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ABSTRACT: Long-term disturbance of the calcium homeosta-
sis of motor endplates (MEPs) causes necrosis of muscle
fibers. The onset of morphological changes in response to this
disturbance, particularly in relation to the fiber type, is presently
unknown. Omohyoid muscles of mice were incubated for 1–30
minutes in 0.1 mM carbachol, an acetylcholine agonist that
causes an inward calcium current. In these muscles, the struc-
tural changes of the sarcomeres and the MEP sarcoplasm were
evaluated at the light- and electron-microscopic level. Predomi-
nantly in type I fibers, carbachol incubation resulted in strong
contractures of the sarcomeres underlying the MEPs. Owing to
these contractures, the usual beret-like form of the MEP-associ-
ated sarcoplasm was deformed into a mushroom-like body.
Consequently, the squeezed MEPs partially overlapped the ad-
jacent muscle fiber segments. There are no signs of contrac-
tures below the MEPs if muscles were incubated in carbachol
in calcium-free Tyrode’s solution. Carbachol induced inward cal-
cium current and produced fiber-type–specific contractures.
This finding points to differences in the handling of calcium in
MEPs. Possible mechanisms for these fiber-type–specific differ-
ences caused by carbachol-induced calcium entry are
assessed.

Carbachol is an acetylcholine agonist. When
applied chronically, it causes a profound destruc-
tion of the myofibrils underlying the motor end-
plate (MEP). This effect is attributable to dissolu-
tion of the Z-line.1,2 The pathological changes are
reputed to be calcium-dependent1,2 and are com-
parable with those manifested in patients with
slow-channel syndrome.3 Similar calcium-depend-
ent destruction of the myofibrils beneath the MEP
can be elicited by daily application of an acetylcho-
linesterase inhibitor.4,5 The effect is brought on by
prolonged opening of the acetylcholine receptors
(AChRs) and ensuing entry of calcium in the area
of the MEP. A genetic manipulation of the AChRs
that prolongs the opening time of the receptor
channels causes a slow-channel-syndrome–like pa-
thology in mice.6 However, not all skeletal muscle
fibers are affected.6 This selectivity accords with
observations relating to the effects of carbachol.1,2

According to earlier data, carbachol affects prefer-
entially type I fibers. This, combined with the obser-
vation that type I fibers are predominantly damaged
by ACh esterase inhibitors,4 suggests a greater vul-
nerability to calcium homeostasis in these fibers.

Little is known of the early morphological
changes associated with short-term carbachol stimu-
lation. To improve our understanding of the distur-
bances in MEP calcium homeostasis that are elicited
by the entry of calcium through activated AChRs, it
would be beneficial to temporally and topographi-
cally pinpoint the first visible signs of damage and to
ascertain whether the changes are fiber-specific. To
address these questions, the omohyoid muscle of
mice was stimulated with carbachol under isometric
conditions for 1–30 minutes. The treated muscles
were evaluated at the light- and transmission-elec-
tron-microscopic level. Morphological changes in
the MEP, as well as the grades of contraction and the
types of fibers, were assessed.

METHODS

Following anesthesia of the mice [NMRI (Han)
outbred, 3–5 months old, 3 animals per experi-
mental set-up] with a mixture of xylazine (Bayer),
and ketamine (Parke, Davis & Co.) the hearts of
the mice were excised and the skin over the neck
was opened. After removing the cervical glands,
the sternocleidomastoid, cleidomastoid, and clavo-
trapezoid muscles were resected, beginning at the
cranial end.7 The lateral margin of the omohyoid
muscle—between the posterior belly of the digas-
tric muscle and the clavicles—was then exposed.
The major and minor pectoral muscles were cut
away from their origins, and the clavicles were dis-
connected from the sternum and the scapula. The
subclavian artery and vein, together with the sur-
rounding connective tissue, were removed. The
subscapular muscle was exposed and reduced to
reveal the attachment of the omohyoid to the scap-
ula. The omohyoid muscle was then partially, but
not completely, detached from the scapula so that
it remained connected to a piece of bone. The
sternohyoid and the sternothyroid muscles were
cut away from the sternum, and the omohyoid
muscle was detached from the reverse side of the
former. The posterior venter of the digastric mus-
cle was resected, and the muscular connection
between the hyoid and the tongue was severed.
The hyoid bone was cut with a pair of scissors, and
the thyrohyoid muscle at the back of the omo-
hyoid was detached.

