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ABSTRACT

We study the diffusion of a metal nanoparticle in the nonconservative force field of an optical vortex lattice. Radiation pressure in the vortex
array is shown to induce a giant enhancement over the free thermal diffusion. Langevin dynamics simulations show that the diffusion coefficient
of (50 nm radius) gold particles at room temperature is enhanced by 2 orders of magnitude at power densities of the order or smaller than

those used to trap nanoparticles with optical tweezers.

Understanding and control of particle transport and diffusion
properties is a most relevant issue to fields from biophysics
to material science and chemical processing with countless
applications including particle mixing, diffusive separation
of particles, microrheology, intracellular transport, or drug
delivery to mention a few.'™ The advances into sculpting
optical wavefronts and light intensity profiles make optical
tools ideal for both imaging and manipulation of nanoparticle
thermal motion. Optical tracking of the thermal motion of
micrometer and nanosized particles provide access to local
viscosity and mechanical properties at scale of the tracer.>*
Optical tweezers’® can trap and manipulate the probes
extending the measurements beyond equilibrium thermal
fluctuations. Optical fields can also be used to arrange, guide,
or deflect particles in appropriate light-field geometries.®™

Brownian dynamics of small particles can be profoundly
modified by appropriate light fields.'®'! A particularly simple
way to manipulate the force-free diffusion of a Brownian
particle is by means of a spatially periodic force field with
a nonvanishing systematic component.! While the force-free
thermal diffusion of an overdamped Brownian particle is
always reduced when switching on an unbiased periodic
potential, the diffusion coefficient as a function of an
additional bias exhibits a pronounced peak''™!* in a small
vicinity of the so-called critical tilt. Here we propose a
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Figure 1. Sketch of a nanoparticle enhanced diffusion path in an
optical vortex lattice.

different mechanism giving rise to giant diffusion based on
a nonconservative optical force field.

Previous works focused on the diffusion of dielectric beads
on conservative optical potentials'®'! and the influence of
nonconservative optical forces has not been explored in
detail.’> As we will see, the diffusion of a metal nanoparticle
in the nonconservative force field of an optical vortex lattice
exhibits a pronounced enhancement over the free thermal
diffusion. Radiation pressure in the vortex array (arising in
the intersection region of two crossed optical standing
waves)'® plays an active role spinning the particles out of
the whirls sites leading to a giant acceleration of free
diffusion (see Figure 1).

Our numerical simulations of the nanoparticle Langevin
dynamics show that the diffusion coefficient of (50 nm
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radius) gold particles is enhanced by 2 orders of magnitude
at power densities of the order or smaller than those used to
trap nanoparticles with optical tweezers>'”!® which is
especially relevant to minimize radiation damage in biologi-
cal applications. Enhanced diffusion together with the unique
properties of gold and other metallic nanoparticles'*?° open
intriguing possibilities in the study and optimization of
diffusion-limited processes.

Let us consider a spherical gold particle with relative
electric permittivity &, in a homogeneous water medium
(¢ & 1.8) in the interference region of two standing waves
oriented along the x and y axes and with the electric field
polarized along the z axis

Ex,yio) = Eyle™ — e 1 + e — e
= 2E,(sin kx + ¢ sin ky) M
being k = nw/c = nky is the wavenumber, c is the speed of
light in vacuum, n = Ve the refraction index of the
surrounding medium, and ¢ is the phase shift between the
two beams. When the nanoparticle radius, a, is much smaller
than the light wavelength, that is, @ << 4, the conditions for
Rayleigh scattering are satisfied and optical forces can be
calculated by treating the particle as a point dipole propor-
tional to the external (polarizing) field, p = eoeQE(r) where
o(w) = d'(w) + ia’(w) is a complex polarizability. The
time averaged optical force on the particle is then given by,?!
F = (1/2)Re(Zp;VE#), which can be rewritten as>?

