Synthesis and Tunability of Abnormal 1,2,3-Triazolylidene Palladium and Rhodium Complexes

Aurélie Poulain,† Daniel Canseco-Gonzalez,‡ Rachel Hynes-Roche,‡ Helge Müller-Bunz,‡ Oliver Schuster,[†] Helen Stoeckli-Evans,[§] Antonia Neels,^{||} and Martin Albrecht*^{,†,‡}

[†] Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland, [†] School of Chemistry & Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland, §
Specifythe of Physics University of Neuchâtel, Bue Emile Argand 11, CH 2000 Neuchâtel, Switzerland Institute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland, and
XRD Application Lab, CSEM, Rue Jaquet-Droz 1, CH-2002 Neuchâtel, Switzerland

Palladation of N3-alkylated 1,2,3-triazolium salts with Pd(OAc)₂ afforded a μ^2 -I₂ bridged bimetallic complex $[Pd(trz)I_2]_2$ and monometallic bis(carbene) complexes $Pd(trz)_2I_2$ as a mixture of trans and cis isomers (trz = 1,2,3-triazol-5-ylidene). Addition of excess halide or modification of the palladation procedure from direct functionalization to a transmetalation sequence involving a silver intermediate allowed for chemoselective formation of the bis(carbene) complex, while subsequent anion metathesis with NaI produced the monometallic bis(carbene) complexes exclusively. Modification of the wingtip group had little influence on the metalation to palladium or rhodium(I) via transmetalation. According to NMR analysis using δ_C and $^1J_{\text{Rh}-C}$, subtle but noticeable tunability of the metal electronic properties was identified. In addition, phenyl wingtip groups as N-substituents in the triazolylidene ligands were susceptible to cyclopalladation in the presence of NaOAc and are thus not chemically inert.

Introduction

The enormous impact of N-heterocyclic carbenes as spectator ligands in all areas of transition metal chemistry^{1—}and in catalysis in particular² has stimulated significant research interest in developing NHC-type scaffolds that allow for substantial modification of steric and electronic properties.

(2) (a) Hermann, W. A.; Köcher, C. Angew. Chem., Int. Ed. 2002, 41, 1290. (b) Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612. (c) Poyatos, M.; Mata, J. A.; Peris, E. Chem. Rev. 2009, 109, 3677.

Such modifications include, for example, expansion of the heterocyclic ring from classic five-membered imidazolderived structures to six- and seven-membered heterocycles³ or the displacement of one or both carbene-stabilizing heteroatoms into more remote positions.⁴ Depending on the location of the heteroatoms, a neutral resonance structure may no longer be conceivable and mesoionic resonance structures become largely dominant.⁵ A pronounced mesoionic character may be an attractive feature, for example in redox catalysis,⁶ and has been exploited recently in a variety of carbene-type scaffolds (abnormal carbenes).⁷

In this context, 1,3-disubstituted 1,2,3-triazolylidenes constitute a particularly attractive class of ligands (Scheme 1).^{8,9} The heterocyclic ligand precursor is accessible via a synthetically highly versatile "click reaction" involving a copper-catalyzed $[3+2]$ cycloaddition of azides and alkynes

^{*}To whom correspondence should be addressed. E-mail: martin. albrecht@ucd.ie. Fax: +35-317162501.

^{(1) (}a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39. (b) Nolan, S. P., Ed. N-Heterocyclic Carbenes in Synthesis; Wiley-VCH: Weinheim, Germany, 2006. (c) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2008, 47, 3122. (d) Hindi, K. M.; Panzner, M. J.; Tessier, C. A.; Cannon, C. L.; Youngs, W. J. Chem. Rev. 2009, 109, 3859. (e) Mercs, L.; Albrecht, M. Chem. Soc. Rev. 2010, 39, 1903. (f) Dröge, T.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 6940.

^{(3) (}a) Iglesias,M.; Beetstra, D. J.; Stasch, A.; Horton, P. N.; Hursthouse, M. B.; Coles, S. J.; Cavell, K. J.; Dervisi, A.; Fallis, I. A. Organometallics 2007, 26, 4800. (b) Iglesias, M.; Beetstra, D. J.; Knight, J. C.; Ooi, L.-L.; Stasch, A.; Coles, S. J.; Male, L.; Hursthouse, M. B.; Cavell, K. J.; Dervisi, A.; Fallis, I. A. Organometallics 2008, 27, 3279. (c) Binobaid, A.; Iglesias, M.; Beetstra, D.; Dervisi, A.; Fallis, I.; Cavell, K. J. Eur. J. Inorg. Chem. 2010, in press (doi: 10.1002/ejic.201000680).

⁽⁴⁾ For representative examples, see: (a) Lavallo, V.; Canac, Y.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2006, 312, 722. (b) Han, Y.; Huynh, H. V.; Tan, G. K. Organometallics 2007, 26, 6581. (c) Nakafuji, S.; Kobayashi, J.; Kawashima, T. Angew. Chem., Int. Ed. 2008, 47, 1141. (d) Lavallo, V.; Dyker, C. A.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 5411. (e) Fürstner, A.; Alcarazo, M.; Radkowsi, K.; Lehmann, C. W. Angew. Chem., Int. Ed. 2008, 47, 8302. (f) Vignolle, J.; Cattoen, X.; Bourissou, D. Chem. Rev. 2009, 109, 3333. (g) Aldeco-Perez, E.; Rosenthal, A. J.; Donnadieu, B.; Parameswaran, P.; Frenking, G.; Bertrand, G. Science 2009, 326, 554. (h) Iglesias, M.; Albrecht, M. Dalton Trans. 2010, 39, 5213.

^{(5) (}a) Arnold, P. L.; Pearson, S. Coord. Chem. Rev. 2007, 251, 596. (b) Albrecht, M. Chem. Commun. 2008, 3601. (c) Schuster, O.; Yang, L.; Raubenheimer, H. G.; Albrecht, M. Chem. Rev. 2009, 109, 3445.

⁽⁶⁾ Lalrempuia, R.; McDaniel, N. D.; Müller-Bunz, H.; Bernhard, S.; Albrecht, M. Angew. Chem., Int. Ed. 2010, 49, 9765.

^{(7) (}a) Heckenroth, M.; Kluser, E.; Neels, A.; Albrecht, M. Angew. $Chem., Int. Ed. 2007, 46, 6293.$ (b) Yang, L.; Krüger, A.; Neels, A.; Albrecht, M. Organometallics 2008, 27, 3161. (c) Prades, A.; Viciano, M.; Sanau, M.; Peris, E. Organometallics 2008, 27, 4254. (d) Han, Y.; Huynh, H. V. Dalton Trans. 2011, 40, in press (DOI: 10.1039/C0DT01037E).

⁽⁸⁾ Mathew, P.; Neels, A.; Albrecht, M. J. Am. Chem. Soc. 2008, 130, 13534.

⁽⁹⁾ First catalytic applications of such triazolylidene complexes have been disclosed recently; see ref 6 and: (a) Nakamura, T.; Ogata, K.; Fukuzawa, S. Chem. Lett. 2010, 39, 920. (b) Kilpin, K. J.; Paul, U. S. D.; Lee, A.-L.; Crowley, J. D. Chem. Commun. 2011, 47, 328. (c) Prades, A.; Peris, E.; Albrecht, M. Organometallics 2011, 30, in press (DOI: 10.1021) om101145y).

Scheme 1. Retrosynthetic Approach toward Triazolylidene Metal Complexes

$$
\begin{array}{ccc}R^{\prime\prime}\underset{N}{\otimes}\underset{N}{\overset{R}{\otimes}}\underset{N}{\overset{R^{\prime\prime}}{\underset{N}{\otimes}}\longrightarrow}}R^{\prime\prime}\\\underset{N}{\overset{N}{\otimes}}\underset{N}{\overset{R^{\prime\prime}}{\underset{N}{\otimes}}\longrightarrow}}R^{\prime\prime}\\\underset{N}{\overset{N}{\otimes}}\underset{N}{\overset{N}{\otimes}}\longrightarrow}\right)\end{array}\Longrightarrow\begin{array}{c}R\\N_{3}*\overset{R}{\underset{N}{\overset{N}{\otimes}}\longrightarrow}}R^{\prime\prime}\\
$$

(Scheme 1).¹⁰ This click reaction tolerates a wide variety of functional groups both in the azide and in the alkyne reactant,¹¹ and hence allows for synthetic variation of wingtip groups that may not be (easily) conceivable in NHC chemistry relying on imidazole-derived heterocycles. Unlike their much more investigated 1,2,4-triazolylidene homologues,¹² 1,2,3-triazolylidenes have a strong mesoionic character, as demonstrated in elegant work by Bertrand and co-workers on the free carbene ligand.¹³

Following our initial studies,⁸ we report here on a detailed investigation of the factors that influence the metalation of triazolium salts with palladium and rhodium. Wingtip modification has been probed as a methodology for tuning the stability and the donor ability of the ligand. Specifically, N-bound phenyl groups were observed to undergo facile cyclopalladation.

