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Abstract

By means of pulsed laser spectroscopy applied to muonic hydrogen (μ−p) we have measured the 2S F=1
1/2 − 2PF=2

3/2

transition frequency to be 49881.88(76)GHz. By comparing this measurement with its theoretical prediction based

on bound-state QED we have determined a proton radius value of rp = 0.84184 (67) fm. This new value is an order of

magnitude preciser than previous results but disagrees by 5 standard deviations from the CODATA and the electron-

proton scattering values. An overview of the present effort attempting to solve the observed discrepancy is given.

Using the measured isotope shift of the 1S-2S transition in regular hydrogen and deuterium also the rms charge

radius of the deuteron rd = 2.12809 (31) fm has been determined. Moreover we present here the motivations for the

measurements of the μ 4He+ and μ 3He+ 2S-2P splittings. The alpha and triton charge radii are extracted from these

measurements with relative accuracies of few 10−4. Measurements could help to solve the observed discrepancy,

lead to the best test of hydrogen-like energy levels and provide crucial tests for few-nucleon ab-initio theories and

potentials.

Keywords: Lamb shift, proton radius, bound-state QED, muon, few-nucleon, hydrogen-like

1. Introduction

In 1947 measurements of the 2S-2P (Lamb shift) and 1S-hyperfine splitting in H disclosed a discrepancy with the

prediction of the Dirac equation. This was the trigger for the development of QED. In the last four decades, laser
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spectroscopy of H inspired advances in high resolution spectroscopy and metrology which peaked with the invention

of the optical frequency comb. The high accuracy obtained with such techniques provided cornerstones to test bound-

state QED, to determine the Rydberg constant R∞ and the rms charge proton radius rp (assuming the correctness of

the theory), and to search for time variations of fundamental constants.

However, the situation prior to the Lamb shift measurement in muonic hydrogen (μp) was such that the precisely

measured spectrum of H was not providing a very critical test of theory. In fact hydrogen energy levels are slightly

modified by the fact that, in contrast to the electron, the proton has a finite size. Hence, to precisely predict these energy

levels an accurate knowledge of the root-mean-square charge radius of the proton (rp) is necessary. The historical

method of determining rp was based upon scattering electrons on protons, in effect by scattering an electron beam

on a liquid hydrogen target. The uncertainty related to the knowledge of rp extracted from electron-proton scattering

limited the prediction accuracy of the H energy levels, and consequently it was limiting the comparison between

theory and measurements. Therefore to advance the validation (comparison between prediction and measurement) of

bound-state QED describing the H energy levels it was necessary to have a more precise determination of rp. This was

one of the main motivations for our experiment: to measure the 2S-2P splitting (Lamb shift) in muonic hydrogen (μp)

with 30 ppm accuracy in order to determine rp with a precision better than 0.1%. This is a factor of 20 improvement

compared with the value from scattering experiments and thus paves the way to check H theory, more precisely the

1S Lamb shift, a factor of 20 better as previously achievable.

The muon is about 200 times heavier than the electron. As a consequence the μp atomic Bohr radius is corre-

spondingly smaller than in H. Effects of the finite size of the proton on the μp energy levels are thus enhanced. For

hydrogen-like atoms the finite size effect i.e., the energy shift caused by the fact that the proton has a finite size is

given in leading order by [1]

ΔEFS =
2(Zα)4

3n3
m3

r r2
p δl0 (1)

where Z is the nuclear charge number, α the fine-structure constant, n the principal quantum number, mr the reduced

mass of the system and δl0 the Kronecker symbol. Only S-states (l = 0) are thus shifted in leading order. ΔEFS in μp
is 107 larger than in H because of the m3

r dependence. Therefore by measuring the μp(2S − 2P) transition frequency

even with moderate accuracy it is possible to extract rp with great accuracy.