F=a{V()} + a{§<s>} + o{gv x (LS)} )

where o = ka” is the particle’s extinction cross section. The
first term is proportional to the gradient of the electric energy
density, (U) = —e&yelEI*/4. The second term can be identified
with the radiation pressure (being (S) = Re{E x H*}/2 the
time averaged Poynting vector). The third term corresponds
to the curl of the spin density of the light field, {Ls) = gye{E
x E*}/(4wi) and is identically zero for linearly polarized
light.

Optical forces in the interference field given by eq 1 can
be tuned by changing the phase between the beams.!®?> When
lasers oscillate synchronously, light interference drives to a
conservative periodic potential landscape (illustrated in
Figure 2a. For ¢ = 0, the force (eq 2) is proportional to the
gradient of the energy density

Fy_o = 20/(n/c)PV(sin kx + sin ky)’ @)

where P is the power density, (n/c)P = g0l Egl?/2. However,
for ¢ = 90°, the force (eq 2) can be written as

Fyean = 20/(nlc)PV(sin® kx + sin® ky) @
+20”(n/c)PV x {2 cos kx cos kyu,}

The force has now two contributions. The first conservative
gradient force and a curl (nonconservative) force. The later,

Figure 2. Diffusion in the light field of two crossed standing
waves. (a,b) Calculated field intensity maps in the intersection
region of two standing waves. Darker areas correspond to higher
electric fields. The arrows sketch the relevant force fields. Panel
a corresponds to synchronous beams (¢ = 0) leading to a
conservative potential landscape with a lattice constant A/+/2.
The vortex lattice, illustrated in panel b, corresponds to to the
same beams with a 90° dephasing. (c) A 10s trajectory of a gold
nanoparticle on the conservative force field following a typical
thermal activated diffusion process between optical traps. (d)
The trajectory of the same particle during 0.2 s on the
nonconservative vortex lattice.

arising as a consequence of the rotation of the Poynting
vector around the field nodes, gives rise to a vortex lattice!®
sketched in Figure 2(b). The nonconservative force drags
the particle toward the lines between vortices located at kx
= (2m + 1)n/2 and ky = (2] + 1)7r/2 with m and [ integer
numbers (see Figure 2). Along a given line (for example,
for ky = 7/2 and —n/2 < kx < 7m/2), the force is given by
4(nlc)P( sin kx — a’)cos kx. Interestingly, for a” > o,
that is, for relatively large extinction cross section, the
nonconservative scattering forces overcome the attractive
gradient forces and there are no stable equilibrium positions
in the system. The thermal motion of a single nanoparticle
in these fields should then present peculiar characteristics.

While small dielectrical beads usually have a” < o, gold
nanoparticles are ideal probes®® due to their large optical
extinction cross section (associated to surface plasmon
resonances). For a < ~50 nm, the polarizability can be
approximated by?

aO 3 eg(w) - &

0=, =dnadEt———
1 — iak’/(67) %o gy(w) + 2¢

o)

where &,(w) is the macroscopic relative permittivity of gold.**
This approximation has been shown to give good estimation
for the optical forces on gold nanoparticles.'® We shall
consider a wavelength laser source near the plasmon
resonance 4, ~ 530 nm (an effective wavelength in water
of 2 ~ 395 nm and &, = —5.45 + i2.2), which ensures that
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Figure 3. Mean square displacement versus time for different laser
power densities and phase shifts. In a log—log plot, the intersection
of each curve with the vertical dotted line at = 1 gives directly
the corresponding effective diffusion constant. Straight line repre-
sents the standard Einstein’s law for thermal diffusion in absence
of optical fields. For ¢ = 0, the diffusion constant decreases
exponentially with the applied power while for ¢ = 90° increases
linearly with P.

the condition o” > o is satisfied (o’ ~ 1 x 1072' m? and
o~ 2a).

