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Abstract

We discuss the impact of the scattering anisotropy parameter on the path length distribution of multiply scattered light. A quantita-
O tive treatment based on the radiative transfer equation is compared to an extended photon diffusion formalism. We compare both models
U with diffusing-wave spectroscopy measurements using randomly polarized light.
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1. Introduction

Probing diffuse light in the multiple scattering regime
has become a very active field of research [1]. The backscat-
tering regime is of particular importance for biomedical
imaging techniques using visible or near-infrared diffuse
light [2,3] and for the characterization of complex fluids
[4]. At sufficiently large length scales (larger than the trans-
port mean free path [*) and at long times (larger than the
collision time I"/c, where ¢ is the energy velocity), the trans-
port of intensity is well described by the diffusion approxi-
mation [5]. The simplicity of the diffusion approximation
makes it an important tool in the analysis of experimental
data in practical situations. Nevertheless, it suffers from
drawbacks which limit its validity. On the one hand,
boundary conditions can only be introduced approxi-
mately, using extrapolation distances and angle-averaged
reflection factors when internal reflections cannot be
neglected [6,7]. On the other hand, the scalar diffusion
approximation overestimates the contribution from short
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paths, the error becoming more severe as the anisotropy
of scattering increases [8—10].

The purpose of this paper is to study experimentally and
theoretically the diffuse reflection of randomly polarized
light, and to show how the limits of the diffusion approxi-
mation can be overcome using improved models. Using
randomly polarized light allows to focus on the impact of
the scattering anisotropy parameter g. This parameter is
defined as the average cosine of the scattering angle
g = (cos ®). The parameter is a direct measure of the scat-
tering anisotropy. Predominant forward scattering, as
observed in Mie scattering, leads to values close to 1
whereas for Rayleigh scattering g =0. Negative values
can be observed in the presence of short range structural
order [11]. The value of g also defines the ration between
the scattering mean free path £ and the transport mean free
path £* =2¢/(1 — g).

In this work, experimental data are obtained from dif-
fusing-wave spectroscopy (DWS) measurements [12], an
important tool in the characterization of complex fluids.
DWS provides access to the distribution of light paths
via the time correlation function of light fluctuations. The
standard DWS theory relies on the diffusion approxima-
tion [13,14]. In the non-diffusive regime, the modelling
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can be improved by using more refined transport equations
in order to compute the photon path-length distribution.
The telegrapher equation has been used to study the effect
of ballistic photons and scattering anisotropy [9]. More
recently, the radiative transfer equation (RTE) has been
introduced to model the transition from the single-scatter-
ing to the diffusive regime in DWS [15]. It has also been
shown that measuring the path-length distribution, and
using the measured data in the standard DWS theory
(instead of calculations based on the diffusion approxima-
tion) improves the interpretation of the results [16].

In the present study, we show experimentally that for
backscattered light, anisotropic scattering strongly influ-
ences the time decay of the field correlation function, a
behavior which is not described by the standard DWS the-
ory. Good agreement with the DWS data is obtained using
an RTE calculation of the path-length distribution while
the standard diffusion model display substantial deviations.
Based on earlier work of Mackintosh and John [8], it has
been suggested by Rojas et al. that in a reflection geometry,
a cutoff in the path-length distribution can be introduced in
order to improve the accuracy of the diffusion approxima-
tion [10]. The modified diffusion model significantly
improves the description of DWS experimental data in
the most relevant regime of intermediate time scales but
gives unphysical predictions for extremely long paths.

2. Diffusing-wave spectroscopy

Dynamic light scattering allows the dynamic properties
of complex media (such as biological tissues) to be charac-
terized by measuring temporal fluctuations of scattered
light [23,24]. In the multiple scattering regime, the DWS
technique has been developed in order to relate light fluctu-
ations to microscopic dynamic properties such as particle
diffusion [12,13].

In the continuum approximation, the DWS normalized
field correlation function g,(t) can be directly related to the
path-length distribution P(s) [13,14]

g(0) = / " P(s) exp[-2(t/)s/£')ds. (1)

In our case the characteristic relaxation time for diffusive
particle motion 7y = (k(z)D)*l (with D the diffusion constant
of Brownian particles and k, the wave number in the med-
ium) is a known quantity. The solution based on the scalar
diffusion theory (non-reflecting boundaries) is well known
[13]. For a non-absorbing medium, it reads

£1(x(7)) = {exp[7,x()] +exp[— (7, +27.)x(7)] } /2 =: h(x(7))

(2)
where x(t) = 1/61/10, yp=12zp/¢" and 7y =z /0" with
7 =7p T 7e = 5/3 for scalar waves [5]. In the limit x <1
this expression reduces to g;(x) =~ exp(—yx). It is very com-
mon to use this expression when modelling experimental

data (even outside the range of validity of the first-order
development in x). In the derivation of Eq. (2) both resid-

ual absorption and limited container size have been ne-
glected. Both processes lead to a loss of photons for long
paths (for a detailed discussion see [24]).