Using pulsed laser spectroscopy at λ = 6 μm, we have determined the centroid of the 2S F=1
1/2 − 2PF=2

3/2 transition in

μp to be 49881.88(76) GHz [2]. Based on the present calculations [3, 4, 5, 6, 7] of fine and hyperfine splittings and

QED terms, we find a new value of rp = 0.84184(67) fm, which differs by 5.0 standard deviations from the CODATA

value [8] of 0.8768(69) fm, 3.0 standard deviations from e-p scattering value [9, 10] and 4.6 standard deviations from

the recently published e-p scattering results of the MAMI collaboration [11].

The origin of this variance is not yet known. It has stimulated an alive discussion regarding not only the pre-

diction of hydrogen-like energy level and bound-state QED but also about the proton structure (proton form factor),

electron-proton scattering, the accuracy of the Rydberg constant (the most precisely known constant in physics), on

the possibility of new physics (so far excluded) and the possibility that we have measured a transition not in muonic

hydrogen but rather on a molecules or ions (also excluded). This article gives a brief overview of the theoretical and

experimental efforts accomplished to attempt solving this discrepancy.

2. Muonic hydrogen experiment

The experiment was performed at the πE5 beam-line of the proton accelerator at the Paul Scherrer Institute (PSI)

in Switzerland. We built a new beam line for low-energy negative muons (∼ 5 keV kinetic energy) which yields an

order of magnitude more muon stops in a small low-density gas volume than a conventional muon beam. Slow μ−
enter a 5 T solenoid and are detected in two transmission muon detectors generating a trigger for the pulsed laser

system.

The muons are stopped in H2 gas at 1 hPa, whereby highly excited μp atoms (n ≈ 14) are formed. Most of these

deexcite quickly to the 1S-ground state, but ∼1% populate the long-lived 2S-state [12, 13]. A short laser pulse with

a wavelength tunable around λ ≈ 6 μm enters the mirror cavity surrounding the target gas volume, about 0.9 μs after

the muon stop. 2S→ 2P transitions are induced on resonance, immediately followed by 2P→ 1S deexcitation via

emission of a 1.9 keV X-ray (lifetime τ2P = 8.5 ps). A resonance curve is obtained by measuring at different laser

wavelengths the number of 1.9 keV X-rays that occur in time-coincidence with the laser pulse.
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The lifetime of the μp(2S)-state τ2S is crucial for this experiment. In the absence of collisions τ2S would be equal

to the muon lifetime of 2.2 μs. In H2 gas, however, the 2S-state is collisionally quenched, so that τ2S ≈ 1 μs at our

H2 gas pressure of 1 hPa [12]. This pressure is a trade-off between maximizing τ2S and minimizing the muon stop

volume (length ∼1/pressure) and therefore the laser pulse energy required to drive the 2S-2P transition.

The design of the laser (see Fig. 1) is dictated by the need for tunable light output within τ2S after a random trigger

by an incoming muon with a rate of about 400 s−1. A thin-disk laser pumps a titanium sapphire (TiSa) oscillator-
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Figure 1: Laser system. The cw light of the TiSa ring laser is used to seed the pulsed TiSa oscillator. A detected muon triggers the Yb:YAG disk

lasers. Their pulses are frequency doubled (SHG) and used to pump the pulsed TiSa oscillator-amplifier system which emits 5 ns short pulses at the

wavelength given by the cw TiSa laser. These short pulses are shifted to the required λ ≈ 6 μm via three sequential Stokes shifts in the Raman cell.

Frequency calibration is performed at λ = 6 μm and in the red region. Finally the 6 μm pulses are coupled into a cavity and illuminate the muon

stopping volume.

amplifier laser system. Frequency seeding of the TiSa oscillator from a continuous wave (cw) TiSa laser guarantees

frequency control. The 5 ns (FWHM) long pulse emitted from the TiSa laser at 708 nm is then frequency shifted to

6 μm with a Raman cell filled with 15.5 bar of H2 gas by means of three Stokes processes. The frequency of the pulse

exiting the Raman cell is [14]

νoutput = νTiSa − 3 · ΔStokes (2)

where ΔStokes = 4155.22(2) cm−1 is the vibrational (0 → 1) transition energy in H2 [16]. The 6 μm pulse is then

coupled into a multi-pass cavity surrounding the μ− stop volume. The light lifetime in this cavity is 50 ns. Laser

induced 2 keV X-rays have thus to be searched in this time window.

