/ldoc.rero.ch

http

Published in "Gene 45(2): 54-62 , 2009"
which should be cited to refer to this work.

Over-expression of a protein kinase gene enhances the defense of tobacco against

Rhizoctonia solani

Osmany Chacén *°, Marleny Gonzalez ¢, Yunior Lépez ¢, Roxana Portieles , Merardo Pujol 3,
Ernesto Gonzalez ?, Henk-Jan Schoonbeek ¢, Jean-Pierre Métraux ¢, Orlando Borras-Hidalgo **

2 Laboratory of Plant Functional Genomics, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10600, Cuba
b Tobacco Research Institute. Carretera de Tumbadero 8, P.O. Box 6063, San Antonio de los Bafios, Havana, Cuba

¢ Plant Health Institute, Playa, Havana, 11600, Cuba

d Department of Biology, University of Fribourg, Chemin du Musée 8, CH-1700 Fribourg, Switzerland

To identify Nicotiana tabacum genes involved in resistance and susceptibility to Rhizoctonia solani,
suppression subtractive hybridization was used to generate a cDNA library from transcripts that are
differentially expressed during a compatible and incompatible interaction. This allowed the isolation of a
protein kinase cDNA that was down-regulated during a compatible and up-regulated during an incompatible
interaction. Quantitative RT-PCR analysis of this gene confirmed the differential expression patterns
between the compatible and incompatible interactions. Over-expression of this gene in tobacco enhanced
the resistance to damping-off produced by an aggressive R. solani strain. Furthermore, silencing of this
protein kinase gene reduced the resistance to a non-aggressive R. solani strain. A set of reported tobacco-
resistant genes were also evaluated in tobacco plants over-expressing and silencing the protein kinase cDNA.
Several genes previously associated with resistance in tobacco, like manganese superoxide dismutase,
Hsr203], chitinases and phenylalanine ammonia-lyase, were up-regulated in tobacco plants over-expressing
the protein kinase cDNA. Potentially, the protein kinase gene could be used to engineer resistance to R. solani

in tobacco cultivars susceptible to this important pathogen.

1. Introduction

Rhizoctonia solani J.G. Kithn (teleomorph Thanatephorus cucumeris
(A.B. Frank) Donk) can cause serious disease problems in both
transplant and field production of tobacco. This pathogen became
more of a problem on seedlings in the 1990s as tobacco growers
largely switched from the production of transplants in outdoor plant
beds to greenhouse float systems (Elliott et al. 2008).

R. solani causes damping-off and stem rot in young transplants and
a disease of the lower stem and root called sore shin in older field
plants (Lucas, 1975, Sneh et al. 1996). This disease can result in
seedling death in the greenhouse and moderate to severe stunting and
death of plants in the field. Transplanting infected seedlings is a major
cause of sore shin in field plants; however, infection also can be caused
by R. solani that is already present in the field (Elliott et al. 2008).

Target spot is a foliar disease that first appeared in the United
States in the 1980s and is an economically important disease in
tobacco production (Shew, 1991, Elliott et al. 2008). This disease is
caused by infection with basidiospores of T. cucumeris which are
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produced on hymenia that form on the soil surface or infected plant
tissue (Shew and Main, 1990, Elliott et al. 2008). Symptoms begin as
small water-soaked lesions on the leaves which can expand to large
circular spots with concentric rings. This disease occurs on tobacco
seedlings in greenhouse environments and usually is observed after
the leaves of the seedlings have grown close enough to form a canopy,
forming a high-humidity environment that favors disease develop-
ment (Elliott et al. 2008). In severe cases, the pathogen may grow
from the leaf tissue into the stem, resulting in plant death (Elliott et al.
2008). Isolates of R. solani causing stem and root rot symptoms have
been characterized by anastomosis as groups AG-1, AG-2-2, and AG-4,
whereas target spot in the greenhouse and the field as group AG-3
(Stevens et al. 1993).