Results and Discussion

Synthesis of Palladium Complexes. Direct palladation of the triazolium salt 1a was accomplished thermally by stirring the ligand precursor and $Pd(OAc)_2$ in DMSO at 120 °C.¹⁴ Analysis of the crude reaction mixture revealed three separate sets of signals for the ethyl group in the ${}^{1}H$ NMR spectrum, while the aromatic region was more complex. Sequential extraction with MeCN and CH₂Cl₂ and fractional crystallization allowed for isolating the three major compounds, i.e., dimeric complex 2a and the monomeric complex 3a as a mixture of trans and cis isomers, i.e., trans-3a and cis -3a (Scheme 2).¹⁵ Specifically, the bimetallic complex 2a is soluble in MeCN, while $3a$ is only sparingly, thus allowing for separating the red complex 2a from the two yellow bis(carbene) palladium complexes *trans*-3a and *cis*-3a by straightforward consecutive extractions. The residual *cis* trans mixture of 3a was further purified by fractional crystallization by slow diffusion of pentane into a $CH₂Cl₂$ solution of 3a.

The molecular structures of complexes 2a, trans-3a, and cis-3a are depicted in Figure 1. The unit cell of the dimeric complex 2a consists of two crystallographically independent centrosymmetric binuclear molecules. In all three complexes the palladium constitutes the center of a distorted square plane with the triazole rings oriented essentially perpendicular with respect to the metal coordination plane. The C2–C1–Pd1–I1 torsion angles are $88.5(5)^\circ$, $98.7(5)^\circ$, and $77.9(3)$ ^o for **2a**, *trans*-3a, and *cis*-3a, respectively. The $Pd-C_{carbene}$ bond is slightly shorter in the dimeric structure **2a** (1.967(6), 1.979(6) \AA) than in monomeric species *cis*-3a $(1.993(5), 1.997(5)$ Å), and significantly shorter than in *trans*-3a (2.049(3) \AA), reflecting the expected increase of the *trans* influence from μ^2 -I⁻ to terminal I⁻ to carbene (Table 1). The same conclusions can be drawn when comparing the Pd-I distances in the three complexes. No significant perturbation of the bond lengths in the heterocycles were noted; the C-C bond is in all complexes in the range of conjugated $C=C$ bonds.

The availability of crystalline samples and structural evidence allowed for identifying the diagnostic ethyl group resonances of complex 2a in solution, δ_H 4.71 and 1.63. Attempts to collect sufficient crystalline material of 3a always resulted in a mixture of trans and cis isomers, as indicated by two sets of resonances at 4.65 and 1.56 ppm, and at 4.85 and 1.71 ppm. Therefore, NMR spectroscopy did not allow cis and trans configurations to be unequivocally distinguished. Steric considerations suggest that the former set, which is the major one in the crude reaction mixture, is due to trans-3a. The trans configuration is expected to alleviate steric congestion around the metal coordination sphere and may therefore be more easily accessible than cis-3a.

The most significant difference in the 13 C NMR spectra of the complexes comprises the palladium-bound carbene resonance, which appears at $\delta_{\rm C}$ 128.5 in complex 2a, ¹⁶ yet at substantially lower field (δ _C 154.6 and 154.0) for the *cis/trans* mixture of 3a. This effect is much smaller for the phenylbound heterocyclic carbon, which resonates at δ_C 142.5 in 2a and at 144.1 in 3a. No difference between the cis and trans isomers was detected for this nucleus. All other 13 C NMR signals differ by less than 1 ppm in the three sets and hence do not allow for an unambiguous distinction between the three structures.

Factors Affecting Product Selectivity. Upon repeating the palladation reaction, the dimetallic complex 2a and monomeric 3a were obtained invariably in an approximate 1:1 ratio, with a 5:2 *trans/cis* isomeric distribution in the latter. When the metalation was carried out with excess KI (4 molar equiv) and under otherwise identical conditions, complex 2a became the major product (ca. 8:1 ratio) as deduced from the crude ¹H NMR spectra. This preference is in agreement with the asymmetric halide/carbene stoichiometry in the dimetallic product. Replacing KI by KCl (2 molar equiv) similarly favored the production of the dimetallic complex (5:1 ratio obtained after stirring the product mixture with NaI in order to convert the initial chloropalladium products into their iodide analogues). Likewise, using NaOAc as an additive increased the ratio of the dimetallic complex (ca. 4:1), thus demonstrating that large and potentially μ^2 or κ^2 coordinating anions favor the

^{(10) (}a) Sheehan, J. C.; Robinson, C. A. J. Am. Chem. Soc. 1951, 73, 1207. (b) Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565. (c) Kolb, H.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004. (d) Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51.

⁽¹¹⁾ For reviews, see: (a) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249. (b) Meldal, M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952. (c) Franc, G.; Kakkar, A. Chem. Commun. 2008, 5267. (d) Finn, M. G.; Fokin, V. V. Chem. Soc. Rev. 2010, 39 (themed issue), 1231.

^{(12) (}a) Guerret, O.; Sole, S.; Gornitzka, H.; Teichert, G.; Trinquier, G.; Bertrand, G. J. Am. Chem. Soc. 1997, 119, 6668. (b) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606. (c) Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.; Hedrick, J. L. Chem. Rev. 2007, 107, 5813.

^{(13) (}a) Guisado-Barrios, G.; Bouffard, J.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 4759. (b) Keske, E.; Praetorius, J. M.; Crudden, C. M. 93rd Canadian Chemistry Conference, Toronto 2010, Abstract INP-126.

^{(14) (}a) Herrmann, W. A.; Schwarz, J.; Gardiner, M. G. Organometallics 1999, 18, 4082. (b) Heckenroth, M.; Kluser, E.; Neels, A.; Albrecht, M. Dalton Trans. 2008, 6242.

⁽¹⁵⁾ Similar mixtures of dimetallic and monometallic complexes have been reported in the palladation of imidazolium salts: Baker, M. V.; Brown, D. H.; Simpson, P. V.; Skelton, B. W.; White, A. H. Eur. J. Inorg. Chem. 2009, 1977.

⁽¹⁶⁾ In 2a, the carbene resonance coincides with those due to the meta carbons of the phenyl substituent, but was unambiguously identified by long-range CH correlation spectroscopy: Fribolin, H. Basic One- and Two-Dimensional NMR Spectroscopy; Wiley-VCH: Weinheim, Germany, 1998.

Figure 1. ORTEP drawings of complex 2a (a; only one of the two crystallographically independent molecules is shown), trans-3a (b), and cis-3a (c). All structures are at the 50% probability level; hydrogen atoms and cocrystallized solvents are omitted for clarity.

Scheme 2. Synthesis of Complexes 2, trans-3, and cis-3 by Direct Metalation

Table 1. Selected Bond Lengths (A) and Angles (deg) for $2a$, trans-3a, and cis-3a

 a X1 = I2, X2 = I2a; in molecule 1, the iodide was found to be disordered over two positions (occupancies 0.7/0.3); only the major component is considered here; labeling scheme adapted for molecule 2. b X1 = Cla, X2 = I1a. c X1 = I2, X2 = C12.

formation of complex 2a comprising a 1:1 palladium to carbene ratio.

Attempts to favor the formation of the bis(carbene) complex 3a initially focused on the modification of the ligand/palladium stoichiometry in the reaction mixture. However, even in the presence of a 4-fold excess of triazolium salt, the product distribution remained at an approximate 1:1 ratio. This observation may suggest that species such as 2a are poor substrates for the second Pd-carbene bond formation. Utilization of a transmetalation protocol was more successful.¹⁷ Formation of the silver intermediate from Ag₂O and the triazolium precursor,⁸ followed by transmetalation with $PdCl₂(NCR)₂$

 $(R = Me, Ph)$ at room temperature and subsequent stirring of the product in the presence of NaI, produced the bimetallic complex 2a only.¹⁸ Most remarkably, slight modification in this procedure, viz., omitting NaI for anion metathesis, inverted the selectivity and afforded the monometallic bis(carbene) complex 4a, containing chloride anions as the exclusive product (Scheme 3). Again a mixture of cis and trans isomers was formed (1:6 ratio). The room-temperature ${}^{1}H$ NMR spectrum in CD3CN featured broad signals, indicating a dynamic behavior. The spectrum recorded at $+75$ °C showed sharp signals for a single species and is in agreement with fast $cis - trans$ isomerization at this temperature.¹⁹ At the slow exchange limit $(-20 \degree C)$, four sets of signals were well resolved and were assigned to syn and anti conformations of the trans and cis isomers of 4a (relative distribution of the sets was 52%, 32%, 11%, and 5%). Variable-temperature NMR spectroscopy revealed a coalescence of the multiplets at around 20 $\mathrm{^{\circ}C}$ for the two major components ($\Delta G^{\ddagger} = 58.7 \pm 0.8 \text{ kJ mol}^{-1}$), while the other pair of signals was still sharp. Coalescence of this set required warming to 60 °C (ΔG^{\ddagger} ca. 67 kJ mol⁻¹). This coalescence was complicated by the fact that the two pairs of sets coalesce at only slightly higher temperature (ca. 65 °C). Tentatively, we have assigned the more hindered rotation about the C-Pd bond $(syn-anti)$ isomerization) to the sterically congested cisisomer, while the same type of rotation is expected to be comparably facile in trans-4a. In line with this model, the $syn-anti$ isomerization process in the *cis* isomer should have a similar activation barrier to the $cis - trans$ interconversion, in particular in coordinating solvents such as MeCN. Accordingly, the activation barrier for *cis-trans* isomerization is around 70 kJ mol⁻¹.