At a resting length of about 2.5 cm, the
muscles were pinned to cork plates, which were

Abbreviations: AChR, acetylcholine receptor; ANOVA, analysis of var-
iance; MEP, motor endplate
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immersed in Tyrode’s solution [NaCl 137 mM, KCl
5 mM, MgCl2 1 mM, CaCl2 2 mM, HEPES 10 mM,
glucose 10 mM (pH 7.4)] containing 0.1 mM car-
bachol (Sigma). They were incubated therein for
1–30 minutes at 20�C (Table 1). As controls,
muscles were incubated in Tyrode’s solution. To
address the question of whether the effects of car-
bachol incubation are calcium-dependent, muscles
were incubated in 0.1 mM carbachol in Tyrode’s
solution without calcium. In another group, the
carbachol was rinsed off with Tyrode’s solution
after 30 minutes of carbachol incubation. The
muscles were fixed by immersion in 2.5% glutaral-
dehyde in 0.1 M cacodylate buffer (pH 7.4) for 1 h
at 20�C. The regions containing the MEPs were
then excised, and the resulting blocks of tissue
were trimmed. The blocks were postfixed in 1% os-
mium in 0.1 M cacodylate buffer, dehydrated in
ethanol, and embedded in Epon.

From each muscle, a series of 140 semithin sec-
tions (1 lm thick) were prepared with a histo-dia-
mond (Diatomae) and stained with Richardson
stain.8 Each series of 140 semithin sections con-
tained about 90–120 muscle fibers.

According to their aspect in the region of the
fiber nuclei, the fibers were classified as either type
I or II, using previously established criteria.9,10

Type I fibers (or C-fibers) were characterized by
an abundance of subsarcolemmal mitochondria,
numerous strands of longitudinally oriented inter-
fibrillar mitochondria, small irregular myofibrils,
and the presence of many lipid droplets. Type II
fibers (or A- and B-fibers) were characterized by
few or no subsarcolemmal mitochondria, by few or
no strands of longitudinally oriented interfibrillar
mitochondria, and by much larger myofibrils.

From each series of 140 sections (per muscle
and animal), 5 MEPs of type I fibers and 15 of
type II were selected randomly. The fiber region
around the MEPs as well as the region surround-
ing the next muscle fiber nucleus of the same fiber
were photographed at a final magnification of
�1000. The number of sarcomeres in the image of
the muscle fiber and the number in the image of
the associated MEP were counted. The ratios of
these numbers were represented as the mean for

the experimental set-up in question (Fig. 1). In
addition, the quotient between the result of type I
and type II fibers per animal was calculated and
represented the mean for the experimental set-up
in question (Fig. 1). Significance levels, as deter-
mined by analysis of variance (ANOVA),11 are
shown in Table 2.

Ultrathin sections (70–100 nm in thickness)
were prepared using a diamond (Diatomae), and
then stained with uranylacetate and lead citrate.12

The sections were examined using a transmission
electron microscope (Philips EM100), which was
equipped with a digital camera (11-megapixel side-
mounted TEM camera; Morada).

RESULTS

The incubation of muscles at resting length, in ei-
ther Tyrode’s solution alone (protocol C) or carba-
chol-containing Tyrode’s solution without 2 mM
CaCl2 (protocol wCa) for up to 30 minutes at
20�C, elicited neither histological (light-micro-
scopic) nor ultrastructural (electron-microscopic)
changes in either the muscle fibers or the MEPs
(data not shown). Beneath the MEP, the pattern
of sarcomeric striation was the same as that in the
rest of the muscle fiber. Consequently, the ratio of
numbers of sarcomeres in the image of the muscle

Table 1. Protocol of incubation times.

