modifies the environment, and thus
reinforces the decision, contributing to the migration decision of future visiting agents. Figure 2-3 shows
the principle of the ants' navigation model. The ants decisions are based on link costs: the pheromone
strength is actually influenced by two factors, the number of ants which travel on a link and the quantity
of pheromone deposited by the ant. In this example, path length is given by the link costs: the shorter the
path the stronger the pheromone trails.

Right?
Left? 2

3

3

1

Figure 2-3. Ants making decisions based on the strength of the pheromone trail

We now propose to examine the different steps of a simplified version of the algorithm in order to
identify the main characteristics related to the abstraction models.

AntNet defines two kinds of mobile agents: forward and backward ants. Each node includes a routing
table Тk which contains probabilistic entries; Тk defines the probabilistic routing policy currently adopted
at node k: for each possible destination d and for each neighbour node n, Тk stores a probability value Pnd
expressing the benefit of choosing n as the next node when the destination node is d under the current
network-wide routing policy.

1 http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html

http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html

Emergent Behaviour

52

At regular intervals, a forward ant is launched from each network node towards a destination node to
discover a feasible, low-cost path to that node and to investigate the load status of the network. Forward
ants share their queues with data packets and experience the same traffic loads. Destinations are selected
locally according to the data traffic patterns generated by the local workload. While they are travelling
toward their destination nodes, the agents memorize their paths as well as the traffic conditions; they also
store as internal knowledge the itinerary corresponding to the visited nodes and the time elapsed since the
launching time.

At each node, every forward ant selects a node among all neighbouring nodes according to the
probability computed as the normalized sum of the probabilistic entry in the routing table. When the
destination node has been reached, the forward ant creates a backward ant, to which its memory is
transferred, and dies. The backward ant follows the path discovered by the forward ant in the opposite
direction. It is assumed that backward ants do not share the same queue as data traffic but use higher
priority queues since the routing tables must be quickly updated. The backward ant updates the routing
table of each visited node.

DISCUSSION

Further reflection on AntNet reveals that this model relies on stigmergetic communication in a fully
indirect coordination model, since no agent-to-agent interaction is required and since an agent can interact
only with the local blackboard associated to the agent place, in which the ants deposit and "read" the
pheromone.

AntNet is ruled by a model combining stochastic and deterministic pre-planned navigation. Forward
ants mainly use environmental information to decide on their next destination, so that the agents'
objective is to follow a path until they have reached their final destination, the path being determined by
data traffic conditions on the one hand and by probabilistic values computed from the pheromone quantity
on the other hand. Although the migration function of forward ants relies only on traffic conditions and
network availability at the beginning of the process, – so that the task could be separated from the
migration function and thus become a loosely coupled task – the migration decision will however, after a
certain time, depend on the pheromonal information appearing in each node. Since the migration decision
is based upon predictive functions and strongly depends on the nature of the task to be performed, the
computational model of forwards ants is actually based on tightly coupled task and forwards ants rely on
a stochastic navigation model.

On the contrary, backward ants need to access their internal knowledge, namely the itinerary, in order
to perform the migration from the destination to the source in a deterministic way (boomerang effect).
Backward ants therefore rely on a pre-planned navigation model.

2.4.2 SynthECA
The SynthECA approach [Whi00] is based on sign-based stigmergy and can be considered as a
generalization of AntNet. SynthECA is not only devoted to a routing process, but is also useful for fault
location and planning. The chemical messages used for indirect communication between mobile agents
have two attributes: a label and a concentration [WhP99]. The different possible labels lead to a
classification of distinct chemical tracks according to the type of agents that must sense the signal; the
three types of signals are: a routing chemical (r-chemical), a reliability chemical (R-chemical) and a
quality of service chemical (qos-chemical).

Chapter 2
Engineering Mobile Multi-agent Systems

53

Mobile agents sensing the r-chemical discover the connection path according to a logic which is similar
to the logic revealed in AntNet. When a path has emerged, an allocator agent traverses the path and
assigns resource to the connection; a quality-of-service (QoS) sensing agent then monitors the end-to-end
path allocated to the connection and adapts the chemical intensity in accordance with the path quality. If a
problem occurs along a specific connection at a specific node, the quality of service will be significantly
deteriorated and qos-agents will drop qos-chemical so that the node responsible for the problem can be
identified. It is assumed that the network resources are shared among several connections which
participate in the reinforcement of the qos-chemical trails, provided the connection is affected with a
quality reduction caused by the same problem. A qos-location-agent which senses the qos-chemical
constantly migrates towards higher concentrations of qos-chemical. When the defect device has been
identified, a R-chemical is dropped at its location in order to influence the routing and planning agents
which will be in charge of diagnosing and solving the problem by re-configuring the fault device with an
alternative connection path. R-chemicals can be used to drive the planning process along with an
additional chemical resulting from network congestion (c-chemical). The R-agent is a planning agent
supervising a reliability threshold for each network device and making adequate decisions regarding
potential problems.

Mobile agents in SynthECA have a common architecture: they include emitters, receptors, chemistry, a
migration decision function and a memory. Emitters and receptors allow the agent to sense and to change
the chemical in the environment; the chemistry defines a set of chemical reactions which can be
performed by the agent by means of internal information stored in a memory on the one hand, and of the
sensed chemical on the other hand. The migration decision function, which implements the agent's
migration strategy, allows the agent to hill climb in the direction of increasing concentrations of
chemicals sensed either probabilistically or deterministically.

DISCUSSION

In SynthECA as in AntNet, there is no direct communication between mobile agents; the behaviour of the
mobile MAS strictly depends on the environment characterized by the network parameters and by the
chemical messages controlled by the agents themselves and reflecting the network state as regards the
implemented functions; routing, for example, is concerned with availability and QoS, fault detection deals
with operational state of devices, etc. Depending on the process, the migration function implements
stochastic navigation with routing agents or pre-planned navigation, in which the description of the
current connection is required, since qos-agents monitor the connections.

2.5 OUR CLASSIFICATION OF MOBILE MAS
According to the definition of abstraction models introduced in this chapter, we propose in Table 2-2 a
classification of the mobile MAS which have been presented so far. It has to be noted that system
architectures have been considered in the primary architecture and in the functionalities for which they
have been originally designed. Most of them are perfectly extendable to support other functionalities,
implying additional dependencies between abstraction models.

Simulating Mobile MAS

54

 Computational Model Coordination Model Navigation Model

MCE netlets Loosely coupled task Direct Stochastic
MCE deglets Tightly coupled task No coordination Pre-planned

AntNet Tightly coupled task Fully indirect Stochastic/
Pre-planned

MITAgent Loosely coupled task Meeting-oriented Stochastic
SynthECA Tightly coupled task Fully indirect Stochastic

Table 2-2. Abstraction models of different mobile MAS

The classification of MAS with respect to their computational model is based on the following
assumptions: netlets are able to interact with one another independently from their location, as long they
can be identified, so that they implement a direct coordination model. While netlets travel along the links
according to the network topology, and the tasks implemented in netlets generally look like monitoring
functions and do not influence the migration, deglets are considered as delegation agents for general
purposes and, in spite of the possible introduction of design patterns, implement tightly coupled tasks.

AntNet entails two kinds of agents: forward ants implement a stochastic navigation model, whereas
backward ants, which are closer to delegation agents, follow a deterministic pre-planned navigation
model. AntNet and SynthECA implement a fully indirect coordination model, using stigmergetic
coordination and describing emergent behaviour. Since the migration decision is based on predictive
functions depending on the agent objective, these two approaches however do not support a coupled task
model.

In the MITAgent approach, cooperating agents exchange routing information according to a meeting-
oriented coordination model; the agent task can be limited to knowledge transfer and internal knowledge
updating; finally, the migration decision relies on local network information only and enables simple
auto-discovery mechanisms. MITAgent consequently follows a loosely coupled task model.

Whereas direct coordination and meeting-oriented coordination enable agent-to-agent interactions, a
(fully) indirect coordination model can also be considered in this context. Since there is no direct
communication between the agents, knowledge exchange between agents however remains impossible
unless it is transferred via the environment. This mechanism therefore requires the agents to be identified
so that the information can be addressed to the agent requiring it.

2.6 SIMULATING MOBILE MAS
The implementation of abstraction models dedicated to mobile MAS for network management obviously
requires an important effort with respect to simulation. Simulation plays a central role during the
elaboration of mobile MAS and is motivated by the necessity to analyse the behaviour of mobile agents in
response to particular stimulations. Simulation results are required to validate the architectural design, to
make a performance evaluation compared to a reference model, and to receive a feedback from the MAS
in order to detect pathological behaviours. The simulation results finally lead the system to be improved:
the architecture can be adapted or the agent parameters can be tuned.

The simulation of a mobile MAS, which is composed of several autonomous mobile entities running in
parallel and performing agent-to-agent and agent-to-environment interactions, remains a complicated
task. Moreover, a behavioural simulation should not be affected by external parameters, such as CPU
power, thread scheduling policy or memory. Different approaches have been proposed to meet this

Chapter 2
Engineering Mobile Multi-agent Systems

55

challenge [UK01]: JAMES [UTT00] - a Java-based Agent Modelling Environment for Simulation - is a
simulation framework for multi-agent systems which provides the means to describe variable structure
models and their distributed parallel execution. While the model design consists in a hierarchical
compositional construction of models which can be either atomic or coupled, the coupled model makes
the interaction between components possible. Although JAMES was originally designed for supporting
deliberative agents, recent work has shown a possibility to use the JAMES formalism to simulate mobile
agents by mapping the location concept onto coupled models [UKL02]; although the agent code does not
move, the reconfiguration of the different models leads to migration simulation. A complete study of
multi-agent systems simulation is beyond the scope of this work; however, we have to focus on different
aspects which are obviously relevant to the simulation and deployment of mobile agent based network
management system. The simulation framework - or simulator - must take into account the target
environment of the mobile MAS, including the agent system's (agent platform's) components and relevant
services.

Without going into details, three main scenarios are possible: in the first case, "everything" is
simulated. This option is particularly useful during the first steps of the agent behaviour design; a
minimum set of functions in the agent system is simulated. In the second case, the simulator does not
simulate the agent system but interacts with a single instance of an agent platform running in the same
environment as the simulator; in this case, physical mobility is replaced by logical mobility which is
"simulated" within the same agent platform. Finally, the simulator can deal with several agent platforms
which are physically distributed over a network; a similar approach is supported by JAMES, for example;
according to this option, coordinators are necessary to keep the distributed simulations synchronized with
the main simulator.

In order to capture the agent behaviour in response to the environmental changes, the network
conditions also have to be taken into account and simulated1. Whereas IP network simulation is rather
simple, optical networks or UMTS networks, for example, are much more difficult to simulate because of
the complexity of the network itself in terms of capabilities, dynamic components and physical
constraints. In order to simulate the network infrastructure, we have developed the Generic Network
Management Tool (GNMT) (see Appendix A). More details about the simulation environment are given
in Chapter 5.

Like the agent system, the network environment can be fully simulated on a central machine or
distributed over several machines. A network environment combining a part of real network devices and a
part of simulated devices may also lead to cost effective validation of the mobile MAS since, depending
on the network technology which has to be simulated, hardware devices can be expensive or not available
yet.

The transition from a simulated environment to a real implementation is a critical stage in the
elaboration of mobile MAS. Although a mobile MAS can produce interesting results from the point of
view of the simulation, it however remains uncertain whether the implementation of the MAS in real
network conditions using agent platforms should lead to the same conclusions. The integration of mobile
agents in a real agent system may also raise various architectural issues influencing their performance.

Our work is focused on a functional validation of the mobile MAS behaviour: real-time aspects are not
considered. We propose to use the Jade agent platform in order to deploy our middleware, and the

1 The term of simulation is sometimes understood as "partial emulation" of a network device or of an
agent system, for example.

Summary

56

execution environment of the mobile agents will be controlled by a FIPA agent, called agency, which also
implements the simulation environment. The high-level architecture of mobile MAS implies several
intermediate components, such as a Java virtual machine, an agent platform or a NodeOS, which, we shall
see, make the performance difficult to assess.

The problem of simulation and deployment of Ecomobile is mainly addressed in Chapter 4.

2.7 SUMMARY
In order to build an efficient NMS based on mobile MAS, we have introduced three abstraction models
which contribute to a separation of concerns.

The computational model focuses on the agent task's operational behaviour. The definition of the
tightly and loosely coupled task models classifies the agent task according to its dependencies with the
other models: we have seen that a loosely coupled task model leads to a powerful abstraction of mobility
functions and therefore facilitates the task design.

The coordination model focuses on the interactions taking place in the mobile MAS. By means of
advanced communication mechanisms, mobile agents can improve their capacity to tackle complex
problems by exchanging knowledge or regulating their population. The mobility paradigm introduces new
possibilities in the coordination schemes, such as meeting-oriented or blackboard-based coordination.
Although the separation between computation and coordination has been treated in a wide range of
research works, the impact of the mobility paradigm on the coordination and the computational model
remains an exciting challenge.

Finally, the navigation model focuses on the agent's migration strategy and the migration functions.
The taxonomy of navigation models which has been proposed focuses on the difference between the pre-
planned and the stochastic navigation model. While the former is dedicated to deterministic mobile
behaviours, as with delegation agents, the latter resorts to environmental information for the migration
and thus promotes loosely coupled task models.

Another interesting approach associated with the mobility paradigm has been presented in this chapter:
according to the emergent behaviour, mobile agents can deposit specific chemical messages in the
environment in order to influence the behaviour of other agents. Stigmergetic communication stems from
biological observations of insects colonies and reveals a promising approach towards network
management1.

A behavioural study of a large-scale population of mobile agents requires a simulation framework able
to manage the agent interactions on the one hand, and the environmental interactions on the other hand;
the network environment in which the mobile MAS will be deployed must also be partially simulated so
that all the aspects of the abstraction models can be validated. As we have seen, full simulation does not
resort to an agent platform, although certain components of the agent platform must be considered in
order to facilitate the deployment on the target environment. According to a second scenario, the
simulator is combined with the target agent platform. Virtual locations can then be implemented to
simulate the nodes geographically spread in the network and to use logical mobility for the agent
migration.

1 In this context, emergent behaviour is currently under investigation in the OPTIMA project; further
details are given in section 7.1.

Chapter 2
Engineering Mobile Multi-agent Systems

57

Designing mobile multi-agent systems is generally difficult because of the numerous agent-to-agent
and agent-to-environment interactions taking place and the dependencies between the different system
abstractions. According to the present state of the art, the design of mobile multi-agent systems is not
supported by any clear methodological framework: developing a specific task often imposes a particular
agent architecture with specific behaviours. The design of a mobile MAS implementing a loosely coupled
task model for generic objectives remains an important issue.

Part II

Design, Implementation and Simulation

61

Chapter 3
The Conceptual Framework of Ecomobile

In this chapter, we wish to introduce the notion of artificial ecosystem as a framework composed of
mobile agents evolving in a network infrastructure. We will focus on certain evolutionary aspects of
biological systems and will try to apply them to our ecosystem. The notion of ecosystem stems from the
science of ecology and can be defined as follows:

"An ecosystem is a grouping of plants, animals, microbes, etc., living in an explicit unit of space and
interacting with one another and with their environment." (Department of Environmental Science and
Policy, University of California, Davis)1

An ecosystem as a whole has the ability to coordinate and has something in common with evolutionary
systems whose evolution is purposeless and acts on populations of species, to gain performance despite
individuals' activity. However, at the moment, artificial systems are separated from ecosystems in the
sense that they are not coupled with the ecosystems; artificial systems by themselves do not have an
ability to adapt. "The real value of evolutionary systems is to create artificial systems that function as part
of ecosystems" [Num95].

Based on ecosystem principles, the Decentralized Information Ecosystem Technology (DIET) [M+01]
proposes to define lightweight agents called infohabitants, which only have the capability to
communicate, and to develop a framework supporting a population of infohabitants as a basis for agent-
based applications resorting to economic interactions and market-based computation. In [GF01], the
notion of computational ecosystems is defined as a framework creating and maintaining value-adding
chains of e-services with particular emphasis on the coordination and control of participating parties.

In Chapter 2, we have seen that mobile MAS exhibit a number of fundamental characteristics inherent
to any society of living individuals: for example, they can move freely within a delimited environment
and can interact with it as well as with each other. In fact, the mobility paradigm, which appears to
illustrate the underlying behaviour of any well organized society, has several direct effects, such as the
dispersal of the individuals in their physical environment or the fact that they exhibit different behaviours
depending on their location. From the point of view of indirect effects, the mobility paradigm inherently
contributes to the self-organisation of the environment, including self-regulation of the population. This
property results from the moving agents' different geographic positions.

We have also introduced three abstraction models related to the design phase of mobile multi-agent
systems: the computational, navigation and coordination models. This separation of concerns will allow
us to define the conceptual approach of Ecomobile. In the present chapter, we propose to define
Ecomobile as an artificial ecosystem in which a community of mobile agents living in the network
infrastructure interact in an environment represented by the network nodes and links. Ecomobile acts as a
mobile middleware for the dispersal and the activation of intelligent tasks in an active network
infrastructure intended for fully decentralised network management. The regulation of the agent
population and its self-adaptability to physical network constraints such as connectivity, are two essential
properties which lead to an equilibrium in the system.

1 http://www.des.ucdavis.edu/classes/ESP10/ecoservices.pdf

http://www.des.ucdavis.edu/classes/ESP10/ecoservices.pdf

Fundamentals of Ecomobile

62

Our approach is mainly driven by the characteristics issued from the abstraction models; considering
our objectives, we have adopted the minimal requirements of the mobility functions in order to avoid
extra-overhead due to the support of obsolete services in the agent architecture and in the agent system.
The architecture of Ecomobile has resulted in a particular model leading to the use of a common agent
architecture for transport networks; our infrastructure also supports multiple operational behaviours based
on different approaches like emergent behaviour.

In the beginning, we will introduce the Ecomobile model and its main components. Ecosystem
principles leading to the population regulation will be then presented and we will try to identify
elementary behaviours which may be observed in a society of mobile individuals living in a same
environment. The combination of these simple ecological behaviours will determine the individuals'
lifecycle, including their interactions with one another and with the physical environment. We will finally
present samples of generic task objectives characterizing the operational behaviour of our mobile agents.

3.1 FUNDAMENTALS OF ECOMOBILE
Ecomobile is an ecosystem-inspired mobile agent middleware, that is an ecosystem housing a population
of mobile entities continuously living within the network environment and respecting the network
topology and physical limitations. Any changes occurring in the system must consequently be supported
by the agent community.

It is assumed that each network component is able to host an agent system on top of a virtual machine
or operating system like the active nodes in Active Networks, for example. The agent system can also be
located close to the node in a separate machine, in which case it should be able to access the local
environment through a proxy.

Such a population of mobile agents is obviously useless unless they can be programmed and lead to the
implementation of specific tasks. The infrastructure is called a middleware because it constitutes an
intermediate layer between the physical resources and the applications themselves. The tasks are
deposited in the ecosystem environment by an external entity, either manually or automatically. The
population of mobile agents is then responsible for loading the tasks, disseminating them within the
network and activating them periodically. These mechanisms will be explained in details in the following
sections.

A Threefold Architecture
In Ecomobile, the mobile MAS is composed of three distinct active components: the agency acting as the
mobile agent system, the mobile agent, and the specific task or operational behaviour. Since the task is
physically separated from the mobile agent itself, Ecomobile can be regarded as a threefold architecture.
According to the abstraction models, the mobile agent itself implements both the navigation and the
coordination model to form the Mobile Behaviour Scheme (MBS), whereas the Task Objective (TO)
refers to the operational behaviour and therefore to the computational model. MBS and TO constitute a
particular instantiation of the abstraction models. It can also be said that the population of mobile agents
is the substratum implementing the ecosystem-related concepts of the MBS. The Ecomobile model is
depicted on Figure 3-1.

Chapter 3
The Conceptual Framework of Ecomobile

63

Engineering Models Ecomobile Model

Navigation Model

Coordination Model

Computational Model Task Objective
(TO)

M-Agent

Mobile Behaviour Scheme
(MBS)

one-way dependency

Figure 3-1. Ecomobile: an instantiation of abstraction models

As can be seen on this figure, the task in our model is clearly separated from the agent itself, so that
Ecomobile appears to constitute an innovative approach: although the task patterns presented in the
previous chapter allow the designer to make a distinction between the operational behaviour and the rest
of the agent activities, the architecture finally results in the implementation of a single entity, the mobile
agent. In Ecomobile, the ecosystem is activated even though no task has been implemented; the
middleware is both mobile and active. The task objective, which corresponds to the operational behaviour
or the application itself, is inserted into the ecosystem environment and becomes part of it; the place
where the task has been deposited can be visited by any agent of the population: when an agent discovers
the task objective, it loads the task into its context and activates it. In order to guarantee this functionality,
it is necessary to make sure that the environment is regularly visited by the agent society so that the agent
behaviour influences the dissemination of the task within the network and activates it at different
locations. The density of the population and the population size therefore play an important role in the
successful realization of this approach; the more often the nodes are visited, the more often the tasks are
executed. The task objectives have no direct influence on the agent population.

From that description, it appears that the agent is not aware of the task description and that,
reciprocally, the task has no effect on the agent behaviour, as far as the migration and coordination
mechanisms are concerned. The task is loaded and activated by the MBS so that there is a dependency
relationship only from the MBS to the TO. The agent task consequently relies on a loosely coupled task
model (see Section 2.1.2). The impact of the dependency between the MBS and the TO will be shown
further down in this chapter.

This type of architecture also leads to the mobile agent and the task objective having distinct lifecycles:
the task objective does not depend on the existence of one mobile agent in particular but can be
transported by different mobile agents during its lifecycle. Whereas the task can be loaded by any
individual in the ecosystem, it can also be offloaded into the environment on behalf of the mobile agent or
of the task itself. Once it has returned to the environment, the task is suspended until another agent of the
population loads it again and pursues its execution over the network.

Consequently, the mobile agents of the ecosystem are used in order to transport and to activate the task
objectives. The MBS also controls the task dissemination within the network by means of a cloning
mechanism and enables the cooperation between the task objectives themselves. The Ecomobile approach
has a profound effect on the structure of the computational model: since the task has no influence on the
mobile agents' destination, the decisions concerning the TO's current location belong to the task objective

Node Environment

64

itself. If the next destination given by the MBS is not satisfactory, the task can "leave" the agent, i.e.
decide to be offloaded at its current location. The mobile agents' statistical visits, which emerge from the
self-regulatory population property of the ecosystem, will allow the task to be reloaded and propagated to
the expected destination.

The threefold architecture of Ecomobile consequently defines two logical navigation planes: the
navigation of mobile agents and the navigation of task objectives; mobile agents and task objectives can
have different trajectories; while the mobile agent can implement a stochastic navigation model with
active migration, any navigation model can be implemented at the task objective level; the task objective
will however resort to a synchronous passive migration.

Ecomobile has been implemented in Java1, which is currently the most efficient object-oriented
programming language in software agent technology; Java is platform-independent and provides efficient
mechanisms such as serialization, RMI communication, security framework and dynamic class loading
mechanisms; the most popular agent platforms are therefore implemented in Java.

3.2 NODE ENVIRONMENT
The presentation of Ecomobile principles first requires to introduce the nodal environment, which is
mainly composed of several model-specific components, such as the agency, the place and the
blackboard. Mobile agents in Ecomobile are called M-agents; a description of their architecture will then
allow us to examine in details the Ecomobile model and the ecosystem-inspired approach.

The organizational architecture within an active node2 is depicted on Figure 3-2. The MIB contains the
component's managed objects accessible to the mobile agents through a specific OSI agent, for example,
or any control unit. The execution environment is generally a Java virtual machine; a FIPA agent platform
runs on top of it. Further details concerning this part of the system are outlined in the section devoted to
the issue of deployment (4.4).

1 http://www.sun.com/java
2 In this context, active node refers to a node capable of hosting external code and providing an execution
environment, such as active node in Active Networks; a proxy can deal with legacy passive nodes (see
Section 1.4).

http://www.sun.com/java

Chapter 3
The Conceptual Framework of Ecomobile

65

MIB

Place

τ1

Ecomobile
Agency

Execution Environment (EE)

Active Node

Interaction

SNMP/CMIP
Agent

M-agent

Agency Agent

τ2

τ3

Agent Context

Mobile Behavior Scheme
(MBS)

f(φ1, φ2, …φn)

τi
τj τk

• Mobility Service
• Place Management

get/set/action

Java OS

FIPA Agent Platform

Blackboard

Figure 3-2. Active node environment with respect to Ecomobile

The main Ecomobile components are the Agency, the Blackboards and the Places. They are described
in the next sections.

3.2.1 The Agency
The Agency is a FIPA agent which implements the Ecomobile components; it may co-exist with other
stationary agents. The agency provides Ecomobile with an adequate mobile agent environment different
from the active node's execution environment. The agency is responsible for managing the Ecomobile
environment containing the blackboards and the places; it governs the M-agent activities and manages the
agent-to-agent and agent-to-environment interactions, so that security policies and access control can be
implemented into the agency. Communication between the agency and the OSI agents can be provided by
JIDM gateways, for example (see Section 1.1.1). The agency also provides the mobility services
necessary for the M-agent migration. The migration itself is achieved between the Ecomobile agencies via
a specific ACL message and protocol.

Details concerning the execution environment for the M-agents and the deployment of the FIPA agency
are given in Chapter 4.

3.2.2 The Place
The place, in Ecomobile, has two main functions: at first, the place is used as a basic location concept;
M-agents migrate from place to place. Secondly, the place is used as a coordination space between
M-agents. Let us now examine in details the two notions.

Places are interconnected to form the intra-agency and the inter-agency connectivity. The intra-agency
connectivity allows M-agents to migrate virtually within an agency, whereas the inter-agency
connectivity allows them to migrate physically from one node to another. M-agents use place identifiers
called Universal Place Identifiers (UPI), which are defined as follows:

 UPI ::= (NodeAddr, PlaceID) where NodeAddr is the node's physical address (e.g. MAC or IP address)

The M-Agent

66

The PlaceID has to be unique within a same platform so that UPI results in a unique identifier for the
whole network. The agency maintains a connectivity matrix describing the place topology. According to
the UPI, the agency determines whether the agent has to be migrated physically or not. Inter-agency
connectivity can be retrieved from any place via the agency.

The connectivity matrix depicted on Figure 3-3, which is a subset of the full matrix, is simply defined
as follows:

f(UPIa, UPIb) = 1 if there is a link between UPIa and UPIb

In this matrix, the asymmetry therefore corresponds to unidirectional links.

Agency A

P1 P3

P2

P4

Agency C

P1 P3

P2

P4
Agency D

P1

P2

P3

Agency B

P1
P3

P2

P4 P5

Agency A

P1 P3

P2

P4

Agency C

P1 P3

P2

P4

Agency C

P1 P3

P2

P4
Agency D

P1

P2

P3

Agency B

P1
P3

P2

P4 P5

Agency B

P1
P3

P2

P4 P5

Figure 3-3. Places intra-/inter-agency connectivity and partial connectivity matrix

In Ecomobile, priority is given to the mobility paradigm, and M-agents are not allowed to communicate
unless they reside in the same location. In the context of our work, the place semantics is a mapping
leading to the reflection of the physical and logical connectivity of the network and implying that, in the
most simple case, each node is associated to a place, so that the place connectivity corresponds to the
node connectivity.

In Section 7.2.2, we propose to map a place semantics matching the wavelength planes; a place per
wavelength is defined and the intra-agency connectivity matches the wavelength switching matrix.

3.2.3 The Blackboard
Each place is associated to a passive blackboard which is part of the ecosystem environment and allows
M-agents to deposit information intended for other agents. Each M-agent only has visibility on the
blackboard associated to the place in which it resides. The blackboard is also used as a repository for the
task objectives.

3.3 THE M-AGENT
An M-agent is a mobile agent considered as an individual in the ecosystem. The general architecture of an
M-agent, which is depicted on Figure 3-4, reveals two distinct parts: the MBS and the Agent Context. The
MBS implements the navigation and coordination models and is defined at the design time; subsequent
dynamic modifications in the behaviour are possible by means of self-adaptive functions, which are
currently not implemented in Ecomobile: we propose to examine the ecosystem behaviour with a fixed
implementation of MBS.

(, 3) (, 4) (, 1) (, 2)
(, 3) 0 1 1 0
(, 4) 0 0 0 0
(, 1) 1 0 0 0
(, 2) 0 1 0 0

UPI A P UPI A P UPI B P UPI C P
UPI A P
UPI A P
UPI B P
UPI C P

Chapter 3
The Conceptual Framework of Ecomobile

67

Unlike the MBS, the agent context constitutes the dynamic part of an M-agent. The tasks which are
deposited into a blackboard are loaded dynamically into the agent context; since the agent population
does not depend on the TO, the existence of the ecosystem does not depend on any task1.

M-agent

Agent Context (AC)

Blackboard

τ1 τ2

τ3

τn : Task Objective
Mobile Behavior Scheme (MBS)

f(φ1, φ2, …φn)

Dynamically
loaded/offloaded

TO Wrapper

τ

Figure 3-4. M-agent Architecture

Figure 3-5 reveals a simplified version of the UML class diagram representing the M-agent's major
components. For the sake of readability, only the important operations are depicted in the model, and their
arguments have not been included.

The central component is the M-agent class, which represents the mobile agent itself, and actually
implements the Mobile Behaviour Scheme (MBS). The M-agent class inherits from a class called
LambdaAgent2, which refers to optical agents that is, a mobile agent able to travel along a wavelength;
the agent's transport occurs through the multiplexing of a specific communication channel in the overhead
structure of the optical frame [RS99]. LambdaAgent implements common functionalities for M-agents,
such as the execution of multiple MBS, for example, or the interaction with the environment.

1 This characteristic allows us to designate the ecosystem as a middleware, on top of which the task
objective will be programmed with an appropriate computational model.
2 This root class is related to the initial motivation of our work namely, the development of an intelligent
optical transport network.

The Mobile Behaviour Scheme

68

M_agent

phiBirth()
phiInterference()
phiClone()
...

TOWrapperInterface

saveTO()
restoreTO()
activateTO()
beforeMigration()
...

AgentContext

addTO()
cooperate()
activate()
checkBeforeMigration()
...

11

0..*0..*

MyTO
itinerary

...()

TOWrapperJava

TOJava

ini t()
activate()
cooperate()
...

11

implements

TOWrapperIlr

Ilog JRules fi le managed
by the wrapper which
contains facts and rules
for this task objective

implements

LambdaAgent

activation()
getAgency()
setAgency()
add()
onWarmUp()

Figure 3-5. UML Diagram of M-agent components in Ecomobile

The M-agent also contains an agent context (class AgentContext), which is defined as the container
dedicated to task objectives. Initially, the agent context is empty and will be filled with the task objectives
found in the blackboard associated to the current M-agent location. The agent context defines the methods
applied to the whole container. The role of these methods will be clarified along the subsequent sections.
The task objective wrapper (class TOWrapperInterface) provides the agent context with an interface
to the task objective which can be expressed in Java or in a rule-based language such as JESS for
example. The wrapper is discussed in 3.5.3.

The objects, or variables, moving with the M-agent, are called frontal objects, the objects in the agency
which are specific to Ecomobile are known as nodal objects and the objects specific to the local node as
environmental objects; these denominations are based on the Wave terminology introduced in Section
1.3.2.

A Java task objective extends a base class used for Java-based tasks, called TOJava, which defines
the callbacks invoked by the MBS. These methods are used to express the dependency between the MBS
and the TO. TOJava includes a special method in order to serialize itself and to be deposited in the
blackboard. Other kinds of TO can be formulated in other languages such as rule-based languages; for
example, the class TOWrapperIlr provides an interface to Ilog JRules language (see Section 3.5.2).

We now proceed to examine in details the MBS and the task objectives.

3.4 THE MOBILE BEHAVIOUR SCHEME
According to our mobile middleware, the mobility paradigm reveals a "living" society of software agents
navigating constantly within the network. In Ecomobile, the agents' birth and death leads to an emergent
self-regulatory phenomenon; our particular architecture model leads to the design of particular bio-
inspired behaviours accommodating the dissemination and activation of complex network management
tasks within the network infrastructure.

Chapter 3
The Conceptual Framework of Ecomobile

69

The MBS describes the M-agent behaviour from the point of view of navigation and agent-to-agent
interaction; it defines eight Reactive Behaviours (RB or Φ-behaviours) characterizing the activities of the
ecosystem individuals, such as migration, self-reproduction, action, etc., on the one hand, and activities
implying interactions with other individuals, such as communication or competition, on the other hand.
The term reactive will be explained in Section 4.3.

Ecology enlightens the impact of the individuals' behaviour on the ecosystem population: the
competition between individuals in a natural ecosystem, in particular, plays a fundamental role in the self-
regulation of the population. Competition can appear between individuals belonging to the same species,
in which case it is known as intraspecific competition, or belonging to different species, in which case it
is called interspecific competition [BHT90]. We aim at exploiting a particular kind of competition called
territoriality, in order to address the problem of the density control and of the size of mobile agents'
population size. Territoriality is defined as an interference1-based intraspecific competition occurring
between members of the same species for the control of territories. The significance of territoriality lies in
the fact that individuals of a territorial species that fail to obtain a territory often make no contribution
whatsoever to future generations. Consequently, the density-dependent birth and mortality rate leads the
territoriality to have a particularly powerful regulatory influence on the populations concerned2.

This highly interesting density-dependent and self-regulatory property leads us to propose the design of
a mobile behaviour scheme approximating the territoriality paradigm issued from the ecosystem theory,
and based on active interference between individuals. Such a design requires a judicious combination of
Φ-behaviours. In our context, the territory refers to the network node.

3.4.1 Notations
A number of definitions are now introduced in order to formalize the description of Φ-behaviours. Most
of the following functions are time-dependent; for simplification reasons, we have omitted the time in
their arguments.

Let us assume the following definitions:

 λi M-agent i
 P ::= { λ1, λ2, λ3, … } Population of M-agents
 Φi Reactive behaviour i
 τi Task objective i
 τi(λj){callback} Invocation of a TO callback by the MBS on τi on M-agent j (see 3.5.1)
 AC(λi):: = {τ1, τ2, … τn} Agent context of M-agent i
 θ(λi) Gives the behavioural function currently executed by M-agent i

 Pl(λi) Gives the actual location for M-agent i by means of the
 Universal Place Identifier (UPI) for M-agent i

 Ref(λi) Gives the reference to another M-agent which is stored in M-agent i
 Dest(λi) Calculate the next destination (UPI) of M-agent i by means of
 the connectivity matrix
 Bl(UPIa):: = {τ1, τ2, … τn} Designates the TOs in the blackboard attached to place UPIa

1 Interference is a kind of competition between individuals interacting directly.
2 In ecology, territoriality is a particularly important and widespread asymmetric intraspecific
competition.

The Mobile Behaviour Scheme

70

An M-agent can execute only one Φ-behaviour at the same time. All the Φ-behaviours can be
parameterized and changed dynamically.

In the following section, we use the above definitions in order to express the influence of Φ-behaviours
on the M-agent architecture and thus to define a semi-formal description of the reactive behaviours.

3.4.2 Reactive Behaviours
The reactive behaviours (Φ-behaviours) represent the primary ecological behavioural functions that an
M-agent can perform in the ecosystem; there are eight Φ-behaviours:

 φbirth Birth of an M-agent (1)
 φmigration Migration of an M-agent (2)
 φaction Activation of task objectives (3)

 (an M-agent performing Φaction can not be "seen" by other agents)
 φinterference Competition with another M-agent using direct interaction (4)
 φabsorption Absorption of all resources (knowledge) of another M-agent (5)
 φclone Cloning of an M-agent (6)
 φdwelling Dwelling at the current location; no special action is performed (7)
 (The agent is able to sense another interfering M-agent)
 φdeath Death of an M-agent. (8)

It has to be noted that we have renamed certain Φ-behaviours previously presented in [RSH01] and
[RS02]. The following Φ-behaviours are concerned by these changes: φmigration (previously φmove), φaction
(previously φexec), φinterference (previously φcontact), φabsorption (previously φmerge) and φdwelling (previously φwait).

The following Φ-behaviour descriptions reflect the behaviours implemented into Ecomobile; we also
discuss possible variations in their implementation. The main actions are given within square brackets and
separated by a semi-colon.

(1) φbirth
The Φbirth behaviour corresponds to the birth of an M-agent: an M-agent is introduced into the ecosystem
at a specific place.

Pre-conditions: < « > (A new agent is created in the location UPIa)
φbirth(λi) ::= [P := P » { λi } ; AC(λi) = « ; Pl(λi) = UPIa]

Since the M-agent appears as a new individual in the ecosystem, a monitoring function is triggered during
the execution of this behaviour, so that we can keep track of the population size during the simulation.

(2) φmigration

The Φmigration behaviour allows M-agents to move from one place to another; it implies active migration
with a single-hop destination given by UPIb.

This behaviour, which implements the M-agents' migration strategy, plays a central role in the
ecosystem behaviour. The migration function calculates the M-agent's next destination by means of the
connectivity matrix defined in the agency. In Ecomobile, the mapping semantics involves synchronization

Chapter 3
The Conceptual Framework of Ecomobile

71

between the connectivity matrix and the underlying network infrastructure; the removal of a network link
leads to the removal of the corresponding link in the connectivity matrix.

According to the computational model defined in Ecomobile, migration is not influenced by the task
objectives in any way.

Pre-conditions: < Pl(λi) ∫ UPIb >

φmigration(λi) ::= [Dest(λi) = UPIb ; ∀τj ∈ AC(λi) => τj(λi){beforeMigration} ; Pl(λi) = UPIb]

The above expression shows that the task objectives are informed of the next destination before
migrating, so that they remain able to perform any specific action; if the destination is not convenient, for
example, the TO can offload itself in the blackboard.

The migration function retrieves the possible destinations from the agency and makes a random
decision based on these destinations; the destination function Dest() determines whether the destination
has already been pre-computed in another Φ-behaviour like Φclone.

According to a different migration strategy, the destination could also be selected by means of a
"round-robin" mechanism operated on the list of available output ports; this approach allows the network
to be explored in a more efficient manner.

The migration time is computed randomly. In case of intra-platform migration (virtual migration), the
simulation time is set to 0; more information concerning the time reference is given in Section 4.1.

(3) φaction

This behavioural function performs loading and activation of task objectives: the agent first looks for
eventual TOs in the blackboard, loads them into its context and activates them. All TOs present in the
agent context are then activated via the TO wrapper.

Pre-conditions: < Pl(λi) = UPIa >

φaction(λi) ::= [AC(λi) := AC(λi) » Bl(UPIa) ; ∀τj ∈ AC(λi) => τj(λi){cooperate, activate}]

Once the activation of these task objectives has been initiated by the M-agent, it can not be interrupted
any more. At each TO activation, two callbacks are invoked: the first one enables an inter-TO cooperation
(see 3.5.3) while the second one is used to activate the TO.

Several approaches are possible in order to implement this behaviour. Depending on the local
processing power, we can imagine starting a thread per each TO in order to improve the performance. In
this case, the agent context has to wait until all TOs threads are terminated. In our implementation,
however, the TOs are executed atomically and sequentially. With regards to the computational model, the
order of TO activation is not specified that is, the TOs can not make assumptions on their execution order.

An execution time can be also introduced for simulation purposes; the time spent to perform the tasks
may therefore temporarily and locally influence the ecosystem behaviour. In our simulation however, we
assume fast TO execution and do not consider the execution time since it may be included in the
migration time.

(4) φinterference
This behaviour allows an M-agent to interfere actively and directly with another co-residing target
M-agent: the first agent enquires about the presence of any other M-agent at the same place; the only

The Mobile Behaviour Scheme

72

condition for the success of the interference is that the target M-agent is performing the φdwelling
behavioural function.

Pre-conditions: < Pl(λi) = Pl(λj) ; θ(λj) = φdwelling >
φinterference(λi) ::= [Ref(λi) := λj]

According to the above expression, the interference mechanism occurs through direct coupling between
two M-agents resorting to a meeting-oriented coordination paradigm (see 2.2.3). The interfering agent
receives the reference to the sensed agent. If several M-agents are present in the same place, the
interfering agent makes a random selection. The concept of territoriality leads interactions to occur
between a pair of individuals.