^{(17) (}a) Garrison, J. C.; Youngs, W. J. Chem. Rev. 2005, 105, 3978. (b) Lin, J. C. Y.; Huang, R. T. W.; Lee, C. S.; Bhattacharyya, A.; Hwang, W. S.; Lin, I. J. B. Chem. Rev. 2009, 109, 3561.

⁽¹⁸⁾ An earlier report suggested the formation of a monometallic complex under these conditions; see: Karthikeyan, T.; Sankararaman, S. Tetrahedron Lett. 2009, 50, 5834.

⁽¹⁹⁾ Cetinkaya, B.; Cetinkaya, E.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1973, 906.

Scheme 3. Selective Synthesis of Either Dimetallic Complex 2 or Monometallic Bis(carbene) Complex 4

Variation of the Wingtip Groups. In an effort to evaluate the influence of the ortho substituents (wingtip groups), a series of triazolium salts 1b-f were synthesized in good to excellent yields by established $[3+2]$ cycloaddition protocols using the corresponding azides and alkynes²⁰ and subsequent alkylation with MeI. Selective N3-methylation was unambiguously confirmed by NOE and long-range CH cross-correlation experiments. Direct palladation using Pd- $(OAc)_2$ as described above again provided a mixture of complexes 2, cis-3, and trans-3 (cf. Scheme 2). The 2:3 ratio showed a moderate dependence on the wingtip group pattern. While for the dialkylated systems 2b and 2c, about equimolar quantities of monomeric species (3b and 3c, respectively) were formed, the dimetallic complex 2d was slightly more preferred over the corresponding monometallic complex (1.25:1). Swapping the phenyl and butyl substituents resulted in an inversion of the selectivity, with the monometallic species favored (ratio 2e/3e approximately 0.5:1). With two phenyl wingtip groups, the ratio could not be determined unambiguously due to considerable signal overlap in both the ${}^{1}H$ and ${}^{13}C$ NMR spectra.

Purification of the mixtures by MeCN extraction and crystallization provided pure fractions of the dimetallic complexes $2b-f^{21}$ Analysis of their ¹³C NMR spectra reveals a moderate correlation between $\delta_{\rm C}$ and the electronic properties of the wingtip groups. The most shielded carbenes were observed for triazolylidenes possessing two alkyl wingtip groups (cf. δ_c 126.0 and 126.4 for 2b and 2c, respectively), whereas introduction of a phenyl group shifts the resonance to lower field (cf. δ_C 128.5, 128.4, and 129.1 for 2a, 2d, and 2e, respectively). The carbene signal for the supposedly most deshielded carbene in 2f was not resolved.

Complexes 2b-e were investigated in the solid state by X-ray diffraction analysis (Figure 3). The global structure of all dimeric compounds is identical to that of 2a (cf. Figure 1a) and comprises two palladium centers, two bridging iodides, and at each metal center one triazolylidene and one iodide ligand. In all complexes the center of the Pd_2I_2 square is a crystallographic inversion center. As a consequence, the wingtip groups in complexes 2d and 2e adopt a mutual *anti* conformation. The Pd-C bond lengths in all complexes are identical within esd's and average $1.97(1)$ Å. This distance is in the range generally observed for abnormal palladium carbene complexes.²² Further bond lengths and angles are

Figure 2. ORTEP representation of complex trans-4a (50% probability level, hydrogen atoms omitted for clarity). Selected bond lengths (A) and angles (deg): Pd1-C1 2.037(3); Pd1-Cl1 2.3534(8); C1-Pd1-C1a 180; C1-Pd1-Cl1 88.8(1).

similar to those of 2a (Table 2). Again, the triazolylidene ring is oriented almost perpendicular to the palladium square plane, with dihedral angles between 71° (2e) and 88 $^{\circ}$ (2b). The Pd1 $-I2$ bond *trans* to the carbene ligand is slightly shorter in the phenyl-substituted triazolylidene complexes than in the complexes comprising exclusively alkyl wingtip groups. These observations may point to a moderate tunability of the trans influence of the triazolylidene ligand via wingtip group modification.

Upon crystallization of complex 2e, a smooth color change from orange to yellow was noted in some cases. Analysis of this yellow fraction gave broad NMR resonances in the aromatic region. Measurements at 60 $^{\circ}\textrm{C}$ revealed four distinct resonances between 7 and 8 ppm. Desymmetrization of the phenyl ring and loss of one proton resonance are indicative for orthopalladation and the formation of the palladacycle 5e (Scheme 4). The presence of a $Pd-C_{\rm{aryl}}$ bond was also supported by a low-field ¹³C NMR signal at δ_c 144.6. Related cyclopalladation was also observed in imidazolium-derived N-heterocyclic carbenes.²³ Unambiguous evidence for the formation of a cyclopalladated product was provided by X-ray diffraction analysis (Figure 4). Crystals of 5e contained two crystallographically independent molecules, which differed considerably in their global structure. One molecule is located on a crystallographic inversion center and features a planar Pd_2I_2 core, thus resulting in a coplanar arrangement of the two metalacycles. In contrast the second molecule is characterized by an open book-type

^{(20) (}a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596. (b) Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; van der Eycken, E. Org. Lett. 2004, 6, 4223.

⁽²¹⁾ Transmetalation using $PdCl₂(MeCN)₂$ and subsequent halide metathesis with NaI provides an alternative access to pure dimetallic complexes, thus suppressing the formation of bis(carbene) palladium complexes 3. See Experimental Section for further details.

⁽²²⁾ Poulain, A.; Iglesias, M.; Albrecht, M. Curr. Org. Chem. 2011, in press.

^{(23) (}a) Hiraki, K.; Onishi,M.; Sugino, K. J. Organomet. Chem. 1979, 171, C50. (b) Hiraki, K.; Sugino, K. J. Organomet. Chem. 1980, 201, 469. (c) Stylianides, N.; Danopoulos, A. A.; Pugh, D.; Hancock, F.; Zanotti-Gerosa, A. Organometallics 2007, 26, 5627. (d) Frey, G. D.; Schütz, J.; Herdtweck, E.; Herrmann, W. A. Organometallics 2005, 24, 4416. (e) Liu, Z.; Zhang, T.; Shi, M. Organometallics 2008, 27, 2668. For a related cycloplatination, see: (f) Petretto, G. L.; Wang, M.; Zucca, A.; Rourke, J. P. Dalton Trans. 2010, 39, 7822.

Figure 3. ORTEP drawings of complex 2b (a; only one of the two crystallographically independent molecules shown), 2c (b), 2d (c), and 2e (d). All structures are at the 50% probability level except 2b, which is at 30% probability; hydrogen atoms and cocrystallized solvents in 2d and 2e are omitted for clarity.

Table 2. Selected Bond Lengths (A) and Angles (deg) for Complexes 2b-e

\sum									
	2 _b	2c	2d	2e					
$Pd1 - C1$	1.96(3)	1.969(5)	1.977(13)	1.972(6)					
$Pd1-I1$	2.587(2)	2.5876(5)	2.5918(15)	2.6039(6)					
$Pd1-I2$	2.667(3)	2.6814(6)	2.6574(13)	2.6652(5)					
$Pd1-I2a$	2.605(2)	2.6050(5)	2.6070(15)	2.6065(6)					
$C1-C2$	1.38(4)	1.377(7)	1.366(18)	1.383(8)					
$Cl-Pd1-I1$	87.6(8)	88.98(16)	89.0(5)	88.84(18)					
$Cl-Pd1-I2$	178.6(8)	175.24(15)	178.2(5)	177.02(17)					
$Cl-Pd1-I2a$	90.7(8)	89.52(16)	90.3(5)	90.66(18)					
$I1-Pd1-I2$	93.68(8)	94.67(2)	92.52(5)	93.770(18)					
$I1-Pd1-I2a$	177.34(11)	178.49(2)	178.15(5)	178.33(2)					
$I2-Pd1-I2a$	88.04(8)	86.84(2)	88.17(4)	86.766(17)					
$C2-C1-N1$	100(3)	102.8(4)	103.2(11)	103.0(5)					

arrangement, with the metallacycles mutually tilted. 24 Despite this different arrangement, bond lengths and angles in both molecules are highly similar. The Pd-Ccarbene bonds are longer than in the monodentate complexes 2 and only slightly shorter than the $Pd-C_{aryl}$ bonds (Table 3).

Investigation of the cyclopalladation revealed that heating of complex $2e$ in DMSO to 120 °C for 3.5 h, i.e., conditions used for the preparation of 2, did not induce any significant palladacycle formation. In the presence of a weak base such as acetate, several products yet no 5e were formed at room temperature, perhaps originating from anion metathesis due to the coordination ability of acetate. A similar outcome was noted when the reaction mixture was heated to 50 \degree C. Further elevation of the temperature to 80 $\mathrm{^{\circ}C}$ induced formation of 5e, albeit incomplete after 3 h. Cyclopalladation was essentially

Scheme 4. Reversible Cyclopalladation of Triazolylidenes Comprising N-Phenyl Wingtip Groups

quantitative, however, when 2e and an excess of NaOAc were kept at 120 °C for 2 h. Longer reaction times led to significant decomposition, as indicated by the formation of a black precipitate. Acetate seems to be a privileged base in this cyclometalation process. 25 Attempts to substitute acetate by NEt₃ were unsuccessful and gave either no reaction at all (room temperature) or decomposition products only (3 h at 80 °C). Moreover, only N-bound phenyl wingtip groups were observed to undergo cyclopalladation. For example, complex 2f underwent C-H activation in the presence of acetate to give the cyclopalladated complex 5f.²⁴ In this complex, the N-bound phenyl was palladated exclusively, and neither activation of the C-bound phenyl group in 2f nor isomerization of the palladacycle in 5f was observed. Along the same lines, complexes 2a and 2d, both featuring only a C-bound phenyl wingtip group, were inert under the conditions used for cyclopalladation of complex 2e. Apparently, the electron-releasing character of nitrogen is beneficial to aryl functionalization,

⁽²⁴⁾ See the Supporting Information for representations and crystallographic details.