Resistance to R. solani in tobacco cultivars would be highly
desirable, but previous screenings for resistance in the tobacco
germplasm have been limited to a small number of commonly used
cultivars. However, evaluation of germplasm and identification of
resistance to R. solani has been successful in other crops such as
peanut, bean, rice, sorghum, and sugar beet (Francke et al. 1999,
Montoya et al. 1997, Pan et al. 1999; Pascual et al. 2000, Scholten et al.
2001). Recently, 57 genotypes composing several classes of tobacco
and related Nicotiana spp. were evaluated for resistance to seedling
stem rot and target spot (Elliott et al. 2008). Significant differences in
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disease incidence were only observed at a low disease pressure-
among the genotypes for both stem rot and target spot. However,
resistance to target spot was not observed when disease pressure was
high while partial resistance to stem rot was observed in several
genotypes in repeated tests (Elliott et al. 2008).

Several constitutive factors have been associated with resistance
to R. solani, including epicuticular wax thickness (Marshall and Rush,
1980), cuticle thickness (Reddy, 1980), and cell wall calcium content
(Bateman, 1964, Bateman and Lumsden, 1965). The cuticle and
epicuticular wax hinders the action of pathoenzymes or toxins
released by Rhizoctonia spp., thus participating in the tolerance to
the pathogen (Kenning and Hanchey, 1980). In addition, induced
resistance mechanisms such as the hypersensitive response (Marshall
and Rush, 1980) or an increase in the production of PR proteins may
also be involved in resistance (Anuratha et al. 1996).

However, little is known about molecular events associated with
resistance to R. solani in tobacco. Recently, a decrease in resistance to a
compatible strain of R. solani was observed in type III knockdown
tobacco lines targeted at the calmodulin (CaM) NtCaM13. The
expression of jasmonic acid (JA) and/or ethylene (ET)-inducible
basic PR genes was not affected in this line, suggesting that type III
CaM isoforms are probably involved in basal defense against
necrotrophic pathogens independently of JA and ET signaling
(Takabatake et al. 2007).

To gain insight in the molecular components that are responsible
for the establishment of the susceptibility and resistance of Nicotiana
tabacum to R. solani, a suppression subtractive hybridization (SSH)
approach was used to generate cDNA libraries containing transcript
derived fragments from N. tabacum genes that are respectively
induced or repressed during a compatible or incompatible interaction
with R. solani. Candidates were then evaluated using over-expression
and RNAi approaches in N. tabacum. This approach has identified a N.
tabacum protein kinase gene (NtPK) that could provide resistance to
aggressive strains of R. solani in N. tabacum.

2. Materials and methods
2.1. Fungal and plant materials, and infection assays

The N. tabacum cv. ‘Sumatra’ plants (provided by the Tobacco
Research Institute, Cuba) were grown from seeds in 6-in. pots
containing black turf and rice husk (4:1) and maintained in growth
chambers at 23 °C. Aggressive (RF) (kindly supplied by Dr. Bruno P. A.
Cammue) and nonaggressive (RS10) isolates from anastomosis group 4
of R. solani were collected from infected tobacco plants and used for the
inoculations. The nonaggressive isolate did not cause any symptoms in
inoculated N. tabacum cv. ‘Sumatra’ plants (data not shown). The
isolates were grown on potato dextrose agar at room temperature
(22 °C to 25 °C) for 5 days. Colonized agar plugs were removed and
transferred to 250-ml Erlenmeyer flasks containing autoclaved rice
grains (Shew and Main 1990). The pathogen was allowed to
thoroughly colonize the rice grains for approximately 2 weeks at
room temperature prior to use for inoculations. Two-week-old tobacco
seedlings were inoculated with the pathogen placing infested rice
(approximately six grains) onto the surface of the soil according to
Elliott et al. (2008). Mock-inoculated N. tabacum cv. ‘Sumatra’ plants
were used as controls. The interaction between the aggressive isolate
with N. tabacum cv. ‘Sumatra’ plants was named as compatible.
Meanwhile, the interaction between the nonaggressive isolate with
N. tabacum cv. ‘Sumatra’ plants was named as incompatible.

2.2. Assessment of the infection progress
Typical symptoms caused by aggressive and nonaggressive

R. solani isolates were monitored visually on N. tabacum cv. ‘Sumatra’
plants at 0, 1, 2, and 3 weeks postinoculation (wpi). At the same

time points, growth of R. solani on tobacco was estimated by
quantitative real-time reverse transcription-PCR. The extent of
colonization was determined by the ratio of transcripts of the
constitutively expressed actin gene (measure for fungal biomass) to
the constitutively expressed tobacco 26S rRNA gene (measure for
plant biomass) shown on a logarithmic scale. For each time point,
three root samples were taken from five plants, and the experiment
was repeated twice.

