Concept and Implementation of a
Fuzzy Data Warehouse

Thesis

presented to the Faculty of Economics and Social Sciences
at the University of Fribourg (Switzerland),
in fulfillment of the requirements for the degree of
Doctor of Economics and Social Sciences

by

Daniel FASEL
from St. Ursen FR

Accepted by the Faculty of Economics and Social Sciences
on 30.05.2012 at the proposal of

Prof. Dr. Andreas Meier (First Advisor) and
Prof. Dr. Ulrich Ultes-Nitsche (Second Advisor)

Fribourg, Switzerland 2012

The Faculty of Economics and Social Sciences at the University of Fribourg neither
approves nor disapproves the opinions expressed in a doctoral dissertation. They are to
be considered those of the author (Decision of the Faculty Council of 23 January 1990).

1

1l

For my daughter Leola Mai Ly

Acknowledgment

I would like to thank Prof. Dr. Andreas Meier. Without his support and encouragement
I would never have started this thesis, much less I would have finished it. During the
PhD study he always provided invaluable input for the thesis with his academic advices.
His enthusiasm has been a great motivation during this time.

I also wish to thank Prof. Dr. Ulrich Ultes-Nitsche for his constructive feedback.

I would also like to express my deepest gratitude to Khurram Shahzad. Without his
inputs, this thesis would never be in the shape as it is now. The time I spent for re-
search with Khurram has been the most productive moments during my PhD study. In
Khurram, I found a very very good friend and I am more than glad that I met Khurram
through our common research interests.

I would also like to express my gratitude to my research colleagues in the Information
System Research Group and in the Department of Informatics of the University of Fri-
bourg.

Many thanks go to Kristen Curtis and my brother Thomas, who read the thesis and
helped me a lot improving the language.

Last, I would like to thank my wife Stéphanie and my daughter Leola. Without your
patience and support I would never have had the energy to write this thesis. You are
the essence in my life and the reason for writing this thesis, for doing what I am doing.
With every single word in this thesis I would like to tell you: I love you!

v

Contents

Contents
[L._Introductionl 1
(L1, Motivation|. 1
[1.2. Research Methodology| 2
[1.3. Chapter Overview|. 4
(.4, Publications| 6
I. Concept] 9
[2. Fundamental Concepts| 10
[2.1. Data Warehouse Concepts| 10
RI.1. Dimensionl 12
RI2 Tact ot 13
[2.1.3. Summarizability|. 15
2.1.4. Star and Snowflake Schemal 0. 17
[2.1.5. Classical Operations| 19
[2.2. Concepts of Fuzzy Logic| 31
[2.2.1. Fuzzy Set Theoryl 32
[2.2.2. Linguistic Concepts|. 38
[2.2.3. Application of Fuzzy Logic|. 41
[3. Fuzzy Data Warehouse| 44
[3.1. Existing Research| 44
[3.1.1. Data Warehouse Approaches for Handling Imprecise Datal 45
[3.1.2. Approaches for Implementing Fuzziness into Data Warehouse| 46
[3.1.3. The Feng and Dillon Framework for Implementing Fuzziness into |
[Data Warehouselo L 48
[3.1.4. Evaluation and Comparison of the Existing Approaches|. 49
[3.2. Fuzzy Data Warehouse Concept| 59
[3.2.1. Basic Definitions and Fuzzy Meta Tables| 60
[3.2.2. Fuzzy Data Warehouse Model| 61
[3.2.3. Guidelines for Modeling the Fuzzy Data Warehousel 62
[3.2.4. The Fuzzy Data Warehouse Meta Model| 64
[3.3. A Method for Modeling a Fuzzy Data Warehouse] 65
[3.3.1. Defining Classification Elements 66
[3.3.2. Building Fuzzy Data Warehouse Model| 70

Contents

[3.4. Characteristics of Fuzzy Concepts in Fuzzy Data Warehouse| 73
[3.4.1. Types of Fuzzy Concepts| 74
[3.4.2. Aggregation and Propagation of Fuzzy Concepts|. 81
[3.4.3. Persistency of Target Attributes| 88
[3.4.4. Metaschema tor Fuzzy Concepts|. 91
[3.4.5. Calculation of Membership Function| 93

[3.5. Operations in Fuzzy Data Warehouse| 100
[3.5.1. Classical Data Warehouse Operations in Fuzzy Data Warehouse| . 103
[3.5.2. Fuzzitying and Detuzzitying Cubes| 111
[3.5.3. Aggregations with Fuzzy Concept| 112

Application| 119
4. Application of Fuzzy Data Warehouse| 120

4.1. The Movie Rental Company| 120

[4.2. Integration of Fuzzy Concepts in the Data Warehouse| 128
M2.1. Dimension Moviel oo 128
4.2.2. Dimension Customerl 130
[4.2.3. Dimension Employee|o 132
M.2.4. Dimension Storel o 133
425, Fact Revenuel o 135
[4.2.6. Fact User Rating| 138
[4.2.7. Fuzzy Data Warehouse Schema] 140

4.3. Using the Fuzzy Data Warehouse| 141

1. Implementation| 155
(5. Implementation| 156

b1 Architectural Overview] 156

b2, Databasel. 157

[>.3. Business Logic|. o 163
b.3.1. XML Schema for Dimensions and Facts|. 164
[5.3.2. XML Schema for Fuzzy Concepts| 173
[5.3.3. The Query and the Fuzzy Concept Administration Engine] 178

b4, Visualization| 180
[>.4.1. Navigation of the Fuzzy Data Warehouse| 180
[>.4.2. Administration of Fuzzy Concepts| 184

vi

Contents

IV Evaluat; C lusionl
6 Evaliah Conclusion
6.1 Evaluation]

[6.1.1. Concept|
[6.1.2. Application and Implementation|.

|A. The XML Schema of the Crisp Part|

[B. The XML Schema of the Fuzzy Part]

[C. The XML Document of the Crisp Fuzzy Data Warehouse Elements|

[D. The XML Document of the Fuzzy Concepts|

Vil

211

214

225

List of Figures

List of Figures

2.1. Architecture of Data Warehouse adapted from [CDOT[|. 11
[2.2. Example Dimension “Purchase Order Structure” 14
[2.3. Disjointness Condition for Dimension Student Afhliation| 16
[2.4. Completeness Condition in a Dimension “Course” 17
2.5, Star Schemal 18
2.6. Snowflake Schemalo 20
[2.7. Possible Result Set of Query in Listing 2.1]]. 22
[2.8. Possible Result Set of Query in Listing [2.2]. 22
2.9. Rof Basic Cubel. 23
RI0. Rof Cubel 24
[2.11. Cube according Argrawal et al. [AGSOT] 25
[2.12. Restriction Operation applied to a two dimensional Cube| 26
[2.13. Example Data Warehouse Snowflake Schemaf 27
[2.14. Fuzzy Subsets of Linguistic Terms "very short"”, "short", "medium", "long" |

and "very long"|o Lo 40
[2.15. Hierarchical Representation of a Linguistic Variablel 40
[3.1. Structure of Chapter|3[. 45
[3.2. Fuzzy Data Warehouse Meta Model| 64
[3.3. A Graphical Overview of the Method for Modeling a Fuzzy Data Warehouse| 66
(3.4, Dimension Customerl Lo 66
[3.5. Dimension Customer with Fuzzy Concepts| 73
[3.6. Schematic Example of an Open End Fuzzy Concept| 74
[3.7. Customer and Employee Dimension| 76
[3.8. Example of Open knd Fuzzy Concept| 7
[3.9. Schematic Representation ot a Limited Fuzzy Concept| 7
[3.10. Example of Limited Fuzzy Concept| 79
[3.11. Schematic Representation ot an Adaptive Fuzzy Concept| 80
[3.12. Example of Adaptive Fuzzy Concept| 81
[3.13. Dimension Store with Fuzzy Concept Store Surface] 82
[3.14. Aggregation of a Fuzzy Concept| 83
[3.15. Wrong Agegregation of Fuzzy Concept using Summation| 84
[3.16. Wrong Ageregation of Fuzzy Concept using Averagel 85
[3.17. Propagation of Fuzzy Concept Store Surfacel 86
[3.18. Dimension Store and Fact Revenue with Fuzzy Concepts| 87
[3.19. Propagation of a Fuzzy Concept| 88

viil

List of Figures

[3.20. Dimensions Time and Store, Fact Revenue and Fuzzy Concept Revenuel . 90
[3.21. Representation of Revenue per City and Time| 91
[3.22. Membership Function for two Fuzzy Classes| 93
[3.23. Example Fuzzy Data Warehouse Snowflake Schema including Fuzzy Meta |
Tablesl 102
[3.24. Multivalued Dimension with a Bridge Table| 113
[3.25. Fuzzy Data Warehouse Schema with Dimension Customer, Movie, Time, |
with Facts User Rating and Revenuef 117

U.1. Snowflake Scheme of the Data Warehousel 121
[4.2. Fuzzy Concept Movie Genre| 129
[4.3. Fuzzy Concepts Customer Revenue and Customer Agel 132
[4.4. Fuzzy Concept Employee Age| 133
[4.5. Fuzzy Concept Store Surface[. 134
[4.6. Propagated Fuzzy Concepts City Store Surtace and Region Store Surface| 136
[4.7. Fuzzy Concept Revenue| 137
[4.8. Propagated Fuzzy Concepts Revenue] 139
[4.9. Fuzzy Concept User Ratingl 140
{4.10. Fuzzy Data Warehouse Schema for the Movie Rental Company|. 141
[5.1. Overview of Prototype Architecture| 158
[5.2. Node Relation “dwh”, “cube”, “tact” and “dimensions” 165
“fact” its Children| oo o 165

“di 10ns” 1 ildrenl oo 166

[5.5. Node “hierarchy” and its Children| 167
- " childrenl . . 0 0 0 o oo 168

[5.7. Node “level”, Simple Node “relation” and their Children| 170
[5.8. Node “bridge” and its Children|. 171
[5.9. Root Node “concepts”’, Node “tconcept” and its Children|. 173
[5.10. Node “relation” and the Complete Structure of its Children| 175
[5.11. Node “aggregation” and its Children|. 176
[5.12. Navigation of a Sharp Cubel 181
[5.13. Navigation of the Fuzzy Data Warehouse including a Pivot Table 182
[5.14. Slice / Dice Window with two selected Slicers| 182
[>.15. Navigation of the Fuzzy Data Warehouse including Slicers and a Pivot |
Tablel. o 183
[5.16. Navigation of a Fuzzy Cubel 183
[5.17. Fuzzy Navigation of the Fuzzy Data Warehouse| 184
[5.18. First and Second Step of the Wizard| 185
[5.19. Third and Fourth Step of the Wizard| 186
[5.20. Fifth step of the Wizard]o 186

1X

List of Tables

List of Tables

[3.1. List of Swiss Army Knife Features|. 52
[3.2. Classification of existing approaches| 59
[3.3. Result Set of Cube C' =<< time.month >, < time.month.revenue > |

Jrevenue, o> .00 e 114
[3.4. Result Set of Cube C' =<< time.month >, < time.month.revenue >, re- |

venue X time.month.revenue.mda, R > L. 115
{4.1. Result Set of Example [20].o 122
[4.2. Result Set of Example[21|. 123
[4.3. Result Set of Example22}. 0. 125
[4.4. Result Set of Customer Age Group 39 to 41| 127
[4.5. User Rating of Top 8 Movies ot Customer Age Group Old| 127
{4.6. Result Set of Example [23].o 142
[4.7. Result Set of Example24].o 143
[4.8. Result Set of Example[25(. 0. 144
[4.9. Result Set of Example[26{. 146
[4.10. 10 Highest Revenues by Movies per Month in 2010] 150
[4.11. 10 Lowest Revenues by Movies per Month in 2010{ 151
{4.12. First 'Ten Result Sets ot Fuzzy Cube of kxample[28 153

Listings

Listings

2.1. SQL Example with Roll-up Operator| 21
[2.2. SQL Example with Cube Operator| 22
[3.1. Table Creation Statements| L0 Lo 94
[3.2. PostgreSQL Trigger tor Membership Functions 94
[3.3. Stored Procedure for the Volatile Fuzzy Concept Revenuel. 97
[3.4. SQL Statement tor Applying a Volatile Fuzzy Concept on a Non-persistent |

Cubel . . . 99
[3.5. SQL Example tor a Fuzzy Cube| 104
[3.6. SQL Statement for a Cube with Fuzzy Concept as Information| 115
[3.7. SQL Statement for Cube with Fuzzy Concept as Selector| 115
[4.1. SQL Statement for selecting the Revenue per regionl 122
[4.2. SQL Statement for selecting the Revenue per Producer Studiof 123
[4.3. SQL Statement for selecting the Customer Age Group per Movie|. 124
[4.4. SQL Statement of Customer Age Groups 39 to 41| 126
[4.5. SQL Statement for selecting the Revenue of old Customers| 142
[4.6. SQL Statement for selecting the Revenue per Customer Age Group| . . . 143
[4.7. SQL Statement for selecting Revenue of small Stores| 143
[4.8. SQL Statement for selecting Movie Rating| 145
[4.9. SQL Statement for selecting Movie Revenue| 148
{4.10. SQL Statement for tuzzyfying a Volatile Cubel 152
[5.1. Stored Procedure for Fuzzy Concept Store Surtace|. 159
[5.2. Triggers for Fuzzy Concept Store Surface| 161
[5.3. Stored Procedure for Propagated Fuzzy Concepts City and Region Store |

surfacel 161
[5.4. “Fact” Node ot Fuzzy Data Warehouse| 166
[5.5. Hierarchy Time Month ot Dimension Timel 168
[5.6. From Clause ot SQL Statement based on XML Relation Tree/. 169
[5.7. Level Nodes of Dimension Hierarchy Time Monthl 170
[>.8. Level Nodes for Dimension Hierarchy Movie Producer including Bridge |

Noded 171
[5.9. TA Node of Fuzzy Concept City Store Surtacel 174
[5.10. Relation Node of Fuzzy Concept City Store Surtacel 175
[5.11. Aggregation Node ot Fuzzy Concept Store Surface] 177
[5.12. Aggregation Node of Fuzzy Concept User Ratingl 178

x1

Listings

[A.1. XML Schema of Crisp Part| 207
(B.1. The XML Schema of the Fuzzy Part, 211
(C.1. The XML Document ot the Crisp Fuzzy Data Warehouse Elements| . . . 214
(D.1. The XML Document ot the Fuzzy Concepts 225

xii

Listings

List of Abbreviations

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

AVG Average Function

BFN Joint Master Program of the Universities of Fribourg, Bern and Neuchatel
CHF Swiss Franks Currency

CMA Class Membership Attribute

DiUF Department of Informatics of the University of Fribourg

DWH Data Warehouse

ETL Extraction, Transformation and Load

FC Fuzzy Concept

FCONCEPT Fuzzy Concept

FCT Fuzzy Classification Table

FDW Fuzzy Data Warehouse

FK Foreign Key Prefix

FMT Fuzzy Membership Table

HK High Knee Point

JAXB Java Architecture for XML Binding
JDBC Java Database Connector

LK Low Knee Point

MAX Maximization Function

MD Membership Degree

MDA Membership Degree Attribute

xiil

Listings

MDX
MEMFUNC
MIN
MOLAP
NAT

OLAP
PK
PROD
ROLAP
SES
SQL
SUM
TA
XML

XSD

Multidimensional Expression Language
Membership Function

Minimization Function

Multidimensional Online Analytical Processing

Faculty of Mathematical and Natural Sciences of the University of Fri-
bourg

Online Analytical Processing

Primary Key Prefix

Mathematical Product

Relational Online Analytical Processing

Faculty of Social and Economic Sciences of the University of Fribourg
Structured Query Language

Summation Function

Target Attribute

Extensible Markup Language

XML Schema Definition

Xiv

1 Introduction

1. Introduction

The introduction chapter provides an overview about the motivation of this thesis in
section[I.1] It summarizes how fuzzy logic in combination with data warehouses might be
useful. In section [I.2] the research methodology of the thesis and fundamental question
this thesis aims to answer are depicted. An overview of the chapter structure is then
given in section Finally, the research papers that have been published within the
study of this dissertation are summarized in section [1.4]

1.1. Motivation

Nowadays, information is an important good for enterprises. Information collected from
the business environment is often the basis for decision making. In order to gather, store
and process this information, various information systems are used. The enterprise in-
formation system map shows often numerous, heterogenous and complex information
system constellations. Often, for operational use, relational database systems are used
and for analytical purposes a data warehouse is used.

The data warehouse systems receive its data for analysis from the surrounding oper-
ational systems. Because of the complexity and the number of operational systems, the
data received by the data warehouse is heterogenous. The data has to be homogenized
in a first step before the data warehouse can further process it. After processing and
loading the data into the data warehouse, the enterprise receives a centralized view of
their business relevant information. These views in data warehouses provide different
perspectives on business critical indicators, further called facts. The perspectives can
be adapted according the need of the analysis. This adoption is realized by designing
navigation paths, further called dimensions, in the data warehouse. Dimensions allow
examining facts in different granularities and represents time, topologies and other busi-
ness interesting perspectives. This analytical view on data finally enables the enterprise
to have a more global sight on its business environment than operational systems can
provide. Therefore, data warehouses are often used as systems for decision making.

Besides positive aspects of centralized processing of business information such as de-
cision making support, difficulties occur in maintaining and analyzing data warehouses.
The amount of data that has to be processed in a data warehouse increases every day
and turns into challenging tasks for administration and analysis. Next to the problem of
high quantity, data from operational systems are often incomplete, vague or uncertain.
This quality issue can not be completely eliminated in the preprocessing stage of the

1.2 Research Methodology

data. Consequently, a certain amount of vagueness directly impacts the analysis and
decision making that is based on the information of a data warehouse.

In addition to the qualitative issues of the data entered in the data warehouse, the
interpretation of the analysis can vary depending on the background of the user. A fact
that provides a number of sales might be interpreted differently by a sales representative
or by a financial controller. This various interpretation across endusers of reports makes
it difficult to fulfill the analytical needs of an enterprise with a preferably small amount
of reports from the data warehouse. Furthermore, even if endusers interpret a fact sim-
ilarly, decision making is often vague and the consideration of a fact is approximative.
The fact is interpreted in linguistic context such as "less sales" or "higher costs" which
leads to a linguistic approximation of the fact. Standard analysis in data warehouses
can not deal with this vagueness in language and therefore limits the interpretation and
classification of data.

The theory of fuzzy sets and linguistic variables proposed by Zadeh in [Zad75al, [Zad65|
can deal with vagueness, uncertainty and imprecision. In contrast to probabilistic sys-
tems, it is also optimized for interpreting the imprecision in human language and reason-
ing. Consequently, the application of fuzzy logic on data warehouse technologies might
improve the analysis of data and might lead to better decision making.

In this thesis, a fuzzy data warehouse modeling approach is presented, which allows
integration of fuzzy logic as meta tables without affecting the core of a classical data
warehouse. The essence of the approach is that meta table structure is added to a data
warehouse for classification, which enables integration of fuzzy logic in dimensions and
facts, while preserving the time-invariability of the data warehouse. Also in this thesis,
a method is presented which includes guidelines that can be used to convert a classical
warehouse into a fuzzy data warehouse. The key benefit of integrating fuzzy logic in
meta tables is that it allows analysis of data in both sharp and fuzzy manners. In addi-
tion to that, the aggregation of fuzzy logic concepts and typical operations of a classical
data warehouse are discussed for the fuzzy data warehouse. The use of the proposed
approach is demonstrated through a case study of a movie rental company, a prototype
implementation of the fuzzy data warehouse and the benefits of integrating fuzzy logic
concepts in performance measurement are illustrated.

1.2. Research Methodology

In order to address the problems stated in the motivation, a design science research
approach [HMPRO4, MS95| has been chosen. The approach aims to link fuzzy logic
and data warehouse technology together. Hevner provides a guideline in [HMPRO04| for
design science research. The next paragraphs illustrate how this guideline is applied in
this thesis.

1.2 Research Methodology

Problem Relevance and Research Rigor

In the first step, the problem of integrating fuzzy logic in a data warehouse has been
analyzed and the following fundamental research questions have been formulated:

e How can facts in data warehouses be handled fuzzily?
e How can dimensions in data warehouses be handled fuzzily?

e How can data warehouse operations like roll-up, drill-down, slice and dice be ap-
plied to fuzzy data in a data warehouse?

e How can fuzzy data be aggregated?
e [s it possible to propose generic modeling methods for fuzzy data warehouses?

e How is it possible to integrate a fuzzy data warehouse into an existing information
system infrastructure in a company in the easiest manner?

e What kind of technologies can be used for implementing a fuzzy data warehouse?

e How does a fuzzy data warehouse behave in comparison with a crisp data ware-
house?

The conceptual design part was first started by analyzing existing literature. How
the proposed fuzzy concepts can provide added values and what are the problems of the
existing approaches has been analyzed. Based on existing literature and fundamental
concepts of data warehousing and fuzzy theory, a new fuzzy data warehouse concept has
then been developed.

Design as a Search Process and Design as an Artifact

Based on the analysis of the existing attempts to incorporate fuzzy logic with data ware-
house technology, a summary of potential critics and problems has been done. In the
next step, a meta table model has been developed which overcomes the major criticisms
and still seems to be able to cover all of the applications presented in literature. The
meta model has then been integrated into a fuzzy data warehouse meta model that
describes the incorporation of crisp data warehouse technologies and fuzzy logic in the
form of a fuzzy concept meta table structure.

Furthermore, a method has been developed that explains how this fuzzy data ware-
house meta model can be applied to existing data warehouses. This proves that it
is possible to integrate the meta table structure into existing data warehouses with a
reasonable amount of effort.

1.3 Chapter Overview

Design Evaluation

In order to evaluate the fuzzy data warehouse concept, an experimental and descriptive
approach has been chosen. Using a virtual movie rental company as an example, it is
described how a classical data warehouse can be modeled into a fuzzy data warehouse
using the proposed modeling method. Further, it is shown how the application of fuzzy
concepts in analysis can improve the information quality of reports.

Based on the application, a prototype implementation is realized that proves the
feasibility of a fuzzy data warehouse. The prototype is based on existing technologies
that have already been used for developing data warehouse systems. Consequently, it
can be derived from the prototype implementation that the application of a fuzzy data
warehouse in existing data warehouse systems is possible.

Research Contribution and Research Communication

The contribution of the fuzzy data warehouse concept, the application and the prototype
is discussed in detail in the evaluation of this thesis. First, how the proposed fuzzy data
warehouse can solve the stated critics of the existing applications is described. In the
second step, potential limits of the concepts are shown.

The above listed research questions are discussed in greater detail in the conclusion.
The conclusion attempts to answer each research question and shows in which part of
the thesis the question has been discussed.

The research on fuzzy data warehouse during this dissertation study has been commu-
nicated several times in the form of research papers for conferences and a book chapter.
With the publication of partial results, feedback and criticisms from the research com-
munity could be obtained. This feedback and criticisms have then been used to improve
the fuzzy data warehouse concept.

1.3. Chapter Overview

The subsequent chapters are grouped into four parts. Each part covers a major subject
area of this thesis. The next paragraphs discusses the underlying chapters for each part
and shortly describes the subject of the chapters.

Part I: Concept

The concept part discusses the development of the fuzzy data warehouse concept. The
included chapters are composed as follows:

1.3 Chapter Overview

Chapter 2] includes a discussion about fundamental concepts like data warehouse
theory and fuzzy logic. Section depicts how data warehouse systems are built and
structured. Then, the aggregation of facts is analyzed more closely. Based on the multi-
dimensional cube definitions, the classical data warehouse operations are finally defined.
The section introduces the fuzzy logic. The fuzzy set theory including some of the
fundamental fuzzy set operations is depicted. In order to illustrate the usage of fuzzy
logic, a few application domains for fuzzy logic are discussed.

Chapter |3| develops the fuzzy data warehouse concept and can be seen as the core
chapter of this thesis. In order to develop the concept, existing approaches in literature
are first analyzed in section Based on the identified problems, a new fuzzy data
warehouse model is developed in section [3.2] In order to facilitate the implementation of
fuzzy data warehouses in existing infrastructure, section provides a method on how
to model a fuzzy data warehouse on top of an existing classical data warehouse. Section
then discusses the characteristics of fuzzy concepts in the fuzzy data warehouse. It
is specifically focussed on the aggregation behavior of fuzzy concepts. Finally, in section
the classical operations are redefined and two new operations are defined for the
fuzzy data warehouse to support crisp and fuzzy data.

Part II: Application

In the application part, the movie rental company example is developed. Based on this
example, it is then discussed how a fuzzy data warehouse can be modeled and how
analysis with fuzzy concepts improves the information quality. This part is composed of
chapter [4] which is structured as follows:

In the first section 4.1} the movie rental company and its classical, crisp data warehouse
is presented. The second section discusses the creation of fuzzy concepts for each
dimension and fact. The development of the fuzzy concepts in this chapter is based
on the modeling method presented prior in section [3.3] After creating a fuzzy data
warehouse from the classical data warehouse, section presents how the fuzzy data
warehouse can be queried. Therefore, multiple analyses are created integrating fuzzy
concepts and the benefit of the fuzzy concepts is depicted.

Part Ill: Implementation

After the discussion of the application, it is shown in this part how the fuzzy data ware-
house can be implemented. A prototype fuzzy data warehouse application is created
based on a three tier architecture as described by Eckerson [Eck95|. Similar to part II,
part III only contains one chapter. The sections of chapter [5| are as follows:

Section first gives an overview of the architectural approach. In the next section
.2 the database tier is discussed. It is shown on which technology the databases tier

1.4 Publications

is built, how stored procedures and triggers can be used for implementing the fuzzy
concepts. The business tier is depicted in section [.3] Additional to the data in the
database, some meta information of the fuzzy data warehouse has to be managed in the
business tier. How the meta information can be modeled and maintained using XML
schema definitions and XML documents is subsequently discussed. Further, the business
tier has to translate the inputs from the visualization tier and pass them to the database
tier. Therefore, two engines are illustrated that provide these functionalities. The last
section [5.4] depicts the visualization tier. This tier provides the user interface of the fuzzy
data warehouse. How the user can navigate the fuzzy data warehouse and administrate
the fuzzy concepts is then explained.

Part IV: Evaluation and Conclusion

The last part contains the evaluation of the fuzzy data warehouse and a conclusion.
Therefore, part IV includes chapter [6] which is composed of the following sections:

Section conducts the evaluation of the concept, the application and the implemen-
tation. It is divided into three sections. The first section [6.1.1] contains the evaluation
of the conceptual part. This section is further divided into a subsection depicting the
benefits of the concept and another subsection looking at the limitations of the concept.
The section is similarly structured and outlines the benefits and limitations of the
application and the implementation. The last section discusses an outlook of the
proposed fuzzy data warehouse.

Section concludes this thesis. It first summarizes the thesis and points to the
most important features of the concept, application and prototype. Then it briefly

summarizes the evaluation and finally discusses how the defined research questions in
section [L.2 have been addressed in the thesis.

1.4. Publications

In this section the publications that have been completed during the dissertation study
are outlined. Each publication is summarized and it is explained in which part of the
thesis the content of the publication is incorporated.

A fuzzy data warehouse approach for the customer performance measurement
for a hearing instrument manufacturing company

This paper [Fas09] was presented at the Fuzzy Systems and Knowledge Discovery con-
ference in China in 2009. It discusses a first approach of a fuzzy data warehouse for a
hearing manufacturing company. The novelty of this approach is the implementation of
fuzzy concept using meta tables. Furthermore, it is discussed how the concepts on facts
can be aggregated using an arithmetic mean operation.