^{(25) (}a) Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem. Soc. 2005, 127, 13754. (b) Dupont, J.; Pfeffer, M., Eds. Palladacycles; Wiley-VCH: Weinheim, Germany, 2008.

Figure 4. ORTEP drawings of the two crystallographically independent molecules of 5e (50% probability, cocrystallized solvent molecules and hydrogen atoms omitted for clarity).

Table 3. Selected Bond Lengths (A) and Angles (deg) for $5e^a$

	molecule 1	molecule 2 (Pd2)	molecule 2 (Pd3) 1.979(8)	
$Pd1 - C1$	1.983(8)	2.010(9)		
$Pd1-C4$	2.034(8)	2.047(8)	2.031(8)	
$Pd1-I1$	2.6539(9)	2.6482(10)	2.6683(9)	
$Pd1-I1a$	2.6842(8)	2.7045(9)	2.6901(9)	
$Cl-Pd1-C4$	80.6(3)	80.7(3)	81.1(3)	
$Cl-Pd1-I1$	174.5(2)	175.1(2)	176.3(2)	
$Cl-Pd1-I1a$	97.6(2)	97.8(2)	96.8(2)	
$C4-Pd1-I1$	95.7(2)	94.9(3)	95.3(3)	
$C4-Pd1-I1a$	174.1(2)	176.1(2)	172.3(2)	
$I1-Pd1-I1a$	86.50(3)	86.72(3)	86.61(3)	
		a_{Mumbawa} scheme for molecule 2 adopted		

Numbering scheme for molecule 2 adapted.

which is in line with an electrophilic mechanism for this cyclopalladation.26

Metallacycle formation is fully reversible. When exposing complex 5a to excess HI, complex 2e is recovered in high yields. Cleavage of the metallacycle was indicated macroscopically by the instantaneous color change from yellow to orange and microscopically by the pertinent ¹H NMR data, which were identical to those of the parent complex 2e. Exposure of 2e to HI for several days did not induce any complex degradation and hence demonstrates a remarkable resistance of the palladium-carbene bond toward acidolysis.14,27 Both the stability of the Pd-Ccarbene bond toward acids and bases and the sensitivity of N-bound phenyl groups toward cyclopalladation under basic conditions-typical conditions for example in cross-coupling reactions²⁸—have obvious implications when using this type of complexes in catalysis.⁵

Synthesis of Rhodium Complexes. Ligand complexation to rhodium provides a useful probe for evaluating ligand effects, first by measuring the CO stretch vibration in the corresponding rhodium carbonyl complexes (translating into Tolman electronic parameters, TEPs), 29 and second by NMR spectroscopy due to the $I = 1/2$ spin of ¹⁰³Rh. Therefore, the rhodium complexes 6 were prepared using classical transmetalation procedures involving $Ag₂O$ as a basic silver salt and $[Rh(cod)Cl]_2$ as transmetalating agent (Scheme 5).

Scheme 5. Synthesis of the Rhodium Complexes 6 and 7

Exposure of complexes 6 to a CO-saturated environment afforded the corresponding carbonyl analogues 7 in essentially quantitative yield.³⁰

The 13C NMR chemical shift of the rhodium-bound triazolylidene carbon shows an apparent correlation with the nature of the wingtip group. With alkyl wingtip groups, the doublet $(^1J_{\rm RhC} = 46.5 \pm 3$ Hz for all complexes) appeared at highest field (δ _C 168.5 and 168.6 for 6b and 6c, respectively), while the presence of one phenyl group as in 6d and 6e induces a downfield shift (δ C 170.4 for both complexes). When incorporating a second phenyl group (6f), the resonance is shifted by another 2 ppm to lower field (δ _C 172.2). A similar trend was observed when comparing the carbene resonance of the carbonyl complexes 7, although the effect is more gradual and not additive as in complexes 6 (Table 4). In agreement with the stronger trans influence of CO as opposed to olefins, the $Rh-C_{\text{carbone}}$ coupling constant is smaller in complexes 7, with ${}^{1}J_{\text{RhC}} = 39.1 \pm 4$. When considering the NMR characteristics of the CO ligand trans to the carbene, 31 an increase of the coupling constant was observed upon reducing the wingtip donation. Thus, the lowest coupling constant was noted for the alkyl-substituted carbene complexes 7b and 7c (${}^{1}J_{\text{RhC}} = 53.4$), and this value increases upon replacing electron-releasing alkyl groups with

⁽²⁶⁾ Albrecht, M. Chem. Rev. 2010, 110, 576.

⁽²⁷⁾ Heckenroth, M.; Neels, A.; Garnier, M. G.; Aebi, P.; Ehlers, A. W.; Albrecht, M. Chem.-Eur. J. 2009, 15, 9375.

⁽²⁸⁾ De Meijere, A.; Diederich, F., Eds. Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH: Weinheim, Germany, 2004.

 (29) (a) Strohmeier, W.; Müller, F.-J. Chem. Ber. 1967, 100, 2812. (b) Tolman, C. A. Chem. Rev. 1977, 77, 313.

^{(30) (}a) Cetinkaya, B.; Dixneuf, P.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1974, 1827. (b) Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Chem.⁻⁻⁻Eur. J. 1996, 2, 772.

⁽³¹⁾ According to these coupling constants, the triazolylidene ligands in 6 have similar donor strength to normal imidazol-2-ylidenes. See for example: (a) Burling, S.; Field, L. D.; Li, H. L.; Messerle, B. A.; Turner, P. Eur. J. Inorg. Chem. 2003, 3179. (b) Mata, J. A.; Chianese, A. R.; Miecznikowski, J. R.; Poyatos, M.; Peris, E.; Faller, J. W.; Crabtree, R. H. Organometallics 2004, 23, 1253.

Table 4. Selected Spectroscopic Data for Complexes 7a-f^a

		7b	7c	7d		7f
$\delta_{\rm C}$ (¹ J _{RhC}) C _{carbene}	161.2(39.4)	159.8 (39.4)	160.4(39.4)	161.3(39.4)	161.8(39.4)	162.6(39.4)
$\delta_{\rm C}$ (¹ J _{RhC}) CO _{trans}	186.1(54.1)	186.8(53.4)	187.0(53.4)	186.8(54.2)	186.7(54.9)	186.7(54.8)
$\delta_{\rm C}$ (¹ J _{RhC}) CO _{cis}	183.5 (75.4)	184.3 (74.6)	184.4 (74.8)	183.9(75.4)	183.8 (75.4)	183.7(74.6)

^a In CD₂Cl₂, δ_C in ppm, ¹J_{RhC} in Hz, *trans* refers to the carbene position; data for **7a** from ref 8.

electron-withdrawing phenyl wingtips. The trend is not rigid (cf. 7e and 7f). Since larger coupling constants may be attributed to weaker ligand donor properties in trans position,³² this trend in $\overline{J}_{\text{RhC}}$ and chemical shift analyses are both in line with a soft yet noticeable tunability of electronic properties via wingtip group modifications.

The CO stretch vibrations occur in the IR spectrum at 1983 and 2065 cm⁻¹ for all complexes except for **7f** (v_{CO} = 1988 and 2068 cm^{-1}). Depending on the applied linear regression, 33 these values translate into a TEP in the range 2035 to 2042 cm⁻¹. Because of the identical CO absorption energies, the calculated TEPs for the triazolylidene ligands in complexes 7b-e are obviously the same, which may indicate some limitation of this method for evaluating ligand donor properties.³⁴ Perhaps, steric effects may affect the Rh – CO_{cis} bond and may thus interfere with the electronic component exerted by the ligand. Such stereoelectronic perturbation has been noted before^{5c,35} and may, in the complexes investigated here, compensate the moderate donor differences due to wingtip modifications.

Conclusions

Palladation of triazolium salts afforded different types of complexes, including monometallic bis(carbene) species and bimetallic complexes with 1:1 metal carbene stoichiometry. Careful choice of reaction conditions and workup procedures provides access to pure materials. Variation of the wingtip groups has distinct implications on the properties of the triazolylidene ligand. Accordingly, swapping from an alkyl to an aryl substituent reduces the electron density at the metal center. The arrangement of the substituents (e.g., C-bound vs N-bound phenyl as in 6d and 6e) appears to play no significant role for tuning the electronic properties of the metal center. This wingtip arrangement strongly affects, however, the stability of the corresponding palladium complexes, since N-bound phenyl groups tend to cyclopalladate, while the C-bound analogue resists such processes. Ligand tunability and stability will have profound implications for applying this class of complexes in catalysis. Investigations along these lines are currently in progress and will be the subject of a forthcoming report.