2.3. Construction of the suppression subtractive libraries

Root and stem material were collected from 20 N. tabacum cv.
‘Sumatra’ plants inoculated with aggressive and nonaggressive R.
solani isolates at 1, 2, and 3 wpi and pooled before RNA extraction.
These materials were used to generate the “tester” sample. For the
“driver” sample, plant materials from mock-inoculated plants har-
vested at the same time points were used. After subtractive
hybridization, two cDNA libraries were obtained containing aggres-
sive and nonaggressive R. solani-induced N. tabacum cv. ‘Sumatra’
genes (forward-subtraction). To generate the cDNA libraries with the
repressed genes, the “tester” was used as “driver” and the “driver” was
used as “tester” (reverse-subtraction). Thus, after subtractive hybrid-
ization, two cDNA libraries were obtained containing aggressive and
nonaggressive R. solani-repressed N. tabacum cv. ‘Sumatra’ genes. The
total RNA was extracted using RNeasy Plant Mini Kit (Qiagen,
Maryland, USA). Poly (A)+ RNA was isolated using Oligotex mRNA
kits Mini (Qiagen, Maryland, USA), according to the manufacturer's
instructions. Finally, double-stranded cDNA was synthesized accord-
ing to PCR-Select subtractive hybridization kit (Clontech, Palo Alto,
CA, USA). The subtracted cDNA libraries were constructed by
subtractive hybridization using the PCR-Select subtractive hybridiza-
tion kit. The subtracted libraries were cloned into the pGEM-T easy
vector (Promega, Madison, WI, USA) according to manufacturer's
instructions. Colonies were picked and grown in 96-well microtiter
plates in LB medium containing 100 mg/L ampicillin. All clones were
PCR-amplified using the nested primers 1 and 2R (Clontech, Palo Alto,
CA, USA) to check the presence and size of the individual inserts.

2.4. DNA sequencing and sequence data analysis

DNA sequencing was performed using an automated ABI Model
377 DNA sequencer (Applied Biosystems, Warrington, UK). The
procedures were performed according to the manufacturer’s instruc-
tions. The M13 forward and reverse primers were used to generate
sequences for all cDNAs isolated (Perkin Elmer ABI PRISM Dye
Terminator Cycle sequencing kit) and the sequences were submitted
to GenBank (accession numbers G0944000-G0944095). Homologies
of the cDNA sequences with database sequences were determined

Table 1
List of primers used in real-time RT-PCRs.

Target gene Primers Product size
(bp)
N. tabacum protein kinase 5'- ttctcagtcggggataatge -3/ 126
5'- cactgtggaataggcaagca -3’
N. tabacum manganese 5’- cgacactaactttggctccctaga -3/ 192
superoxide dismutase 5'- acgtctattcccagaagaggaacc -3’
N. tabacum 3-1,3 glucanase 5'- gccagatttctctecectattete -37 161
5'- actctcggacacaacaatccctac -3’
N. tabacum Hsr203] 5’-aggaagtatccggctggcettaga -3’ 113

5’-gaagtagtcatggggtgggactg -3’

5'- gggttactgctggcttagagaaca -3/ 170
5'- tgtttaggaggtccactcctatgg -3’

5’- ggacaagggcagctatgctagtta -3’ 237
5'- cattgagggtctcaccattaggtc -3/
5’-cacggaccaaggagtctgacat-3’ 150
5’-tcccaccaatcagcttecttac-3/

N. tabacum chitinases

N. tabacum phenylalanine
ammonia-lyase
N. tabacum 26S rRNA
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Fig. 1. Disease progression of Rhizoctonia solani on tobacco plants. (A) Typical symptoms caused by R. solani on susceptible tobacco plants at 1, 2, and 3 wpi. (B) Quantitative real-
time reverse transcription-PCR to measure R. solani growth during compatible (grey) and incompatible (black) interaction with tobacco plants at 1, 2, and 3 wpi. Bars represent

mean values (N=>5; +SD).

using BLASTX and BLASTN homology searches (Altschul et al. 1997).
E-value scores below 10~ > were considered as significant and used
to indicate homology between tobacco sequences and database
sequences. Those cDNA clones silenced in the compatible interaction
and, at the same time, expressed in the incompatible interaction, were
selected for further studies.