In order to discuss the motion of the nanoparticle under
the action of both optical forces and thermal fluctuations and
dissipation we have to deal with the equation of motion of

a spherical particle of radius @ and mass m,>>* given by
s = Fy — Y2+ e (©)
dt2 yd[

where F(r) is the external optical force, y is the friction
coefficient (y = 6man, with » being the viscosity. For water
at T=298 K, 7 =0.89 x 1073 kg m~!s™!) and & represents
an uncorrelated white noise that obey the fluctuation—dissipation
relation (§(0E(r)) = 2ykT0;0(t — ¢'). In absence of the
light field, the particle undergoes Brownian fluctuations
characterized by a linear time dependence of the mean square
displacement (MSD). The MSD protected on the xy plane is
given by (x(1) — x(0)* + ly(r) — y(0)*) = {r*) = 4Dt with
D = kgT/y being the diffusion constant. We have computed
the MSD by solving the Langevin molecular dynamics (eq
6). The evolution of the MSD averaged over 100 simulations
is shown in Figure 3 for several field intensities (power
densities, P) and different standing wave’s phase shifts. The
particles, with uniformly distributed random initial positions,
have initial velocities according to the Boltzmann equilibrium
distribution.

Dashed line in Figure 3 corresponds to the zero field
Brownian motion of 50 nm gold nanoparticles in water with
Dy = kgTly ~ 4.9 x 1072 m?%/s. When the standing wave is
switched on with zero phase shift, the particle moves in a
periodic potential landscape (Figure 2c) (note that the thermal
motion perpendicular to the xy plane is unperturbed). The
diffusion on the xy plane is controlled by the escape rate
from the potentials wells. Their depth can be written in terms

of the power density P as 8(n/c)a’P. The time length of the
plateau in the MSD versus time plot (Figure 3) corresponds
to the inverse escape rate from the optical trap by an activated
Arrhenius process. Gold nanoparticles (50 nm) get trapped
for more than a few seconds for power densities P > ~10°
W/cm? at room temperature (gold nanoparticles as small as
5 nm can effectively be trapped by optical tweezers'”). Note
that this power density roughly corresponds to that obtained
by focusing 1 mW into a micrometer spot. In the brighter
spots, the power density is a factor of 4 larger. This is of
the order or smaller than the typical power density in the
center of a single trap in optical tweezers. At longer times
the MSD increases linearly with time following Einstein’s
law? with a diffusion constant that decreases exponentially
with the power density.

The picture of the particle motion in the vortex lattice is
completely different (see Figure 2d). The observed motion
stems from a combination of directed motion along the lines
of the lattice (Figure 2b, d) and the random motion at the
corners (where the force field corresponds to a standard
potential saddle point). These processes result in trajectories
that mimic a square grid as shown in Figure 2b leading to
two different diffusion regimes.

At short length scales, (MSD < ~A%*4) dynamics in the
x—y plane are associated to the directed motion of the particle
along the quasi-one-dimensional channels between vortices.
The particle velocity, v, along the line is given by the balance
of the optical force and the Stokes drag. We can estimate v
as ~ (F)/y where (F), the averaged force along the lines
(KFY = 8(n/c)(2/A)a”’P), is proportional to the imaginary
part of the polarizability. At time scales smaller than 7 ~
(A12)/v, we would expect an apparent superdiffusive behavior
with MSD = 4Dyt + (v)*> = 4Dyt + (A/2)%(t/t)*. For our
50 nm gold particles, we estimate T ~ 10™°—107* s for P ~
10°—10° W/cm? This is in good agreement with the
numerical results shown in Figure 3 where diffusivity is
strongly increased for ¢ = 7/2.

At longer times (length scales larger than the light
wavelength) the particle motion becomes diffusive as a
consequence of the above-mentioned random motion around
the saddle points. After a time T moving along a grid line,
the particle makes a random choice between the two
orthogonal lines at the corner. The MSD should then follow
the well-known random walk result,”® ~ [(1/2)*/t]t, that is,
for t > ~7 the MSD should increase linearly with time. On
the basis of the previous arguments, we can estimate the
effective diffusion constant of a nanoparticle in the vortex
lattice as

o (AL loaP _ o (nlo)a”
b DO - (2) 4T =2 y D02 kBT P (7)