Experimental Section

General Comments. Air-sensitive reactions were carried out under Ar using Schlenk techniques. CH_2Cl_2 was dried by

passage through solvent purification column. The preparation of the triazolium salts is detailed in the Supporting Information. All other chemicals were commercially available and were used as received. ¹H and ¹³C{¹H} NMR spectra were recorded on Bruker spectrometers at room temperature, unless stated otherwise, and were referenced to the protio signal of the solvent and are reported downfield from SiMe₄. Chemical shifts (δ) are given in ppm; coupling constants J are given in Hz. NMR assignments are based on distortionless enhancement of polarization transfer (DEPT) experiments or on homo- and heteronuclear shift correlation spectroscopy. Elemental analyses were performed by the Microanalytical Laboratory of the ETH Zürich (Switzerland). Mass spectra were measured by electrospray ionization (ESI-MS) in MeCN on a Bruker 4.7 BioAPEX II instrument, and infrared spectra on a Bruker Tensor 27 using a Golden Gate ATR. Details on crystallographic structure determination and refinement of the complexes are compiled in the Supporting Information. CCDC 800720-800720 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Palladation Reactions. Method A. A solution of triazolium salt and $Pd(OAc)_2$ (1 equiv) in DMSO was stirred at 120 °C for 3.5 h. After addition of CH_2Cl_2 , the solution was filtered through Celite, H_2O was added, and the solution was extracted with $CH₂Cl₂$. The organic phases were combined, washed with $H₂O$, and dried over $Na₂SO₄$. Then all volatiles were evaporated, yielding a mixture of 2 and 3. Repeated extraction of this mixture with small portions of MeCN gave complex 2 in almost pure form, while subsequent extraction of the residue with $CH₂Cl₂$ yielded the mono(carbene) species 3. Further purification of the fractions was achieved by crystallization.

Method B. The triazolium salt (1 equiv) and $Ag₂O$ (1 equiv) in $CH₂Cl₂$ were stirred at rt for 24 h. After filtration through Celite, $PdCl₂(NCMe)₂$ (1 equiv) was added and the solution was stirred at rt during 4 h. The solution was filtered through Celite, and a solution of NaI (6 equiv) in acetone was added and stirred at rt for another hour. After evaporation of volatiles and addition of H_2O , the residue was extracted with CH_2Cl_2 . The combined organic phases were washed with H_2O , then with a saturated aqueous solution of sodium pyrosulfite ($Na₂S₂O₅$), dried over Na₂SO₄, and evaporated to dryness.

Synthesis of 2a. According to method B, 1a (0.237 g, 0.75 mmol) in $CH₂Cl₂$ (15 mL) was stirred at rt with Ag₂O (0.173 g, 0.75 mmol) for 24 h, and $PdCl_2(MeCN)_2$ (0.196 g, 0.75 mmol) was then added. After filtration through Celite, NaI (0.668 g, 4.46 mmol) dissolved in acetone (25 mL) was added, and the mixture was stirred for 1.5 h. All volatiles were evaporated, and the residue was extracted to yield a red powder (0.313 g, 76%). Analytically pure 2a was obtained after recrystallization by slow diffusion of pentane into a saturated CH_2Cl_2 solution.

H NMR (400 MHz, DMSO-D₆): δ 7.98-7.92 (m, 4H, $H^{\text{ortho}}_{\text{ph}}$), 7.63–7.52 (m, 6H, $H^{\text{meta}}_{\text{ph}}$, $H^{\text{para}}_{\text{ph}}$), 4.71 (q, ${}^{3}J_{\text{HH}} =$ 7.2 Hz, 4H, NCH₂CH₃), 4.06 (s, 6H, NCH₃), 1.63 (t, ³*f_{HH}* = 7.2
Hz, 6H, NCH₂CH₃). ¹³C{¹H} NMR (100 MHz, DMSO-D₆): δ
142.5 (C_{trz}), 130.0 (C^{ortho}ph), 129.8 (C^{para}ph), 128.5 (C^{meta}ph +
C_{trz}-P (NCH_2CH_3) ; Anal. Found (calcd) for $C_{22}H_{26}I_4N_6Pd_2 (1094.93) \times$ $1/2 \text{ C}_5\text{H}_{12}$: C 26.17 (26.02), H 2.60 (2.85), N 7.85 (7.43).

Synthesis of 2b. According to method B, 2b was obtained starting from 1b (0.104 g, 0.39 mmol) in $CH₂Cl₂$ (10 mL), Ag₂O

⁽³²⁾ Appleton, T. G.; Bennett, M. A. Inorg. Chem. 1978, 17, 738.

^{(33) (}a) Chianese, A. R.; Li, X.; Janzen,M. C.; Faller, J.W.; Crabtree, R. H. Organometallics 2003, 22, 1663. (b) Kelly, R. A.; Clavier, H.; Guidice, S.; Scott, N. M.; Stevens, E. D.; Bordner, J.; Samardjiev, I.; Hoff, C. D.; Cavallo, L.; Nolan, S. P. Organometallics 2008, 27, 202. (c) Wolf, S.; Plenio, H. J. Organomet. Chem. 2009, 694, 1487. (d) Tonner, R.; Frenking, G. Organometallics 2009, 28, 3901.

 (34) (a) Fürstner, A.; Alcarazo, M.; Krause, H.; Lehmann, C. W. J. Am. Chem. Soc. 2007, 129, 12676. (b) Song, G.; Zhang, Y.; Li, X. Organometallics 2008, 27, 1936. (c) Kuchenbeiser, G.; Soleilhavoup, M.; Donnadieu, B.; Bertrand, G. Chem. Asian J. 2009, 4, 1745.

⁽³⁵⁾ For alternative methods, see ref 4h and: Huynh, H. V.; Han, Y.; Jothibasu, R.; Yang, J. A. Organometallics 2009, 28, 5395.

 $(0.090 \text{ g}, 0.39 \text{ mmol})$, and PdCl₂(MeCN)₂ (0.101 g, 0.39 mmol). After stirring for 20 h, Celite filtration, addition of NaI (0.359 g, 2.39 mmol) dissolved in acetone (20 mL), and purification gave 2b as a red solid (0.084 g, 43%).

¹H NMR (500 MHz, DMSO-D₆): δ 4.56 (q, ³J_{HH} = 7.3 Hz,
4H, NCH₂CH₃), 4.06 (s, 6H, NCH₃), 2.85 (q, ³J_{HH} = 7.6 Hz,
4H, CCH₂CH₃), 1.54 (t, ³J_{HH} = 7.3 Hz, 6H, NCH₂CH₃), 1.34
(t, ³J_{HH} = 7.6 H DMSO-D₆): δ 144.1 (C_{trz}), 126.0 (C_{trz}-Pd), 50.3 (NCH₂CH₃), 36.6 (NCH₃), 18.1 (CCH₂CH₃), 14.2 (NCH₂CH₃), 12.0 (CCH₂CH₃). Anal. Found (calcd) for $C_{14}H_{26}I_4N_6Pd_2$ (998.86): C 16.76 (16.83), H 2.55 (2.62), N 8.09 (8.41).

Synthesis of 2c. According to method B, 2c was obtained starting from 1c (0.113 g, 0.35 mmol) in CH₂Cl₂ (15 mL), Ag₂O (0.082 g, 0.35 mmol), and PdCl₂(MeCN)₂ (0.092 g, 0.35 mmol). Stirring for 5 h, Celite filtration, and addition of NaI (0.202 g, 1.35 mmol) in acetone (15 mL) were followed by an extraction and recrystalliztion by slow diffusion of pentane into $CH₂Cl₂$. This procedure gave an analytically pure fraction of 2c (0.137 g, 71%).

H NMR (500 MHz, DMSO-D₆): δ 4.52 (t, ³J_{HH} = 7.2 Hz, 4H, NCH₂CH₂CH₂CH₃), 4.04 (s, 6H, NCH₃), 2.84 (t, ³J_{HH} = 7.9 Hz, 4H, CCH₂CH₂CH₂CH₃), 2.08 (quint, ${}^{3}J_{\text{HH}} = 7.2$ Hz, 4H, NCH₂CH₂CH₂CH₃), 1.85 (quint, ${}^{3}J_{\text{HH}}= 7.9$ Hz, 4H, CCH₂CH₂-CH₂CH₃), 1.37 (sext, ³ J_{HH} = 7.5 Hz, 4H, CCH₂CH₂CH₂CH₃), 1.30 (sext, ³ J_{HH} = 7.5 Hz, 4H, NCH₂CH₂CH₂CH₃), 0.93 (q, ³ $J = 7.5$ Hz, 12H, CCH CH CH CH NCH CH CH CH ³J_{HH} = 7.5 Hz, 12H, CCH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃).
¹³C{¹H} NMR (125 MHz, DMSO-D₆): δ 143.5 (C_{trz}), 126.4 $(C_{\text{trz}}-Pd)$, 54.6 (NCH₂CH₂CH₂CH₃), 36.6 (NCH₃), 29.9 (NC-H₂CH₂CH₂CH₃), 29.2 (CCH₂CH₂CH₂CH₃), 24.5 (CCH₂CH₂- CH_2CH_3), 21.9 (CCH₂CH₂CH₂CH₃), 19.0 (NCH₂CH₂CH₂- CH_3), 13.7 (CCH₂CH₂CH₂CH₃), 13.3 (NCH₂CH₂CH₂CH₃). Anal. Found (calcd) for $C_{22}H_{42}I_4N_6Pd_2$ (1111.07): C 23.70 (23.78), H 3.82 (3.81), N 7.42 (7.56).