Tuning the wavelength of the cw TiSa laser results in a tuning of the frequency of the pulsed TiSa laser by the

same amount (due to injection seeding) and a tuning by the same amount at 6 μm. The frequency of the cw TiSa laser

is known with a precision of 30 MHz and frequency chirping effects arising during the pulse formation in the TiSa are

-100(30) MHz.

The absolute frequency of the spectroscopy pulse at 6 μm has been determined with two different methods. One

was performed directly at λ = 6 μm by means of water vapor absorption in air and in a cell. This avoids any un-

certainties related to chirping effects in the TiSa laser, and to the value of ΔStokes which is pressure und temperature

dependent. The absolute position of the water absorption lines are known to an absolute precision of ∼ 1 MHz [17, 18].

The statistical fluctuation of ∼ 30 H2O absorption line measurements (for 5 different water lines) recorded at various

times during the data taking determines an uncertainty of 300 MHz of the frequency calibration. This spread arises

ht
tp

://
do

c.
re

ro
.c

h



from instabilities of the Raman process. From this measurement also the spectral width of the pulse has been inferred

to be 1.7 GHz. The second frequency calibration method exploits Eq. (2). Since the frequency of the cw TiSa laser,

the chirping effects and ΔStokes are known it is possible to “indirectly” determine the frequency of the 6 μm pulse. The

result is in agreement with the direct measurement via water line absorption and has an accuracy of 1 GHz due to the

uncertainties in the Stoke processes.

A resonance curve as shown in Fig. 2 is obtained by measuring the number of 1.9 keV X-rays at different laser

wavelengths that occur in time-coincidence with the laser pulse. In total we have measured 550 events in the res-

laser frequency [THz]
49.75 49.8 49.85 49.9 49.95

]
-4

d
el

ay
ed

 / 
p

ro
m

p
t 

ev
en

ts
 [

10

0

1

2

3

4

5

6

7

e-p scattering

CODATA-06 our value

O2H
calib.

Figure 2: 2S-2P resonance in muonic hydrogen. The number of 2 keV X-rays in coincidence with the laser pulse is plotted as a function of the

laser frequency. The fit is a Lorentzian on top of a flat background. It gives a χ2/dof of 28.1 / 28, and the error bars indicate the 1 standard deviation

regions. The predictions (orange points) for the line position assume the proton radius from the CODATA group [8] and from world average

electron scattering data [9]. The frequency of the laser is calibrated by means of water line absorption measurements (shown in green).

onance, where we expect 155 background events. On resonance there are 6 laser induced events per hour whereas

the background rate is approximately 1 event per hour. The measurement times per laser wavelength varied between

3 and 13 hours. The center of the 2S F=1
1/2 − 2PF=2

3/2 transition in μp is at 49881.88(76) GHz which corresponds to an

energy of 206.2949 (32) meV [2]. The uncertainty of 15 ppm consists of 700MHz statistical uncertainty from the free

fit of a Lorentzian resonance line on top of a flat background, and the 300MHz total systematic uncertainty which is

exclusively due to the laser wavelength uncertainty. Other systematic effects we have considered are Zeeman shift in

the 5 T field (< 30 MHz), AC and DC Stark shifts (< 1 MHz), Doppler shift (< 1 MHz) and pressure shift (< 2 MHz).