(5) φabsorption

This behaviour allows an M-agent to "absorb" the resource that is, the knowledge belonging to another
M-agent: in other words, this operation consists in transferring the entire agent context from one M-agent
to the other.

Pre-conditions: < Pl(λi) = Pl(λj) ; Ref(λi) = λj >

φabsorption(λi) ::= [AC(λi) := AC(λi) » AC(λj) ; ∀τk ∈ AC(λi) => τk(λi){cooperate}]

The insertion of new task objectives into the current agent context of the surviving M-agent (λi) will
trigger the inter-TO cooperation mechanism (see Section 3.5.3).

(6) φclone

The cloning operation allows an M-agent to create a replication of itself; the cloned M-agent (offspring)
contains the same knowledge as the parent. The child's next destination may however differ from the
parent's one; although the destination UPIb is assigned to the clone, the M-agent does not perform any
migration in this behaviour.

Pre-conditions: < Pl(λi) = UPIa >
φclone(λi) ::= [λj ::= λi; P := P » { λj }; AC(λj) = AC(λi); Dest(λj) := UPIb]

The cloning operation is usually related to the concept of migration because it generally becomes
necessary for the agents to clone themselves in order to improve the exploration process within the
network; load-balancing between several machines, for example, can be achieved simply with successive
cloning operations [SSC+98]. In Ecomobile, the cloning operation naturally matches the individuals'
reproduction mechanism inherent to ecosystem principles; according to this mechanism, the offspring is
used to disseminate replica of task objectives within the network and to provide a birth contribution in the
self-regulated M-agent population.

The number of clones itself strongly depends on the migration strategy: each new cloned M-agent is
assigned a destination and must consequently not be re-computed in the migration behaviour (φmigration).

As in Φmigration, different cloning strategies are possible. It could for example be decided that the
M-agent is cloned to the link by which the parent has arrived; moreover, a clone could also be generated
in the direction which will subsequently be taken by the parent agent. Finally, the parent destination needs

Chapter 3
The Conceptual Framework of Ecomobile

73

to be established during this operation so that the next call to φmigration will be in line with the cloning
strategy.

According to the strategy which has been chosen, the population size can be subject to serious
variations which could eventually influence the propagation rate of task objectives; in Ecomobile, the
MBS has been conceived to generate clones for all the available output links, including the parent's
arrival link; however, no clone to the parent's destination is generated. In other words, the number of
clones equals the nodal degree.

(7) φdwelling

This behaviour makes the agent able to sense the environment and therefore to react to the presence of
another agent. From an ecological behaviour point of view, the agent is simply spending some time in its
environment doing nothing particular.

Pre-conditions: < Pl(λi) = UPIa >
φdwelling(λi) ::= [«]

The waiting time, which actually gives the M-agent an opportunity to meet other M-agents, has been
proposed in co-evolutionary agent systems [SS99], for example, developed for multiple node and span
failure restoration. A mechanism called Early-Route Completion (ERC) allows two mobile agents to meet
at an intermediate node and to exchange route information. This strategy resembles the MITAgent
approach. The meeting opportunity can also be improved by means of a probabilistic waiting time.

In Ecomobile, the waiting time can be either fixed or calculated dynamically. Effects of the waiting
time on the ecosystem behaviour are discussed in Section 5.3.3

(8) φdeath

The Φdeath behaviour corresponds to the death of an M-agent that is, its removal from the ecosystem; the
population size is updated by the monitoring function.

Pre-conditions: < « >
φdeath(λi) ::=[Pl(λi) = « ; AC(λi) := «; P := P \ { λi }]

The M-agent disappears from its current place, including all TOs present in the agent context at the death
time.

It appears from the previous definitions that each Φ-behaviour has its own set of parameters making the
agents able to accommodate various conditions during the ecosystem lifetime. Density control, for
example, can be more finely tuned by adjustment of the waiting time for the Φdwelling behaviour or the
number of generated clones. The number of ecosystem parameters obviously makes an exhaustive
behavioural analysis impossible. In order to limit our investigations to a reasonable number of
behaviours, we have chosen a particular subset of parameter values which will be discussed in Chapter 5.

We now describe two different mobile behaviour schemes approximating the territoriality paradigm
and therefore leading to a density-dependent self-regulatory population of M-agents.

The Mobile Behaviour Scheme

74

3.4.3 Low Diffusion
Mobile behaviour schemes can assume a variety of forms; we have chosen to present two MBS which
exhibit interesting results from the point of view of simulation (see Chapter 5). We shall begin with a
MBS describing a simple M-agent behaviour based on the territoriality paradigm.

In this MBS, the agent starts migration directly after its birth (Φbirth). When it has reached a new place,
it activates the Φaction behaviour, which consists in loading the possible task objectives present in the
associated blackboard into its context. The agent, which "defends" its territory (its place), enquires if
another M-agent is currently residing in the same place: it senses a visible M-agent, as defined by
Φinterference, provided the sensed agent is performing a Φdwelling behaviour.

The M-agent can then perform two different actions depending on whether another M-agent has been
sensed or not. In case of success, the sensing agent performs a Φabsorption which implies a transfer of all
TOs from the sensed agent into its agent context, irrespective of the task nature. In the proposed MBS, the
sensed agent dies (Φdie) whereas the agent enriched with the new knowledge leaves the current place
towards another place (Φmigration) in order to "conquer" other nodes1. If the M-agent fails to sense another
agent, it performs a Φclone behaviour and continues its migration over the network.

Since the diffusion of the M-agents within the network is relatively "slow", this kind of mobile
behaviour scheme is called low diffusion - or MBS-low. This MBS-low is depicted on Figure 3-6.

M-Agent λz

M-Agent λy

M-Agent λx

Фdwelling

Фclone

Фbirth

Фinterference

Фmigration

Фaction

Фabsorption

Фdeath

no yes

Фdeath

Фdwelling
Knowledge
Transfer

…

sensednot
sensed

sensing

Фbirth

…

Figure 3-6. MBS Low Diffusion - M-agent λy interacting with λx

As we have seen, the above described MBS leads to M-agent cloning, unless a co-residing agent can be
contacted. According to the meeting opportunities, the network exploration can occur at various speeds:

1 In this context, "conquering" the network simply means exploring the nodes; no specific mark is
deposited by the M-agent in its environment.

Chapter 3
The Conceptual Framework of Ecomobile

75

when a contacted M-agent has died, the surviving M-agent follows one of the possible output links,
leaving the other links unexplored for the time being1.

3.4.4 High Diffusion
The second MBS we introduce is rather similar to the first one, with the exception of two modifications:
in order to ensure that no other agent is sharing its location place during a certain time (defined by
Φdwelling), the M-agent iterates the interference-absorption scheme as shown on Figure 3-7.

According to the size of the agent context, the quantity of knowledge or task objectives transferred is
therefore higher than in the previous MBS.

This behaviour may result in the consecutive elimination of an important amount of agents in a short
time; in order to compensate for the high mortality rate of this iterative process, the M-agent activates a
cloning process before leaving the node so that all the available output links are investigated by the
M-agents at the migration time. This behaviour, which is similar to a breadth-first parallel search, leads to
a faster diffusion of M-agents and allows exhaustive exploration of the network. This is why this mobile
behaviour scheme is referred to as high diffusion - or MBS-high.

M-Agent λz

M-Agent λy

M-Agent λx

Фdwelling

Фclone

Фbirth

Фinterference

Фmigration

Фaction

Фabsorption

Фdeath

no yes

Фdeath

Фdwelling
Knowledge
Transfer

…

sensednot
sensed

sensing

Фbirth

…

Figure 3-7. MBS High Diffusion - M-agent λy interacting with λx

The interesting diffusion property of this MBS, however, does not guarantee superior system
performance. The simulation has shown that the MBS-high leads to a reasonable increase in population
size. Still, the variation of the birth and mortality rates are important, so that more processing time is
required to achieve the creation and removal of M-agents.

1 As explained in the definition of Φmigration (see Section 3.4.2), the migration strategy can contribute to a
better exploration of the network.

Task Objectives

76

The interference-absorption loop causes another side effect: according to the network topology, a
node's high connectivity degree can lead an M-agent to waste an indefinite period of time in this loop
because of the high number of M-agent visits. The task objectives loaded in the M-agent are compelled to
stay in the current place because of this immobility. In order to avoid this problem, we propose to
implement a heuristic-based waiting time function into the Φdwelling behaviour; the heuristics, which is
based on the number of M-agents arriving at a node, compared to the number of agents leaving the node,
is explained in Section 5.3.2.

3.5 TASK OBJECTIVES
In the previous sections, we have discussed the agent behaviour from the navigation and coordination
point of view; we have defined two mobile behaviour schemes characterizing a particular ecosystem
behaviour called territoriality. We now propose to examine in details the Task Objective (TO), which
describes the operational behaviour; in other words we are going to concentrate on the characteristics of
the computational model.

A TO describes a particular task, a network management function in our context, which is defined by
means of a programming language such as Java, a rule-based language or any interpreted language like
Wave, for example; each task actually represents a specific class with respect to object-oriented
conventions. A TO can therefore have frontal objects constituting the task's knowledge and moving with
the agent in a persistent way. A TO can be multiply instantiated by the M-agents within the network, as
the ecosystem is able to handle multiple instances of task objectives, irrespective of the tasks' nature. The
TOs themselves have to be informed whether interactions can take place between TO instances of the
same class or even between different classes. An interaction mechanism is activated by the MBS at a
certain moment of the agent lifecycle and allows the TOs to intelligently cooperate1 in order to
accomplish the overall goal.

TOs are initially deposited into blackboards; they are loaded dynamically by the ecosystem via
M-agents and are spread in the network automatically through the invocation of the standard Java
clone() method. Decisions on the TO lifecycle and its own trajectory within the network only depend
on the TO itself; the TO can leave the M-agent and be put back into the blackboard by means of an
offloading mechanism. If the TO claims to be persistent, during its initialization, the M-agent can decide
to offload the TO, as it may happen that no sufficient place is available to put the TO in the agent context
during the absorption phase for example. When the TO is not persistent, the M-agent simply ignores it.

According to the computation model, the TO design relies on a loosely coupled task model and
imposes particular key concepts, such as the current location, for example, which is transferred by the
MBS; furthermore, the passive migration of a TO may also require specific decisions about its
destination.

The cooperation, which is asynchronously activated by the MBS, must be designed so that it does not
depend on the time. Finally, the TO is informed of the agent's destination right before the migration, and
it may decide to leave the M-agent if the destination is not appropriate. Although the TO does not invoke
the cloning mechanism, it has to duplicate its frontal objects appropriately.

The next sections outline the characteristics of the TO such as its lifecycle, programming language and
interactions between the MBS and the TO.

Chapter 3
The Conceptual Framework of Ecomobile

77

3.5.1 Lifecycle and Callbacks
In the Ecomobile model, the mobile behaviour scheme leads to a self-regulated population of M-agents,
so that the number of agents does not depend on the task objectives. This approach however results in a
particular trade-off between the number of agents and their size: the task objectives are loaded into the
agent context of the M-agent and therefore contribute to its size2.

A possible approach towards the control of the TO lifecycle consists in resorting to an energy concept
[Bau99] developed for mobile agents to control their garbage collection; the algorithms can be
implemented at a TO level. In the beginning, the TO has a certain amount of energy; every time the agent
accedes local resources, it consumes some of this energy. Once the TO has run out of energy, it becomes
an "orphan" and can be removed by a "garbage collection" task objective. According to this approach, the
automatic dispersal of TOs and their cooperation mechanisms allow them to gain control over a particular
class of TOs.

Each TO can implement different lifecycle strategies. Callbacks allow the TOs to manage their
lifecycle. The TOs inform their wrapper whether they are still alive, or if they have to be discarded. In
Ecomobile, each TO owns an internal state associated to the agent behaviour; this state is managed by the
wrapper in accordance with the MBS.

The different states of a task objective are depicted on Figure 3-8.

TO_S_INIT

TO_S_SUSPENDED

TO_S_DISCARDEDTO_S_SUSPENDED_FOR_MIGRATION

TO_S_READYTO_S_ACTIVATED

beforeMigration()

beforeMigration()

activate()

init()

activate()

resume()

resume()

resume()

activate()

beforeMigration()/cooperate()

beforeMigration()

beforeMigration()/cooperate()

beforeMigration()/cooperate()

cooperate() cooperate()

Figure 3-8. State and Callbacks-based Transition Diagram in TO Lifecycle

Transitions from one state to another are performed by the callbacks implementing the TO behaviour. The
states TO_S_SUSPENDED and TO_S_SUSPENDED_FOR_MIGRATION are associated to serialized

1 In this context, cooperation refers to a general interaction scheme and does not exclude "competition"
between TOs.
2 The agent context can manage a number of task objectives up to a certain limit.

Task Objectives

78

instances of the TOs that have been offloaded in the blackboard. State TO_S_DISCARDED refers to a
task objective which is not alive any more. In the following, TO states and callbacks are subject to a
detailed description. TO callbacks are introduced in Table 3-1 and are defined in the root class TOJava.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// Callbacks
public Boolean init(TOWrapperInterface wrapper);
public Boolean activate(TOWrapperInterface wrapper);
public Boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO);
public Boolean resume(TOWrapperInterface wrapper);
public Boolean beforeMigration(TOWrapperInterface wrapper);

// Called when the task objective must be cloned
public Object clone();

// TO user methods
public void setPersistent(Boolean state);
public void cleanEnv(TOWrapperInterface wrapper);
public void offload(TOWrapperInterface wrapper);
public void setPriority(int priority);
public void discard();

Table 3-1. Task objectives callbacks and user methods

In all the callbacks, the task objective wrapper is passed as an argument in order to inform the TO of the
current location and, as far as beforeMigration() is concerned, the next destination; the wrapper
includes a reference to the agency so that information about the local environment can be retrieved. All
the callbacks return a boolean telling the wrapper if the TO is discarded; when the TO wishes to be
discarded, the wrapper informs the agent context that the task objective must be removed.

In Ecomobile, the inter-TO cooperation provides an efficient mechanism in order to perform
knowledge exchange between different instances of task objectives and in order to avoid knowledge
redundancy; it therefore plays a central role in the regulation of the agent context size. The cooperation
mechanism relies on a master/slave paradigm between two TOs; the callback cooperate() provides
the master TO with a reference to a slave TO. Master and slave TOs can belong to different TO classes;
the master is responsible for checking the class in order to perform the cooperation task. The master can
process an information exchange or simply influence the behaviour of the slave; it can, for example, use
the discard() method to "kill" the slave; the master can finally decide to remove itself from the
system so that the slave can continue to live.

The current implementation of Ecomobile imposes the following assumption:

τmaster{cooperate(τslave)} = τslave{cooperate(τmaster)}

This expression indicates that the cooperation methods of the master/slave TOs should be symmetric.
However, this limitation is not too severe, since most cooperation methods aim at exchanging, merging or
synchronizing activities between TOs belonging to the same family.

The cooperation mechanism is activated by the MBS; as can be seen on the state diagram, the
cooperate() callback can be invoked when the TO is in the following states: TO_S_READY,
TO_S_ACTIVATED and TO_S_SUSPENDED_FOR_MIGRATION.

Chapter 3
The Conceptual Framework of Ecomobile

79

The cloning behaviour - Φclone - invokes the method clone() of the TO. According to this method, all
the frontal objects which are not "cloneable" by the Java clone()1 method must be explicitly
duplicated.

The different states are now examined in detail by means of Specification and Description Language
(SDL) diagrams. For the sake of readability, and since the TO lifecycle depends on task-dependent
implementation choice, we have used a simplified notation within the SDL diagrams, which is not always
compliant with standard SDL semantics. A comprehensive overview of SDL can be found in [Hog89].
We now introduce three SDL macros (Activate, BeforeMigration and Cooperate) which will be used in
the subsequent diagrams.

TO_S_ACTIVATED

activate()

a

any

TOInstance
(TO_S_SUSPENDED)

1

Macro
Activate

return
value

TO_S_DISCARDED

false

true

isResumed:=false

Implementation-
dependent

offload()

create a new
TO instance

1

beforeMigration()

a

TOInstance
(TO_S_SUSPENDED_
_FOR_MIGRATION)

1

return
value

TO_S_DISCARDED

false

true

Macro
BeforeMigration

offload()

any Implementation-
dependent

create a new
TO instance

TO_S_READY

1

cooperate(TOn)

a

TOInstance
(stateOffload)

1

TO_S_DISCARDED

false

true

Macro
Cooperate
fpar stateOffload;

b

discard(TOn)offload()

any Implementation-
dependent

create a new
TO instance

return
value

1

Figure 3-9. Macros definition in SDL

Each callback is followed by a task-dependent implementation choice. The selection of possible variants
is represented within the diagram by means of the diamond shape; it is not part of the implementation. All
activities following the callback entry point are performed during the callback execution. The method
offload(), for example, can be used at any time during the callback execution.

1 See the Object class in the Java API documentation (http://java.sun.com/j2se/1.3/docs/api/index.html).

http://java.sun.com/j2se/1.3/docs/api/index.html

Task Objectives

80

TO_S_INIT

The initial state of a newly created TO instance actually depends on the originator; when the user
manually deposits a TO in the blackboard, the TO enters state TO_S_INIT. When a TO instance is
offloaded by the M-agent, a new instance of the TO is created in the state TO_S_SUSPENDED or
TO_S_SUSPENDED_FOR_MIGRATION accordingly.

On the SDL diagram depicted on Figure 3-10, the formal parameter refers to the initial state of the TO.

TO_S_INIT

TO_S_READY

isResumed:=false

startProcess TO;

anyImplementation-
dependent

cleanEnv()

1(5)

fpar initalState;

init()

initial
State

TO_S_SUSPENDED_
_FOR_MIGRATIONTO_S_SUSPENDED

OTHERWISE

TO_S_SUSPENDED

TO_S_SUSPENDED_
_FOR_MIGRATION

Figure 3-10. SDL Diagram from the state TO_S_INIT

When the TO has been loaded by a M-agent and instantiated in the agent context, the callback init() is
called by the MBS and the TO enters state TO_S_READY.

In the init() method, the TO first decides via a cleanEnv() method whether the TO must be
removed from the environment or not; if it must be removed, the TO is loaded only once (one shot
loading) so that other M-agents subsequently visiting the place do not come across it any more; the TO
dispersal within the network can also be improved by keeping the TO in its blackboard so that other
M-agents can load it and disseminate it.

The TO persistence - enabled by the setPersistent() method - indicates if the task objective
must temporarily be saved, in case the M-agent has no place in its context any more. Since the number of
TO instances within the ecosystem may be sufficient to guarantee the TO's further existence, whether
persistence is required or not depends on the task implementation.

In addition to these methods, the TO can set a priority - setPriority() - and perform initialization
of frontal objects. During TO transfer phases, when the agent context size has reached its maximal limit,
low-priority TOs will be temporarily offloaded first, while high-priority TOs will be preserved as much as
possible in the agent context.

Since setPersistent() and setPriority() are optional and have to be considered at the
same semantic level as cleanEnv(), these methods are not depicted on the SDL diagram.

Chapter 3
The Conceptual Framework of Ecomobile

81

TO_S_READY

TO_S_READY (Figure 3-11) indicates that the TO is ready to be activated by the Φaction behaviour. The
TO activation is performed at each node visit, via the method activate() (SDL macro Activate) and
can not be interrupted by another M-agent.

Activate

TO_S_READY

Cooperate
(TO_S_SUSPENDED)

TO_S_DISCARDED

a a

b

Process TO;

discard(TO)

2(5)

Figure 3-11. SDL Diagram from the state TO_S_READY

During the execution, a TO instance can decide to deposit a copy of itself into the environment by means
of the user method offload(). The TO instance residing in the blackboard is then suspended until the
next activation while the running instance remains active in the agent context and continues its work.

Once the TO execution is finished, it can decide to leave the M-agent by simply returning false at the
end of the callback, in which case the M-agent removes the TO from its context; dissemination and
cloning of this TO instance will consequently be stopped.

In this state, the TO can also be triggered by the cooperate() callback (SDL macro Cooperate); the
master TO involved in the inter-TO cooperation mechanism can also decide to discard the TO.

TO_S_ACTIVATED

Once the TO has been executed, it enters TO_S_ACTIVATED (Figure 3-12) and is temporary suspended
until the MBS induces a migration.

BeforeMigration

TO_S_ACTIVATED

Cooperate
(TO_S_READY_TO_MIGRATE)

TO_S_DISCARDED

a a

b

discard(TO)

Process TO; 3(5)

Figure 3-12. SDL Diagram from the state TO_S_ACTIVATED

Task Objectives

82

The beforeMigration() callback allows the TO to decide whether it can remain alive in the M-
agent and thus migrate with the agent, whether it has to be offloaded, or if it terminates. When the TO has
migrated, it will immediately re-enter TO_S_READY for further activations.

As in TO_S_READY, the TO can be triggered by cooperate() or be discarded during the
cooperation mechanism.

TO_S_SUSPENDED_FOR_MIGRATION

This state (Figure 3-13) is used to designate a task objective which has been offloaded just before
migration: the TO is then loaded by another M-agent and can determine once more, via the
beforeMigration() callback (SDL macro BeforeMigration), whether the next destination is
appropriate or not.

TO_S_SUSPENDED_
_FOR_MIGRATION

BeforeMigration
a

TO_S_DISCARDED

Process TO;

discard(TO)

4(5)

Cooperate
(TO_S_SUSPENDED)

a

b

Figure 3-13. SDL Diagram from the state TO_S_SUSPENDED_FOR_MIGRATION

A TO can be loaded and offloaded cyclically until the destination matches its requirements.
The TO can also be triggered by cooperate() or be discarded during the inter-TO cooperation

mechanism.

TO_S_SUSPENDED

A task objective is in the state TO_S_SUSPENDED (Figure 3-14) if and only if the TO itself has invoked
the offload() callback.

Chapter 3
The Conceptual Framework of Ecomobile

83

TOInstance
(TO_S_SUSPENDED)

1

1

isResumed:=true

TO_S_SUSPENDED

resume()

Activate

a

Process TO;

offload()

any Implementation-
dependent

create a new
TO instance

5(5)

Figure 3-14. SDL Diagram from the state TO_S_SUSPENDED

The TO will be reactivated through the resume() callback in which the TO can decide to offload once
more or to continue its execution.

TO_S_DISCARDED

When the TO is removed from the agent context and not offloaded, it enters the state
TO_S_DISCARDED. The MBS then proceeds to its disposal. A TO is discarded when it terminates or it is
discarded by another TO.

3.5.2 Rule-based Task Objectives
As we have seen, task objectives can easily be developed in Java. However, a object-oriented language
does not necessarily suit all kinds of reasoning-based applications. A rule-based language would be more
appropriate in order to achieve an alarm filtering, for example. When facts and rules are used in a
common framework, the inter-TO cooperation makes a real "fusion" of the knowledge easier; internal
mechanisms of the rule engine automatically lead to an adequate merging of facts and rules.

In [RSH01], we have experienced the development of TOs with a particular rule engine supplied by
Ilog1 and known as JRules, which provides an efficient implementation of the Rete algorithm [FC82] and
facilities for manipulating Java objects directly in the rules, so that the objects of the agent context can be
accessed without any particular problem. The corresponding rule-based language enables interactions
with Java objects and supports most features of well-known rule engines such as CLIPS or JESS2.

1 http://www.ilog.com - has also provided a graphical library for the development of the Generic Network
Management Tool (see Appendix A)
2 http://www.ghg.net/clips and http://herzberg.ca.sandia.gov/jess

http://www.ilog.com
http://www.ghg.net/clips
http://herzberg.ca.sandia.gov/jess

Task Objectives

84

The interface between the Java based MBS and such a rule engine is achieved through the TO wrapper
that maps the agent context operation onto the JRules concepts. The objects related to this rule engine are
now briefly defined.

The working memory, in which the facts are stored, and the agenda, in which the valid rules are
instantiated, are two important components used by the rules engine in JRules. The facts correspond to
Java objects and are simply deposited into the working memory when the assert operation has been
invoked. Once the inference engine has been activated, all the valid rules which are stored in the agenda
are fired. In other words, when the conditions of a rule become true, an instance of the corresponding rule
is left in the agenda and the rule is considered as valid; the action part of the rule will be executed at
the activation time.

The general description of a rule can be expressed by the following statement:

rule ruleName { when { ... conditions ... } then { ... actions } }

Without going into details, we propose to describe a short example (Table 3-2) of a JRule TO storing

the itinerary and terminating when a cycle has been detected. A more sophisticated TO for routing
purposes in optical networks has been proposed in [RoRS01].

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

rule BuildItinerary {
 when {
 Activation();
 } then {
 assert NodeTuple(?context.wrapper.getAgency().getLocalNode().getAddr(),
 ?context.prevAddr);
 }
};

rule DetectCycle {
 when {
 collect NodeTuple(addr equals
 ?context.wrapper.getAgency().getLocalNode().getAddr())
 where (size() > 1);
 } then {
 ?context.wrapper.discard();
 }
};

Table 3-2. An example of a task objective in Ilog JRules

According to the first rule, the itinerary is stored in the working memory via the assert statement. The
fact Activation() becomes true whenever the activation of the task objective is performed. The
object called NodeTuple contains a node address and a reference to the previous visited node address so
that it remains possible to keep track of the itinerary. The context referred by ?context allows facts and
rules to access to a space of variables associated to the working memory.

The second rule shows how a cycle can be detected when the itinerary has been built; it is activated
right after the creation of new NodeTuple facts. In case of a cycle, the wrapper.discard()
method is called so that the task objective including facts and rules disappears from the agent context.

3.5.3 Wrapper and Interactions with Task Objectives
The wrapper enables interactions between the mobile behaviour scheme and the TOs; it also provides the
TOs with a reference to the local agency giving access to nodal objects, such as a rule engine or a

Chapter 3
The Conceptual Framework of Ecomobile

85

blackboard, as well as to the local node environment. In addition, and when it is possible, the wrapper
stores the next destination retrieved by the TO.

The wrapper is linked to a specific TO and therefore migrates with the M-agent. The wrapper
functionalities consist in mapping the agent context operations onto a specific language and its related
mechanisms, in order to manage the internal state of the task objective and to handle the storage
mechanism by means of the blackboard; the storage mechanism allows a task objective to read or save a
task objective properly, for example.

Figure 3-15 reveals two types of wrapper; the Java wrapper simply invokes corresponding callbacks
within the TO, whereas the Ilr (Ilog JRules) wrapper contains specific frontal objects, such as a working
memory used to store facts and rules related to the TO; this memory is also responsible for the activation
of the external rule engine which has to be instantiated in the agency. A rule engine usually requires an
important code size and should not be considered as mobile.

WrapperInterface

MBS
ФmigrationФaction Фabsorption

Reference to Agency
(including local node blackboard, next destination,

reference to rule engine)

τ{cooperate} τ{beforeMigration}τ{cooperate, activate}

τJava

WrapperJava

τIlr

WrapperIlr Activate Rules

Rule Engine

Agency
WrapperInterface

MBS
ФmigrationФaction Фabsorption

MBS
ФmigrationФaction Фabsorption

Reference to Agency
(including local node blackboard, next destination,

reference to rule engine)

τ{cooperate} τ{beforeMigration}τ{cooperate, activate}

τJava

WrapperJava

τIlr

WrapperIlr Activate Rules

Rule Engine

Agency

Rule Engine

Agency

Figure 3-15. Interactions between MBS, task objective wrappers

According to the Figure 3-15, the mobile behaviour scheme interacts with the TO within the three Φ-
behaviours (Φaction, Φabsorption, Φmigration). The callbacks are activated by these behaviours and give the TO a
reference to the wrapper containing the above-mentioned information.

Moreover, the cloning process requires still another interaction which consists in the original clone()
method; in the wrapper and the TO, this operation does not correspond to any particular behaviour and
must only contain statements for frontal object initialization necessary to achieve the cloning. We have
actually experienced some difficulties designing a TO and controlling its propagation when considering
conditional TO cloning based on internal decisions. Only the MBS should therefore drive the cloning of
TOs. This is the reason why the clone() method is not considered as a TO callback.

As far as the cooperate() callback is concerned, the master/slave coupling may be performed by
means of different TOs using different languages; a Java TO, for example, can be coupled to a JRules
TO. In this case, an intermediate slave TO has to be created by the wrapper in the corresponding language

Samples of Generic Task Objectives

86

of the master TO, so that the cooperation can be performed in a common language; this technique has not
been implemented into Ecomobile yet.

3.6 SAMPLES OF GENERIC TASK OBJECTIVES
In this section, we present a couple of basic TOs which can be considered as TO models for network
management tasks. These simple TOs have been designed according to the computational model of
Ecomobile and make compositional building of complex task objectives possible.

These TO samples will show how it is possible to implement different operational behaviours mainly
corresponding to the underlying functions of the different mobile MAS approaches exposed in Chapter 1
and Chapter 2; they can be used for delegation agents, MITAgent or in approaches based on emergent
behaviour based approaches.

For simplification reasons, we assume that, in the task objectives we present, a single place is
associated to a single node and that the Universal Place Identifier (UPI) only consists in the node address.

3.6.1 Travelling in a network
The basic task objective TO_Travel described in Table 3-3 builds a cycle-free itinerary in a continuous
process; the TO lifecycle relies on the cooperation mechanism. When two task objectives meet, their
itinerary is compared; the TO whose itinerary is contained in the other is simply discarded.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

public class TO_Travel extends TOJava {

 private Vector itinerary; // Itinerary as frontal object

 public TO_Travel() { itinerary = new Vector(); }
 public Object clone() { … tells how to clone (copy of itinerary) }

 public boolean activate(TOWrapperInterface wrapper) {
 if (itinerary.contains(wrapper.getAgency().getLocalNode().getAddr()))
 itinerary.clear();

 itinerary.add(wrapper.getAgency().getLocalNode().getAddr());
 return true;
 }

 public boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO) {
 if (otherTO instanceof TO_Travel) {
 TO_Travel _other = (TO_Travel) otherTO;

 if (itinerary.contains(_other.itinerary))
 _other.discard();
 else if (_other.itinerary.contains(itinerary))
 return false;
 }
 }

 public void init(TOWrapperInterface wrapper) {
 cleanEnv(wrapper); // One shot loading
 setPriority(10); // Maximum priority
 setPersistent(true); // In case of overloaded AC, TO is offloaded in env.
 }
}

Table 3-3. A simple TO model to travel in the network

All the frontal objects are placed in the declarative part of the class. In TO_Travel, only the itinerary (3)
has to be maintained by the TO itself. In init() (27), the task objective removes itself from the
environment by means of the cleanEnv() method (28), so that the TO is loaded only once. Maximum

Chapter 3
The Conceptual Framework of Ecomobile

87

priority (29) is not relevant in this context, but persistence (30) indicates that the TO must be saved in the
blackboard when the agent context is full.

The cooperate() callback (16) eliminates the TOs which have the same knowledge (17-24) that is,
the same itinerary; this strategy avoids exponential growth of the agent context. The cooperation
mechanism still plays an important role in the self-regulation of the average agent context size.

This task objective relies on a stochastic navigation model since its trajectory only depends on the
M-agent's movement and therefore on the network environment; in the TO's callbacks, there is no
migration-related decision.

A behavioural simulation of this task objective is presented in Section 5.4.1.
From now on, only the relevant callbacks are described; the constructor and clone() methods are not

depicted any more.

3.6.2 Monitoring
The monitoring function, which handles fault and performance management, naturally constitutes a major
function in network management. The task objective presented in Table 3-4 is dedicated in particular to
monitoring tasks examining the node periodically; it does not have to be plugged into the device.

Each monitoring task must be defined as a different TO_Monitor class.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

public class TO_Monitor extends TOJava {

 public boolean activate(TOWrapperInterface wrapper) {
 // Monitoring function
 // …
 return true;
 }

 public boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO) {
 if (otherTO instanceof TO_Monitor)
 otherTO.discard();

 return true;
 }
}

Table 3-4. A generic monitoring TO model

In this task objective, the cooperate() method kills the slave TO regardless of its internal knowledge
(10-11). The particular monitoring function must be implemented in activate().

3.6.3 The Node Inspector
The node inspector task objective consists in implementing a particular task, or service, into the node
component; the service is activated during M-agent visits. Unlike TO_Monitor, this task objective is
offloaded at each place-related blackboard; therefore, the task does not travel along the links but
continues to reside within the node, so that it can maintain the knowledge specific to each node.

When a node fails, the links with the neighbouring nodes consequently fail and the place connectivity
matrix is updated; once the node has been re-installed and the Ecomobile agency has been informed about
the inter-place connectivity, the task objective of connected places will be re-installed automatically.

This task objective can be used in the context of TOs' operational management, for example, such as
garbage collection functions or TO class management (see Section 4.4.1). Table 3-5 shows the details of
TO_NodeInspector.

Samples of Generic Task Objectives

88

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

public class TO_NodeInspector extends TOJava {

 // Frontal objects
 private boolean resident = false;

 public boolean activate(TOWrapperInterface wrapper) {
 wrapper.getAgency().getBlackboard().theContent().put("TO_Inspector", "ok");
 resident = true;

 // Execute specific task ...

 offload(wrapper); // Save the resident TO - can fall asleep again :-)
 resident = false; // For subsequent diffusion
 return true; // Keep living for investigation
 }

 // Ensure only one TO in the agent context
 public boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO) {
 if (otherTO instanceof TO_NodeInspector) {
 if (((TO_NodeInspector) otherTO).resident)
 return false;

 otherTO.discard();
 }
 return true; // Still alive
 }

 // Will check if the output links must be investigated
 public boolean beforeMigration(TOWrapperInterface wrapper) {
 if (wrapper.getAgency().getBlackboard().content().containsKey(wrapper.destination())
 return false;

 wrapper.getAgency().getBlackboard().content().put(wrapper.destination()(), "ok");
 // Re-init internal knowledge if necessary …
 return true;
 }

 public void resume(TOWrapperInterface wrapper) {
 cleanEnv(wrapper); // Ensure the presence of only one TO
 }
}

Table 3-5. A node inspector TO model

In activate() (6), the task objective is offloaded (12) after its specific processing; in order to avoid
having multiple instances of the TO in the blackboard, the resume() callback (38), which is invoked
when the TO has been suspended and re-loaded by another M-agent, performs a cleanEnv() (39) in
order to remove the TO from the blackboard. For each place, there is a single instance of
TO_NodeInspector. The cooperation mechanism (19-25) avoids the redundancy between several TOs; the
beforeMigration() callback controls the propagation of the task objective towards the
neighbouring nodes (30-35).

In order to determine whether each place has been investigated or not, a particular nodal object (34) is
deposited into the blackboard; this indicator allows the task objective to be installed pro-actively when a
new connection has been set up.

3.6.4 Path Selection
While the previous task objectives rely on a stochastic navigation model implemented by the mobile
behaviour scheme, the TO model which we are about to examine must have a pre-planned itinerary. In
this particular model, the path corresponds to a list of nodes initialized in the TO without intermediate

Chapter 3
The Conceptual Framework of Ecomobile

89

nodes. Operational behaviours which are similar to delegation agents can be implemented by means of
this TO model.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

public class TO_PathSelect extends TOJava {

 // Frontal objects
 private Vector itinerary; // Internal trajectory
 private Vector path; // Path to follow

 public boolean activate(TOWrapperInterface wrapper) {
 GenericNode currentNode = wrapper.getAgency().getLocalNode();

 // Check if the node belongs to the path
 if (currentNode.getAddr().equals((String) path.firstElement())) {

 path.removeElementAt(0); // Prepare the next node to search

 if (path.isEmpty()) {
 // Do something useful with the path nodes …
 return false; // Finished
 }
 }

 itinerary.add(currentNode.getAddr()); // Store the current location
 offload(wrapper); // Offload for subsequent destinations
 return true; // Keep alive
 }

 public boolean beforeMigration(TOWrapperInterface wrapper) {
 // Disappear only if the next destination is not appropriate
 if (!wrapper.destination().equals((String) path.firstElement()))
 return false;

 cleanEnv(wrapper); // We continue our trip; it is not necessary to stay here
 return true;
 }

 public boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO) {
 // Check for only one instance, such as in TO_Monitor …
 }

 public void init(TOWrapperInterfaceInterface wrapper) {
 // …
 // Here is the pre-defined path
 path.add("Geneve"); path.add("Lausanne"); path.add("Bulle");
 path.add("Fribourg"); path.add("Bern"); path.add("Basel");
 // …
 }
}

Figure 3-16. A pre-planned navigation TO model

TO_PathSelect resorts to the following principle: the TO is offloaded (22) and remains resident,
whenever its destination does not correspond to the one expected (28-29) according to the path
description (42-43) defined in init(); this simple mechanism allows the TO to progress node by node
towards its destination; the progression is controlled by the beforeMigration() callback (26). The
visit frequency and the migration strategy obviously have an impact on the performance attained in this
approach; a behavioural simulation is presented in Section 5.4.2.

3.6.5 The Exhaustive Path Finder
The exhaustive path finder task objective, which is a bit more complex than the above-studied TOs,
enables an exhaustive search for all cycle-free paths in a network from one source node to a destination
node. This TO gives the opportunity to look for alternative paths leading to better Quality-of-Service; this

Samples of Generic Task Objectives

90

task objective, however, may induce considerable execution delay due to the exponential growth of the
paths number related to the size of the network topology; an adequate problem-related heuristics should
be implemented into the cooperation mechanism so that the number of paths can be reduced; such an
approach will be presented in the context of TO_Routing (see Section 3.6.6).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

public class TO_ExhaustivePathFinder extends TOJava {

 // Frontal objects
 private Vector itinerary; // Internal trajectory
 private Vector path; // Path to follow
 private String src, dest; // Source and destination
 private String _id; // Allows the TO instance to be identified

 public boolean activate(TOWrapperInterface wrapper) {
 GenericNode currentNode = wrapper.getAgency().getLocalNode();

 if (isResumed()) return true;

 if (currentNode.getAddr().equals(dest)) {
 itinerary.add(currentNode.getAddr());

 // Do something useful with the discovered path (we have reached the dest.)
 return false;
 }

 itinerary.add(currentNode.getAddr());

 Vector _outs = getAgency().getPlacesOut(); // Get the UPIs of connected places
 Vector toExplore = new Vector();

 for (Iterator _i = _outs.iterator(); _i.hasNext();) {
 String addr = ((Port) _i.next()).getPeerNode().getAddr();

 if (!itinerary.contains(addr)) toExplore.add(addr); // Detect a cycle
 }

 if (toExplore.isEmpty()) return false; // No interest to go further

 _id = this.toString(); // _id will be the same for future clones
 wrapper.getAgency().getBlackboard().theContent().put(_id, toExplore);
 offload(wrapper);

 return true;
 }

 public boolean beforeMigration(TOWrapperInterface wrapper) {
 // This is a particular nodal object used by this TO
 Vector toExplore = (Vector) wrapper.getAgency().getBlackboard().theContent().get(_id);

 // Still some destination to explore?
 if (toExplore == null) { cleanEnv(wrapper); return false; }

 // Next destination is not visited yet?
 if (!toExplore.contains(wrapper.getNextDest().getDestination()))
 return false; // This destination is not interesting for me.

 // Update the vector of possible destination
 toExplore.remove(wrapper.getNextDest().getDestination());
 if (toExplore.isEmpty()) {
 wrapper.getAgency().getBlackboard().theContent().remove(_id);
 cleanEnv(wrapper);
 }
 return true;
 }

 public void init(TOWrapperInterface wrapper) {
 // …
 src = "Geneve"; dest = "Lugano";
 }
}

Table 3-6. TO model for an exhaustive path finder in a network

Chapter 3
The Conceptual Framework of Ecomobile

91

This task objective aims at investigating all the output links of each node; the corresponding investigation
algorithm resorts to a specific nodal object toExplore (24, 43) containing a list of node addresses still
remaining to be explored and identified by a TO instance identifier _id (34): once the TO decides to
select a specific link and continues its exploration, the corresponding peer node address is removed from
its list (55).