Synthesis of 2d. According to method B, 2d was obtained starting from 1d (0.150 g, 0.44 mmol) in CH_2Cl_2 (15 mL), Ag₂O $(0.100 \text{ g}, 0.43 \text{ mmol})$, and PdCl₂(MeCN)₂ (0.115 g, 0.44 mmol). After stirring for 4 h, filtration through Celite, addition of NaI (0.399 g, 2.66 mmol) dissolved in acetone (20 mL), followed by evaporation of volatiles and extraction, recrystallization resulted in an analytically pure fraction of 2d (0.189 g, 75% yield).
¹H NMR (500 MHz, DMSO-D₆): δ 7.97–7.94 (m, 4H,

 $H^{\text{ortho}}_{\text{ph}}$), 7.60–7.53 (m, 6H, $H^{\text{meta}}_{\text{ph}}$, $H^{\text{para}}_{\text{ph}}$), 4.66 (t, ${}^{3}J_{\text{HH}} =$ 7.4 Hz, 4H, NCH₂CH₂CH₂CH₃), 4.06 (s, 6H, NCH₃), 2.16 (quint, ${}^{3}J_{\text{HH}} = 7.4$ Hz, 4H, NCH₂CH₂CH₂CH₃), 1.40 (sext, ${}^{3}J_{\text{HH}} = 7.4$ Hz, 4H, NCH₂CH₂CH₂CH₃), 0.96 (t, ${}^{3}J_{\text{HH}} = 7.4$ Hz, 6H, NCH₂CH₂CH₂CH₂CH₃). ¹³C_{¹H} NMR (125 MHz, DMSO-D₆):
δ 142.6 (C_{trz}), 129.9 (C^{ortho}ph), 129.7 (C^{para}ph), 128.4 (C^{meta}ph⁺
C_{trz}-Pd), 127.0 (C^{ipso}ph), 54.9 (NCH₂CH₂CH₂CH₃), 38.0 (NCH₃), 29.9 (NCH₂CH₂CH₂CH₃), 19.0 (NCH₂CH₂CH₂CH₃), 13.4 (NCH₂CH₂CH₂CH₃). Anal. Found (calcd) for $C_{26}H_{34}I_4N_6Pd_2$ (1151.05): C 27.07 (27.13), H 2.98 (2.98), N 7.21 (7.30).

Synthesis of 2e. According to method B, 2e was obtained starting from 1e (0.073 g, 0.21 mmol) in CH_2Cl_2 (10 mL), Ag₂O $(0.050 \text{ g}, 0.21 \text{ mmol})$, and PdCl₂(MeCN)₂ (0.056 g, 0.21 mmol). After stirring for 20 h, filtration through Celite, addition of NaI (0.194 g, 1.29 mmol) dissolved in acetone (20 mL), evaporation of volatiles, and extraction, an analytically pure fraction of 2e was obtained (0.106 g, 87% yield).

¹H NMR (500 MHz, DMSO-D₆): δ 8.23 (d, ³J_{HH} = 7.8 Hz, 4H, H^{ortho}_{ph}), 7.68–7.58 (m, 6H, H^{meta}_{ph}, H^{para}_{ph}), 4.18 (s, 3H, NCH₃), 2.98 (t, ³ J_{HH} = 7.8 Hz, 4H, CH₂CH₂CH₂CH₂CH₃), 1.93
(quint, ³ J_{HH} = 7.8 Hz, 4H, CH₂CH₂CH₂CH₃), 1.44 (sext, ³ J_{HH} = 7.4 Hz, 4H, CH₂CH₂CH₂CH₃), 0.97 (t, ³*J*_{HH} = 7.4 Hz, 6H, CH₂CH₂CH₂CH₃). ¹³C{¹H} NMR (75 MHz, DMSO-D₆): δ 144.2 (C_{trz}) , 139.1 $(C_{\text{prb}}^{\text{ipso}})$, 130.0 $(C_{\text{prb}}^{\text{para}})$, 129.1 $(C_{\text{prb}}^{\text{meta}})$ C_{trz} -Pd), 124.4 (C^{ortho}ph), 37.0 (NCH₃), 29.0 (CH₂CH₂- CH_2CH_3), 24.8 ($CH_2CH_2CH_2CH_3$), 21.9 ($CH_2CH_2CH_2CH_3$), 13.6 (CCH₂CH₂CH₂CH₃). Anal. Found (calcd) for $C_{26}H_{34}$ -I4N6Pd2 (1151.05): C 27.35 (27.13), H 3.10 (2.98), N 7.25 (7.30).

Synthesis of 2f. According to method B, 2f was obtained starting from 1f (0.105 g, 0.29 mmol) in CH_2Cl_2 (20 mL), Ag₂O $(0.065 \text{ g}, 0.28 \text{ mmol})$, and PdCl₂(MeCN)₂ (0.074 g, 0.29 mmol). Stirring for 6 h, Celite filtration, and addition of NaI (0.260 g, 1.73 mmol) dissolved in acetone (25 mL) were followed by

evaporation of volatiles and extraction (0.091 g, 53% yield).
¹H NMR (500 MHz, DMSO-D₆): δ 8.34–8.31 (m, 4H, $H^{\text{ortho}}_{\text{NPh}}$, 8.04-8.02 (m, 4H, $H^{\text{ortho}}_{\text{CPh}}$), 7.72-7.68 (m, 4H, H^{meta} _{NPh}), 7.66-7.57 (m, 8H, H^{meta} _{CPh}, H^{para} _{CPh}, H^{para} _{NPh}), 4.17 (s, 6H, NCH₃). ¹³C{¹H} NMR (125 MHz, DMSO-D₆): δ $143.3 \, (\text{C}_{\text{trz}})$, 139.0 ($\text{C}^{\text{ipso}}_{\text{NPh}}$), 130.3 ($\text{C}^{\text{para}}_{\text{NPh}}$), 130.2 ($\text{C}^{\text{ortho}}_{\text{CPh}}$), 130.0 (\overline{C}^{para} _{CPh}), 129.2 (\overline{C}^{meta} _{NPh}), 128.5 (\overline{C}^{meta} _{CPh}), 126.9 (C^{ipso}_{CPh}) , 124.7 ($C^{\text{ortho}}_{\text{NPh}}$), 38.4 (NCH₃), C_{trz} -Pd not observed. Anal. Found (calcd) for $C_{30}H_{26}I_4N_6Pd_2$ (1191.02) \times 1/ 2 CH2Cl2: C 28.73 (29.18), H 2.15 (2.21), N 6.65 (6.59).

Synthesis of 3a. According to method A, 1a (0.301 g, 0.95 mmol) in DMSO (25 mL) was heated with $Pd(OAc)_2$ (0.214 g, 0.95 mmol). After extraction 0.315 g of a mixture of 2a and 3a was obtained. This mixture was washed with MeCN, and the residue was dried in vacuo, thus giving 3a (0.091 g, 26%) as an analytically pure cis/trans mixture (1:2.5 ratio).

Major isomer: ¹H NMR (400 MHz, DMSO-D₆): δ 8.13 (d, Major isomer: ¹H NMR (400 MHz, DMSO-D₆): δ 8.13 (d, 3 J_{HH} = 7.3 Hz, 4H, H^{orth}_{ph}), 7.58–7.49 (m, 6H, H^{meta}_{ph}) H^{para}_{ph}), 4.65 (q, ³J_{HH} = 7.3 Hz, 4H, NCH₂), 4.09 (s, 6H,
NCH₃), 1.56 (t, ³J_{HH} = 7.3 Hz, 6H, NCH₂CH₃). ¹³C{¹H} NMR (100 MHz, DMSO- D_6): δ 154.6 (C_{trz}-Pd), 144.1 (C_{trz}), 129.8 $(C^{\text{ortho}}_{\text{ph}})$, 128.3 ($C^{\text{ipso}}_{\text{ph}}$), 128.1 ($C^{\text{meta}}_{\text{ph}}$), $C^{\text{para}}_{\text{ph}}$ not observed, 49.6 (NCH₂), 37.5 (NCH₃), 14.9 (NCH₂CH₃).

Minor isomer: ¹H NMR (400 MHz, DMSO-D₆): δ 7.93 (d, ${}^{3}J_{\text{HH}} = 7.1$ Hz, 4H, $H^{\text{ortho}}_{\text{ph}}$), 7.58–7.41 (m, 6H, $H^{\text{meta}}_{\text{ph}}$), H^{para}_{ph}), 4.85 (q, ³J_{HH} = 7.2 Hz, 4H, NCH₂), 4.05 (s, 6H,
NCH₃), 1.71 (t, ³J_{HH} = 7.2 Hz, 6H, NCH₂CH₃). ¹³C{¹H} NMR (100 MHz, DMSO-D₆): δ 154.0 (C_{trz}-Pd), 144.1 (C_{trz}), 129.6 $(C^{\text{ortho}}_{\text{ph}})$, 129.1 $(C^{\text{meta}}_{\text{ph}})$, 128.8 $(C^{\text{para}}_{\text{ph}})$, 127.9 $(C^{\text{ipso}}_{\text{ph}})$, 50.0 (NCH_2) , 37.6 (NCH_3) , 14.6 (NCH_2CH_3) . Anal. Found (calcd) for $C_{22}H_{26}I_2N_6Pd$ (734.72): C 35.54 (35.96), H 3.49 (3.57), N 11.13 (11.44).