C (n ¼ 3) E1 (n ¼ 3) E2 (n ¼ 3) E3 (n ¼ 3) R (n ¼ 3) wCa (n ¼ 3)

30 min in
Tyrode’s solution

1 min carbachol in
Tyrode’s solution

10 min carbachol
in Tyrode’s solution

30 min carbachol in
Tyrode’s solution

30 min carbachol in
Tyrode’s solution

30 min carbachol in
Tyrode’s solution
without CaCl2

150-min rinse in
Tyrode’s solution

Fixation Fixation Fixation Fixation Fixation Fixation

FIGURE 1. Mean and SEM data for the ratio of number of sar-

comeres per muscle fiber photo (NS-FP) to number of sarco-

meres per MEP photo (NS-MEPP). Each bar triplet represents

the mean of three animals per time-point. Data for type I fibers

represent the mean of 5 randomly selected type I fibers from

each animal. Data for type II fibers represent the mean of 15

randomly selected type II fibers from each animal.
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fiber to the number of sarcomeres in the image of
the associated MEP was about 1:1 for fiber types I
and II (Fig. 1).

In a few instances, treatment of muscles with
carbachol led to local disturbances in the pattern
of sarcomeric striation. These sarcomeric disar-
rangements were observed in all fiber types and
were scattered in regions that were devoid of

MEPs. They ranged from misalignments in register
to total loss of striation (Fig. 2A). However, most
fibers showed no sign of disturbance of striations
after 1–30-minute treatment with carbachol, except
for the MEP region (Figs. 2–4). In this region,
beneath the MEPs, treatment with carbachol
caused more or less local shortenings of the sarco-
meres, leading to a magnetic-field-line-like image
of the striation, with its epicenter under the MEP
(Figs. 2 and 3C). The most pronounced shorten-
ings were observed within the group of type I
fibers (Figs. 2B and 3B), whereas the less-pro-
nounced shortenings were found within the group
of type II fibers (Figs. 2B and 3B and C).

In some instances, the sarcomeres were so con-
densed as to appear as a dense band (Fig. 3A and
D) or spot (Fig. 3B). This type of contracture was
unique to MEPs and could be readily distinguished
from the milder, scattered disturbances of striation
that were observed at other locations in the muscle
fiber (Fig. 2A). If the local contracture was severe
and if the muscle fibers were not densely packed,
the MEPs appeared to be squeezed out of the mus-
cle fiber, with the result that their usual beret-like
form was transformed into a wart- or mushroom-
shaped form. This body, which contains the sole-
plate nuclei, sat upon and overlapped the muscle
fiber (Figs. 3A, B, and D, and 4A). Owing to the
plane of sectioning, some MEPs revealed two

Table 2. Significant differences between sarcomere number ratios of experimental groups according to analysis of variance.11

C vs. E1 C vs. E2 C vs. E3 C vs. R E3 vs. R E3 vs. wCa

Type I þ þ þ � þ þ
Type II � þ þ � � þ

Quotient I/II � � þ � þ þ

Statistical significant differences (P < 0.05) are indicated by þ.

FIGURE 2. Longitudinal section through the region of motor end-

plates of a skeletal muscle after incubation in 0.1 mM carbachol

for 10 min (protocol E2). (A) Local contractures are associated

with several motor endplates (MEP), but beneath the others no

deformation of the sarcomeric striation can be seen ( ). Sarco-

meres bordering contracted motor endplates in the up- and

downstream directions are stretched ( ). Some of the fibers

manifest local contractures (lc) (semithin section; bar ¼ 25 lm).

(B) Higher magnification view of the boxed area in (A) illustrating,

in greater detail, a motor endplate with a local contracture (co)

and one without ( ), as well as the stretching of neighboring

sarcomeres ( ). Ax, axon (bar ¼ 10 lm). (C) Detail of the

boxed area in (B) illustrating the contracture beneath the beret-

like profile of the motor endplate (MEP). Within the contracture,

the sarcomeric striations are condensed. On the opposite side of

the motor endplates, the striation pattern is undisturbed (oMEP).