Each task objective must keep track of its itinerary in order to extract all the paths; as suggested in
Table 3-6, this TO does not resort to any cooperation mechanism: each new instance of the TO generated
towards a particular direction must survive until the destination has been reached.

In Chapter 2, we have seen that the migration strategy in the stochastic navigation model relies on
environmental information, which facilitates the implementation of loosely coupled tasks. The task
objective TO_ExhaustivePathFinder perfectly illustrates this model; the destinations to be investigated
have to be stored outside the task objective and therefore outside the agent. If this information were stored
as frontal object, the MBS cloning mechanism would imply a duplication of the destination list. As the
task objective can not influence the agent migration, it would be difficult to synchronize the knowledge of
all the TO instances in order to avoid multiple investigations of a same link. As we have already
mentioned, however, the TOs must have distinct trajectories. In order to control the migration information
concerning the task objective, we store a reference to the TO as a nodal object associated to its list of
remaining destinations. This data structure is built in the activate() callback and updated in the
beforeMigration() callback. The structure is removed from the blackboard when all the
destinations have been investigated. A behavioural analysis of this task objective is presented in Section
5.4.3.

3.6.6 On-line Routing
On-line routing in transport networks is a basic function which is used for a wide range of management
functions: allocating a path, restoring a service via an alternative path, pre-computing protection paths,
monitoring connections while trying to optimize the QoS, etc.

This task objective is devoted to a routing function updating the routing tables continuously according
to the TO exploration. As we have seen in the MITAgent approach in Section 1.3.1, resorting to the
cooperation mechanism in order to exchange routing information considerably improves the performance
of this function. The routing mechanism implemented into the task objective described in Table 3-7
consists in maintaining a routing table describing all the destinations which can be reached from the
current node. In the TO model, link cost and distance are not taken into account. Additional information
related to routing cost can be added as frontal object; it can then be compared to the local information
present in the routing table. Such a TO may be used to implement wavelength assignment algorithms, for
example (see Chapter 7); wavelength connectivity is intrinsically guaranteed by the task objectives'
migration over the wavelength within the network.

1
2
3
4
5
6
7
8
9
10
11

public class TO_Routing extends TOJava {

 // Internal knowledge
 private Vector itinerary;
 private int maxItiLength;

 public boolean activate(TOWrapperInterface wrapper) {
 GenericNode currentNode = wrapper.getAgency().getLocalNode();

 // Retrieve the port (top-level) by which the TO has entered the node
 Port issuingPort = (Port) wrapper.medium();

Samples of Generic Task Objectives

92

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

 // If the itinerary is not empty, do update
 if (itinerary.size() > 0) {

 // First, process backwarding nodes if bi-directional links by
 // updating with visited nodes
 for (int i = itinerary.size()-1; i >= 0; i--) {

 String addr = (String) itinerary.elementAt(i); // Node address
 if (!(currentNode.getAddr().equals(addr)))
 // Update the internal table associated to the port issuingPort
 }

 // Then, process forwarding nodes, if any
 boolean cont = true;
 for (int i = itinerary.size()-1; (cont && (i >= 0)); i--)

 if (((String) itinerary.elementAt(i)).equals(currentNode.getAddr())) {

 // Find the right port
 Port forwardingPort = currentNode.getPort((String) itinerary.elementAt(i+1));

 for (int j = i+1; j < itinerary.size(); j++) {
 String addr = (String) itinerary.elementAt(j);

 // Update the internal table associated to this port …
 }
 cont = false;
 }
 }

 // Check the size of the itinerary – a way to date the TO
 if (itinerary.size() > maxItiLength) itinerary.clear();

 itinerary.add(currentNode.getAddr()); // Store the current location
 return true;
 }

 // Cooperation between Task Objectives
 public boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO) {
 if (otherTO instanceof TO_Routing) {
 TO_Routing _other = (TO_Routing) otherTO;

 // Compare the itinerary knowledge
 if (itinerary.containsAll(_other.itinerary))
 other.discard();
 else if (_other.itinerary.containsAll(itinerary))
 return false;
 }
 return true;
 }

 public void init(TOWrapperInterface wrapper) {
 // …
 maxItiLength = wrapper.getAgency().getLocalNode().numberNodes() / 2;
 }
}

Table 3-7. On-line routing TO model

At each node, there are two ways (16, 25) to update the routing table as it is depicted in the
activate() callback. Since the TO uses the physical links to migrate, the itinerary stored in the TO
directly reflects the reverse node connectivity when the links are bi-directional; when the links are uni-
directional, updating a routing table can be achieved only in case of a cycle, as described in the second
part of activate().

The cooperation between the TOs consists in absorbing the knowledge of the task objective owning the
smaller quantity of node addresses (56-59). In order to limit the itinerary length, the itinerary is reset

Chapter 3
The Conceptual Framework of Ecomobile

93

when a certain number of addresses have been collected (44); the number of network nodes divided by
two gives an empiric estimation of the maximal itinerary size (66).

3.7 OVERVIEW OF THE INTERACTIONS IN ECOMOBILE
Figure 3-17 presents a summary of all the interactions involved in Ecomobile. The components
considered in this context are the agency (FIPA Agency), the blackboard, the M-agent and the task
objectives.

AGENT-TO-AGENT INTERACTION

This kind of interaction between two M-agents is managed by the MBS, which involves the Φintereference,
Φdwelling and Φabsorption behaviours. Since mobile agents share an identical execution environment controlled
by the agency, the two entities communicate via object referencing. The underlying synchronization
mechanism relies on cooperative synchronous processes and will be explained in detail in Chapter 4.
Agent-to-agent interaction implies interaction between the task objectives.

TO-TO-TO INTERACTION

Interactions between task objectives are managed in the agent context of the M-agent and involve the
coupling of TOs according to a master/slave paradigm. The master TO obtains a reference to the slave TO
and handles the knowledge transfer, after which the slave TO can be discarded.

These interactions occur when new task objectives have been loaded into the agent context or, in case
of successful interaction, when the knowledge has been transferred, the knowledge here referring to the
whole set of task objectives.

INTRA-AGENT INTERACTION

Two components of the M-agent are involved in this interaction: the agent context on the one hand and
the task objective wrapper on the other hand. The former invokes the methods of the wrapper which, in
turn, activates the TO callbacks. The M-agent also maintains a reference to itself within the TO wrapper
so that the TO can access the information relative to its current location as well as the agency, in order to
deal with the local environment.

AGENCY-TO-AGENT INTERACTION

A reference to the agency is maintained within the M-agent so that the MBS can interact with the agency
via specific methods

The task objective interacts with the agency through its wrapper, which, as we have already shown,
contains a reference to the M-agent.

Summary

94

Blackboard

M-agent

Agent Context

M-agent
• Location
• Medium
• Agency

Mobile Behavior Scheme
f(φ1, φ2, …φ n)

FIPA Agency

τ

τ

τ

τ

FIPA Agency

τ τ τ

Figure 3-17. Interactions in Ecomobile

AGENT-TO-BLACKBOARD INTERACTION

The MBS loads or offloads the task objectives into the blackboard associated to the current place; a task
objective itself has no control over serialized TOs present in the blackboard. In order to reach its goal, the
TO can however access the blackboard via the agency to manage nodal objects like those required to
manage information related to a chemical trail, for example, needed for emergent behaviour based
algorithms (see Section 2.4).

AGENCY-TO-AGENCY INTERACTION

This kind of interaction has not been discussed yet because it is related to the specific implementation of
Ecomobile which will be detailed in Section 4.4. Agency-to-agency interactions allow the M-agents to
move between the network nodes. The agency, which provides the M-agents' execution environment, is a
FIPA-compliant agent, so that mobility is achieved through the exchange of ACL messages between
agencies.

3.8 SUMMARY
In this chapter, we have presented the conceptual framework of Ecomobile. The identification of the three
abstraction models presented in Chapter 2 have allowed us to propose an agent architecture based on the
Mobile Behaviour Scheme (MBS) including the navigation and the coordination models, and the Task
Objective (TO) related to the computational model. According to this model, mobile agents and task
objectives have distinct lifecycles and different trajectories in the network.

The implementation model of Ecomobile corresponds to a threefold architecture made up of the
following active components: agency, mobile agent and task objective.

In Ecomobile, the place is used as a location concept and a coordination space for the M-agents.
Several places can be defined and interconnected within an agency in order to form a virtual network.
Intra- and inter-agency connectivity enable both virtual and physical mobility. The information related to

Chapter 3
The Conceptual Framework of Ecomobile

95

the connectivity is kept in the agency via the Universal Place Identifier (UPI) and the connectivity matrix
which, in this context, reflects the physical network topology. Finally, a passive blackboard is associated
to each place and provides the M-agents with a shared repository for TO-related information and for the
task objectives themselves.

The mobile agent society is composed of mobile entities called M-agents which act as ecological
individuals exhibiting particular behaviours called Φ-behaviours. The territoriality paradigm, which refers
to a density-dependent intra-specific competition based on active interference between ecological
individuals, plays a central role in the self-regulation of the M-agent population and allows us to
implement a "living" ecosystem-inspired mobile agent middleware into the network infrastructure. Two
different MBS have been proposed: MBS-low implements a simple interference-absorption scheme
between two M-agents meeting at a place, and leads to occasional cloning; the diffusion of mobile agents
is considered as relatively "slow". On the contrary, MBS-high implements an interference-absorption loop
favouring a greater number of meeting opportunities, and followed by systematic M-agent cloning; the
diffusion of M-agents is therefore considered as relatively "fast".

While the MBS defines the M-agent's lifecycle within the network infrastructure, so that the ecosystem
can adapt itself to network characteristics such as network topology, availability, quality of service, etc.,
and maintains a density-dependent self-regulated population size, the M-agent's operational behaviour is
defined by intelligent tasks relying on cooperation mechanisms achieved by the task objectives. The TOs
are deposited into a blackboard before they are dynamically loaded into the ecosystem by the M-agents.
The task objective wrapper makes task objectives flexible enough to be described by means of different
programming approaches, such as Java, or a rule-based language like Ilog JRules or JESS, or even
Wave1. The particular computational model characterizing Ecomobile leads to a task design based on
specific callbacks for the TO activation, migration and cooperation, on the associated current location and
the next destination. These callbacks are regularly activated by the MBS.

Generic operational behaviours have finally been described by means of task objective models; they
correspond to basic functions defined for the management of transport networks and can be used for the
compositional construction of more advanced network management functions.

In order to take a further step in the development of Ecomobile, we have to implement the concepts
presented in this chapter into an reactive execution environment, so that M-agents and task objectives can
evolve and interact properly, with respect to the ecosystem behaviour defined in this chapter. The reactive
programming paradigm introduced in Chapter 4 will help us to reach our goal.

1 Since to TOs are loaded dynamically, any interpreted language is perfectly suitable.

97

Chapter 4
Implementation with Reactive Programming and
Deployment

The Ecomobile model developed in the previous chapter requires an adequate implementation so that the
ecosystem behaviour can be finely simulated and analyzed. The response of our system to the dynamic
insertion of task objectives will allow us to evaluate the system performance; it will also provide
indicators related to the efficiency of the inter-TO cooperation, for example, or to the rapidity of their
dissemination within the network.

In an initial approach, Ecomobile has been implemented by means of Java threads. Although a
mapping between the two concepts, threads as concurrent processes and mobile agents as autonomous
entities, appeared to be natural, this approach induces a number of problems: the framework for the
management of cooperative threads provided by the Java Virtual Machine (JVM) is not complete enough;
components such as semaphore or rendezvous are not supported and require a third-party library for
concurrent programming1 [Lea00]. Java threads moreover rely on the JVM scheduling policy, which is
not standardized, so that in this context the hotspot JVM of the Java Development Kit (JDK) resorts to the
scheduling policy of the underlying operating system.

The considerable overhead required by the JVM to manage the threads and the pre-emptive scheduling
policy would introduce undesirable dependencies on external factors, such as the type of the operating
system, the CPU power of the machine running the simulation, or the memory size, and thus lead to a
huge number of asynchronous interactions and non-deterministic effects. Therefore, although Java
threads would allow a relative straightforward implementation of mobile agents with the help of an
adequate third-party library, this approach is not very suitable for the complex analysis of mobile agent
behaviour.

In order to deal with these problems, we have opted for an approach based on a cooperative process-
based discrete-event implementation which actually seems more promising. Since Ecomobile can be
considered as a reactive system, we propose to adopt a reactive programming paradigm to implement the
M-agent behaviour. In this chapter, we will discover how reactive programming and an associated
framework called Junior can lead to the efficient implementation of the mobile behaviour scheme of
Ecomobile.

As we have already pointed out in Chapter 3, the introduction of our simulated ecosystem into a
transport network environment should lead to a realistic deployment of the Ecomobile components with
particular attention to the non-deterministic effects due to multiple asynchronous interactions; still, the
parallel behaviour which is inherent to the ecosystem, and in particular the asynchronous agent migration,
should be maintained; in order to deal with these issues, we propose on the one hand to limit the
asynchronous interactions in Ecomobile to the inter-agency communication, and to implement the
Φ-behaviours of the different M-agents by means of a particular parallel construct on the other hand.

In the present chapter, we wish to show that the agency services can be delegated to a FIPA agent in the
Jade environment. The efficiency and scalability issues related to this approach will also be discussed.

1 See also http://gee.cs.oswego.edu/dl/cpj

http://gee.cs.oswego.edu/dl/cpj

Reactive Programming

98

4.1 REACTIVE PROGRAMMING
The implementation of reactive systems [HP85][Bo00] by means of the reactive programming paradigm
requires the introduction of new abstractions and new programming language components in order to be
implemented. Reactive systems combine two essential characteristics: interacting permanently with their
environment, they exhibit a cyclic behaviour and never terminate, but they should also be fast enough to
timely react to changes induced by the environment. After being activated by the environment itself, a
reactive system should therefore produce a corresponding reaction possibly modifying the environment,
and then wait for subsequent activations. It appears from this definition that a reactive system can be
decomposed into distinct steps, so that an implementation based on a synchronous model should be
possible.

Two fundamental notions defined in the scope of the reactive approach constitute the underlying
mechanism addressing the synchronous concurrency: instant and reaction. An instant is defined as a
logical instant of execution during which all the parallel components of a program perform one execution
step that is, a reaction corresponding to that instant. The duration of an instant may vary from one
reaction to the other; still, the environment must remain in a coherent state during the reaction, which
means that an event considered as present during the reaction must be kept present until the end of the
reaction.

The succession of instants constitutes an efficient mechanism leading to the implementation of a time
reference model which primary behaviours such as Φdwelling, for example, can resort to; corresponding to a
fixed number of logical instants, the waiting time can remain identical even though the duration of a
reaction may vary over the time. Such a time reference is therefore particularly useful while elaborating
and debugging complex multi-agent system behaviour.

As shown on Figure 4-1, a new instant begins at each activation time.

Activation

Reaction Reaction Reaction

Activation Activation

Instant i+1 Instant i+2Instant i Virtual clock
Figure 4-1. Instant and reaction in the reactive model

A reactive program is decomposed into reactive instructions which can be executed within an instant. The
concurrency model leads several reactive instructions belonging to different programs to share the same
execution instant, so that instructions are interleaved and executed in a determined (sequential) order or
an undefined (parallel) order. The events which are simply managed by reactive instructions enable inter-
process communication. An event constitutes non persistent data; it can be generated within an instant but
is automatically reset at the beginning of the next instant.

The definition of instants and events is bound to a general problem related to the parallel execution of
reactive instructions in a synchronous concurrency model known as the causality problem [Hal93]. A
causality problem may arise when parallel instructions are executed synchronously within the same

Chapter 4
Implementation with Reactive Programming and Deployment

99

instant: an instruction instantaneously reacts to the absence of an event which is actually being generated
in the same instant by another instruction; within the same instant, reactive instructions may consequently
consider an event to be present or not present so that the system is placed in an incoherent state and
favours non-deterministic behaviour. Meanwhile, reaction to the presence of an event does not raise any
ambiguity.

The causality problem can be overcome by means of delayed reaction to absence [BHS01]; the
instruction testing for the absence of an event is postponed to the next instant so that it can make sure that
the event is really absent; the strong coherence property, stating that during one instant, the same event
cannot be tested as present by one component and as absent by another component, thus remains
guaranteed.

Several languages based on the reactive model are currently available, such as Esterel1, SL or
Reactive-C2, for example. We now propose to describe the Junior framework which provides an excellent
lightweight Java-based API for reactive programming.

4.2 THE JUNIOR FRAMEWORK
Junior (Jr), which has been developed in the scope of the MIMOSA project3 at INRIA4, provides a Java
API based on formal semantics for reactive programming; its reasonable code size makes it a micro-
kernel, on top of which several extensions have been elaborated, such as the SugarCubes [BS02], a Java
library providing extensions for the experiments on various reactive formalisms. An implementation of
Junior called Senior has been developed for the Scheme programming language.

Junior implements a reactive machine managing the execution of event-based reactive programs;
reactive instructions use events to synchronize their execution in a cooperative way. The basic assumption
in Junior is that the execution during an instant always converges on a stable state from which the next
instant can start, so that no reactive instruction should enter an infinite loop5.

In order to guarantee the strong coherence property described in the previous section and thus to solve
the causality problem, Junior implements instantaneous reaction to presence and delayed reaction to
absence; each event is instantaneously broadcast within an instant, so that processes concerned with this
event can react immediately.

Several implementations of Junior have been developed6: Rewrite, which is the first implementation of
the Junior semantics [HSB99], is not as efficient as Replace, which avoids program re-buildings; Replace
is close to SugarCubes.

Let us now introduce the reactive machine and the reactive instructions, which are the basic
components of Junior.

1 http://www-sop.inria.fr/meije/esterel/esterel-eng.html
2 Information about SL and Reactive-C available at http://www-sop.inria.fr/mimosa/rp/ReactiveC
3 More information about MIMOSA (Migration & Mobility: Semantics & Applications) available at
http://www-sop.inria.fr/mimosa/rp
4 Institut National de Recherche en Informatique et en Automatique, Sofia Antipolis, France
5 In the present implementation of Junior, there is no automatic detection of possible ill-formed reactive
instructions.
6 In Ecomobile, we have considered Replace, version 2.1b1 (experimental).

http://www-sop.inria.fr/meije/esterel/esterel-eng.html
http://www-sop.inria.fr/mimosa/rp/ReactiveC
http://www-sop.inria.fr/mimosa/rp

The Junior Framework

100

4.2.1 The Reactive Machine
The reactive machine provides the program with an execution environment and defines the global instants
during which reactive instructions are executed; it is also responsible for broadcasting the events when
they have been generated. A program is added in the reactive machine via the instruction add(), and the
reaction is activated externally with the react() method, as depicted on Figure 4-2. Reactive
instructions can be added once at the beginning of the program execution, or they can be added
dynamically during the execution; they can also generate new instructions to be added into the reactive
machine, for example.

Dynamic adding
of reactive instructions

Activation
react()

add()
Reactive Machine

Figure 4-2. Reactive machine in Junior

Reactive instructions are not re-entrant; their state is embedded and fully controlled by the reactive
machine. In Junior, two kinds of reactive machines have been developed: Machine and SafeMachine.
Whereas the former is intended to be run in a single thread, the latter can be used when several threads are
involved in the execution of the reactive machine; a Java applet, for example, can manage the graphical
interactions by means of several threads and therefore provoke uncontrolled interferences with the
program execution.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

public boolean react() {

 performAddings(); // Check for new added instructions
 if (terminated == false) { // No instruction available
 byte res = instant.rewrite(); // Perform instructions
 env.newInstant(); // Prepare the next instant

 if (res == TERM)
 instant.body = new Instant(Jr.Nothing()); // Reset the program

 terminated = (TERM == res); // Program finished?
 }
 return terminated;
}

Table 4-1. The method react() of the reactive machine (MachineImpl.java) activating a reaction

Chapter 4
Implementation with Reactive Programming and Deployment

101

The method react() detailed in Table 4-1 consists in performing the activation of all reactive
instructions which have been prepared for the present instant.

In the current version of Junior Replace v2.1, the reactive instructions attached to the object instant are
unfortunately not removed from the stack when they have been completed; instructions are added in
Junior according to a recursive scheme. In Ecomobile, for example, we have observed that the dynamic
addition of instructions raises a stack overflow problem after only a few instants. This is the reason why
we have added two lines in the react() method (lines 8 and 9) in Table 4-1 - in order to "clean" the
instant object containing the program once all the reactive instructions belonging to an instant have been
executed; in this case, the value returned by instant.rewrite() is TERM. It has to be noted that if a
reactive instruction requires several instants, in particular when implementing a delay, the instant can not
be cleaned and overflow problems can still happen. The authors of Junior, however, are developing a new
version of Junior, called Storm, which will improve the processing of reactive instructions so that a huge
amount of events and instructions will be supported.

4.2.2 The Reactive Instructions
In this section, we are trying to examine whether the Junior reactive instructions are fulfilling the
requirements for the implementation of Ecomobile according to the reactive programming paradigm. In
the Junior framework, all the instructions are defined statically in a class named Jre. The instructions
themselves are defined by means of Java classes. Since a Junior program can be regarded as a reactive
instruction itself, all the instructions inherit from the class Program. In order to improve readability, we
have omitted to prefix each instruction with Jre in the next code fragments.

(1) Seq(Program first, Program second)

This instruction defines two reactive instructions which are executed sequentially and always in the same
order (first, second). It has to be noted that each instruction may require several instants to accomplish its
execution.

(2) Par(Program first, Program second)

Unlike the previous instruction (1), the Par() introduces the notion of parallelism between two reactive
instructions; the execution order, which is not fixed, leads to an absence of determinism which is typical
of the parallelism paradigm. Although the execution can choose non-deterministically two non-suspended
instructions, the current implementation of Junior actually implements a deterministic order (left
instruction, then right). However, if one of the two instructions is suspended, the non-suspended
instruction will be executed before the end of the instant, which is not the case with the Seq() (1)
instruction. The Par() instruction is also referred to as parallel construct.

(3) Atom(Action action)

This instruction allows the reactive instruction to interact with Java objects; the instruction is executed in
an atomic way by the method execute(), as defined in the interface Action.

(4) Generate(String event, Object value)

The communication between reactive instructions can be performed via this instruction, which generates
an event described by a specific String and is instantaneously broadcast by the reactive machine to

The Junior Framework

102

other reactive instructions belonging to the same instant. A value object can optionally be associated to an
event so that the instructions waiting for a specific event can retrieve event-related information.

In Ecomobile, the reaction to the presence of an M-agent is achieved by means of an event generation.

(5) Until(String event, Program body)

This instruction allows any reactive instruction to wait for a specific event; the program body is
performed at each instant during which the event is absent; the program is also completed during the
instant in which the event is present, but it then disappears and will not be executed in future instants.

(6) Repeat(long count, Program body)

This instruction implements finite loops; the program body is executed during a number of instants
corresponding to the value of count.

(7) Stop()

This instruction allows the execution of a reactive instruction to be delayed to the next instant. For
example, the following instructions can be used so that a particular event is expected during a certain
amount of instants:

Seq(Until("open", Repeat(10, Stop())), Atom(javaClassOpen))

It waits for the event open during a maximum of 10 instants; if no event occurs within this period, the
reactive instruction is completed and removed from the program. The next instruction Atom() will be
executed in any case; particular action can be performed according to an optional event-related value (see
Generate() (4)).

The dynamic insertion of reactive instructions is realized by means of the method add() issued from the
reactive machine, which simply executes a Par() instruction performing the addition to the current
instant-related program.

The current version of the reactive machine does not allow instructions to be added in sequence; still,
replacing the Par() (2) with the Seq() (1) instruction in the add() method makes a sequential
insertion possible.

4.2.3 Fair Threads
As we have seen, the reactive programming paradigm and its synchronous cooperative model can be
considered as an interesting alternative to Java threads. In Java, the lack of a clear thread semantics
makes a thread-based concurrency model providing both pre-emptive and cooperative frameworks
difficult to implement. Moreover, the semantics strongly depends on the underlying execution
environment. In order to improve the Java thread mechanism, the authors of Junior have developed the
concept of fair thread on top of the Junior kernel [Bou01], leading to the elaboration of a particular
library called FairThread.

According to this concept, a fair scheduler defines the execution phases during which there is an equal
probability that threads will be executed, according to a strict round-robin algorithm; each thread must
cooperate via the cooperate() method which suspends the thread execution and allows the scheduler
to process other threads; the pre-emption can not occur in an uncontrolled way so that debugging is
facilitated. Like reactive instructions, threads communicate via events. The fair scheduler ensures that

Chapter 4
Implementation with Reactive Programming and Deployment

103

each event generated within a phase is broadcast to all threads started in the scheduler, so that each thread
can "see" the events in exactly the same way.

In the context of reactive programming, an execution phase corresponds to an instant and the
cooperate() method corresponds to the Stop() reactive instruction; the semantics of the event is
the same in both frameworks. However, from the efficiency point of view, reactive programming, which
does not require context switching, is much more efficient; the instructions are simply interleaved, as
shown on Figure 4-3, and events are broadcast to each instruction.

Instruction i1

Two fair threads

i2

j1

j2 i2

j1

j2

i1

Corresponding
reactive instructions

Figure 4-3. Interleaving of Reactive Instructions

The reactive programming paradigm is also preferred to an approach based on fair threads because it
allows for a mapping between the Φ-behaviours and the reactive instructions. Besides, the
implementation of Ecomobile with fair threads has revealed several drawbacks as far as scalability and
performance are concerned, since the behavioural decomposition of the MBS leads to frequent context
switching. Finally, memory overflow has led fair thread to fail after a few scheduling phases even with a
reasonable number of network nodes.

4.2.4 Towards a Reactive Operating System
The Reactive Operating System (ROS) [Bo01] is a distributed operating system based upon the reactive
model, which has been developed with SugarCubes. One of the major objectives of ROS is the support of
mobile agents within a synchronous migration model. In this context, migration relies on a special
reactive instruction called Freeze(), as well as on the RMI communication model.

According to the ROS, mobile agents are composed of reactive instructions. The migration is initiated
with a specific instruction (transfer), which can be part of the mobile agent program or which can be
inserted dynamically. During the migration, the reactive instructions which are being executed are frozen
as long as they are declared as freezable. Instructions which are not freezable are simply not authorized to
migrate. The frozen instructions are then transferred via a RMI call to the ROS server. This approach
leads to a selective migration of reactive instructions.

Mapping of the MBS On Reactive Instructions

104

Although it is not based on a FIPA-compliant environment, the ROS functionality resembles the
Ecomobile agency. However, since the migration in Ecomobile is initiated by a specific behaviour1
(Φmigration) and resorts to ACL-based communication, the M-agent does not require a transfer of reactive
instructions and, therefore, the instructions do not need to be freezable. Still, the agent restoration is
performed by the agency, which involves the dynamic adding of a reactive instruction. Furthermore,
whereas the ROS migration relies on synchronous transfer, the Ecomobile agency resorts to the FIPA
asynchronous communication model.

4.3 MAPPING OF THE MBS ON REACTIVE INSTRUCTIONS
We are now ready to introduce the implementation of Ecomobile into the Junior framework.

According to the previous sections, the reactive behaviours (Φ-behaviour) introduced in Ecomobile
have important similarities with reactive instructions. As we have seen in Section 3.4.1, the Φ-behaviours
are mainly influenced by the environment and have to be executed atomically by the M-agents. The
synchronous concurrency model implemented in Junior, which is used to manage cooperative
instructions, allows us to map each Φ-behaviour onto an atomic reactive instruction. The parallel
construct Par() allows several M-agents to be processed in a non-deterministic way at the same time
and to reflect an appropriate behaviour at the ecosystem level.

In Ecomobile, however, there is no reaction to absence; the active interference between M-agents
implies that one M-agent tests the presence of another M-agent according to the Φintereference-Φdwelling
scheme.

The Φ-behaviours are activated via the execute() method (9) of the Action interface, according to
the model shown on Table 4-2. The invocation of these behaviours is performed by the Atom() reactive
instruction.

1
2
3
4
5
6
7
8
9

10
11
12

public class PhiBehaviour implements Action {

 LambdaAgent _agent;

 public PhiAction(LambdaAgent agent) {
 _agent = agent;
 }

 public void execute(Environment env) {
 _agent.phiAction(); // Perform Φ-behaviour
 }
}

Table 4-2. Implementation sample of a Φ-behaviour with a reactive instruction

The Φ-behaviours generate new reactive instructions dynamically, according to the MBS; further details
concerning this matter are given in Section 4.3.2.

4.3.1 A Causality Problem in the Φinterference- Φdwelling Scheme
A simple mapping of Φ-behaviours onto reactive instructions may lead to a causality problem identical to
the problem generated by the presence of events between several reactive instructions (see Section 4.1);
in this context, however, the causality problem appears at the semantics level of reactive behaviours
defined by the mobile behaviour scheme. The test for the presence of other M-agents may raise this high-

1 The M-agent can not perform more than one reactive behaviour at a time.

Chapter 4
Implementation with Reactive Programming and Deployment

105

level problem. As depicted on Figure 4-4, several agents can enter the same behaviour at a same instant
and pursue their lifecycle in a similar way, assuming that the reactive behaviours are configured
identically. It has to be noted that, during any reaction, several instructions are executed in an
undetermined order "simulating" the parallelism effect. The Φaction behaviour is not shown on the figure,
since an M-agent performing this behavioural function can not be sensed by other M-agents.

I-1 I I+2Jr Instant:

M-agent λ1 Фmigration Фinterference Фdwelling

I+3

M-agent λ2

M-agent λ3

…

Фmigration Фinterference Фmigration

Фmigration Фinterference Фmigration

I+1

Фdwelling

Фdwelling

Фmigration

Reaction
Figure 4-4. A causality problem in reactive behaviours

This synchronized behaviour introduces a causality problem: M-agents arriving at the same time ignore
each other as if they were "blind"; according to the figure example, at instant I, the three M-agents λ1, λ2
and λ3 arrive at the same place, perform the Φinterference behaviour and then, believing that no agent is
present because no agent is performing a Φdwelling at this instant, the three agents perform a Φdwelling at the
next instant according to the MBS and therefore continue to co-reside. This misleading behaviour is in
contradiction with the territoriality paradigm, which the M-agents behaviour are supposed to exhibit
according to the MBS (see Section 3.4): the territorial behaviour should actually lead any M-agent to
react to the presence of another co-residing M-agent. The M-agent's improper reaction hampers the self-
regulation of the agent population and this, as simulation has shown, leads to an exponential growth of
the population.

The problem can be solved by the contraction of the two reactive behaviours Φinterference and Φdwelling into
a unique reactive instruction, so that the two behaviours are performed in the same instant, as shown on
Figure 4-5. Each M-agent first tests the presence of another agent; if there is no agent, it directly activates
the next behaviour, which consists in waiting, and is therefore considered by the other M-agents as
present. λ1 performs the two Φ-behaviours in the same instant.

Mapping of the MBS On Reactive Instructions

106

I-1 I I+1Jr Instant:

M-agent λ1 Фinterference
Ф1

dwelling

I+2

M-agent λ2

M-agent λ3

…

Фinterference Фabsorption

Фinterference Фdwelling

Generate "sense λ1"

λ1 is not waiting any more

Contraction

Generate
“merge λ1”

Ф2
dwelling

{await “merge λ1”}{await “sense λ1”}
Фmigration

Фmigration

Фmigration

Figure 4-5. Contraction of the interference-dwelling scheme into a unique reaction

It is important to highlight that, during a reaction, the execution order of identical Φ-behaviours may
however lead to variations due to environmental changes induced by a single Φ-behaviour execution. In
this context, the term reactive is fully justified.

In this example, M-agent λ1 performs Φinteference, immediately followed by Φdwelling, at instant I. During
the same instant, M-agent λ2 also performs Φinteference, and is able to react to the presence of M-agent λ1 by
generating an appropriate sense event including a reference to the sensed M-agent λ1. Finally, M-agent λ3
performs Φinteference and do not detect any M-agent since no M-agent is dwelling any more.

The absorption phase requires M-agent λ1 to remain synchronized with M-agent λ2. This
synchronization is actually achieved in the Φdwelling behaviour by expecting a merge event from M-agent
λ2. The event will be generated once the absorption is finished.

According to the MBS semantics, any coupling of reactive behaviours involving an event generation
and a reaction to presence, as it is the case with Φinteference and Φdwelling, may lead to a causality problem
which must be tackled by a Φ-behaviour contraction.

4.3.2 The MBS-low and the MBS-high as Reactive Programs
The mapping of the mobile behaviour scheme MBS-low/high is presented in Table 4-3. The reactive
instructions begin with a capital letter (PhiBirth(), for example) and are defined according to Table
4-2. The method add() performs the dynamic insertion of a reactive instruction into the reactive
machine. This method actually prepares for the next instant.

1
2
3
4
5
6
7
8
9
10

public class M_agent extends LambdaAgent {

 M_agent sensedAgent = null, sensingAgent = null; // References to another M-agent
 boolean dwelling = false;

 public void phiBirth() { add(Jre.Atom(new PhiMigration(this))); }

 public void phiMigration(boolean afterMove) {
 // Pre/post-migration processing …
 add(Jre.Seq(Jre.Repeat(moveTime, Jre.Stop()), Jre.Atom(new PhiAction(this))));

Chapter 4
Implementation with Reactive Programming and Deployment

107

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

 }

 public void phiAction() { add(Jre.Atom(new PhiInterference(this))); }

 public void phiInterference() {
 // sensedAgent = reference to a co-residing M-agent

 if (sensedAgent.isSensible()) { // Is the agent sensible (dwelling) ?
 sensedAgent.sensingAgent = this; // Realize the coupling between agents

 add(Jre.Seq(Jre.Generate("sense:"+otherAgent.getID()),
 Jre.Atom(new PhiAbsorption(this))));
 return ; // Instruction terminated
 }
 phiDwelling(); // Contraction to avoid causality problem (it is not a react. inst.)
 }

 public void phiAbsorption() {
 // … perform knowledge transfer

 switch (MBSSelected) { // Next instruction depending on MBS
 case MBSHighDiffusion:
 add(Jre.Seq(Jre.Generate("merge:"+sensedAgent.getID()),
 Jre.Atom(new PhiInterference(this))));
 break;

 case MBSLowDiffusion:
 add(Jre.Seq(Jre.Generate("merge:"+sensedAgent.getID()),
 Jre.Atom(new PhiMigration(this))));
 break;
 }
 }

 public void phiDwelling() {
 if (dwelling) {
 dwelling = false;

 if (sensingAgent != null) // Any interfering M-agent?
 add(Jre.Seq(Jre.Await("merge:"+getID()), Jre.Atom(new PhiDeath(this))));
 else {
 add(Jre.Atom(new PhiClone(this)));
 break;
 }
 } else {
 dwelling = true; sensingAgent = null;

 add(Jre.Seq(Jre.Until("sense:"+getID(),
 Jre.Repeat(_waitTime, Jre.Stop())), Jre.Atom(new PhiDwelling(this))));
 }
 }
 public void phiClone() { add(Jre.Atom(new PhiMigration(this))); }
 public void phiDeath() { Jre.Atom(new Terminate(this)); }
}

Table 4-3. Description of MBS using the dynamic insertion of reactive instructions

The appropriate type of MBS is defined by MBSSelected, which corresponds either to
MBSHighDiffusion or to MBSLowDiffusion. The variable moveTime of the
phiMigration() method (10) simulates the duration of the migration. Once the migration has been
achieved, this method is called again in order to perform post-migration initialization and to add the next
reactive instruction. In the method phiInterference(), the M-agent is querying the agency for the
presence of a waiting agent performing the Φdwelling behaviour (16-18). When a sensing agent has been
found, the M-agent generates a sense event containing the reference to the waiting agent (21). The
phiAbsorption() method informs the sensed agent of the end of the knowledge transfer by
generating a merge event (33, 38). According to the MBS type, the sensing M-agent will reiterate the

Deployment with Jade

108

interference-absorption scheme (34) or leave the node and pursue its route (39), whereas the sensed
M-agent will die (49).

The next section is devoted to the deployment of Ecomobile in the Jade agent platform; we will
proceed, in particular, to the analysis of the interactions between the reactive machine and the agency, and
we will examine how the reactions are triggered. This part of the implementation is also concerned with
the co-existence of mobile agents and stationary FIPA agents.

4.4 DEPLOYMENT WITH JADE
The deployment of Ecomobile components within the network infrastructure is achieved by means of a
FIPA-compliant agent platform which is assumed to be installed in each network device. The agents'
migration occurs via migration services provided by an agency which is itself a FIPA agent, so that the
M-agents do not depend on any specific mobile agent platform: the agent platform provides our agents
deployment with the necessary communication infrastructure as well as with an adequate security
framework.

This approach is characterized by asynchronous transfer of mobile agents between the network nodes
and synchronous activation of the reactive machine instance which is present in each agency. In a pure
simulated environment, there is only one reactive machine instance taking care of the physical migration
of M-agents. In a real environment, on the contrary, the distribution of several agencies over the network
and the asynchronous transfer of mobile agents involves several reactive machine instances executed in
parallel; each machine manages its own instants without any form of synchronization.

When the agent platform supports a synchronous intra-agent activity model, the deployment of the
agency is facilitated because the processing of newly arriving mobile agents can be postponed. This
requirement is fulfilled by the Jade agent platform (see Section 1.5.2). In the next section, we examine in
detail the implementation of the agency with Jade.

4.4.1 Ecomobile Agency
Jade defines containers as places which host agents. Although Jade supports intra-platform mobility
between containers, we do not use this feature in Ecomobile. The Ecomobile agency is a stationary FIPA
agent registered in the main container1, which is created automatically at the starting time. The agency
provides M-agents with a reactive machine, mobility services and controlled access to the local
environment; it manages the places' configuration2 and its related connectivity matrix as well as the
associated blackboards. These components are not only used by the MBS, but also in the task objectives
context.

The agency, which is assumed to be embedded in each network node, involves the presence of a FIPA
agent platform. Of course, other FIPA agents can seamlessly share the same platform. Our definition of
M-agents implies that no direct FIPA-based ACL communication is possible between a mobile agent and
a stationary agent. The agency, which is a FIPA agent and therefore has the possibility to process ACL
messages, can provide M-agents with two different service types in order to achieve this kind of
communication: a mediation service which enables the communication between M-agents and FIPA

1 Although there is no restriction to the use of other containers, the target container has to be designated
by the agency when messages are exchanged so that the adoption of a single container name facilitates the
addressing.
2 Note that places are not Jade containers.

Chapter 4
Implementation with Reactive Programming and Deployment

109

agents, or a morphing service which can transform an M-agent into a FIPA agent, and vice versa; this
kind of service could be useful for the deployment within the network of high priority messages or tasks,
and of sophisticated services implemented by means of a FIPA agents, for example. In this case, a task
objective would contain the agent to be registered in the agent platform. The mediation and morphing
services have not been implemented in Ecomobile yet; they are however considered in the FIPA-mob
project (see Section 4.5).

The intra-agency activities rely on a cyclic behaviour (class CyclicBehaviour) in which the
action() callback method constitutes the main entry point; the method invocation is performed by the
Jade kernel, which is the internal agent scheduler. In our agency, two operations are performed at each
activation: the behaviour checks for available ACL messages; it then activates the reactive machine by
performing a call to react(). The Jade cooperative behaviour model prevents the ongoing reaction
from being pre-empted by incoming ACL messages. Once the reaction has been completed, the message
will be buffered and processed by the MobilityService class.

The Ecomobile agency model is depicted on Figure 4-6.

Agent

addBehaviour()
setup()

Jade Agent
(root class)

Blackboard

content()

CyclicBehaviour

action()

Jade
Behaviour

ConnectivityMatrix

placeToDest()

Place

putAgent()
removeAgent()

11

0..*0..*

AgencyFIPA

moveTo()
getPlacesOut()
getLocalNode()
getPlaces()
getPlaceByAgent()

11

1..*1..*

ReactiveMachine

react()11

ACLMessage

setContentObject()MobilityService

action()

Figure 4-6. UML diagram of the Ecomobile agency model

In the current state of the implementation, the transfer of the M-agents is achieved by means of an ACL
message exchange between agencies. Jade provides the setContentObject() method of the
ACLMessage class, which allows any kind of object to be transmitted in the message contents by means
of serialization and encoding based on the Base64 format1. This mechanism, however, is not supported by
FIPA yet. In Java, the de-serialization of a Java object requires the presence of the object class [Pi98].