Synthesis of 4a. According to method B 4a was obtained starting from 1a (400 mg, 1.27 mmol), Ag₂O (490 mg, 2.1 mmol), and $PdCl₂(NCMe)₂$ (315 mg, 1.2 mmol) in $CH₂Cl₂$ (20 mL) at rt during 2 h. After filtration through Celite, the mixture was eluted from a short pad of $SiO₂$ by using $CH₂Cl₂$. After evaporation of all volatiles, the residue was washed with pentane $(3 \times 20 \text{ mL})$ to afford 4a as a yellow solid $(334 \text{ mg}, 96\%)$.
¹H NMP $(500 \text{ MHz}, \text{CD}, \text{CN}, 348 \text{ V})$; 8.810 (hs of H)

¹H NMR (500 MHz, CD₃CN, 348 K): δ 8.10 (br s, 4H, H_{ar}), 7.55 (br s, 6H, H_{ar}), 4.92 (q, ³J_{HH} = 7.1 Hz, 4H, NCH₂), 4.02 (s, 6H, NCH₃), 1.76 (t, ³J_{HH} = 7.1 Hz, 6H, NCH₂CH₃). ¹³C{¹H} NMR (125 MHz CDCl₃) major isomer: δ 159.0 (C_{trz}-Pd), 144.5 (C_{trz}) , 132.3 (C^{ipso} _{ph}), 130.3 (C^{meta} _{ph}), 129.0 (C^{para} _{ph}), 128.4 $(\check{C}^{\text{ortho}}_{\text{ph}})$, 49.7 (NCH₂), 36.9 (NCH₃), 15.5 (NCH₂CH₃). ¹³C- $\{^1H\}$ NMR (125 MHz CDCl₃) minor isomer: δ 158.1 (C_{trz}-Pd), 144.8 (C_{trz}), 132.7 (C^{ipso}_{ph}), 130.4 (C^{meta}_{ph}), 129.2 (C^{para}_{ph}), 128.3 ($\widetilde{C}^{\text{ortho}}_{\text{ph}}$), 50.0 (NCH₂), 36.8 (NCH₃), 15.2 (NCH₂CH₃). Anal. Found (calcd) for $C_{22}H_{26}Cl_2N_6Pd$ (550.06) \times 1/4 CH₂Cl₂: C 46.51 (46.64); H, 4.50 (4.66); N, 14.54 (14.67).

Synthesis of Complex 5e. The title complex was obtained upon recrystallization of a solution of 2e by slow evaporation of a warm MeCN solution.

¹H NMR (500 MHz, DMSO-D₆, 333 K): δ 7.89 (br s, 2H, H_{ph}), 7.38 (d, ${}^{3}J_{HH} = 7.5$ Hz, 2H, H_{ph}), 7.15 (d, ${}^{3}J_{HH} = 7.5$ Hz, $2H, H^{para}_{ph}$), 7.08-7.05 (m, 2H, H_{ph}), 4.14 (s, 6H, NCH₃), $3.12 - 3.11$ (m, 4H, $CH_2CH_2CH_2CH_3$), $1.60 - 1.57$ (m, 4H, $CH_2CH_2CH_2CH_3$), 1.47-1.40 (m, 4H, $CH_2CH_2CH_2CH_3$), 0.95 (t, ${}^{3}J_{\text{HH}}$ = 7.3 Hz, 6H, CH₂CH₂CH₂CH₂CH₃). ${}^{13}C({}^{1}H)$ NMR (125 MHz, DMSO- D_6 , 333 K): δ 146.3 (C_{trz}), 144.6 (C_{ph}) , 127.2 (CH_{ph}) , 124.5 (CH_{ph}) , 112.7 (CH_{ph}) , 36.1 $(NCH₃), 30.6 (CH₂CH₂CH₂CH₃), 23.6 (CH₂CH₂CH₂CH₃),$ 21.5 (CH₂CH₂CH₂CH₃), 13.3 (CCH₂CH₂CH₂CH₃), 2 C_{ph} and C_{trz} -Pd not observed. Anal. Found (calcd) for $C_{26}H_{32}I_2N_6Pd_2$ (895.22): C 35.19 (34.88), H 3.77 (3.60), N 9.46 (9.39).

General Procedure for the Synthesis of Rhodium Complexes 6. General method: A flask, protected against light, containing 1 (1 equiv) in CH_2Cl_2 and Ag₂O (1 equiv) was stirred at rt during 24 h. After filtration through Celite, $[Rh(COD)Cl]_2$ (0.5 equiv) was added, and the solution was stirred for the time indicated and then filtered through Celite to give complex 6. Analytically pure samples were typically obtained by precipitation from $CH₂Cl₂$ and pentane.

Synthesis of 6b. According to the general method, 1b (0.110 g, 0.41 mmol) in CH_2Cl_2 (10 mL) was stirred with Ag₂O (0.095 g, 0.41 mmol). After filtration through Celite, $[Rh(COD)Cl]_2 (0.091 g,$ 0.18 mmol) was added, and the solution was stirred and, after 3 h, filtrated through Celite to give complex $6b$ (0.14 g, 88%).

¹H NMR (300 MHz, CD₂Cl₂): δ 4.84–4.77 (m, 4H, NCH₂CH₃, CH_{COD}), 3.88 (s, 3H, NCH₃), 3.24 (br s, 2H, CH_{COD}), 2.95 (q, CH_{COD}), 3.88 (s, 3H, NCH₃), 3.24 (br s, 2H, CH_{COD}), 2.95 (q, 3 J_{HH} = 7.6 Hz, 2H, CCH₂CH₃), 2.46–2.25 (br m, 4H, CH₂ _{COD}), 1.97–1.81 (br m, 4H, CH₂ cop), 1.64 (t, ³J_{HH} = 7.3 Hz, 3H, NCH₂CH₃), 1.47 (t, ³J_{HH} = 7.6 Hz, 3H, CCH₂CH₃). ¹³C{¹H}
NMR (75 MHz, CD₂Cl₂): δ 168.5 (d, ¹J_{CRh} = 46.2 Hz, C_{trz}-Rh), 145.5 (d, ²J_{CRh} = 2.8 Hz, C_{trz}), 96.6 (d, ¹J_{CRh} = 7.2 Hz, CH_{COD}), 96.2 (d, ¹J_{CRh} = 7.2 Hz, CH_{COD}), 68.3 (d, ¹J_{CRh} = 14.9 Hz, CH_{COD}), 67.9 (d, ¹J_{CRh} = 14.9 Hz, CH_{COD}), 50.6 (NCH₂CH₃), 36.2 (NCH3), 33.8 (CH2 COD), 33.1 (CH2 COD), 29.6 (CH2 COD), 29.3 (CH₂ co_D), 19.3 (CCH₂CH₃), 16.0 (NCH₂CH₃), 14.5 (CCH₂CH₃). Anal. Found (calcd) for C₁₅H₂₅ClN₃Rh (385.74) \times 2/3 CH₂Cl₂: C 42.83 (42.54), H 5.93 (6.00), N 9.18 (9.50).

Synthesis of 6c. According to the general method, 1c (0.103 g, 0.32 mmol) in CH_2Cl_2 (15 mL) was stirred with Ag₂O (0.074 g, 0.32 mmol). After filtration through Celite, [Rh(COD)Cl]2 (0.077 g, 0.16 mmol) was added and the solution was stirred and, after 8 h, filtrated through Celite to give complex 6c as a dark yellow oil $(0.140 \text{ g}, 99\%).$

 1 H NMR (300 MHz, CD₂Cl₂): δ 4.88-4.79 (m, 3H, NCH₂- $CH_2CH_2CH_3$, CH_{COD}), 4.67-4.57 (m, 1H, CH_{COD}), 3.87 (s, 1H, NCH₃), 3.33–3.17 (m, 2H, CH_{COD}), 2.88 (t, ³J_{HH} = 8.1 Hz, 2H, $CCH_2CH_2CH_2CH_3$), 2.46-2.24 (m, 4H, CH₂ co_D), 2.22-1.97 (m, 4H, CCH₂CH₂CH₂CH₃, NCH₂CH₂CH₂CH₃), 1.95-1.73 (m, 4H, CH_2 cop), 1.36 (m, 4H, CCH₂CH₂CH₂CH₃, NCH₂CH₂CH₂CH₃), 1.07-1.00 (m, 6H, CCH2CH2CH2CH3, NCH2CH2CH2CH3). 13C- {¹H} NMR (75 MHz, CD₂Cl₂): δ 168.6 (d, ¹J_{CRh} = 46.7 Hz,
C_{trz}-Rh), 144.5 (d, ²J_{CRh} = 2.8 Hz, C_{trz}), 96.4 (d, ¹J_{CRh} = 7.2 Hz, CH_{COD}), 96.1 (d, ¹J_{CRh} = 7.2 Hz, CH_{COD}), 66.1 (d, ¹J_{CRh} = 14 $CH_2CH_2CH_3$), 36.3 (NCH₃), 33.9 (CH₂ cop), 33.1 (CH₂ cop), $32.5, 32.2$ (NCH₂CH₂CH₂CH₃ + CCH₂CH₂CH₂CH₃), 29.7 $(CH_2\text{ COD})$, 29.3 (CH₂ co_D), 25.6 (CCH₂CH₂CH₂CH₃), 23.3, 20.5 $(NCH_2CH_2CH_2CH_3 + CCH_2CH_2CH_2CH_3)], 14.1, 14.0 (CCH_2-H_2CH_2CH_3)$ $CH_2CH_2CH_3 + NCH_2CH_2CH_2CH_3$). Anal. Found (calcd) for $C_{19}H_{33}CN_3Rh$ (441.84) \times 1/4 CH₂Cl₂: C 49.97 (49.93), H 7.25 (7.29), N 9.04 (9.07).