It is reasonable to question if instead of performing spectroscopy at muonic hydrogen (μp) we have rather mea-

sured a transition in a molecule (ppμ) or an ion (pμe) [19]. It has been shown that during a collision of a μp atoms

with an hydrogen molecule a ppμ molecule can be formed [12]:

μp(2S ) + H2 → [(ppμ)+]∗pee}∗ → μp(1S ) + . . . . (3)

Yet it has also been demonstrated [20, 21] that the lifetime of these molecules (for the lower lying molecular states)

is a fraction of a ps. No sufficient population is thus left in the vibrational molecular state for the laser experiment.

This short lifetime is caused mainly by internal Auger de-excitations. Coulomb and radiative de-excitations are also

present. It is also important to note that the measured resonance width of 18.0 (2.2) GHz agrees with the theoretically

expected one of 21.0 (1.0) GHz. This indicates that all molecules must be mainly in the same vibrational-rotational

state. Hence the hypothesis that we have performed spectroscopy on molecular states can be rejected.

It is also reasonable to question if we have performed spectroscopy at μp(2S )e ions. According to [19] an electron

bound to the μp(2S ) atom with average radius a0 (Bohr radius), could affect the 2S-2P splitting by approximately

0.4 meV and could potentially explain the measured discrepancy. First of all the existence of such an ion has not been

yet demonstrated. Moreover supposing that this system could exist, its lifetime is very probably too short for the laser

experiment because of internal and external (collision) Auger effects. For the moment only qualitative arguments can

be given here because of the lack of theoretical predictions. However, it is very unlikely that we have performed

spectroscopy on a μp(2S )e ionic system.
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3. Present situation

Comparison of the measured transition energy ΔEexp(2S F=1
1/2 − 2PF=2

3/2 ) = 206.2949(32) meV, with the correspond-

ing theoretical prediction based on bound-state QED which account for radiative, recoil, proton structure, fine and

hyperfine contributions [1, 3, 4, 5, 6, 7]

ΔEtheo(2S F=1
1/2 − 2PF=2

3/2 ) = 209.9779 (49) − 5.2262 r2
p + 0.0347 r3

p meV (4)

results in a determination of rp = 0.84184(36)exp(56)theo fm = 0.84184(67) fm. In Eq. (4) rp is given in fm, and the

uncertainty of 0.0049meV is dominated by the proton polarizability term [5] of 0.015(4) meV. A detailed discussion

of Eq. (4) is given in the supplementary information of [2]. The resulting value is 10 times more precise but 5σ
smaller than the previous CODATA value [8]. If conversely, the proton radius from CODATA group is inserted in

Eq. (4) then the predicted ΔEtheo(2S F=1
1/2 − 2PF=2

3/2 ) deviates from the measured value by 0.3 meV.

Recently several theoretical works have been performed to verify the validity of Eq. (4). The pure QED, recoil,

hyperfine and fine contributions which are summed up in the first term in Eq. (4) have been rechecked and few

additional higher-order terms were added. However, the total theoretical prediction shift is -0.0025 meV [22] and thus

smaller than the above given theoretical uncertainty and negligible compared to the measured discrepancy.

An alive discussion is going on regarding the so called “third Zemach moment” correction. For an infinitely heavy

nucleus, the finite nuclear size contribution is described by:

EFS = −2Zα
3

(Zαmr

n

)3 [
r2
p −

Zαmr

2
〈r3

p〉(2) + . . .
]

(5)

where 〈r3
p〉(2) is the third Zemach moment defined as

〈r3
p〉(2) =

∫
d3r
∫

d3r′ ρ(�r)ρ(�r′)|�r − �r′|3 (6)

with ρ(�r) being the normalized electric charge distribution of the proton. The relation between r3
p and 〈r3

p〉(2) is model

dependent. In Eq. (4) it was adopted that 〈r3
p〉(2) = f 〈r2

p〉3/2 with f = 3.79. This value is compatible with the standard

dipole form factor which -in first order- correctly fits the measured data. Because of this model-dependence, in [23]

it is claimed that the term proportional to r3
p in Eq. (4) is wrong. This model dependence is addressed in [5] for a

Gaussian and an exponential charge distribution of the nucleon. The resulting model dependence however is smaller

than 0.002 eV and thus negligible. Note that replacement of 〈r3
p〉(2) with r3

p as clearly stressed in [22] was motivated

to better account for reduced mass effects.