2.5. Real-time PCR analyses

In a separate experiment, total RNA was extracted from N. tabacum
cv. ‘Sumatra’ plants inoculated with both aggressive and nonaggres-
sive R. solani isolates at 0, 1, 2, and 3 wpi using the RNeasy Plant Mini
kit (Qiagen, Maryland, USA) according to manufacturer's instruction.
Poly (A) + RNA was isolated using Oligotex mRNA kits Mini (Qiagen,
Maryland, USA), according to the manufacturer's instructions. The
cDNA were synthesized using an oligo-(dT) primer and the
SuperScript III reverse transcriptase kit (Invitrogen, Carlsbad, CA)
according to the manufacturer's instructions. Quantitative real-time
PCR was conducted using a Rotor-Gene 3000 PCR machine (Corbett,
Australia) with the QuantiTect SYBR Green PCR Kit (Qiagen). All
primer sequences were designed according to Primer 3 online
software and shown in Table 1. Real-time PCR conditions were as
follows: an initial 95 °C denaturation step for 15 min followed by

Table 2
Relative expression of candidate genes identified in Nicotiana tabacum cDNA library.

denaturation for 15 s at 95 °C, annealing for 30 s at 60 °C, and
extension for 30 s at 72 °C for 40 cycles and analyzed on the Rotor-
Gene 3000 software (Corbett, Australia). Two biological replicates for
each sample were used for real-time PCR analysis, and three technical
replicates were analyzed for each biological replicate.

2.6. Overexpression of protein kinase gene in tobacco plants

The full-length coding region for NtPK gene was obtained
according to specifications in the SMART RACE II kit (BD Clontech).
The coding region of the NtPK gene cloned in pBluescript vector was
digested with Ncol/Smal and ligated into the pBPQ8 vector between
the cauliflower mosaic virus (CaMV) 35S promoter and the nopaline
synthase terminator (T nos). The resulting CaMV 35S promoter/NtPK/
T nos fusions were inserted into the Hindlll/Pstl site of the binary
T-DNA plasmid, pCambia 2300 (kindly supplied by Prof. Richard
Jefferson, CAMBIA, Australia) for tobacco transformation (Fig. 2A).
One construct was transferred to Agrobacterium tumefaciens strain
At2260 using the liquid nitrogen method (Hofgen and Willmitzer,
1988). The transformation protocol was followed according to Ayala
et al. (2009). Regenerated seedlings, all 5 cm in height, were
transferred to pots containing black turf and rice husk (4:1) and
grown in growth chambers at 23 °C.

Genes identified into the cDNA library

Relative expression during compatible interaction®

Relative expression during incompatible interaction

Weeks postinoculation

Weeks postinoculation

0 1 3 0 1 2 3
Protein kinase 15 0.3 0.1 0.1 14 2.6 2.7 2.6
Cytochrome P450 like TBP 21 22 24 22 22 23 23 22
Manganese superoxide dismutase 1.5 2.5 2.6 2.7 1.5 2.6 2.6 2.7
Cell wall-associated hydrolase 13 14 14 1.4 1.5 1.6 1.7 1.7
Mitogen-activated protein kinase 1.5 32 33 34 1.6 3.5 3.5 3.6
Phospholipase B-like protein 14 1.5 1.6 1.8 1.6 1.7 1.7 1.8

¢ Each measurement represents the mean relative expression from three independent experiments. Bold and underline font represent the gene and its relative expression selected
for further functional analysis. Real-time PCR was used to measure the relative expression of transcript levels of genes, as compared to the constitutively expressed 26S rRNA gene as

an endogenous control into independent experiments.