1.4 Publications

The meta table structure has been refined and finally integrated in the section
discussing the fuzzy data warehouse concept. The aggregation of fuzzy concept has
been integrated in section [3.4]

A fuzzy data warehouse approach for web analytics

This paper [FZ09] was written together with Darius Zumstein for the conference Vision-
ing and Engineering the Knowledge Society in Greece 2009. It illustrates the application
of a fuzzy data warehouse and its meta tables for web analytics [Ass11], [Has08|, Kau07].
This paper shows a first feasibility study for the fuzzy data warehouse concepts.

Its application domain and conclusion has been integrated in the evaluation in section
6.1.1l There, it illustrates the usefulness of fuzzy concepts in a fuzzy data warehouse
compared to classical crisp data warehouses.

A data warehouse model for integrating fuzzy concepts in meta table structures

This paper [F'S10] was written together with Khurram Shahzad and has been pre-
sented in the 17th IEEE International Conference and Workshops on the Engineering
of Computer-Based Systems in Oxford, UK 2010. This paper refines the meta table
approach for a fuzzy data warehouse and provides the foundation of the fuzzy data
warehouse meta model and formal meta table definitions in section [3.2 Further, it de-
fines guidelines that propose how to implement variants of fuzzy concepts within the
meta table structure. The fuzzy data warehouse concept part is derived from the out-
come of this paper.

The findings of this paper are integrated in the following sections: [3.2.1] |3.2.2] [3.2.3|
and [3.2.4]

Fuzzy data warehouse for performance analysis

This book chapter [FS12] was written with Khurram Shahzad and is published in the
book Fuzzy Methods for Customer Relationship Management and Marketing: Applica-
tions and Classifications, 2012. It summarizes the modeling approach of a fuzzy data
warehouse discussed in [FS10] and exemplifies the fuzzy data warehouse on an applica-
tion for a movie rental company. A method for modeling a fuzzy data warehouse has
been proposed and the movie rental company fuzzy data warehouse has been modeled.
Furthermore, it depicts characteristics of fuzzy concepts in a fuzzy data warehouse and
shows how operation of the fuzzy data warehouse can be defined.

The application of the movie rental company is refined in the chapter 4l The method
for modeling a fuzzy data warchouse is discussed in the section [3.3] The characteristics
section of this book chapter is the basis of the discussion about characteristics of fuzzy
concepts in section Finally, the presented operations have been further refined and
are discussed in section 3.5

1.4 Publications

Bachelor thesis of Stefan Niiesch and Christoph Rathgeb

Stefan Niiesch developed in his bachelor thesis [Niiel1] an extensible OLAP cube in Java.
Based on the data warehouse presented in chapter 4] and the XML schema definition
presented in section 5.3, the OLAP cube provides simple navigation of the data through
a web front end. Christoph Rathgeb extended in his bachelor thesis [Rat1l] the OLAP
cube in order to administrate and navigate with fuzzy concepts according chapter [3]

Both bachelor thesis are reused in the section [5.3.3] and in the section (.4l and are an
essential part of the prototype implementation.

1.4 Publications

Part |.

Concept

2 Fundamental Concepts

2. Fundamental Concepts

2.1. Data Warehouse Concepts

Data warehouse was first discussed by Devlin and Murphy in 1988 [DMS88]. They de-
scribed a read-only database for integration of historical operation data and propose
tools for user interaction with this database for decision support and analysis. However,
Inmon’s definition has received the most attention over the years. According to Inmon
[Inm05], “a data warehouse is a subject oriented, non volatile, integrated and time vari-
ant collection of data in favor of decision making”. One or more key business metrics,
often extracted from different data sources, are integrated in the data warehouse and
define the subject for analysis. The granularity of business metrics limits later the
analysis capabilities of the data warehouse. Therefore, the level of granularity defines
the information quality of the data warehouse.

In general, a data warehouse does not necessarily provide functionalities to modify or
delete data once it is stored in the repository. Neither possess data in a data warehouse
properties such as data in temporal databases. Whereas approaches for combining data
warehouse and properties of temporal databases like valid-time have been proposed as
data warehouse variants in [CS99, [Ede01, MV00]. Due to the shortcomings of manip-
ulation, deletion functionalities and the arrangement of data on a timeline, the data
warehouse can be characterized as non volatile and time variant. As consequence,
data size is steadily growing and a more sophisticated data management in the data ware-
house is required than in transactional databases. Archiving and distribution capabilities
of the data repository imply more overhead of meta data in a data warehouse[MT02].
Inmon [ISNOS]| identified difficulties and provides solutions to data and meta data han-
dling of big distributed data warehouse systems.

Introduced in the mid 90s, data warehouse has been widely adapted in several sectors
and successful implementations have been reported in healthcare [lon0§|, agriculture
[Sch10], geo - information systems [MZ04], banking sector [HKYC04| and business en-
vironments [KR02| in order to enhance the analytical capabilities of enterprises.

Figure [2.1] shows the architecture of a classical data warehouse. Transactional sources
act as a data source for data warehouse, however the data stored in transactional sys-
tems is not optimized for analysis and decision making [KRTT08|. Therefore, data from
transactional sources is extracted, transformed into a form that is compatible with ware-
house after removing inconsistencies and loaded in a data warehouse for further usage

10

2.1 Data Warehouse Concepts

[KC04]. As shown in Figure 2.1 data warehouse can further be used for analysis using
analysis tools like Online Analytical Processing (OLAP) and data mining to identify
patterns for forecasting.

Reporting

OLAP cube

Extraction
Transformation
Load

OLAP
cube

Data Marts
Data Warehouse
Mining

Figure 2.1.: Architecture of Data Warehouse adapted from [CD97|

Transactional Sources

In contrast to classical databases in which entities and their relationships are mod-
eled [CheT76], in data warehouse, the values (key business metrics) that are critical for a
business and the different aspects that can be used to analyze are modeled in a multidi-
mensional way [CCS93]. Critical values are generally numeric values and are called facts.
Examples of facts are quantity of products sold, amount of profit earned. Aspects are
the different perspectives that can be used for analysis of facts and are called dimensions.

Dimensions can be organized hierarchically to support multilevel analysis — analyses
at different granularity levels. An example of a hierarchy for a location dimension can
be country, state, area, city and place. Similarly, an example of a hierarchy for time
dimension can be year, quarter, month, week, date. The two examples can be used for
analyses of quantity of products sold (a fact) from location perspective at country, state,
area, city, place levels and per time unit.

The logical structure of data warehouse called dimensional schema (sometimes re-
ferred to as multidimensional schema) can be model with at least three model types:
star, snowflake and fact constellation schema according Kimball [KRTT08|. These model
types differ based on the difference in quantity and types of dimensions and facts. Out
of the given types, star schema and snowflake schema are the most discussed ones. A
schema is called star schema, if the dimensions surrounding a fact table are unnormal-
ized, whereas a schema is called snowflake if the dimensions surrounding a fact table are
normalized.

In contrast to Kimball, Inmon considers multidimensional data models as data marts

[Inm05] or specialist data warehouse system [ISNOS|. According to Inmon, multidimen-
sional implementation of a data warehouse is a special field of application and limits

11

2.1.1 Dimension

usage and flexibility of the data warehouse. Multidimensional data warehouses are im-
proved for using OLAP techniques. The term Online Analytical Processing was first
characterized by E. F. Codd in 1993 [CCS93| and the OLAP Council [OLATI0] defines
it as “category of software technology that enables analysts, managers and executives
to gain insight into data through fast, consistent, interactive access to a wide variety
of possible views of information that have been transformed from raw data to reflect
the real dimensionality of the enterprise as understood by the user.” The data ware-
house is the data repository and functionalities as the typical data warehouse operations
roll-up, drill-down, slice and dice are defined by the OLAP engine. Despite of Inmons
perception of a data warehouse system, one of the most common and most successful
implementation of data warehouses is Kimball’s multidimensional model in combination
with OLAP techniques. Therefore, the term data warehouse is generally used as a syn-
onym for the combination of a multidimensional data warehouse storage engine (OLAP
server [OLA10]) and a OLAP engine as interface for accessing and analyzing the data.
Further in this thesis, data warehouse will be considered as combination of OLAP server
and engine.

The following sections [2.1.1] and [2.1.2] closer examine definitions of the multidimen-
sional modeling approach for data warehouses. Characteristics of consistent aggregations
will be discussed in section[2.1.3] Section will provide formal definitions of the clas-
sical data warehouse operations. These definitions are then further used to define a fuzzy
data warehouse model in chapter [3]

2.1.1. Dimension

Lehner [Leh03] defines a dimension of a data warehouse as a partial ordered set of cat-
egory attributes with a functional dependency on each other and a generic top element.
Moreover, a category attribute exists, which defines the lowest level of hierarchy of the
dimension. Formally defined:

Definition 1 (Dimension |[Leh03]). A scheme of a dimension D is a set of partial
ordered category attributes ({D1,...,D,,Topp};—) where — describes the functional
dependency and Topp s a generic top level attribute in relation to — in a way that
Topp is functionally defined by all category attributes (Vi(1 < i < n) : D; — Topp).
Moreover, exactly one D; exists that defines all other category attributes and represents
therefore the lowest granularity (Fi(1 <1 <n)Vj(l <j<mn,i#j): D; — D;).

In a multidimensional model the dimension represents, following this definition, a hi-
erarchical composition of different attribute elements. The category attributes can be
sub-classified into the following groups:

e Primary attribute: This is the category attribute that represents the lowest
granularity of a dimension. Only one of this type exists per dimension.

12

2.1.2 Fact

e Top level attribute: This is the generic top level attribute of a dimension. Only
one top level attribute exists in a dimension.

e Classification attribute: This is the attribute defining the hierarchy of levels in
the dimension, excluding the primary attribute and the top level attribute. Several
attributes of this category may exist in a dimension and on one hierarchy level.

e Dimensional attribute: This attribute represents additional information, a
property, on a specific dimension hierarchy level, respectively for a specific clas-
sification attribute. Every classification or primary attribute may contain several
dimensional attributes.

The terminology of category attributes comes from statistical data based literature
and is commonly used there [Sho82|. Category attributes have a finite set of disjoint
discrete values which is also called category in the statistical terminology.

For example, Figure[2.2 (following Lehner in [Leh03]) shows a possible dimension “Pur-
chase order structure” with the category attributes: “Purchase order”, “Client”, “Country”
and “Region”. “Purchase order” is the lowest attribute and therefore considered as the
primary attribute. “Client”, “Country” and “Region” are classification attributes. The
dimension ends with the top level attribute. Several dimensional attributes as “Order
Nr.” or “Client Name” are indicated in the figure as well. Additionally, the right hand
tree structure shows instances of the different attributes of this dimension.

Dimensions play a fundamental role in multidimensional data warehouse systems.
They are the framework for the navigation in the data warehouse. The actual informa-
tion carrier are the facts. Dimensions are therefore used to aggregate, select and sort
the facts and performance indicators.

2.1.2. Fact

A fact is defined by Lehner as a base performance measure that is in a certain granular-
ity in the multidimensional data model [Leh03|. Tt is additionally characterized with a
summation type that defines its basic behavior for the aggregation over dimensions and
therefore the transition from one granularity level to the other. Formally:

Definition 2 (Fact [Leh03]). A fact F consists of a granularity G and a summation
type SumType: F = (G,SumType). The granularity G = {G1,...,G,} is a subset
of all category attributes of all in the multidimensional data warehouse scheme existing
dimensions with a dimension scheme DSy, ..., DS, in a way that:

1. Vi1<i<n)3j(1<j<n):G; € DS,

2.Vi(l<i<n)Vil<j<n)i#j:G — G,

13

2.1.2 Fact

Legend

generic top level attribute

classification attributes

primary attribute

Top Topp *
Region
Name
Region L Region 1
- Switzer

land
Country 4[Country 1 Country 2

dimensional attributes

%@DDU

Instances of the attributes

e

Daniel
Fasel

&

Client { Client 1 \

@\
Purchase
order PO 1 PO 2

Figure 2.2.: Example Dimension “Purchase Order Structure”

¢
d

The summation type based on [Leh03] and [LS97] can either be a FLOW, STOCK or
Value Per Unit type (a more detailed explanation can be found in section [2.1.3]).

Facts can be combined to form new performance indicators. As an example, the fact
“Revenue” and the fact “Total production cost” can be combined to form the performance
indicator “Profit”. These performance indicators can then be handled the same way as
facts concerning the aggregation over the dimensions. Lehner defines a performance
indicator with a granularity, a computing method over a non empty set of facts and a
summation type. Formally:

Definition 3 (Performance Indicator [Leh03]). A performance indicator K consists of
a granularity G, a computing method f() over a non empty set of facts F that exists

in the multidimensional data warehouse scheme and a summation type SumTyp: K =
(G, f(Fy, ..., F,),SumTyp).

The computing methods for a performance indicator can be classified in the following
groups:

e Scalar function as +, —, %, /, mod

14

2.1.3 Summarizability

e Aggregation functions as max(), min(), sum()

e Ordering functions

2.1.3. Summarizability

A data warehouse uses summarization functions for the aggregation of measures over
the dimensions. Depending on dimensional relations, hierarchical structures can be com-
plex and if the summarization of data is inconsistent, the result set of the corresponding
operations is erroneous. Raffanelli and Shoshani [RS90] defined a framework called sum-
marizability that describes characteristics for consistent aggregations. The framework is
based on earlier discussions about operations in statistical databases (Shoshani [Sho82]).
Based on Rafanelli and Shoshani [RS90|, Lenz and Shoshani [LS97| defined the neces-
sary conditions to guarantee summarizability in OLAP cubes. Data summarization and
dimension structures have to fulfill these conditions in order to provide consistent ag-
gregations.

The first condition for summarizability states that aggregation of elements over a
dimensional structure must always form disjoint subsets. Aggregating a fact over a di-
mension is disjoint if the category attributes form disjoint subsets over the fact instances.
Considering the example of the affiliation of students to a faculty, the condition of dis-
jointness is fulfilled if a student can only belong to one faculty at a time. If a student
belongs to several faculties, it is not possible to consistently aggregate students over
faculties anymore.

Figure a) shows a dimension “Student Affiliation” with its hierarchy. The cat-
egory attributes are “Student”, “Faculty” and “University”. In figure b) a disjoint
aggregation of the instances of the category attributes is shown. The category attribute
“Faculty” builds disjoint clusters over the “Student” (“Daniel Fasel” only belongs to “SES”
and “Michael Kaufmann” only belongs to “NAT”) and so does “University” over “Fac-
ulty”. With this dimension the calculation of the number of students at the university
will provide the exact result of two students. Figure c¢) shows a non disjoint aggrega-
tion. The student “Michael Kaufmann” belongs to more than one “Faculty” at the same
time. Therefore, without countermeasures, the calculation of the number of students at
the university will provide the incorrect result of three.

In addition to disjointness, summarizability defines the condition of completeness.
This condition requests that aggregated values on a hierarchy level cover the complete
value range of the hierarchy level below it. It is notable to say that completeness is
strongly dependent on the type of aggregation respective to its summation operation
type. If, for instance, all the students in a course given by the department for infor-
matics are summarized, the final number will contain students from the University of
Fribourg but probably also students from another university joining the BFN program.
Considering a dimension that aggregates all students in courses and courses to depart-

15

2.1.3 Summarizability

a) Dimension Student Affiliation b) Disjoint dimension Student Affiliation c) Non disjoint dimension Student Affiliation

University University
of Fribourg of Fribourg

Faculty @

Student Hanie
Fasel

University

Figure 2.3.: Disjointness Condition for Dimension Student Affiliation

ments, a summation of all the students attending courses from the department or a
summation of all students from the university attending the courses can be used as the
aggregation function. In the first aggregation all student have to be counted, whereas
in the second aggregation the students from external universities can be omitted, even
if they join the courses.

Figure [2.4] exemplifies the completeness condition on a dimension “Course”, repre-
sented in a). In b) the summation of all students joining the course “Linear
Programming Language” of the department “DiUF” is represented. Figure c) the
summation of students from the “University of Fribourg” joining the course “Linear Pro-
gramming Language” is shown. Both aggregations fulfill the condition of completeness
depending on the type of summation used; b) summation of all the students and c)
summation of all the students of the University of Fribourg.

The last condition of the summarizability is the type compatibility. Lenz and Shoshani
defined different types of measures, which characterize the behavior of the aggregation
of these measures over dimension hierarchies. The types of values are categorized in:
flow, stock and value per unit type. The type flow can be aggregated by a summation
function (SUM). For the type value per unit the SUM aggregation is never allowed.
The stock type can be aggregated with SUM as long it is not aggregated over the time
dimension. Aggregations by average (AVG), minima (MIN), maxima (MAX) and count
(COUNT) functions are allowed for all types. The following list explains the different
types in greater detail:

e FLOW: This type of summation allows all possible types of aggregation opera-
tions such as summation, product building, maximization, minimization, average
building, etc. A possible measure for a FLOW type fact is a quantitative measure

16

2.1.4 Star and Snowflake Schema

. . b) Dimension Course counting all the c) Dimension Course: counting all the students
a) Dimension Course .] . h 2
students joining a course from University of Fribourg joining a course
. . University University
University of Fribourg of Fribourg
Department
Linear Linear
BFN Studen Michae BFN Studen Michae

Figure 2.4.: Completeness Condition in a Dimension “Course”

like the “Revenue” of a company.

e STOCK: This type of summation allows all possible types of aggregation like the
FLOW summation type on all dimensions except the dimension time. A possible
measure for a STOCK type fact is “amount of articles in a stock”.

e Value Per Unit (VPU): This type of summation allows only the aggregation
operations: minimization, maximization and average building. A possible measure
for a VPU type fact is “customer satisfaction”.

2.1.4. Star and Snowflake Schema

There are two well known standards for modeling a multidimensional data structure in a
data warehouse. One technique is to use databases with multidimensional data structure
storage concepts. These systems are often referred as multidimensional OLAP systems
(MOLAP) and some MOLAP systems are commercially used [Oral(]. Because of the
native multidimensional storage engine, MOLAP system are interesting for usage as data
warehouse[VS00, Vas98]. In reality however, often traditional relational database sys-
tems are used as they are much wider spread and are more accepted in business. In order
to create a data warehouse based on a relational database system, the multidimensional
data aspect has to be modeled on top of classical entities and relationships. Relational
databases used as data warehouse are called relational OLAP (ROLAP) systems. Due
to the widespread usage of relational database systems, ROLAP systems can be more
easily integrated into existing business environments and relational data can be stored
more efficiently than in MOLAP systems [VS99|. For projecting multidimensional data

17

2.1.4 Star and Snowflake Schema

structures in relational database systems different modeling techniques have been pro-
posed. The most important modeling approaches are star, snowflake and constellation
schema.

The star schema was initially proposed by S. Peterson in 1994 [Pet94]. In a star
schema, the data is organized in one fact table and multiple dimension tables. The
business measures are stored in the fact table. All dimensional objects, the category
attributes, are stored in the dimension tables. For each dimension, one dimension table
exists. The fact table and dimension tables are interconnected using a primary - foreign
key relation. Figure [2.5]shows a star schema with one fact table and four dimension ta-
bles: the dimension “Time” and three generic dimensions. The fact table has a primary
key, for each dimension a foreign key and a business measure attribute. The dimension
tables have category attributes and a primary key attribute. Each dimension is refer-
enced in the fact table with a primary - foreign key relation. The relation dimension to
fact is a 1:m relation as a fact instance always has exactly one dimension instance per
dimension and a dimension instance can have several fact instances related.

Dimension Table Time Dimension Table 2
Primary Key Dimension Time Primary Key Dimension 2

Day Category attribute 1

Week Category attribute 2

Month Category attribute 3

Year Category attribute 4

Fact Table
Primary Key Fact
Foreign Key Dimension Time
Foreign Key Dimension 2
Foreign Key Dimension 3
Foreign Key Dimension 4
Business measure

Dimension Table 4 Dimension Table 3
Primary Key Dimension 4 Primary Key Dimension 3
Category attribute 1 Category attribute 1
Category attribute 2 Category attribute 2
Category attribute 3 Category attribute 3
Category attribute 4 Category attribute 4

Figure 2.5.: Star Schema

It must be noted that in the star schema, dimension tables are unnormalized. The
dimension “Time” demonstrates this unnormalized form of table. A week has seven days,
therefore, every week instance appears seven times in the table. The dimension table is
not in the third normal form [Cod71]. The advantage of unnormalized dimension tables
lies in the query performance of the data warehouse. Expensive and complex joins over
dimension hierarchies can be omitted with unnormalized tables. As dimension tables in
general only consume about 5% of the data storage in a data warehouse and dimension

18

2.1.5 Classical Operations

updates are handled centralized [PJ01], normalization is not a crucial element for data
consistency in data warehouses.

When the dimension tables of a star schema are normalized, a snowflake schema re-
sults. Similar to a star schema, in the snowflake schema the data is organized in a fact
table and in multiple dimension tables. But in contrast, for each dimension hierarchy
a dedicated table is used. Primary to foreign key relations are used to interconnect the
different hierarchies of a dimension. It is not necessary to normalize all the dimension
tables. When dimensions are highly unequal in storage size, it might be more convenient
to normalize dimensions with big data size and to leave small dimensions unnormalized.
Figure [2.6] shows a snowflake schema of a data warehouse. Dimension “Time”, “3” and
“4” are normalized, whereas dimension “2” is still unnormalized. Between the hierarchy
levels of a dimension 1:m relations exist. An instance of a hierarchy level always be-
longs to exactly one hierarchy instance on the next higher level. On the other hand,
an instance from a hierarchy level is composed of one or more instances from the next
lower level. This relation is a logical consequence of summarizability (see section .
In some cases complex - complex relations might exist in dimension hierarchies. To
solve this issue, bridge tables as described by Kimball [Kim98| can be used. The dimen-
sion time in this case has two hierarchies: day — week — year and day — month — year.

Despite the fact that normalized dimension tables lead to more complex data ware-
house queries, the snowflake schema provides greater flexibility in managing the dimen-
sions because different hierarchies and levels are separated. As long as the referential
integrity [Cod87] is maintained, hierarchy levels of complex dimensions can be updated
independently [LLO3|. In order to optimize query performance, several data warehouse
products as DB2 have mechanisms implemented to project normalized dimensions into
unnormalized dimensions [Pur02]. The fuzzy data warehouse model described in chapter
uses the snowflake schema. The main intention for using snowflake schema is the pos-
sibility to more easily identify elements that have to be classified fuzzily in normalized
dimensions.

Kimbal [KRTT08| describes one more possible schema for ROLAP systems: fact con-
stellation schema. In this schema, multiple fact tables with different business measures
can share the same dimension structure. The advantage of a fact constellation schema
is the ability to implement different types of facts and granularities of facts in one data
warehouse. This can improve the application area for the data warehouse but compli-
cates the data warehouse model.

2.1.5. Classical Operations

E. F. Codd defined in 1993 [CCS93| the specialized OLAP operations drill-down, roll-
up, slice and dice. According Codd [CCS93| and the OLAP Council [OLA10] the OLAP
operations, further called classical data warehouse operations, can be described shortly
as follows:

19

2.1.5 Classical Operations

Dimension Time

Dimension Table Year

Primary Key Year
Year

T~

Dimension Table Month Dimension Table Week

Primary Key Month
Foreign Key Year

Primary Key Week
Foreign Key Year

Month

Week

\/

Dimension Table Day

Primary Key Day
Foreign Key Week
Foreign Key Month

Day

Dimension 4

Dimension Table Category
attribute 1

Fact Table

Primary Key Category attribute 1
Foreign Key Category attribute 2
Category attribute 1

T

Primary Key Fact
Foreign Key Day
Foreign Key Dimension 2

Foreign Key Category attribute 1 Dimension 3
Foreign Key Category attribute 1 Dimension 4

Business measure

Dimension 3

Dimension Table Category
attribute 1

Dimension Table Category
attribute 2

Primary Key Category attribute 2
Foreign Key Category attribute 3
Category attribute 2

[

Dimension Table Category
attribute 3

Primary Key Category attribute 3
Foreign Key Category attribute 4
Category attribute 3

[

Dimension Table Category
attribute 4

Primary Key Category attribute 4
Category attribute 4

Dimension Table 2

Primary Key Dimension 2
Category attribute 1
Category attribute 2
Category attribute 3
Category attribute 4

Primary Key Category attribute 1
Foreign Key Category attribute 2
Category attribute 1

T

Dimension Table Category
attribute 2

Primary Key Category attribute 2
Foreign Key Category attribute 3
Category attribute 2

[

Dimension Table Category
attribute 3

Primary Key Category attribute 3
Foreign Key Category attribute 4
Category attribute 3

[

Dimension Table Category
attribute 4

Primary Key Category attribute 4
Category attribute 4

Figure 2.6.: Snowflake Schema

The Roll-up operation consolidates the values of a dimension hierarchy to a value
on the next higher level.

The Drill-down operation is used to navigate from top to bottom in a dimension.
It is the opposite operation of the Roll-up operation.

The Slice operation extracts a subset of values based on one or more dimensions
using a dimension attribute to define the subset.

The Dice operation extracts a subset of values based on more than one dimension

20

2.1.5 Classical Operations

using more than one dimension attribute to define the subset. It is an extended
version of the Slice operation.

In order to support these operations in ROLAP systems, several extensions for the
SQL syntax have been proposed. In the next paragraphs a collection of such SQL ex-
tensions are discussed. This discussion will give a first look at how the classical data
warehouse operations can be implemented in relational database systems. In a further
step, two approaches of defining a multidimensional data cube are presented. These
discussions are more general and are not restricted to relational database systems and
SQL. Based on the multidimensional data cube approaches, the classical operations are
finally defined and discussed in greater detail. These definitions of the classical data
warehouse operations are then used as the basis for the extension of the operations in
the fuzzy data warehouse.

Gray et al. propose extensions for the GROUP BY clause in SQL Statements |[GCB™97].
They propose special cube and roll-up operators in the GROUP BY clause. These new
operators enable ordering and aggregating data on multiple dimensions. Agrawal et
al. are proposing a similar CUBE BY operator which replaces the GROUP BY clause
[AAGT96|. Listing shows a SQL statement[] with the roll-up operator from Gray et
al. in which a fact is rolled-up over the dimensions time and region and grouped by the
product movie (see example .

Example 1. The example considers a data warehouse with a fact table containing the
fact revenue and 3 dimensions region, movie and time. The hierarchies for the dimensions
are as follows:

e region: store — city — region
e movie: movie
e time: day — month — year

The dimension tables are named as dim DIMENSION and are interconnected to
the fact table using a join with primary - foreign key relation (ex. fact.fk_region =
dim_region.pk). The result set (with artificial figures) is a table as shown in Figure [2.7]

select movie, city, "year", sum(revenue) as revenue

from fact
join dim region on fact.fk region = dim region.pk
join dim_ movie on fact.fk movie = dim_ movie. pk
join dim time on fact.fk time = dim time.pk

!The SQL statements in this thesis are in general compliant to the ISO SQL Standard
SQL:2008|ISO08|. However, the database engine used for realizing the fuzzy data warehouse is
PostgreSQL 8.4 and therefore some statements might have PostgreSQL specific characteristics.