1 The "Base64" format, defined in RFC 1521, is used in MIME-encoded documents such as electronic
mail messages with embedded images and audio files. More information at
http://www.fourmilab.ch/webtools/base64

http://www.fourmilab.ch/webtools/base64

Deployment with Jade

110

Since the Ecomobile agencies only have access to local information, the classes of task objectives also
require to be transferred and dynamically bound to the JVM so that the agent context can properly
de-serialize and instantiate the TOs. The TOs class transfer may rely on the same mechanisms used for
agent migration provided by the agency, or can be controlled by a specific permanent TO management
related task objective based on TO_Inspector, for example, which disseminate the classes within each
agency. This kind of mechanism has not been implemented in the current version of Ecomobile; in the
scope of our experiments, all TOs classes are visible by each agency. In the current release of the JVM
(1.3.1_01), class unbinding is not possible and still remains an open issue [FM99].

Another approach addressing the problem of agent migration in a FIPA environment, which is being
currently investigated by means of the FIPA-OS agent platform in the scope of the FIPA-mob project,
will be introduced in Section 4.5. All the techniques used in the scope of this project can also be applied
in a Jade environment.

Finally, the message exchange between two agencies could be improved in a future extension with the
adoption of XML as a contents language and a particular ontology defining the tag semantics specific to
Ecomobile. Exchange of more structured information related to the connectivity matrix will then enable a
proof validation of the information received from the underlying node in case of connectivity changes.
This procedure is also useful to update the connectivity matrix when no automatic detection can be
triggered by the active node. The ACL-based protocol governing M-agent migration could also rely on
the same ontology.

The environment of the Ecomobile agency with an illustration of the agent migration procedure is
depicted on Figure 4-7.

Agency Agency

Place

2: Asynchronous
ACL messages exchange

CyclicBehaviour

1: moveTo()

5: add(Ф-behaviour)

• putInPlace()
• moveTo()
• leave()
•…

Reactive Machine

• putInPlace()
• moveTo()
• leave()
•…

Reactive Machine

Par(Program first, Program second)

CyclicBehaviour

Synchronous
Activation

Jade Agent

setContentObject(M-Agent)

3: PutInPlace(dest)

4: onWarmUp()

Place

M-agent

Figure 4-7. M-agent migration from one reactive machine to the other

We can for example assume that an M-agent requests the agency to move it: the Φmigration behaviour
invokes the moveTo() method (1) provided by the agency, and informs the agent of its destination. The

Chapter 4
Implementation with Reactive Programming and Deployment

111

agency uses the UPI to determine that an inter-agency migration is required. The agent is then directly
embedded in an ACL message and immediately sent to the corresponding agency (2). The sender agency
continues its activities while the remote agency stores the message in an internal buffer until the cyclic
behaviour processes it. The agency then places the M-agent at the right place and resumes the execution
of the M-agent by calling the method onWarmUp() (3). This method inserts into the reactive machine
the Φ-behaviour (4) which will be executed at the next instant. The next behaviour is actually Φmigration
again, and it is called to perform a post-migration behaviour; internal variables related to the destination
can be updated by the M-agent itself.

Another view of the interactions between the Ecomobile components is depicted on Figure 4-8.

Jade Agent
Platform

Ecomobile
Agency (Jade Agent)

Kernel CyclicBehaviour

Reactive
Machine

Kernel

M-agent

MBS
(Φbehaviour)

action()

4:onWarmUp()

react()

1:moveTo()

Mobility
Functions

3:PutInPlace()

Φbehaviour

2:send(ACL)

5:add()Program

2':receive()

Figure 4-8. Interactions between the Ecomobile components during migration

The agency cyclically performs the activation of the reactive machine followed by a check (2') on the
arrival of incoming ACL messages. If a message contains an M-agent, the agency puts it in the correct
place (3) and activates it via the onWarmUp() method (4). At the moment, only migration messages
have been implemented.

4.4.2 The LEAP Project
The Lightweight and Extensible Agent Platform (LEAP)1 is a project which aims at the realization of a
FIPA platform that can be deployed seamlessly on any Java-enabled device endowed with sufficient
resources and with a wired or wireless connection, such as PDAs and smart phones. LEAP significantly
contributes to providing network devices with an embedded agent platform.

LEAP is based on Jade and provides different kernel models, depending on the target environment in
which the agent platform has to be deployed [BP01]. The target environment is characterized by one of
the three different Java platforms provided by Sun: the Java 2 Enterprise Edition (J2EE), the Java 2
Standard Edition (J2SE) and the Java 2 Micro Edition (J2ME). The latter is intended for portable devices
and includes two configurations: Connected Device Configuration (CDC), for devices with memory and a
processing power comparable to that of a small PC, and Connected Limited Device Configuration
(CLDC), for connected devices with strict restrictions concerning resources. Each platform has its own
virtual machine model.

1 http://leap.crm-paris.com

http://leap.crm-paris.com

Deployment with Jade

112

LEAP can be deployed on all three target environments thanks to an optimized and lightweight kernel
module that manages the platform and the intra-agent activities according to the Jade behaviour model,
and thanks to a communication module which handles the heterogeneity of the communication protocols
based on different Message Transport Protocols (MTPs). The LEAP agent platform has been tested with
the following emulators and end user devices: Palm Vx and Palm emulator, Quartz emulator, Psion 5MX
coupled through IrDA with a mobile phone to the Internet and Siemens-MIDP-Emulator for mobile
phones.

Several tests with Jade and LEAP have been performed on a small network of Unix machines and PCs;
an Ecomobile agency has been launched within the main container on each host. We have chosen to use
the MTP HTTP add-on to address the inter-platform communication, the intra-platform communication
relying on RMI for Jade and, for LEAP, on a particular optimized protocol called Jade Internal Command
Protocol (JICP), which is well suited to wireless links. These successful experiments have encouraged us
to investigate the deployment of LEAP in the scope of a Java-based active node environment. Although
active nodes are not limited by the same computing power and memory restrictions as mobile devices, the
small footprint of the LEAP platform should facilitate its integration as an active application on top of
operating systems such as Janos or ANTS (see Section 1.4.1).

4.4.3 Considerations about Efficiency and Scalability
We have measured the size of an M-agent transferred from one machine to another. When the agent
context is empty that is, when no task objective has been loaded, the M-agent, which is Base64-encoded
in an ACL message has a size of 1'028 bytes. Since the ACL message is fully specified by FIPA and since
the encoded agent in the message contents is also standardized, the size of the M-agent does not depend
on the underlying platform or machine. 668 bytes are added to the original 1'028 bytes to form the
complete ACL message including sender and receiver addresses, ontology and language-related
information. Because of its efficient computational model, the size of a serialized task objective is small;
for example, the task TO_Routing is 472 bytes long. Assuming that the limit of task objectives within the
agent context is 100 TOs, the maximal size of the agent context is 47'200 bytes, an M-agent is therefore
inferior to 50 KBytes.

Ecomobile relies on an agent platform and therefore depends on the scalability of the agent platform
itself. As far as our middleware is concerned, the addition of a new node in the network implies the set-up
of the agent platform on the one hand, and the installation of the agency on the other hand. Ideally, the
active node should be delivered together with a FIPA agent platform and the connection of this node to its
neighbours should trigger an automatic detection mechanism in the NodeOS (see Section 1.4.1), so that
the agent platform could inform the agency about the new platform and could launch a dynamic
installation of the Ecomobile agency. Unfortunately, FIPA would first have to support mobile code before
it could support such an automated agents deployment. Therefore, the agent still has to be started
manually; an automatic update of the connectivity matrix can then be triggered by the NodeOS, which is
aware of the intra/inter-node connectivity.

The installation of new agencies requires a registration to the Agent Management System (AMS) and
may even require a registration to the Directory Facilitator (DF). Although the connectivity matrix can
replace the DF in Ecomobile, intelligent agents belonging to other systems could wish to be informed
about the presence of an Ecomobile agency and this information can be provided by the DF as long as the
agent has registered automatically or manually.

Chapter 4
Implementation with Reactive Programming and Deployment

113

According to the FIPA reference model, the ACL message transport layer relies on the Agent
Communication Channel (ACC) as well as on different Message Transport Protocols (MTPs). This
layered architecture allows the agent to send messages in a transparent way: the agent only needs to know
the agent name but does not require any information concerning the remote platform transport
mechanism. The ACC must therefore be informed of the existence of remote platforms and of their
MTPs. The dynamic platform registration is not supported yet in the current implementation of most
agent platforms.

4.5 THE MOBILITY SUPPORT WITH FIPA-OS
In the previous section, we have presented a possible implementation of Ecomobile with Jade. The agent
migration is achieved by means of an ACL message exchange between Ecomobile agencies. The mobility
paradigm in a FIPA agent platform however raises a wide range of issues related to code migration, such
as the security issue or the agent architecture.

FIPA-OS is the agent platform which we have considered in the first place because it was the first
publicly open source project on the one hand, and because of its adoption in the scope of the project
Shuffle1 on the other hand.

Still, the implementation of Ecomobile turned out to be more difficult to achieve with FIPA-OS than
with Jade because of the asynchronous thread-based task model that defines the intra-agent activity in
FIPA-OS. Two main problems actually remain to be solved: the processing of asynchronous messages
should not pre-empt the reactive machine, and the reaction activation policy should be defined within the
task; in particular, the absence of any reactive instruction in the machine should not trigger any reaction.
In Jade, these two issues are obviously handled by the cooperative scheduling policy and by the cyclic
behaviour model.

Nevertheless, in the scope of the FIPA-mob project2, several investigations have been conducted in
parallel with the development of Ecomobile towards the mobility support in the FIPA-OS agent platform.
The FIPA-mob project aims at defining an agency implementing the minimal requirements to support the
migration of mobile agents in a FIPA-compliant environment. An important related work is the mCode
framework [Pie98], which relies on a flexible and general approach for the management of code transfer
including multiple threads mobile agent. We can consider FIPA-mob as a subset of mCode functionalities
dedicated to a specific agent synchronous execution environment.

FIPA-mob was not originally intended to be applied to Ecomobile, and thus was not designed to
implement a reactive machine. This project explores new agent models and includes extensive
performance tests. Our investigations have shown that FIPA-mob actually yields an efficient mechanism
for agent transportation, platform registration, while it defines a flexible agent architecture model. All
these concepts can be adapted to the Jade platform.

In FIPA-mob, the agency is called Mobility Management System (MMS): although it differs from the
Ecomobile agency, it also pursues objectives similar to those of an existing work in this area [Mak00].
The mobile agent system supported by the MMS is fully based on a cooperative message-oriented
interaction model: each communicative act between agents or between an agent and the MMS requires a

1 Shuffle is a EU project involving Swisscom Innovations, which aims at studying agent-based approaches
for the control of UMTS resources (http://www.ist-shuffle.org).
2 FIPA-MOB is a project realized in the scope of a diploma work in the Telecom Group at the Department
of Informatics of the University of Fribourg (Switzerland).

http://www.ist-shuffle.org

Summary

114

specific message. As in Ecomobile, each place is associated to a blackboard in which messages are stored
and processed by the MMS via a priority queue. The communication is bound to a place and does not
permit any communication between places. Any agent can send a message to a particular agent, broadcast
it to all agents or simply deposit an anonymous message.

The transfer of mobile agents is achieved with a separate communication layer external to the agent
platform and by means of a particular interaction protocol. In the current version of the MMS, the mobile
agents are transferred via RMI according to a client-server model. The interaction protocol ensures that
the remote MMS has agreed and is ready for the reception of an agent, and requests the agent class when
necessary by means of a specific class loader (class MMSClassLoader); it can be extended with
authentication and security mechanisms.

The FIPA-mob project also uses a modified version of the ACC - called PaiACC1 - implementation in
order to support an automated remote-platform ACC cross-registration. This change allows any platform
to register to a foreign FIPA-OS platform without any re-configuration and therefore without any
undesired reboot of the remote platform. This mechanism makes the MAS more scalable and allows the
MMS to disregard the underlying MTP.

In addition to migration services, the MMS provides a mediation service, which allows mobile agents
to communicate with FIPA agents, and a morphing service which allows mobile agents to be transformed
into FIPA agents, and vice versa; in this case, the agents exhibit a polymorphism property. The morphing
mechanisms are currently under investigations.

The evaluation of the approach suggested in FIPA-mob is still subject to the elaboration of specific
metrics, such as migration and restoration time, as well as adequate measurement techniques.

4.6 SUMMARY
The reactive programming paradigm constitutes an efficient framework to tackle the complex issues
raised by reactive systems such as Ecomobile; the Junior framework provides a Java-based library for
reactive programming and implements a cooperative synchronous concurrency model allowing
instantaneous reaction to the presence of an event and delayed reaction to absence.

Junior has been considered to implement the mobile behaviour scheme by means of reactive
instructions; the advantages of such an approach are twofold: while the ecosystem behaviour can be
simulated and analyzed with a time-reference model based on the reaction instants, the architectural
design of the reactive machine including the dynamic insertion of reactive instructions authorizes a
scalable deployment of Ecomobile in an asynchronous distributed agent platform.

As we have shown, the reactive behaviours can be mapped onto reactive instructions as long as a
solution is found to the potential causality problem for the Φinterference- Φdwelling scheme; for example, the Φ-
behaviours involved in the interaction can be contracted into one reactive instruction. The implementation
of Ecomobile into a reactive programming framework finally leads to further investigations towards a
formal analysis of the ecosystem behaviour and to the definition of other types of MBS; in this context,
tools automatically generating formal automata derived from a reactive program [Bou00] should be
considered.

1 This modified ACC has been mainly elaborated by the Parallelism and Artificial Intelligence (PAI)
Group at the Department of Informatics of the University of Fribourg (Switzerland).

Chapter 4
Implementation with Reactive Programming and Deployment

115

Jade is a FIPA-compliant agent platform defining cooperative synchronous behaviours. Jade is
therefore a privileged platform considering our objectives. As we have seen, the Ecomobile agency is an
agent itself; it provides the M-agent with a reactive machine and with components such as places and
blackboards. Consequently, it can be said that a (lightweight) mobile agent system is implemented into a
stationary FIPA agent. Jade's cyclic behaviour, which triggers the machine's reaction, can deal with the
asynchronous ACL messages used to transport the M-agents. The LEAP kernel, which provides a small
footprint of the agent platform for computing and for memory limited devices like mobile devices or
PDAs, also resorts to the Jade mechanisms. Finally, a combination of an active node operating system
with LEAP would allow Ecomobile to be deployed into active networks.

117

Chapter 5
Simulation and Results

The Ecomobile concepts have been implemented by means of the reactive programming framework
described in Chapter 4. We now present a number of experiments with particular emphasis on
adaptability to the different network topologies considered for transport networks. We have performed
functional simulation of the threefold architecture of Ecomobile thanks to a specific framework called
GNMT which is briefly described in the first section of this chapter and in Appendix A. All the
components of our middleware have been simulated, from the agent system, which includes the reactive
machine and the agency services, such as migration, connectivity matrix, etc., to the M-agents, including
an implementation of the MBS-low/high, and of the task objectives with their instances in local
blackboards. Since the physical migration and the network itself (nodes and links) are simulated, no agent
platform has been used in these experiments.

Three network topologies have been considered, namely the Square, the Fantasy and the Swiss
network. Each of these topologies has distinct characteristics and constitutes an interesting network
configuration for the study of the ecosystem behaviour. The experiments have been performed with
different Φ-behaviours parameters so that their influence on the system's stability can be discussed along
this chapter.

The evaluation of the Ecomobile infrastructure obviously requires specific metrics adapted to behaviour
analysis; according to our architectural model, there are two main categories of metrics: MBS-related
metrics are specific to the M-agents general behaviour while TO-related metrics are specific to the task
objectives. The MBS-related metrics can be divided into two subcategories: the metrics fully depending
on the MBS, such as population size and visit frequency, and the metrics depending on the TO lifecycle,
such as diffusion ratio and agent context size. Examples of TO-related metrics are "number of discovered
paths" or "current Quality-of-Service".

The response of Ecomobile to the dynamic insertion of task objectives has been analyzed through four
generic TO models presented in Section 3.6: TO_Travel, TO_PathSelect, TO_ExhaustivePathFinder and
TO_Routing. The TO-related metrics which are presented in this chapter have been developed in this
context.

5.1 THE GNMT FRAMEWORK

5.1.1 Introduction
The Generic Network Management Tool (GNMT) is a functional multi-layer network simulator which has
been jointly developed by Swisscom Innovations and the Telecom Group of the Department of
Informatics of the University of Fribourg. The GNMT development has been motivated by the primary
objective of this thesis, which consisted in deploying intelligent and mobile agents in the optical transport
network in order to address the complexity of network management and to build up an intelligent
transport layer supporting new optical services. This is the reason why GNMT has been used as a
simulation framework for Ecomobile. We can assume that multiple client layers may be interconnected to
use the physical layer services. In this context, the simulator, which aims at supporting dynamic and
asynchronous simulation with different traffic generators, provides a component-oriented framework
which makes interactions between network layers possible.

The GNMT Framework

118

The development of GNMT is part of the OPTIMA project (see Section 7.1) and is steadily becoming
an open source project1. GNMT is related to similar projects like the open Network Management System
project (open NMS)2, which aims at the creation of an enterprise grade network management platform, or
like JavaSIM3, which is a component-oriented, compositional simulation environment. Both these
projects are still at a developmental stage, but although they constitute interesting approaches, they do not
meet our requirements as far as multi-layer transport network and mobile agent-based solutions are
concerned.

GNMT has been developed by means of the Model-View-Controller (MVC) design pattern [GHJ+95].
While the model relies on two different architecture types which will be detailed in Section 5.1.2, the
view and the controller are presently based on a commercial third-party graphical library. GNMT
supports both centralised and decentralised solutions, so that comparisons between these two approaches
become possible. Centralised algorithms for optical path allocation, including routing algorithms, are
currently being developed at Swisscom Innovations, whereas the simulator is used at the University of
Fribourg for the implementation and the analysis of different approaches based upon mobile agent
middleware, such as Ecomobile, and for the study of various deployment scenarios by means of FIPA
agent platforms. A more detailed description of the GNMT framework and of its network model can be
found in Appendix A.

5.1.2 The Core GNMT Network Model
The core GNMT network model is inspired by two different approaches characteristic of modelling layer
networks: firstly, the generic functional architecture of ITU-T transport networks [G805_95] proposes a
functional decomposition of the transport network in terms of layering and partitioning; while the
layering deals with the separation between distinct transport technologies, the partitioning consists in
subdividing the functional components within a single layer. This model supports multiple layers which
can be interconnected according to a client-server relationship; in a layer network, the link connections
formally provide connectivity between topologically adjacent sub-networks; they are provisioned by the
services of a trail4 at another layer. This layer is known as the server layer, while the layer in which link
connections are issued is called the client layer.

The second approach is based on the ISO layered protocol model [T96]; it consists in a functional
decomposition relying on a seven-layer protocol model. Since the ISO model was originally conceived
within or around a single transport layer without any consideration for partitioning, it offers a perspective
which is different from the approach proposed in the ITU-T model. The potential compatibility between
the two models is still under discussion at the ITU-T.

1 http://gnmt.sourceforge.net
2 http://www.opennms.org
3 http://www.javasim.org
4 A trail is defined as the combination of the connection information augmented with additional overhead
information used to achieve the Operations, Administration and Maintenance (OAM) objectives.

http://gnmt.sourceforge.net
http://www.opennms.org
http://www.javasim.org

Chapter 5
Simulation and Results

119

P hys .

Node

Link

Connection
PortPort

PortConnectivity

Access
Point

LayerEntity

Layer

Figure 5-1. Core GNMT network model inspired from the ITU-T and ISO models.

The abstract core GNMT network model of is a generic representation of the main network components
contained in a multi-layer transport network. Each component must therefore be specialized according to
the network technology which is being considered in the simulation.

In the beginning, the network may be composed of multiple layers. A layer (class Layer) is defined as
a collection of nodes associated with the same transport technology (IP, ATM, SDH, etc.) and therefore
refers to a specific protocol. The layered model of the GNMT is composed of the lowest layer known as
physical layer, on top of which logical or virtual layers are interconnected.

Within the same layer, the node is designated as a layer entity (class LayerEntity) and represents
any kind of network element such as a cross-connect, an optical switch, a router, etc. Layer entities are
horizontally connected with links (class Link) according to a certain topology. In a client-server multi-
layer relationship, each layer entity belonging to the server layer can supply a collection of Access Points
(APs) to other layer entities belonging to client layers (higher layers), so that the entities are vertically
connected. According to the ITU-T model, the client layer entities, which have links to a server layer,
correspond to Connection Points (CPs). Future releases of GNMT should allow a layer entity to
implement several CPs.

Still, layer entities can only be added in the physical layer; the construction of virtual layers is
performed through a selection of nodes existing in the physical layer. The connection between nodes is
established freely, so that each virtual layer may have its own topology.

The concept of node (class Node) gathers all the layer entities belonging to the same physical entity
that is, the lowest-level node in the physical layer. The node actually establishes a relationship between
the ITU-T model and the ISO layered protocol model.

The port (class Port) is the abstract object which establishes a connection between two entities; it
contains information related to the protocol and to direction property by means of the two attributes in
and out, leading the links to be defined as uni/bi-directional. The port connectivity matrix (class
PortConnectivity) gives information concerning the node connectivity and determines the
association between input and output ports.

Notation, Metrics and Assumptions

120

Diffusion ratio, i.e. propagation speed (10)
of the TO within the ecosystem

Mean context size, i.e. number of (11)
TOs in the Agent Context

Deploying Ecomobile into a transport network therefore consists in placing an agency at each layer
entity of the physical layer. The contents of the switching matrix have to be reflected in the agency's place
connectivity matrix.

5.2 NOTATION, METRICS AND ASSUMPTIONS
This section defines the MBS-related metrics. TO-related metrics will be introduced in Section 5.4. The
simulation results are presented graphically according to the following definition: the X-axis indicates the
number of Junior instants (see Section 4.1) and thus reflects the temporal dimension, while the value of
the metrics is depicted on the Y-axis.

NOTATION

λi an M-agent in the ecosystem population (1)
AC(λi , t) Number of TOs in agent λi at time t (agent context) (2)
τ(λi , t) Indicates if there is at least one task objective (3)
 in λi, at time t
 (0 if AC(λi , t)=0, 1 if AC(λi , t) > 0)
MBS-low/high Mobile behaviour scheme with low/high diffusion (4)

A detailed description of MBS-low/high (4) can be found in Section 3.4.

METRICS

P(t) Population size, i.e. number of M-agents at time t (5)
V(Ni, t) Visit frequency of M-agents within the node Ni (6)
AG(Ni, t) Number of agents present in node Ni (7)
IN(Ni, Lj, t) Number of agents arriving via link Lj into node Ni (8)
OUT(Ni, Lj, t) Number agents leaving from Ni via link Lj (9)

The population size P(t) (5), the node visit frequency V(Ni, t) (6), the number of agents residing within a
node (7) and the link visit frequency (8)+(9) do not directly depend on the task objectives themselves,
except for the execution time. These metrics mainly depend on the mobile behaviour scheme; in other
words, they are typically related to the basic ecosystem behaviour. On the contrary, the diffusion ratio
D(t) (10) and the mean context size C(t) (11) strongly rely on the TO lifecycle. The inter-TO cooperation
strategy, in particular, plays an important part as far as dissemination speed and regulation of the agent
context size are concerned; unless cooperation has been defined, the context can grow exponentially and
lead to performance degradation.

()

(,)
:

()

N t

i
i

t

P t

λ

τ λ
=
∑

D(t)

()

(,)
:

()

N t

i
i

AC t

P t

λ

λ
=
∑

C(t)

Chapter 5
Simulation and Results

121

The measurement of D(t) and C(t) therefore provides an important feedback on the ecosystem
behaviour, which can be used for tuning and improving the efficiency of the cooperation strategy. A
possible extension of Ecomobile would consist in discovering how to automate this process.

According to the MBS definition, the migration time, designated by phiMigration, the waiting time,
designated by phiDwelling, and the execution time, designated by phiAction constitute the major
ecosystem parameters. Details about the behavioural strategies are given in Section 3.4.2.

We have performed several experiments with different values of ecosystem parameters; in this
document, we propose to examine the Ecomobile behaviour with the following significant values:

 phiMigration migration time for Φmigration - random value between 0 and {10, 20}
 phiDwelling waiting time for Φdwelling - fixed value equals {0, 5, 15}
 phiAction execution time for Φaction - 0, since we assume fast TO execution and
 the execution time can be combined with the migration time.

As will be described in Section 5.3.2, MBS-low implements a fixed waiting time value while MBS-high
implements a heuristic-based waiting time function. Simulation based on the above values will be
presented along this chapter. In most cases, the simulation has been performed during 10'000 reactions
(instants).

Since the network topology is composed of nodes and bi-directional single links, an M-agent can travel
along a link in both directions; for the same reason, an M-agent which is leaving a node can also select
the link from which it has arrived.

5.3 BEHAVIOURAL ANALYSIS OF THE MBS
Three network topologies have been defined for the analysis of the ecosystem behaviour in various
network configurations: the Square network is a regular topology composed of 21 nodes and 32 links and
exhibiting symmetric properties; regular topologies are frequently used in optical transport networks such
as rings or circular topologies. The Fantasy network, which is composed of 18 nodes and 23 links, is a
random network presenting an "exotic" connectivity scheme with different topology patterns (square,
isolated nodes, bus, etc.). Finally, the Swiss network, composed of 33 nodes and 50 links, represents the
optical transport network in Switzerland, in which each fibre is assumed to contain a single wavelength.

In addition, we have experimented other topologies such as circular, multi-ring and random networks,
with different values of ecosystem parameters. However, since simulation results for this kind of
networks lead to the same conclusions as those presented in this chapter, they are not presented in this
document.

5.3.1 Node Visit Frequency
Since task objectives are activated during the M-agents' node visits, the node visit frequency V(Ni, t)
constitutes a major issue in Ecomobile, as well as in most mobile agent systems. The node visit frequency
metric therefore has a deep impact on the system's performance. A node with a high nodal degree1, which
is therefore regarded as a "critical" node, is also expected to receive more visits than a node with a low
nodal degree so that actions implemented into the task objectives can be more frequently activated. The
measurement results over 10'000 instants for a regular network regarding visit frequency, with MBS-low

1 The nodal degree of a node corresponds to the number of links connected to this node.

Behavioural Analysis of the MBS

122

and MBS-high, is depicted respectively on Figure 5-2 and Figure 5-3. This metric turns out to be
particularly useful when the simulation is performed for debugging purposes; an abnormal growth of this
number can quickly be detected as an indication of an MBS deficiency.

V=1150 AG=2

V=1947 AG=1

V=1157 AG=2

V=1584 AG=1

V=2336 AG=2

V=1543 AG=1

V=1662 AG=1

V=2274 AG=2

V=1647 AG=4

V=1627 AG=0

V=2236 AG=1

V=1654 AG=2

V=1699 AG=2

V=2294 AG=2

V=1669 AG=1

V=1780 AG=4

V=2238 AG=0

V=1781 AG=1

V=1106 AG=0

V=1387 AG=3

V=1099 AG=0

V=1150 AG=2

V=1947 AG=1

V=1157 AG=2

V=1584 AG=1

V=2336 AG=2

V=1543 AG=1

V=1662 AG=1

V=2274 AG=2

V=1647 AG=4

V=1627 AG=0

V=2236 AG=1

V=1654 AG=2

V=1699 AG=2

V=2294 AG=2

V=1669 AG=1

V=1780 AG=4

V=2238 AG=0

V=1781 AG=1

V=1106 AG=0

V=1387 AG=3

V=1099 AG=0
Figure 5-2. The Square network (MBS-low, phiDwelling=5, phiMigration=10)

V=975 AG=1

V=1527 AG=3

V=987 AG=2

V=1466 AG=1

V=1930 AG=4

V=1501 AG=3

V=1448 AG=1

V=1910 AG=1

V=1433 AG=2

V=1437 AG=2

V=1913 AG=3

V=1441 AG=3

V=1466 AG=2

V=1915 AG=4

V=1432 AG=0

V=1504 AG=2

V=1949 AG=2

V=1496 AG=2

V=996 AG=2

V=1555 AG=2

V=988 AG=1

V=975 AG=1

V=1527 AG=3

V=987 AG=2

V=1466 AG=1

V=1930 AG=4

V=1501 AG=3

V=1448 AG=1

V=1910 AG=1

V=1433 AG=2

V=1437 AG=2

V=1913 AG=3

V=1441 AG=3

V=1466 AG=2

V=1915 AG=4

V=1432 AG=0

V=1504 AG=2

V=1949 AG=2

V=1496 AG=2

V=996 AG=2

V=1555 AG=2

V=988 AG=1
Figure 5-3. The Square network (MBS-high, phiDwelling=5, phiMigration=10)

The value of AG(Ni, t) reflects the number of co-residing agents at the instant t; the value indicated on the
figure corresponds to the last simulation instant.

The simulation results have shown that the number of M-agent visits, in this kind of network, is inferior
by a factor of about ten to the total amount of reactions; the value of the visit frequency moreover
depends on the nodal degree. Although the MBS-high exhibits a breadth-first parallel search behaviour, it
also reveals a lower visit frequency for the same simulation duration. This surprising outcome is the result
of the interference-absorption loop characteristic of the MBS-high: the M-agent makes sure that no other
agent resides in the same place over a period defined by the waiting time and thus spends more time
within the node it is visiting.

Similar differences can be observed between MBS-low and MBS-high regarding the other topologies;
we will therefore present, for the next topologies, only simulation results based upon MBS-low.

Chapter 5
Simulation and Results

123

V=610 AG=0

V=1691 AG=2

V=1016 AG=1

V=442 AG=0

V=865 AG=0

V=2645 AG=2

V=882 AG=1

V=2007 AG=4

V=508 AG=2V=444 AG=1

V=533 AG=1

V=1069 AG=1

V=2704 AG=6V=2739 AG=3

V=2177 AG=1 V=980 AG=1

V=911 AG=1

V=1508 AG=1
V=610 AG=0

V=1691 AG=2

V=1016 AG=1

V=442 AG=0

V=865 AG=0

V=2645 AG=2

V=882 AG=1

V=2007 AG=4

V=508 AG=2V=444 AG=1

V=533 AG=1

V=1069 AG=1

V=2704 AG=6V=2739 AG=3

V=2177 AG=1 V=980 AG=1

V=911 AG=1

V=1508 AG=1

Figure 5-4. The Fantasy network (MBS-low, phiDwelling=5, phiMigration=10)

In the Fantasy network depicted on Figure 5-4, the visit frequency also appears to match the nodal
degree. Although the network is asymmetric, the number of visits corresponds to a certain nodal degree
reaching the same order of magnitude regardless of the node location. This interesting property results
from the density-dependence property of the territoriality paradigm (see Section 3.4), on the one hand,
and from the MBS definition on the other hand; the M-agents population is automatically regulated
according to the visit frequency, which directly depends on the nodal degree; the cloning strategy defined
in the MBS actually implies an investigation of all the links; the number of clones therefore equals the
nodal degree. Obviously, this property can be observed when the migration time and the execution delay
are statistically the same for each link and node.

Finally, the Swiss network has been simulated; the results are presented on Figure 5-5.

Behavioural Analysis of the MBS

124

1070/1

2838/0

1650/1

954/0

1547/1

1004/2

2069/1

840/1

919/0

1588/3

1045/1

855/1

1587/4

2487/2

1477/0
1598/2

2084/2
1998/2

2674/3

2199/2

1070/0

1297/1

2066/2

2051/1

1594/2

4699/6
1303/0

1559/1
1653/2

571/0

1091/1

1725/2

1070/1

2838/0

1650/1

954/0

1547/1

1004/2

2069/1

840/1

919/0

1588/3

1045/1

855/1

1587/4

2487/2

1477/0
1598/2

2084/2
1998/2

2674/3

2199/2

1070/0

1297/1

2066/2

2051/1

1594/2

4699/6
1303/0

1559/1
1653/2

571/0

1091/1

1725/2

Figure 5-5. The Swiss Network (MBS-low, phiDwelling=5, phiMigration=10)

The first number represents V(Ni, t) while the second number is AG(Ni, t). As in the previous networks, the
visit frequency depends on the nodal degree.

5.3.2 Link Visit Frequency
Whereas the visit frequency indicates the TOs' execution rate, the TOs' dissemination depends on the
M-agents' movement. In this context, the number of agents arriving into a node and leaving it constitutes
a precious indication. This metric is called link visit frequency.

The TOs are efficiently disseminated within the network as long as the number of M-agents arriving at
a node is approximately identical to the number of M-agents leaving it. This condition was met in most
cases when we implemented MBS-low. Figure 5-6 indicates the values of IN(Ni, Lj, t) and OUT(Ni, Lj, t)
for a portion of the Square network.

Chapter 5
Simulation and Results

125

428/647 500/518

557/554

554/557

698/484

518/500 550/610 557/594610/550

525/576 576/525 532/518

510/602

560/541

518/532

534/598

598/534 602/510

528/593

541/560

447/605 557/554 554/557 558/571 571/558

585/540

571/565

540/585

575/512

512/575

428/647 500/518

557/554

554/557

698/484

518/500 550/610 557/594610/550

525/576 576/525 532/518

510/602

560/541

518/532

534/598

598/534 602/510

528/593

541/560

447/605 557/554 554/557 558/571 571/558

585/540

571/565

540/585

575/512

512/575

Figure 5-6. Number of M-agents arriving (first value) and leaving (second value) with MBS-low.

However, turning to MBS-high, we could observe that the link visit frequency was not well distributed.
When a node exhibits a high nodal degree, the interference-absorption loop of MBS-high may induce the
M-agent to spend an infinite time within a node. The resulting overload of meeting opportunities leads the
TOs belonging to the residing M-agent to be blocked. The agent context is also subject to numerous
transfers which may cause a profusion of TOs to be offloaded into the blackboard. This effect is depicted
on Figure 5-7: while a lot of agents are arriving into the central node, only a few agents are leaving.

490/504

504/490 350/490

350/83

504/504 504/504

504/504

452/490

83/490

490/83

521/83
550/83

83/550

83/521 521/521

521/521

540/83

452/83
504/83 83/504

280/35

504/504

504/504 504/504

490/504

504/490 350/490

350/83

504/504 504/504

504/504

452/490

83/490

490/83

521/83
550/83

83/550

83/521 521/521

521/521

540/83

452/83
504/83 83/504

280/35

504/504

504/504 504/504

Figure 5-7. Overload of meeting opportunities (phiDwelling=5, phiMigration=10)

Behavioural Analysis of the MBS

126

In order to overcome this problem, we have introduced a specific heuristic-based waiting time function
which is defined by the following expression:

deg() deg()

0, (, ,) (, ,) 50
(,)

5,

i iN N

i j i j
j ji

if IN N L t OUT N L t
phiDwelling N t

otherwise

 
− > =  

 
 

∑ ∑

The maximum waiting time could also be adjusted dynamically according to the variation of IN and OUT
by means of linear functions, but this still remains to be experimented.

The waiting time is now automatically adapted at each node. According to this expression, the
difference between the number of arriving agents and the number of exiting agent must be less than a
certain value1; if the difference exceeds this value, the waiting time is set to zero, so that the M-agent does
not spend any more time expecting possible meetings. If the M-agents number is important, the
interference-absorption loop remains efficient and continues to guarantee the population regulation.

Figure 5-8 shows the new values according to the conditional waiting time.

478/502

502/478 350/490

492/490

488/502 502/488

492/499

452/490

490/478

478/490

515/490
533/490

490/533

490/515 516/516

516/516

492/490

400/460
482/490 490/482

513/490

482/502

502/482 499/492

478/502

502/478 350/490

492/490

488/502 502/488

492/499

452/490

490/478

478/490

515/490
533/490

490/533

490/515 516/516

516/516

492/490

400/460
482/490 490/482

513/490

482/502

502/482 499/492

Figure 5-8. Link frequency visit with the heuristic-based waiting time function

It appears that the heuristic-based waiting time function described above has a particularly efficient
balancing effect on the M-agents' migration. The number of exiting agents is now very close to the
number of arriving agents. The same waiting time function could also be applied to MBS-low in order to
slightly improve the link visit balancing effect, thus making the Φdwelling behaviour independent from the
MBS.

1 This value has been determined empirically and is adequate for the three topologies.

Chapter 5
Simulation and Results

127

5.3.3 Population and Stability
We present simulation results concerning the evolution of the M-agent population over time; stability has
been tested by means of trend lines and simple average calculation.

The monitoring process, which consists in storing the metrics values every 10 instants, maintains the
number of M-agents and updates it when the Φbirth and Φdeath behaviours have been performed. Figure 5-9
illustrates the general evolution pattern when Ecomobile is started by launching an M-agent anywhere in
the network.

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000
Time (#Jr Instant)

P
(t)

MBS high, wait=5
Polynomial approximation

Figure 5-9. Example of the evolution of the M-agent population size over time

No M-agent is present at the beginning of each simulation and the population size is equal to zero. When
the first M-agent starts its lifecycle in the network, it clones itself according to the MBS, and thus
immediately contributes to the increase of the population; alternatively, meeting opportunities lead to the
removal of agents and therefore contribute to the decrease of the population.

The first instants of the simulation are dedicated to the exploration of the network; the population
grows rapidly until the first meetings between M-agents occur. A few additional instants are still
necessary before a relative stability can be attained.

The evaluation of the ecosystem stability requires the observation of the population size average over a
long period of time. In order to assess the mean value, we propose to use a polynomial trend line of order
6 calculated with the least squares fit through the points representing the value of P(t).

A more complex analysis of the ecosystem population and stability requires particular techniques
referred to as population ecology, which provide different statistical approaches by means of data analysis
techniques applied to temporal series, such as moving average or spectral analysis; this kind of
investigation however remains out of scope of this work1.

The M-agent population size in the Square and Fantasy networks respectively appears on Figure 5-10.
The results reveal different graphic patterns according to the topology, to the MBS and to different values
of Φdwelling. Behaviour has been analyzed for a waiting time both inferior and superior to the migration
time (Φmigration) which has been fixed to 10 instants. The mobile behaviour scheme MBS-high implements
the heuristic-based waiting time function described in Section 5.3.2. In order to evaluate the difference of

1 A thorough discussion of population ecology can be found at
http://www.ento.vt.edu/~sharov/popechome/welcome.html

http://www.ento.vt.edu/~sharov/popechome/welcome.html

Behavioural Analysis of the MBS

128

population size due to the introduction of our waiting time function, Figure 5-12 still illustrates the
population size with MBS-high considering a constant waiting time.

SQUARE NETWORK (21 NODES)

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

Time (#Jr Instant)

P
(t)

MBS-low, phiDwelling=5
Polynomial approximation

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

Time (#Jr Instant)

P(
t)

MBS-low, phiDwelling=15
Polynomial approximation

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000
Time (#Jr Instant)

P
(t)

MBS-high, phiDwelling=5
Polynomial approximation

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000
Time (#Jr Instant)

P
(t)

MBS-high, phiDwelling=15
Polynomial approximation

Chapter 5
Simulation and Results

129

FANTASY NETWORK (18 NODES)

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000
Time (#Jr Instant)

P
(t)

MBS-low, phiDwelling=5
Polynomial approximation

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000
Time (#Jr Instant)

P(
t)

MBS-low, phiDwelling=15
Polynomial approximation

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000
Time (#Jr Instant)

P
(t)

MBS-high, phiDwelling=5
Polynomial approximation

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000
Time (#Jr Instant)

P(
t)

MBS high, wait=15

Polynomial approximation

Figure 5-10. Evolution of the M-agent population over time (phiMigration=10)

Our observations start with the mean population size. Since the territorial behaviour of M-agents implies
that each node is investigated by an M-agent "defending" its territory (see Section 3.4), the population
size should approximate the number of nodes and grow when the migration time increases or when the
waiting time decreases.