/ldoc.rero.ch

http

2.7. Construction of plasmids for RNAi in N. tabacum

Sense and antisense NtPK gene (200 bp) was PCR-amplified from
cDNA using forward and reverse primers that added the Xhol/BamHI

(sense)

and Kpnl/Xbal (antisense) restriction site, respectively

(Table 1). PCRs were carried out under the following conditions:
an initial denaturation step for 2 min followed by denaturation for

15 s at 94 °C, annealing for 30 s at 57 °C, and extension for 1 min at
72 °C for 30 cycles, followed by a final elongation step at 72 °C for
5 min. PCR products were separated on 1% agarose gels and were
purified using the DNeasy kit (Qiagen, Valencia, CA). Subsequently,
PCR products were cloned into the pBPQ8 plasmid. This plasmid
contained the castor bean catalase intron kindly supplied by Dr.
Wang (CSIRO, Australia). The resulting CaMV 35S promoter/sense

* 20 * 40 1
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Fig. 2. Multiple sequence alignment of NtPK with several typical plant protein kinases. Alignment of some plant protein kinase sequences available on GenBank (accession nos.):
Nicotiana tabacum (Q40547), Arabidopsis thaliana (Q1PF34), Triticum aestivum (Q6L6R6), Oryza sativa (Q7G7X1), and Zea mays (B6U4A0). Black rectangles indicate residues of
identity between the six sequences, whereas gray boxes show amino acids that are similar in at least two of the sequences. The sequence alignment was performed with CLUSTAL X
software (Thompson et al., 1997).
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NtPK, intron, antisense NtPK/T nos fusions were inserted into the site
HindIll/Pstl of the binary T-DNA plasmid, pCambia 2300 for tobacco
transformation (Fig. 2B). Tobacco was transformed according to
Ayala et al. (2009).

2.8. Evaluation of disease resistance in transgenic lines

Following transformation, the seedlings (Ty) were inoculated with
aggressive and nonaggressive isolates of R. solani, according to Elliott
et al. (2008), to assess the role of the gene in the resistance.
Additionally, quantitative real-time reverse transcription-PCR was
used to measure the growth of R. solani. Disease incidence
(percentage of plants exhibiting seedling death and stem rot) was
determined according to Elliott et al. (2008). The resistance screen
was conducted in a randomized complete block design with 30
transgenic lines per replicate from each construction (overexpression
and RNAI approach) and five replications were used per experiment.
An arcsine transformation was performed on percent incidence data
before statistical analysis to improve homogeneity of variance.

3. Results
3.1. Quantification of R. solani biomass in infected tobacco roots

The first symptom of the infection by the aggressive R. solani strain
was a small water-soaked lesion on the stem close to the soil line that
rapidly becomes brown and sunken. The lesion continued to grow
throughout the stem and leaves causing them to turn brown and die.
Subsequently, the chlorosis on the foliar areas was not evident until
2 wpi (Fig. 1A).

Fungal biomass gradually increased while R. solani colonized the
roots during a compatible interaction as quantified using real-time
PCR (Fig. 1B). No disease symptoms were visible after inoculation
with a nonaggressive R. solani isolate (not shown). Real-time PCR
confirmed that no significant increase in fungal biomass occurred
when compared with the compatible interaction (Fig. 1B).

3.2. Identification and molecular characterization of NtPK gene

Four cDNA libraries were produced containing genes expressed
during a compatible or incompatible interaction after inoculation with
the corresponding R. solani strains. The sequence of 122 differentially
expressed clones was used to search for homologies using BLASTX and
BLASTN (Altschul et al., 1997).

Based on the homology displayed with sequences in public
databases, and on expression in the compatible and incompatible
interactions, 6 genes were further selected. These were only present
in the c¢DNA library of expressed genes during incompatible
interaction and that of repressed genes during compatible interaction.
This was the main criterion for selecting only 6 genes for further
analyses. Among these, only the NtPK gene exhibited a relative high
level of expression in the incompatible compared to that in the
compatible interaction in a separate experiment (Table 2). For the
cytochrome P450, TBP, manganese superoxide dismutase, cell wall-
associated hydrolase, mitogen-activated protein kinase and phospho-
lipase B-like protein genes, the expression was induced compared to
uninfected controls but somewhat similar levels of expression were
found in both compatible and incompatible interactions at the same
time points (Table 2). Therefore, we decided to study more closely the
NtPK gene.

Sequence comparison analysis at the amino acid level showed that
the NtPK is highly homologous with a N. tabacum protein kinase
(Q40547). Some protein regions are highly conserved among the
plant protein kinases (Fig. 2). However, it has been found that NtPK
N- and C-termini domain are not conserved among the species
analysed (Fig. 2).