21

2.1.5 Classical Operations

group by movie
roll—up "year"("time") as "year", city(region) as
city

Listing 2.1: SQL Example with Roll-up Operator

movie ‘ city ‘ year ‘ revenue

Cit1 Year1 150
Mov1 Cit2 Year1 236

Cit1 Year2 552

Git1 Year1 952
Mov2 Cit2 Year1 157

Cit1 Year2 555

Figure 2.7.: Possible Result Set of Query in Listing

In Listing an SQL statement with the cube operator from Gray et al. in the
GROUP BY clause is shown using the same example data warehouse as above. The
cube operator aggregates the measure to the hierarchy levels city in dimension region
and year in dimension time. A possible result set is shown in Figure 2.8

select city, "year", sum(revenue) as Revenue

from fact
join dim region on fact.fk region = dim region.pk
join dim_ movie on fact.fk movie = dim_ movie. pk
join dim time on fact.fk time = dim time.pk

group by cube city (region) as city, "year"("time") as "year"

Listing 2.2: SQL Example with Cube Operator

city ‘ year ‘ revenue
Cit1 Yeari 150
Cit2 Year 236
Cit1 Year2 552
Cit1 Year 952
Cit2 Year1 157
Cit1 Year2 555

Figure 2.8.: Possible Result Set of Query in Listing
Chadhuri et al. analyzed the effectiveness of SQL queries on multidimensional data

space. They proposed transformation of the SQL query in order to push the GROUP
BY clause in earlier branches of a query tree [CS94]. For SQL views with aggregate

22

2.1.5 Classical Operations

function Chadhuri et al. proposed similar improvements [CS96|. A pull-up transforma-
tion is proposed for optimizing queries with aggregated views. Additionally they present
algorithms that apply these transformations in a cost effective way.

Since around 1998 Microsoft developed the SQL extension Multidimensional Expres-
sion language (MDX) which is used in the Microsoft SQL Server product for querying
multidimensional data sources [Mic10]. MDX gained a lot of acceptance and is today
often considered as quasi standard for SQL extensions for ROLAP systems. Many other
products such as the Pentaho Mondrian OLAP Server [Penl0] use MDX as their primary
query language.

Other attempts have been made to formulate operations on multidimensional data
structure beyond SQL. These attempts follow the notation of multidimensional data
cubes and define basic operations on cubes. In this context, basic operation are not
the classical data warehouse operations prior mentioned. Basic operations in these ap-
proaches are kept more general and the classical data warehouse operation can be derived
from them. The advantage of these definitions is the independency of a specific query
language like SQL. They are therefore more generic and more portable to other tech-
nologies such as MOLAP systems. In the next paragraphs, two approaches for multidi-
mensional cubes according Vissiliadis [Vas98| and Agrawal et al. [AGS97] are discussed
in greater detail. These approaches are then further used for defining cubes in this thesis.

Vassiliadis proposed a notation of basic cube, cube and multidimensional database as
follows [Vas9§|:

Definition 4 (Basic cube [Vas98|). A basic cube is as a 3-tuple < D, L, R > where
D =< Dy,...,D,,M > is a list of dimensions D and a measure (a fact) M. L =<
DLy,...,DL,, ML > is a list of dimension levels DL, aggregated measures ML and
R is a set of cells v = {x1,...,x,,m}, where Yk € [1,...,n|,2x € dom(DL;) and
m € dom(M L) represents the instance values of the basic cube.

For the example[l] a basic cube may take the following form: << region, product, time,
revenue >, < city, movie, day, aggregated revenue >, R > where R is the set of cells
represented by Figure [2.9]

region movie time revenue
Cit1 Mov1 Day1 531
Cit1 Mov1 Day?2 548
Cit1 Mov2 Day1 411
Cit1 Mov2 Day?2 854
Cit2 Mov1 Day1 813

Figure 2.9.: R of Basic Cube

23

2.1.5 Classical Operations

Definition 5 (Cube [Vas98|). A cube is a 4-tuple < D, L, Cy, R > where D =< Dy, ...,
Dy, M > is a list of dimensions D and a measure (a fact) M. L =< DLy,...,DL,, ML >
s a list of dimension levels DL and aggregated measure M L. Cy is a basic cube with the
restriction ¥ d € C.D 3 d" € Cy.D : d = d' and R is a set of cells x = {x1,...,x,,m},
where Vk € [1,...,n],zx € dom(DL;) and m € dom(ML) represents the instance values
of the cube.

A cube can therefore be denoted as << region, product, time, revenue >, < city, mo-
vie, month, aggregated revenue >, << region, product, time, revenue >, < city, mo-
vie, day,aggregated revenue > R, >, R > where Ry, is represented in Figure [2.9/and R

in Figure [2.10]

region movie time revenue
Cit1 Mov1 Month1 531
Cit1 Mov1 Month2 548
Cit1 Mov2 Month1 411
Cit1 Mov2 Month2 854
Cit2 Mov1 Month1 813

Figure 2.10.: R of Cube

The aim of defining a cube and a basic cube is the traceability of operations. Suppose
that a data warehouse operation will calculate the average yearly revenue of movies
based on the cube with monthly revenues. It is necessary to go back to daily revenue,
the lowest granularity, in order to give a meaningful result on yearly level. If the basic
cube of the cube monthly revenue is not known, it is not possible to go to a lower level.
No prediction can be made how the daily revenues have been aggregated to monthly
revenues. Therefore, one can say that every cube representing a data collection in the
data warehouse owns a basic cube. One pure basic cube exists in a data warehouse
representing the lowest granularity.

Definition 6 (Multidimensional database [Vas98|). Finally, a multidimensional database
1s a couple < D, C > where D is a set of dimensions and C' is the basic cube representing
the lowest granularity.

Another approach for modeling multidimensional cubes is presented by Agrawal et
al. [AGS97]. Agrawal et al. proposed a modeling framework in which dimensions and
measures are treated symmetrically [AGS97|. The framework defines a multidimensional
data cube with a set of basic algebraic operations that are minimal; none of the opera-
tions can be replaced with a combination of other operations. The proposed operators
show similarities to the relational algebra [Cod70]. It aimed to express functionalities of
multidimensional databases as close to relational algebra as possible. Consequently, the
operators can be easily projected to SQL statements [AGS95].

24

2.1.5 Classical Operations

Definition 7 (Cube [AGS9T]). A cube is composed of:
e k dimensions, with a name D; and a domain of values dom;.

e [Llements that define the a mapping E(C) from domy X - -+ x dimy. The elements
are either 0, 1 or a n-tuple. E(C)(dy,...,dy) refers to an element at the position
dyi,...,dy in the cube C.

e n-tuple of names describing the n-tuple < X1,..., X, > element of C.

If the element of E(C)(dy, ... ,d) is 0, then no combination of dimensions values exists
in the database. 1 indicates the existence of a value. n-tuples indicates additional infor-
mation for that dimension combination. 1 and n-tuple elements can not be intermixed.
No distinction is made between measures and dimension. Measures are represented as
dimension.

Following Agrawal et al., figure represents a cube using two dimension product
and region. The measure revenue is transformed into a dimension. The elements of
the cube are representing the existence of such a dimension combination. Therefore,
E(C)(Dayl,411, Mov2) = 1 defines the existence of a data entry with revenue = 411
for time entry Dayl and article Mov2.

A
time
[~ Day2
-::1\
. I Day1
’ o _
= I T >
A Mov1 Mov2 product
/411
854

548

revenue

Figure 2.11.: Cube according Argrawal et al. [AGS97]

In contrast to the cube definitions of Vissiliadis, Agrawal et al. do not consider the
previous state of a cube. Therefore, once an operation is applied to the cube, all infor-
mation of the original cube is modified. For the definition of the Drill-Down operation

25

2.1.5 Classical Operations

in section the previous state of a cube is essential. As a consequence, the charac-
teristics of the cube definitions of Argrawal and al. and Vissiliadis have to combined in
the classical data warehouse operation.

Agrawal et al. defined operations for their cube definition. The following two op-
erations from Agrawal et al. are directly used for later definition of the classical data
warehouse operations.

Definition 8 (restrict [AGS97|). restrict(C, D;, P) = C" where D; is the dimension
to restrict and P is the predicate defining the restriction in a way that the domain
dom;(C') if1<j<kANj#i
) AN j s
() =\ p(dom, (€)
and E(C")(dy,...,dy) = E(C)(dy, ..., dg).

The restriction operator removes values of a dimension in a cube that do not sat-
isfy the condition defined in P. Figure illustrates on the left side a two di-
mensional cube with dimensions time and product. When the restriction operation
restrict(C, product, ¢ {Mov2}) is applied to the cube, all the elements belonging to the
dimension value Mov2 are removed. The resulting cube of the restriction operation is
illustrated on the right hand side in figure 2.12]

time time
Day2— <854> restrict(C, product, ¢ {Mov2} Day2—
Day1 — <548> <411> Day1 — <548>
T T > T >
Mov1 Mov2 product Mov1 product

Figure 2.12.: Restriction Operation applied to a two dimensional Cube

Definition 9 (merge [AGS97|). merge(C,{[Du, fi],- -, [Dms finl}s ferem) = C" where
the dimensions Dy, ..., D,, are merged using the corresponding functions fi,..f, and
the elements are aggregated using the function f _elem in a way that the domain of
dimension D; in C' is
file)le € dom;(C), if1<i<m
. ! —
dom;(C") { domi(C)

and E(C')(dy,...,dy) = faem({tlt = E(C)d,...,d}) : fi(d}) = d; if 1 < i <
melse d, = d;}).

26

2.1.5 Classical Operations

The merge operation is an aggregation function. Values of the merging dimension are
combined together to form a new, more condensed value. Multiple merging dimensions
can be involved in this process but the combined values are always belonging to the
same dimension. For each involved dimension, the merging process is executed sepa-
rately. The elements are aggregated to the new cube using the f..,, function.

Based on the cube and the operation definitions by Vassiliadis [Vas98| and Agrawal
et al. [AGS97], the classical OLAP operations roll-up, drill-down, slice and dice can be
defined. These definitions are generic enough to be applicable on different technologies
and query languages but precise enough to be able to clearly formulate an OLAP oper-
ation on a concrete data warehouse example as depicted in Chapter [

Example 2. An example data warehouse is used for visualizing the operations. The
data warehouse consists of a fact table with a measure revenue and three dimensions as
follows:

e dimension time with the hierarchy path day — month — year.
e dimension product with the hierarchy path movie — producer.

e dimension region with the hierarchy path store — city — region.

The snowflake schema of the example data warehouse is presented in Figure[2.13] The
key attributes in the tables are denoted with #PK for primary key and #FK for foreign
key.

Dimension Time Dimension Region
Fact

- Reai

Year Month Day #PK_Fact Store City egion
#PK_D. #FK_D #PK_Store #PK_Cit: #PK_Region

#PK_Year E#PK_Month 5 _Day _Day t S y_ g

Year #FK_Year #FK_Month #FK_SIOH_% #FK_City #FK_Region Region

Month Day #FK_Movie Store City

Revenue

Movie

#PK_Movie
#FK_Producer
Movie

I

Producer

#PK_Producer
Studio

Dimension Product

Figure 2.13.: Example Data Warehouse Snowflake Schema

27

2.1.5 Classical Operations

Every OLAP operation defined below will have the following characteristics:

e The dimension and dimension level are merged using a dot notation into one
variable in order to simplify the operation. Therefore, a dimension can be specified
as D = time or with including a dimension level as D = time.month.

e A dimension level always includes the dimension. Therefore, the term dimension
level specifies dimension and dimension level.

e Dimension levels in this context are similar to classification attributes as defined
in Section 2.1.Il The dot notation can be extended in order to integrate other
category attributes. A full path to a dimensional attribute month in dimension
level month of dimension time can be specified as D = time.month.month.

e In the context of the operations, a cube is a data collection of the data warehouse
which has the same characteristics as a basic cube defined in definition 4 As the
dimensions D are denoted in the dimension level L, D is redundant and can be
omitted (see definition [4)).

e The result set is a new cube. A result cube does not contain any information from
the preceding cube or the operation which created the result cube.

e Measures are not directly connected to a dimension or to a dimension level as in
definition 4] As dimension and dimension levels are merged in this cube definition,
the measures are extracted from D and denoted as independent element M. The
definition of a cube is adapted as follows:

Definition 10 (cube). A basic cube is a 3-tuple < D, M, R > where

e D =< Dy,...,D,,> is a list of dimensions, dimensions levels including the di-
mension or other category attributes including dimension levels and dimensions
separated by a dot.

e an aggregated measure (a fact) M

e R s a set of data tuples v = {x1,...,x,, m}, whereVk € [1,...,n| :) € dom(Dy,)
and m € dom(M) representing the instance values of the cube.

Constraint: Fvery element in D has to be of the same granularity (either dimension,
dimension level or category attribute). If a dimension has a granularity of a category
attribute and another dimension of dimension level, the first category attribute of the
dimension level is assumed.

28

2.1.5 Classical Operations

Roll-up

The roll-up operation is used to navigate a dimension upwards. For the dimension region
a roll-up operation is executed when the dimension level store is aggregated to the next
higher level city.

Agrawal, Gupta and Sarawagi [AGS97| defined a roll-up operation as a special case of
their merge operation that it is executed on one dimension. Hence, a roll-up operation
can be defined as merging a data cube C to a data cube C’ over one dimension D. In
this context a cube has to be understood as a data collection in the data warehouse. An
example would be a cube C that is a subset representing the daily revenues; the revenues
aggregated to the lowest hierarchy level of dimension time. Cube C can then be merged
into a cube C’ that is a data set representing the monthly revenues. This example is a
roll-up operation of the measure revenue over the dimension time.

In order to merge, see definition [from one cube to another over one dimension, a
function defining how the dimension levels are merged and a function defining how the
measures are aggregated have to be specified.

Definition 11 (roll-up). roll — up(C, D', fp, fm) = C" where C and C' are cubes (def-
inition [10)), D' is the dimension level to which is merged, fp is the dimension merge
function and f,, is the measure aggregation function.

The domain (domp) of D is a set containing the dimension category attribute instances
d. domp (C") is calculated by applying the function fp on the dimension category at-
tribute instances d of domp(C):

domp (C") = {fp(d) = d'|d € domp(C)}.

The measure me:(d) of each instance d is calculated by applying the function f,, to
each me(d) in regards to the aggregation function fp.

mor(d) = fu({tlt = mold) A fo(d) = d'}).

domiime montn(C') might be the set {January, February} in Example] The in-
stances of domyime montn(C') are composed of instances of domyime.day(C) = {Janua-
ry 1, ..., January 31, February 1, ..., February 28}. The function fp defines
{January 1, ..., January 31} — January and {February 1, ..., February 28} —
February. A operation roll —up(< time.day, revenue, R >, time.month, fq, SUM) roll-
up the daily revenue to monthly revenue.

The revenue of January 1 might be meg(Januaryl) = 8,000.— and January 31

me(January3l) = 5,000.— in the example. The function f,, is defined as summa-
tion and therefore the revenue of January is calculated as me(January) = 8,000. —

29

2.1.5 Classical Operations

+5,000.— = 13, 000.

In a ROLAP based data warehouses, function fp is implicitly given by the data struc-
ture of the dimension tables and the primary - foreign key relations. The function f,,
has to be specified explicitly in the query statement or in a meta schema of the data
warehouse that allows defining such properties in order to automatically generate ap-
propriate query statements.

Drill-down

With a Drill-down operation, values in a dimension level will be decomposed in values
of the lower dimension level. This operation is used to reveal more detailed levels of
data in a dimension. Take, for example, a dimension product in which all the movies
are summarized in producer of the movie, this dimension is composed of two hierarchy
levels: movies and producers. The drill-down operation in this case will provide a break-
down from a producer to its corresponding movies.

Drill-down is the opposite operation of roll-up. To be able to perform a drill-down, how
the category attribute instances are compound from the lower hierarchy level instances
must be known in advance. Considering yearly revenue in Example [2] the revenue of
the year 2010 can not drilled-down to monthly revenue, if the revenue of every month
in 2010 is not known in advance. Otherwise, one can decompose the revenue of 2010
in infinite ways. A roll-up operation defining the aggregation functions and the value
instances of the higher hierarchy level has to be executed before a drill-down operation.
Hence, the drill-down operation can be considered as a binary operation and formally

be defined as:

Definition 12 (drill-down). drill — down(C, D', f5*, f-') = C" where C and C' are

cubes according definition [10 D' is the dimension level to decompose, C = roll —
up(C", D, fp, fm) and f* respectively f;-* are the inverse function of fp respectively fo,.

Slice

The slice operation cuts out a slice from a data cube in the multidimensional space
of a data warehouse. For example, the cube C' =<< time.year, product.producer, re-
gion.city >, revenue, R > can be sliced using the value 2010 for the dimensional at-
tribute year. This will extract the revenue by all producer achieved in 2010 in each city.
A slice operation can formally be defined as,

Definition 13 (slice). slice(C,d,,) = C" where C' is a cube according to definition [1(]
and d,, € dom(D,,) is the element instance that slices the cube.

30

2.2 Concepts of Fuzzy Logic

For extracting the revenue of all producer in all cities in 2010, the slice operation
would be defined as follows:

slice(C =<< time.year, product.producer, region.city >,revenue, R >, time.year.-
year = 2010).

The slice operation is similar to the inverse restriction operation in definition [§|

Dice

The Dice operation cuts out a dice from a data cube in the multidimensional space of
a data warehouse. Dice is therefore an extended version of the slice operation as it is

a slice with multiple slicers. Slicers in a dice are combined using the logical operations
AND, OR or NOT. The dice operation can formally be defined as follows:

Definition 14 (dice). dice(C,{dpm,...,dx},{fm,- -, fi—1}) = C’" where C is the cube,
Vn € {m,...,k} : d, € dom(D,) are the element instances that slice the cube and
Veem,....,k—1: f, € {AND, OR , NOT} are the logical operator that combine the
slicers in a way that dy, fm dymat, .- dg—1 fe_1 d.

As an example of a dice operation, the cube C' =<< time.year, time.month, pro-
duct.movie, region.city >,revenue, R > can be diced in order to show the revenue of
all movies in city Fribourg in February 2010: dice(C =<< time.year, time.month, pro-
duct.movie, region.city >, revenue, R >, {time.year.year = 2010, time.month.month =
“February”, region.city.city = “Fribourg"},{AND, AND}).

Analogous to the slice operation, the dice operation corresponds to the inverse restric-
tion operation in definition [§

2.2. Concepts of Fuzzy Logic

This section presents the fundamental concept of fuzzy logic. The fuzzy logic is an ap-
plication of the fuzzy set theory presented in section that was first introduced by
Zadeh in 1965 [Zad65|]. Next, section presents a set of fundamental operations on
fuzzy sets. Based on the fuzzy set theory, the ambiguity of natural language can be
mathematically represented by linguistic variables. The concept of linguistic variables
is presented in section 2.2.2] Section finally provides an overview how fuzzy logic

is applied in various domains.

31

2.2.1 Fuzzy Set Theory

2.2.1. Fuzzy Set Theory

Zadeh first introduced fuzzy sets in 1965 [Zad65] as a "class of object with a continuum
of grades of memberships". It can be used to mathematically represent ambiguity of
classification. For instance, movies might be classified according their genre. A movie
can be a romance movie, a comedy, an action movie or a thriller. In this classification it
is not always possible to assign a movie to a single class. Often, movies belong to mul-
tiple classes at the same time but with different belonging. The movie "Lethal Weapon
(1987)" is an action and thriller movie but also contains comedy scenes. Consequently,
the movie can not be classified biunique into one set of the classification. In order to
truly represent this ambiguity in classification the fuzzy set theory can be applied.

Definition 15 (Fuzzy Set according [Zad65l, Zad75bl [ZZ80]). A fuzzy set A in M = {m},
also called universe of discourse [Zad75b], is characterized by a function pa(m) that as-
sociates to every element in M a number in the interval [0,1]. The numbers of the
interval [0,1] defines the belonging of element m to the fuzzy set A where 1 implies full
belonging and 0 implies no belonging at all. A fuzzy set A in M can be represented as
an ordered set of tuples {(m, pua(m))}.

Example 3. The movie "Lethal Weapon (1987)" (m4) of the set of all movies (M) can
belong to a certain degree to the fuzzy set "action movie" (A). The degree of belonging
is specified by the membership function p4(m;).

Considering the set of movies {” Lethal Weapon (1987)”,” Spaceballs (1987)”,” Wall
Street (1987)”}, the fuzzy set "action movie" might contain the following tuples:

"action movie” = {(” Lethal Weapon (1987)”,1), (” Spaceballs (1987)",0.6), ("Wall
Street (1987)”,0)}.

The movie "Lethal Weapon (1987)" fully (taction movie(Lethal Weapon (1987)) = 1)
belongs to the fuzzy set "action movie". Whereas, the movies "Spaceballs (1987)" and
"Wall Street (1987)" only belong to 0.6, respectively do not belong at all, to "action
movie".

Fuzzy Set Operations

The fuzzy set theory is extended with definitions for set theoretic operations. Zadeh
|Zad65] first defined basic operations. Over time, other authors have suggested additional
and alternative operations as in [DP80), DP85|, [Ham78, [Yag80, [Wer88|, [ZZ80, [Zim91]. The
following definitions provide an overview of a selection of fundamental fuzzy set opera-
tions and characteristics in order to provide a general understanding of fuzzy set theory.
Furthermore, different types of set operations that combine fuzzy sets are presented.
These set operations are presented in regard to the aggregation of fuzzy concepts later

32

2.2.1 Fuzzy Set Theory

described in section [3.4.2]

Definition 16 (Empty set [Zad65]). A fuzzy set is empty if the membership degrees of
every tuple is 0.

Definition 17 (Equal sets [Zad65]). Two fuzzy sets A and B are equal if the membership
degrees for every element m in the discourse of universe m is equal for fuzzy set A and B.

A=BifVvmeX: fa(x)= fp(z).

Definition 18 (Complement [Zad65|). The complement A" of a fuzzy set A is a fuzzy set
containing the membership degrees 1 — pa(m) for every element m in set M. Therefore,
the membership function of A" can be defined as:

wyim)=1—ps(m)V me M.

Definition 19 (a-level set [Zim91]). A set Aythat belongs to a fuzzy set A with at least
to a degree « is called a-level set:

Ao =(meM:pa(m) > a).

An a-cut 1s consequently an operation that selects an a-level set from a fuzzy set.

When regarding the fuzzy set "action movie" defined in example [3| an a-level set
"action move”(4 could be extracted by applying an a-cut of 0.4 to the fuzzy set. The
resulting fuzzy set is then as follows:

"action move” o4 = {(” Lethal Weapon (1987)",1), (" Spaceballs (1987)”,0.6)}.

Definition 20 (Convexity of a fuzzy set [Zad65l, [Zim91]). A fuzzy set A is convex if:
pa(Amy + (1 = XN)mg) > min(pa(my), pa(ms)), where my,mg € M, X € [0, 1].

Alternatively, it can be said that a fuzzy set is convex if all a-level sets are conver.

Definition 21 (Cardinality of a fuzzy set [Zad96|, [Zim91]). The cardinality of a fuzzy
set A is defined as:

NCount(A) =, cp tha(m)

33

2.2.1 Fuzzy Set Theory

The relative cardinality can consequently be defined as:

|ZCount(A)|
|IECount(A)|| = ==

Different set operators have been proposed for combining fuzzy sets. These opera-
tors can be grouped into three main categories: triangular norms (t-norm), triangular
conorms (t-conorms) and averaging operators. According to Dubois and Prade, t-norm
and t-conorm can be defined as follows [DP85l [DP80]:

Definition 22 (t-norm [DP8(0, [Zim91]). t-norm operators are associative, commutative
and monotonic two-valued functions that map [0,1] x [0,1] into [0,1]. The following
conditions have to be satisfied by the t-norm operator t:

o #(0,0) = 0; t(pa(m), 1) = t(1, pa(m)) = pa(m), m € M

o t(pa(m), pp(m)) < t(uc(m), pp(m)), if pa(m) < pe(m) and pp(m) < pp(m)
o t(pa(m), pp(m)) = t(pup(m), pa(m))

o t(pa(m), (up(m), pc(m))) = t((pa(m), ps(m)), pc(m))

The t-norm operators generally define intersections of fuzzy sets.

Definition 23 (t-conorm [DP85, [Zim91]). ¢-conorm operators are associative, commuta-
tive and monotonic two-valued functions that map [0, 1] x [0, 1] into [0,1]. The following
conditions have to be satisfied by the t-norm operator s:

e 5(1,1) =1; s(pa(m),0) = s(0, pa(m)) = pa(m), m € M

o s(pa(m), up(m)) < s(uc(m), pp(m)), if pa(m) < pc(m) and pp(m) < pp(m)
o 5(pa(m), pp(m)) = s(up(m), pa(m))

o s(pa(m), (us(m), pc(m))) = s((pa(m), ps(m)), po(m))

The t-conorm operators generally define unions of fuzzy sets.

Alsina defined in [Als83] the mapping function which can transform any t-conorm
function into a t-norm:

t(pa(m), pp(m)) =1 —s(1 — pa(m),1 — pp(m))

The following paragraphs describe the definitions of Zadeh’s union and intersection
operation. The union function is of type t-conorm and uses a maximum function for
combining fuzzy sets. Whereas, the intersection function is a t-norm function and uses
the minima operation in order to combine the fuzzy sets.

34

2.2.1 Fuzzy Set Theory

Definition 24 (Union [Zad65]). The union of two fuzzy sets AU B results in a third
fuzzy set C' with the following membership function:

pc(m) = mazpa(m), ug(m)], where m € M.

Definition 25 (Intersection [Zad65|). The intersection of two fuzzy sets AN B results
n a third fuzzy set C with the following membership function:

pc(m) = min[pa(m), pg(m)], where m € M.

Example 4. In order to exemplify the union and intersection operation on fuzzy sets,
another fuzzy set "thriller movie" is added to example [3 which contains the following
tuples:

"thriller movie” = {(” Lethal Weapon (1987)”,0.7), (" Spaceballs (1987)”,0.0), (" Wall
Street (1987)",1)}.

The union of the fuzzy sets "action movie" and "thriller movie" is as follows:

"action movie” U "thriller movie” = {max[(” Lethal Weapon (1987)”,1), (” Lethal W ea-
pon (1987)7,0.7)], maz|[(” Spaceballs (1987)”,0.6), (" Spaceballs (1987)”,0.0)], max[(” Wall
Street (1987)”,0), ("Wall Street (1987)”,1)]} = {(” Lethal Weapon (1987)”, 1), (” Space-
balls (1987)”,0.6), ("Wall Street (1987)”,1)}

The intersection of the fuzzy sets "action movie" and "thriller movie" is as follows:

"action movie” N thriller movie” = {min|(” Lethal Weapon (1987)", 1), (" Lethal W ea-
pon (1987)”,0.7)], min[(” Spaceballs (1987)”,0.6), (" Spaceballs (1987)”,0.0)], min[(” W all
Street (1987)”,0), ("Wall Street (1987)”,1)]} = {(” Lethal Weapon (1987)”,0.7), (" Space-
balls (1987)”,0), ("Wall Street (1987)”,0)}

Other t-norm and t-conorm operators for fuzzy sets have been proposed by Dubois
and Prade [DP85] [DP80|, Hamacher [HamT78|, Yager [Yag80|, Gilles |Gil76] and Mizu-
moto [MTSI].

In contrast to t-norm and t-conorm operators, the averaging operators combine fuzzy
sets in a way that the resulting membership degree lies between the minima and the
maxima of the membership degrees of the combined fuzzy sets. According to empirical
studies of Thole et al. [TZZ79|, the averaging operators are close to human perception
of combining fuzzy sets. For an overview the averaging operator fuzzy and, fuzzy or
[Wer88| and the compensatory and [ZZ80) are defined and then discussed in example [5|

35

2.2.1 Fuzzy Set Theory

Definition 26 (Fuzzy AND and Fuzzy OR [Wer88|). The fuzzy AND operator can be
defined as:

pand(pa(m), pp(m)) = yxminfpa(m), pp(m)]+E2eAGEECED) Cphere € M, y €
[0,1].