Behavioural Analysis of the MBS

130

When phiDwelling is inferior to phiMigration, both MBS reveal a number of M-agents significantly
superior to the number of nodes: the meeting opportunities are actually reduced because M-agents spend
more time for migrating, and the cloning behaviour therefore occurs more frequently. The average
number of M-agents is slightly higher in MBS-high than in MBS-low, because of the interference-
absorption loop with systematic cloning. This behaviour also brings about important variations at each
reaction, i.e. high number of births and deaths.

When phiDwelling exceeds phiMigration, MBS-low exhibits the best performance in terms of adequacy
between the number of nodes and the population size. On the contrary, MBS-high reveals variations in the
M-agent population which seem more difficult to explain. The graphic pattern first depends on the
network topology: in regular networks like the Square network, the population size oscillates between its
extreme values; the symmetric properties of the network combined with an important waiting time
actually leads to a kind of lifecycle synchronism between all the M-agents. This synchronism effect does
not appear in asymmetric networks like the Fantasy network, for example.

Our simulation has revealed that the M-agent population fits the network size when phiDwelling
exceeds phiMigration, in MBS-low. In the other cases, the population size is comprised between the
network size and twice the network size. Since the population size is correlated to the node visit
frequency, which therefore determines the frequency of task objective activations, it appears preferable to
opt for a population size slightly bigger than the network size. A more important population size will also
indirectly favour M-agents with lower agent context size, since the TO instances will be spread over the
agent population. For these reasons, we have chosen to keep the value of the waiting time inferior to the
migration time.

We now propose to observe the impact of the migration time on the population in the Swiss network.
Migration time is randomly computed between 0 and a maximum value (10 or 20 in this case). Figure
5-11 presents the M-agent population. In this case, the simulation duration has been extended to 20'000
instants.

Population average

0

20

40

60

80

100

0 5000 10000 15000 20000
Time (#Jr Instant)

P(
t)

MBS-high, phiMigration=20, phiDw elling=5

MBS-high, phiMigration=10, phiDw elling=15

MBS-high, phiMigration=10, phiDw elling=5

MBS-low , phiMigration=20, phiDw elling=5

MBS-low , phiMigration=10, phiDw elling=15

MBS-low , phiMigration=10, phiDw elling=5

Figure 5-11. M-agent population in the Swiss network (33 nodes)

The population average is re-computed at each variation during the simulation. The increase of the
migration time (or of the execution delay) obviously tends to favour an augmentation of the population,
because agents which are migrating or performing a task cannot interfere with other agents.

Still, MBS-low including a migration time inferior to the waiting time reveals a population of M-agents
matching the number of nodes.

Chapter 5
Simulation and Results

131

Figure 5-12 depicts the evolution of the population when the M-agent exhibits a MBS-high with
constant waiting time. There is a difference of about 10 agents in the M-agent population between this
diagram and the one corresponding to the heuristic-based waiting time function (see Figure 5-10).

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000
Time (#Jr Instant)

P(
t)

Figure 5-12. Population size with constant waiting time (MBS-high, phiDwelling=5, phiMove=10)

Although various scenarios with different waiting time and migration time have been considered for the
analysis of the MBS, the experiments presented in Section 5.4 are based on the behavioural analysis of
task objectives and are restricted to the simulation of M-agents implementing a waiting time of 5 instants
and a migration time of 10 instants. Both MBS will be compared.

5.4 BEHAVIOURAL ANALYSIS OF TASK OBJECTIVES
This section is devoted to the study of the ecosystem response to the insertion of some of the task
objective models presented in Section 3.6. The metrics defined in Section 5.2, in particular the mean
context size C(t) and the diffusion ratio D(t), will help us to evaluate their performance. Based on these
metrics, particular attention will be paid on the implementation strategy as regards the inter-TO
cooperation and the TO lifecycle. Further TO-related metrics will be defined in the corresponding
sections.

According to the Ecomobile architecture, the task objectives are deposited into the blackboard of a
particular place, i.e. of a particular node. As we have already seen, the M-agent population needs a few
instants in order to reach an equilibrium so that it would not be appropriate to insert task objectives at the
very beginning of the simulation. This is the reason why a mechanism has been implemented into the
blackboard in order to program a delay for the loading of task objectives; according to the M-agent
population analysis (see Section 5.3.3), we have associated a delay of 500 instants to each TO at the
beginning of the simulation. It also has to be noted that the size limit of the agent context has been fixed
to 100 TOs.

The persistence mechanism used for all the TOs leads the M-agent, which has no available place for
hosting TOs, to offload them into the blackboard. This strategy prevents the TOs from being untimely
removed from the ecosystem; the complexity of the behavioural analysis is consequently reduced, and the
TOs keep the entire control of their lifecycles.

Finally, the Swiss network will constitute our major case study for these experiments; the three
networks have been considered in the context of TO_Routing only.

5.4.1 TO_Travel
The TO_Travel task objective (see Section 3.6.1) successively builds cycle-free itineraries in a continuous
way; these itineraries represent topology subsets. The cooperation mechanism removes redundant TOs

Behavioural Analysis of Task Objectives

132

containing identical itineraries. When a cycle has been detected, the itinerary is re-initialized and the task
objective continues its trip. Therefore, and according to the TO lifecycle, a TO can only be removed from
the ecosystem during the cooperation phase by another TO instance.

Figure 5-13 shows C(t) and D(t) for this particular TO model.

0

20

40

60

80

100

500 1500 2500 3500 4500

Time (#Jr Instant)

C
on

te
xt

 s
iz

e

MBS low
MBS high

0

0.2

0.4

0.6

0.8

1

500 600 700 800 900 1000
Time (#Jr Instant)

D
iff

us
io

n
ra

te

MBS low
MBS high

Figure 5-13. Analysis of C(t) and D(t) of TO_Travel with MBS-low and MBS-high

The mean agent context size C(t) is characterized by an important difference between MBS-low and MBS-
high. The "high" diffusion of the latter favours a rapid exploration of different topology subsets; the
M-agents are provided with TO instances owning distinct itineraries and consequently avoid their
removal during the cooperation phase. On the contrary, MBS-low rapidly has to face TO instances having
the same itinerary rapidly.

The cooperation strategy implemented into the task objective typically consists in eliminating the TOs
simultaneously evolving in the M-agents; knowledge redundancy appears after a certain time in this kind
of TO when the TOs' itinerary is cleared and re-started; the itineraries being exempt of cycle, two meeting
agents can not have identical itineraries.

The diffusion ratio D(t) reveals the rapid TO dissemination when the M-agents have implemented the
MBS-high. In both MBS, all the M-agents in the ecosystem contain at least one TO instance (D(t)=1) after
750 instants.

5.4.2 TO_PathSelect
The TO_PathSelect task objective implements a pre-planned itinerary to be followed by the TO. The path
is described in the TO's init() method (see Section 3.6.4). In order to evaluate the TO's performance,
we propose to introduce a new metric called path completion which indicates how many pre-specified
nodes have already been visited by the TO, compared to the total itinerary length. Figure 5-14 shows the
number of instants required by the TO to reach its destination.

Chapter 5
Simulation and Results

133

0

0.2

0.4

0.6

0.8

1

500 600 700 800 900 1000
Time (#Jr Instant)

Pa
th

 c
om

pl
et

io
n

MBS low
MBS high

Figure 5-14. Path completion over time

The simulation results clearly show that the MBS-high requires more instants than MBS-low to reach its
destination: as we have seen, M-agents, and therefore task objective instances, spend more time within a
node because of the interference-absorption loop.

It has to be noted that, in this kind of TO model, the agent context is constantly equal to 1; the
cooperation strategy guarantees that only one TO instance survives.

5.4.3 TO_ExhaustivePathFinder
The TO_ExhaustivePathFinder task objective is devoted to the extraction of all cycle-free topology
subsets, or possible paths between two nodes given in the init() callback (see Section 3.6.5). Since
each TO instance follows a different path, the co-operation mechanism does not step in. The blackboard
is used to store internal knowledge of each TO instance and thus allows a systematic path investigation.

In TO_ExhaustivePathFinder, a simple test has been added in order to extract the longest path; this test
simply consists in comparing the number of nodes visited by the task objective instance that has reached
its destination, to the current path length. The simulation results are depicted on Figure 5-15.

This TO model, which does not implement any form of the Dijkstra algorithm or inter-TO
collaboration, allows us to study the ecosystem behaviour with a minimal algorithm.

Behavioural Analysis of Task Objectives

134

0
5

10
15
20
25
30

500 1500 2500 3500 4500 5500 6500 7500
Time (#Jr Instant)

Pa
th

 le
ng

th

MBS low
MBS high

0

20

40

60

80

500 1500 2500 3500 4500 5500 6500 7500
Time (#Jr Instant)

Co
nt

ex
t s

iz
e

MBS low
MBS high

0

0.2

0.4

0.6

0.8

1

500 1500 2500 3500 4500 5500 6500 7500
Time (#Jr Instant)

Di
ffu

si
on

 r
at

e

MBS low
MBS high

Figure 5-15. Finding all network paths between two nodes

The longest path has been established after 2'500 instants only; additional constraints on the path, like
path quality, availability, and so on, will obviously lead to an increase in the convergence time.

The analysis of the agent context size and of the diffusion ratio reveals an important difference between
MBS-low and MBS-high; in addition to the interference-absorption loop effect, we can observe that the
general behaviour of the two MBS is significantly different: the systematic cloning mechanism of MBS-
high implies that the mean context size undergoes important variations, because the TO has strong control
over its trajectory and the TO instances are therefore often offloaded and then reloaded; this effect also
influences the diffusion ratio.

According to this approach, the number of paths is generally high and strongly depends on the network
topology; the number of paths may grow exponentially and considerable time is required to proceed to an
exhaustive path search. The cooperation mechanism and additional nodal objects should improve the
algorithms and reduce the number of instants; the introduction of labels as defined in Dijkstra algorithms,
for example, provides a simple and efficient solution, so that the TO instance uses the local information to
make immediate decisions. Whether it is necessary or not to improve the rapidity of convergence
however depends on the type of application: an on-line monitoring process running parallel to working
connections is not required to provide immediate responses.

5.4.4 TO_Routing
The TO_Routing task objective constitutes an important model for routing purposes (see Section 3.6.6);
its behaviour has therefore been analyzed for the three network types. This TO is based on a stochastic
navigation model and performs regular updates of the routing tables according to the connectivity
discovered by the TOs. We assume that a routing table is present in each port (see Section 5.1.2) of each
node, so that all the possible destinations linked to a certain output link can be determined, as happens
with the OSPF routing algorithm. However, link-related metrics are specific to the network technology
and they can be easily inserted into the TO body, so that they have not been considered in these
experiments.

Chapter 5
Simulation and Results

135

In order to measure the performance of TO_Routing, we have introduced a particular metrics called
Connectivity Convergence (CC). CC(t) is defined as the number of entries of all the routing tables divided
by the expected number of table entries. In the beginning, all tables are empty and CC(0)=0. CC(t)=1
when all routing tables have been fully completed that is, when full connectivity has been discovered for
each node.

The cooperation strategy of this TO model consists in testing the itinerary and eliminating the slave
instance whose knowledge is included in the master instance.

The simulation results are presented on Figure 5-16; connectivity convergence, agent context size and
diffusion ratio have been measured for the three networks.

SQUARE NETWORK

Connectivity convergence

0

0.2

0.4

0.6

0.8

1

500 700 900 1100 1300 1500

Time (#Jr Instant)

C
C

(t)

MBS low MBS high

Context size

0

20

40

60

80

100

120

500 700 900 1100 1300 1500
Time (#Jr Instant)

C
(t)

Diffusion rate

0

0.2

0.4

0.6

0.8

1

500 600 700 800 900 1000

Time (#Jr Instant)

D
(t)

FANTASY NETWORK

Connectivity convergence

0

0.2

0.4

0.6

0.8

1

500 700 900 1100 1300 1500
Time (#Jr Instant)

C
C(

t)

MBS low MBS high

Context size

0

20

40

60

80

100

500 700 900 1100 1300 1500
Time (#Jr Instant)

C
(t)

Diffusion rate

0

0.2

0.4

0.6

0.8

1

500 600 700 800 900 1000

Time (#Jr Instant)

D
(t)

SWISS NETWORK

Connectivity convergence

0

0.2

0.4

0.6

0.8

1

500 700 900 1100 1300 1500

Time (#Jr Instant)

CC
(t)

MBS low MBS high

Context size

0

20

40

60

80

100

120

500 700 900 1100 1300 1500
Time (#Jr Instant)

C(
t)

Diffusion rate

0

0.2

0.4

0.6

0.8

1

500 600 700 800 900 1000
Time (#Jr Instant)

D
(t)

Figure 5-16. Convergence speed, mean context size and diffusion ratio

In this particular TO model, the connectivity convergence is approximately the same in both MBS; MBS-
high exhibits a better performance in regular networks. In larger networks, like the Swiss network, the
convergence is similar between the two MBS. The mean context size however differs between the MBS.
MBS-high reaches the maximum number of TOs during a certain time; the cooperation strategy then
involves a natural reduction of the size and a re-building of the connectivity information. This renewal
effect actually results from the combination of the cooperation strategy with the refreshment of the

Summary

136

itinerary, after a certain number of nodes have been reached. The analysis of this task objective reveals in
particular that the inter-TO collaboration plays an important role in the regulation of the M-agent size.

Finally, the diffusion ratio increases with similar speed in both MBS. When the maximum has been
reached, the M-agent society continuously accounts for at least one task objective instance in each agent
context according to the TO lifecycle.

This TO might be improved by the exchange of the itinerary knowledge between two meeting agents,
as in the MITAgent approach (see Section 1.3.1).

5.4.5 Discussion
As we have seen, the MBS-high does not generally exhibit better performance than the MBS-low. Two
major reasons explain this phenomenon: the interference-absorption loop delays the M-agent in each
network node on the one hand, and the agent context may lead to frequent TOs offload, temporarily
suspending TO activity because of rapid growth of the mean context size, on the other hand. However,
the task objectives are quickly disseminated in the network in the first instants of their lifecycle. MBS-
high can be thus considered for critical monitoring functions which do not resort to complex knowledge
and do not require an extensive exploration of the network. The introduction of the non-deterministic
migration present in MBS-low, on the contrary, turns out to be more efficient for the implementation of
explorative task objectives.

The simulation of TO models has revealed that the agent context size is generally inferior to 100 task
objectives, which confirms that Ecomobile is particularly well suited to the transfer of small agents that
can perform complex tasks in spite of their size.

The combination of two different M-agent societies, the first one implementing MBS-low, and the
second MBS-high, may constitute an interesting approach improving the overall performance of
Ecomobile. An internal monitoring function could be used in order to make decisions concerning the
possible transfer of TOs from one type of society to another. More generally, this kind of behaviour
resorts to the use of social laws leading to the control of agents by a particular population of agents acting
as supervisors.

5.5 SUMMARY
The analysis of the Ecomobile infrastructure has led to the development of a simulation framework called
GNMT. The network environment relies on a network model inspired from the transport architecture
defined by ITU-T and by the ISO model. Each network node implements an Ecomobile agency, and all
the components belonging to the conceptual framework of Ecomobile have been implemented in order to
simulate a real environment. No agent platform has been considered during the simulation, but the
deployment of our infrastructure with Jade has been extensively discussed in the previous chapter. The
time reference model issued from the reactive approach defines the instant during which the reactive
behaviours are being executed.

Three kinds of network topology have been proposed: the Square, Fantasy and Swiss networks. Each
network presents various topology configuration exhibiting different characteristics (regular/irregular,
symmetric/asymmetric, etc.) as well as different network sizes.

The simulation of Ecomobile was followed by a behavioural analysis based on MBS-related metrics,
such as population size, node and link visit frequency. Different values of waiting time and migration
time have been considered and their impact on the ecosystem behaviour has been shown. The particular
issue related to the interference-absorption loop in MBS-high has prompted us to define a heuristic-based

Chapter 5
Simulation and Results

137

waiting time function in order to achieve a better balance in the link visit frequency. A behavioural
analysis of the task objectives has then been performed, based upon TO-related metrics such as agent
context size and diffusion ratio. The TO_Travel, TO_PathSelect, TO_ExhaustivePathFinder and
TO_Routing task objective models, which rely on different navigation models, have been simulated. In
this context, specific metrics like path length, path completion and connectivity convergence have
allowed preliminary evaluation of the tasks depending on the mobile behaviour scheme. The simulation
has also allowed us to identify the parameters influencing the ecosystem behaviour as well as the
response of the ecosystem to the insertion of task objectives. MBS-low, which contains a non-
deterministic migration function, leads to a better performance for task objectives requiring complex
knowledge and extensive exploration of the network whereas MBS-high, which presents similarities to
breadth-first parallel search algorithms, exhibits a rapid diffusion of task objectives during the first
instants of the simulation and therefore allows a rapid deployment of monitoring tasks within the whole
network, for example.

Simulation on large scale networks still remains to be performed. We are also left with an open
question related to the stability of the TO-related metrics: how does the mean agent context size evolve
with regards to the network size, in case of the use of TO_Travel, for example? The territorial behaviour
of M-agents might imply that the network size does not really influence the mean agent context size when
the task objective itself does not depend on the number of nodes or on the network topology; this however
remains to be proved.

The important amount of simulated objects may also require the simulated environment to run on
several machines. In this context, a relatively simple extension of GNMT would consist in coupling it
with an agent platform (like Jade); the UPI-based address would then allow the M-agent to move from
one simulation environment to another, by means of the real agency services. In this case, each GNMT
instance would simulate a part of the network.

Part III

Application to Optical Networks:
A Case Study

141

Chapter 6
The Optical Transport Network

The improvement of management solutions for the future Optical Transport Network (OTN) actually
constitutes one of the initial motivations of this thesis aiming at the development of a mobile agent based
infrastructure. Transport networks based on Synchronous Digital Hierarchy (SDH) or on Asynchronous
Transmission Mode (ATM) used to be considered as the favourite transmission media networks.
Advances in the field of wavelength multiplexing have recently made the optical network the most
promising technology for the support of a multitude of services demanding high bandwidth, such as
voice, audio, video and Internet traffic. Since the technology of optical devices is constantly evolving, the
business and technical costs bound to the replacement of legacy components however make full upgrades
of transport networks difficult. Future backbone1 optical networks will therefore have to cope with a wide
range of multi-layer configurations and numerous heterogeneous network components. In this
perspective, OTN is regarded as a physical layer able to support several types of clients, such as IP, SDH,
ATM or Ethernet.

The incredible growth of the bandwidth supported by a single optical fibre, as well the complexity of
future IP/WDM mesh networks, however require the implementation of efficient mechanisms for the
management of OTN, especially as far as reaction speed in case of fibre break and/or component damage
are concerned. Network survivability has to be considered in a context of increased competition and
deregulation as well as high expectations from the network users. In addition, the complexity of multi-
layer technologies and increased network capacities places stringent constraints on the network
capabilities to recover from any type of failure [DWY99].

In spite of these critical issues related to the survivability of OTN, the emergence of advanced optical
components, such as optical switches or transponders, allow the implementation of complex networking
functions into the optical domain without the recourse to any optoelectronic conversion. Such transparent
optical networks also promote the development of new value-added services and lead to the deployment
of an attractive intelligent transport network, as long as they are endowed with appropriate management
solutions.

In the third and final part of this document, Ecomobile is applied to the management of optical
networks. Particular emphasis will be laid on the semantics of places, which are defined so that efficient
TOs can be implemented with respect to the physical constraints of optical transport networks. This
chapter presents an overview of optical components and ongoing efforts in the field of network
management. Chapter 7 will be devoted to the development of a new value-added service which can
easily be implemented into task objectives.

In the present chapter, we do not claim to cover all the problems related to optical networks, but we are
trying to focus on a range of concepts that have already been considered in our research in order to
implement an active optical network management. After having introduced the basic optical network

1 The backbone or core network is made of "large" transmission lines forming a major pathway within a
network and carrying data gathered from the access or edge network that interconnects with the core
network.

An overview of Optical Network Components

142

components, we shall present an overview of ongoing efforts towards the development of management
techniques applied to OTN.

6.1 AN OVERVIEW OF OPTICAL NETWORK COMPONENTS
The architecture of OTN has initially been defined by ITU-T [G872_99] according to the generic
functional architecture of ITU-T (see Section 5.1.2). Briefly, OTN is defined by three sub-layers which
are the Optical Channel (OCh) layer, the Optical Multiplexing Section (OMS) layer and the Optical
Transport Section (OTS) layer. The OCh layer can be regarded as a server layer on which any kind of
rate-independent clients (e.g. IP, SDH, ATM, etc.) can request connections between two nodes; each
client is associated to a single wavelength (or channel). The OMS layer guarantees the integrity of a
wavelength group (λ-multiplex) and the OTS layer is the interface between the OMS and the physical
medium (see Section 6.3.1).

The following sections describe the main functionalities in optical network technology, which are
Wavelength Division Multiplexing on the one hand and the optical nodes on the other hand.

6.1.1 Time and Wavelength Division Multiplexing
Time Division Multiplexing (TDM) allows several lower-speed data streams to take place in a high-speed
data stream. Today, the highest transmission rate in commercially available systems amounts to about 10
Gbit/s [RS98]. The rate of the multiplexed stream can be increased via an approach known as Optical
Time Division Multiplexing (OTDM), which allows the multiplexing functions to be fully performed in
the optical domain. The resulting multiplexed stream should increase to the level of rates close to 250
Gbit/s. This technique, however, has not reached the stage of commercial implementations yet.

Wavelength Division Multiplexing (WDM) allows several wavelengths to be multiplexed onto a single
fibre. Wavelengths have distinct frequencies and do not interfere with one another provided they are kept
sufficiently far apart. WDM can currently support up to 160 wavelengths, each of them transporting a 10
Gbit/s data stream.

TDM and WDM are complementary approaches; while WDM leads to the increase of the transmission
capacity by means of multiple channels at different wavelengths, TDM allows several low-speed data
streams to take place in high-speed channel.

6.1.2 Optical Nodes
Optical network components can be classified according to four networking functions which have an
impact on management functions, namely add-drop multiplexing, wavelength routing, wavelength
conversion and wavelength switching. These functions1 are depicted on Figure 6-1. Although they are all
represented on a static basis for comprehension purposes, they can exhibit time-dependent dynamic
behaviour.

The Optical Add-Drop Multiplexing (OADM) function results in the insertion and removal of a specific
wavelength from the optical fibre. OADM is typically used between backbone and access network.

1 In this chapter, we do not take into account optical network devices which are devoted to signal
processing, such as amplifier or regenerator. Details about such components can be found in [RS98].

Chapter 6
The Optical Transport Network

143

The wavelength routing function (λ-routing) allows wavelengths to be routed from input fibres to
output fibres. Routing a wavelength actually involves routing the complete set of connections embedded
in the wavelength. A routing of lower connection granularity requires a conversion to the electronic
domain so that TDM functions can be performed. The mechanism which consists in placing client
connections in a wavelength is also known as grooming.

The wavelength conversion function (λ-conversion) is performed via a transponder which converts a
wavelength from a certain frequency to another frequency. This function serves adaptation purposes when
interfaces are restricted to particular wavelengths.

Finally, the wavelength switching function (λ-switching) allows any wavelength to be switched from
one fibre to the other; this function is used for fast protection switching, for example.

ADD/DROP

WAVELENGTH
CONVERSION

WAVELENGTH
ROUTING

fibre fibre

fibre fibre
fibre fibre

fibre fibre

SWITCHING fibre fibre

Figure 6-1. Four basic networking functions in the optical domain

The elements realising these functions can operate in the optical domain without requiring
optical/electrical conversion. WDM equipment generally implements a concatenation of these functions.
Full optical components able to route any input to any output on any wavelength will gradually appear on
the market, evolving through intermediate ranges of limited equipments. The switching matrix is still
limited to the order of 32 x 32 optical wavelengths and the optical transponder does not provide full
conversion between all the wavelengths. The heterogeneity of optical components exhibiting different
capabilities in terms of optical functions leads to particular constraints, such as the wavelength continuity
constraint, according to which a client connection has to follow one and only one wavelength along the
optical path. This kind of constraint induces potential blocking problems on the allocation of client
demands. Optical nodes limitations can however be overcome under certain conditions and for particular
network topologies; optical rings for example, which are particularly well suited to build survivable
networks, support limited wavelength conversions [RS97].

When optical nodes are able to perform functions fully in the optical domain, the nodes, or the network
for all the nodes, are known as transparent nodes or as a transparent network, respectively. On the

The Routing and Wavelength Assignment Problem

144

contrary, nodes requiring optoelectronic conversion are known as opaque nodes; they are generally quite
expensive and also hamper the evolution towards new services; they are also bit rate and format specific.

The ability of optical nodes to perform networking functions within the optical domain enables optical
paths to be allocated and routed in the OTN. We now introduce the resource allocation problem specific
to optical networks.

6.2 THE ROUTING AND WAVELENGTH ASSIGNMENT PROBLEM
We define the lightpath as the optical path used for a client connection, i.e. the path between an optical
source node and an optical destination node. A lightpath can rely on one or several wavelengths along the
way. The Routing and Wavelength Assignment (RWA), which is concerned with the allocation of
lightpaths in optical networking, is a central problem in the management of OTN.

RWA can be divided into two sub-problems: the routing problem that is, discovering the route between
two optical nodes, and the wavelength assignment problem that is, finding the best wavelength allocation
along the discovered route. Routing in the optical layer differs from routing in other data networking
technology on three main aspects [SCT01]: the network elements are only reconfigurable under specific
constraints, i.e. adaptation to specific wavelength frequency and different connectivity levels; the
transmission impairments or linear effects, such as dispersion or nonlinear effects with crosstalk between
channels, may render certain routes unusable; finally, diversity is defined as the relationship between
lightpaths: two lightpaths are said to be diverse if they have no single point of failure. Diversity is
influenced by the fibres themselves, by wavelength topology and by location. Furthermore, two circuits
may be considered as diverse in one application and not in another. It consequently appears that the
routing problem in the optical layer imposes additional constraints which are related to the physical
environment.

From a theoretical point of view, the combination of the routing problem with the wavelength
assignment problem leads to a solution minimising the number of wavelengths required in an optical
network for a given traffic matrix. Both sub-problems are proved to be difficult to solve (NP-complete)
and require specific heuristics. The RWA problem can actually be either static or dynamic.

The static RWA is originally considered during the network design and planning process when
business costs are at stake. Most of the algorithms proposed to solve RWA are therefore based on a
centralised architecture according to which the entire network topology is known in advance. RWA
requires a traffic matrix, which is normally issued by statistical data. An overview of algorithms and
heuristics as well as the mathematical formulation of the static RWA problem can be found in [E709_99].
At this stage, no consideration about dynamicity is included: the working and the protection paths are
established in a similar way, which remains possible as long as the traffic matrix does not significantly
differ from reality and the client demands are static. As soon as the client demands become dynamic and
the protection requirements begin to differ from one customer to the other, the protection paths and the
working paths have to be computed by means of a dynamic version of the RWA. In this case, since the
optical network including lasers and fibres is already deployed, the major issue is the blocking problem,
which occurs when there is no available lightpath or wavelength to satisfy a client’s demand.

Different client layers with various topology, such as SDH, ATM, GbE, or IP, will be supported by
OTN. Therefore, the RWA problem must be adapted so that OTN can take the client requirements into
account and deal with the client, or virtual, topology. Generally speaking, no satisfactory solution to the
RWA problem combined with the requirements of the virtual topology has been proposed yet.

Chapter 6
The Optical Transport Network

145

While the static RWA has already been studied for many years, the development of dynamic and
distributed algorithms for RWA is still at an early stage [ZJS+01]. According to different approaches, it
has been suggested to combine simultaneously routing and wavelength assignment [KL02], or to separate
the routing problem from the wavelength assignment problem as proposed by the Distributed Relative
Capacity Loss (DRCL) algorithm [ZJM00]. The DRCL approach does not make assumptions concerning
the routing algorithms but provides an interesting distributed algorithm for the wavelength assignment
part, which is mainly based on the static version (RCL).

The complexity of dynamic RWA supporting multiple constraints complicates the realization of a fully
decentralised network management. Although the ongoing efforts towards the management of OTN are
mainly driven by IP packet-based client layers, the full integration of various client types also remains an
important challenge.

6.3 MANAGING OPTICAL NETWORKS
Different approaches have been considered for the management of OTN. The first standardization efforts
in this area have obviously been conducted by ITU-T, leading to the integration of optical components
into the TMN framework (see Section 1.1.1) and the definition of corresponding GDMO objects
representing the manageable resources of OTN, i.e. the optical network elements [G874_02]. The TMN
approach introduces a separate communication channel known as the Data Communication Network
(DCN), which isolates the management information flow from the transport network itself. As we have
seen in Chapter 1, this approach mainly serves a centralised network management.

A TDM-based Embedded Communication Channel (ECC) can also be introduced within OTN itself in
order to transport management information from one optical node to the other, and finally to the manager.
This mechanism has been extensively used in SDH [Sat96], for example, according to which some bytes
of the section overhead are reserved for management purposes. The processing of these management
bytes therefore requires a TDM function. A specific protocol can be implemented by means of the ECC in
order to ensure the information exchange between the nodes. This approach, which is currently being
considered in OTN for wavelength management (OCh layer), leads to the development of the digital
wrapper (see following section).

The Optical Supervisory Channel (OSC), which can be considered in addition to these management
techniques, corresponds to a particular wavelength of a λ-multiplex that transports overhead related to
management information regarding multi-wavelength optical signals. The OSC is therefore completely
separated from client wavelengths.

Besides, ongoing efforts within ITU-T and IETF are driven by business requirements for the effective
integration of IP networks with OTN, which is also known as IP over WDM (IP/WDM) and leads to the
development of the Automatic Switched Optical Network (ASON) for the ITU-T and of the Generalised
Multi-Protocol Lambda Switching (GMPLS) framework, for the IETF. These technologies strongly rely
on a general ECC-based technique according to which on-line management functions require the
implementation of particular signalling-based protocols.

In the perspective of a decentralised, flexible, scalable and self-adaptable management of OTN, we
shall finally consider optical network elements as active optical nodes. We believe that the combination
of Active Network technology with optical nodes constitutes an innovative approach.

Managing Optical Networks

146

6.3.1 The Digital Wrapper
The digital wrapper has been introduced by Lucent Technologies1 at the end of the nineties as a way to
provide a channel-associated optical channel overhead in OTN [NB99]. The proposal was submitted and
approved by ITU-T and serves as a basis for the development of the OTN Node Network Interface
(OTN-NNI)2. Although the digital wrapper is fully integrated into the optical node, it still defines a TDM
frame structure composed of three main parts: the overhead, the payload and an optional Forward Error
Correction (FEC) code, as depicted on Figure 6-2, which also presents the three section layers with the
client layers.

Optical Transport Section
Layer

Optical Multiplex Section
Layer

Optical Channel
Layer

OTN

IP

SDH Other

OSC (with a reserved λ)

Client payload FEC

Management bytes

Overhead

Ethernet

Figure 6-2. The three section layers defined by ITU-T and the digital wrapper

The overhead is composed of several bytes reserved for management purposes as well as information
related to the payload; it also contains unspecified bytes for future usage. The payload corresponds to the
client data injected into the wavelength. The FEC is responsible for detection and correction of signal
impairments occurring during the transmission; a regenerator will detect eventual malformed frames. The
digital wrapper is not bound to any specific client type and thus promotes the realization of a transparent
optical network. The only restriction concerning the payload is that the client signal must be a constant
bit-rate digital signal.

Certain bytes of the digital wrapper overhead can be used, without any restriction, for a dedicated ECC,
in exactly the same way as in SDH management. This ECC could thus be used by Ecomobile for the
transport of M-agents (see Section 7.2).

6.3.2 The Automatic Switched Optical Network
The Automatic Switched Optical Network (ASON) [ITU00] constitutes a significant step towards
decentralised network management. It was originally conceived to dynamically allocate permanent and
semi-permanent circuit-switched lightpaths within OTN via a specific user interface, and to support

1 http://www.lucent.com
2 The OTN-NNI is specified in draft recommendation G.709.

http://www.lucent.com

Chapter 6
The Optical Transport Network

147

automatic routing of lightpaths. The main interest of this approach is to reduce the considerable time
devoted to provisioning in OTN that is mainly due to bureaucratic processes and manual human
intervention at several points in the resource configuration. An automatic control can be performed by
ASON, which spreads out topology knowledge and information related to capacity and availability within
the network. The proposed implementation of ASON relies on two networking planes: the transport
plane, corresponding to the OTN composed of optical switches - or more generally optical nodes
implementing the different networking functions described in Section 6.1.2 - and fibres, and the control
plane, which enables the transport of signalling between Optical Connection Controllers (OCCs). The
logical architecture of ASON is depicted on Figure 6-3.

(IP, router, ATM,
switch, …)

Optical
switch

Transport plane

PI

OCC Control plane

NNI

CCI

Client

OCC

Optical
switch

PI

UNI NMI-A

Optical
switch

OCC

EM/NM

Optical
switch

Transport plane

OCC Control plane

equipment

OCC

Optical
switch

Optical
switch

OCC

EM/NM

Management
plane

NMI-T

CCI Connection Control Interface
NMI-A Network Management Interface for the ASON Control Plane
NMI-T Network Management Interface for the Transport Network
NNI Node to Node Interface

OCC Optical Connection Controller
PI Physical Interface
UNI User to Network Interface

Figure 6-3. The ASON Management planes

Signalling between optical switches and client equipment is exchanged through the Node-to-Node
Interface (NNI), while service requests can be initiated by the customer himself via the User Network
Interface (UNI).

While central functions can take place in the management plane, the management logic can be partially
distributed over the OCC, so that decentralised network management can be achieved at different degrees.
When most of the management logic resides in the management plane, ASON can be regarded as a
distributed signalling-based infrastructure conceived for OTN, which does not really differ from a
traditional SNMP/CMIP approach (see Section 1.1.1).

Although ASON aims at enhancing OTN with advanced management functions and therefore promotes
the development of new "intelligent" optical services, such as fast provisioning, optical VPN, and on-line
protection and restoration services, the ongoing development of ASON mainly focuses on the definition -
and consequently on the standardization - of user and network interfaces. The elaboration of distributed
algorithms specific to the control plane functions, such as automatic topology discovery or efficient multi-
constrained routing, for example, remain an important issue in the development of ASON [R+01].
Routing is performed on optical channels with a high granularity (high bit rate). More generally, the
RWA implementation in the context of ASON still raises challenging issues due to the emergence of new
customer-centric and topology-related requirements.

Managing Optical Networks

148

The Generalised Multi-Protocol Label Switching1 (GMPLS) framework proposed by the IETF, which
was issued from the Internet world, follows the same logical architecture as the ASON. GMPLS consists
in applying to the optical switches the MPLS control plane techniques used for IP networks, and in
developing IP routing algorithms to manage lightpaths in the optical network. GMPLS is therefore
strongly oriented towards IP over OTN (IP/WDM) and does not rely on an intelligent transparent OTN
like ASON.

OVERLAY AND PEER-TO-PEER MODEL

Nowadays, optical networking obviously witnesses a trend towards the acceleration of IP/WDM networks
development in order to support the constantly growing number of Internet services. In this context,
GMPLS constitutes an efficient intermediate step towards integrated management of both IP and optical
networks through the definition of appropriate control planes. Still, worldwide spread IP networks remain
more simple to manage than optical networks from the point of view of the multi-carrier: while IP routers
can perceive the topology outside their management domain and interact fully with foreign routers,
optical switches require to be managed within an operator or carrier domain which cannot interact with
foreign optical switches. This is the reason why the architectural model based on two different control
planes managing the routers and the optical switches respectively actually leads to the definition of two
signalling architectures known as overlay model and peer-to-peer model.

According to the overlay model, the routers of the user domain "ask" the optical network for a
connection or for other optical services according to a client-server model; OTN acts as the server of the
provider domain whose different clients, such as IP, ATM or SDH, can access OTN through the UNI by
means of appropriate signalling. The NNI enables signalling between the different optical switches within
the OTN. The overlay model presents serious advantages for network operators because the user domain
does not need to be aware of the optical topology, which can belong to different carriers. The router
devices must however be compatible with ASON (or GMPLS) UNI provided by the carrier because of the
two distinct control planes being used. The overlay model therefore implies restrictions from the network
operator point of view in the choice of the network equipments. In addition, the limitation of network
knowledge may result in a sub-optimal usage of network resources, as it is the case in any network
configuration involving several layers.

According to the peer-to-peer model, routers and optical switches share a uniform and unified control
plane. In this case, the routers are endowed with a thorough knowledge of available OTN resources,
which may raise important problems related to the interaction of multiple operator domains. The quantity
of information to be processed and algorithms resulting from the integration of IP/WDM processing into
a single network component also lead to increasing complexity in the network. It therefore appears that
this kind of architecture entails serious drawbacks in terms of scalability.

DISCUSSION

The ASON and GMPLS approaches strongly rely on signalling and consequently entail important
restrictions concerning the evolution of an intelligent OTN; since the elaboration of new value-added
services is still at an early stage, it is difficult to determine the kind of services and profiles which will be
required by the future OTN. The introduction of a SLA-based management, for example, could make the

1 ftp://ftp.isi.edu/in-notes/search.ietf.org/internet-drafts/draft-ietf-ccamp-gmpls-architecture-02.txt and
http://www.lightreading.com

ftp://ftp.isi.edu/in-notes/search.ietf.org/internet-drafts/draft-ietf-ccamp-gmpls-architecture-02.txt
http://www.lightreading.com

Chapter 6
The Optical Transport Network

149

management within the control plane much more complicated than expected. Besides, the
signalling-based approach requires network equipments to implement the complete protocols and services
at design time. Each extension or modification of the signalling will therefore require considerable
changes in the network infrastructure with important business-related costs. Signalling therefore turns out
to be inadequate in the case of a flexible and extensible OTN.

 Unlike the digital wrapper, that enables a fast processing of the management information because of its
integration to the optical channel layer, the above described approaches do not specify the frame structure
of the optical channel. According to a control plane approach, it is therefore difficult to imagine that every
manufacturer will adopt a similar implementation of the optical channel.

A possible alternative solution would be to replace signalling by CORBA interfaces controlling the
automatic setup of connections, alarm propagation, billing support, SLA management, etc. [Ger00]. This
approach could however lead to a throwback to a traditional platform-centred TMN-like approach.

6.3.3 Active Management
A final technique applied to the management of OTN has to be described: in the context of our work,
active management (see Section 1.4) in optical networks is an innovative approach emerging from the
development of Ecomobile. Active management actually combines principles of the active network
technology with the mobile agents paradigm developed in the previous chapters. Active management
favours a decentralised network management characterized by fast reaction to external changes and by the
capacity to deal with the physical constraints related to the infrastructure, so that it perfectly suits a
transport network such as the OTN. Active management is not meant to replace architectures like ASON
or GMPLS, but should rather be seen as a complementary approach enhancing the physical layer with
advanced functionalities.

Two distinct steps can be distinguished in the development of active management: the development of
fully distributed algorithms implementing most of the management logic within the network nodes is
followed by the implementation of these algorithms into the active optical nodes. To the best of our
knowledge, mobile agents had not been considered in optical network management when we began this
work. Nevertheless, a solution to the RWA problem relying on ACO (see Section 2.4.1) and therefore
similar to AntNet has been proposed in [VS99]; the possibility of actually implementing this approach
however still remains an open issue; the algorithms require a considerable processing time and resort to a
global update of the pheromone which is not compatible with a decentralised management approach.

The techniques related to active management will be developed and applied in Chapter 7.

6.4 SUMMARY
OTN is composed of a wide range of heterogeneous network devices which have the capability to
perform networking functions fully in the optical domain, i.e. without optoelectronic conversion. Relying
on wavelength division multiplexing, the optical nodes can process several wavelengths on a single fibre.
The transport of several Tbit/s of data issued from different client layers on a single fibre and the
implementation of networking functions into the optical domain make network management systems
critical components of the transport network. The rapid evolution of the optical network domain
consequently implies a decentralised management approach.