The key quantity in DWS is the path-length distribution
P(s). The scalar diffusion approximation [Pgig(s)] is known
to overestimate the contribution from the short paths of
the distribution, the error becoming more and more severe
as the anisotropy of scattering increases. Rojas et al. sug-
gested a semi-empirical correction to the distribution of
paths length by introducing a g-dependent cutoff in the dis-
tribution [10]

Peor(s) o Paigr(s)[1 — 3/2g exp(—s/¢")], (3)

where Pgiq(s) is the distribution calculated from scalar dif-
fusion. For a quantitative description, this distribution has
to be normalized to satisfy the condition fooo Peor(s)ds = 1.
It is worthwhile to point out that in the previous work of
Rojas-Ochoa et al. [10] the modified path distribution has
been used to study the polarization dependence of diffusely
reflected light [10]. The empirical relation found between
the depolarization length ¢, and the scattering mean free
path £ has been confirmed in a subsequent theoretical study
of Xu and Alfano [25].

The modified path-length distribution given by Eq. (3)
can be easily included in the DWS framework. It follows
directly from Egs. (1)—(3):

2hfx(t)] — 3gh{ x(t)” + 3]

Bol) = e @

3. Modelling by the radiative transfer equation

The accuracy of the computation of the path-length dis-
tribution P(s) can be improved by using more refined trans-
port equations for the light intensity (compared to the
diffusion equation). In this work, we will use the time-
dependent RTE. The use of the RTE allows to avoid a
number of fundamental and practical drawbacks of the dif-
fusion approximation. (i) The validity of the RTE is not
restricted to large systems and long times. (ii) The bound-
ary conditions can be handled exactly with the RTE
approach [17]. This is particularly important in systems
where internal reflections play a crucial role [18,19]. (iii)
The RTE allows to deal with arbitrary scattering properties
and an arbitrary level of absorption [20].

In this work, we consider a semi-infinite medium with
the z-axis normal to the boundary. The medium z> 0 is
filled with a scattering medium, and illuminated from the
left at normal incidence by a plane wave. The specific inten-
sity I(z,u, t) inside the scattering medium obeys the RTE
[21]

1 0I(z,u,t) ~ 0l(z,u,t)
2 - _ Ji
C at +M az (fu:+fua) (Z7lu7t)
w [t
+5 PO, 1) (z, 4 1) A (5)
-1
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where c is the energy velocity and p = cos0, with 0 the an-
gle between the propagation direction and the z-axis. p® is
the phase function averaged over the azimuthal angle
PO, ) = 2r)"" [ p(u-u)d$ where u and ' are unit
vectors corresponding to directions (6, ¢) and (6',¢’). The
specific intensity I(z, u, 1) is integrated over the azimuthal
angle ¢. u, and p, are the scattering and absorption
coefficients, respectively. The associated scattering and
absorption mean-free paths are ¢ = y;' and ¢, = u'. The
transport mean-free path is ¢* = ¢/(1 — g). The real part
of the medium effective index, accounting both for the
homogeneous background medium and the scattering
particles, is denoted by n.

In order to compute the field correlation function given
by Eq. (1), one could compute the path-length distribution
P(s) using the RTE, and then perform the integration
numerically. The calculation of P(s) can be deduced from
a calculation of the time-resolved diffuse reflected intensity
¢rTE(?), resulting from an illumination with an incident
pulse of negligible width. Assuming a constant velocity,
one simply has P(s) = ¢rre(t = 5/¢)/(cUiye), where Uy, is
the energy density of the incident pulse. In this work, we
have followed a different approach, taking advantage of
the Laplace-transform structure of Eq. (1). Instead of solv-
ing the RTE for the specific intensity /(z,u,s = ct), we solve
the transport equation satisfied by the Laplace transform
of the specific intensity with respect to the variable s

(6)
This quantity obeys an equivalent steady-state RTE

with an effective extinction coefficient

0I(z, u, 1) 27
T* (,Lts.‘i’lla‘i’fog*)j(z,,u,f)

Iz p,7) = /0 " 1z, 1, 5) expl=2(1/70)s/¢']ds.