The fuzzy OR operator can be defined as:

Hor(ta(m), pus(m)) = v x mazfpa(m), pp(m)]+ E2 AT) Syhere m € M, y €
0, 1].

The v parameter indicates how close the fuzzy and operation goes to the strict min-
ima, respectively how close the fuzzy or operation goes to the strict maximum. If v is
1 then the fuzzy and is the same operation as the intersection and the fuzzy or as the
unton. When 7 equals to O then the arithmetic mean of the fuzzy sets is calculated.

An average operator that combines fuzzy sets using a combination of the algebraic
product and the algebraic sum is the compensatory and defined by Zimmermann and
Zysno [ZZ80]. According to empirical studies from Zimmerman and Zysno, this operator
performs well for aggregation of fuzzy set in the field of human decision making processes
[Z7Z80).

Definition 27 (Compensatory and [ZZ80]). The compensatory and can be defined as
follows:

faicomp(m) = (ITiz pa (m) (1 — [T= (1 — pi(m)))” where m € M,0 <y < 1.

The v operator defines where the compensatory and is located between an algebraic
sum and the algebraic product. If v equals 1 the pure algebraic product is used which
corresponds to a logical and. Otherwise, the pure algebraic sum representing a logical or
15 used.

Example 5. In order to exemplify the fuzzy and, fuzzy or and compensatory and oper-
ators the two fuzzy sets "action movie" and "thriller movie" are combined by first using
a v operator of 0.5. For the fuzzy and the resulting fuzzy set "fuzzy and action, thriller
movie" will become:

” fuzzy and action, thriller movie” = {(” Lethal Weapon (1987)”, ttanda(faction movie(
” Lethal Weapon (1987)”), tinritier movie(” Lethal Weapon (1987)7))), (" Spaceballs

(1987)", tand(taction movie(” Spaceballs (1987)"), ftnritier movie(” Spaceballs (1987)"))),
("Wall Street (1987)”, ttand(Haction movie("Wall Street (1987)"), tunritier movie(” Wall

36

2.2.1 Fuzzy Set Theory

Street (1987)")))}.

Nand(,uaction movie (” Lethal Weapon (1987)7’)7 Hthriller movie (” Lethal Weapon (1987)”)) =
0.5 x min(1,0.7) + E=02AR0D _ g 775
Hand(Haction movie(” Spaceballs (1987)"), tinritier movie(” Spaceballs (1987)7)) = 0.5 x
min(0.6,0) + 1=02A0640) _ () 15

(
,u(md(uactwn movie (" Wall Street (1987)"), tnritier movie(”Wall Street (1987)”)) = 0.5 X
(0,

1)+ (1=0.5(0+1) _ (95

min B

? fuzzy and action, thriller movie” = {(” Lethal Weapon (1987)”,0.775), (" Space-
balls (1987)”,0.15), ("Wall Street (1987)”,0.25)}

The resulting set for the fuzzy or "fuzzy or action, thriller movie" will be calculated
accordingly and will become:

" fuzzy or action, thriller movie” = {(” Lethal Weapon (1987)”,0.925), (" Space-
balls (1987)”,0.45), ("Wall Street (1987)”,0.75)}

A fuzzy set calculated using the compensatory and for combining the two fuzzy sets
"action movie" and "thriller movie" will be calculated as described next. Again, the 7
operator equals to 0.5.

”comp and action, thriller movie” = {(” Lethal Weapon (1987)”, ticomp(” Lethal W ea-
pon (1987)")), (7 Spaceballs (1987)", ficomp(” Spaceballs (1987)")), ("Wall Street (1987)”,
Leomp("Wall Street (1987)7))}.

87)") = (1x0.7) 1795 x (1—((1—-1)x (1— 07))) 05 = (.837
(0.6 x 0)3709) x (1 — ((1 —0.6) x (1—0))) =0
= (0x DI % (1-((1-0)x (1-1)))* =0

"comp and action, thriller movie” = {(” Lethal Weapon (1987)”,0.837), (" Space-
balls (1987)”,0), ("Wall Street (1987)”,0)}.

/Lcomp(’7 Lethal Weapon (
teomp(” Spaceballs (1987)7) =
Peomp("Wall Street (1987)”)

When using a 7 operator equal to 1 for all three operations, the resulting fuzzy sets
are as follows:

" fuzzy and action, thriller movie” = {(” Lethal Weapon (1987)”,0.7), (" Space-
balls (1987)”,0), ("Wall Street (1987)”,0)} which is the same result as the intersection
operation in example [4]

? fuzzy or action, thriller movie” = {(” Lethal Weapon (1987)",1), (" Spaceballs

(1987)”,0.6), ("Wall Street (1987)”,1)} which is the same result as the union operation
in example [4]

37

2.2.2 Linguistic Concepts

"comp and action, thriller movie” = {(” Lethal Weapon (1987)” 1), (” Spaceballs
(1987)7,0.6), ("Wall Street (1987)",1)}.

Conversely, applying a v operator that equal to 0 will produce the following results:

? fuzzy and action, thriller movie” = {(” Lethal Weapon (1987)”,0.85), (" Space-
balls (1987)7,0.3), ("Wall Street (1987)”,0.5)} which is the arithmetic mean of the
membership degrees.

" fuzzy or action, thriller movie” = {(”Lethal Weapon (1987)”,0.85), (" Space-
balls (1987)”,0.3), ("Wall Street (1987)”,0.5)} which is the same result fuzzy and op-
eration.

"comp and action, thriller movie” = {(” Lethal Weapon (1987)”,0.7), (" Spaceballs
(1987)7,0.6), ("Wall Street (1987)7,0)}.

When using a v operator equal to 1, the fuzzy and becomes the intersection function
as Zadeh defined it. Similar, the fuzzy or becomes the union operation. Having a « oper-
ator equal to 0, both operations take the arithmetic mean into consideration. The fuzzy
set calculated with the compensatory and uses the algebraic products for calculating the
membership degrees when v is 0. The algebraic product is a way to express the logical
and, which results in a membership degree between 0 and the lowest membership degree.
The algebraic product can therefore be used in place of the min operation used in the
intersection operation. A similar behavior can be observed when v is 1. In this case
the algebraic sum, as replacement of the max operator in the union operation, is used
for calculation which results in a membership degree between the highest membership
degree and 1.

Many more fuzzy set operations have been presented in literature that are not de-
scribed in this section. For further reading on fuzzy set operations, reference a collection
of selected papers of fuzzy set theory [ZKY96], Zimmermann’s book [Zim91] and Tilli’s
book [Til91].

2.2.2. Linguistic Concepts

Zadeh developed on top of the fuzzy set theory a means for mathematically representing
natural language [Zad78b]. Therefore, he defined a linguistic variable which has words
or sentences as its values [Zad7hcl [Zad75al, [Zad75b]. The values of the linguistic variable,
further called linguistic terms, are projected on a universe of discourse. Fuzzy sets are
used to define the degree of membership with which a value might belong to a linguistic
term. Zadeh defines a linguistic variable as follows:

38

2.2.2 Linguistic Concepts

Definition 28 (Linguistic variable [Zad75al). A linguistic variable is a quintuple (X,
T(X),G, M, F) defined as follows:

e X is the name of the linguistic variable

o T(X) is the set linguistic terms of X

G represents a syntactic rule that generates the set of linguistic terms

M is the universe of discourse

e [is a semantic rule that defines for each linguistic term its meaning in the sense
of a fuzzy subset on U

Example 6. To illustrate a linguistic variable, consider a set of movies. Each movie has
a specific runtime. A universe of discourse can now be created as the set of all runtimes
of the movies in minutes. Next, a linguistic variable duration can be defined. Duration is
further partitioned in a set of linguistic terms {very short, short, medium, long, very
long}. Finally, for each movie runtime, belonging to the linguistic term can be defined
using a semantic rule. The semantic rule for defining the fuzzy subsets by linguistic
terms is also called a membership function. The linguistic variable duration can there-
fore formally be defined as follows:

(X = duration, T(X) = {very short, short, medium, long, very long},G,M =
0,200], F)

Here, it is assumed that the runtime of the movies is from 0 to 200 minutes.

Figure illustrates the distribution of the fuzzy subset (F') over the set of all movie
runtimes. Each fuzzy subset (different shaded areas) is defined in its shape by the cor-
responding membership function. Which fuzzy subsets represents which linguistic term
is noted in the figure.

The linguistic variable duration represent a fuzzy concept that classifies all runtimes
of the movies into its linguistic terms. Figure decomposes the linguistic variable
duration and its elements to show the hierarchical structure of a linguistic variable. The
highest element is the linguistic variable represented by its name "Duration". The lin-
guistic variable is decomposed in its set of linguistic terms. Further, the linguistic terms
are projected on the universe of discourse by fuzzy sets.

It is now possible to fuzzily classify movies according their runtime to the linguistic

variable duration. For instance, a movie with a runtime of 90 minutes fully belongs to
the class medium duration and belongs with a membership degree of 0.2 to long duration.

39

2.2.2 Linguistic Concepts

4 ' .
Membership Function Membership function for Membership function for Membership function for Membership function for

1 for I'Iinguis;ic;?rm linguistic term "short" linguistic term "medium" linguistic term "long" linguistic term "very long"
very shol

o
®

o
)

Fuzzy subset

Ifi(: t:i:tic Fuzzy subset for the Fuzzy subset forthe X' Fuzzy subset for the
9 ,, linguistic term "short" unguistic term "medium" /'\ linguistic term "long"
term "very

short"

I
~

Belonging to the fuzzy subset
o
(&)

0.2

0 15 30 45 60 75 920 105 130 145 160 175 190

Runtime of movies in minutes

Figure 2.14.: Fuzzy Subsets of Linguistic Terms "very short", "short", "medium", "long"
and "very long"

Linguistic variable Duration

Linguistic Terms @

0.8

0.6
Fuzzy sets

according Figure 2.14 °°
0.4

0.2

15 30 45 60 75 90 105 130 145 160 175 190
Runtime of movies in minutes

Universe of discourse °

Figure 2.15.: Hierarchical Representation of a Linguistic Variable

In the consecutive chapters of this thesis, the term fuzzy concept is used as a synonym
for linguistic variable. The term fuzzy concept is chosen to better denote the usage of
fuzzy logic for classification.

40

2.2.3 Application of Fuzzy Logic

2.2.3. Application of Fuzzy Logic

Fuzzy logic has been applied to a broad domain of applications. This section gives a
short overview of some of these domains.

Soft Computing and Expert Systems

The term soft computing describes different techniques such as probabilistic reasoning,
neural networks, fuzzy systems and more. The common purpose of these techniques is
that they are all optimized for finding solutions with a certain imprecision and uncer-
tainty [Zad94|. Furthermore, they are adaptive and can change behavior during runtime.
Such soft computing applications are often used for controllers that have to constantly
react to environmental changes. Tilli [Til91] provides some examples of products that
implements fuzzy logic for their functionalities. An excerpt of products described by
Tilli [Til91] and where they implement fuzzy logic is provided in the following list:

e Laundry machines use fuzzy logic to control parameters such as quantity of water,
detergent and washing time.

e Vacuum cleaners use fuzzy logic to adapt the force of the airflow according the
characteristics of the surface that has to be cleaned.

e Cameras use fuzzy logic for their auto focus functionalities.
e Televisions use fuzzy logic for adapting color, contrast and brightness.

e Cars use fuzzy logic amongst other for the anti blocking brake system.

Expert systems according to Kasabov [Kas96] are "knowledge-based systems that
contain expert knowledge". They are optimized for solving problems in a specific area
and can act similarly as an expert in this domain. Kasabov and Woodford describe in
[KW99| how fuzzy logic can be used for expert systems to make them more adaptive and
intelligent. In [KW99| it is described how fuzzy neural networks are used for adapting
the rule system during runtime in an intelligent expert system.

Fuzzy Possibilities

Zadeh defines possibility theory on the basis of fuzzy sets [Zad78al. Possibility theory
describes how strong the possibility is that an element can be assigned to a fuzzy set. A
fuzzy set can then be extended to a possibility distribution. The next example illustrates
an application of a possibility distribution.

41

2.2.3 Application of Fuzzy Logic

Example 7. The linguistic term "long" of the linguistic variable duration in example
6| has a membership function that defines the following fuzzy set (the fuzzy set is not
complete but complete enough for an illustration of a possibility distribution):

long = {(80,0), (90,0.2), (95,0.4), (105, 0.7), (125, 1), (130, 1), (145,0.7)}

Using this linguistic term as a possibility distribution, a proposition such as "Space-
balls is a long movie" can be evaluated. The statement derived from the possibility
distribution is that the movie Spaceball might have a runtime of:

e 80 minutes with a possibility 0
e 90 minutes with a possibility 0.2

e 95 minutes with a possibility 0.4

105 minutes with a possibility 0.7

125 minutes with a possibility 1

130 minutes with a possibility 1

145 minutes with a possibility 0.7

In possibility theory the membership degree describes the possibility that an element
of the universe of discourse belongs to a fuzzy set. Therefore, it describes the vagueness
of the proposition. In contrast, a probabilistic distribution describes the likelihood that a
movie has a specific runtime. The difference between possibility and probability theory
is discussed by Kosko in greater detail in several publications [Kos90, [KI93| Kos94al,
Kos94b.

Fuzzy Concepts for Database Applications

Another domain of application is the usage of fuzzy logic in information systems. In
[GUP04], Galindo et al. propose new attribute types in relational database systems
for representing fuzzy sets. Furthermore, they distinguish between fuzzy data and
fuzzy meta knowledge that provides information about the fuzzy attribute types in
the database. Galindo et al. propose with this attempt a general framework for imple-
menting fuzzy logic in relational databases.

Other approaches have been proposed that use fuzzy logic for classifying or grouping
data in relational database systems [MSWO07, MSSV01, MMWS03, MWAS05, MSWO08,
Wer0g|. Schindler and Meier et al. [Sch98, [MSSVO01] provide a fuzzy database schema
for including linguistic variables in relational databases. With fCQL they further pro-
pose in [Sch98, IMSSV01, MMWS03, MWASO05, MSWO08| a SQL extension for fuzzily

42

2.2.3 Application of Fuzzy Logic

querying the relational database. Werro used this approach for an application on online
customer classification in [Wer(§].

Fuzzy logic is also applied to multidimensional databases such as data warehouses.
These approaches are discussed in greater detail in section [3.1 Data warehouses are
often analyzed using data mining techniques in order to generate new knowledge from
data. Fuzzy logic can also be applied in the domain of data mining as for instance pro-
posed by Nauck in [Nau00|. Nauck uses neuro fuzzy systems for knowledge discovery and
data mining. Kaufmann uses fuzzy induction in [Kaul2| for the discovery of relations
between attributes in databases.

In chapter 3] integration of fuzzy logic in data warehouse systems is discussed. Existing

approaches are first elaborated on in section [3.I] In the subsequent sections, a new
approach is proposed.

43

3 Fuzzy Data Warehouse

3. Fuzzy Data Warehouse

In this chapter, a fuzzy data warehouse concept based on meta table structure is pre-
sented. To start with, existing approaches are presented and analyzed in section 3.1} The
different fuzzy data warehouse approaches are then compared and evaluated in section
[B.1.4l In order to address the problems identified in section [3.1.4] section [3.2] presents
a new fuzzy data warehouse concept based on a meta table structure. Section [3.2] is
divided into four subsections. The first subsection B.2.1] discusses basic definition and
the meta table definition. Derived from the definitions in subsection [3.2.1] the fuzzy
data warehouse model is defined in subsection [3.2.2 The definition of the fuzzy data
warehouse allows different combinations of meta tables. Therefore, subsection [3.2.3| pro-
vides guidelines that explain how to combine meta tables in order to model different
fuzzy concepts. Based on the guidelines in subsection and the definition of the
fuzzy data warehouse model in subsection a fuzzy data warehouse meta model is
presented in subsection [3.2.4] Later, section [3.3] depicts a method which allows trans-
forming a classical data warehouse into a fuzzy data warehouse. This method takes
the guidelines and the fuzzy data warehouse meta model into account. Characteristics
of fuzzy concepts in a fuzzy data warehouse are presented in section |3.4l Finally, the
classical data warehouse operations and fuzzy data warehouse operations are discussed
in section

Figure [3.1] provides a visual overview of the structure of chapter 3] The arrows show
the direct dependencies of the different sections to each other.

3.1. Existing Research

Numerous efforts to integrate fuzzy logic with data warehouse have been reported. The
related work for this study has been divided into three sections. These categories are:
data warehouse approach for handling imprecise data (section , approaches for
implementing fuzziness into data warehouses (section and a framework for im-
plementing fuzziness into data warchouses (section . Finally, the related work is
further evaluated in section [3.1.4]

44

3.1.1 Data Warehouse Approaches for Handling Imprecise Data

Existing research (Section 3.1)

Literature Review (Section 3.1.1 - 3.1.3)

~

Evaluation of Literature (Section 3.1.4)

N7

Fuzzy Data Warehouse Concept (Section 3.2)

Definitions & Fuzzy Data Guidelines for
Fuzzy Meta Warehouse Modeling

Tables Model (Section 3.2.3)
(Section 3.2.1) (Section 3.2.2) -

!

Fuzzy Data Warehouse Meta Model (Section 3.2.4)

[l

N7 v

Method for Modeling a Fuzzy Data Warehouse
(Section 3.3)

Characteristics of Fuzzy Concepts in Fuzzy Data Warehouses
(Section 3.4)

<z 2

Operations in Fuzzy Data Warehouses (Section 3.5)

Figure 3.1.: Structure of Chapter

3.1.1. Data Warehouse Approaches for Handling Imprecise Data

Pedersen, Jensen and Dyreson [PJD99| describe techniques for handling imprecise data
in OLAP systems. Pedersen et al. define imprecise data as data with varying granular-
ities. A fact in an OLAP system is often collected from different source systems. These
source systems might differ in how they store its measures, for instance a blood pressure

45

3.1.2 Approaches for Implementing Fuzziness into Data Warehouse

value can be stored as a decimal value with precision 2 or with precision 1. OLAP
systems in general expect to have all instances of a fact uniform. Therefore data is often
merged to the least precise unit. In order to circumvent this drawback, Pedersen et. al
allow varying precision in OLAP systems and test before executing a query if imprecise
data is involved in the process. In that case, the imprecise data is checked to see if it
is still precise enough to answer the query. Otherwise, alternative queries are proposed.
The techniques to handle imprecise data are demonstrated by medical data of diabetes
patients in [PJD99]. The long time blood sugar level is used to show imprecise data. It
might not be available in some data sets or it might be measured with different tech-
niques in different hospitals. The blood sugar is classified as precise data if the value is
a decimal number and imprecise data if the value is an integer or unknown. For queries
executed on the blood sugar level it is first tested if it can be answered adequately. If the
imprecision hinders an adequate answer, an alternative query is proposed. Considering
an example of a physician who wants to know all persons having a blood sugar level
between 5.4 and 6.2. If the query is executed on data sets that have imprecise blood
sugar level measures, the system might propose a query like all persons having a blood
sugar level between 5 and 7 instead.

Burdick, et al. [BDJT05| propose an OLAP model to handle both imprecise and un-
certain data. According to Burdick et al., imprecision in a OLAP cube occurs when a
fact can not be related with a leaf node instance of a dimension. Leaf node instances
are instances of the primary attribute of a dimension. Burdick et. al. illustrate an im-
precision in OLAP with the example of a car incident in the state Texas. The primary
attribute of the dimension location would be city. The fact of the car incident can only
be attached to state level and not city level. Therefore, the information about the car
incident is considered as imprecise data. In contrast to imprecision, uncertain data are
facts that represents likelihood. For instance, a car brake incident might happen with a
certain probability on a specific car. Burdick et al. include this likelihood as uncertain
fact in the OLAP model. In order to handle this kind of uncertain qualitative infor-
mation, probability distribution functions are used in the example in [BDJT05|. The
brake incident attribute contains the probability of an incident and for no incident in the
following two tuple form: <0.8, 0.2>, with a probability of 0.8 that no brake incident
will happen. For aggregating uncertain facts, Burdick et. al. propose a linear opera-
tor. Furthermore, Burdick et. al. explain the aggregation function SUM, AVERAGE,
COUNT when combining uncertain and imprecise data and conditions of completeness
and faithfulness in order to guarantee the summarizability of the OLAP system.

3.1.2. Approaches for Implementing Fuzziness into Data
Warehouse

In the area of rules mining on data cubes Alhajj and Kaya [AKO03| proposed an imple-
mentation of a fuzzy OLAP cube in order to perform fuzzy association rules mining.

46

3.1.2 Approaches for Implementing Fuzziness into Data Warehouse

Based on the classical data warehouse and fuzzy sets, a fuzzy OLAP cube is calculated.
The fuzzy OLAP cube contains for each fact the membership degrees of the fuzzy sets as
measure. The actual facts of the data warehouse that should be mined are not included
in the fuzzy OLAP cube. In a further step, fuzzy association rules are applied to the
membership degrees in the fuzzy OLAP cube. Finally, Alhajj and Kaya experimentally
prove that this technique produces meaningful results with reasonable efficiency.

Delgado et al. [DMST04] and Molina et al. [MRASVO06] propose integrating fuzzy
concepts directly in the dimensional structure of a data warehouse. As an example, a
dimension hierarchy of age is depicted. A set of age value 1,...,100 is aggregated over
two hierarchy paths age — legal age — all and age — group — all. The dimension
attribute legal age has the instances yes and no, whereas, the dimensional attribute
group is a fuzzy concept with the linguistic terms young, adult and old as instances.
Therefore, all the instances of age are classified within the fuzzy concept groups. When
navigating from age to groups, the instances are distributed over the linguistic terms
based on their membership degrees. For example, the age 25 might belong to young with
a membership degree of 0.7 and to adult with a degree of 0.3. In this case a roll-up to
the hierarchy level group would distribute age 25 as 17.5 (0.7*25) to the instance young
and 7.5 (0.3*25) to the instance adult.

Schepperle et. al. [SMHO04| propose a similar approach for integrating fuzzy concepts
into dimension structures. Schepperle et. al. describe that a fuzzy concept in a data
warehouse has the same characteristics as a dimensional attribute and can therefore
be aggregated similarly. Conditions for aggregation over fuzzy concepts in dimension
structures are further discussed in detail. Based on the summarizability conditions of
Lenz and Shoshani [LT01], extended aggregation conditions are proposed. The main
outcome of the extended summarizability is the constraint that the membership degrees
of all linguistic terms of a fuzzy concept have to be normalized [Sch98|. Additionally,
they propose an extension of the Common Warehouse Metamodel (Medina and Trujillo
IMT02|) that covers imprecise data.

Kumar et. al. [KKDO05| describe an approach for integrating fuzzy concepts into
OLAP cubes on facts and dimensions. The fuzzy OLAP cube is defined as a cube that
has all facts and at least one dimension fuzzified. In order to fuzzify the facts and the
dimensions, the original quantitative values are replaced with a two tuple containing
the linguistic term and the corresponding membership degree. The membership degrees
are derived using the CLARANS (Ng and Hang [NH94]) clustering algorithm. In Kasi-
nadh and Krishna [KKO0T7| the same approach with multi-attribute summarization for
calculating the membership degrees is used. Both approaches essentially integrate fuzzy
concepts on dimensions and measures and depict how to operate over them.

Pérez et. al. [PSPOT] propose a fuzzy spatial data warehouse. The approach is exem-

plified for a data warehouse representing risk zones around a volcano. In this approach,
the fuzzy concepts are applied to the top level attribute of the dimensions. As a result,

47

3.1.3 The Feng and Dillon Framework for Implementing Fuzziness into Data Warehouse

only the highest aggregated level is fuzzy and the levels beneath are crisp. The fuzzy
concept acts as an additional query layer on the crisp data warehouse. By applying fuzzy
concepts on the top level attribute of a dimension, the fuzzy concepts are not involved
in aggregation operation over the dimension hierarchy. Therefore, the summarizability
can be guaranteed as in a classical data warehouse.

Sapir et. al. [SSRO8| define a method for creating a fuzzy data warehouse. The
method depicts how to integrate fuzzy concepts in dimension structures, measures and
is based on Kimball’s methodology for creating a data warehouse [KR02]. The steps of
the method for creating a fuzzy data warehouse are summarized below:

e I[dentify the business process
e Define the granularity

e Define the dimensions
— Define the fuzzy dimensions

— Define the fuzzy hierarchies

o Identify the facts

A fuzzy dimension according Sapir et al. is a dimension that has at least one cate-
gory attribute with a fuzzy concept. The elements of the fuzzy concept are stored in
an additional table and this table is related to the category attribute in a 1:1 relation.
The fuzzy concept table comprises the foreign key to the category attribute instance
and the linguistic terms as attributes. The membership degrees are the instances of the
linguistic terms. A fuzzy hierarchy is a hierarchy in which the category attribute itself
is a fuzzy concept and the linguistic terms are the instances of the category attribute.
In order to consistently aggregate from the lower hierarchy level to the fuzzy concept,
the aggregated values are distributed according the membership degrees. Therefore, an
intermediate table between the lower level and the fuzzy concept level is used to hold the
membership degrees. A similar concept is known as bridge table in classical data ware-
house theory for multivalued hierarchies [KC04, [Kim98|. In example [17]in section [3.5.3]
bridge tables are explained in greater detail. Fuzzy concepts on facts are integrated into
the fact table as attributes. As a result, for each linguistic term a new attribute has to
be specified in the fact table. Additionally, Sapir et al. describe aggregation operations
on their fuzzy data warehouse concept.

3.1.3. The Feng and Dillon Framework for Implementing
Fuzziness into Data Warehouse

Feng and Dillon [FDO03| presented a framework for implementing fuzziness into data
warehouse. The framework uses a three layer model to describe the semantics of a fuzzy

48

3.1.4 Evaluation and Comparison of the Existing Approaches

data warehouse. The first level describes the quantitative view of the data. This level
is similar to the classical data warehouse and provides the basic aggregation functions

such as SUM, COUNT, AVERAGE, MIN, MAX for the data analysis.

The second layer provides a qualitative summarization of the facts in the data ware-
house. Qualitative classification of facts is realized using linguistic terms described as
fuzzy term in [FDO3|. For each fact instance that has to be classified fuzzily, a set of
fuzzy terms and a set of the corresponding membership degrees replaces the quantitative
value. Therefore, instead of having a numerical fact in the second layer, the fact instance
contains two attributes: the set of fuzzy terms and the set of membership degrees of the
fuzzy terms.

The third layer provides quantifier summarization. Feng and Dillon describe fuzzy
concepts on dimensions as linguistic quantifiers. A linguistic quantifier is a linguistic
probability that determines the degree to which a concept is satisfied [Zad83|. The lin-
guistic quantifier is similar to the fuzzy term in the second layer except that it is applied
to the dimension element rather than the quantitative facts of layer one. The result set
of queries on the third layer cube will always provide an overall performance according
to a linguistic quantifier of fuzzily grouped (in layer two) facts.

Further, Feng and Dillon describe the pivot oriented operations slice, dice, roll-up,
drill-down and sift applied to their fuzzy data warehouse framework. Each operation
can be executed on either a quantitative cube, a qualitative cube or a quantifier cube.
Additionally, the measure oriented operations union, intersect and difference are de-
scribed for each measure type of the cubes. Finally, the way in which cube operations
can be transformed into SQL statements is discussed.