The physical impairments and connectivity restrictions on transparent optical nodes make the RWA
problem a central issue in the management of circuit-switched lightpaths. The problem becomes even
more complex with the emergence of new optical services which have an impact on routing and

Summary

150

wavelength assignment. While the static RWA has proved to match the planning process of optical
networks, the distributed implementation of the dynamic RWA dealing with dynamic traffic and on-line
re-configuration is still at an early stage.

The digital wrapper has been proposed by Lucent in order to improve the management of OTN; it
defines a TDM structure in three parts which allows the optical channels to be managed independently
from the client layers. The digital wrapper overhead encompasses a portion of bytes dedicated to
management purposes and therefore makes the definition of ECCs possible. An optional FEC allows the
signal to be monitored and re-processed within the regenerators. The development of a digital wrapper is
also associated with the elaboration of the OTN-NNI.

A logical architecture for an intelligent OTN has also been proposed by the ITU-T in the specification
of ASON. This approach introduces a separation between the physical layer (transport plane) and the
management functions (control plane). This separation involves the deployment of optical connection
controllers for the implementation of the management logic. ASON is mainly characterized by the
recourse to particular signalling between optical nodes themselves through the NNI and between optical
nodes and the user through the UNI.

In order to deal with growing demands and requirements emerging from the transport of up-and-
coming Internet applications over the optical fibre, the IETF has proposed to extend the IP/MPLS
framework to the optical network by adapting the algorithms used within IP routers to the optical
switches.

151

Chapter 7
Towards Active OTN Management

In Chapter 1, we have presented an overview of the basic components specific to the optical transport
network which constitutes the main target application of the middleware developed in this thesis. The
new generation of optical nodes encourages the development of new advanced services within the
transport network, steadily transforming the traditional point-to-point OTN into a service-enabled
Automatic Switched Optical Network (ASON). The diversity and complexity of customer requirements as
well as limitations related to optical devices however bring about new technical hurdles in the
management of these services.

The introduction of specific control planes, such as those proposed by ASON or GMPLS for the
management of resource allocation and routing in the optical network would certainly favour the
development of decentralised management systems; they would provide the NMS with information
related to traffic engineering and network topology. However, the implementation of advanced algorithms
achieving complex RWA in a dynamic situation still remains an important challenge in the management
of OTN because of emerging requirements issued from a transparent multi-layer OTN and new customer
requirements based on service level agreement. It also has to be noted that a signalling-based approach
introduces potential interoperability issues between network devices issued from different vendors, and
that the management logic must be implemented at the design phase.

Active management, which constitutes a new paradigm liable to overcome current limitations of optical
nodes, combines code migration and mobile agents on the one hand, with an active network enhancing
optical switches with the necessary infrastructure hosting dynamic code on the other hand. An approach
based on active management is obviously not straightforward from the business model point of view; the
management logic is subject to the control of the network operator, whereas the hosting environment
must be implemented into active nodes by the manufacturer according to industrial standards.

In this chapter, we propose to examine how Ecomobile can be implemented efficiently within OTN and
how its particular computational model leads to creation of new value-added services. After having
introduced the OPTIMA project, which constitutes the predicted follow-up of this thesis, we will examine
a possible way to deploy our mobile middleware in the optical layer, new intelligent wavelength services
will be defined, and an example of an improved protection service will be given.

7.1 THE OPTIMA PROJECT
The OPTical network management with Intelligent and Mobile Agents (OPTIMA) project1 aims at
improving the network survivability and flexibility of optical transport networks by studying and
developing adaptive algorithms based on autonomous software agents. Four main aspects are emphasized:
the coordination models based on bio-inspired approaches and collective intelligence (stigmergetic
coordination), mobile agent platforms, modelling and simulation.

1 OPTIMA is currently a project funded by the Swiss National Science Foundation Science (SNF) -
project nr. 2100-063717 (August 2001 - July 2003).

Deploying Ecomobile into Active Optical Nodes

152

OPTIMA should result in a suitable coordination model and a simulation tool interacting with open
mobile agent platforms and supporting irregular meshed network topologies, as well as multi-client
scenarios (e.g. IP/WDM, AT/WDM) and different failure models.

In this perspective, the development of Ecomobile, which provides a mobile agent middleware
deployed in active optical nodes by means of a FIPA-compliant agent platform constitutes preliminary
work to the OPTIMA project. The computational model leads to the implementation of adaptive
algorithms and GNMT provides an adequate simulation environment.

The design of task objectives could constitute one of the important tasks of the OPTIMA project. The
RWA problem, for example, could be solved by the development of one TO for the routing problem and
one TO for the wavelength assignment problem. In this context, the TO_Routing task objective model
proposed in Section 3.6.6, makes the implementation of a distributed algorithm for wavelength
assignment such as the DRCL (see Section 6.2) particularly straightforward; this implementation is
currently under investigation. Since the TO handles a single routing table for each port, or for each link, it
can be extended to store the corresponding RCL values.

7.2 DEPLOYING ECOMOBILE INTO ACTIVE OPTICAL NODES
In this section, we propose to examine an implementation of Ecomobile concepts into OTN. Our basic
assumption is that optical nodes encompass an active node environment including a NodeOS, an EE (see
Section 1.4.1), and an operating system enabling the development of Java-based active applications and
the deployment of the agent platform (see Section 4.4).

As far as the ASON/GMPLS logical architecture is concerned, Ecomobile can be regarded as an
intermediate layer between physical layer and control plane, which provides the transport plane with
appropriate knowledge concerning OTN; metrics specific to new value-added services such as QoP (see
section 7.4.2) can be implemented by means of specific task objectives and give the control plane the
information used for subsequent path allocation or reconfiguration.

7.2.1 Optical Agents
The implementation of mobile agents within the optical layer has led us to define optical agents [RS00]
(or λ-agents) which are supposed to be integrated into the optical frame of the optical channel layer (see
section 6.3.1). From the point of view of agent communication, we actually propose to use a portion of
the digital wrapper overhead to install a specific ECC devoted to the ACC. An adequate MTP, resorting
to an IP-based HTTP protocol for example, can then be installed so that Ecomobile agencies can
exchange ACL messages. In the context of Ecomobile, optical agents correspond to M-agents1.

With regards to the active node, information concerning the overhead and intended for Ecomobile can
be extracted from the digital wrapper, transformed into active packets, and sent to the active application.

Two classes of optical agents dedicated to OTN layers have been proposed to fit different applications:
the λc-agent (channel agent), which is associated to a specific wavelength, suits wavelength-related
functions, while the λm-agent (multiplex agent), which is associated to a single λ-multiplex, is appropriate
for fibre-related functions like "finding disjoint routes". From the point of view of Ecomobile, this
differentiation leads to distinct M-agent families evolving in the optical network in different ways and
reflecting the network state at different granularity levels.

1 In our implementation, the M-agent class constitutes an extension of the LambdaAgent (see Section 3.3).

Chapter 7
Towards Active OTN Management

153

In order to define a simplified approach, it is possible to propose a single family of M-agents which
evolves at the lower granularity level and is therefore similar to λc-agents, and to control the navigation
within task objective by means of a local connectivity matrix, which implies a representative equivalence
between physical environment and ecosystem environment; this context requires the definition of place
semantics.

7.2.2 Place Semantics
WDM technology allows the transport of several independent wavelengths in a single optical fibre. We
have seen in Chapter 1 that optical nodes can present different configuration types according to the
implemented networking functions. The constraints imposed by the node configuration directly influence
wavelength connectivity and therefore also routing. Each wavelength may therefore represent different
sub-topologies also known as wavelength planes. Associated connections within a specific wavelength
plane correspond to switching capabilities provided by the optical nodes whereas associated connections
between wavelength planes correspond to conversion capabilities also provided by the optical nodes.

According to this representation, each place can be associated with a specific wavelength, as depicted
on Figure 7-1.

Optical Switch

λ1

λ1

λ1

λi Place associated to λi

λ2

λ2

λ3

Inter-agency
connectivity

λ1 wavelength plane

Intra-agency
connectivity

λ3

λ-Switching

λ-Conversion

Optical Switch

λ1

λ1

λ1

λi Place associated to λi

λ2

λ2

λ3

Inter-agency
connectivity

λ1 wavelength plane

Intra-agency
connectivity

λ3

λ-Switching

λ-Conversion

Figure 7-1. Place semantics in the context of the basic optical functions

As far as the connectivity matrix of the Ecomobile agency is concerned, we propose to map the intra-
agency connectivity onto the connections between wavelength planes and the inter-agency connectivity
onto the connections within a single wavelength plane. Let us formally suppose that:

 UPIa ::= (Nodem, λi) (1)
 UPIb ::= (Noden, λj) (2)
 f(UPIx, UPIy) being the elements of the connectivity matrix (3)

Then,

 f(UPIa, UPIb) = 1 if and only if (Nodem ∫ Noden and λi = λj) or (Nodem = Noden and λi ∫ λj),
 and there is an optical function performing the connection so that (Nodem, λi) ö (Noden, λj).

Intelligent Wavelength Services

154

This kind of mapping matches the networking functions and allows the M-agent ecosystem environment
to explore the physical agility of optical nodes in a more efficient way. According to the territoriality
paradigm, the occupation of the environment by the M-agent population will also become more adequate
when each place is not restricted to a single node; an overstated number of absorption and cloning
behaviours can thus be avoided. It also has to be noted that fully tuneable and reconfigurable hybrid
nodes allowing any input wavelength to be switched onto any output wavelength are not commercially
available yet; optical nodes will gradually evolve from opaque to agile and transparent optical nodes
[Rob01].

7.3 INTELLIGENT WAVELENGTH SERVICES
In this section, we present an overview of the most popular optical network services which are currently
being developed. At the beginning of our investigations, we defined the term of Intelligent Wavelength
Services (IWS) to designate the services relying on the Ecomobile middleware1. We now propose to
extend the IWS with optical services emerging in the optical networking community, such as optical VPN
or on-demand provisioning.

The development of new IWS will give customers new opportunities to take advantage of the optical
infrastructure. In this context, the palette of services offered, their quick deployment, and the efficiency in
their support constitute key differentiators for network operators [VSN+01]. The introduction of new IWS
will also coincide with more sophisticated customer needs. The management of services leading towards
the optical Internet consequently relies on the definition of formal metrics and particular attributes which
are specific to OTN and which will allow customers and network operators to stand up for their reciprocal
commitments. In this context, service differentiation allows carriers to meet their customer needs more
satisfactorily; differentiated optical services also enable network providers to achieve end-to-end QoS by
means of an optical parameter set capturing the quality and the reliability of the optical lightpath
[GNS00]. The key factor of differentiation is consequently becoming more and more important, and it
does not only require the verification of Service Level Agreements (SLA) between the customer and the
network operator, but also between multiple network operators, or simply between the network operator
and the service provider. The development of an SLA framework based on attributes driving the network
architectural design and including cost, availability, protection switching time and propagation delay
[BAG01], is still at an early stage.

7.3.1 The Optical VPN
The optical Virtual Private Network service provides a secure and manageable environment allowing a
group of clients to fully exploit the flexibility of the switched intelligent optical network. In the optical
VPN, customers can make a contract for a specific network resource such as link bandwidth, wavelength,
and/or optical connection ports, and these resources can be controlled as if they were customer-owned.
Additionally, the customer can specify requirements concerning protection or restoration services. The
network provider then performs the optical connection statically or dynamically, taking into account the
SLA.

1 The IWS also constitutes a GNMT package encompassing the OTN classes.

Chapter 7
Towards Active OTN Management

155

Customer requirements generally correspond to the virtual topology, i.e. a collection of nodes and links
managed by client routers (IP, SDH component, etc.) and requiring to be mapped onto the OTN. The
customer is normally deprived of any visibility in the underlying optical infrastructure, which remains
under full control of the network provider.

Optical VPNs can be used to support a variety of applications, including ISP edge router networks,
content delivery among a network of servers, bandwidth trading between carriers and storage WANs for
enterprise networking [BTS+01].

7.3.2 On-demand Provisioning
While static bandwidth provisioning in OTN may require a long time (sometimes several days), and is
rather dedicated to longer holding time circuit-switched connections, on-demand provisioning or fast
provisioning aims at supporting the management of switched connections which have much shorter
lifetime [E1116_01]. On-demand provisioning therefore requires the connection establishment time to be
as short as possible.

Like the optical VPN, this service may rely on SLA in which the customer specifies his requirements
concerning bandwidth and client type, as well as those related to protection and restoration services. In
the long term, customers should be able to ask for lightpaths by means of a Web interface.

7.3.3 Protection and Restoration in the OTN
The overall availability requirements can be evaluated to a percentage in the order of 99.999 percent,
which implies that the network should not be dysfunctional for more than 6 minutes a year on average
[GR00]. Network survivability is therefore a key factor in network design and management. With the
introduction of IWS, new protection services can be proposed to the customers according to different
service classes. From the network operator’s point of view, for example, lightpaths can fall into one of the
following classes: some that must be protected by the optical layer, some that must not be protected, some
that are indifferent to protection, others that may be protected on a best-effort basis, and finally low-
priority lightpaths that utilize protection bandwidth under normal circumstances and are pre-empted by
protection of other lightpaths. In this thesis, particular emphasis has been placed on protection and
restoration issues in OTN; we therefore propose to examine important aspects related to this topic in the
context of a multi-layer OTN.

There are two possible survivability strategies in optical networks, namely protection and restoration,
which are mainly inspired from the SDH networks [MBN99].

Protection can consist of two different schemes: dedicated protection (1+1) or shared protection (1:n,
m:n). While the former requires disjoint paths, but not necessarily disjoint optical nodes, the latter
reserves a certain amount of wavelengths as spare capacity for one or several working paths. An optical
fibre can therefore share its wavelength capacity in both working and protection paths. Examples of
optically protected rings are the Optical Channel Dedicated Protection Ring (OC-DPRing), the Optical
Channel Shared Protection Ring (OC-SPRing), the Optical Multiplex Section Dedicated Protection Ring
(OMS-DPRing) and the Optical Multiplex Section Shared Protection Ring (OMS-SPRing). In all these
protection mechanisms, protection paths are pre-computed, so that the switching mechanism is performed
in a short time frame (50ms) whenever a failure occurs.

Unlike protection, restoration occurs immediately after the failure. In this case, the discovery of
alternative paths may require some time. Restoration is generally proposed as an ultimate way to keep a
service running in case of failure when no protection has been set up. The IP layer, for example, provides

Differentiated Protection Services

156

a robust restoration mechanism based on packet re-routing in case of failure and integrated into the
routing protocols.

The dynamic re-configuration capability characteristic of optical switches allows the protection paths to
be re-configured on-line during a live connection. Unlike working paths, protection paths can be re-
configured even when the running service is not aware of the operation.

In the context of a multi-layer OTN, client layers may have their own protection strategy, like SDH
layers, for example. The protection of both client and optical layer improves the overall survivability of
the network since failures can be immediately detected and repaired at the correct layer, which limits the
propagation of alarms to other layers; this protection scheme also constitutes the only way of avoiding
intra-site connection failures between client equipments and optical equipments.

Protection at the optical and client layers however requires particular attention to the mapping of virtual
paths onto the OTN topology; inadequate mapping may lead to interoperability issues regarding the
protection strategies in both layers; this phenomenon, which is known as failure propagation [Cro98],
will be examined in section 7.4.

Integrated survivability is a cost-effective solution providing telecommunication services in a multi-
layer network environment with differentiated levels of survivability [E718_01]. Multi-layer survivability
raises two open issues which can be phrased as follows: what survivability functionality should be
allocated at each layer? How should co-ordination between the network layers be defined? In the absence
of co-ordination, unstable situations, undetermined network configurations and dynamics may actually
occur.

7.4 DIFFERENTIATED PROTECTION SERVICES
In the present section, we introduce a new value-added protection service issued from Ecomobile by
implementing a specific task objective. This kind of service is referred to as differentiated protection
service and allows customers to ask for a certain protection level or protection quality for a particular
optical VPN [RRS01].

Dissimilarities between VPN topology and physical topology regarding protection strategies may lead
to service disruption in case of failure at the physical layer, even if the VPN is still provided with spare
capacity. This interoperability problem leads to dependencies between VPN layer and physical layer
which are called vertical dependencies. The VPN protection paths consequently need to be carefully
mapped onto the physical network so that the vertical dependencies can be reduced and propagation
failures in the VPN layer can be avoided. The complex NP-hard problem raised by this operation has
been thoroughly investigated and static heuristic-based solutions have been presented in [CLG00]. The
solutions which have been proposed however fail to meet the expectations related to a dynamic
environment with fully distributed control.

7.4.1 The Network Model
The network model considered in our study is depicted in Figure 7-2 and consists of two layers, the
client-transparent optical VPN, which corresponds to the virtual topology, and the OTN, which represents
the physical topology. The client VPN is not limited to a particular network technology; it simply claims
to use a part of the underlying resources with restricted access. A VPN is composed of several end-to-end
connections that may or may not be protected. In case of protected connections, the set of protection paths
corresponds to the protection strategy attached to the connection. A VPN set can actually have several
collections of working and protection paths.

Chapter 7
Towards Active OTN Management

157

A

B
C

E

PP1
PP1

PP2

PP2

WP1

WP2

A

B
C

D

E

PP2

PP2

WP1

WP2

PP1PP1

Virtual Topology

Physical Topology

Figure 7-2. Two-layers network model with virtual and physical topology

Various protection levels are considered in both layers. The client can express his protection requirements
in the form of a SLA, so that the task objective evaluating the protection configuration will be
appropriately influenced in its choice of physical optical paths.

In our network model, the protection strategy consists in supplying the protection path as required in
the virtual topology. In case the client requests a SDH Working Path (WP1) between node B and node C,
for example, the protection strategy consists in re-rerouting the traffic, using Protection Paths (PP1) via
node A, in case of failure on link (B,C).

According to our protection model, the Protection Paths (PPs) are set up dynamically. This operation
might result in a combination of dedicated and shared protection paths, which means that the PP
configuration could use the same fibres and could rely on the same nodes as the Working Path (WP), in
which case the link would be protected against wavelength channel failure, but not against fibre failure.
Intuitively, we can assume that the number of shared nodes and the number of shared links making up the
protection path will impact on the protection quality. As the protection path configuration is subject to
dynamic changes during the connection time, there might not be any protection path available for certain
low-QoP based VPNs but, in case of failure, a restoration mechanism could be launched in order to
preserve the connections.

7.4.2 Quality-of-Protection (QoP) and DPS Formulation
In the scope of our new protection service, the protection quality can be evaluated by means of the
Quality-of-Protection (QoP) metric, a temporal metric for on-line assessment. In order to elaborate a QoP
metric, we first need to define the entities of the optical layer which are subject to failures. The fibre
actually reveals to be the least reliable component in the system [GR00], including the optical amplifiers
deployed along the fibre. The other critical component is the entire node, which is composed of numerous
transponder cards to interface with client layers and of all the fabric necessary for the realization of
networking functions. This is the reason why we propose to define the following factors involved in the
QoP metric: the amount of shared nodes of the protection path, the amount of shared links of the
protection path, the horizontal dependencies between multiple domains, and the vertical dependencies

Differentiated Protection Services

158

between the physical layer and the client layer. Horizontal and vertical dependencies are depicted on
Figure 7-3.

Customer C

Customer B

Customer A

β-interactions

α-interactions

Network
operator #1

Network
operator #2

VPN

VPN

VPN

Optical Transport Network Optical Transport Network

SLA

SLA

Figure 7-3. Two-dimensional interactions influencing the quality of protection

In order to calculate the QoP, we adopt a global network view involving interactions between multiple
layers, as well as between multiple network operators. We assume that the business-related agreements
are defined by means of SLAs.

We propose the following definitions:

i End-to-end client connection (WP and PP) (1)
D Total of domain peers (2)
SNi(t) Shared nodes at time t of connection i (3)
SLi(t) Shared links at time t of connection i (4)
ω Weight associated to shared nodes vs. shared links (given by the client) (5)
αd Horizontal dependencies between the domain peer d (currently αd = 1.0) (6)
βi(t) Vertical dependencies associated to connection i (7)
TLi Total of fibre links along the path of connection i (WP+PP) (8)

SN(t) (3) is the number of shared nodes along a protection path, SL(t) (4) the number of shared links
(fibres) along a protection path. The shared link implies that the protection and working paths are on the
same link using different wavelengths. A fibre break obviously entails the loss of all connections going
through the fibre. Shared links are acceptable only in the case of optical channel malfunction within the
optical node.

SNi(t) and SLi(t) are time dependent and the configuration of protection paths can change over time. If
SLi(t) is constantly equal to 0, it means that the protection path follows a dedicated (1+1) protection
strategy. Moreover, if SNi(t) is equal to 0, the protection path uses disjoint nodes from those used in the

Chapter 7
Towards Active OTN Management

159

working path. Horizontal dependencies, which are more difficult to evaluate because of the role played by
business parameters, will not be detailed in this thesis.

Weight ω (5) gives the customer the opportunity to influence the importance given to shared nodes and
links belonging to the protection path. This value may be determined from the customer’s own experience
with a network operator.

0 § α § 1 (6) is to be considered in case of multi-operators or multi-domains interactions. α is a
constant value and refers to horizontal interactions. This factor can be used to assess the protection quality
when several domains have to be traversed by an end-to-end connection.

0 § β § 1 (7) is a time function assessing the respect of constraints related to the interoperability
between the protection strategies of the client layer and OTN. β depends on client demands and can
change dynamically according to the current configuration of protection paths. It is related to multi-layer
interactions. A primary approach towards this function has been proposed in [RoRS01].

Let us define PNetworkFailure as the probability of a failure in the OTN layer (fibre cut, node malfunction)
and PServiceFailure as the probability of a service disruption.

The Dynamic Protection Set-up (DPS) problem is stated as follows:

DPS: given an end-to-end connection, find a protection path that maximizes QoP(t), with

() ()
() 2() ((1)) * ()

i i

i i i

S N t S L t
T L s n t T L

i iQ o P t e e tα ω ω β
− −
− −= + − (9)

 with

D

d
d

D

α
α =

∑

Figure 7-4. Evolution of the QoP according to the number of SN(t) and SL(t) (α,β = 1.0, ω = 0.3)

0 § QoPi(t) § 1 (9) defines the quality of protection of the connection i at time t.
From the customer’s point of view, the protection requirement can be expressed as the probability that

the service will be disrupted. This can be simply computed as follows:
PServiceFailure = PNetworkFailure * (1 - QoP)

The PServiceFailure value, which may be part of the SLA between customer and network operator, can be
monitored in a continuous way. If QoP is equal to 1, the protection is maximal and the probability that the

0
20

40
60

80
100

shared nodes
0

20

40

60

80
100

shared links

0.4
0.6
0.8
1

0
20

40
60

80
100

shared nodes

Differentiated Protection Services

160

service will be interrupted is reduced to 0. Without any protection, QoP is equal to 0, and the probability
of an interruption is equal to the probability of an intervention at the OTN layer.

The QoP of each individual connection in the VPN set is continuously assessed whenever protection
paths emerge from the mobile agent ecosystem; the quality of protection can then be compared with the
requirements specified in the SLA. Since our primary objective is to devise an adequate architecture and
implementation for distributed solutions matching scalability and survivability requirements, the QoP
optimisation for the total VPN set has not been investigated yet.

7.4.3 DPS-oriented Task Objective
According to the definition of QoP and the related DPS, we now propose to design the task objective
implementing the new protection service. We assume that a customer wishes to establish a VPN
connection and therefore requires a working and protection path according to a private protection
strategy; these requirements will be embedded in the task objective.

The TO_QoP, which is outlined in Table 7-1, is mainly inspired from the TO_Travel and
TO_PathSelect TO models presented in section 3.6. The TO may be launched at any location in the
network. The first objective of the TO instances will consequently consists in finding the source node and
then in discovering a working path accommodating the working strategy constituted of a set of nodes. At
this moment, the cooperation strategy may consist in checking itineraries and discarding TO instances
with redundant information. When the destination node has been found, the working path will be initiated
and the TO instance will travel back to the source node following the same stochastic navigation model
than in the beginning; TO instances, at this time, know that the protection path has to be discovered. If
such a TO instance should meet another TO instance focused on a working path (issued from the initial
colony of TO instances), the latter will immediately be forced to re-initialize its itinerary and to perform
the same job as the former. When the source node has been found again, TO instances looking for the
protection path also prepare intermediate values in order to compute the QoP. When they reach the
destination node, the QoP is computed with the discovered path and compared with the current QoP, if
any. Then, the TO instances restart their job in order to find new protection paths. This process is endless;
the colony of TO instances is evolving over time.

Only relevant code is presented; the clone() method and the constructor are not revealed, and parts
of the code which are not relevant to the understanding of the TO have been omitted in order to improve
code readability. Finally, the class prefix for the two constants WORKING and PROTECTION is not
mentioned: they belong to the class OptChannel.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

public class TO_QoP extends TOJava{

 // Frontal objects
 Vector itinerary, protStrategy, workingVPN; // Itinerary & customer requirements
 int sn, sl; // # shared nodes/links between working & protection path
 int mode; // Indicates if the TO looks for working or protection path
 int cycle = 0; // Check for cycle
 boolean track; // Path tracking indicator (source/destination target)

 public boolean activate(TOWrapperInterface wrapper) {
 String addr = (OTNNode) wrapper.getAgency().getLocalNode().getAddr();

 // _cd represents the connection descriptor for this connection (retrieved from
 // the local node in the simulation). We do not show details about that.

 // Check if this node belongs to the working path
 if (addr.equals(_cd.getSourceNode())) {
 initStrategy(); // We are at the beginning of the path

Chapter 7
Towards Active OTN Management

161

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

 track = true; // So, we are ready to discover the path
 }

 if (!track) return true; // If we are not tracking a path, then continue
 // to explore the network

 if (_cd.isNodeIn(addr, WORKING)) { // Check if the node already belongs to WP
 sn++; // Will be used in the QoP calculation
 if (mode == WORKING) { // It is time to change the mode, no need
 mode = PROTECTION; // to find the WP, since already discovered
 if (!addr.equals(_cd.getSourceNode())) {
 initStrategy(); // If it is not the source node, we have to
 track = false; // find it in order to discover a PP.
 return true;
 }
 }
 }

 // Check if the link is already used by the working path
 if ((mode == PROTECTION) && !addr.equals(_cd.getSourceNode()))

 // Do not forget to check for both directions!
 if ((_cd.getLink((String) itinerary.lastElement(), addr, WORKING) != null) ||
 (_cd.getLink(addr, (String) itinerary.lastElement(), WORKING) != null))

 sl++; // Will be used in the QoP calculation

 itinerary.add(addr); // Store the current location

 if ((mode == PROTECTION) && protStrategy.contains(addr)) // Check with requirements
 protStrategy.remove(addr);
 else if ((mode == WORKING) && workingVPN.contains(addr))
 workingVPN.remove(addr);

 if (addr.equals(_cd.getDestNode()) && // Destination reached? Strategy ok?
 (((mode == WORKING) && workingVPN.isEmpty()) ||
 ((mode == PROTECTION) && protStrategy.isEmpty()))) {

 double QoP = _cd.computeQoP(itinerary.size()-1+_cd.quantLinks(WORKING), sn-2, sl);
 if ((mode == WORKING) || (QoP > _cd.getQoP())) { // Better QoP

 // Close the current open connection and open the new one
 // with the nodes stored in itinerary.
 // …

 track = false; // Reset everything in order to discover other paths
 initStrategy();
 mode = PROTECTION;
 }
 }
 return true;
 }

 public boolean beforeMigration(TOWrapperInterface wrapper) {
 if (itinerary.contains(wrapper.destination())) { // Check for a cycle
 cycle++; // Cycle counter to check if it is a "dead end"
 if (cycle <= 5) {
 offload(wrapper); // Offloaded in the blackboard for subsequent activations
 return false; // Bye bye M-agent !
 } else {
 track = false; // No possibility to avoid a cycle, so we reset everything
 initStrategy();
 }
 }
 cycle = 0; // The TO can continue, so we reset the cycle counter
 return true; // Keep alive
 }

 public boolean cooperate(TOWrapperInterface wrapper, TOJava otherTO) {
 TO_QoP _other = (TO_QoP) otherTO; // Reference to the slave TO

 if (!track && !_other.track) return false; // Only one instance is sufficient
 if (!(track && _other.track)) return true; // In this case, no cooperation

Differentiated Protection Services

162

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

 if ((mode == PROTECTION) && (_other.mode == WORKING)) { // TO adaptation
 _other.mode = PROTECTION; _other.initStrategy(); _other.track = false;

 } else if ((mode == WORKING) && (_other.mode == PROTECTION)) {
 mode = PROTECTION; initStrategy(); track = false;

 } else if (itinerary.containsAll(_other.itinerary)) // Same itinerary?
 _other.discard();
 else if (_other.itinerary.containsAll(itinerary))
 return false;

 return true;
 }

 // User method to initialize the customer requirements regarding strategy
 public void initStrategy() {
 workingVPN.clear(); protStrategy.clear(); // Clear the requirements

 // Describe the working path of the client VPN and the protection strategy
 workingVPN.add("Bern"); workingVPN.add("Zurich");
 protStrategy.add("Martigny"); protStrategy.add("Andermatt");

 sn = 0; sl = 0; itinerary.clear(); // Reset
 }

 public void init(TOWrapperInterface wrapper) {
 setPriority(10); cleanEnv(wrapper); setPersistent(true); // As usual…
 // Other initialisation statements …

 initStrategy(); // Prepare the client requirements

 mode = WORKING; // First, we want to discover a working path
 track = false; // Not sure to be in the source node; TO may be launched everywhere!
 }
}

Table 7-1. The TO_QoP task objective

It has to be noted that the VPN connection is described both by a source node and a destination node. The
proposed TO_QoP task objective performs both working and protection path allocation based on the VPN
connection requirements (112-113) given in the init() callback (118). This is the reason why the
mode variable (6, 124) indicates the kind of path the TO instance is currently trying to discover, either
WORKING or PROTECTION. In our simulation, we assume that the working path is allocated along
wavelength 0 and the protection path on wavelength 1.

Since the TO is continuously evolving within the network and can be launched everywhere, it is
necessary to differentiate, by means of the track indicator (8), the TO instances from their final target.
A source node target (track is false) TO instance will therefore navigate until the source node has
been discovered whereas, a destination node target (track is true) TO instance is searching for the
destination.

In the PROTECTION mode, the activate() callback checks for shared nodes and links during its
travel (25, 41); once the destination has been reached, the current QoP value is compared with the
established protection path (57-58) and a re-configuration is performed in case it is necessary (60-62).
The TO then continues its lifecycle by re-initializing its internal knowledge (64-66), navigating freely
until the source node has been discovered for the beginning of a new exploration. Another strategy for
going back to the source node may obviously consist in extending the task objective with the
TO_PathSelect TO model (see Section 3.6.4) and initializing the reverse trajectory with the itinerary
recorded in the TO.

Chapter 7
Towards Active OTN Management

163

The beforeMigration() method avoids cycles in the discovered path (73); if the TO instance
finds itself in a dead end however, the callback will force the TO (79-80) to restart its exploration from
the source node by means of an internal counter (cycle). The value of 5 has been chosen in accordance
with the mean nodal degree of the Swiss network (see Section 5.3.1).

The inter-TO cooperation strategy deals with redundant TO instances; when two source node target TO
instances are detected, only one survives. The meeting of two TO instances with different targets implies
that the source node target TO, which is in the WORKING mode, is changed into the PROTECTION mode
and its target becomes the destination node (93-97). Finally, TO instances with identical itineraries are
also discarded (99-102).

Two different TOs may also be combined in order to implement the DPS task objective. While the first
TO based on a TO_Monitor task objective model continuously monitors client connections’ shared nodes
and links and stores QoP related information locally, another task objective resorting to a non-
deterministic pre-planned (working and protection strategy) navigation model (see Section 2.3.3)
computes the protection path configuration by means of the current QoP values in each node. This
approach is oriented towards emergent behaviour; it can be associated with the R-chemical and the R-
agent of the SynthECA approach presented in Section 2.4.2.

7.4.4 Experiments and Results
In this section, we examine the response of the ecosystem to the insertion of the TO_QoP task objective
described in the previous sections. We have opted for the Swiss network composed of one fibre per link
and containing two wavelengths. According to an initial approach, wavelength 0 is dedicated to the
working path and wavelength 1 to the protection path. No additional restriction concerning the optical
nodes has been introduced.

The VPN connection is described by means of a node collection to be included for the working and
protection paths which are embedded in the task objective as depicted in Figure 7-5.

In order to discover a working path, the task objective has to rely on the constraints related to the
customer VPN, i.e. the set of nodes (Bern, Zürich) which must appear along the working path. The
protection path (Martigny, Andermatt) follows the same mechanism. No shared node or link should
appear at the client layer.

Differentiated Protection Services

164

Geneva

Martigny

Andermatt

Bern

Zürich St-Gallen

Working Path

Protected Path

Figure 7-5. Working and protection paths in the optical VPN (dashed lines) and resulting allocation

in the OTN

Since there are no additional constraints regarding path length, the first TO instance reaching the
destination triggers the activation of the working path. The task objective then discovers a protection path
in the OTN meeting the customer’s requirements; a reconfiguration of the protection is performed each
time a protection path leading to an improvement of the QoP is found. It has to be mentioned that the path
length is not taken into account in the QoP either (see Section 7.4.2). As we can see on the figure, the
mapping of virtual protection paths onto the physical topology unavoidably leads to a shared node and to
a shared link. Figure 7-6 shows the values of the TO-related metrics with respect to this task objective.

Chapter 7
Towards Active OTN Management

165

Quality-of -Protection (QoP)

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000

Time (#Jr Instant)

Q
oP

(t)

MBS low MBS high

Context size

0

10

20

30

40

50

500 1000 1500 2000
Time (#Jr Instant)

C(
t)

MBS low MBS high

Diffusion rate

0

0.2

0.4

0.6

0.8

1

500 1000 1500 2000

Time (#Jr Instant)

D(
t)

MBS low MBS high
Figure 7-6. TO-related metrics for the DPS task objective

The task objective has been inserted after 500 instants, which corresponds to well-established stability of
the ecosystem. As no constraint concerning the path length has been implemented, the discovery may lead
to different paths, so that the QoP turns out to be higher for MBS-high than for MBS-low because of the
slightly different working paths discovered in the two MBS.

The agent context size appears to be very small in MBS-low. On the contrary, MBS-high presents
significant, but nevertheless reasonable, context size differences. MBS-low is therefore preferable when a
large number of client connections have to be processed. As stated in Chapter 5, MBS-low is generally
more appropriate for explorative tasks, such as the TO_QoP task objective. However, further experiments
remain to be carried out in order to determine when the TOs exhibit better performance with MBS-high
than with MBS-low, as far as QoP is concerned.

7.5 SUMMARY
In the present chapter, an approach to implementing active management based on Ecomobile within the
future optical transport network has been proposed. We have introduced the OPTIMA project, which
aims at the study and the implementation of intelligent and mobile agent based approaches towards the
management of the future OTN. In this perspective, Ecomobile provides an adequate mobile agent
infrastructure devoted to the transport network management, and can be considered as the basis for
OPTIMA.

As we have seen, a combination of active network technology with enhanced optical nodes enables
optical agents to be transported directly within the optical channel layer. The establishment of an ECC
through a subset of the digital wrapper overhead and the recourse to an adequate MTP allows the agencies
to exchange ACL-based messages between the optical nodes. Still, the deployment of Ecomobile into
OTN requires an appropriate mapping of the place semantics. It has been proposed to associate intra-

Summary

166

agency connectivity with the wavelength conversion function and inter-agency connectivity with
wavelength switching in order to permit full investigation of the optical network by M-agents.

The introduction of networking functions into the optical domain and the capacity of OTN to support
various client layers leads to the creation of new optical services, such as optical VPN, on-demand
provisioning and protection services, associated to the arrival of new business requirements. In this
context, SLAs will induce network operators to create differentiated services and to manage new business
models involving service provider and customer.

The creation, deployment and management of value-added optical services can be achieved in the
context of Ecomobile and of its particular computational model: the new value-added differentiated
protection service based on the QoP metric presented in this thesis takes into account properties like the
number of shared nodes and links between working and protection paths in order to evaluate the
protection quality. This is the reason why we have developed the TO_QoP task objective, which deals
with customer requirements regarding VPN connections, including the protection strategy. In the future,
the vertical and horizontal interactions between network layers will also be investigated. The task
objective performs allocation of working and protection path, and it appears that the QoP improves
regularly. The behavioural analysis of this TO within a 2-wavelength Swiss network has shown that both
MBS lead to a rapid convergence towards maximal QoP.

According to our experiments, the development of optical services with Ecomobile does not require any
change in the control plane, so that it does not affect the signalling implemented into the OCC.

167

Conclusions

The recent progress in optical network technology, the explosion of Internet traffic, the creation of new
multi-media services and the emergence of new business models involving network operators and service
providers bring about profound changes in the conception of a transport network; as future multi-layer
optical networks will be able to support several Tbit/s of client data, traditional platform-centred network
management systems no longer fit the inherently distributed environment of future transport networks in
terms of scalability, flexibility and time-to-market service deployment.

In this thesis, we have developed a self-adaptive mobile agent based infrastructure called Ecomobile in
order to improve the management of future multi-layer WDM based optical transport networks. In the
perspective of a decentralised management implemented into active components and of network resource
control in a dynamic changing environment, we have considered a population of mobile agents in order to
take advantage of powerful distributed and mobile processing techniques. Ecomobile allows us to deal
with a number of issues related to the dissemination and activation of cooperative network management
oriented tasks, which are not fully addressed by other mobile multi-agent systems. The network
infrastructure is assumed to be composed of heterogeneous components and legacy systems.

We started Chapter 1 with the analysis of various mobile agent based network management approaches
in the context of different network technologies and we tried to identify their main characteristics
regarding agent behaviour. We placed particular emphasis on Active Networks because of their ability to
transport code and to provide a rational execution environment for mobile agents. In the development of
agent-oriented applications for large-scale networks, particular attention must be paid to standardization
efforts. In this context, we examined agent standards such as FIPA and OMG MASIF. Although FIPA
does not support agent mobility yet, the rich collection of agent-oriented specifications and the continuous
efforts towards the improvement and extension of these specifications place FIPA as the favourite
standards organization for agent-based telecommunication applications. While most mobile agent based
applications are in fact based on a very limited use of mobility, i.e. a mobility mostly restricted to the
download and remote execution of code, agent mobility can be considered as an extension to the
intelligent agent paradigm, although mobile agents are predicated on reactive and small agents and
stationary agents on deliberative "big" agents. In this perspective, mobile agents have the possibility to
interact with stationary agents in order to take advantage of any agent-based service. We finally stressed
our contribution towards the adoption of a unified view of the concepts of Active Networks, intelligent
agents and mobile agents.

In Chapter 2, we identified three distinct abstraction models referring to the architecture of mobile
agent systems: the computational, coordination and navigation models. The introduction of a loosely
coupled task model allowed us to classify the dependencies involving the agent's operational behaviour
together with the migration function and interaction schemes. We argued that the agent can implement
loosely coupled task models when the information necessary for its migration is located within the
environment, outside the agent itself. The development of a flexible and scalable mobile agent based
network management system raises a number of issues addressed in Chapter 3. In most mobile agent
systems, the number of agents is fixed and corresponds to an optimal size for the accomplishment of a
specific task. According to our approach, the population of mobile agents and the network infrastructure
are regarded as a whole, similar to an ecosystem composed of ecological individuals and their
corresponding environment. We have therefore devised a novel agent architecture based on the three

Conclusions

168

identified abstraction models and constituted of two distinct parts: the Mobile Behaviour Scheme (MBS)
and the Task Objective (TO).