Ax, axon; AT, axon terminal (ultrathin section; bar ¼ 5 lm). (C)

Inset: Higher magnification view of the boxed region in (C) illus-

trating, in greater detail, the condensation of the banding pattern

in the contracted region. The M-line is visible but the I-band is

not. The distance between neighboring triads (T) of the sarco-

mere is greatly reduced (bar ¼ 500 nm).
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intersections of the same axon terminal, with two
well-separated contractures (Fig. 3B). In cross-sec-
tioned MEPs, the contractures were apparent as
band-like regions within the underlying myofibrils,
which were no longer organized into the usual
hexagonal units that usually represent the A- and
I-bands and the Z-line, respectively (Fig. 4).

Depending on the severity of contracture as
well as the transverse and longitudinal distance to
the MEP sarcoplasm, the normal periodicity of the
sarcomeric striation was lost (Fig. 2C). Therefore,

the M-lines disappeared even in cases of a spot- to
band-like contracture (not shown). If the contrac-
ture was located deeper within the body of the
muscle fiber and was more widespread in the trans-
verse and longitudinal directions, then the M-line
was just discernible (Fig. 2C) and, in most instan-
ces, the subsarcolemmal sarcomeres on the side
opposing the MEP had a normal appearance (Fig.
2C). The distance between adjacent Z-lines (sarco-
mere length) ranged from 320 nm (in instances of
severe contracture immediately beneath the MEP)
to 2.4 lm in the subsarcolemmal space opposing
the affected MEP. Sarcomeres that border con-
tracted sarcomeres were often in a stretched condi-
tion (Fig. 2).

The fiber-type–specific ratio of the number of
sarcomeres per muscle fiber photo to sarcomeres
per MEP image declined with increasing incuba-
tion time in carbachol, but the effect was most pro-
nounced in type I fibers (Fig. 1). This finding
accords with our observation that the most severe
contractures occurred predominantly within type I
fibers. The effects appeared to be reversible.
Indeed, after rinsing away the carbachol, the ratios
were in the normal range (Fig. 1). The quotient
between the results of type I and type II fibers
declined with increasing incubation time in carba-
chol, corresponding to an augmentation of the dif-
ference between these two fiber types. After rinsing
away the carbachol, these differences were also
restored, indicating that mostly type I fibers
recover after the carbachol depletion.

DISCUSSION

This study has confirmed an earlier report1 that
transient stimulation of AChRs with carbachol
leads to local and reversible calcium-dependent

FIGURE 3. Overview of longitudinally sectioned MEPs with

underlying contractures. (A) Beneath the MEP, the sarcomeric

striations are condensed into a band-like contracture. Given the

presence of numerous, subsarcolemmal mitochondria (sm), the

muscle fiber is classified as type I. SN, soleplate nucleus (10-

minute carbachol incubation used—protocol E2; semithin sec-

tion; bar ¼ 10 lm). (B) Overview of a motor endplate with two

spot-like contractures. Owing to the plane of sectioning, the

loop-like arborization of the axon terminal (AT) has been cut

twice. The sarcoplasm of the MEP has been squeezed out of

the muscle fiber and overlaps it on one side ( ). Given the ab-

sence of subsarcolemmal mitochondria, this fiber is classified

as type II. SN, soleplate nucleus (10-min carbachol incuba-

tion—protocol E2; semithin section; bar ¼ 10 lm). (C) After

incubation in carbachol for 30 minutes (protocol E3), a type II

muscle fiber manifests a weak contracture underneath the MEP.