3.1.4. Evaluation and Comparison of the Existing Approaches

For comparison and evaluation this section provides a summary of the different ap-
proaches and identifies the drawbacks that these approaches have. The approaches are
categorized and the drawbacks are depicted. First, the categories differentiate the ap-
proaches on whether they apply fuzzy concepts on facts or dimensions. In a second
categorization, they are split into approaches that do or do not replace or modify the
original values in the data warehouse. Often, the identified problems apply to differ-
ent categories. Thus, the problems might be discussed multiple times from different
perspectives per category. The different approaches are then summarized in a tabular
form according to categorization and how the problems can be addressed with the new
concept that is presented in section [3.2]

49

3.1.4 Evaluation and Comparison of the Existing Approaches

Application of fuzzy concepts in data warehouse structure

When regarding where the fuzzy concepts are applied in the data warehouse structure,
three different types can be identified. The first type applies fuzzy concepts on the mea-
sures of the data warehouse. It either integrates the fuzzy concepts in the fact table or
applies them on the aggregated measures of a result set. The following approaches can
be identified for applying fuzzy concepts to the facts:

e Pedersen, Jensen and Dyreson [PJD99| handles imprecise facts.

e Burdick et al. [BDJT05| defines uncertainty on facts by using probabilistic distri-
bution if a certain characteristic (ex. brake incident) is true or not.

e Alhajj and Kaya [AKO3| derives the fuzzy membership degrees from the facts of
a crisp OLAP cube and stores them as facts in a fuzzy OLAP cube. The fuzzy
OLAP cube is then used for fuzzy association rules mining.

Pedersen, Jensen and Dyreson describe in [PJD99] an approach in which the complex-
ity of handling imprecision is passed to the query engine and further to the user. The
user has to decide if the proposed query is adequate for his analysis, which increases the
complexity of querying the data warehouse. Imprecise data, as defined by Motro and
Smets [MS97|, is a special kind of imperfect data by which the accuracy of data is fuzzy.
Considering the definition of Motro and Smets, even if the approach in [PJD99| does
not directly integrate fuzzy logic into data warehouses, fuzzy classification of imprecise
data might facilitate querying such a data warehouse. An alternative solution to the
proposition of new queries is to classify blood sugar level with a fuzzy concept containing
the linguistic terms low, middle and high. The physician can then query data by using
the linguistic terms like: all persons with a high blood sugar level or all persons with at
least a 0.8 high blood sugar level. Using a fuzzy data warehouse concept can therefore
handle the imprecision of the data during the modeling phase of the data warehouse.
Therefore, a major benefit is that the complexity of imprecise data is not passed to the
user level and the system does not have to redefine the user query.

Burdick et al. address in [BDJT05| uncertainty by using likelihoods. Based on Kosko
[Kos90], a probabilistic system can be represented by fuzzy theory. The likelihood that
brakes are failing can therefore be represented as a normalized linguistic variable with
the linguistic terms “no brake incident” and “brake incident”. The likelihood value found
by the probability distribution can be applied directly as membership degrees to the cor-
responding linguistic terms in a way that (.o prake incident = 0.8 and Lprake incident = 0.2.
Imprecision, as Burdick et. al. define, conflicts with the definition of a data warehouse
from Inmon, Kimball or Lehner. In all definitions, a key property is the lowest gran-
ularity of the information. This property defines that all facts in a fact table can be
distinctively related to the primary attribute of a dimension. However, by using a data
warehouse model based on a constellation schema as illustrated by Kimball in [KRTT08|

20

3.1.4 Evaluation and Comparison of the Existing Approaches

it is possible to relate multiple fact tables to the same dimensional structure. With this
approach, it might be possible to integrate this kind of imprecise data in a classical data
warehouse. For facts with different granularities a distinct fact table can be created and
related to the dimensional structure. It is possible to extend a starflake schema to a
constellation schema by adding multiple fact tables.

The meta model, which is based on a snowflake model, of the fuzzy data warehouse
in section provides the possibility of adding multiple fact tables in the fuzzy data
warehouse model. In conclusion, imprecise and uncertain data as described by Burdick
et al. can be interpreted by the fuzzy data warehouse model proposed later in this thesis.

In [AKOQ3], Alhajj and Kaya use the fuzzy facts only for fuzzy association rules mining,.
This approach limit fuzzy concepts for a specific application scope. The generation of an
additional fuzzy OLAP cube can be omitted when directly integrating the fuzzy concepts
into the data warehouse. Therefore, the proposed fuzzy data warehouse approach allows
fuzzy association rules mining without additional data transformation steps. Due to the
ability to simultaneously query crisp and fuzzy data, it might be possible to combine
fuzzy association rules mining and other data mining techniques with less effort than
with the proposed fuzzy OLAP cube by Alhajj and Kaya. Furthermore with the ap-
proach proposed in [AKO03], the fuzzy facts are handled in a second OLAP cube, which
results in higher costs for storage and synchronization (extraction, transformation and
load from crisp cube into fuzzy cube) of the data in the cubes.

Fuzzy concepts are often integrated into the dimension hierarchy. This type of in-
tegration then allows aggregation of facts over linguistic terms of the fuzzy concept in
dimensions. The following approaches can be identified for applying fuzzy concepts to
the dimensions:

e Delgado et al. |[DMST04] and Molina, et al. [MRASV06] implement the fuzzy
concepts directly into the dimension as additional hierarchy.

e Schepperle et. al. [SMHO04| propose a similar approach as Delgado, et al. [DMS™04]
but only provides one fuzzy dimension hierarchy.

e Pérez et. al. [PSP07| integrates fuzzy concepts as the top level attribute of the
dimensions. Therefore, facts can be aggregated over crisp hierarchy structures and
on the last aggregation step they are aggregated into the linguistic terms according
their membership degrees.

The approaches from Delgado et al., Molina et al. and Schepperle et al. integrate
fuzzy concepts into dimensional structures. This method has several drawbacks. A
fuzzy concept reflects a linguistic interpretation or grouping of quantitative values. The
interpretation often depends on environmental influences. For instance, specific busi-
ness terms of a company. Assuming that the linguistic term might change frequently,
this approach forces the dimensional structure to adapt more often when using a crisp

51

3.1.4 Evaluation and Comparison of the Existing Approaches

Feature Outdoor | Army | Informatics | Souvenir
Big knife blade 0.3 0.2 0.3 0.1
Small knife blade 0.3 0.2 0.2 0.3
Big knife blade with opening hole 0.4 0.4 0.0 0.0
Screwdriver / can opener 0.3 0.4 0.2 0.1
Phillips screwdriver 0.1 0.2 0.3 0.0
Torx screwdriver no. 2 0.0 0.0 0.4 0.0
Memory stick 0.0 0.0 0.5 0.3
Toothpick 0.0 0.1 0.0 0.2
Tweezers 0.0 0.1 0.0 0.1
Pencil 0.0 0.0 0.2 0.1

Table 3.1.: List of Swiss Army Knife Features

data warehouse. A second drawback is the need to always have normalized membership
degrees for a fuzzy concept. Normalizing membership degrees can lead to information
loss. If the membership degree is based on a set of features of a product, normalization
removes the information about the features. Example [§|illustrates the difficulty of nor-
malization in greater detail.

Example 8. Swiss army knifes are classified with the fuzzy concept activity. The fuzzy
concept activity has the linguistic terms “outdoor”, “army” “informatics” and “souvenir”.
The classification is based on the list of features a knife has. Every possible feature gives
a certain membership degree in one of the categories. Table provides the different

features and the corresponding membership degrees for the linguistic term.

The features are combined into different models of swiss army knives. The new swiss
army knife has a big knife blade with the opening hole, a screwdriver with can opener
and a phillips screwdriver. Therefore it belongs with 1.0 to the class army and with 0.8
to outdoor. An extended version of the new swiss army knife is produced with a small
knife blade and a torx screwdriver. The version is now belonging with 1.2 to class army
and with 1.1 to outdoor. The membership degree tells how strong the features are met
for a specific category. A knife can belong to multiple classes with a membership degree
higher 1.0. When normalizing the membership degrees of the fuzzy concept activity, this
particular information about the features is lost.

Furthermore, when integrating a fuzzy concept as an additional hierarchy path as
proposed in [DMST04| and [MRASVO06], it is not possible to analyze the facts simulta-
neously crisp and fuzzy. To do so, it is necessary to query the fuzzy data warehouse
twice, once using the crisp hierarchy path once the fuzzy hierarchy path.

The fuzzy data warehouse model proposed in section does not integrate fuzzy
concepts in the dimension structure. The fuzzy concepts do not need to be normalized as

52

3.1.4 Evaluation and Comparison of the Existing Approaches

they are not necessarily involved in the aggregation process of the data warehouse oper-
ations (see section . The fuzzy concepts can be queried in every hierarchy path they
are aggregated or propagated on (section [3.4.2). Therefore no specific fuzzy dimension
hierarchy is needed. Additionally, the proposed approach also defines fuzzy concepts on
facts and not only on dimensions.

The solution from Pérez et al. [PSP07] is developed for a specific application of fuzzy
concepts in data warehouses. It does not consider a general approach to integrate fuzzi-
ness in data warehouses. Classification with fuzzy concepts is only considered on the
highest aggregated level. Beneath this level, it is a classical crisp data warehouse. With
the integration of fuzzy concepts in meta tables, as proposed here, the fuzzy spatial data
warehouse from Pérez et al. can be modeled. Additionally, this approach is much more
generic and can be applied to other domains than just spatial data warehouses.

The third type of approaches describes how to apply fuzzy concepts in facts and
dimensions. The manner in which fuzzy concepts on facts can be navigated over fuzzy
dimension structures is then shown. The following approaches can be identified for
applying fuzzy concepts on dimensions and facts:

e Kumar et. al. [KKDO05| and Kasinadh and Krishna [KK07| propose the option to
fuzzify facts and dimensions. The original crisp values are therefore replaced with
the linguistic terms and the corresponding membership values.

e Sapir et. al. [SSRO§| integrated fuzzy concepts into facts by using an additional
fuzzy meta table. Fuzzy concepts on dimension hierarchies can be applied by using
a concept similar to bridge tables.

e Feng and Dillon [FDO03| propose in their framework two additional OLAP cubes.
The first cube integrates the membership degrees of facts as its own facts. The
second cube integrates the fuzzy concept on the dimension structures in order to
navigate fuzzily over the fuzzy facts of the first cube.

Kumar et. al. in [KKDO05| and and Kasinadh and Krishna in [KKO07] replace the
quantitative values of the facts and dimensions with the two tuple representing the
fuzzy concept. Consequently, information is suppressed and the analysis of this fuzzy
data warehouse only provides the qualitative view represented by the fuzzy concept. The
membership degrees are automatically defined by clustering algorithms. This approach
does not provide the possibility that business analysts can classify manually or that
classification is based on external information sources as described in example [§f The
meta table structure of the proposed approach in this thesis does not restrict how the
classification is created. It is possible to use automatic classification like clustering algo-
rithms or manual classifications. A classification can be extended with different variants
as later explained in section and therefore this approach is more flexible than the
approach proposed in [KKDO05].

93

3.1.4 Evaluation and Comparison of the Existing Approaches

The approach of Sapir et al. in [SSRO8| integrates fuzzy concepts on dimensions in
an additional table. This is very similar to the approach in this thesis. However, the
structure of the fuzzy concept table differs. In section [3.2.1] it is explained that this
approach uses two tables to represent a fuzzy concept. This structure improves the
flexibility of the fuzzy concept in two ways. First, the linguistic terms are easier to add,
remove or modify. Second, the fuzzy concept can be enhanced with other linguistic term
combinations or other classification values as described in section [3.2.3] The integration
of fuzzy concepts as a dimension hierarchy is similar to the approaches of Delgado et.
al. or Schepperle et. al. and also suffers from the same drawbacks. The fuzzy con-
cepts defined on facts imply a new attribute for each linguistic term and consequently a
new column in the fact table. If a linguistic term is modified or a new fuzzy concept is
added, the structure of the fact table has to be adapted accordingly. The fact table is the
biggest table in a data warehouse and often holds several million to several billion data
rows. It can be very inflexible and dangerous to alter the fact table when a new fuzzy
concept is added or an existing fuzzy concept is modified. As a consequence, it will be
very difficult to perform changes on fuzzy concepts on facts or adding new fuzzy concepts.

In this thesis, a fuzzy concept on a fact is added within a meta table structure and
only related by foreign key relation to the fact table. The fuzzy concept can be modified
or deleted without affecting the fact table. This concept provides the same flexibility
for fuzzy concepts on facts as on dimensions.

The Feng and Dillon framework in [FD03| differentiates between fuzzy concepts on
facts (layer two) and on dimensions (layer three). In the approach described in this the-
sis, this distinction is omitted. As described later in section [3.2.2] fuzzy concepts can be
applied to dimensional attributes as they can be applied to facts. The concepts can then
be processed similarly and the complexity of transposing from one cube into another is
not necessary. The fuzzy data warehouse here proposed also allows the handling of the
quantitative crisp values simultaneously with fuzzy concepts. With these functionalities,
the fuzzy data warehouse is able to provide the same classification functionalities as de-
scribed by the framework. Using operations as fuzzifying and defuzzifying described in
section allows integrating and removing fuzzy concepts from a cube in a single step.
This is a major advantage compared to the framework as the crisp and the fuzzy values
can be compared in a single query. The proposed approach in this thesis already pro-
vides the ability to integrate fuzzy concept in the modeling phase of a data warehouse.
Snowflake or star schemas can be directly extended with the meta table structures for
the fuzzy concepts. This is in contrast to the framework of Feng and Dillon, where the
fuzzy concepts are integrated in a second and third layer. Similar to [FD03|, classical
data warehouse operations like roll-up, drill-down, slice and dice are explained for the
fuzzy data warchouse and in chapter 4] the transformation of the operations in SQL
statements are illustrated.

o4

3.1.4 Evaluation and Comparison of the Existing Approaches

Impact of the fuzzy concepts on the original values

In a further categorization it possible to distinguish between approaches that replace the
original values and approaches that integrate fuzzy concepts in parallel to the original
values. In this classification, integrating fuzzy concepts directly in dimension hierarchies
is considered as replacement of the original values. This is due to the fact, that the
original crisp aggregation path of a dimension is altered. The following approaches do
not replace or modify original values:

e Pedersen, Jensen and Dyreson [PJD99| discusse the imprecise nature of the origin
facts and do not alter these facts.

e Burdick et al. [BDJT05| add new uncertain characteristics to the facts, but do not
mention the replacement of the original facts.

e Alhajj and Kaya [AKO03| create a new fuzzy OLAP cube derived from the crisp
OLAP cube. The original OLAP cube remains unchanged.

e Delgado et al. [DMST04| and Molina, et al. [MRASV06] describe the integration of
the fuzzy concepts in their own dimension hierarchy. The crisp dimension hierarchy
remains untouched.

e Pérez et. al. [PSP07| integrates fuzzy concepts directly in the dimension hierarchy
but only on the generic top level attribute. Therefore, this integration does not
affect the origin aggregation path.

e Feng and Dillon [FDO3| provide for each fuzzy concept integration a new cube
similar to Alhajj and Kaya [AKO03].

The approaches listed below do replace the original values. Either the dimension
structure is altered or the fact, respectively dimension, instances are completely replaced
by information of the fuzzy concept.

e Schepperle et. al. [SMHO4| discuss a hierarchy with fuzzy concepts integrated
in the dimension. The dimension does therefore not provide an aggregation path
without fuzzy concepts involved. It has to be noted that in [SMHO04| the fuzzy
dimension is never meant to be crisp and is not derived from a crisp dimension
hierarchy.

o Kumar et. al. [KKDO05| and Kasinadh and Krishna [KKO07| replace the facts and
dimension attributes by the fuzzy membership degrees using algorithms such as
CLARANS.

e Sapir et. al. [SSRO§]| integrate fuzzy concepts in the dimensions by using a bridge
table and therefore alter the dimension structure. On the other hand, the fuzzy
concepts on the facts are placed in a separate attribute and do not replace any
fact values.

95

3.1.4 Evaluation and Comparison of the Existing Approaches

Summarization of approaches according categorization

The following table summarizes the different approaches based on categorization. The
stated problems are listed for each categorization and it is shown how the proposed fuzzy
data warehouse concept in section 3.2/ might be able to overcome the described problems.

Categorization Approaches Discussed Prob- | Solution with
lems proposed con-
cept

Fuzzy concepts on | @ Pedersen, Jensen | ¢ Automatic The concept in
facts and Dyreson calculation of | section does
[PJD99] memebrship not limit how the
] degrees using | membership is
e Burdick, et al. algorithms in | calculated. There-
[BD.JT05) [IKKDO05] and | fore, it allows

e Alhajj and Kaya IKKO07] automatically
[AKO3| o | and manually de-
° Lm'uted appli- | f04 membership
e Kumar, et. al ?atlon SCOPE | functions. The
[KKD05] and | ® [PJDI, | flexibility given by
Kasinadh and IBDJ05], the proposed meta
Krishna [KKO07] [AK03] table structure (see
: ion [B.2.21 and

e Sapir. ot al | ® Inflexible for | Section -

[SSpRE)S] fuzzy concept 3}‘12_‘3 1mpr0\£es
variants in i lS, cgncept fﬂ
e Feng and Dillon [SSROS] application on (,ilf_
IFD03] ferent application

e High complex- | scopes. Through
ity because of | the use of meta
multiple OLAP | tables structure a
cubes [AKO3] | single OLAP cube
and [FDO3] can hold the crisp

and fuzzy data and

allows analyzing
both data at the
same time.

o6

3.1.4 Evaluation and Comparison of the Existing Approaches

Fuzzy concepts on
dimensions

Delgado, et al.
IDMST04] and
Molina, et al.
IMRASVO6]
Schepperle, et.
al. [SMHO4|
Pérez, et. al.
[PSPO7]

Kumar, et. al.
IKKDO5] and
Kasinadh and

Krishna [KKO07]

Sapir, et. al.
[SSROS|

Feng and Dillon
[EDO3]

e When applying
fuzzy concepts
into dimension
hierarchies, the
membership
degrees have to
be normalized
as described
in [DMS™04],
IMRASV06],
[SMHO4]
[SSROS]

and

e Fuzzy concepts
are only applied
to top level in
[PSPO7]

e Multiple OLAP
cubes result in
high complexity
in [AKO3] and
[EDO03|

Using the meta
table structure as
proposed in section
B.2] allows classi-
tying dimension
attributes without
integrating fuzzy
concepts into the
hierarchy structure
of the dimensions.
Therefore, the ag-
gregation of facts
over dimension can
always be executed
on the crisp cat-
egory attributes.
The consistency
of aggregation is
guaranteed and
fuzzy concepts do
not have to be
normalized. Fuzzy
concepts can be
integrated on every
level of a dimension
hierarchy.

o7

3.1.4 Evaluation and Comparison of the Existing Approaches

No replacement
or modification of
original values

Pedersen, Jensen

and Dyreson
[PJD99]
Burdick, et al.
[BDJT05]

Alhajj and Kaya
[AKO3]

Delgado, et al.
[DMST04] and
Molina, et al.
IMRASVO6]
Pérez, et. al.
[PSPO7]

Feng and Dillon
[EDO3]

Complexity

of imprecision
is passed to
query engine in

[PJD99|
A probabilis-

tic approach
is for handling
uncertainty in

[BD.IF05)

Fuzzy Concepts
are normalized
in [DMS™04| and
IMRASVO6]

The complexity
for = navigation
is increased
over dimensions
in [DMS™04],
IMRASV06] and
[PSPO7]

Multiple OLAP
cubes increase
complexity in
[AKO3] and
[EDO03|

The meta table
model proposes
an integration of
fuzzy concept into
an existing data
warehouse model
as described in
section 3.2.41 Con-
sequently, only a
single OLAP cube
is used for pre-
senting both crisp
and fuzzy values.
The complexity
of synchronizing
multiple cube and
navigation can be
omitted. The com-
plexity of handling
imprecise data
can be processed
with fuzzy concept
before querying
the data ware-
house. Using fuzzy
concept instead
of a probabilistic
approach allows
greater flexibility
in classification.

o8

3.2 Fuzzy Data Warehouse Concept

Replacing or mod-
ifying original val-
ues

e Schepperle, et.
al. [SMHO4|

e Kumar, et. al.
IKKDO5] and
Kasinadh and

Krishna [KKO07]

e The origin data
of the data ware-
house is altered
and therefore it
is mnot possible
to provide the

The meta table
structure allows
querying the data
warehouse crisp

and fuzzy at once
and fuzzy concepts

same analysis | never imply alter-

e Sapir, et. al. anymore once | ing a crisp value
ISSROS] the the fuzzy | or structure of the
concepts are | data warehouse.

integrated. The two additional

operations fuzzify

and defuzzify are
defined in section
B.5] in order to
improve the si-
multaneous query
capabilities of the
proposed fuzzy
concept.

Table 3.2.: Classification of existing approaches

In conclusion, the fuzzy data warehouse model proposed in this thesis is generic enough
to cover all the specific solutions discussed in the explored literature. Additionally, most
of the discovered problems for integrating fuzzy concepts in data warehouse systems are
solved by integrating them into a meta tables structure. Therefore, compared to the dis-
cussed approaches, the proposed approach simplifies the integration and the aggregation
of the fuzzy concepts and provides a more flexible fuzzy data warehouse.

3.2. Fuzzy Data Warehouse Concept

In order to address the problems described in the section [3.1.4] fuzzy concepts can be
integrated as a meta table structure without affecting the core of a data warehouse. The
proposed approach is more flexible as it allows integrating and defining fuzzy concepts
without the need for redesigning the core of a data warehouse. By using this fuzzy data
warehousing approach, it is possible to extract and analyze the data simultaneously in
a classical sharp and in a fuzzy manner. The purpose of this section is to present the
definitions of the meta tables, modeling guidelines and the meta model of the fuzzy data
warehouse approach.

99

3.2.1 Basic Definitions and Fuzzy Meta Tables

3.2.1. Basic Definitions and Fuzzy Meta Tables

For integrating fuzzy concepts into a data warehouse, one must first analyze which el-
ements in the data warehouse should be classified fuzzily. The element can be a fact
in the fact table or an attribute of a dimension. An element that has to be classified
fuzzily is called the target attribute and the value range of the instances of this element
is called the domain of attribute.

Definition 29 (Domain of Attribute). A set of possible values or the range of possible
values that a dimension attribute or a fact can have is called domain of an attribute or
universe of discourse. Domain Dom of an attribute A is represented by Domy.

Definition 30 (Target Attribute). A dimension attribute or a fact that is required to be
classified fuzzily is called a target attribute (T'A) . Under fuzzy classification, instances of
T A are classified over a set (S) that is represented by a linguistic variable. The linguis-
tic variable consists of a set of non-numeric terms called linguistic terms S =11, ...,T}.

The linguistic terms of a linguistic variable are captured in an attribute called class
membership attribute.

Definition 31 (Class Membership Attribute). A class membership attribute (CMA) for
a target attribute T A, represented by CM Ara, is an attribute that has a set of linguistic
terms Ty, ..., Ty to which the target attribute may belong. In other words, for all pos-

sible values of a target attribute (domain of attribute Domra) there is a corresponding
relation to a CM A value. The values of CMA are the values of the set S.

All values of Domy 4 belong to a certain fuzzy degree to a C'M A value. The degree of
belonging to a value of C M A is called membership degree and this membership degree
defines the relation of an instance T'A to a C'M A value.

Definition 32 (Membership Degree). The membership degree M D € [0, 1] is the degree
to which the values of a target attribute T A are related with linguistic terms Ty, ..., T},
respectively with the values of CM A.

M D is calculated using a membership function.

Definition 33 (Membership Function). A membership function of a class membership
attribute CM A is a function (T A) that is used to calculate the membership degree M D
of a TA to a class membership attribute CMA: p:TA — [0, 1]

60

3.2.2 Fuzzy Data Warehouse Model

The membership degrees generated by membership functions are captured as mem-
bership degree attributes in the fuzzy data warehouse model. A membership degree
attribute is defined as:

Definition 34 (Membership Degree Attribute). A membership degree attribute M DA
of a target attribute T A, is an attribute that has a set of membership degrees of the target
attribute TA. The value of a membership degree is calculated by a membership function
and is represented by (T A) = M D where M D is the membership degree of T A for the
linguistic term t in C M A.

An attribute that must be handled fuzzily is extended with two meta tables. The
first meta table contains a description of the fuzzy concept and the second meta table
contains membership degrees of each instance with regard to the class membership at-
tributes. The two tables are defined as follows:

Definition 35 (Fuzzy Classification Table). A table that consists of linguistic terms
and their unique identifiers is called fuzzy classification table FCT . It is a two attribute
table that consists of an identity attribute and a class membership attribute, where the
identity attribute is a unique identifier of the table values. Formally,

FCTry = {ldentifier, CMAra}

Definition 36 (Fuzzy Membership Table). A table that stores the values representing
the degree to which a value is related to a linguistic term is called fuzzy membership table
FMT . It is a table with four attributes: the identity attribute of the table, the identifier
of the target attribute T A, the identifier of the class membership attribute CM Aty in
the fuzzy classification table FCTrys and membership degree attribute MDA for TA.
Formally,

FMTrs = {Identifier, Identifier of TA, Identifier of CMAra, MDAz}

3.2.2. Fuzzy Data Warehouse Model

The fuzzy data warehouse model is a combination of four types of tables (see definition
. These are dimension tables, fact tables, fuzzy membership tables and fuzzy classi-
fication tables.

Definition 37 (Fuzzy Data Warehouse Model). A fuzzy data warehouse model is a set
of tables and it is represented by FDW .

61

3.2.3 Guidelines for Modeling the Fuzzy Data Warehouse

FDW = {Dim, Fact, FCTra, FMTra}

where,

Dim = {a set of category attributes, level of category attributes}
Fact = {a set of measures}

TA={TA, TA,, ..., TA}

n 1s the number of attributes that are classified fuzzily.

It is notable that the set of target attributes is a subset of the set of dimension and the
set of the facts. Formally, TA is a subset of Dim U Fact (i.e. ¥ TA; € Dim U Fact :
1<i<n).

For each attribute TA;, TAy ..., TA,:

FCTra, = {Identifier, CMAra,} where 1 <i<n.
FMTry, = {Identifier, Identifier of FCT, Identifier of TA;, MDArya,} where
1 <1< n.

3.2.3. Guidelines for Modeling the Fuzzy Data Warehouse

In this section, a set of guidelines for designing a fuzzy data warehouse model and the
usage of these guidelines for developing a meta model for the fuzzy data warehouse is
presented.

Distinct Fuzzy Classes / Linguistic Terms

A set of linguistic terms (also called fuzzy classes) is used for the classification of in-
stances of a target attribute. In the simplest case, the linguistic terms are distinct, i.e.
there is a single set of linguistic terms with no repetition between them. In this case, one
instance of a target attribute belongs to only one fuzzy class at a time and the degree
of relation is measured by a membership function. Formally,

TA —instance (1) : Fuzzy Classes (1)

TA MDA CMA

Guideline 1. Add a fuzzy classification table FC'T and a fuzzy membership table FM'T
for each target attribute T A, as shown below.

62

3.2.3 Guidelines for Modeling the Fuzzy Data Warehouse

]) Fuzzy Fuzzy
D'ml‘:;‘gst'on / Membership Classification
Table Table

Different Membership Degrees for the same Linguistic Terms

An instance of a target attribute may belong to a linguistic term but may have different
degrees with which it belongs to a linguistic term. This is due to the fact that multiple
business users have different interpretations of a single instance of a target attribute i.e.
multiple membership functions are used for a target attribute. Formally,

TA — instance (1) : Fuzzy Classes (1)
but with dif ferent membership degrees

Ta MDA CMA

Guideline 2. If an instance of a T A belongs to a fuzzy class but with multiple mem-
bership degrees, add a FCT and M number of FMT's, as shown below, where M is the
number of distinct membership degrees.