The mobile behaviour scheme was defined by means of reactive behaviours implementing the
coordination and navigation models. Two mobile behaviour schemes were proposed in order to
approximate the territoriality paradigm, an ecosystem principle referring to density-dependent intra-
specific competition based on active interference between ecological individuals. Territorial behaviour
plays a central role in the self-regulation of the agent population and allowed us to implement a "living"
ecosystem-inspired mobile agent middleware fully aware of the network infrastructure.

The task objective, which is dynamically inserted into the mobile agent, represents the agent's
operational behaviour; the TO has its own lifecycle and can be expressed in different programming
languages, such as Java or rule-based languages like JRules, by means of specific wrappers. The
particular computational model characterizing Ecomobile leads to a task design based on specific
callbacks for the TO activation, migration and cooperation, the associated current location and the
following destination. Still, we have proposed some generic TO models which correspond to basic
functions of network transport management.

Ecomobile radically differs from other mobile agent systems because a self-regulated society of mobile
agents navigate within the network before any specific task has been implemented. The ability to
dynamically load and to manage different TOs, by implementing loosely coupled task models with
different migration strategies, makes our middleware a flexible and universal network-aware mobile agent
system particularly well suited to develop intelligent and adaptive management systems.

Our middleware relies on a threefold architecture involving the following active components: an
agency, mobile agents called M-agents and implementing an MBS, and the task objectives, whose
instances are stored in blackboards and in the M-agents. Similarities between Ecomobile and reactive
systems have guided us to an implementation with a reactive programming formalism enabling discrete
instant-based simulation; a synchronous cooperative approach significantly reduces the amount of non-
deterministic effects appearing during the deployment of the mobile MAS. In Chapter 4, we presented the
Junior micro-kernel, which provides an efficient Java API for reactive programming. The mapping of
reactive behaviours onto reactive instructions led us to examine potential causality problems and to
propose adequate solutions. The deployment of Ecomobile is achieved by means of the Jade FIPA-
compliant agent platform which was originally intended for stationary FIPA agents; the migration of M-
agents and class transfer are performed through ACL message exchanges between corresponding
agencies. The LEAP agent platform derived from Jade also provides an interesting lightweight embedded
agent environment designed for small devices and constitutes a promising technology for the deployment
of agents within active components.

The deployment of mobile agents in accordance with this approach reveals several advantages: firstly,
and thanks to the all-in-one agency model and its related synchronous execution environment, no
additional resource-consuming components for the support of agent mobility, such as those present in
other mobile agent platforms, are required. Stationary and mobile agents moreover share a common agent
framework and can easily interact with each other; consequently, the local node resources will not be
wasted because of the resort to several agent platforms. Finally, we promote the convergence towards a
unique standard reference for intelligent and mobile agents in order to avoid undesirable misfits between
different agent communities. In this context, FIPA turns out to be the most popular and promising agent
organisation.

 Chapter 5 introduces the Generic Network Management Tool (GNMT), which has been developed in
the context of this thesis and is being transformed into an open source project. GNMT enables the

Conclusions

169

functional simulation of a multi-layer optical network and enhanced nodes in which an Ecomobile agency
has been implemented. A behavioural analysis of the M-agent population as well as the response of the
ecosystem to the dynamic insertion of task objectives have been performed. The reaction instant has been
considered as the time reference model and several MBS-related metrics such as population size, node
and link visit frequency, and TO-related metrics like agent context size and diffusion ratio, have been
defined. We discussed and compared the results issued from three regular and irregular network
topologies with two MBS, MBS-low and MBS-high; while the population size reveals to be stable and,
with adequate parameter values, to approximate the network size, the task objectives also exhibit good
performance. We found that MBS-low leads to a better performance for task objectives requiring complex
knowledge and extensive exploration of the network, whereas MBS-high exhibits a rapid diffusion of task
objectives during the first instants and consequently induces the rapid deployment of monitoring tasks
within the whole network, for example.

Since Ecomobile is characterized by self-adaptive and self-organising mechanisms evolving over time,
our ecosystem is not really suited to the transfer of high-priority messages or tasks. In this case, the
agency may be extended with mediation and morphing services in order to transfer messages or code
directly via ACL messages. It also has to be noted that high priority messages in active networks can
resort to special low-level active packets and thus avoid unwanted high-level processing.

An overview of optical network technology was presented in Chapter 6. The optical transport network
constitutes our main application domain in this thesis. Optical nodes encompass basic networking
functions operating fully in the optical domain without requiring any optoelectronic conversion, and
which can provide new capabilities in terms of wavelength routing. Recent advances in the definition of a
digital wrapper supporting client-transparent payloads within the optical channel structure encourage
further investigations towards active optical nodes integrating an embedded communication channel in
the wrapper overhead for the transport of so-called optical (mobile) agents.

The routing and wavelength assignment constitutes a major problem in optical networking; although
the problem has been extensively discussed in its static form, the dynamic RWA including the
development of distributed algorithms remains an important field of research. In Chapter 7, a possible
implementation of RWA into optical networks with Ecomobile by means of specific task objectives was
suggested. This active management approach allowed us to develop a new differentiated protection
service and its associated Quality-of-Protection (QoP) metric, which takes into account horizontal and
vertical dependencies in multi-layer optical networks, as a part of the customer SLA. We tried tow show
that a simple task objective may lead to an efficient implementation of a new value-added service and that
Ecomobile can therefore improve the management of optical networks and contribute to a future
enhanced control plane.

Although the development of Ecomobile has been primarily devoted to transport network management,
our middleware can be considered in a wide range of applications which give a central role to network
intelligence. For instance, future content delivery networks intended for a huge amount of information
related to interactive digital television will require self-organizing intelligent management solutions
enabling providers to broadcast contents in a rational way. This kind of service also includes applications
referring to service composition, in which logic is transferred from one location to another. In this
context, Ecomobile provides an ideal infrastructure for investigating mobile information and application
management.

Conclusions

170

Another range of applications is associated to the emerging autonomic computing paradigm devised by
IBM1 and mainly inspired from the autonomic function of the human central nervous system. A typical
objective in this novel approach consists in developing distributed networks that are largely self-
managing, self-diagnostic, and transparent to the user. The infrastructure and ecosystem-inspired concepts
presented in this thesis may significantly contribute to this vision of future computing.

OPEN ISSUES

The current implementation of Ecomobile leaves a certain number of open issues. A statistical framework
specific to population ecology should lead to a more fine-grained analysis of the ecosystem stability.
Further investigations with different topologies and different network sizes should also be performed in
order to confirm the density properties and the ecosystem stability revealed by our simulation results. At
the current stage of our experiments, it is difficult to predict the evolution of certain TO-metrics in the
case of large-scale networks, such as agent context size.

The current publicly available implementation of the Junior reactive machine should be improved in
order to support a larger number of parallel instructions: the dynamic addition of reactive instructions
relies on a recursive mechanism which may lead to a stack overflow problem when numerous M-agents
are involved. An alternative way to overcome this limitation would consist in modifying the source code
in order to implement tables or queues for handling reactive instructions. In this context, the authors of
Junior are also working on a new version called Storm, which should provide significant improvements
towards the processing of a huge number of events and instructions.

Finally, the transfer of code in Java requires the presence of classes in the remote agency. In particular,
the TO classes must be transferred, so that TOs can be de-serialized by the M-agent context. Although
classes can be transferred when it is necessary and although they can be loaded dynamically in the virtual
machine, Java unfortunately does not allow a class to be unloaded. This problem is common to other
mobile agent systems and remains to be solved in future versions of the JVM.

FUTURE WORK

The study of large-scale networks of 100 nodes or more, with various connectivity degrees, constitutes
the next step of our investigations. In addition to the waiting time, we also intend to investigate dynamic
adaptation under certain conditions according to other parameters in reactive behaviours, such as the
number of clones. Improving the MBS itself by means of automatic switching between MBS-low and
MBS-high in order to tune the ecosystem behaviour more finely and therefore to increase the TO
performance, also constitutes one of our objectives. A statistical analysis of node visits, i.e. the frequency
of TOs activation, would also provide helpful information for the measurement of TO performance and
for its improvement. The development of a monitoring tool could finally provide a way to observe the
ecosystem behaviour in real networks and to tune parameters in the environment dynamically in order to
influence the agent population.

The validation of our system can be achieved by means of a simulated active node environment with
the LEAP agent platform. A Java node operating system could be examined on top of the NodeOS for the
construction of reliable active packets. Anchored in reactive systems, the formalization of Ecomobile
based on SDL or Petri-nets and by means of partial ordering techniques would also clarify the influence
of ecosystem parameters and allow us to define further MBS. The introduction of sexual reproduction as a

1 http://www.research.ibm.com/autonomic

http://www.research.ibm.com/autonomic

Conclusions

171

new reactive behaviour could reveal a new interesting way to explore the network and to disseminate the
TOs efficiently.

The development of new task objectives for the management of optical networks constitutes one of the
objectives of the OPTIMA project. Joint efforts of Swisscom Innovations and the University of Fribourg
should lead to the elaboration of different state-of-the-art distributed RWA algorithms by means of task
objectives. These algorithms could then be compared with centralised RWA algorithms currently
supported by GNMT. The computational model of Ecomobile should allow us to combine several RWA
algorithms with adequate parameterization. Specific rule-based task objectives will also be developed in
the scope of an ongoing project dealing with the management of optical SLAs.

Last but not least, it could be interesting to invest some time and efforts in order to manage the
complexity of a terminode network (see Section 1.4.3). In this final perspective, the combination of
Ecomobile with a MITAgent approach (see Section 1.3.1) and the implementation of lightweight software
components within the terminodes can be considered as one of the many possible future extensions of this
thesis.

173

Appendix A
The GNMT Simulation Framework

The present appendix aims at giving an overview of the simulation framework developed in the scope of
this thesis. This chapter will serve as a basis for a future technical report [Ros02].

Generic Network Management Tool (GNMT) is a joint development effort of the Telecom Group
(Department of Informatics of the University of Fribourg) and Swisscom Innovations (Bern), in
Switzerland. Initially, the GNMT project was intended for the simulation of Ecomobile within an optical
transport network infrastructure. In this appendix we will describe the GNMT architecture and each
module in terms of Java classes and functionalities.

A.1 INTRODUCTION
GNMT is a 100% Java-based functional simulation tool dedicated to the study of new network-oriented
technologies such as agent-based distributed network management or Active Networks applications. Since
it is developed in Java, GNMT is not intended for real-time simulation. The GNMT framework provides
a multi-layer network simulated environment in which the components of different layers can interact
with each other and implement various capabilities and constraints. GNMT was originally designed to
provide stationary and mobile multi-agent systems such as Ecomobile with an semi-emulated
heterogeneous and dynamic network environment. Hybrid centralised and decentralised management
approaches can be supported simultaneously.

In GNMT, the underlying transport network is assumed to be a WDM-based optical network on top of
which different layers, such as IP, SDH or ATM, can be added. Each layer may have its own management
philosophy and interactions between layers rely on a particular interaction model. All the elements will be
detailed in this document.

The GNMT framework is divided into two component-oriented parts: the kernel and the private
extensions. The kernel includes all the classes related to the core GNMT network model and basic user
interfaces for simple simulations, while the private extensions refer to packages developed in the scope of
students contributions at Swisscom Innovations.

GNMT is currently evolving to become an open source project1. The kind of public licence to be used
is still under discussion and the official distribution including the kernel classes will be available as soon
as these license-related issues have been clarified. Figure A-1 presents an overview of the existing
packages.

The Scalable TeRabit Optical NetworkinG (STRONG) and the INNOVATE projects are two
extensions to GNMT, which have been developed at Swisscom Innovations. They contain both kernel and
private extensions; classes and functionalities belonging to the different parts however remain to be
determined.

1 http://gnmt.sourceforge.net

http://gnmt.sourceforge.net

Introduction

174

Network Core Model
gnmt.model

Optical Network Model
(gnmt.model.iws .otn)

•Wavelength, F ibre, …

IP (MPLS)
(gnmt.model.ip)

• INNOVATE P roject

Dynamic S im. Module
(gnmt.model.s imul)

•S TR ONG P roject

Automatic Switched ON
(gnmt.model.iws .ason)

•S TR ONG P roject

Software Agents
(gnmt.model.iws .ecomobile)

•E COMOB ILE P roject

Routing (OSPF)
(gnmt.model.routing)

Figure A-1. Modules in GNMT

The core GNMT network model consists of abstract classes and basic functionalities extended and
implemented by each layer. Basically, each network layer technology (OTN, ASON, IP/MPLS)
corresponds to a particular package. Classes required for dynamic simulation, OSPF-like routing
algorithms and the Ecomobile middleware constitute further distinct packages.

Figure A-2 gives a snapshot of the graphical interface of the GNMT tool including two windows: a
physical optical network topology and the related traffic matrix.

Figure A-2. A GUI snapshot of the GNMT

Appendix A
The GNMT Simulation Framework

175

The GNMT root model is based on the Model-View-Controller (MVC) design pattern [GHJ+95]
supported by the Swing architecture; Swing is a Graphical User Interface (GUI) component kit, part of
the Java Foundation Classes (JFC) integrated into Java 2 platform. In our context, MVC allows for a
separation between classes specific to the network and simulation model (Model), classes specific to the
graphical components used by the GUI (View), and classes specific to user interactions involving mouse,
keyboard and screen (Controller).

The current implementation of GNMT however does not rely on a fully MVC implementation yet
[Zbi01]; the graphical components are handled by means of a commercial third-party library, called Ilog
JTGO1, which provides efficient network-oriented graphical components and facilities for the
management of user interactions. The replacement of the Ilog library by an open graphical components
library developed at the University of Fribourg is currently under investigation and will lead to a fully
MVC implementation.

A.2 THE GNMT KERNEL
The minimal set of GNMT classes and functionalities necessary to perform a simple simulation belongs
to the GNMT kernel which is freely available according to the open source philosophy. This section
outlines the different packages forming the kernel.

The root tree structure is depicted on Figure A-3; the main package entry is called iiuf.gnmt ("iiuf" for
"Institute of Informatics of the University of Fribourg"). In the near future, the kernel root package will be
renamed to edu.diuf.gnmt in order to differentiate from the private extensions and to match with the new
name of the department (Department of Informatics).

Figure A-3. GNMT kernel: classes tree with root packages

The model, view and controller packages implement the MVC design pattern. The view and
controller packages contain the same package organization as the model package. In this section,
we mainly focus on the model package, as the other packages are currently being re-designed. The data
package contains sample network topologies described in XML. The editor package contains the main
class (Editor.java) of the application whereas the util package contains diverse auxiliary routines and
mathematical structures.

The tree structure of the model package is depicted on Figure A-4. The abstract classes of the core
GNMT network model belong to the model package. The routing package contains generic routing
algorithms whereas the simul package contains the necessary classes for dynamic simulation. This

1 http://www.ilog.de/products/jtgo

http://www.ilog.de/products/jtgo

The GNMT Kernel

176

package is subdivided into a publicly accessible kernel part (packages iiuf.gnmt.X), which is part of
the GNMT kernel, whereas the private extensions part (packages com.swisscom.gnmt.X) consists in
an extension specific to Swisscom Innovations.

Figure A-4. General structure of packages in the model part

The abstract classes of the core GNMT network model belong to the model package. The routing
package contains generic routing algorithms whereas the simul package contains the necessary classes
for dynamic simulation. This package is subdivided into a publicly accessible kernel part (packages
iiuf.gnmt.X), which is part of the GNMT kernel, whereas the private extensions part (packages
com.swisscom.gnmt.X) consists in an extension specific to Swisscom Innovations.

A.2.1 The Core GNMT Network Model
This package describes the GNMT network model that is made of abstract classes which have to be
extended and implemented into layer subclasses.

Our model relies on a combination of two different approaches that are characteristic for modelling
layered networks; first of all, the generic functional architecture of ITU-T transport networks [G805_95]
proposes a functional decomposition of the transport network in terms of layering and partitioning; while
the layering deals with the separation between distinct transport technologies, the partitioning consists in
subdividing the functional components within a single layer. This model supports multiple layers which
can be interconnected according to a client-server relationship; in a layer network, the link connections
formally provide connectivity between topologically adjacent sub-networks; they are provisioned by the
services of a trail1 at another layer. This layer is known as the server layer, while the layer in which link
connection requests are issued is called the client layer.

1 A trail is defined as the combination of the connection information augmented with additional overhead
information used to achieve the Operations, Administration and Maintenance (OAM) objectives.

Appendix A
The GNMT Simulation Framework

177

The second approach is based on the ISO/OSI layered protocol model [T96]; it consists in a functional
decomposition based on a seven-layer protocol model. Since the ISO model was originally conceived
within or around a single transport layer without any consideration for partitioning, it offers a perspective
which is different from the approach proposed in the ITU-T model. The potential compatibility between
the two models is still under discussion at the ITU-T. The overall core GNMT network model is depicted
in Figure A-5.

The abstract core GNMT network model is a generic representation of the main network components
constituting a multi-layer transport network. Each component must therefore be specialized according to
the network technology which is being considered in the simulation.

In GNMT, a client demand is synonymous with client connection, or simply connection, and is defined
as a general service associated to each layer.

P hys .

Node

Link

Connection
PortPort

PortConnectivity

Access
Point

LayerEntity

Layer

Figure A-5. Core GNMT network model inspired from the ITU-T and ISO models.

The abstract core GNMT network model is a generic representation of the main network components
taking place in a multi-layer transport network. Each component must therefore be specialized according
to the network technology which is being considered in the simulation.

In GNMT, a client demand is synonymous with client connection, or simply connection, and is defined
as a general service associated to each layer.

IIUF.GNMT.MODEL

In the beginning, the network may be composed of multiple layers. A layer is defined as a collection of
nodes associated with the same transport technology (IP, ATM, SDH, etc.) and therefore refers to a
specific protocol. The layered model of GNMT is composed of the lowest layer called physical layer on
top of which logical or virtual layers are interconnected. Each layer can implement a different
management approach based on centralised management, i.e. the management logic is placed at the layer
level, or decentralised management in which case the management logic is placed in each layer node and
relies on a signalling protocol or any kind of information exchange mechanisms. Figure A-6 presents an
overview of the classes belonging to the model package; the UML diagram only contains classes and
relationships, as well as basic attributes and operations.

The GNMT Kernel

178

Observable

NodeAggregation

Connection

setFilename()
setupConnection()
readFeed()

<<Interface>>

Network

removeNode(: Node)
addNode(: Node)

Node

getLayerEntity(: Layer) : LayerEntity

1111

Layer

newLayerEntity(: Layer, : Node) : LayerEntity
removeLayerEntity(: Node)
addLayer()
newLink(origin : LayerEntity, dest : LayerEntity)
getLinks() : Link[]

1
1..n

1
1..n

LayerEntityAggregation

AccessPointMgr

LinkAggregation

LayerEntity

newLink(: Link, remoteEntity : LayerEntity)
delete()
addSwitching()
Switching getSwitching()
Switching getSwitching(switchID : String)

1

1..n

1

1..n

11

22

PortAggregation

portDeleted()
addPort()
removePort()
findPort(: PortProfile)

PortConnectivity
String switchID
Hashtable matrix

Port getOutputPort()

Link

11

22

PortProfile

Port
remotePeer : LayerEntity
profile : PortProfile
in : boolean
out : boolean

addLink()
removeLink()
portDeleted()

11

11

Figure A-6. UML Diagram of the core GNMT network model (package iiuf.gnmt.model)

The Network class contains all the network layers likely to be used in GNMT. A layer (class Layer) is
composed of LayerEntity objects characterizing network nodes within the layer. Node functionalities
and related management logic must be implemented into layer entities. The Node object represents an
OSI node, i.e. a node which encompasses several layer entities belonging to different layers. The
particularity of these layer entities is that they are placed at the same location, i.e. the positioning of the
layer entities of a specific node is determined by the position of the layer entity in the physical layer. Such
an approach allows a node to be regarded as an OSI node in which several protocol layers are
implemented. According to this definition, a layer entity is the intersection of an OSI node with its layer.
In order to avoid confusion, we plan to rename the Node class as OSINode and the LayerEntity
class as Node.

In the current version of the GNMT, there is only one kind of network, called OTNNetwork (see
Section A.2.3), in which the optical transport network constitutes the physical layer; the client layers can
be either IP/MPLS, ASON, or a generic VPN. The physical layer remains the unique layer in which layer

Appendix A
The GNMT Simulation Framework

179

entities can be created; these nodes can then be reported to an upper layer by simply “attaching” nodes
from the physical layer (optical layer) to the client layer, so that the corresponding nodes in the client
layer include layer-specific functionalities. As a consequence, a client layer can only have a subset of
network nodes of lower layers. The network topology, i.e. links between layer entities, can then be freely
defined in each layer.

Layer entities (nodes at layer level) within the same layer are linked by means of Link objects. Links
can be aggregated into a LinkAggregation object so that multiple links or channels can be defined
between two layer entities. Interactions between layers are addressed using access points that will be
explained later on.

The Port class defines a general abstract port which groups several links (including link
aggregations). The port itself can be hierarchically organised. At the time of a link creation, the link is
assigned to a "top-level" port which is automatically created. Then, the designer can associate the link to
different ports. For example, an optical fibre can be associated to a port aggregation, which in turns
contains several optical channel associated ports. Port attributes (in, out) indicate the link direction and
thus tells whether the link is uni/bi-directional. In addition, a PortProfile object is associated to each
port in order to hold specific attributes depending on the port type, such as wavelength frequency,
bandwidth, and so on.

Routing can be achieved by means of the PortConnectivity object, which indicates which input
ports can be routed to output ports. Switching information can be introduced statically before the
simulation and/or dynamically during the simulation. The flexible notion of port permits a group of links
to be routed at a time: a port can aggregate several links or even several ports.

In GNMT, the edition of nodes and links within a specific layer defines the network topology, which
corresponds to network components and their physical or logical connectivity. Nothing about client
connections is specified in a network topology. Connections, i.e. client connection/demand requests, are
introduced by means of a Connection object when a topology has been designed; they can be either
configured manually, directly by editing each connection link, or by means of a XML file or of a traffic
matrix; connections can also be automatically generated thanks to a demand generator. Since the
connection semantics and related algorithms strongly depend on the layer, the connection algorithms are
not defined in the core model, but stored in a package called demand and located in each layer.

Finally, the Access Point Manager (APM) (class AccessPointMgr) enables interactions between
multiple layers (vertical interactions). The concept relies on the access and connection points as defined
in the ITU-T model according to a client-server paradigm. In our model, the APM manages a collection
of layer entities belonging to the upper layer, those entities acting as connection points. Each layer entity
therefore includes an APM.

The GNMT Kernel

180

APM

APM APM

APM

Figure A-7. Multi-layer management with Access Point Manager in GNMT

Only one APM has been implemented so far; however, future releases of GNMT will allow a layer entity
to manage several APMs so that different node-related services can be distinctly provided to client layers.

A.2.2 Routing Algorithms

IIUF.GNMT.MODEL.ROUTING

This package contains conventional routing algorithms. Currently, only the Open Shortest Path First
(OSPF) algorithm has been implemented and is used by the ASON package.

A.2.3 Intelligent Wavelength Services

IIUF.GNMT.MODEL.IWS

This package contains all the components related to the optical transport network, including intelligent
services such as ASON, on the one hand, and Ecomobile, on the other hand.

IIUF.GNMT.MODEL.IWS.OTN

The Optical Transport Network (OTN) layer defines the optical components of the physical layer, as
depicted on Figure A-8.

Besides the OTN layer, the OTNNetwork class is used by GNMT to create the multi-layer network
environment at the starting point; an OTNNetwork contains an instance of each layer liable to be used in
the network configuration. Consequently, it is not possible to have more than one instance of each layer.

The OTNLayer is composed of optical nodes, fibres and optical channels. Optical nodes refer to a
general optical component implementing optical functions.

Appendix A
The GNMT Simulation Framework

181

OTNNetwork

OTNLayer
_demand : IWSConnection

openChannel()
newLayerEntity()
closeChannel()

OTNNode
AgencyFIPA

openPPConnection()
closePPConnection()
destroy()

LinkAggregation
(from model)

Network

removeNode()
addNode()

(from model)
Link

(from model)

0..n

1

0..n

1Layer

newLayerEntity()
removeLayerEntity()
addLayer()
newLink()
getLinks()

(from model)

1..n

1

1..n

1

1..n

1

1..n

1

LayerEntity

newLink()
delete()
addSwitching()
Switching getSwitching()

(from model)

0..n

1

0..n

1

11

Observable
(from model)

PortAggregation

portDeleted()
addPort()
removePort()
findPort()

(from model)

LinkDescriptor

connection : ConnectionDescriptor
(from demand)

Fibre

OTNChannel
frequency : int
bandwidth : int
_state = IDLE
assigned : boolean
sourceNode : String
destNode : String

setState()

0..10..1

11

OTNPort

openChannel()
linkDeleted()
linkDeleted()
closeChannel()

2

1

2

1

RCLTupleRCLTable

11

OchPortProfile
frequency : Integer

FibrePortProfile
fibreID : String

11

Figure A-8. UML Diagram of the OTN layer

The links are described by optical channels (class OptChannel) and fibres (class Fibre). A fibre is
considered as a LinkAggregation which can contain several OptChannel. Like links, optical ports
are organized hierarchically. For commodity reasons, an implementation choice has led to the definition
of the top-level port (class OTNPort) as a container, in which two PortAggregation instances are
stored, one gathering optical fibres, another gathering optical channels. Each fibre contains references to
embedded optical channels.

Two corresponding profiles have been defined, FibrePortProfile and
OptChannelPortProfile respectively. These two profiles allows a link to be uniquely identified.
A fibre or an optical channel can be retrieved according to a particular profile; when the profile is equal to
null, whichever link, actually the first element of the container, is returned.

IIUF.GNMT.MODEL.IWS.OTN.DEMAND

The connections that take place in OTN are defined in this package. A connection is defined by a
connection descriptor (class IWSConnection) which defines a client connection entirely by means of
link descriptors (class LinkDescriptor). A connection descriptor may contain both working and
protection paths. The source and destination nodes are given in the connection descriptor and the links
can be entered manually or be generated automatically by the corresponding routing algorithms.

Connections can be configured by means of a traffic matrix. In the otn.demand package, for
example, the simulation is profiled and started from the traffic matrix. Each layer can define its own
traffic matrix.

The GNMT Kernel

182

When interactions between several layers take place, the upper layers request the lower layers to which
they are interconnected for client connections. This model basically corresponds to the overlay model
considered in GMPLS.

IIUF.GNMT.MODEL.IWS.ASON

The Automatic Switched Optical Network (ASON) package contains an implementation of different
centralised algorithms (layer level) related to the Routing and Wavelength Assignment (RWA) problem
[Mah01][Stu02] for both transparent and opaque optical nodes.

Routing algorithms are: Fixed Routing, Fixed-alternate routing, and Adaptive Routing (Least-
congested-path (LCP) and Least-Loaded (LL)). Wavelength assignment algorithms are: Random, First
Fit, Least-used, Most-used, Opaque. Further information concerning these algorithms is out of the scope
of this document.

IIUF.GNMT.MODEL.IWS.ECOMOBILE

This package contains the implementation of Ecomobile.

A.2.4 Dynamic Simulation

IIUF.GNMT.MODEL.SIMUL

With GNMT, it is possible to perform a dynamic simulation by means of a XML script file containing
specific commands [Roc01] in order to create nodes, remove nodes, create links, remove links, simulate a
fibre cut, etc. This mechanism is also used to store and restore network topologies within GNMT.

At the beginning of the simulation the XML script is entirely read and all commands are stored in a
priority queue according to their execution order. The commands are performed according to an event-
based scheduling. The available XML commands are described in Table A-1.

Command Description Status

ADD_NODE Add a node in the topology Implemented

REMOVE_NODE Remove a node Not implemented

ADD_LINK Add a link in the topology (wavelength + fibre) Implemented

REMOVE_LINK Remove a link Not implemented

ADD_DEMAND Open a connection between two nodes Implemented

GENERATE_DEMANDS Turns on the demand generator according to
specific distribution

Implemented

FAILURE Simulate a failure at a node or at a link Not implemented

Table A-1. List of simulation commands

When a network topology has to be saved, a script file is automatically generated. Each node and link is
described by the ADD_NODE and ADD_LINK commands respectively, with attributes indicating their
graphical position, type, etc. The topology can then be restored by playing the script file.

Appendix A
The GNMT Simulation Framework

183

The XML data structure is defined by means of a DTD file which describes the syntax and grammar of
each command and attribute. The DTD file is then processed by a third-party framework called Zeus1, and
a Java class is produced for each XML tag. Resulting classes are put in a sub-package called
dtdObjects placed in the demand package associated to each layer. The overall process generating
Java classes and using XML file is depicted on Figure A-9.

DTD Objects
(Java)

DTD Objects
(Java)

Marshall process
(Zeus library functions)

Write to
file

Read
from file

Unmarshall process
(Zeus library functions)

XML fileDTD file
Generate Bindings

(Zeus library functions)

DTD Objects
(Java)

DTD Objects
(Java)

Running
simulation

Figure A-9. XML and binding with Java objects

Table A-2 shows an example of an XML script file containing the creation of one node and one fibre with
two wavelengths. The attribute exec_order indicates the place within the priority queue in which the
command takes place.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

<?xml version="1.0" encoding="UTF-8" ?>

<XMLFILE>

<ADD_NODE name="Node8" coordy="30.0" coordx="259.0" exec_order="1" />

<ADD_LINK type="FIBRE" exec_order="9" node_dest="Node1" num_of_lambdas="2" node_orig="Node3">
<LAMBDA status="IDLE" wavelength_ID="0" />
<LAMBDA status="IDLE" wavelength_ID="1" />
</ADD_LINK>

<DELAY time="20" exec_order="33" />

</XMLFILE>

Table A-2. Example of a XML script

The simul package is composed of a kernel part and a private extension part. The event-based
scheduler, the mechanisms used for processing XML files and the demand generation based upon Poisson
distribution are considered as the kernel part, whereas the other distributions, such as On-Off process and
Fractal Renewal processes, are private extensions.

1 Zeus is freely downloadable at http://zeus.enhydra.org

http://zeus.enhydra.org

Private Extensions

184

A.3 PRIVATE EXTENSIONS

A.3.1 The IP Layer

IIUF.GNMT.MODEL.IP

This package integrates previous work achieved in the Innovate project [Jia01] at Swisscom Innovations.
This project aimed at simulating MPLS Traffic Engineering (TE) techniques with the Constraint Based
Routing (CBR) algorithm. In this context, the simulation of a IP over WDM network, implementing both
peer-to-peer and overlay models, has been realized.

This package illustrates a kind of private extensions that can be developed in the GNMT framework.

A.4 CONCLUSIONS
In this appendix, we have presented an overview of the GNMT functional simulation framework and its
main components, namely the core GNMT network model, packages related to the kernel and private
extensions part. GNMT currently becomes an open source project so that the kernel part will be publicly
accessible. However, the type of licence to be used is still under consideration.

GNMT has been originally developed in order to implement Ecomobile and to perform simulations
within an optical network environment. In addition, several private extensions have been developed in
order to evaluate routing and wavelength assignment algorithms, on the one hand, and IP/MPLS related
algorithms, on the other hand. These extensions have been developed during student work at Swisscom
Innovations.

The GNMT design relies on a Model-View-Controller design pattern. The graphical objects resort to a
commercial third-party library called Ilog JTGO which provides nice features for drawing nodes and
links. In particular, the framework provides facilities to handle link aggregation. The graphical part of
GNMT is currently being re-designed by means of a non-commercial framework in the perspective of the
open source release.

The core GNMT network model stems from two main network models: the ITU-T transport network
model and the OSI model. The combination of these two models makes the simulation of multi-layer
network possible. Currently, GNMT implements the optical transport network layer as the physical layer
on top of which different layers, such as IP/MPLS, or generic VPN can be simulated. The demand
generator enables dynamic traffic according to specific call distribution.

Possible improvement of GNMT would consist in using a basic desktop-oriented framework such as
Netbeans1 or IBM Eclipse2 in order to benefit from standard functionalities for data manipulation, window
management, file handling, etc.

1 http://www.netbeans.org
2 http://www.eclipse.org

http://www.netbeans.org
http://www.eclipse.org

185

Bibliography

WORKSHOP/CONFERENCE

Daniel Rossier, Rudolf Scheurer, "Ecosystem-inspired Mobile Agent Middleware for Active Network
Management", in Proceedings of MATA'02, Fourth International Workshop on Mobile Agents for
Telecommunication Applications, October 2002, Barcelona, Spain

Daniel Rossier-Ramuz, Rudolf Scheurer, "ECOMOBILE: A Mobile Agent Ecosystem for Distributed
Network Management", in Proceedings of ECUNM'02, 2nd European Conference on Universal
Multiservice Networks, April 8-10, 2002, Colmar, France

Daniel Rossier-Ramuz, Daniel Rodellar, Rudolf Scheurer, "Dynamic Protection Set-up in Optical VPN
using Mobile Agent Ecosystem", in Proceedings of DRCN'01, Third International Workshop on Design
of Reliable Communication Networks, Budapest, October 2001

Daniel Rossier-Ramuz, Daniel Rodellar, Rudolf Scheurer, "An Intelligent and Mobile Agent-based
Approach for Dynamic Protection Set-up in Future Optical Networks", in Proceedings of ONDM'01,
Fifth Working Conference on Optical Network Design and Modelling, Vienna, February 2001

Jingming Li Salina, Daniel Rossier, Manuel Dinis, Laurie Cuthbert, Laurissa Tokarchuk & John Bigham,
"Agent-based resource management for 3G networks", Proceedings of Mobile Communications
Summit, Galway, Ireland, 1-4 October 2000

Daniel Rossier-Ramuz, Rudolf Scheurer, "An Introduction to Optical Agents: Intelligent and Mobile
Agents for WDM Optical Network Management", Proceedings of IMPACT'99, Impact of Agent
Technology on Telecommunications, Seattle, USA, 2-3 December 1999, pp. 131-139

BOOK (CHAPTER)

Daniel Rossier-Ramuz et al., "An Intelligent and Mobile Agent-based Approach for Dynamic
Protection Set-up in Future Optical Networks", in 'Towards an Optical Internet', edited by Admela
Jukan, in book series "International Federation for Information Processing", Volume 204 (Kluwer
Academic, 2001)

Daniel Rossier-Ramuz, Rudolf Scheurer, "Implementation of Mobile Agents for WDM Network
Management", Hayzelden (ed.), 'Agent Technology for the Communications Infrastructure' (Wiley &
Sons Ltd, 2000)

TECHNICAL REPORT

Daniel Rossier, “A Description of the Generic Network Management Tool”, Technical Report,
Department of Informatics, University of Fribourg, Switzerland, August 2002

Daniel Rossier-Ramuz, Rudolf Scheurer, Beat Hirsbrunner, "A Mobile Agent Ecosystem for Rule
Based Network Oriented Applications", Technical Report 01-22, Department of Informatics,
University of Fribourg, Switzerland, July 2001

Bibliography

186

JOURNAL

Daniel Rossier-Ramuz, "Ecomobile: a Mobile Agent Ecosystem for Active Network
Management", submitted to Special Volume on Distributed and Mobile Software Engineering of
the "Annals of Software Engineering", Vol.17, Kluwer Academic Publishers, 2002

Daniel Rossier, "Software Intelligent Agents: The Next IT Revolution", Swisscom Comtec,
January 2001

187

Curriculum Vitae

Daniel Rossier-Ramuz
Les Vuarines 12
1782 Belfaux

Born on May 26th, 1968

Married, two daughters: Aline (1997) and Emilie (2000)

Education

1983 - 1986 College St-Michel, Fribourg

1991 - 1992 CMS (Cours de Mathématiques Spéciales)

1992 - March 1996 Computer Science Engineer EPFL
 (Ecole Polytechnique Fédérale de Lausanne)

April 1997 Postgraduate Certificate EPFL
 (signal and pictures digital processing)

1999 – 2002 PhD at the University of Fribourg performed in
 an industrial context at Swisscom Innovations Ltd, Bern

Professional Experience

Dec. 1986 – Nov. 1989 Software Developer at ILFORD AG, Marly (FR)

Dec. 1989 – Sept. 1990 Software Developer at SIBRA S.A., Fribourg (FR)

July – Oct. 1994 Practical course at Telecom, Bern (BE)

April 1996 – Sept. 1998 Software Engineer at Kudelski S.A., Cheseaux-sur-Lausanne (VD)

Oct. 1998 - Research Engineer & Project Leader at Swisscom AG, Bern (BE)

Languages

French (mother tongue), English, German

Hobbies

Piano, reading, HAM radio (HB9 HFP), squash

189

References

[BAG01] Martin Bolduc, Evangelos Armiros, Yves Gagnon, Chris Hamilton, "Developing a
Service Level Agreement Framework in an All-optical Network Environment", in Proc.
of NFOEC (National Fiber Optic Engineers Conference), Baltimore, USA, July 2001

[Bau99] Joachim Baumann, “Control Algorithms for Mobile Agents”, PhD thesis, Institut für
Parallele und Verteilte Höchstleistungsrechner (IPVR) der Universität Stuttgart, 1999

[BBB+99] Andrzej Bieszczad, Pratik K. Biswas, Walter Buga, Manu Malek, and Hai Tan,
"Management of Heterogeneous Networks with Intelligent Agents", Bell Labs Technical
Journal, October-December 1999

[BBC+01] Ljubica Blazevic, Levente Buttyan, Srdan Capkun, Silvia Giordano, Jean-Pierre Hubaux
and Jean-Yves Le Boudec, "Self-Organization in Mobile Ad-Hoc Networks: the
Approach of Terminodes", available at http://www.terminodes.org, 2001

[BBC+98] M. Breugst, I. Busse, S. Covaci, T. Magedanz, "Grasshopper – A Mobile Agent Platform
for IN Based Service Environments", IEEE IN Workshop, Bordeaux, France, May 1998

[BCT+02] Fabio Bellifemine, Giovanni Caire, Tiziana Trucco, Giovanni Rimassa, "Jade
Programmer's Guide", available at http://sharon.cselt.it/projects/jade, 2002

[BDW01] Bernard Burg, Jonathan Dale, Steven Willmott, "Open Standards and Open Source for
Agent-Based Systems", Contribution to FIPA, available at
http://fipa.umbc.edu/mirror/members/input.html, April 2001

[BHM98] Markus Breugst, Lars Hagen, and Thomas Magedanz, "Impacts of Mobile Agent
Technology on Mobile Communications System Evolution", IEEE Personal
Communication Magazine, August 1998

[BHS01] Frédéric Boussinot, Laurent Hazard, Jean-Ferdy Susini, "Programming with Junior",
EMP/CMA-INRIA, available at http://www-sop.inria.fr/mimosa/rp, Draft, May 2001

[BHT90] Begon, Harper, Townsend, "Ecology - Individuals, Populations and Communities",
Blackwell Scientific Publications, ISBN 0-86542-111-0, Second Edition, 1990

[Bie97] Andrzej Bieszczad, "Advanced Network Management in the Network Management
Perpetuum Mobile Procura Project", SCE Technical Report SCE-97-07, July 1997

[BM98] Markus Breugst, Thomas Magedanz, "On the Usage of Standard Mobile Agent Platforms
in Telecommunication Environments", Intelligence in Services and Networks (IS&N'98):
Technology for Ubiquitous Telecom Services, May 1998

[Bo00] Frédéric Boussinot, "Objets réactifs en JAVA", Presses Polytechniques et Universitaires
Romandes, Suisse, April 2000

[Bo01] Raúl Acosta Bermejo, "Reactive Operating System and Reactive Java Objects", in
Electronic Journal on Networks and Distributed Processing, No. 11, ISSN 1262-3261,
March 2001

http://www.terminodes.org
http://sharon.cselt.it/projects/jade
http://fipa.umbc.edu/mirror/members/input.html
http://www-sop.inria.fr/mimosa/rp

References

190

[Bou00] Frédéric Boussinot, "Junior Automata", available at http://www-sop.inria.fr/mimosa/rp,
October 2000

[Bou01] Frédéric Boussinot, "Java Fair Threads", Technical Report Nr 4139, Institut National de
Recherche en Informatique et en Automatique, February 2001