Nevertheless in [23] is affirmed that the proton could have much larger “tails” as assumed until now and thus the

model dependence has been strongly underestimated. A third Zemach moment as large as 36.6 (2.1) fm3 could bring

in agreement the rp value from muonic hydrogen with the values from hydrogen and scattering. However the third

Zemach moment can be re-expressed in terms of measurable quantities as

〈r3
p〉(2) =

48

π

∫
dq
q4

[G2
E(q2) − 1 +

1

3
q2〈r2

p〉] (7)

where q is the momentum exchange and GE the electric form factor. The value obtained from a model independent

analysis of the electron-proton world scattering data is 〈r3
p〉(2) = 2.71(13) fm3 [24]. The validity of the 〈r3

p〉(2) value

as hypothesized in [23] has been also contested in [25]. Recently the Mainz A1 collaboration has performed a new

evaluation of the 〈r3
p〉(2) term using the newly measured cross sections. The result is well compatible with the previous

analysis [24] and is in strong opposition to the hypothesis of [23]. In fact it turned out that 〈r3
p〉(2) = 2.85(8) fm [26].

From this measurement an improved value f = 4.18 (13) [26] is achieved.

Concluding, up to now, the theoretical prediction of Eq. (4) has been confirmed. Moreover the consistency of the

proton radius definition between the atomic systems (hydrogen and muonic hydrogen) and the scattering experiments

has been settled [27]. Therefore the discrepancy between the proton radii from muonic hydrogen and the values from

hydrogen spectroscopy and electron-proton scattering is still valid and is even reinforced by the new measurement of

the Mainz A1 collaboration [11] (see Fig 3 (Left)).
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Figure 3: (Left): The rp value from μp spectroscopy is in strong disagreement with the values extracted from H spectroscopy [8], with the value

from the world average electron scattering data [9], and with the new electron scattering value from Mainz [11]. (Right): Our deuteron charge

radius rd = 2.12809(31) fm deduced from our rp together with the H-D (1S-2S) isotope shift [28] disagrees with the CODATA value of rd, but agrees

with the CODATA 2006 adjustment 11 which uses only deuterium data (Ref. [8], see Tab. XLV, adj. 11), the value from electron scattering [29],

and the value from neutron-proton scattering [30].

4. The charge radius of the deuteron

The difference of the squared charge radii of the proton and the deuteron, r2
d
− r2

p = 3.82007(65) fm2, is accu-

rately determined from the precise measurement of the isotope shift of the 1S-2S transition in regular hydrogen and

deuterium atoms [28]. This, together with our value of rp , gives for the rms charge radius of the deuteron

rd = 2.12809(31) fm. (8)

Figure 3 (Right) compares this to recent results. The CODATA value of rd = 2.1394(28) fm is 4σ away. This can

be understood because in the CODATA adjustment rd is rigidly tied to rp via the very precise isotope shift of the 1S-2S

transition in regular H and D atoms. The proton charge radius deduced from H and μp disagree by 5σ for unknown

reasons; hence the deuteron radius must also disagree by a large amount.

However, adjustment 11 of the 2006 CODATA adjustment (see Ref. [8] Tab. XLV), which uses only the deuterium

data (scattering and spectroscopy), but ignores both electron scattering and spectroscopy on hydrogen, suggests a

smaller value of rd, in accord with our value. This is due to the fact that the value of rd from electron-deuteron

scattering [29] agrees with ours.

Neutron-proton scattering [30] gives a value which agrees both with the electron scattering value and with our new

value, but not very well with the full CODATA result. The average of the independent values “CODATA, D only” [8]

and neutron scattering [30] is rd= 2.1254(50) fm, 2.4σ away from the final CODATA value rd = 2.1394(28) fm, but in

good agreement with our result.