Dimension / Fuzzy Fuzzy
Fact Membership Classification
Table Table

Different Linguistic Terms for a Target Attribute

An instance of a target attribute may belong to multiple linguistic terms as business
users can have more than one set of classes to which an instance of target attribute may
belong i.e. multiple fuzzy classes and multiple membership functions. Formally,

TA —instance (1) : Fuzzy Classes (M)

TA MDA CMA

Guideline 3. If an instance of a T A belongs to multiple fuzzy classes but with the same
membership degree, add M number of FCTs and a FMT, where M is the number of

distinct linguistic terms.

63

3.2.4 The Fuzzy Data Warehouse Meta Model

Guideline 4. If an instance of a T A belongs to more than one fuzzy class with different
membership degrees, add M number of FCTs and FMT's, as shown below, where M is
the number of distinct linguistic terms, and one FCT is related to one FMTs at the
most.

]) Fuzzy Fuzzy
D'msgzt'on / Membership Classification
Table Table

3.2.4. The Fuzzy Data Warehouse Meta Model

According to Harel et. al. [HRO04], a meta model defines the elements of a conceptual-
ization, as well as their relationships. Figure [3.2] shows the meta model of the proposed
fuzzy data warehouse in which the right side shows the meta model of the classical data
warehouse. The left side depicts how fuzzy concepts are integrated with a classical data
warehouse as a meta tables structure.

i
Fuzzy DWH |[1..* Classical
Model 1| DWH Model
has relationship
11 11
1.* 0..* 1.+ 2. |1
Fuzzy 1. 0.% Fuzzy 1..% 2.* 0..*
Membership = = Classification Fact Table - —>{ Dimension Table
Table has relationship Table has relationship
’ 1 1 1 1.
corresponds to
belongs to belongs to belongsto| belongs to P
1 1 1... 1.5 1
Fuzzy Fuzzy Fact Dimension Dimension
Membership Classification Attributes Attribute Level
Attributes Attributes Name Name Name
Name Name Domain Domain Domain
Domain Domain ‘r lr
Non Key
Membership Class Measure Attribute
Degree Memb.ersh|p
Attribute Attribute
calculated by | 1...*
1| calculates
Fuzzy Membership
Function
Function Definition Key Attribute

Pri K 1 refers to Foreian K
rimary Ke: oreign Ke!
v ey refered by 0..* 9 v

Figure 3.2.: Fuzzy Data Warehouse Meta Model

The classical data warehouse model class in the meta model refers to a data warehouse
schema that is composed of one or more fact tables and two or more dimension tables.
A fact table is located at the centre of a data warehouse model and it mainly captures
business process measures (Kimball [KC04]). The relationship with dimension tables

64

3.3 A Method for Modeling a Fuzzy Data Warehouse

is realized with the help of fact attributes. A fact attribute could be a measure (also
called fact) or a key attribute (primary key or foreign key). A measure (a subclass of
fact attribute) captures critical values about a business process e.g. revenue, whereas a
set of key attributes are used to capture the relationship with dimension tables.

In a classical data warehouse, two or more dimension tables surround a fact table. A
dimension table can also be related with one or more other dimension tables to form
hierarchies. In this case, each dimension table is at a different hierarchy level (in order to
comply with the snowflake schema). The hierarchy level is referred to by the dimension
level class in the meta model. A dimension table contains dimension attributes that
represent the category attributes or the key attributes of a dimension table. The key
attributes capture the relationship between dimension tables, respectively between fact
and dimension tables. In addition, other non-key attributes characterize the category
attributes of a dimension table.

The fuzzy data warehouse model class in the meta model refers to the fuzzy con-
cept integrated within a data warehouse. For each identified target attribute a fuzzy
data warehouse model can be added. Therefore, a classical data warehouse model can
have more than one fuzzy data warehouse model. Fuzzy concepts can exist without
a linguistic variable. These fuzzy concepts are represented by fuzzy data warehouse
models without fuzzy classification table. Every fuzzy classification table has a relation
to one or more fuzzy membership table. Therefore, the fuzzy data warehouse model
is composed of one or more fuzzy membership tables and zero or more fuzzy classifi-
cation tables. A fuzzy membership table is built of fuzzy membership attributes. A
fuzzy membership attribute might be a key attribute in order to denote primary key or
foreign keys. A second type of fuzzy membership attribute is the membership degree
attribute. The instances of the membership degree attribute are calculated by the fuzzy
membership functions of the fuzzy data warehouse model. The fuzzy classification table
contains fuzzy class membership attributes that can be, similarly to fuzzy membership
attributes, key attributes. Additionally, the fuzzy class membership attributes can be a
class membership attribute that describes the linguistic term of the fuzzy concept.

3.3. A Method for Modeling a Fuzzy Data
Warehouse

In order to create a fuzzy data warehouse, a method is presented that can guide the
transformation of a crisp data warehouse into a fuzzy data warehouse. The input to
the method is a classical data warehouse and the output is a fuzzy data warehouse. It
is a two-step method: in the first step elements of classification are defined and in the
second step the fuzzy data warehouse is built. Figure shows the tasks and the order
in which they are performed.

65

3.3.1 Defining Classification Elements

Step 1: Defining Classification elements

Task 1: Identify Target Attribute

Task 2: Identify Linguistic Term

Task 3: Define Membership Function

\
Step 2: Building Fuzzy DWH Model

Task 1: Model FCT @
@ Task 2: Model FMT

Task 3: Relate FCT, FMT & TA @

Figure 3.3.: A Graphical Overview of the Method for Modeling a Fuzzy Data Warehouse

For illustrating the different steps of the method the following example is used:

Example 9. A data warehouse contains the dimension customer. It is a single hierarchy,
single level dimension containing a table customer. Each customer has the attributes
name, address and birthday. From the attribute birthday, the age of the customer can be
calculated using the function today—birthday. Figure[3.4)shows the dimension customer.

Customer
#

Name
Birthday
Address

Dimension Customer

Figure 3.4.: Dimension Customer

3.3.1. Defining Classification Elements

The purpose of this step is to define classification elements that are used in the second
step to build the fuzzy data warehouse model. It involves three tasks, identify target

66

3.3.1 Defining Classification Elements

attribute, identify linguistic terms and define membership functions. The details are as
follows:

First Task: The first task is to identify what should be classified i.e. to identify
the target attribute which contains the values that are aimed to be classified fuzzily.
This is done by taking into account the end user input. In the simplest case, one target
attribute is identified. For example [9] consider customer age as a target attribute.

Second Task: The second task is to determine how the values of the identified target
attribute should be classified i.e. to identify the set of linguistics terms that are used for
classifying the instances of a target attribute. Repeat this task for all target attributes.
It is represented by iterative loop 1 in figure [3.3] There are two possibilities here:

Case 1 - Distinct Linguistic Terms: It is the simplest case in which the linguistic
terms are distinct i.e. there is a single set of linguistic terms. Formally,

TA instance (1) : Fuzzy Classes (1)

For the customer age example consider the following set of linguistic terms for {young
age, middle age, old age}.

Case 2 - Different Linguistic Terms for a Target Attribute: It is a case in
which there are more than one set of linguistic terms for classifying instances of the
target attributes. In this case, instances of the target attribute belong to more than one
linguistic term as identified by business users. Formally,

TA instance (1) : Fuzzy Classes (M)

For the customer age example consider that the following two set of linguistic terms are
identified. These sets are {young age, middle age, old age} and {teenager, adult, senior}.
The linguistic terms might already exist in a classical data warehouse model in form of
instances of a dimension category attribute. In that case, these terms can be used for
classifying instances the of target attribute.

Third Task: The third task is to define a membership function (represented by)
for each linguistic term. It is done in such a way that the values can be determined over
a scale of 0 to 1. Repeat the task for each identified linguistic term. It is represented
by iterative loop 2 in figure 3.3 It could be the case that for different users a target
attribute belongs to the same set of linguistic terms with different membership degrees.
The case is as follows:

Case 3 — Different Membership Degrees for the same Linguistic Terms: It

is a case in which an instance of a target attribute belongs to a linguistic term with
different membership degrees. It can be due to the reason that multiple business users

67

3.3.1 Defining Classification Elements

have different interpretations of a single instance of a target attribute i.e. multiple mem-
bership functions are used for a target attribute. Formally,

TA — instance (1) : Fuzzy Classes (1)
but with different membership degrees.
Below, we discuss the examples of the third task for each case:

Example of Task 3 for Case 1 — Distinct linguistic terms. For the customer
age example, a membership function is defined for each linguistic term. The membership
functions MHyoung, Mmiddles Hold become:

if customer _age <15 | MD_AgeGroup =1
Lyoung(customer _age) = { if customer _age > 25 , MD_AgeGroup = 0

25—cust
else , MD_AgeGroup = 272 =5°

(if customer _age < 15 , MD _AgeGroup =0
if customer _age > 60 , MD _AgeGroup =0
if 25 < customer _age >40 |, MD _AgeGroup =1
Umidaie(customer _age) = < if 15 < customer _age > 25 | MD _AgeGroup =
- customer _age—15
25-15
else , MD _AgeGroup =
60—customer _age
\ 60—40

1f customer _age <40 ., MD _AgeGroup =0
toia(customer _age) = < if customer_age > 60 , MD_AgeGroup =1

t —40
else , MD_ AgeGroup = == =29"—

Example of Task 3 for Case 2 — Different Linguistic Terms for a Target
Attribute. For case 2 of customer age example, a membership function is defined for
each linguistic term i.e. Lyoung, Mmiddie; Mold> Hteenagers Hadults Msenior- 1he membership
functions fiyoung, fmiddie; Hola are the same as above and fiteenager, Hadults Hsenior DeCOmE:

68

3.3.1 Defining Classification Elements

if customer age <15 |, MD_AgeGroup = 1

[teenager (Customer _age) = ¢ if customer _age > 25 , MD_ AgeGroup = 0
else , MD _AgeGroup = 25_6“;?#
(if customer age < 15 , MD _AgeGroup =0
if customer _age > 60 , MD _AgeGroup =0
if 25 < customer _age > 40 |, M D _AgeGroup =1
Uaduit(customer _age) = if 15 < customer age >25 |, MD AgeGroup =
- customer age—15
25:159
else , MD _AgeGroup =
60—customer _age
\ 60—40
if customer _age <40 | MD_AgeGroup =0
Usenior (customer _age) = < if customer_age > 60 , MD_AgeGroup =1
else , MD_AgeGroup = —C“Stonggijl‘ége_40

Example of Task 3 for Case 3 — Different Membership Degrees for the same
Linguistic Terms. For case 3 of the customer age example, a membership function for
each linguistic term becomes:

if customer age < 15 , MD_AgeGroup = 1

Hyoung (customer _age) = < if customer _age > 25 , MD_ AgeGroup = 0
else , MD AgeGroup = —25_0“;;0_”1”?—(196
(if customer _age < 15 , MD _AgeGroup =0
if customer _age > 60 , MD _AgeGroup =0
if 25 < customer _age > 40 | MD _AgeGroup =1
Umiddie(customer _age) = if 15 < customer _age > 25 |, MD_AgeGroup =
- customer age—15
25—_159
else , MD _AgeGroup =
60—customer age
\ T 60—40

69

3.3.2 Building Fuzzy Data Warehouse Model

if customer _age <40 | MD_AgeGroup =0
tod(customer _age) = < if customer _age > 60 , MD_AgeGroup =1

t —40
else , MD_AgeGroup = “=55 =2

In order to relate the customer age with the same linguistic terms using another
membership degree, we define another membership function for each linguistic term i.e.
Hyoungls Pmiddiel, Hodi- Lhe definitions of the membership function become:

if customer age <20 , MD_AgeGroup =1

,uymmgl(customer_age) = if customer_age Z 40 , MD_AgeGl“OLlp =0
else , MD AgeGroup = —40_0“28‘1"58““96
(if customer _age < 40 , MD _AgeGroup =0
if customer age > 85 , MD _AgeGroup =0
if 55 < customer _age > 70 | MD _AgeGroup =1
middie1 (Customer _age) = if 40 < customer _age > 55 | MD_AgeGroup =
- customer age—40
55—40
else , MD _AgeGroup =
85—customer age
\ T 8-70
if customer _age <70 | MD_AgeGroup =0
Hotar (customer _age) = { if customer _age > 85 , MD_AgeGroup =1
else , MD _AgeGroup = —Cusw";?}?gge_m

3.3.2. Building Fuzzy Data Warehouse Model

The purpose of this step is to employ the identified classification elements to build a
fuzzy data warehouse model. It involves three tasks, create fuzzy classification table,
create fuzzy membership table and relate the tables. The details are as follows:

70

3.3.2 Building Fuzzy Data Warehouse Model

First Task: The first task towards building a fuzzy data warehouse model is to model
a fuzzy classification table for each set of linguistic terms. As described in section [3.2.1]
it is a two attribute table in which one attribute is the identifier of the table and sec-
ond attribute is the class membership attribute. The values of the class membership
attribute are the values of the linguistic terms. As stated above, the task should be
repeated for each set of linguistic terms, it is represented by the loop 3 in figure |3.3

Second Task: The second task in building a fuzzy data warehouse model is to create
fuzzy membership tables. As described in section [3.2.1] it is a four attribute table in
which the first attribute is the identifier of the table, the second attribute is the identifier
of the target attribute, the third attribute is the identifier attribute of fuzzy classifica-
tion table and the fourth attribute is the membership degree attribute for the target
attribute. The values of membership degree attribute are calculated by membership
functions, as identified above.

For the cases described above, we present some guidelines for the first and the second
task, which are as follows:

Case 1 - Distinct Linguistic Terms: It is the simplest case in which there is a
single set of linguistic terms with no repetition between them. For this case, define a
membership degree attribute (MDA) and a class membership attribute (CMA) for a
target attribute, as given below:

TA (1) : (1) MDA; MDA (1) : (1) CMA

According guideline , add a fuzzy classification table (FCT) and a fuzzy membership
table (FMT) for target attribute TA, as given below:

Dimension/Fact (1) : (1) FMT and FMT (1) : (1) FCT

For the customer age example, there is one distinct set of linguistic terms i.e. {young
age, middle age, old age}. Therefore, by following guideline , add a FCT(custo-
mer age) = {AgeGroup ID,CMA _AgeGroup} and a FMT (customer age) = {Mem-
bership ID, AgeGroup ID,Customer ID, MDA AgeGroup}.

Case 2 — Different Linguistic Terms for a Target Attribute: It is a case in
which there is more than one linguistic term for a target attribute. For this case, define
multiple membership degree attributes (MDA) and multiple class membership attributes
(CMA) for a target attribute, where one membership degree attribute corresponds to a
class membership attribute, as given below.

TA (1) : (M) MDA and MDA (1) : (M) CMA

Guideline (3| describes that if an instance of a TA belongs to multiple fuzzy classes but

71

3.3.2 Building Fuzzy Data Warehouse Model

with the same membership degree, add M number of FCTs and a FMT, where M is the
number of distinct set of linguistic terms.

Additionally, guideline [4] describes that if an instance of a TA belongs to more than
one fuzzy class with different membership degrees, add M number of FCTs and FMTs,
as given below, where M is the number of distinct set of linguistic terms. The addition
of M number of FCTs and FMTSs is represented by loop 3 and 4 respectively in figure 3.3

Dimension/Fact (1) : (M) FMT and FMT (1) : (M) FCT

For the customer age example, there are two distinct set of linguistic terms i.e.
{young age, middle age, old age} and {teenager, adult, senior}. Therefore, follow-
ing guideline [3{ add FCT1(customer age) = {AgeGroupl ID,CMA AgeGroup} and
FCT2(customer age) = {AgeGroup2 ID,CMA AgeGroup}, one for each set. Also,
add a FMT (customer age) = { Membership ID, AgeGroupl 1D, AgeGroup2 1D,
Customer ID, MDA AgeGroup}.

Case 3 — Different Membership Degrees for the same Linguistic Terms: It
is a case in which target attributes belong to a linguistic term with different degrees. For
this case, define multiple membership degree attributes (MDA) and a class membership
attribute (CMA) for a target attribute, as given below.

TA (1) : (M) MDA and MDA (M) : (1) CMA

Guideline [2] describes that if an instance of a TA belongs to a fuzzy class but with
multiple membership degrees, add a FCT and M number of FMTs, where M is the num-
ber of distinct membership degrees.

Dimension/Fact (1) : (M) FCT and FMT (M) : (1) FCT

For the customer age example, there is one set of linguistic terms i.e. {young age, mid-
dle age, old age}, however different membership functions are defined. Therefore, fol-
lowing guideline [2| add a FCT(customer age) = {AgeGroup 1D, CMA AgeGroup},
a FMT1(customer age) = {Membershipl D, AgeGroup 1D,Customer 1D, MDAI-
_AgeGroup} and FMT2(customer age) = {Membershipl D, AgeGroup ID,Custo-
mer_ ID, MDA2 AgeGroup}.

Third Task: The third task is to relate each fuzzy membership table and fuzzy
classification table with the “to be classified” table i.e. the table that contains the
target attribute. For that, add a foreign key relation FMT(Identifier of TA) =
T A(Identifier) to relate the TA table with the FMT table. Second, add a foreign key
relation FMT (Identifier of FCT) = FCT(Identifier) to relate each FCT and FMT.
Figure presents the relation of the fuzzy concept tables and the dimension table
client. The meta tables for the fuzzy concepts are grey shaded. The table FCT _Custo-

72

3.4 Characteristics of Fuzzy Concepts in Fuzzy Data Warehouse

mer _Agel represents F'C'T'1 that contains the linguistic terms {young age, middle age, old age}
in the cma attribute. Accordingly, FCT Customer Age2 represents F'C'T'2 that con-

tains the linguistic terms {teenager, adult, senior} in the CMA attribute. Table

FMT _Customer Agel represents FMT1 with the corresponding membership degrees

in the MDA. Similar, FMT _Customer Age2 represents FMT2 and FMT _Customer Age3
represents F'MT3.

Legend
#PK_FMT: Primary key of fuzzy membership table
#PK_FCT: Primary key of fuzzy classification table
#FK_FCT: Foreign key to fuzzy classification table
#FK_TA: Foreign key to target attribute - Customer Table

FMT_Customer_Age1
#PK_FMT
#FK_TA
#FK_FCT
MDA FCT_Customer_Age1

#PK_FCT

Dimension Customer FMT_Customer_Age2 CMA

Customer #PK_FMT
#FK_TA
Name #FK_FCT
Birthday MDA
Address

FMT_Customer_Age3
#PK_FMT
#FK_TA P— |
#FK_FCT
MDA

FCT_Customer_Age2

#PK_FCT
CMA

Figure 3.5.: Dimension Customer with Fuzzy Concepts

3.4. Characteristics of Fuzzy Concepts in Fuzzy Data
Warehouse

Data collection in a data warehouse implies various challenges for using fuzzy concepts.
Data is analyzed over time and under different aspects defined by the dimensionality of
the data warehouse. The value range of data collection is therefore directly dependent
on aspects of the analysis. Because of that, the analysis of data defines the level of
aggregation, the dimensions on which data is analyzed and the time frame. A fuzzy
concept applied to a data collection as target attribute has to be able to handle these

73

3.4.1 Types of Fuzzy Concepts

aspects. The next sections will cover different characteristics that a fuzzy concept must
possess in order to fully support data collections as target attributes.

3.4.1. Types of Fuzzy Concepts

In contrast to a transactional system, data in a data warehouse is populated on regular
bases and never deleted and rarely modified. The data size therefore grows steadily and
over the years, the value range might grow simultaneously. If the data size grows over
the physical capacity of the storage system, it is necessary to partition and to archive
parts of it. Consider a movie rental company data warehouse that stores information
about movies. It is likely that over time more movies and different genres are added.
Data of old movies that are not available anymore in the stores is sorted out and archived
separately. Considering this mechanism, one can state that the value ranges of movies
and genres are fluctuating over time.

Fuzzy concepts should be flexible in the sense that they should properly handle fluctu-
ating value ranges. Depending on how the fluctuation should be handled, different fuzzy
concept types can be defined. Fuzzy concepts can be characterized into three types:
open ended, limited and adaptive fuzzy concept.

Open end Fuzzy Concepts

The figure shows a schematic representation of an open end fuzzy concept. The low-
est class membership attribute (CMA) and the highest CMA both have a knee point.
All target attribute values below the lowest knee point or above the highest knee point
will have a membership degree of 1 of the particular CMA.

A
Lowest CMA _ CMA, Highest CMA

membership degree

\/

o 0 Domain of attributes ®

Figure 3.6.: Schematic Example of an Open End Fuzzy Concept

74

3.4.1 Types of Fuzzy Concepts

An open end fuzzy concept can be defined as a fuzzy concept ({CMA _low, ...,
CMA_high}) for which the domain of the target attribute is infinite. Value instances
below the lower knee point (LK) fully belong to the lowest CMA and value instances
above the higher knee point (HK) fully belong to the highest CMA. Formally,

Definition 38 (Open end fuzzy Concept).

domra = [—OO,—FOO] VAN ZTlows Thigh € TA AN 2100 < LK N HK < ZThigh VAN

HeMA_tow(Tiow) = LA plema_nigh(Thign) = 1.

With an open end fuzzy concept, the complete domain of target attribute is covered,
even if the domain is varying over time. The calculation cost of the open end fuzzy
concept is relatively low as target attribute values beyond or above knee points always
receives a membership degree of 1. Only for values in between a membership function
the membership degree has to be calculated. This kind of fuzzy concept is stable in re-
gard of target attribute values which are not in the standard distribution of the domain
of attributes. These outliers are simply classified sharp, respectively with a membership
of 1 in either the lowest or the highest CMA. In contrast to the adaptive fuzzy concept
these outliers do not affect the classification of the other target attribute value.

On the other hand the fuzzy concept will only give an accurate classification between
the knee points. If the value range of the target attributes is growing and therefore
most of the values are classified after the knee points, it will be necessary to adapt the
concept to the new domain of attributes. This operation might be cost intensive as all
the membership degrees of all target attribute values have to be readjusted.

The open end fuzzy concept requires as many membership degree attributes in the
fuzzy membership table as the number of the Cartesian product of the class membership
attributes and the target attributes. For every new value the membership degree has
to be calculated. It should be noted that knee points have to be chosen in a way that
distribution of the values in the different class membership attributes reflects the nature
of the classification. If the value range increases over time and the knee points are chosen
to close together, it is probable that values fully belong to easily to either the lowest or
highest class membership attribute.

For illustration of the different characteristics of fuzzy concept consider the following
example:

Example 10. A data warehouse contains two dimensions: client and employee. Both
dimensions contain the dimensional attribute birthday from which the age can be cal-
culated. Additionally, both dimensions have the dimensional attribute name and the
customer dimension has the dimensional attribute address. The dimensions are single
hierarchy and single level dimensions and are realized by one table per dimension. The

75

3.4.1 Types of Fuzzy Concepts

fact revenue is measured in the data warehouse and therefore both dimensions are in-
terconnected to a fact table containing revenue as attribute. The dimensions and the
fact table are related by a primary - foreign key relation in which the primary key # of
the dimension tables is mapped to the corresponding foreign key FFK ... in the fact
table. Figure visualizes the data warehouseschema.

Dimension Customer Dimension Employee
Customer
Employee
#
Name #
Birthday Name
Address Birthday
Fact

#

FK_customer

FK_employee

Revenue

Figure 3.7.: Customer and Employee Dimension

For illustration of the open end fuzzy concept, the dimension client with a fuzzy clas-
sification age can be used. Every customer is classified into old, middle-aged and young
customer. As of today, the youngest registered customer is 14 and the oldest is 50.
Therefore, a lower knee point can be chosen at the age of 14 and a higher knee point at
the age of 50. These knee points will define that every customer under 14 fully belongs
to the class membership attribute young and every customer older than 50 fully belongs
to the class membership attribute old. When in the future, a customer with age 62 will
be registered, he will fully belong to old customer, even if the fuzzy concept today does
not have a target attribute value that is over age 50. Figure [3.8]illustrates the open end
fuzzy concept with the classification of the new customer.

Limited Fuzzy Concepts

A second kind of fuzzy concepts are limited fuzzy concepts. In limited fuzzy concepts,
values outside the initially defined domain are not considered. The lowest and highest
values of the original value range define the minima and maxima point of the fuzzy
concept. Afterwards, all new values out of this range are discarded.

Figure show the schematic representation of the limited fuzzy concept. It is no-
table that the classification of the concept only spans from the minima to the maxima

76

3.4.1 Types of Fuzzy Concepts

4| Young Middle Old
— i Knee point high
=50

[0]
o
)
(5]
©
2
<
[
[9]
o)
€
(4]
£

0 Age of Customer /%5 "

Future customer
classified as old

Figure 3.8.: Example of Open End Fuzzy Concept

point. All other values of the domain of attributes are not considered for classification.

A
Lowest CMA CMA, Highest CMA

minima maxima

membership degree

\/

o 0 Domain of attributes ®

Figure 3.9.: Schematic Representation of a Limited Fuzzy Concept

Formally, a limited fuzzy concept can be defined as:

Definition 39 (Limited fuzzy concept). A fuzzy concept for which the value range of
the target attribute (TA) is limited with a minima (min) and mazima (max) point;
dompa = [min,max]. In this case the domain of the target attributes is not congruent
with the complete value range of the dimension attribute or the measure that is classified
with this fuzzy concept.

77

3.4.1 Types of Fuzzy Concepts

It makes sense to use a limited concept, if the value ranges have static lower and
upper boundaries or the fuzzy concept is meant to only classify a subset of the complete
value range. The limited fuzzy concept does not consider outliers that are higher or
lower than the maxima respectively the minima point. It does not even classify them
sharply as in the open end fuzzy concept. In regard to that, the lowest and highest
CMA classify more accurately compared to the open end fuzzy concept as they do not
considered values that are outliers. The calculation cost of the membership degree is for
both concepts almost the same.

As the domain of attributes grows, this fuzzy concept suffers from the same drawbacks
as the open end fuzzy concept. In order to maintain a correct classification, the limited
fuzzy concept might have to be adapted to the value range if it is frequently fluctuating.

Limited fuzzy concept has lower computation cost than open end fuzzy concepts for
the membership degree attribute because it only has to be calculated for values between
the minima and maxima point. The fuzzy membership table does not necessarily grow
linear to the target attribute table and therefore it might reduce the size of the meta
tables structure in the data repository. In contrast, the classification only covers a re-
stricted range. If the value range fluctuates, the limited fuzzy concept can only cover a
part of the data. Consequently, it negatively affects the quality of classification.

In example [10] a fuzzy concept employee age can be applied. In contrast to the
customer age, full time employees have a minimum age of 18 and a maximum age of 65.
During the summer, students are hired as part time employees for cleaning the stock
of old movies. These students are often younger than 18 but are out of interest for the
classification of employees. Based on this boundaries it is not necessary to capture a
domain of attributes containing values below 18 or higher 65 with the fuzzy concept
employee age. Therefore a limited fuzzy concept as illustrated in figure is more
suitable than a open end fuzzy concept.

Adaptive Fuzzy Concepts

The adaptive fuzzy concepts uses the complete domain of attributes. This type of fuzzy
concept is not defined with fixed points as knee points or minima / maxima points. The
CMA are defined relative to the value range and cover a percentile range instead of a
defined subset of values. Due to the relative behavior of the adaptive fuzzy concept, it
can support a fluctuating set of target attribute values and automatically adapts itself
to the new domain of attributes. Therefore, all membership values of all target attribute
instances have to be recalculated. This mechanism will always span the fuzzy concept
over the actual domain of attributes.