AT, axon terminal; SN, soleplate nucleus (semithin section; bar

¼ 10 lm). (D) Tangential section through a motor endplate of a

muscle fiber, which had been exposed to carbachol for 1 minute

(protocol E1). The sarcoplasm of the MEP has been squeezed

out of the muscle fiber and overlaps it ( ). AT, axon terminal;

SN, soleplate nucleus (thick semithin section; bar ¼ 10 lm).
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contractures underneath MEPs. Until now, there
has been no information pertaining to the spatial
extent and early time-course of formation of these
localized contractions, because previous studies
have focused on the pathological effects on the
pre- and postsynaptic sides after chronic rather
than transient stimulation of AChRs.1,2,4,5,13 The
present findings reveal that even a 1-minute treat-
ment of skeletal muscle fibers with 0.1 mM carba-
chol leads to fiber-type–dependent local shorten-
ing of the sarcomeres beneath the MEP, which can
deform the normal beret-like shape of the MEP to
a wart- or mushroom-like shape. This shortening
of the sarcomeres beneath the MEP can reduce
the sarcomere length to 320 nm or 13% of its nor-
mal value. However, these local strong shortenings
are spatially confined to spots or bands beneath
the MEPs and, in most cases, the sarcomeres in
the up- and downstream region are stretched. Con-
sequently, when the image containing the MEP is
viewed as a whole, the combined effect of shorten-
ing and stretching leads to a contracture of <60%
of the normal resting length of a sarcomere,
depending on the duration of carbachol applica-
tion and the fiber type (Fig. 1). Our observations
reveal that not all fibers manifest contractures to
the same extent. This finding accords with the
observation that the number of contractures
occurring within the potassium-depolarized muscle
fibers of frogs increases as a function of carbachol
concentration.14 Because the carbachol concentra-
tion we used was 2% the highest that was
employed,14 it is hardly surprising that not all
fibers were implicated.

With respect to our own experimental set-up of
carbachol application, we must consider a possible

desensitization of the AChR by carbachol,15–17

which can reduce the strength of carbachol-
induced contractures. Even so, short-term applica-
tion of 0.1 mM carbachol led to calcium-depend-
ent contractures below MEPs, as it has been shown
for long-term carbachol incubations,14,17 indicating
that not all AChRs had yet been desensitized. The
formation of scattered local shortenings along the
muscle fiber outside the region of the MEP could
be attributed to the activity of widely distributed
extrasynaptic AChRs.18

Calcium enters the muscle fiber via opened
AChRs,19–23 and this could lead to a local increase
in the calcium concentration.19,20 After diffusing to
the myofibrils, the calcium inward current could
itself trigger sarcomere shortening. The great vari-
ability in the effectiveness to elicit contractions
beneath MEPs using ACh19 indicates that the local
ACh-induced increase of calcium concentration is
sometimes too small to reach the necessary level for
activating the shortening of sarcomeres. Assuming
that a cloud-like propagation of calcium diffusion
into the muscle fiber occurs in a predominantly
longitudinal direction,24 and that an equalizing
overlapping of individual diffusion clouds takes
place from one margin of the MEP to the other,
then a contracture along the entire length of the
MEP and the adjacent extrajunctional sarcomeres
would be expected. However, this expectation is
not borne out by our own observations of spot- to
band-like contractures and of stretching in adjacent
sarcomeres. If the spatial location of the contrac-
tures reflects the local availability of free calcium,
then the occurrence of band-like events suggests
more transverse propagation of calcium diffusion as
the trigger for the sarcolemmal shortening.

FIGURE 4. Cross-section of a muscle fiber that had been exposed to carbachol for 30 minutes (protocol E3). (A) The overview shows

an MEP with an underlying contracture (co). Above the contracture, the sarcoplasm of the MEP has been squeezed out and overlaps

the muscle fiber ( ). SN, soleplate nucleus (semithin section; bar ¼ 1 lm). (B) Detail of the boxed region in (A) illustrating the effect

of the contracture on the structure of the A- and I-bands (ultrathin section; bar ¼ 1 lm). Insets 1, 2, and 3 represent higher magnifica-

tion views of the indicated areas in (B). Inset 1: In this region, the punctuate pattern that is so typical of cross-sectioned myofibrils is

no longer visible. Individual myosin filaments can be distinguished, but they are not arranged according to the usual hexagonal pattern.