5. The muonic helium ion Lamb shift: solving the proton radius puzzle

In order to shed some light onto this proton radius conundrum we plan to measure several transition frequencies

between the 2S and the 2P states in muonic helium ions (μ 4He+ and μ 3He+) by means of laser spectroscopy to an

accuracy of 50 ppm. These measurements will result in the determination of the alpha-particle and helion rms charge

radius to a relative accuracy of at least 3 × 10−4 (10× improvement). This will help us to disentangle the origin of the

observed proton radius puzzle:

• Muonic sector?
Comparing the measured 2S-2P transition frequencies in μHe+ with prediction assuming the He nuclear radius

from independent experiments will lead to a test of the energy level theory in the muonic sector. The 4He nuclear

radius from scattering experiments is known with ur = 2× 10−3 [31]. Its uncertainty limits the test of the μHe+

energy levels to a relative accuracy of 1× 10−3. Note that the observed discrepancy in μp amounts to 1.5× 10−3

of the total Lamb shift. Hence if the observed discrepancy in μp versus H originates in the muonic sector (or

scales in muonic atoms differently from normal atoms and scattering experiment) it will be observable if the

unknown effect scales at least linearly with Z, where Z is the nuclear charge number. Given the fact that all 2S-

2P contributions in μp and μHe+ scale as Zx with x � 3, we see that μHe+ spectroscopy has also the potential

to reveal possible mistakes or missing terms of the “standard” (QED, nuclear structure, binding) contributions.
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• Rydberg constant?
The R∞ constant is required to deduce rp from H spectroscopy but it is not used to extract rp from μp measure-

ments. To bring in agreement the rp values from H and μp, R∞ should be shifted by 110 kHz/c i.e. 5 standard

deviations [2]. There is an ongoing experiment [32, 33] (at Max Planck Institut für Quantenoptik, Garching,

Germany) aiming to measure the 1S − 2S transition frequency in He+. From this measurement a nuclear radius

can be extracted which is less sensitive to the uncertainty of R∞ (cf. Table 1). Therefore if the observed dis-

crepancy originates from R∞ it will become basically unresolved when confronting radii extracted from μHe+

and He+ and agreement (within their uncertainties) between the radii extracted from μHe+ and He+ should be

observed.

• Hydrogen-like bound-state QED?
If the radii from μHe+ and e-He scattering turn out to be in agreement but to disagree with the radius extracted

from He+ this would indicate that the problem arises from bound-state QED in hydrogen-like (“electronic”)

atoms. Note again that this conclusion is correct since the effect of the R∞ uncertainty is reduced.

• Proton sector and hyperfine contributions?
Obviously the measurements in μHe+ and He+ do not (“in first order”) depend on the proton. In μ 4He+ there

are no hyperfine effects since the nuclear spin is zero, whereas there is a contribution in μ 3He+.

Concluding, the proposed experiment will help to understand the observed proton radius discrepancy and holds the

potential for new insight in bound-state QED theories.

6. Enhanced bound-state QED test of the crucial higher-order terms in He+

In this section we present how the knowledge of the 4He nuclear radius (assuming no severe discrepancy between

prediction and measurement will be observed in μHe+) determined from μHe+ spectroscopy and theory will be used to

test the higher-order bound-state QED contribution to the Lamb shift in He+. This test will be achieved by comparing

the measured 1S-2S transition frequency in He+ with the theoretical prediction which depends on constants like R∞,

masses, fine-structure and the nuclear charge radius. The situation in He+ is very much like it was in H before the μp
experiment. Testing bound-state QED with He+(1S − 2S ) requires a precise value of the nuclear charge radius.