In the schematic representation in figure the adaptive fuzzy concept always uses

the actual domain of attributes as value range. As soon as a new target attribute in-
stance value is inserted, which is outside the actual domain of attributes D(A);, the

78

3.4.1 Types of Fuzzy Concepts

1 Young Middle old
® Minima = 18 Maxima = 65
(3]
o)
[}
o
2
<
[
Q
e}
£
(0]
1S
0 1 Age of Employee -
Part time
employed student
not classified

Figure 3.10.: Example of Limited Fuzzy Concept

membership functions of CM A; and CM A, are adapted to suit the new domain of at-
tributes D(A)s.

Formally, an adaptive fuzzy concept can be defined as:

Definition 40. A fuzzy concept which has membership functions that define class mem-
bership attributes on a percentile range of the domain of attributes of the target attribute.

Consider example that uses revenue as its measure in the fact table and applies
a fuzzy concept with the class membership attributes high and low to classify revenue.
Over time, the company might have periods in which it produces extraordinarily high
or low revenue. In order to cover this fluctuation of the domain of attribute revenue,
the fuzzy concept can be defined as an adaptive fuzzy concept. The adaptive fuzzy
concept checks for every new target attribute value the membership function whether it
is within the actual defined domain of attributes or not. In case it is outside the domain
of attributes, it determines whether the domain of attributes should be adapted to the
value or not. If the value is an outlier it will still get classified based on the old value
range and will therefore belong fully to one of the class membership attributes on the
outside (low or high). If the domain of attributes is adapted, every membership degree
attribute in the membership table, including the new value, will be recalculated based
on the new domain of attributes. Figure illustrates how the fuzzy concept adapts
itself to the new domain of attributes.

Adaptive fuzzy concepts have the disadvantage that they might be sensitive to outlier

values. In this context, an outlier can be understood as an exceptional high or low value
instance that provokes the recalculation of the fuzzy concept. Therefore, it is necessary

79

3.4.1 Types of Fuzzy Concepts

New value
0 ' >

'_
Domain of attributes D(A), after adding a new target attribute instance value

Figure 3.11.: Schematic Representation of an Adaptive Fuzzy Concept

to define countermeasures for outlier values in the membership functions. A possible
way to define a countermeasure is to calculate the standard deviation and discard values
with high variation. For traceability, it might be necessary to archive the old member-
ship degrees. Therefore, given that membership degrees change frequently, it is likely
that the adaptive fuzzy concept may lead to a substantial increase in data warehouse size.

Adaptive concepts produces high calculation cost. On every insertion of a target at-
tribute instance, each value must be checked to determine of it is out of the actual
domain of attributes and if so, all membership degrees of every instance have to be re-
calculated. Considering highly distributed data warehouses as in [ISNO§| described, the
checking mechanisms for the domain of attribute will produce a lot of overhead between
the systems and will be a challenging task.

These different types of fuzzy concepts can be combined together. This might be
adequate when using big data warehouse systems that have distributed data sources as
for example Teradata [Terll]. If the data is separated by its age in a way that more
modern data is in a high available data store and the older data are outsourced on slower
data stores it makes sense to integrate adaptive fuzzy concept on the data store with the
more recent data. But considering the whole domain of attributes, the adaptive fuzzy
concept is seen as a limited fuzzy concept.

80

3.4.2 Aggregation and Propagation of Fuzzy Concepts

\ /
Low &{D(TA); \ D(TA)y /
\

Low d{ D(TA), High &f D(TA),

| 0) New very high
" Value range of revenue D(TA)4 before adding a new revenue outside this range’ revenue is generated

Adapted value range of revenue D(TA),

Figure 3.12.: Example of Adaptive Fuzzy Concept

3.4.2. Aggregation and Propagation of Fuzzy Concepts

Aggregating of data in a data warehouse directly affects the fuzzy concepts that classify
data. Data is grouped together in a more dense view or split to reveal a more detailed
view. The grouping is defined by the aggregation function that is often a summation,
a product building, a maximization, a minimization, a count or an average building
function (see also section for characteristics of aggregation functions in data ware-
house). This aggregation functionality is fundamental to the standard data warehouse
operations described in section 2.1.5] In order to be able to classify aggregated data,
the fuzzy concepts have to be aggregated too. In the next sections, two methods for
aggregation of fuzzy concepts are discussed. The first method aggregates the member-
ship degree instances of the fuzzy concept to a more dense view. The second method is
not aggregating membership degree instances, rather it redefines the fuzzy concept with
the aggregated data instances as the new target attribute. Therefore, this method is
described as propagation of the fuzzy concept as it is propagating the definition of the
fuzzy concept and not aggregating values. Each method is illustrated using an example,
advantages and drawbacks are depicted.

81

3.4.2 Aggregation and Propagation of Fuzzy Concepts

Aggregation of Fuzzy Concepts

One possibility is to aggregate the membership degree attributes of each target at-
tribute instance into a next higher hierarchy level [Fas09]. Each value instance of the
next higher hierarchy level is composed of a set of value instances from the target at-
tribute with respect to summarizability (see section . Consequently, a membership
degree attribute for each instance of the next higher hierarchy level can be considered
as aggregation of the membership degree attributes of the lower level target attribute
instances. In order to illustrate the aggregation of fuzzy concepts, consider the following
example:

Example 11. A data warehouse contains a dimension store with two category at-
tributes: store and city. All stores are aggregated to the corresponding city. For all
stores their surface is measured and added to the dimension as dimensional attributes
on level store. Considering Lehner [Leh98|, dimensional attributes can be aggregated on
higher hierarchy levels, similarly as it would happen for measures. Therefore, the store
surface can be aggregated to the level city.

Further, a fuzzy concept with store surface as target attribute is defined. The fuzzy
concept classifies the surface as big, middle and small. Figure [3.13]shows the schema the
dimension store and the fuzzy concept. The dimension is set up as two tables store and
city. The relation from store to city is maintained by the foreign key relation FK _city on
store table to # on city table. The primary key are referenced as #. The fuzzy concept
is illustrated as a FCT and a FMT table according to the specification in section [3.2.1]

Dimension Store Fuzzy Concept Store
Surface
City FCT
#
Name CMA
Store FMT
#
FK_City FK_TA
Name FK_FCT
Surface MDA

Figure 3.13.: Dimension Store with Fuzzy Concept Store Surface

In example the average store surface of a city can be calculated by aggregat-
ing the surface of all stores in a city with an average function. In order to apply the
fuzzy concept store surface on the level city, the membership degree attributes have to
be aggregated. By the foreign key relation of stores to cities, it is known which store

82

3.4.2 Aggregation and Propagation of Fuzzy Concepts

surfaces are aggregated to a distinct city surface. Subsequently, the membership de-
gree attributes on level store can be identified that aggregate to a membership degree
attribute on level city. An additional aggregation function can then be defined that
aggregates the membership degree attributes of the stores to the membership degree
attribute of the city. In the case of store surface, the arithmetic average of the mem-
bership degree attributes of each class membership attribute can be used to generate
the corresponding membership degree attributes for the cities. Figure [3.14] shows the
aggregation of the fuzzy concept surface from store to city. Store A and store B are ag-
gregated to the city Fribourg. Their surfaces, 20 and 35 square meters respectively, are
aggregated to 27.5 square meters in city Fribourg using an average function. Both stores
have a membership degree represented by pu for the linguistic terms of the fuzzy concept
surface in figure [3.14] The membership degrees of the city Fribourg are calculated using
the arithmetic average of the membership degrees of store A and store B. For example,
the membership degree of the linguistic term small for the city Fribourg is calculated as
follows: flsman(27.5) = & S’"“”(QO)X2O+5“ sma(35)x35 Similarly, the membership degrees for
the linguistic terms big and middle can be calculated. Other aggregation function than
an arithmetic average may be used for aggregating the membership degrees. Several
fuzzy set specific operations have been presented in section [2.2.1] which can be used for
aggregation of fuzzy concepts. Operations like the compensatory and (see definition [27)
might be more adequate for aggregation when the aggregation should better reflect the
human perception of the classification.

Hpig(27.5)=0.0
Hmiddle(27-5)=0.06
Hema(27-5)=0.94

Dimension Region 7. 5
L F,r,lb,o,urg ,,,,,,,,,,,,,,,,,,,,,
I Fuzzy concept 1
_surface
big P——surface 20 35
| migde | AN N AN
| small store----------- S A B
Hpig(20)=0.0 Hpig(35)=0.0
Hmiddle(20)=0.0 Hmiddle(35)=0-1
Hsmal(20)=1.0 Hsmal(35)=0.9

Figure 3.14.: Aggregation of a Fuzzy Concept

Aggregation of fuzzy concept may not be semantically correct in all cases. When the
city surface is aggregated as the sum of all store surfaces, an aggregation of the mem-
bership degree attributes might lead to erroneous classification. If the aggregation of
the target attribute is based on a summation function, the domain of the aggregated
target attributes does not correspond anymore to the initial domain. Therefore the fuzzy
concept itself has to be adapted to the new domain of attributes. This adaption of the
fuzzy concept can not be achieved by aggregating the membership degree attributes. In
order to better illustrate the dilemma when the target attribute is aggregated using a

83

3.4.2 Aggregation and Propagation of Fuzzy Concepts

summation function, the following two situations are given:

The membership degree attributes are aggregated using a summation function. In
this case the city Fribourg would have a store surface of 55 square meters and it would
be classified as prgmen = 1.0+ 0.9 = 1.9 and pinidqe = 0.0 + 0.1 = 0.1. Figure [3.15shows
this wrong aggregation for the city Fribourg and Bern.

Hpig(55)=0.0 Hpig(205)=1.0
Hrmiddle(55)=0-1 Hrmiddie(205)=0.875
Hsmall(55)=1.9 Hgmall(205)=0.125
Dimension Region 55 205
L = Fribourg. ... Bern.......................
| Fuzzy concept 1
_surface |
big P——Suffece 20 35 55 150
| rmiddle | N N AN AN S
| small store- -~ A B , o
Hpig(20)=0.0 Hpig(35)=00 pp;(55)=0.0 Hpig(150)=1.0
Hmiddie(20)=0-0 Hmiddie38)=0-1 Mmigde(55)=0-875 Hmiddie(150)=0-0
HMgma)|(20)=1.0 Hsmall(35)=0.9 Hgma(55)=0.125 Hgmal(150)=0.0

Figure 3.15.: Wrong Aggregation of Fuzzy Concept using Summation

It can be seen that store C in Bern has the same surface as city Fribourg but is classified
different. Additionally, the original fuzzy concept had normalized membership degrees in
a way that fsman + ftmiddie + hig = 1.0. The aggregated membership degrees are not nor-
malized anymore and if they would be normalized in a further step, it would appear that
the overall surface of city Bern (tsmait normatizea = 0.0125/(0.0125 + 0.875 + 1.0) = 0.06)
is classified as smaller surface than its child store D (ugman = 0.00).

As a second example, the membership degree attributes are aggregated using the
arithmetic average function as described in figure [3.14] while the surface is still aggre-
gated using a summation function. In this case, it is possible that a city with a bigger
overall surface is belonging more to small than a city with smaller overall surface. Figure
illustrates that city Basel belongs more to small surface than Fribourg even if the
overall surface of Basel is 60 square meters and Fribourg only has 55 square meters.

The reason for this bad classification is the fact that the overall surface of Basel is
realized with a higher quantity of smaller stores. Fribourg has fewer stores but they are
bigger. The aggregation of the fuzzy concept takes the quantity of the stores into consid-
eration, whereas the summation aggregation of the target attribute does not. Therefore,
the classification of the city surface is not consistent anymore.

As a consequence, the aggregation of fuzzy concepts does make sense, if the aggrega-

tion of the target attribute is not a summation function. For other aggregation function
on target attributes such as minimization, maximization, average and count functions,

84

3.4.2 Aggregation and Propagation of Fuzzy Concepts

Hpig(65)=0.0 Hpig(60)=0.0
Hmiddle(55)=0.06 Hmiddle(60)=0.0
Hsmall(55)=0.94 Hsmal((60)=1.0

Dimension Region

| Fuzzy concept 1
_surface |

big P——surface
| middle | \\
| small store-----------
Hpig(20)=0.0 Hpig(38)0.0 1yg(20)=0.0 12000 1yg(20)=0.0
Hmigdle(20)=0-0 Hmiddie(3%)=0-1 Hmiddie(20=0-0" Hmigie(20)=0-0 Hpjgqie(20)=0-0
Hsmal(20)=1.0 Hsmall39)=0.9 Hgmqi(20)=1.0 Hgpq(20)=1.0 Hgpmq)(20)=1.0

Figure 3.16.: Wrong Aggregation of Fuzzy Concept using Average

the aggregation of the fuzzy concept might make sense. Nevertheless, the modeler of
the fuzzy concept must always check if the fuzzy concept retains its validity on other
hierarchy levels.

Propagation of Fuzzy Concepts

A possible solution to overcome this incorrect classification can be a propagation of the
fuzzy concept onto another dimension hierarchy level. In contrast to the aggregation, the
propagation of a fuzzy concept does not take the membership degree attributes values
into consideration. The linguistic terms and the membership functions are applied to a
new hierarchy level as a new variant of the fuzzy concept. The values of the aggregated
dimension hierarchy are the target attributes for the new fuzzy concept. The mem-
bership degrees are recalculated based on the new domain of attributes. Membership
degrees from the fuzzy concept on the lower hierarchy level are not taken into consider-
ation as it would be the case in the aggregation of the fuzzy concept.

For propagating the fuzzy concept store surface from dimension hierarchy level store,
a variant of the fuzzy concept is created on the level city. The fuzzy classification table
(FCT) is taken from the original fuzzy concept. Whereas, the fuzzy membership table
(FMT) has to be newly created for the propagated concept. This is due to the fact that
new membership functions are calculating the membership degree based on the new do-
main of attributes. These newly calculated membership degree attributes are stored in
the new FMT. Figure [3.17 illustrates the propagation of the fuzzy concept store surface
from the dimension level store to the level city. The membership degrees of store sur-
face of city Fribourg is now calculated based on the propagated fuzzy concept and with
its membership functions. Therefore, these membership degrees are independent from
the original fuzzy concept that is calculating only the membership degrees on the store
level. The target attribute of the propagated fuzzy concept is the calculated value store
surface (in figure illustrated as grey doted surface attribute on city level) that does
not persistently exist in the fuzzy data warehouse. Consequently, the store surface has
to be aggregated first at city level in order to calculate its membership degree attributes.

85

3.4.2 Aggregation and Propagation of Fuzzy Concepts

Fuzzy concept
surface

Hpig(65)=0.0
Hmiddle(55)=0.0
Dimension store HMgmall(85)=1.0
55

~N

N
small H ity Fribourg..................__.

Propaégation
| Fuzzy concept 1
_surface _I /surfgce 20 35

. N N N
big |?/ Store----------- A B

| iddl

| rZ'maf | Hpig(20)=0.0 Hpig(35)=0.0
Hmiddle(20)=0-0 Hmiddle(35)=0.1

Hsmall(20)=1.0 Hgmal|(35)=0.9

Figure 3.17.: Propagation of Fuzzy Concept Store Surface

Extending example [11| with a fact table, another interesting behavior of propagation
of fuzzy concepts can be observed:

Example 12. To the dimension store in example a fact table is added. The fact
table contains a measure revenue and the primary key # and the foreign key relation
to the store table (FK _store). A second fuzzy concept is added having revenue as the
target attribute. Figure [3.18]illustrates the extended example.

Regarding the fuzzy concept revenue on the fact revenue in example [12] it is possible
to propagate and/or aggregate it to the hierarchy level city. For propagating, a variant
of the concept including the fuzzy membership table must be defined on city level. The
target attribute for this fuzzy concept is the city revenue. It is notable that the city
revenue is an aggregated fact value and not persistent in the fuzzy data warehouse (see
section . The fuzzy concept is only propagated to city level and not to store level.
Propagation allows a modeler of a fuzzy concept to exactly specify on which dimension
level the fuzzy concept is propagated. This flexibility is not possible with aggregation
as a membership degree attribute on a dimension level is always aggregated from mem-
bership degree attributes of the preceding dimension level.

Figure [3.19] demonstrates the propagation of the fuzzy concept revenue to the dimen-
sion level city. Store A and B earned multiple revenues of 5 CHF. For every revenue a new
instance is stored in the fact table. The total revenue of a city is the sum of all revenues
earned by stores. Each revenue has a membership degree for each linguistic term in the
fuzzy concept revenue (finigh, middie, fiow) aS shown in figure . All realized revenues

86

3.4.2 Aggregation and Propagation of Fuzzy Concepts

Dimension Store Fuzzy Concept Store
Surface
City FCT
#
Name CMA
Fuzzy Concept
Revenue Store FMT
FCT # #
% FK_City FK_TA
CMA Name FK_FCT
Surface MDA
FMT
Fact
#
FK_TA #
FK_FCT FK_Store
MDA Revenue
Fact

Figure 3.18.: Dimension Store and Fact Revenue with Fuzzy Concepts

belong fully to low revenue in this example. For the city hierarchy level the revenues
are aggregated to the city Fribourg and the fuzzy concept is propagated (dashed fuzzy
concept city revenue). The city revenue is classified according to the propagated fuzzy
concept. Hence, the membership degree attribute on the different hierarchy levels are
independent of each other and get defined by the corresponding membership functions.

As for each propagated fuzzy concept, a new fuzzy membership table must be cre-
ated, it is possible to define different characteristics for propagated fuzzy concept (see
also Guideline [2] in Section [3.2.3)). For instance, the base fuzzy concept might be an
adaptive concept and the propagated one an open end fuzzy concept.

In technical aspects, propagated fuzzy concepts are only loosely related to its base
fuzzy concepts. It may be possible to reuse the fuzzy classification table of the base
concept to reduce the amount of extra tables and to limit the resources in the fuzzy
data warehouse repository. Besides that, the propagated fuzzy concept is independent
of the base concept. In contrast to a propagation, an aggregation of a fuzzy concept
creates no variant and the aggregated membership degrees reflect a classification on the
base fuzzy concept.

Determining if a fuzzy concept should be propagated, aggregated or both, is a com-
plex task and depends on the nature of the target attribute and the semantic meaning of
the classification. In general, the modeler of the fuzzy concept should consider different
aspects. The most important aspect is to check if the fuzzy concept retains its semantic
correctness on other hierarchy levels. For instance, a limited fuzzy concept might not
be propagated if all the new values are outside the defined domain of attributes; respec-

87

3.4.3 Persistency of Target Attributes

“high(45)=0'0
¢ Fuzzy concept | “middle(45)=0‘0

[...Cltyrevenue Dimension Store Mo (@5)=1.0
high S City 45
middle : revenue) -
] ity - efe e Fribourg”. ...
! low ¢
'~+'
Propa:gaiion Store
. revenue 25 20
P P -
Store---------- A" Bt
Fuzzy concept 1
_tevenue |
| high L————revenue ———————— 55555 5555 .-
middle
| low | Fact Table uhigh(5)=0.0 “high(5)=0'o
Hmiddie(®)=1-0 Hmigdie(®)=1-0
Hiow(5)=0.0 Hiow(5)=0.0

Figure 3.19.: Propagation of a Fuzzy Concept

tively the value concept has to be redefined. Wheter the aggregation or the propagation
of a concept makes sense is often not based on technical constraints but on the modelers
perception of how the fuzzy concept should classify target attributes.

3.4.3. Persistency of Target Attributes

A key feature of data warehouses is the ability to aggregate measures or dimensional
attributes over dimensions for analysis purposes. These aggregated values are generally
not stored persistently in the data warehouse and will be lost once the analysis is closed.
Fuzzy concepts can be defined on measures and dimensional attributes, as described in
section [3.2.2] that are persistently stored in the table structures of a data warehouse.
An additional challenge is to define fuzzy concepts that have non persistent measures
or dimensional attributes as target attributes (briefly addressed in section . The
ability to define fuzzy concepts on non persistent target attributes enables propagation
of fuzzy concepts on other dimension levels or dimensions (when the fuzzy concept is
defined on a fact).

In order to define how fuzzy concepts on non persistent target attributes behave, the
propagation of the fuzzy concept revenue in example [12]is analyzed in greater detail. As
described in figure the fuzzy concept revenue is propagated on dimension level city.
First, revenue is aggregated to city revenue. City revenue is a non persistent value as it is
calculated just in time of the propagation. Next, the membership degree attributes of the

88

3.4.3 Persistency of Target Attributes

fuzzy concept city revenue are calculated with the city revenue as target attribute. The
membership degree attributes are then stored persistently in the corresponding fuzzy
membership table of the fuzzy concept city revenue. It must noted that before being
able to create the membership degrees, an additional aggregation step has do be done
to calculate the volatile target attributes. The key relations from the fuzzy membership
table to the target attribute (see definition still can be realized as the target attribute
city revenue belongs distinctly to a city and cities are persistently stored in the city table.

The calculation costs of a fuzzy concept with volatile target attributes depend on
the type of fuzzy concept and how often the values, from which the target attribute is
aggregated, are changing. Considering the propagated fuzzy concept described in figure
3.19| calculation cost might be high because revenue in city Fribourg might be realized
regularly and therefore the city revenue is changing frequently. The membership degree
attributes have to be recalculated accordingly. When the propagated fuzzy concept is
an adaptive fuzzy concept, city revenue for all cities has to be aggregated in order to
classify a single city revenue. Consequently, a propagated adaptive fuzzy concept with
frequently changed target attribute generates high maintenance costs. In contrast, a
propagated non adaptive fuzzy concept with more stable target attributes might have
a similar maintenance effort as a fuzzy concept with persistent target attributes. An
example for a propagated fuzzy concept with more stable volatile target attributes is the
fuzzy concept city surface described in figure [3.17 The overall store surface of a city is
not as frequently changing as the earned overall revenue in a city. Therefore, it might be
worthwhile to use an open end fuzzy concept for the fuzzy concept city surface. When
using an open end fuzzy concept, the membership functions do not depend on knowing
the complete value range of all target attributes. Because of this, it is not necessary
to aggregate the store surfaces of all the cities when calculating the membership degree
attributes for a single city. Furthermore, the city store surface is only changing when
a store is added or removed in the city. Modifying category attributes in a dimension
is less frequent than adding new fact instances (i.e. revenue). Consequently, the mem-
bership degree attributes of the fuzzy concept city store surface have to be adapted less
frequently than the membership degree attributes of the fuzzy concept city revenue.

Fuzzy concepts with a dimensional attribute as target attribute are limited to aggre-
gate or propagate over a single dimension. Whereas fuzzy concepts defined on facts
might be propagated to more than one dimension. When a dimension time is added to
example the fuzzy concept revenue might be propagated over time in order to re-
ceive the fuzzy concept monthly revenue. It should noted that this is a new instance of
a propagated fuzzy concept and does not share target attributes with the fuzzy concept
city revenue.

In addition, fuzzy concepts based on facts might be propagated over more than one
dimension at a time. In section [2.1.5] the classical OLAP operations were presented.
Slice and dice operations involve several dimensions at a time in order to analyze a fact.
Fuzzy concepts defined on a fact might be propagated on the result set of such an oper-

89

3.4.3 Persistency of Target Attributes

ation. In order to illustrate this, example [12|is extended with dimension time:

Example 13. To the dimension store and the fact table, a new dimension time is added.
This dimension consists of the category attributes day, month and year. The relations
between the category attribute is realized with the foreign key attributes FK month
and FK year in the corresponding tables. For simplicity, the fuzzy concept store surface
is removed from the example. Figure |3.20] illustrates the new example.

Dimension Store
City
Dimension Time
Name
Year
#
Year
Fuzzy Concept
Revenue Store /L
#
FCT FK_Gity Month
Name
CMA Surface FK_Year
Month
FMT
Fact Day
P
SN FK_Store FK_Month
FK_FCT Rov Day
MDA evenue
Fact

Figure 3.20.: Dimensions Time and Store, Fact Revenue and Fuzzy Concept Revenue

Looking at the cube of the slice operation city revenue in year 2010, a fuzzy concept
city revenue 2010 can be propagated on the resulting cube. This fuzzy concept differs
from the previously specified fuzzy concept city revenue as the target attribute is the
aggregated revenue per city from 2010 and not the overall revenue of the city. Therefore,
the classification scope of the fuzzy concept is different. In figure the X axis of the
graph represents the cities of dimension store, the Y axis shows the time. Each city
earned different revenues over time, symbolized as boxed figures in the grid. When ag-
gregating the revenue of city Fribourg, the overall revenue is 134 CHF (target attribute
for fuzzy concept city revenue) and for the sliced cube the overall revenue for Fribourg
is 73 CHF in 2010 (target attribute of the fuzzy concept city revenue in 2010). It is
obvious that both aggregation operations lead to different revenues for each city and
that the fuzzy concepts therefore classify different scopes.

The application of a fuzzy concept to volatile cubes demands a lot of effort for storing
the membership degree attributes in a persistent fuzzy membership table. It would be
necessary to create a fuzzy membership table for each possible combination of opera-
tions in order to store the appropriate membership degree attributes. Therefore, fuzzy

90

3.4.4 Metaschema for Fuzzy Concepts

A

Dimension
Store
Fribourg | 618} B 61 617} 18] £-+-F}-- {14 14)- B -F oo

Bem |5} 721274 15§ [} (@i oo

Dimension

01.01.2010 31.12.2010 01.01.2011 31.12.2011 ;
Time

Figure 3.21.: Representation of Revenue per City and Time

concepts applied to resulting cubes of operations might only be calculated at the time
of the analysis and would not be persistently stored at all. Fuzzy concepts with non
persistent target attributes can be characterized as volatile fuzzy concepts.

3.4.4. Metaschema for Fuzzy Concepts

At the end of the modeling process of the fuzzy data warchouse (see section [3.3)) some
additional information about fuzzy concepts, which is not directly obvious in the meta
table structure of a fuzzy concept, has to be specified. This additional information
contains the characteristics for each fuzzy concept that was specified in the modeling
process. Similar to specification of characteristics of facts, the fuzzy concept characteris-
tics can be specified in a meta schema of the data warehouse. The meta schema of data
warehouses provides the necessary information how the data warehouse business logic
treats a data warehouse element [MTO02|. For instance, in the case of facts, the aggre-
gation function is defined. Additionally, how the table structure of the data warehouse
is built is defined. With this information, the business logic of the data warehouse can
then execute higher level operations, as the typical OLAP operations (section , in
a consistent manner.

In order to provide consistent operations on fuzzy concepts, the data warehouse needs
to know the nature of a fuzzy concept. The target attribute on which the fuzzy concept
is based has to be known, as well as how it is considering the domain of attributes of the
target attribute (the type of fuzzy concept). This information tells the data warehouse
if the membership degree attributes of the fuzzy concept have to be recalculated after a
modification of the target attribute; for instance when using an adaptive fuzzy concept
and / or when having volatile target attributes. When using a persistent target at-
tribute, the recalculation takes place when the target attribute is modified. In the case
of a volatile target attribute, the recalculation depends on a data warehouse element
(base target attribute) from which the volatile target attribute is aggregated. Therefore,

91

3.4.4 Metaschema for Fuzzy Concepts

the base target attribute must additionally be specified.

One major information about the nature of a fuzzy concept is the membership func-
tion. For each class membership attribute of a fuzzy concept, a membership function is
defined in order to calculate the corresponding membership degree attribute. The cal-
culation of the membership degree attribute might happen in a business layer or on the
database level within a trigger function. The meta schema must contain the information
for building these membership functions for each class membership attribute. Section
covers the calculation of membership function including an example in greater de-
tail.