that is, the diffusion constant is proportional to the imaginary
part of the polarizability and increases linearly with the power
density. The numerical results for D as a function of the
power density (Figure 4) are in very good agreement with
this simple expression. To emphasize the strong modification
of the diffusion constant, we have plotted in Figure 4 a single
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Figure 4. Giant enhanced diffusion constant. (Left) Comparison
of typical trajectories of a single gold nanoparticle during 10 s in
water in absence of a light field (Brownian) and with the standing
waves field switched on with two different phase shifts (¢ = 0 and
90°) with a power density P = 10° W/cm?. (Right) Numerical results
for the diffusion constant D normalized to the thermal Brownian
diffusion Dy = 4.9 x 1072 m%/s versus the power density P. Dashed
line corresponds to eq 7.

particle trajectory during 10 s assuming a standard Brownian
motion and for a laser power density of 10° W/cm? with ¢
= 0° and ¢ = 90°.

Figure 4 shows that at power densities P ~ 2 x 10°® W/cm?
the diffusion constant of a 50 nm gold particle is enhanced
by 2 orders of magnitude with respect to thermal diffusion
at room temperature. At these power densities, local heating
effects due to optical absorption increase the temperature of
the surrounding water in a few degrees?’ but they will not
affect the dynamics through the vortex lattice. Since the
polarizability scales with the particle volume, tailoring the
diffusion constant of smaller gold particles would require
higher power densities. Increasing the particle size (as long
as it remains smaller than A/2) would lead to larger
enhancements due to the larger extinction cross section.?
However, the calculations would then be much more
involved since larger particles are not well described by the
simple dipolar force considered in this work. Optical vortex
driven enhanced diffusion should not be limited to the
spectral range of the plasmon resonance of gold nanopar-
ticles. The polarizability of metal nanoshells, consisting of
a dielectric core with a metallic shell of nanometer thickness,
can be “designed in” in a controlled manner. By varying
the relative dimensions of the core and shell, the optical
resonance of these nanoparticles can be varied over hundreds
of nanometers in wavelength, across the visible and into the
infrared region of the spectrum.'

It is worth noticing that it could be possible to observe
the fine details of the particle motion by using standard
methods in optical tracking.”® High speed particle tracking
approaching 1 nm tracking resolution is possible at frame
rates exceeding 10° s7!, that is, comparable to the transit
time between vortices (z ~ 0.1 ms for our 50 nm gold
particles in water and P ~ 10°W/cm?). If the actual time
resolution were limited by the camera frame or data transfer
rates, the particle would then be seen as if it were following
a standard thermal Brownian path but with an effective

viscosity that, for ¢ = 90°, decreases with the light power
density (see Figure 4).

Light vortex arrays can offer a number of advantages
to assess the local mechanical properties of cells and
biological fluids.?® The nonconservative forces could be
used as a tunable probe of (nonlinear) properties of
viscoelastic fluids or soft solids. Light fields can be easily
manipulated in time and space and the external forces
could be applied to an assembly of standard nonmagnetic
particles such as polystyrene beads. On length scales larger
than A/2 it would be possible to continuously track the
random motion of the particle between vortices. It should
thus be possible for the first time to combine active
mircroheology with multiple particle tracking approaches
for rheological microscopy.*®

In summary, using Langevin molecular dynamics calcula-
tions we have studied the diffusion of gold nanoparticles in
water under the electromagnetic interactions produced by two
crossed optical standing waves. We have demonstrated that
diffusion of nanoparticles can be greatly enhanced with
respect to thermal Brownian motion using the nonconser-
vative vortical radiation pressure forces. The particle motion
in the vortex field is directed along the channels between
vortices and, in general, depends on both size and chemical
nature of the nanoparticle through the complex polarizability.
Differential enhanced diffusion together with the peculiar
channelling phenomena suggests possible applications in
particle separation and sorting. We anticipate our results to
be an starting point for experiments and more sophisticated
designs of optically enhanced nanoparticle diffusors in
integrated microfluidic systems.’!
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