In Table 1 we summarize some important quantities regarding 1S and 2S states in H and He+. Row (a) gives the

1S −2S transition frequencies which are approximately given by the Bohr structure Δν2S−1S ≈ 3
4

Z2 R∞ mr
m where m is

the electron mass and mr the reduced mass of the system. Corrections related to QED, binding and nuclear structure

effects which contribute to the so called Lamb shift, affect these frequency differences at the few ppm level as given in

(c). Hence, the uncertainty of the Δν2S−1S prediction arises mainly from the uncertainty of R∞ which is known with

ur = 6.6 × 10−12 [34, 8].

The 1S and 2S Lamb shift 1 difference L1S−2S = L1S − L2S can be experimentally determined using this simplified

expression: Lexp

1S−2S ≈ Δνexp

2S−1S− 3
4
Z2R∞ mr

m . In fact Δν
exp

2S−1S in H is measured to an accuracy of 1.4×10−14 corresponding

to 46 Hz [35], much better than R∞ whose uncertainty is 22 kHz [8]. Similarly in He+ after completion of the ongoing

experiment whose aim is to measure the 1S-2S transition frequency with relative accuracy of 2×10−14 i.e. 200 Hz. As

a consequence, the uncertainty of the experimentally determined Lamb shift difference δLexp

1S−2S given in (b), originates

basically only from the uncertainty of R∞ (δLexp

1S−2S ≈ 3
4
Z2δR∞).

Row (c) shows the theoretical prediction of the Lamb shift difference Lth
1S−2S based on bound-state QED [38, 39,

40, 41] calculations and nuclear radii from electron scattering data, i.e. rp = 0.895(18) fm and r4He = 1.681(4) fm [31].

The resulting uncertainty in He+ is composed in almost equal parts from uncertainties of the nuclear size and “pure”

bound-state QED uncertainties. This is in sharp contrast to the situation in H whose uncertainty was (prior to the μp
experiment) fully dominated by the uncertainty of the proton radius. The main contributions to the Lamb shifts in

H and He+ are given by the one-photon one-loop self-energy which scales approximately like α(Zα)4. Among the

“pure” QED contributions to the Lamb shifts only the two-loop (and higher) terms have a non-negligible uncertainty.

1The Lamb shift is defined as the deviation from the prediction of the Dirac equation excluding leading order recoil corrections and hyperfine

contributions [37, 36, 33].
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H [kHz] He+ [kHz] ratio

a: Δν2S−1S 2.466 × 1012 9.869 × 1012 Z2

b: δLexp

1S−2S 16 65 Z2

(2.2 ppm) (0.7 ppm)

c: Lth
1S−2S 7 127 887(44) 93 856 127(348) Z3.7

d: δLth
1S−2S (6.3 ppm) (3.7 ppm)

e: B60 + B7i −8(3) −543(185) Z≥6

f: Fin. size 1102(44) 62 079(295) Z4r2

g: (μp, μHe+ ) (2) (40 or 15)

h: B60 + B7i check 25% 7% or 4%

Table 1: Comparison of the 1S and 2S Lamb shifts in H and 4He+ [33]. (a): 1S-2S frequency difference. (b): The uncertainty of Lamb shift

difference δLexp

1S−2S determined from measurements. (c): Theoretical predicted Lamb shift difference Lth
1S−2S and (d) its relative accuracy [40].

(e): B60 +B7i crucial higher-order QED terms. (f): Finite size contributions computed using the radii from scattering experiments. Below the line is

the situation after the muonic atoms measurements. (g): Uncertainty of the finite size contribution after completion of the μp and μHe+ experiments

assuming the μ4He(2S ) nuclear polarizability can be calculated to 5% (conservative) or 2% accuracies. (h): Relative accuracies of higher-order

contributions test.

The contribution of the most crucial high-order terms (B60 and B7i) together with their uncertainties are given in (e).

It is interesting to observe that these terms scale with high power of the nuclear charge number (Z≥6) and thus are

strongly enhanced in He+ compared to H.

The finite size contributions are reported in (f) assuming the radii from electron-scattering. Their uncertainties

have been and will be reduced as shown in (g) after completion of the corresponding measurements in μp and μHe+

respectively. It is assumed that the nuclear polarizability contribution in μHe+ will be computed with a relative

accuracy of 5% (conservative assumption) or 2% (optimistic assumption).