3.3. Functional analysis of NtPK gene in tobacco resistance to R. solani
NtPK was overexpressed (Fig. 3A) or silenced in tobacco (Fig. 3B)
and the resulting transformants lines were tested in a compatible and

incompatible interaction with R. solani. In wild type tobacco, NtPK
was induced during the incompatible and repressed during a
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Fig. 3. Function evaluation of NtPK gene in the plant resistance to R. solani. Schematic map of A. tumefaciens vector constructed for overexpression (A) and RNAi (B) approaches of
NtPK gene in tobacco plants. Relative expression of the NtPK gene (C) in a compatible (--) or incompatible interaction (- - -); in plants overexpressing the NtPK gene (—) or in RNAi

transformants silenced for NtPK (---). N=5; 4 SD.
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compatible interaction with R. solani, confirming the results obtained
by subtractive hybridization (Fig. 3C). A significantly higher, respec-
tively lower, level of NtPK transcript was observed in plants
overexpressing NtPK or silenced for this gene (Fig. 3C). For these
plants, overexpression, respectively silencing of the NtPK gene,
enhanced or compromised the resistance to R. solani at 3 wpi (Fig.
4A), demonstrating the importance of the function of this gene for the
resistance to R. solani. Interestingly, the disease symptoms produced
by nonaggressive isolates were more severe in NtPK silenced plants
(Fig. 4A) than in control plants inoculated with the same isolate
(Fig. 4B) and the percentage of disease incidences was higher (Table
3). On the other hand, NtPK silenced plants inoculated with an
aggressive isolate showed highest percentage of disease incidences
(Table 3). Meanwhile, transformed plants overexpressing the NtPK
gene showed a high level of resistance to aggressive R. solani isolate
(Fig. 4A), compared to control plants inoculated with aggressive
isolate (Fig. 4B) and the lowest percentage of disease incidences
(Table 3). Using real-time PCR to quantify fungal biomass in the plant
tissue it is evident that fungal biomass gradually increased in tobacco
plants suppressing the NtPK gene inoculated with a nonaggressive
isolate (Fig. 4C). Also, real-time PCR confirms that in tobacco plants
overexpressing the NtPK gene inoculated with an aggressive isolate
no significant increase in fungal biomass occurs when compared with
tobacco plants suppressing the NtPK gene inoculated with a
nonaggressive isolate (Fig. 4C). Additionally, tobacco plants suppres-
sing the NtPK gene inoculated with an aggressive isolate had an
increase in fungal biomass when compared with tobacco plants

A Plants over expressing the NtPK
gene inoculated with aggressive isolate

C

50

40 B

Plants silencing the NtPK gene inoculated 2 30 +
with non-aggressive isolate £

2 20

10 4

Table 3
Disease incidences in tobacco plants overexpressing and suppressing the NtPK gene
inoculated with R. solani.

Inoculation experiments Arcsine incidence

(%)°
Tobacco plants overexpressing the NtPK gene inoculated 14
with an aggressive isolate
Tobacco plants suppressing the NtPK gene inoculated with 86.3
a nonaggressive isolate
Tobacco plants suppressing the NtPK gene inoculated with 96.4
an aggressive isolate
Control tobacco plants inoculated with an aggressive isolate ~ 92.5
Control tobacco plants inoculated with a nonaggressive isolate 1.8
LSD (0.05)° 45
CV (%)° 3.7

¢ Arcsine-transformed percentage of disease incidence.
b Least significant difference.
¢ Coefficient of variation.

suppressing the NtPK gene inoculated with a nonaggressive isolate
(Fig. 4C).

3.4. Relative expression of several genes involved in plant disease
resistance

The relative level of expression of several genes associated with
disease resistance was evaluated in tobacco plants overexpressing or
silencing the NtPK gene. Tobacco plants overexpressing the NtPK

1 2 3

Time (weeks post inoculation)

B Tobacco plants over expressing the NtPK gene inoculated with an aggressive isolate
B Tobacco plants suppressing the NtPK gene inoculated with a non-aggressive isolate
O Tobacco plants suppressing the NtPK gene inoculated with an aggressive isolate