[BP01] Federico Bergenti and Agostino Poggi, "LEAP: A FIPA Platform for Handheld and
Mobile Devices", in Proc. of 8th Intl. Workshop on Agent Theories, Architecture and
Languages (ATAL'2001), Seattle, USA, August 2001

[BP98] Andrzej Bieszcad, Bernard Pagurek, "Application-Oriented Taxonomy of Mobile Code",
IFIP/IEEE Network Operations and Management Symposium (NOMS'98), February
1998

[BPR99] Fabio Bellifemine, Agostino Poggi, Giovanni Rimassa, "Jade - a FIPA-compliant agent
framework", in Proc. of the 4th International Conference on the Practical Application of
Artificial Intelligence and Multi-agent Technology (PAAM'99), pp.97-108, London, UK,
1999

[BPW98] A. Bieszczad, B. Pagurek, T. White, "Mobile Agents for Network Management", IEEE
Communications Surveys, September 1998

[BrM98] Markus Breugst and Thomas Magedanz, "Mobile Agents – Enabling Technology for
Active Intelligent Network Implementation", IEEE Network Magazine, Special Issue on
Active and Programmable Networks, Vol.12, No.3, May-June 1998

[Bro86] Brooks, R. A., "A robust layered control system for a mobile robot", in IEEE Journal of
Robotics and Automation, RA-2, p. 14-23, 1986

[BS02] Frédéric Boussinot, Jean-Ferdy Susini, "The SugarCubes Tool Box", INRIA EMP-
CMA/Meije, available at http://www-sop.inria.fr/mimosa/rp, 2002

[BTS+01] David Benjamin, Richard Trudel, Stephen Shew, and Ed Kus, "Optical Services over the
Intelligent Optical Network", in IEEE Communications Magazine, September 2001

[BW89] G. Beni and J. Wang, "Swarm Intelligence in Cellular Robotic Systems", in Proc. of the
NATO Advanced Workshop on Robots and Biological Systems, Il Ciocco, Tuscany,
Italy, 1989

[BZW98] Walter Brenner, Rüdiger Zarnekow, Hartmut Wittig, "Intelligent Software
Agents", Springer-Verlag Berlin Heidelberg, 1998

[C+93] Case, J.D. et al., "Simple Network Management Protocol", RFC 1157, May 1990

[CabLZ00] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli, "MARS: a Programmable
Coordination Architecture for Mobile Agents", IEEE Computer Magazine, Vol. 33, No.2,
February 2000

[CabrLZ00] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli, "A Web Infrastructure for People
and Agent Interaction and Collaboration", IEEE Ninth Int. Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), CS Press, NIST
(USA), June 2000

http://www-sop.inria.fr/mimosa/rp
http://www-sop.inria.fr/mimosa/rp

References

191

[Cal99] K. L. Calvert, "Architectural Framework for Active Networks", Version 1.0, University
of Kentucky, Active Network Working Group, available at
http://protocols.netlab.uky.edu/~calvert/arch-docs.html, July 1999

[CaLZ00] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli, "Mobile-Agent Coordination
Models for Internet Applications", IEEE Computer Magazine, February 2000

[CCM+98] Wilmer Caripe, George Cybenko, Katsuhiro Moizumi, and Robert Gray, “Network
Awareness and Mobile Agent Systems”, IEEE Communications Magazine, July 1998

[CD98] Gianni Di Caro, Marco Dorigo, “AntNet: Distributed Stigmergetic Control for
Communications Networks”, Journal of Artificial Intelligence Research 9 317-365, 1998

[CFF99] M. Calisti, C. Frei and B. Faltings, "A distributed approach for QoS-based multi-domain
routing", AAAI-Workshop on Artif. Intelligence for Dist. Information Networking,
Orlando, Florida, July 1999

[CLC99] F. Chantemargue, P. Lerena, M. Courant, "Autonomy-based multi-agent systems:
statistical issues", in Proc. of the Third World Multiconference on Systemics,
Cybernetics, and Informatics (SCI'99), Orlando, Florida, USA, August 1999

[CLG00] Olivier Crochat, Jean-Yves Le Boudec and Ornan Gestel, “Protection interoperability for
WDM Optical Networks”, IEEE/ACM Transaction on Networking, Vol. 8, No. 3, June
2000

[CLZ00] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli, “Weak and Strong Mobility in
Mobile Agent Applications”, Proc. Of the 2nd International Conference and Exhibition on
The Practical Application of Java, Manchester (UK), April 2000

[CLZ97] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli, "Coordination in Mobile Agent
Applications", Università di Modena, Technical Report No. DSI-97-24, October 1997

[Cro98] O. Crochat, “Wavelength Division Multiplexing Networks And Failure
Protection”, PhD thesis Nr 1851, Ecole Polytechnique Fédérale de Lausane, 1998

[DMC96] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni, "The Ant System: Optimization
by a colony of cooperating agents", in IEEE Transactions on Systems, Man, and
Cybernetics Part B, Vol. 26, No. 1, 1996

[DWY99] Piet Demeester, Tsong-Ho Wu, Noriaki Yoshikai, "Survivable Communication
Networks", IEEEE Communications Magazine, August 1999

[E1116_01] Eurescom Project P1116, "Carrier Requirements for providing optical transport services
to its IP clients", Project SCORPION (Scalable Optical Transport Network), (not yet
published), January 2001

[E709_99] Eurescom Project P709, "Planning of Full Optical Network", http://www.eurescom.de,
1999

[E712_98] Eurescom P712 and P815, "Agent Based Computing", a booklet for executives, available
at http://www.eurecom.de, 1998

[E712_99] Eurescom Project P712, "Intelligent and Mobile Agents and their Applicability to Service
and Network Management", http://www.eurescom.de, 1999

http://protocols.netlab.uky.edu/~calvert/arch-docs.html
http://www.eurescom.de
http://www.eurecom.de
http://www.eurescom.de

References

192

[E718_01] Eurescom Project P718, "Integration of IP over Optical Networks: Networking and
Management", http://www.eurescom.de, 2001

[E907_01] Eurescom Project P907, "MESSAGE: Methodology for Engineering Systems of Software
Agents", available at http://www.eurescom.de, September 2001

[EB99] M. El-Darieby, A. Bieszczad, “Intelligent Mobile Agents: Towards Network Fault
Management Automation”, Sixth IFIP/IEEE International Symposium on Integrated
Network Management, May 1999

[FC82] Forgy, C.L., “A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem”, Artificial Intelligence, Vol. 19, 1982

[FIPA01] FIPA, “FIPA Agent Management Support for Mobility Specification”, available at
http://www.fipa.org, August 2001

[FM99] Stefan Fünfrocken, Friedemann Mattern, “Mobile Agents as an ArchitecturalConcept for
Internet-Based Distributed Applications”, Kommunikation in Verteilten Systemen
(KiVS), 11.ITG/GI - Fachtagung, Darmstadt, March 1999

[G805_95] ITU G.805, “Generic Functional Architecture of Transport Networks”, November 1995

[G851_96] ITU G.851.1, “Management of the transport network - Application of the RM-ODP
framework”, November 1996

[G872_99] ITU G.872, “Architecture of Optical Transport Networks”, Pre-published version, April
1999

[G874_02] ITU G.874.1, "Optical transport network (OTN) protocol-neutral management
information model for the network element view", Pre-published version, January 2002

[Ger00] Ori Gerstel, “Optical Layer Signaling: How Much Is Really Needed?”, IEEE
Communications Magazine, October 2000

[GF01] Rune Gustavsson and Martin Fredriksson, "Coordination and Control in Computational
Ecosystems: A Vision of the Future", in "Coordination of Internet Agents", Springer,
2001

[GHJ+95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design Patterns, Elements
of Reusable Object-Oriented Software", Addison-Wesley, 1995

[GJ98] M.A. Gibney and N.R. Jennings, "Dynamic Resource Allocation by Market-Based
Routing in Telecommunications Networks", 2nd Int. Workshop on MAS and TCom
(IATA'98), Paris, France, 1998

[GLV01] Sergio Gonzalez-Valenzuela, Victor C. M. Leung, Son T. Vuong, "Multipoint-to-Point
with QoS Guarantees Using Mobile Agents", in Proc. of Mobile Agents for
Telecommunication Applications (MATA'2001), Montreal, Canada, August 2001

[GNS00] Nada Golmie, Thomas D. Ndousse, and David H. Su, "A Differentiated Optical Services
Model for WDM Networks", National Institute of Standards and Technology, in IEEE
Communications Magazine, February 2000

[GR00] Ornan Gestel and Rajiv Ramaswami, “Optical Layer Survivability: A Services
Perspective”, IEEE Communications Magazine, March 2000

http://www.eurescom.de
http://www.eurescom.de
http://www.fipa.org

References

193

[GY95] Germán Goldszmidt and Yechiam Yemini, "Distributed Management by Delegation", in
Proc. of the 15th International Conference on Distributed Computing System, June 1995

[HaB99] Alex L. G. Hayzelden, John Bigham, “Software Agents for Future Communication
Systems”, Springer-Verlag Berlin Heidelberg, 1999

[Hal93] N. Halbwachs, "Synchronous Programming of Reactive System", Kluwer Academic
Pub., 1993

[HB01] Alex L. G. Hayzelden, Rachel A. Bourne, "Agent Technology for Communication
Infrastructures", Wiley & Sons Ltd, 2001

[HB99] Alex L. G. Hayzelden, John Bigham, "Agent Technology in Communications Systems:
An Overview", Knowledge Engineering Review, Vol:14, No. 3, 1999

[HLG+01] J.-P. Hubaux, J.-Y. Le Boudec, S. Giordano, M. Hamdi, L. Blazevic, L. Buttyan, M.
Vojnovic, "Towards Mobile Ad-hoc WANs: Terminodes", in IEEE Communication
Magazine, January 2001

[HMW99] L. Hagen, J. Mauersberger, C. Weckerle, "Mobile agents based service subscription and
customization using the UMTS virtual home environment", Computer Networks 31, 1999

[Hog89] Dieter Hogrefe, "Estelle, LOTOS und SDL", Springer-Verlag, ISBN 3-540-50477-X,
1989

[HP85] D. Harel, A. Pnueli, “On the development of Reactive Systems”, In logic and Models of
Concurrent Systems, NATO Advanced Study Institute on Logics and Model of
Verification and Specification of Concurrent Systems ASI Series F, Vol. 13, Springer-
Verlag, 1985

[HSB99] Laurent Hazard, Jean-Ferdy Susini, Frédéric Boussinot, "The Junior Reactive Kernel",
Inria Research Report 3732, July 1999

[HuB01] Jarle G. Hulaas, Didier Buchs, "An Experiment with Coordinated Algebraic Petri Nets as
Formalism for Modeling Mobile Agents", in Proc. of the workshop on Modeling of
Object Components and Agents (MOCA'01), Aarhus, Denmark, August 2001

[ITU00] ITU-T (USA), “WORK ON THE AUTOMATIC SWITCHED OPTICAL NETWORK”,
Delayed contribution D.697 (WP3/15), 2000

[J01] Nicholas R. Jennings, “An Agent-based Approach for Building Complex Software
Systems”, Communications of the ACM, Vol.44, No.4, April 2001

[Jia01] Li Jiang, "Service Assurance for IP-VPN with QoS Guarantees", Professional Thesis at
Swisscom Innovations, Confidential, Eurécom, July 2001

[JIDM97] Object Management Group, “JIDM Specification Translation”, Preliminary Specification,
NMF Version, doc. P509, February 1997

[JIDM98] Object Management Group, “JIDM Interaction Translation”, Final Submission to OMG’s
CORBA/TMN Interworking RFP, October 1998

[Kar00] Stamatis Karnouskos, “Agent-populated Active Networks”, Proceedings of the 2nd
International Conference on Advanced Communication Technology, 2000

References

194

[KG99] David Kotz, Robert S. Gray, "Mobile code: The Future of the Internet", Workshop
Mobile Agents in the Context of Competition and Cooperation (MAC3) at Autonomous
Agents, Seattle, Washington, USA, May 1999

[KKL99] Gwan Joong Kim, Young Boo Kim, Hyeong Ho Lee, "A Design of Distributed Network
Management System for Open Telecommunication Network", Management Issues -
Network and Service Management, Telecom 99, 1999

[KL02] Jong-Seon Kim, Daniel C. Lee, "Dynamic Routing and Wavelength Assignment
Algorithms for Multifiber WDM Networks with Many Wavelengths", in Proc. of 2nd
European Conference on Universal Multiservice Networks (ECUMN'02), Colmar,
France, April 2002

[KMM99] Kwindla Hultman Kramer, Nelson Minar, and Pattie Maes, "Tutorial: Mobile Software
Agents for Dynamic Routing", Mobile Computing and Communication Review, Volume
3, No. 2, March 1999

[LDA+98] P. Lagasse, P. Demeester, A. Ackaert, W. Van Parys, B. Van Caenegem, M. O’Mahony,
K. Stubkjaer, J. Benoit, “A European view by the HORIZON project and the ACTS
Photonic Domain”, Draft, June 1998

[Lea00] Doug Lea, "Concurrent Programming in Java - Design Principles and Patterns", Addison
Wesley Longman, Second Edition, February 2000

[Lec95] Christopher Leckie, "Experience and Trends in AI for Network Monitoring and
Diagnosis", in Proceedings of the IJCAI95 Workshop on AI in Distributed Information
Networks", 1995

[LO98] Danny B. Lange, Mitsuru Oshima, “Programming and Deploying Java Mobile Agents
With Aglets”, Addison-Wesley, ISBN 0-201-32582-9, 1998

[LRD+00] Jingming Li Salina, Daniel Rossier, Manuel Dinis, Laurie Cuthbert, Laurissa Tokarchuk
& John Bigham, “Agent-based resource management for 3G networks”, Mobile
Communications Summit, Galway, Ireland, October 2000

[M+01] P. Marrow et al., “Agents in Decentralised Information Ecosystems: The
DIETApproach”, AISB'01 Symposium on Information Agents for Electronic Commerce,
March 2001

[M3100_96] ITU M.3100, “Principles for a Telecommunications management network”, May 1996

[MAF98] OMG, "Mobile Agent System Interoperability Facilities Specification", Joint Submission,
http://www.omg.org/cgi-bin/doc?orbos/98-03-09, March 1998

[Mah01] Florent Mahoudeau, “Automatically Switched Optical Networks Routing”, Practical
course report, Swisscom Innovations, Bern, Switzerland, September 2001

[Mak00] Milla Mäkeläinen, “Agent Mobility in FIPA-OS”, Project Report available at http://fipa-
os.sourceforge.net/contributions.htm, 2000

[MBN99] James Manchester, Paul Bonenfant, and Curt Newton, "The Evolution of Transport
Network Survivability", Lucent Technologies, in IEEE Communications Magazine,
August 1999

http://www.omg.org/cgi-bin/doc?orbos/98-03-09
http://fipa-os

References

195

[MG01] F. Muscutariu, M.-P. Gervais, "On the Modeling of Mobile Agent-Based Systems", in
Proc. of Mobile Agents for Telecommunication Applications, Montreal, Canada, August
2001

[MKM98] Nelson Minar, Kwindla Hultman Kramer, and Pattie Maes, "Cooperating Mobile Agents
for Mapping Networks", Proceedings of the First Hungarian National Conference on
Agent Based Computing, May 1998

[MKM99] Nelson Minar, Kwindla Hultman Kramer, Pattie Maes, "Cooperating Mobile Agents for
Dynamic Network Routing", MIT Media Lab, Cambridge, USA, in [HaB99], 1998

[MRK96] T. Magedanz, K. Rothermel, S. Krause, "Intelligent Agents: An Emerging Technology
for Next Generation Telecommunications?", INFOCOM'96, San Francisco, CA USA,
March 1996

[NB99] G. Newsome and P. Bonenfant, "A Proposal for Providing Channel-Associated Optical
Channel Overhead in the OTN", ANSI T1X1.5/99-002, available at
http://www.t1.org/index/0816.htm, January 1999

[NMF98] TeleManagement Forum, “SMART TMN, Technology Direction Statement”, Version
1.1, September 1998

[Num95] Chisato Numaoka, “Biologically Inspired Evolutionary Systems”, Report in Workshop on
Biologically Inspired Evolutionary Systems (BIES’95), Tokio, June 1995

[OMG01] Object Management Group (OMG), "Agent Technology – Green Paper", Agent Working
Group, OMG Document ec/2000-03-01, March 2001

[OPB00] James Odell, H. Van Dyke Parunak, Bernhard Bauer, "Representing Agent Interaction
Protocols in UML", AAAI Agents 2000 conference, Barelona, Spain, June 2000

[PCV99] Menelaos K. Perdikeas, Fotis G. Chatzipapadopoulos, Iakovos S. Venieris, Gennaro
Marino, "Mobile agent standards and available platforms", in Computer Networks,
Volume 31 (1999), Number 19, August 1999

[Pi98] Gian Pietro Picco, "Understanding, Evaluating, Formalizing, and Exploiting Code
Mobility", PhD Thesis, Politecnico Di Torino, 1998

[Pie98] Gian Pietro Picco, "mCode: A Lightweight and Flexible Mobile Code Toolkit", in Proc. of
the 2nd International Workshop on Mobile Agents (MA'98), Stuttgart, Germany,
September 1998

[PieJan01] Bertrand Emako Lenou, Roch Glitho & Samuel Pierre, "Technologies des agents mobiles
et applications", Technique et science informatiques, Montreal, January 2001

[PNJ99] Pietro Panzarasa, Timothy J. Norman, Nicholas R. Jennings, "Modeling Sociality in The
BDI Framework", Proc. 1st Asia-Pacific Conf. on Intelligent Agent Technology", Hong
Kong, December 1999

[PWW00] B. Pagurek, Y. Wang, and T. White, "Integration of Mobile Agents with SNMP: Why and
How", IEEE/IFIP Network Operations and Management Symposium, NOMS'2000,
Honolulu, April 2000

http://www.t1.org/index/0816.htm

References

196

[R+01] J. Robadey et al., “Implementing the ASON: interest and critical issues for the operator”,
Proc. of 6th European Conference on Network & Optical Communications, June 2001

[RG+95] Rao, A. S., Georgeff, M. P., "BDI Agents: From Theory to Practice, in: Proceedings of
the First International Conference on Multi-Agent-Systems (ICMAS)", San Francisco,
1995

[Riv00] Patricia Cuesta Rivalta, "Mobile Agent Management", M.S. Thesis, Carleton University
Ottawa, Ontario, Canada, October 2000

[Rob01] J. Robadey, "Optical Nodes Complement", draft contribution for the FASHION (Flexible,
Automatically SwitcHed client Independent Optical Networks) Eurescom Project,
Swisscom, May 2001

[Roc01] Jordi Roca I Carles, “Dynamic Demands Simulation on IP over WDM Networks”,
Diploma Work, Swisscom Innovations, Bern, Switzerland, September 2001

[RoRS01] Daniel Rossier-Ramuz, Daniel Rodellar, Rudolf Scheurer, "Dynamic Protection Set-up in
Optical VPN using Mobile Agent Ecosystem", in Proceedings of DRCN'01, Third
International Workshop on Design of Reliable Communication Networks, Budapest,
October 2001

[Ros02] Daniel Rossier, “A Description of the Generic Network Management Tool”, Technical
Report, University of Fribourg, Switzerland, to appear, August 2002

[RRS01] Daniel Rossier-Ramuz, Daniel Rodellar, Rudolf Scheurer, "An Intelligent and Mobile
Agent-based Approach for Dynamic Protection Set-up in Future Optical Networks",
Proceedings of the fifth Working Conference on Optical Network Design and Modelling
(ONDM'01), Vienna, February 2001

[RS00] Daniel Rossier-Ramuz, Rudolf Scheurer, "Implementation of Mobile Agents for WDM
Network Management", Hayzelden (ed.), chapter in 'Agent Technology for the
Communication Infrastructures', Ed. Wiley, 2000

[RS02] Daniel Rossier-Ramuz, Rudolf Scheurer, "ECOMOBILE: A Mobile Agent Ecosystem for
Distributed Network Management", in Proc. of ECUNM'02, 2nd European Conference on
Universal Multiservice Networks, Colmar, France, April 2002

[RS97] Rajiv Ramaswami, Galen H. Sasaki, "Multiwavelength Optical Networks with Limited
Wavelength Conversion", in Proceedings of Infocom'97, 1997

[RS98] R. Ramaswami and K. Sivarajan, "Optical Networks, A Pratical Perspective", Morgan
Kaufmann, 1998

[RS99] D. Rossier-Ramuz, R. Scheurer, "An Introduction to Optical Agents: Intelligent and
Mobile Agents for WDM Optical Network Management", in Proceedings of IMPACT'99,
Impact of Agent Technology on Telecommunications, Seattle, USA, December 1999

[RSH01] Daniel Rossier-Ramuz, Rudolf Scheurer, Beat Hirsbrunner, “A Mobile Agent Ecosystem
for Rule Based Network Oriented Applications”, Technical Report 01-22, Department of
Informatics, University of Fribourg, Switzerland, July 2001

References

197

[RSP00] Anca Rarau, Ioan Salomie, and Kalman Pusztai, "On Synchronization in a Mobile
Environment", in Proc. of Mobile Agents for Telecommunication Applications
(MATA'00), Paris, France, September 2000

[S99] Peter Sapati, "Mobile Processing in Distributed and Open Environments", Wiley Series
on Parallel and Distributed Computing, Albert Y. Zomaya, Series Editor, 1999

[Sat96] Ken-ichi Sato, "Advances in Transport Network Technologies", Artech House, Inc.,
Boston and London, 1996

[Sch01] Michael Schumacher, "Objective Coordination in Multi-Agent System Engineering",
Springer-Verlag, Berlin, 2001

[SCH99] Michael Schumacher, Fabrice Chantemargue, Béat Hirsbrunner, "The STL++
Coordination Language: a Base for Implementing Distributed Multi-Agent Applications",
In Third Int'l Conference on Coordination Models and Languages, COORD'99, April
1999

[SCT01] John Strand, Angela L. Chiu and Robert Tkach, “Issues For Routing In The Optical
Layer”, IEEE Communications Magazine, February 2001

[Sel95] Rüdiger Sellin, “TMN - Die Basis für das Telekom-Management der Zukunft”, R.v.
Decker’s Verlag, 1995

[Sha98] Uma Shanker, "Autonomous and Mobile Agents in Distributed Network Management
and Monitoring System", Distributed Computing on the Web (DCW'98), Proceedings of
the Workshops, 1998

[SHMar99] Ruud Schoonderwoerd, Owen Holland, "Minimal Agents for Communications Network
Routing: The Social Insect Paradigm", Hewlett-Packard Laboratories, Bristol, UK, in
[HaB99], 1999

[Shu00] Shuffle IST Project Consortium, "Specification of System", deliverable D1 of Shuffle
Project, available at http://www.ist-shuffle.org, 2000

[SS99] Sajjad H. Shami and Mark C. Sinclair, "Co-evolutionary Agents for Telecommunication
Network Restoration", Proc. Recent Advances in Soft Computing'99, Leicester, UK, July
1999

[SSC+98] Onn Shehory, Katia Sycara, Prasad Chalasani, Somesh Jha, "Agent Cloning: Agent
Mobility and Resource Allocation", IEEE Communications Magazine, July 1998

[Stu02] Ido Stumpges, "Planning and Analysis of Optical Networks to Support Wavelength on
Demand", Professional Thesis at Swisscom Innovations, Confidential, Eurécom, July
2002

[T96] Andrew S. Tanenbaum, “Computer Networks”, International Edition, Prentice-Hall, Inc.,
Third Edition, 1996

[THL01] Patrick Tullmann, Mike Hibler, Jay Lepreau, "Janos: A Java-oriented OS for Active
Network Nodes", in IEEE Journal on Selected Areas in Communication, March 2001

http://www.ist-shuffle.org

References

198

[UK01] A.M. Uhrmacher, M. Krahmer, "A Conservative, Distributed Approach to Simulating
Multi-Agent Systems", in Proc. of European Multi-Conference on Simulation
(ESM'2001), Prague, 2001

[UKL02] A.M. Uhrmacher, Bernd Kullick, Jens Lemcke, "Reflection in Simulating and Testing
Agents", in Proc. of the 16th European Meeting on Cybernetics and System Research
(EMCSR'02), 2002

[UTT00] Adelinde M. Uhrmacher, Petra Tyschler, Dirk Tyschler, "Modeling and Simulation of
Mobile Agents", in “Future Generation Computer Systems”, Vol. 17, 2000

[VS99] Griselda Navarro Varela, Mark C. Sinclair, "Ant Colony Optimisation for Virtual-
Wavelength-Path Routing and Wavelength Allocation", in Proc. Congress on
Evolutionary Computation (CEC'99), Washington DC, USA, July 1999

[VSN+01] Eve L. Varma, Sivakumar Sankaranarayanan, George Newsome, Zhi-Wei Lin, and
Harvey Epstein, "Architecting the Services Optical Network", IEEE Communications
Magazine, September 2001

[Whi00] Tony White, "SynthECA: A Synthetic Ecology of Chemical Agents", Ph.D., University
of Carleton, Ottawa, Canade, available at
http://www.sce.carleton.ca/netmanage/publications.html, August 2000

[WhP99] Tony White, Bernard Pagurek, "Emergent Behavior and Mobile Agents", MAC3, Mobile
Agents in the Context of Competition and Coordination, Seattle, WA, USA, May 1999

[WJ95] Wooldridge and N.R. Jennings, "Agent Theories, Architectures, and Languages: a
Survey", In M. Wooldridge and N.R. Jennings, editors, Intelligent Agents, number 890 in
LNCS, pages 1-39. Springer Verlag, 1995.

[WP99] Tony White, Bernard Pagurek, "Distributed Fault Location in Networks Using Learning
Mobile Agents", Proceedings of PRIMA’99, Springer-Verlag Pub., Kyoto Japan,
December 1999

[WPB+98] Tony White, Bernard Pagurek, Andrzej Bieszczad, George Sugar, Xuong Tran,
“Intelligent Network Modelling Using Mobile Agents”, In Proceedings of the IEEE
Global Telecommunications Conference GLOBECOM 98, November 1998

[WPB99] Tony White, Bernard Pagurek, Adrzej Bieszczad, "Network Modeling For Management
Applications Using Intelligent Mobile Agents", special issue on Mobile Agents of the
Journal of Network and Systems Management, September 1999

[XD00] Dianxiang Xu and Yi Deng, "Modeling Mobile Agent Systems with high Level Petri
Nets", in Proc. of IEEE International Conference on Systems, Man, and
Cybernetics'2000, Invited paper, Nashville, October 2000

[YGY91] Yemini, Y., Goldszmidt, G. and Yemini, S., "Network Management by Delegation", in
The Second International Symposium on Integrated Network Management, Washington,
DC, April 1991

[Zbi01] Patric Zbinden, “Generic Network Management Tool”, Schlussbericht zur Seminararbeit,
University of Fribourg, Switzerland, October 2001

http://www.sce.carleton.ca/netmanage/publications.html

References

199

[ZJM00] Hui Zang, Jason P. Jue, Biswanath Mukherjee, "A Review of Routing and Wavelength
Assignment Approaches for Wavelength-Routed Optical WDM Networks", Optical
Networks Magazine, January 2000

[ZJS+01] Hui Zang, J.P. Jue, L. Sahasrabuddhe, R. Ramamurthy, B. Mukherjee, "Dynamic
Lightpath Establishment in Wavelength-Routed WDM Networks", IEEE
Communications Magazine, September 2001

[ZP97] Jim Zyren, Al Petrick, "IEEE 802.11 Tutorial", available at
http://www.computer.org/students/looking/summer97/ieee802.htm, 1997

[ZZ98] Dianlong Zhang, Werner Zorn, “Developing network management applications in an
application-oriented way using mobile agent”, Computer Networks and ISDN Systems,
Vol. 30, 1998

http://www.computer.org/students/looking/summer97/ieee802.htm

	Résumé
	Abstract
	Acknowledgements
	TABLE OF CONTENTS
	List of Figures
	Figure 1-1. Interactions between manager, agent and MIB
	Figure 1-2. CORBA-based approach towards network management integrating TMN/SNMP agents
	Figure 1-3. A TMN-based centralised approach for the optical transport network
	Figure 1-4. Two famous agent models: the deliberative agent (left) and the reactive agent (right)
	Figure 1-5. Mobile agent environment (left) and communication between agent systems (right)
	Figure 1-6. Agent system reference model of FIPA
	Figure 1-7. General architecture of OMG-MASIF mobile agent system
	Figure 1-8. Integration of the FIPA mobility support with OMG-MASIF
	Figure 1-9. MCE Components
	Figure 1-10. Active node infrastructure
	Figure 2-1. UML Model of task behaviours in Jade
	Figure 2-2. Places and location concept
	Figure 2-3. Ants making decisions based on the strength of the pheromone trail
	Figure 3-1. Ecomobile: an instantiation of abstraction models
	Figure 3-2. Active node environment with respect to Ecomobile
	Figure 3-3. Places intra-/inter-agency connectivity and partial connectivity matrix
	Figure 3-4. M-agent Architecture
	Figure 3-5. UML Diagram of M-agent components in Ecomobile
	Figure 3-6. MBS Low Diffusion - M-agent λy interacting with λx
	Figure 3-7. MBS High Diffusion - M-agent λy interacting with λx
	Figure 3-8. State and Callbacks-based Transition Diagram in TO Lifecycle
	Figure 3-9. Macros definition in SDL
	Figure 3-10. SDL Diagram from the state TO_S_INIT
	Figure 3-11. SDL Diagram from the state TO_S_READY
	Figure 3-12. SDL Diagram from the state TO_S_ACTIVATED
	Figure 3-13. SDL Diagram from the state TO_S_SUSPENDED_FOR_MIGRATION
	Figure 3-14. SDL Diagram from the state TO_S_SUSPENDED
	Figure 3-15. Interactions between MBS, task objective wrappers
	Figure 3-16. A pre-planned navigation TO model
	Figure 3-17. Interactions in Ecomobile
	Figure 4-1. Instant and reaction in the reactive model
	Figure 4-2. Reactive machine in Junior
	Figure 4-3. Interleaving of Reactive Instructions
	Figure 4-4. A causality problem in reactive behaviours
	Figure 4-5. Contraction of the interference-dwelling scheme into a unique reaction
	Figure 4-6. UML diagram of the Ecomobile agency model
	Figure 4-7. M-agent migration from one reactive machine to the other
	Figure 4-8. Interactions between the Ecomobile components during migration
	Figure 5-1. Core GNMT network model inspired from the ITU-T and ISO models
	Figure 5-3. The Square network (MBS-high, phiDwelling=5, phiMigration=10)
	Figure 5-4. The Fantasy network (MBS-low, phiDwelling=5, phiMigration=10)
	Figure 5-5. The Swiss Network (MBS-low, phiDwelling=5, phiMigration=10)
	Figure 5-6. Number of M-agents arriving (first value) and leaving (second value) with MBS-low
	Figure 5-7. Overload of meeting opportunities (phiDwelling=5, phiMigration=10)
	Figure 5-8. Link frequency visit with the heuristic-based waiting time function
	Figure 5-9. Example of the evolution of the M-agent population size over time
	Figure 5-10. Evolution of the M-agent population over time (phiMigration=10)
	Figure 5-11. M-agent population in the Swiss network (33 nodes)
	Figure 5-12. Population size with constant waiting time (MBS-high, phiDwelling=5, phiMove=10)
	Figure 5-13. Analysis of C(t) and D(t) of TO_Travel with MBS-low and MBS-high
	Figure 5-14. Path completion over time
	Figure 5-15. Finding all network paths between two nodes
	Figure 5-16. Convergence speed, mean context size and diffusion ratio
	Figure 6-1. Four basic networking functions in the optical domain
	Figure 6-2. The three section layers defined by ITU-T and the digital wrapper
	Figure 6-3. The ASON Management planes
	Figure 7-1. Place semantics in the context of the basic optical functions
	Figure 7-2. Two-layers network model with virtual and physical topology
	Figure 7-3. Two-dimensional interactions influencing the quality of protection
	Figure 7-4. Evolution of the QoP according to the number of SN(t) and SL(t) (α, β = 1.0, ω = 0.3)
	Figure 7-5. Working and protection paths in the optical VPN (dashed lines) and resulting allocation in the OTN
	Figure 7-6. TO-related metrics for the DPS task objective
	Figure A-1. Modules in GNMT
	Figure A-2. A GUI snapshot of the GNMT
	Figure A-3. GNMT kernel: classes tree with root packages
	Figure A-4. General structure of packages in the model part
	Figure A-5. Core GNMT network model inspired from the ITU-T and ISO models
	Figure A-6. UML Diagram of the core GNMT network model (package iiuf.gnmt.model)
	Figure A-7. Multi-layer management with Access Point Manager in GNMT
	Figure A-8. UML Diagram of the OTN layer
	Figure A-9. XML and binding with Java objects

	List of Tables
	Table 1-1. Summary of agent platforms and properties
	Table 2-1. Taxonomy of coordination models with their spatial/temporal coupling
	Table 2-2. Abstraction models of different mobile MAS
	Table 3-1. Task objectives callbacks and user methods
	Table 3-2. An example of a task objective in Ilog JRules
	Table 3-3. A simple TO model to travel in the network
	Table 3-4. A generic monitoring TO model
	Table 3-5. A node inspector TO model
	Table 3-6. TO model for an exhaustive path finder in a network
	Table 3-7. On-line routing TO model
	Table 4-1. The method react() of the reactive machine (MachineImpl.java) activating a reaction
	Table 4-2. Implementation sample of a Φ-behaviour with a reactive instruction
	Table 4-3. Description of MBS using the dynamic insertion of reactive instructions
	Table 7-1. The TO_QoP task objective
	Table A-1. List of simulation commands
	Table A-2. Example of a XML script

	Abbreviations
	Introduction
	Part I: Technology Insight
	Chapter 1: Mobile Agents and Network Management
	1.1 NETWORK MANAGEMENT SYSTEMS
	1.1.1 General Components
	1.1.2 Centralised versus Decentralised Network Management
	1.1.3 Distributed Management by Delegation

	1.2 SOFTWARE AGENTS
	1.2.1 Intelligent Agents
	1.2.2 Mobile Agents
	1.2.3 Mobility Functions
	1.2.4 Agent Standards

	1.3 MOBILE PROCESSING IN NETWORK MANAGEMENT
	1.3.1 Main Characteristics of Mobile Agent Based Approaches
	1.3.2 The Wave Technology

	1.4 ACTIVE NETWORK MANAGEMENT
	1.4.1 Active Networks
	1.4.2 Ad-hoc Networks
	1.4.3 The Terminodes

	1.5 AGENT PLATFORMS
	1.5.1 FIPA-OS
	1.5.2 Jade

	1.6 SUMMARY AND DISCUSSION

	Chapter 2: Engineering Mobile Multi-agent Systems
	2.1 THE COMPUTATIONAL MODEL
	2.1.1 Task Patterns
	2.1.2 Tightly and Loosely Coupled Task Model

	2.2 THE COORDINATION MODEL
	2.2.1 Interaction Patterns
	2.2.2 Blackboard
	2.2.3 Mobility Oriented Coordination

	2.3 THE NAVIGATION MODEL
	2.3.1 Location Concept, Migration and Itinerary
	2.3.2 Migration Patterns
	2.3.3 Pre-planned Navigation
	2.3.4 Stochastic Navigation

	2.4 EMERGENT BEHAVIOUR
	2.4.1 AntNet
	2.4.2 SynthECA

	2.5 OUR CLASSIFICATION OF MOBILE MAS
	2.6 SIMULATING MOBILE MAS
	2.7 SUMMARY

	Part II: Design, Implementation and Simulation
	Chapter 3: The Conceptual Framework of Ecomobile
	3.1 FUNDAMENTALS OF ECOMOBILE
	3.2 NODE ENVIRONMENT
	3.2.1 The Agency
	3.2.2 The Place
	3.2.3 The Blackboard

	3.3 THE M-AGENT
	3.4 THE MOBILE BEHAVIOUR SCHEME
	3.4.1 Notations
	3.4.2 Reactive Behaviours
	3.4.3 Low Diffusion
	3.4.4 High Diffusion

	3.5 TASK OBJECTIVES
	3.5.1 Lifecycle and Callbacks
	3.5.2 Rule-based Task Objectives
	3.5.3 Wrapper and Interactions with Task Objectives

	3.6 SAMPLES OF GENERIC TASK OBJECTIVES
	3.6.1 Travelling in a network
	3.6.2 Monitoring
	3.6.3 The Node Inspector
	3.6.4 Path Selection
	3.6.5 The Exhaustive Path Finder
	3.6.6 On-line Routing

	3.7 OVERVIEW OF THE INTERACTIONS IN ECOMOBILE
	3.8 SUMMARY

	Chapter 4: Implementation with Reactive Programming and Deployment
	4.1 REACTIVE PROGRAMMING
	4.2 THE JUNIOR FRAMEWORK
	4.2.1 The Reactive Machine
	4.2.2 The Reactive Instructions
	4.2.3 Fair Threads
	4.2.4 Towards a Reactive Operating System

	4.3 MAPPING OF THE MBS ON REACTIVE INSTRUCTIONS
	4.3.1 A Causality Problem in the Φinterference- Φdwelling Scheme
	4.3.2 The MBS-low and the MBS-high as Reactive Programs

	4.4 DEPLOYMENT WITH JADE
	4.4.1 Ecomobile Agency
	4.4.2 The LEAP Project
	4.4.3 Considerations about Efficiency and Scalability

	4.5 THE MOBILITY SUPPORT WITH FIPA-OS
	4.6 SUMMARY

	Chapter 5: Simulation and Results
	5.1 THE GNMT FRAMEWORK
	5.1.1 Introduction
	5.1.2 The Core GNMT Network Model

	5.2 NOTATION, METRICS AND ASSUMPTIONS
	5.3 BEHAVIOURAL ANALYSIS OF THE MBS
	5.3.1 Node Visit Frequency
	5.3.2 Link Visit Frequency
	5.3.3 Population and Stability

	5.4 BEHAVIOURAL ANALYSIS OF TASK OBJECTIVES
	5.4.1 TO_Travel
	5.4.2 TO_PathSelect
	5.4.3 TO_ExhaustivePathFinder
	5.4.4 TO_Routing
	5.4.5 Discussion

	5.5 SUMMARY

	Part III: Application to Optical Networks: A Case Study
	Chapter 6: The Optical Transport Network
	6.1 AN OVERVIEW OF OPTICAL NETWORK COMPONENTS
	6.1.1 Time and Wavelength Division Multiplexing
	6.1.2 Optical Nodes

	6.2 THE ROUTING AND WAVELENGTH ASSIGNMENT PROBLEM
	6.3 MANAGING OPTICAL NETWORKS
	6.3.1 The Digital Wrapper
	6.3.2 The Automatic Switched Optical Network
	6.3.3 Active Management

	6.4 SUMMARY

	Chapter 7: Towards Active OTN Management
	7.1 THE OPTIMA PROJECT
	7.2 DEPLOYING ECOMOBILE INTO ACTIVE OPTICAL NODES
	7.2.1 Optical Agents
	7.2.2 Place Semantics

	7.3 INTELLIGENT WAVELENGTH SERVICES
	7.3.1 The Optical VPN
	7.3.2 On-demand Provisioning
	7.3.3 Protection and Restoration in the OTN

	7.4 DIFFERENTIATED PROTECTION SERVICES
	7.4.1 The Network Model
	7.4.2 Quality-of-Protection (QoP) and DPS Formulation
	7.4.3 DPS-oriented Task Objective
	7.4.4 Experiments and Results

	7.5 SUMMARY

	Conclusions
	Appendix A: The GNMT Simulation Framework
	A.1 INTRODUCTION
	A.2 THE GNMT KERNEL
	A.2.1 The Core GNMT Network Model
	A.2.2 Routing Algorithms
	A.2.3 Intelligent Wavelength Services
	A.2.4 Dynamic Simulation

	A.3 PRIVATE EXTENSIONS
	A.3.1 The IP Layer

	A.4 CONCLUSIONS

	Bibliography
	Curriculum Vitae
	References