As a consequence of the reduced uncertainties of the finite size contributions the crucial higher-order QED terms

(B60 + B7i) can be tested to very interesting relative accuracies as given in (h). However in H to test these higher-order

QED terms at the given relative accuracy it is necessary to reduce the uncertainty of R∞ (cf. with row (b)). In He+ the

role of R∞ is reduced relative to the crucial QED terms because of diverse Z-dependence of the various contributions

as shown in the fourth column of Table 1. Furthermore in He+ we can make use of R∞ derived by combining H(1S-2S)

with μp measurements. In such a way, the extracted R∞ has a factor of 5 smaller uncertainty [2] and thus the quoted

uncertainty in (b) for He+ is decreased from 65 to ∼15 kHz. Therefore the uncertainty of R∞ is not such a limiting

factor to test QED in He+.

In conclusion a measurement of the 1S − 2S transition in He+ with ur = 2 × 10−14 and the μHe+ Lamb shift with

50 ppm, together with an improvement of the theoretical prediction of the polarizability in μHe+ to ur = [2−5]% will

lead to a test of the interesting QED terms like B60 and B71 to a level of [20 − 40] kHz. This has to be compared with

the present two-loop bound-state QED uncertainty of 200 kHz arising from the prediction difference of the all-order

and perturbative approaches [42].

7. Nuclear structure

Nuclear physics will benefit from the proposed measurements in μHe+ alone. Precise isotope shift measurements

of 3He, 6He, 8He have been accomplished [43] by means of laser spectroscopy, which provide accurate differences

of the rms radii relative to 4He. To deduce absolute radii it is therefore necessary to know the absolute radius of the

reference isotope 4He. The knowledge of these radii will provide observables to check ab-initio few-nucleon theories

and potentials [44, 45].

In the last decade there was an impressive development of techniques (Green function Monte Carlo, no core shell

model, effective interaction hyper-spherical harmonics, stochastic variational . . .) for solving the Schrödinger equation
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for many particles and very complicate potentials including tensor components. Fully converged calculations exists for
3He and 4He nucleus using different potential models that include three-nucleon interactions. Prediction of low-energy

observables like the charge radii to ur = 1 × 10−3 are nowadays reached. For example in [46] the 4He charge radius

(with other observables) was used to determine the low-energy constants of the three-nucleon interaction nuclear

forces derived from chiral effective field theory. In [47], the low-energy constants were determined from the half life

and binding energy of the triton and the helium radii are then predictions.

A possible disagreement between theoretical predicted radii and radii from μHe+ spectroscopy would suggest

that the nuclear Hamiltonian is incomplete, e.g. some additional three-nucleon interaction terms are missing or that

perhaps even a four-nucleon interaction is needed. Alternatively, this may also suggest that (even) the two-nucleon

interaction model has some deficiencies.

8. Conclusions and Outlook

The world’s most precise value of the rms proton charge radius rp = 0.84184(67) fm that we have obtained from

laser spectroscopy of the Lamb shift in muonic hydrogen μp has created a puzzle. The disagreement with the previous

values from hydrogen spectroscopy and electron scattering is stunning. Using this new value of rp and the accurately

measured hydrogen-deuterium isotope shift [28] we obtain rd = 2.12809(31) fm. This value agrees with several

hydrogen-independent results.

Up to now the theoretical predictions used to extract the proton radius from muonic hydrogen and hydrogen

have been confirmed. Also the smallness of the proton model-dependence of the muonic hydrogen results has been

confirmed by recent scattering experiments. So far “new physics” has been also discarded because it would contradict

other low energy measurements from hydrogen and Muonium spectroscopy, or electron and muon g − 2 and so on.

Our new project, the measurement of the Lamb shift in muonic helium ions, will hopefully contribute to the

solution of the “proton size puzzle”.
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