Control plant inoculated
with non-aggressive isolate

Control plant inoculated
with aggressive isolate

Fig. 4. Greenhouse evaluation of tobacco plants overexpressing or silencing the NtPK gene inoculated with R. solani. Phenotype of transgenic tobacco plants overexpressing (top row)
or with suppressed expression (bottom row) of the NtPK gene (A) and wild type tobacco (B) interacting with R. solani at 3 wpi. Quantitative real-time reverse transcription-PCR to
measure R. solani growth in tobacco plants overexpressing and suppressing the NtPK gene (C). Bars represent mean values (N=5; £ SE).
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genes showed a quick and strong induction of manganese superoxide
dismutase, Hsr203], and chitinases genes starting at 1 wpi (Figs. 5A, C,
and D). However, the expression of 3-1,3 glucanase and phenylala-
nine ammonia-lyase genes reached their maximum expression at
2 wpi (Figs. 5B and D). All the genes analysed were differentially
induced in plants overexpressing NtPK compared to the compatible
interaction (Figs. 5A, C, D, and E). The expression of the (-1,3
glucanase gene was quite similar in both samples analysed (Fig. 5B).

Meanwhile, the regulation of these genes implicated in plant
defense was evaluated in RNAi transformed lines for the NtPK gene.
Manganese superoxide dismutase, Hsr203], chitinases, and phenylal-
anine ammonia-lyase transcripts were found to be significantly
induced during the incompatible interaction, compared to RNAi
transformed lines where the expression was either delayed or lower
(Figs. 6A, C, D, and E). The expression of [3-1,3 glucanase genes was
similar in RNAi transformed lines and incompatible interaction
(Fig. 6B). Because of their quick and strong induction in tobacco plants
overexpressing the NtPK gene and the absence of their induction in the
RNAI transformed lines, manganese superoxide dismutase, Hsr203],
chitinases and phenylalanine ammonia-lyase genes might contribute
to the disease resistance phenotype of N. tabacum.
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4. Discussion

Diseases produced by R. solani constitute a serious problem in field
production of solanaceous plants (Elliott et al., 2008; Ceresini et al.,
2002). Elliott et al. (2008) evaluated 97 genotypes belonging to
several classes of tobacco and related Nicotiana spp. for seedling
resistance to stem rot and target spot caused by R. solani and its
teleomorph T. cucumeris. Significant differences in disease incidence
were observed among the genotypes for both stem rot and target spot,
but resistance to target spot was never observed when disease
pressure was high (Elliott et al., 2008). This highlights the standing
difficulty breeders experience with stem rot and target spot disease
caused by R. solani. An important improvement for the future would
be to engineer one or several genes into commercial varieties of
tobacco or other crops to increase their natural potential for durable
resistance against this soil-borne disease.

In this study, we have compared an interaction of N. tabacum cv.
‘Sumatra’ with aggressive strains or nonaggressive strains of R. solani
(Fig. 1). Our goal was to find genes associated with the incompatible
and compatible interaction, to isolate them and to test their biological
relevance for resistance to R. solani. We reasoned that genes
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Fig. 5. Relative level of expression of several genes associated with plant disease resistance in N. tabacum during a compatible interaction with R. solani. Wild type N. tabacum (—)
and tobacco plants overexpressing the NtPK gene (--). (A) Manganese superoxide dismutase. (B) 3-1,3 Glucanase. (C) Hsr203]J. (D) Chitinase. (E) Phenylalanine ammonia-lyase.
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upregulated during an incompatible and downregulated during a
compatible interaction might possibly be associated with defense of
N. tabacum to R. solani. For that reason, candidates exhibiting such
an expression pattern could be isolated and used for the assessment of
their biological relevance by either overexpression or silencing in
tobacco.

In this study, we have selected 122 cDNAs by subtractive
hybridization that were differentially expressed in tobacco in four
cDNA libraries during a compatible or an incompatible interaction
with R. solani. Among these, only 6 cDNA clones were both present in
the cDNA library of expressed genes during incompatible interaction
and, at the same time, they were present in the cDNA library of
repressed genes during compatible interaction. For that reason, we
select only these genes for further analyses. However, only a gene
encoding a protein kinase was repressed during the compatible and
induced during the incompatible interaction in separate experiments
(Table 2). After the subtracted cDNA library was obtained, to confirm
that individual clones indeed represent differentially expressed genes
and differential screening of the subtracted library in separate
experiments was performed, to eliminate false-positives.

Tobacco plants overexpressing NtPK showed a high level of
resistance to the aggressive R. solani isolate (Fig. 4B) and no growth of
R. solani was observed up to 3 weeks after inoculation (Fig. 4C).