Inset 2: Deeper in the muscle fiber the register of the myofibrils is still disturbed, as evidenced by their oblique course. T, triads. Inset

3: Deep in the muscle fiber, the usual punctuate pattern of the A-band (A) and I-band (I), as well as the rectangular arrangement of

actin filaments in the Z-line (Z), is visible (bar for all insets ¼ 500 nm.
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However, local subsarcolemmal injections of free
calcium induce highly circumscribed contrac-
tures,14,25 which accords with the circumstance that
skeletal muscle fibers are not possessed of a cal-
cium-induced calcium release.26

Our observation that the contractures are spa-
tially confined (transversely and longitudinally) to
the myofibrils that underlie MEPs suggests that the
carbachol-induced MEP potential passed neither
along the outer surface of the MEP to the muscle
fiber nor into the T-tubules of the muscle fiber,
because, otherwise, the contractures would have
been more widespread and the stretching of neigh-
boring sarcomeres would not have occurred,
respectively. However, with an assumed space-con-
stant of 20–40 lm for T-tubules,26 even a low MEP
potential could be propagated along those T-
tubules of the MEP that open into the subsynaptic
folds27,28 and thereby into the deep regions of the
myofibrils. Here the depolarization could induce
an inward calcium current across the membrane of
the T-system29,30 and calcium release through the
sarcoplasmic reticulum by dihydropyridine recep-
tor charge movements, which depend on the lumi-
nal calcium concentration.31 Such an assumption
is supported by the finding that D600 (methoxy-
verapamil), an inactivator of dihydropyridine
receptors, nearly protects muscle fibers from
extracellular calcium–dependent carbachol-
induced necrosis.1

Prolonged treatment with carbachol (from 30
minutes up to 3 hours) or poisoning muscles with
esterase inhibitors induces contractures and an
ensuing dissolution of the Z-lines beneath the
MEPs.1,2,5,13,32 This calcium-dependent effect
resembles the pathological changes seen in human
patients with slow-channel syndrome3 and in trans-
genic mice with slow-closing AChRs.6 Even exer-
cise, however, which is associated with a higher fre-
quency of AChR activation, does not lead to a
calcium overload in more than two-thirds of the
fibers of these transgenic mice.6 Interestingly, in
all studies that have illustrated MEPs with the
underlying myofibrils after pharmacologic stimula-
tion of the AChRs,1,2,13 these characteristic struc-
tural changes have only been observed within
fibers that could be classified as type I (according
to the established definition9,10). These observa-
tions accord with our own (Fig. 1) and with the
finding that predominantly type I fibers undergo
atrophy after a daily application of neostigmine.4

We must take into account the sodium chan-
nels along the fiber33 and the crest of the subsy-
naptic folds,34 whose function in the crest of the
subsynaptic folds is to enhance the AChR-gener-
ated MEP potential.33,35,36 Slower inactivation of
these sodium channels within slow muscle fibers,33

and the consequently prolonged enhancement of
the MEP potential, should facilitate deeper propa-
gation of the MEP potential into the T-system of
the MEP27,28 and the adjacent T-system of the myo-
fibrils underneath the MEP, thereby leading to
stronger local contractures in slow muscle fibers.

On the other hand, we must consider that the
myofibrillar proteins of slow fibers are more sensi-
tive to calcium than fast fibers,37 which could
account for the stronger contractures in slow
fibers. However, the occurrence of band-like con-
tractures and stretched sarcomeres in the neigh-
boring areas indicates local differences in the con-
centration of free calcium. Although the higher
calcium sensitivity of myofibrillar proteins in slow
fibers will additionally augment the strength of car-
bachol-induced contractures, it cannot be the
main reason for the differences in fiber types.

Differences in the severity of pathological
changes observed in transgenic mice with manipu-
lated AChRs may be attributed not only to differ-
ences in their levels of expression in different
muscle fibers6 but also to fiber-type–specific differ-
ences in the handling of calcium.

The author thanks Professor W. Dauber (Institute of Anatomy,
University of Tuebingen) and Dr. O. Baum (Institute of Anatomy,
University of Bern) for helpful discussions, and to Dr. Cery Eng-
land (Institute of Anatomy, University of Bern) for linguistic help.
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