Synthesis of 6d. According to the general method, 1d (0.114 g, 0.33 mmol) in CH_2Cl_2 (15 mL) was stirred with Ag₂O (0.077 g, 0.33 mmol). After filtration through Celite, $[Rh(COD)Cl]_2$ (0.074 g, 0.15 mmol) was added, and, after stirring 6 h, the solution was filtrated through Celite to afford 6d as a dark yellow solid (0.12 g, 77%).

 1 H NMR (400 MHz, CD₂Cl₂): δ 8.09–8.07 (m, 2H, H^{ortho}ph), 7.60–7.50 (m, 3H, H^{meta}_{ph}, H^{para}_{ph}), 5.09–5.02 (m, 1H, NCH₂- $CH_2CH_2CH_3$), 4.92-4.75 (m, 2H, CH_{COD}), 4.67-4.60 (m, 1H, $NCH_2CH_2CH_2CH_3$), 4.01 (s, 3H, NCH₃), 3.14 (br s, 1H, CH_{COD}), 2.59 (br s, 1H, CH_{COD}), 2.35-2.13 (m, 5H, NCH₂CH₂CH₂CH₃ + CH_2 cop), 1.82-1.64 (m, 5H, NCH₂CH₂CH₂CH₃ + CH₂ cop), 1.55–1.48 (m, 2H, NCH₂CH₂CH₂CH₃), 1.07 (t, ³J_{HH} = 7.5 Hz, 3H, NCH₂CH₂CH₂CH₃). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 170.4 (d, ${}^{17}J_{\text{CRh}} = 46.8 \text{ Hz}, \text{C}_{\text{trz}} - \text{Rh}$), 144.3 (d, ${}^{2}J_{\text{CRh}} = 2.2 \text{ Hz},$

 C_{trz}), 130.6 (C^{ortho}ph), 129.7 (C^{para}ph), 129.0 (C^{ipso}ph), 128.8 $(\widetilde{C}^{micta}_{ph})$, 96.3 (CH_{COD}), 96.2 (CH_{COD}), 70.2 (d, ¹J_{CRh} = 13.9
Hz, CH_{COD}), 67.7 (d, ¹J_{CRh} = 14.7 Hz, CH_{COD}), 55.3 (NCH₂- $CH_2CH_2CH_3$), 37.8 (NCH₃), 33.6 (CH_{2 COD}), 32.7 (CH_{2 COD}), 32.5, (NCH₂CH₂CH₂CH₃), 29.5 (CH_{2 COD}), 29.4 (CH_{2 COD}), 20.5 $(NCH_2CH_2CH_3CH_3)$, 14.1 $(NCH_2CH_2CH_3CH_3)$. Anal. Found (calcd) for $C_{21}H_{29}C1N_3Rh$ (461.83) \times 1/8 CH_2Cl_2 : C 53.64 (53.70), H 6.13 (6.24), N 8.66 (8.89).

Synthesis of 6e. According to the general method, 1e (0.061 g, 0.17 mmol) in CH_2Cl_2 (10 mL) was stirred with Ag₂O (0.042 g, 0.18 mmol) for 20 h. After filtration through Celite, $[Rh(COD)Cl]_2$ (0.044 g, 0.09 mmol) was added and the solution was stirred and, after 5 h, filtrated through Celite to give

complex 6e (0.078 g, quantitative).
¹H NMR (400 MHz, CD₂Cl₂): δ 8.64–8.61(m, 2H, H^{ortho}_{ph}), 7.62-7.52 (m, 3H, H^{mefa} _{ph}, \tilde{H}^{para} _{ph}), 4.94-4.80 (m, 2H, CH_{COD}), 4.02 (s, 3H, NCH3), 3.27-3.19 (1H), 3.16-3.10 (1H), 3.00-3.92 $(1H)$, 2.63-2.58 $(1H)$, 2.41-2.26 $(2H)$, 2.20-1.93 $(3H)$, 1.91-1.82 $(1H)$, 1.80-1.69 (3H), 1.62-1.51 (3H) (2H, CH_{COD}, 8H, CH₂ cod, 2H, CH2CH2CH2CH3, 2H, CH2CH2CH2CH3, 2H, CH2CH2- CH_2CH_3), 1.08 (t, ${}^3J_{HH}$ = 7.3 Hz, $\overline{3H}$, $\overline{CH}_2CH_2CH_2CH_3$). ${}^{13}\overline{C}({}^{1}\overline{H})$ NMR (100 MHz, CD₂Cl₂): δ 170.4 (d, ¹J_{CRh} = 46.8 Hz, C_{trz}-Rh), 146.1 (d, ${}^{2}J_{\text{CRh}}= 1.5 \overline{\text{Hz}}$, C_{trz}), 140.6 (C^{ipso}_{ph}), 129.8 (C^{para}_{ph}), 129.2 $(\text{C}^{\text{meta}}_{\text{ph}})$, 124.6 ($\text{C}^{\text{ortho}}_{\text{ph}}$), 96.1 (d, ¹J_{CRh} = 7.3 Hz, CH_{COD}), 95.8 (d, ¹J_{CRh} = 7.3 Hz, CH_{COD}), 68.6 (d, ¹J_{CRh} = 14.6 Hz, CH_{COD}), 68.6 (d, ¹J_{CRh} = 14.6 Hz, CH_{COD}), 36.6 (NCH₃ 29.2 , 26.3 , 23.5 ($4 \times CH_2$ cop, $CH_2CH_2CH_3$, CH_2CH_2) CH_2CH_3 , $CH_2CH_2CH_2CH_3$), 14.3 (CCH₂CH₂CH₂CH₃). Anal. Found (calcd) for $C_{21}H_{29}C/N_3Rh$ (461.84): C 54.86 (54.61), H 6.13 (6.33), N 9.05 (9.10).

Synthesis of 6f. According to the general method, 1f (0.052 g, 0.14 mmol) in CH₂Cl₂ (20 mL) was stirred with Ag₂O (0.033 g, 0.14 mmol). After filtration through Celite, $[Rh(COD)Cl]_2$ (0.035 g, 0.07 mmol) was added and the solution was stirred and, after 6 h, filtrated through Celite to give 1f as a yellow powder (0.037 g, 55%). ¹

H NMR (400 MHz, CD_2Cl_2): δ 8.84-8.80 (m, 2H, $H^{\text{ortho}}_{\text{Nph}}$), 8.22-8.19 (m, 2H, $H^{\text{orfho}}_{\text{Cph}}$), 7.66-7.54 (m, 6H, $H^{\text{meta}}_{\text{Cph}}$, $H^{\text{para}}_{\text{Cph}}$, $H^{\text{meta}}_{\text{Nph}}$, $H^{\text{para}}_{\text{Nph}}$, 4.87-4.83 (m, 2H, CH_{COD}), 4.13 (s, 1H, NCH₃), 2.79–2.70 (m, 2H, CH_{COD}), 2.19-2.02 (m, 2H, CH_{2 COD}), 1.91-1.82 (m, 1H, CH_{2 COD}), 1.76-1.66 (m, 3H, CH_{2 COD}), 1.64-1.50 (m, 2H, CH_{2 COD}). 1.76–1.66 (m, 3H, CH₂ cop), 1.64–1.50 (m, 2H, CH₂ cop).
¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 172.2 (d, ¹J_{CRh} = 46.8
Hz, C_{trz}–Rh), 145.1 (d, ²J_{CRh} = 1.5 Hz, C_{trz}), 140.5 (C^{ipso}_{Nph}), 131.0 (C^{orth} (C^{ipso}_{ph}) , 128.9 (C^{meta}_{ph}), 124.5 (C^{ortho}_{Nph}), 96.2 (d, $J_{CRh} =$ 8.1 Hz, CH_{COD}), 95.8 (d, $J_{CRh} = 7.3$ Hz, CH_{COD}), 69.9 (d, $J_{CRh} = 14.6$ Hz, CH_{COD}), 68.0 (d, $J_{CRh} = 14.6$ Hz, CH_{COD}), 38.1 (NCH₃), 33.1 (CH₂ co_D), 32.7 (CH₂ co_D), 29.4 (CH₂ co_D). Anal. Found (calcd) for $C_{23}H_{26}CN_3Rh$ (482.84): C 57.21 (57.12), H 5.55 (5.43), N 8.61 (8.70).

Acknowledgment. We thank S. Dobarco and P. Mathew for synthetic assistance. This work was fiancially supported by the Swiss National Science Foundation, a UCD start-up grant, the European Union through a Marie-Curie IEF, and the Alfred Werner Foundation through an Assistant Professorship (M.A.).

Supporting Information Available: Synthetic details for the triazolium salts 1 and for the rhodium complexes 7, crystallographic analysis of a pseudopolymorph of *cis*-3a and complex 5f, and crystallographic details for complexes $2a-e$, trans-3a, cis-3a, trans-4a, 5e, and 5f in CIF format.