Conversely, suppression by RNAi led to a knockdown of the NtPK gene
in N. tabacum and a compromised resistance against the nonaggressive
R. solani strain (Fig. 4B). Taken together, these results indicate the
importance of the NtPK gene in defense against R. solani (Figs. 4B and C).

Enzymes of the eukaryotic protein kinase superfamily catalyze the
reversible transfer of the y-phosphate from ATP to amino acid side
chains of proteins. An estimated 1% to 3% of functional eukaryotic
genes encode protein kinases, suggesting that they are involved in
many aspects of cellular regulation and metabolism. In plants, protein
phosphorylation has been implicated in responses to many signals,
including light, pathogen invasion, hormones, temperature stress, and
nutrient deprivation (Stone and Walker, 1995).

Within the protein kinase superfamily, the mitogen-activated
protein kinase (MAPK) cascades play important roles in diverse
developmental and physiological processes of plants, including
pathogen-induced defense responses (Yuan et al., 2007). MAPKs are
the central components that link MAPK cascades and downstream
targets. Several MAPKs from different plant species have been
demonstrated to play a role in pathogen-induced defense signal
transduction by function complementary experiments. A few other
MAPKs have been proposed to be involved in the regulation of defense
responses because their expression is regulated by pathogens or
elicitors. NtSIPK and NtWIPK, two early discovered MAPKs from
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tobacco, are involved in pathogen-induced defense responses (Zhang
and Klessig, 1998, Romeis et al. 1999). The two MAPKSs are activated
by general and race-specific pathogens (Pedley and Martin, 2005).
Arabidopsis AtMPK3 and AtMPK6 are homologues of tobacco NtWIPK
and NtSIPK, respectively, and activation of these two MAPKs confers
resistance to both bacterial and fungal pathogens (Zhang and Klessig,
2001, Asai et al. 2002).

At this time, no information is available on the precise biochemical
function of the product of NtPK. Its possible position in a signalling
cascade or more generally in the network for induced resistance needs
to be determined.

Overexpressing of the NtPK gene in tobacco, lead to a higher
expression of Hsr203] and superoxide dismutase (SOD), two genes
that have been associated with hypersensitive response (HR)-like cell
death. The gene HSR203 is regarded as a marker of the HR induced by
arange of stimuli (Pontier et al. 1999, Gilroy et al. 2007). SOD converts
superoxide radical to H,0, and constitutes an essential component in
an organism's defense mechanism against reactive oxygen species
generated during various biotic and abiotic stresses (Scandalios, 1993,
Asada, 1999, Badawi et al. 2004).

The higher SOD expression in the infected transgenic plants
overexpressing the NtPK gene keeps the superoxide radical at lower
level leading to reduced oxidative damage. In addition, the NtPK gene
induced the expression of the phenylalanine ammonia-lyase (PAL)
gene encoding a key enzyme in the pathway for phytoalexin and
salicylic acid (SA) biosynthesis (Métraux, 2002). Besides Hsr203], SOD
and PAL, plants overexpressing NtPK also showed an increased
expression of -1,3 glucanase, and chitinase, two well-described
genes encoding pathogenesis-related proteins. Interestingly, tobacco
overexpressing a chitinase from bean has been reported to become
more resistant to R. solani (Broglie et al. 1991). Possibly, the resistance
we have observed in this study using overexpression results from a
combined action of several gene products that might be under the
direct or indirect control of NtPK.

The repression of the NtPK gene during a compatible interaction
supports the tentative hypothesis that this gene might be under the
control of pathogen-derived factors, e.g., suppressors. There is already
good evidence for pathogen-derived suppressors of plant defenses in
the case of other fungal plant interactions (Métraux et al., 2009). The
observations presented here opens now the possibility to further
study the possible mechanisms of a pathogen-derived suppression of
a plant gene involved in defense.

In conclusion, the NtPK gene identified here appears to be involved
in the defense response of tobacco to R. solani. This gene seems to be
crucial for an efficient defense against R. solani might now be exploited
in strategies to develop durable resistance in cultivated tobacco plants
through either marker-assisted breeding or biotechnological
approaches. Finally, it would be interesting to inoculate tobacco plants
that are overexpressing the NtPK gene with R. solani isolates from
other anastomosis groups to check if they show enhanced resistance.
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