=

+1
1
+5 PO, ) I (2, T)dyd

(7)

This equation can be solved numerically using standard
procedures for the steady-state RTE. In the present study,
we have used a discrete—ordinate scheme [22]. Details about
the numerical method can be found in Ref. [18]. From the
Laplace transform of the specific intensity .#(z, u, 7), the
field correlation function gy(7) is readily obtained by com-
puting the radiative steady-state energy flux at the bound-
ary z =0, which is simply the first-moment of the specific
intensity with respect to the angular variable u

= [ wre=0.unn )

1

4. Experiments and results

In our experiments we study laser light (wavelength
A =532 nm) back reflected from a highly opaque “white”
medium. The sample cell (10 x 5 mm base dimensions) is
filled with a suspension of monodisperse polystyrene latex

particles (refractive index n=1.59) in water, with a vol-
ume fraction of 4%. The cuvette is immersed in a water
bath to both keep the temperature constant at
T=22°C and suppress reflections at the cuvette wall.
We vary the diameter of the particles in the range
d=110-990 nm, with corresponding anisotropy factors
varying in the range 0.1-0.95. The scattered light is mea-
sured in the backscattering direction. Typical measure-
ments of the field time correlation function (Ing;(x)) are
shown in Fig. 1.

In order to study the influence of anisotropic scattering

we define an effective time decay parameter y.; by
Ollng,(x

Vet = _% r_x/- (9)

We obtain the experimental values of y.g(x’) by a linear fit

to Ing(x) in the range x =0.15-0.25 ~ 0.2 and x = 0.45-

0.55 ~0.5. The linear fits on the experimental data are

shown in Fig. 1 (solid lines).

The RTE calculations are carried out matching the
experimental conditions. The phase function and mean free
paths are computed using Mie theory in the independent
scattering regime (low volume fraction of particles).
Fig. 2 shows the measured y.; (symbols), as well as calcu-
lations using the different models for g,(t): DWS with cor-
rected path-length distribution P(s) (dash-dotted line) and
with RTE calculation of P(s) (solid line) as well as the con-
stant value of y.¢ expected from the standard diffusion the-
ory (dotted line). For comparison we have also included
the predictions by Lemieux et al. (dashed line) which are
based on a photon propagation model using a telegrapher
equation approach [9]. The latter model explicitly takes in
to account g and further provides analytic predictions for
g1 [Eq. (4.12) in Ref. [9]]

For values of x > 0.2 the experiments and the RTE
calculations show a clear dependence on the anisotropy

O R=52nm,g=0.11
<& R=95nm,g=041 |
® R=300nm,g=0.9
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Fig. 1. DWS autocorrelation function for different g-values. Curves for
g =0.41, 0.9 are shifted for clarity. Solid lines: Linear fit to the data over
the range x = 0.15-0.25 ~ 0.2 and x = 0.45-0.55 ~ 0.5.
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Fig. 2. Decay parameter ).y for backscattered light versus the anisotropy
factor g. Symbols: experimental data. Solid line: DWS with RTE
calculation of P(s), Dash-dotted line: DWS with corrected path-length
distribution P.,(s), Dotted line: standard DWS with Pg;a(s). Dashed line:
predictions based on the model of Lemieux et al. [9].

factor g. The effective decay rate y.q increases with g. This
behavior, which is not included in the standard DWS
model Eq. (2), is well described by the RTE calculations.
Also the modified diffusion model captures the essential
features of the observed behavior. In particular at interme-
diate values of x the agreement is excellent. In practical
applications of DWS this good agreement should turn
out very beneficial. The region x = 0.3-0.7 is usually ana-
lysed in a DWS experiment. Smaller values are difficult
to access since for x <0.2 photon loss (absorption and/or
limited container size) is often dominant whereas values
of Ing;(x) for x > 1 are not very reliable due to experimen-
tal noise (the measured signal has decayed to less than two
per cent) and the contribution from very short paths. The
model of Lemieux et al. [9] deviates substantially from
the data in this regime of practical interest (x = 0.3-0.7).
Deviations are smaller as x is decreased. Finally, we note
that for values of g> 0.7, the RTE calculation displays
oscillations. These oscillations are the signature of Mie
resonances in the spherical particles.

Approaching x — 0 the results are expected to become g
independent which is reflected by the standard diffusion
model, the telegrapher equation model of Ref. [9] as well
as our RTE calculations (data not shown). Physically these
long paths are well modelled by the diffusion approxima-
tion and in the limit of P(s — oco) the distribution cannot
be affected by the scattering anisotropy. In this regime
the modified diffusion equation displays an artefact: While

the overall agreement is still reasonable the remaining g-
dependence of y.q is unphysical (data not shown).

5. Summary and conclusions

We have analysed the diffuse reflection of light based on
DWS measurements. The time decay of the field correla-
tion function substantially depends on the scattering
anisotropy parameter g, a behavior that is not predicted
by the standard DWS theory. A rigorous treatment based
on the RTE describes the g dependence, in good agreement
with the experimental data. An ad hoc modification of the
path-length distribution of the standard DWS approach,
using a g-dependent cutoff in the path-length distribution
derived from the diffusion approximation, has been
checked against experiments. It provides a useful simple
approach for practical applications. Our results should
help improving optical probes for soft matter studies and
imaging in biological tissues.
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