After the nature of a base fuzzy concept is defined in the meta schema, the ability
to apply the fuzzy concept to different aggregation levels has to be specified. A fuzzy
concept with a dimensional attribute as target attribute might be aggregated and prop-
agated over the dimension. If the target attribute is a fact, the fuzzy concept might
be aggregated or propagated over all the dimensions and over resulting cubes of oper-
ations in which the fact is involved. Aggregation and propagation do not exclude each
other. A fuzzy concept can be applied to different hierarchy levels with both meth-
ods. Subsequently, for each method it has to be specified if it is valid and how it is
applied. For aggregation, the aggregation function has to be specified and for propaga-
tion, the propagated fuzzy concepts have to be specified. When having facts as target
attribute, the propagation of the fuzzy concept on a resulting cube from an operation
results in a volatile fuzzy concept; a fuzzy concept without any fuzzy membership ta-
ble or fuzzy classification table. In this case the class membership attributes and the
membership functions have to be defined. With this information, the business logic of
the data warehouse can calculate the classification during the execution of the operation.

In order to fully specify a fuzzy concept in the meta schema, the following character-
istics have to be specified:

e target attribute of the fuzzy concept

e persistency of the target attribute (volatile or persistent)

e in case of a volatile target attribute, the base target attribute

e membership function for each class membership attribute

e for aggregation of the fuzzy concept, the aggregation function

e for propagation of the fuzzy concept, the propagated fuzzy concept

e the volatile fuzzy concept for resulting cubes of operations

92

3.4.5 Calculation of Membership Function

3.4.5. Calculation of Membership Function

When using persistent fuzzy concepts, the membership function for calculating the mem-
bership degrees can be realized in the database storage system. Therefore, trigger func-
tions can be used for calculating and writing the membership degrees into the fuzzy
membership table. The advantage of realizing the membership functions on this low
level is the ability to automatically trigger the calculation of the membership degree as
soon as a new target attribute instance is added to the fuzzy data warehouse. Handling
membership function in business logic of the fuzzy data warehouse results in multiple
database connections and more overhead for calculation, and therefore might be slower
and less efficient.

Example describes a persistent fuzzy concept and how the different components
might be realized in a database storage system. The storage system on which this
example is based is the relational database system PostgreSQL [Posllal]. The trigger
functions and SQL statements can differ on other database storage systems. The struc-
ture of the functions and statements and differences to other systems are not discussed
in the example as it is already illustrated in detail in the PostgreSQL documentation
[Pos11b].

Example 14. Figure [3.22|shows two fuzzy classes “low” and “high” and the membership
functions fi10,, and fipigh.

. A low high
Hhigh(TA)=1
3
(0]
]
[e)]
Q
©
2
<
@
[
Ke)
£
[}
£
Hhigh(TA)=0 : Hiow(TA)=1 _
0 50 80 120 150 -

value TA

Figure 3.22.: Membership Function for two Fuzzy Classes

Using the classes in figure the following membership functions are constructed:

93

3.4.5 Calculation of Membership Function

1 for TA <50
tiow(TA) ¢ 0 for TA > 120
A—
1— =28 for 50 <TA <120
0 for TA <80
Phigh(TA) € 1 for TA > 150
TAS for 80 < TA < 150

A trigger has to be built that inserts two new data tuples in the fuzzy membership
table for every new target attribute. One tuple holds the degree of jip;gn (T A), the other
tuple holds the degree 1o, (T'A). The code example in listing shows a trigger func-
tion calculating and inserting the membership degrees in the fuzzy membership table.
Listing [3.1 shows the SQL statements for creating the involved tables in the trigger. The
table “Target” is the table in which the target attribute is added, the table “fmt” is the
fuzzy membership table and the table “fct” is the fuzzy classification table.

—— Create the target attribute table
CREATE TABLE Target (

id as serial primary key,

ta as integer

)
— Create the fuzzy classification table
CREATE TABLE fct (

id as smallint primary key,

cma as varchar(15)

)
—— Add the class membership attributes to the classification table
INSERT INTO fct (id, cma) values

(1, ’low’),

(2, "high’);
—— Create the fuzzy membership table
CREATE TABLE fmt (

fct id as smallint not null,

ta id as integer not null,

mda as numeric(3,2)

primary key (fct id, ta id)

);

Listing 3.1: Table Creation Statements

CREATE FUNCTION fc_ memership () RETURNS trigger AS $$
BEGIN
— TA lower 50

94

3.4.5 Calculation of Membership Function

IF NEW.ta < 50 THEN
insert into fmt (fct id, ta_ id, mda) values
(1, NEW.id, 1.0);
insert into fmt (fct id, ta_ id, mda) values
(2, NEW.id, 0.0);
END IF ;
— TA higher 150
IF NEW.ta > 150 THEN
insert into fmt (fct id, ta_ id, mda) values
(1, NEW.id, 0.0);
insert into fmt (fct id, ta_ id, mda) values
(2, NEW.id, 1.0);
END IF;
— TA between 50 and 80
IF 50 < NEW.ta < 80 THEN
insert into fmt (fct id, ta_id, mda) values
(1, NEW.id, (1—(NEW.TA—50)/70)):
insert into fmt (fct id, ta_id, mda) values
(2, NEW.id, 0.0);
END IF;
— TA between 80 and 120
IF 50 < NEW.ta < 80 THEN
insert into fmt (fct id, ta_ id, mda) values
(1, NEW.id, (1—(NEW.TA-50)/70));
insert into fmt (fct id, ta_ id, mda) values
(2, NEW.id, (NEW.TA—80)/70));
END IF ;
— TA between 120 and 150
IF 50 < NEW.ta < 80 THEN
insert into fmt (fct id, ta_id, mda) values
(1, NEW.id, 0.0);
insert into fmt (fct id, ta id, mda) values
(2, NEW.id, (NEW.TA-80)/70));
END [F
RETURN Null;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER fc_membership After INSERT OR UPDATE ON Target
FOR EACH ROW EXECUTE PROCEDURE fc membership () ;

Listing 3.2: PostgreSQL Trigger for Membership Functions

If the fuzzy concept is volatile (see section , the membership function calcula-
tion has to be triggered in the business logic as the database storage system does not
recognize temporary cubes. But similar to persistent fuzzy concepts, the membership
function might be calculated on the database level as a stored procedure. The business

95

3.4.5 Calculation of Membership Function

logic can then call the stored procedure that creates a temporary cube with the clas-
sification of the fuzzy concept applied. In the second step, the classified cube can be
returned as a result. The next example describes a fuzzy concept on the fact revenue,
which can be applied as a volatile fuzzy concept on non persistent cubes.

Example 15. A fuzzy concept is defined for the fact revenue. The fuzzy concept con-
sists of the linguistic terms high, middle and low. The membership functions do not
consider a fixed value range, rather they calculate the membership degrees based on the
arithmetic mean. Consequently, the fuzzy concept can be characterized as an adaptive
fuzzy concept. The membership functions are as follows:

S TA;
base = 2 x =——, where n is the number of target attributes

1 for TA <0.2x*base
tiow(TA) < 0 for TA > 0.5x*base

0.5xbase—T A
0 5%base—0 2rbase for 0.5 % base < TA < 0.2 % base

1 for 0.5 xbase <TA <0.7 * base
0 for TA > base
pmidaie(T A) % for 0.5xbase < TA < 0.2 x base
for 0.7 xbase < T A < base

ase—
base—0.Txbase

0 for TA <0.7 % base
phigh(TA) < 1 for TA > base
TA-O0.Txbase {1 () 7 % base < TA < base

base—0.7xbase

The fact revenue can be propagated over dimensions using roll-up operations. Using
dimensions time and product, it might be possible to analyze the monthly revenue of
movies, where movies belonging to the dimension product and month to time. A new
cube results from such an analysis that has a new value range of revenue. The described
adaptive fuzzy concept can be propagated on the resulting cube using the propagation
described in the section [3.4.2] The membership degrees of the volatile fuzzy concept
revenue of the resulting cube have to be calculated during the analysis. In order to do
this, the SQL statement of the cube might be passed to a stored procedure that creates a
temporary table to store the cube enriched with the membership degrees for the revenue
of the cube. In the second step, the temporary table can be queried for receiving the
fuzzified cube. Listing [3.3] shows an example of such a stored procedure. In order to
execute the procedure, the SQL statement of the cube has to be passed as first argument
and the attribute in the cube that represents the target attribute as second argument.

96

3.4.5 Calculation of Membership Function

create or replace function temp.fc revenue(cube text, ta text)

returns void as $$

declare fields text [];

declare procfield text []|][];

declare itr integer;

declare str text;

declare str2 text;

declare cur record;

declare mem numeric;

declare base numeric;

begin

— Parse the cube SQL statement for the column fields (select
statement) and put them into the field array

str = 77,
fields := regexp split to array(regexp replace(regexp replace(
cube, E’select’, "), E’from.x’, "), 7 7);
for itr in 1 .. array upper(fields ,1) loop
str = str || {’;
if position(E’"’ in fields[itr]|) <> 0 then
str = str || E’"\\"’ || substring(fields|[itr]
from " ()" || BT\
else
str := str || E’™\"’ || fields[itr]||] E’\\"",
end if;
— If column is MDA, SUM or AVG it is numeric else it
15 text type
if position(E’.mda_’ in fields|itr]|) <> 0 then
str := str || ’"decimal(3,2)"7;
elsif position(E’_sum(’ in fields|itr]) <> 0 then
str := str || "numeric"’;
elsif position(E’_avg(’ in fields|[itr]) <> 0 then
str := str || ’"numeric"’;
else
str = str || "text"’;
end if;
if itr < array upper(fields ,1) then
str = str || "},7;
else
str = str || '},
end if;
end loop;

— C(Create a temporary table with 8 columns for the additional

97

3.4.5 Calculation of Membership Function

MDA’ s and a primary key
str2 = E’{"\\"mda_high\\"",_numeric},{"\\"mda_middle\\"",

numeric },{"\\"mda_low\\"", _numeric} ,{"pk","serial _primary_
key"} 75
procfield := {7 || str || 7, || str2 || "} ’;
str2 := ’create_table_temp.revvol_(_";
for itr in 1 .. array upper(procfield ;1) loop
str2 := str2 || procfield[itr][1] || .7 || procfield]
itr][2];
if itr < array upper(procfield ;1) then
str2 = str2 || 7,_7;
else
str2 = str2 || 7)’;
end if;
end loop;

drop table if exists temp.revvol;
execute str2;
— Insert the SQL result of cube into the temporary table

procfield := {7 || str || ’'}7;
str2 := ’insert_into_temp.revvol_(’;
for itr in 1 .. array upper(procfield ,1) loop
str2 := str2 || procfield[itr|[1];
if itr < array upper(procfield ;1) then
str2 = str2 || 7,_7;
else
str2 = str2 || 7)_’;
end if;
end loop;
str2 := str2 || cube;

execute str2;
— In order to prepare for the fuzzy classification (adaptive
fuzzy concept) of TA, prepare the base

str := ’select_avg(.’ || ta || ’_)_from_temp.revvol’;
execute str into base;

base := 2 x base;

str2 := ’select_pk,_.’ || ta || ’_as_ta_from_temp.revvol’;

— Classify TA with the fuzzy concept
for cur in execute str2 loop

if cur.ta >= base then
update temp.revvol set "mda_high" = 1.0, "mda_
middle" = 0.0, "mda_low" = 0.0 where pk =
cur.pk;
elsif cur.ta >= 0.5 * base and cur.ta <= 0.7 x base
then

98

3.4.5 Calculation of Membership Function

update temp.revvol set "mda_high" = 0.0, "mda_
middle" = 1.0, "mda_low" = 0.0 where pk =
cur . pk;
elsif cur.ta <= 0.2 x base then
update temp.revvol set "mda_high" = 0.0, "mda_
middle" = 0.0, "mda_low" = 1.0 where pk =
cur.pk;

elsif cur.ta > 0.7 x base and cur.ta < base then
mem := (cur.ta —(0.7 % base)) / (base — 0.7 x

base) ;
update temp.revvol set "mda_high" = cast(mem as
decimal (3,2)) where pk = cur.pk;
mem := (base — cur.ta) / (base — 0.7 % base);
update temp.revvol set "mda_middle" = cast (mem
as decimal(3,2)), "mda_low" = 0.0 where pk
= cur.pk;
elsif cur.ta > 0.2 % base and cur.ta < 0.5 x base then
mem := (cur.ta — 0.2 % base) / (0.5 x base —
0.2 % base);
update temp.revvol set "mda_middle" = cast (mem
as decimal(3,2)), "mda_high" = 0.0 where pk
= cur.pk;
mem := (0.5 % base — cur.ta) / (0.5 x base —
0.2 % base);
update temp.revvol set "mda_low" = cast(mem as
decimal(3,2)) where pk = cur.pk;
end if;
end loop;

end ;
$$ language plpgsql;

Listing 3.3: Stored Procedure for the Volatile Fuzzy Concept Revenue

This procedure creates a temporary table revvol that can be queried in the second
step. This two step procedure allows the processing of a volatile fuzzy concept on a non-
persistent cube. The SQL statement in listing exemplifies how the non-persistent
cube of the operation slice(<< time.year, time.month, product.movie >, Revenue, R >
,time.year = 2010) can be fuzzified using the stored procedure of listing

select temp.fc revenue(’select_month.monthname, _movie.name, _sum
(revenue)_as_"Revenue"

from_fact

join_(day

join _(month

99

3.5 Operations in Fuzzy Data Warehouse

join_year_on_month.fk year_=_year.pk year)_on_day.fk month_=_
month.pk month_)_on_fact.fk day_—=_day.pk day

join_movie_on_fact .fk movie_=_movie.pk movie

where_year.year_=_2010

group _by_month . monthname, _movie.name’ ,

""Revenue") ;

select * from temp.revvol;

Listing 3.4: SQL Statement for Applying a Volatile Fuzzy Concept on a Non-persistent
Cube

The ability to use stored procedures and triggers to implement membership functions
depends on the database technology. In PostgreSQL for instance, it is possible to work
with arrays and regular expressions in stored procedures, which is an essential element
for parsing the cube SQL statement in listing [3.3] Not all database technologies pro-
vide enough functionalities with their stored procedures and it may be necessary to move
the membership functions into the business logic of the fuzzy data warehouse application.

3.5. Operations in Fuzzy Data Warehouse

To provide a functional data warehouse, the fuzzy data warehouse has to support the
basic OLAP operations defined in section 2.1.5] In this section, the way that fuzzy
concepts can be navigated along dimensions, their impact when aggregating facts and
how classical operations have to be adapted in order to handle fuzzy concepts correctly
and how multidimensional data cube definition has to be extended with fuzzy concepts
is discussed.

During the discussion of the classical OLAP operations in section 2.1.5] a small data
warehouse example was created for which the Snowflake scheme is presented in figure

2.13] This example is later extended with fuzzy concepts to demonstrate the OLAP
operations in a fuzzy data warehouse.

Example 16. A fuzzy concept is added to the fact revenue as target attribute. The
fuzzy concept revenue contains three linguistic terms “low”, “middle” and “high” revenue.
It is characterized as an adaptive fuzzy concept and the membership functions are as
follows:

R is the ordered set of revenue in a way that
T, € R: R=A{x1,..., 05} ATy < Tyt

rank(z,) = U’;'__ll

100

3.5 Operations in Fuzzy Data Warehouse

1, rank(z,) > 0.8
Lnigh(z4) = < 0, rank(z,) < 0.6
rank(z,)—0.6
0.8-06
0, rank(x,) > 0.8
0, rank(x,) > 0.2
Lmiddie(Tn) = L, 0.4 < rank(z,) <0.6

rank(x,)—0.2
ranklen) 02 0.2 < rank(z,) < 0.4

0.8—rank(zy)

08-06
0, rank(x,) > 0.4
Piow(Tn) = ¢ 1, rank(z,) < 0.2
0.4—rank(zn)
04-02

The dimensions level store of dimension region is extended with a dimensional at-
tribute surface on which another fuzzy concept is added. The fuzzy concept store surface
contains the linguistic terms “big”, “moderate” and “small” and is a limited fuzzy concept.

The minima point is 50 and the maxima point is 200. The membership function are as
follows:

1, s>180
[ig(s) = ¢ 0, s < 140
s—140
40
0, s>180
0, 5 >80
Nmoderate(s) =]-, 120 S S S 140
s80 80 < s <120
180—s
40
0, s> 120
,usmall(s) - 1, S S 80
120—m

40
where s € dom(region.store.sur face)

101

3.5 Operations in Fuzzy Data Warehouse

The data warehouse schema presented in figure [2.13| can be extended with the fuzzy
concept meta table according the method described in section [3.3] The new scheme is
presented in figure [3.23] including the fuzzy concepts in grey. The dimension tables and
the fact table are retained as in figure with the exception of adding the dimensional
attribute surface to table store.

Fuzzy Concept Revenue
FMT_Revenue
#PK_FMT FCT_Revenue
regend #KTA B #PK_FCT
#PK_: anlary Key #FK_FCT CM;
#FK_ : Foreign Key MDA
Dimension Region
Dimension Time
Fact
Store I
it Region
Year Month Day #PK_Fact City 9
#PK_Month #PK_Da #FK_D #PK_Store #PK_City #PK_Region
a) _ _
#PK_Year [—< "PR-Month | 4#ma_bay yind #FK_City P .
#FK_Year #FK_Month #FK_Store #FK_Region Regi
Year - #FK_Movi Store . egion
Month Day _Movie Surt City
Revenue uriace
Movie FMT_Surface
#PK_Movie #PK_FMT FCT_Surface
#FK_Producer #FK_TA #PK_FCT
Movie #FK_FCT CMA
\I/ MDA
Producer Fuzzy Concept Store Surface
#PK_Producer
Studio
Dimension Product

Figure 3.23.: Example Fuzzy Data Warehouse Snowflake Schema including Fuzzy Meta
Tables

The fuzzy concept revenue is specified to be propagated over all dimensions and over
all dimension levels. The propagated fuzzy concept are defined as adaptive fuzzy concept
just as the base fuzzy concept. For each dimension level, one fuzzy membership table is
created for the propagated fuzzy concepts. The class membership attributes are reused
from the base fuzzy concept. Additionally, a volatile fuzzy concept containing the class
membership attributes “low”, “middle”, “high” and a membership function is specified.

The fuzzy concept store surface can only be aggregated over the dimension levels of
dimension region. The dimensional attribute surface is aggregated using an average
function and therefore an aggregation of the fuzzy concept using the arithmetic average
is a valid method for aggregating the fuzzy concept. In this case, no additional tables
have to be created.

102

3.5.1 Classical Data Warehouse Operations in Fuzzy Data Warehouse

3.5.1. Classical Data Warehouse Operations in Fuzzy Data
Warehouse

Based on the capabilities of aggregating and propagating fuzzy concepts, the classical
data warehouse operation can be extended to support fuzzy concept. As mentioned in
section [3.4.2] fuzzy concepts can be treated as dimensional attributes. Lehner [Leh98]
defines multidimensional objects that are capable of aggregating dimensional attributes
and takes them into consideration as segments for slice and dice operations. Conse-
quently, it is possible to aggregate fuzzy concepts and to use them as slicers for slice and
dice operations. Agrawal et al. [AGS97] define a model in which a fact is transformed to
a dimension and treated accordingly. Based on this possibility, fuzzy concepts on facts
can be considered as additional fragments of information behaving just as dimensional
attributes on dimensions. As long as a fact can be aggregated over a dimension hierarchy;,
the fuzzy concept with the fact as target attribute can be aggregated as well. The fuzzy
concepts on facts can be considered as segmentation in slice and dice operation just as
fuzzy concepts on dimensional attributes. When segmenting a cube with a fuzzy con-
cept, the class membership attributes are the delimiter of a segment. Additionally, the
segmentation can be refined using o — cuts on the delimiting class membership attribute.
In order to discuss the classical operations, these characteristics of fuzzy concepts have
to be taken into consideration. The definition [10] of a multidimensional cube is adapted
accordingly to integrate fuzzy concepts.

Definition 41 (Cube in a fuzzy data warehouse). A cube is as a 4-tuple < D, F, M, R >
where

e D =< Dy,....,D,,> is a list of dimensions, dimensions levels including the di-
mension attribute or other category attributes separated by a dot.

o ' =< Fy,...,F; > is a list of fuzzy concepts with target attributes that are ei-
ther facts or dimension attributes or class membership attributes of fuzzy concepts
separated by a dot

e a measure M

o R is a set of data tuples x = {w1,...,xp, f1,..., fj,m}, where Vk € [1,...,n] :
x € dom(Dy), VI € [1,...,7] : fi € dom(F}) and m € dom(M) representing the
instance values of the cube.

Constraints:
e Fvery element in D has to be of the same granularity.
o [f granularity of D < dimension level: Vf € F3de D :d=TA;V M =TA;
o IfD=0:Yfe FIM=TA;

o M is only aggregated over D.

103

3.5.1 Classical Data Warehouse Operations in Fuzzy Data Warehouse

A fuzzy cube in Example can be: << time.month.month, product.producer.stu-
dio >, < time.month.revenue, product.producer.revenue.high >,revenue, R >. The
fuzzy concept revenue is propagated on dimension time on level month and on dimen-
sion product on level producer. The result set of the cube are tuples containing the
aggregated revenue grouped by month and product. The membership degree attributes
of the propagated fuzzy concepts monthly revenue and producer revenue are added to the
data tuples. The fuzzy concepts are not involved in the aggregation of revenue as they
provides the same characteristics as dimension attributes in this case. Consequently,
the revenue in the result set of the cube << time.month.month, product.producer.stu-
dio >, <> revenue, R > is exactly the same. This is a direct consequence of the last
constraint in definition 41l

Another interesting fact is that the membership degree attributes originates from
fuzzy concepts that are not considering the revenue from the cube. The involved fuzzy
concepts are based on revenues that are aggregated on single dimensions; fuzzy con-
cept monthly revenue includes revenue that is only aggregated over dimension time and
fuzzy concept producer revenue over dimension product. The fuzzy concept monthly
revenue add the attributes time.month.revenue.high, time.month.revenue.middle and
time.month.revenue.low and producer revenue the attribute product.producer.reve-
nue.high to the set of R. The cube can be extended with a third, volatile fuzzy con-
cept that classifies the actual aggregated revenue: << time.month.month, product.pro-
ducer.studio >, < time.month.revenue, time.producer.revenue.high, revenue >, reve-
nue, R >. As a result, another three attributes revenue.high, revenue.middle and
revenue.low are added to R. Listing provides a SQL statement for the cube <<
time.month.month, product.producer.studio >, < time.month.revenue, product.produ-
cer.revenue.high >, revenue, R >. The fuzzy membership tables of the propagated
fuzzy concepts monthly revenue and producer revenue are denoted by fmt revenue -
month respectively fmt revenue producer in listing

select "month"."month", producer.studio, rev_month high.mda
as "time.month.revenue.high", rev_month middle.mda as "
time .month.revenue.middle", rev_month low.mda as "time.
month . revenue.low" | rev_prod.mda as "product.producer.
revenue . high" | sum(fact.revenue) as revenue

from fact

join "day" on fact.fk day = "day".pk day

join ("month"

join (fmt revenue month as rev_month high

join fct revenue as fct high on rev_month high.fk fct =
fct _high.pk fct and fct high.cma = ’high’) on "month".
pk _month = rev_month high.fk ta

join (fmt revenue month as rev_month middle

join fct revenue as fct middle on rev_month middle.fk fct =
fct middle.pk fct and fct middle.cma = ’middle’) on "

104

3.5.1 Classical Data Warehouse Operations in Fuzzy Data Warehouse

month" .pk month = rev_month middle.fk ta

join (fmt revenue month as rev_month low

join fct revenue as fct low on rev_month low.fk fct =
fct low.fct id and fct low.cma = ’low’) on "month".
pk_month = rev_month low.fk ta) on "day".fk month =
month" . pk month

join (movie

join (producer

join (fmt revenue producer as rev_prod

join fct revenue as fct prod on rev_prod.fk fct = fct_ prod.
pk fct and fct prod.cma = ’high’) on producer.pk producer
= rev_prod.fk ta) on producer.pk producer = movie.
fk producer) on fact.fk movie = movie.pk movie

group by "month"."month", producer.studio, "time.month.
revenue. high", "time.month.revenue.middle", "time.month.
revenue.low", "product.producer.revenue. high"

Listing 3.5: SQL Example for a Fuzzy Cube

As illustrated in Section[3.2.4] the fuzzy data warehouse is an enhanced data warchouse
and therefore, a crisp cube (definition is a fuzzy cube (definition with F' = 0.
All the classical data warehouse operations (definition [11|- can be applied to a fuzzy
data warehouse. Additionally, the classical operations can be extended in order to apply
to fuzzy concepts. The following sections discuss these operations in further detail.

Roll-up in fuzzy data warehouse

A roll-up operation as defined in definition can be applied to a fuzzy cube. In
this case, the resulting cube will have F' = () and all fuzzy concepts of the base
cube will be discarded. The following example illustrates a crisp roll-up on a fuzzy
cube: roll — up(< time.month >, < time.month.revenue, revenue >, revenue, R >
, frime.year, SUM) =<< time.year >, revenue, R’ >.

In order to include fuzzy concepts in a roll-up operation, it is necessary to know if
the fuzzy concepts can be propagated or aggregated over a dimension hierarchy. In case
of propagation, additional information is needed on which dimension levels the fuzzy
concepts are propagated. Considering these facts, the roll-up operation on a fuzzy data
warehouse involving fuzzy concepts can be defined as:

Definition 42 (Roll-up involving fuzzy concepts). roll — up(C, D', F', fp, fr, fm) = C’
where

o C is a fuzzy cube (definition [41))
o D' is the dimension level to which is merged

e fp is the dimension merge function

105

3.5.1 Classical Data Warehouse Operations in Fuzzy Data Warehouse

e F' is the fuzzy concept which is merged
e fr is the function defining how the fuzzy concept is merged
e f,. is the measure aggregation function.

The domain (domp) of D is a set containing the dimension category attribute in-
stances d. domp/(C") is calculated by applying the function fp on the dimension category
attribute instances d of domp(C):

domp (C") = {fp(d) = d'|d € domp(C)}.

The measure me:(d') of each instance d' is calculated by applying the function f,, to
each me(d) in regard to the aggregation function fp.

mer(d') = fm({t]t = me(d) A fp(d) = d'}).

The domain (domp) of F' is a set containing the fuzzy concepts f. dom/n(C") is cal-
culated by applying the function fr on the fuzzy concepts of domp(C):

dom'p(C") = {fr(f) = f'|f € domp(C)}

Within a roll-up operation on a propagated fuzzy concept it is possible that fr(f) = 0.
Therefore, C' might result in a sharp cube as dom’n(C") =).

The function fr holds the necessary information on how the fuzzy concept can be
merged with the next dimension level. fr must provide at least the following information:

e the type of merging operation: propagation or aggregation
e if aggregation, the aggregation function for F on D

e if propagation, the fuzzy membership table of F”

When F' describes a class membership attribute of a fuzzy concept instead of a com-
plete fuzzy concept, the fuzzy concept is rolled-up and the projection on the specific
class membership attribute is then applied to the rolled-up cube.

The following operation exemplifies a roll-up of a cube containing the fuzzy concept
store surface:

roll — up(<< region.store >, < region.store.surface >, revenue, R >, region.ci-
ty, region.city.sur face, fp, fr, SUM) =<< region.city >,< region.city.surface >
,revenue, R >

The original cube contains the aggregated revenue of all the stores ordered by the

fuzzy concept store surface. The cube resulting from the roll-up operation contains the
aggregated revenue of all cities ordered by the fuzzy concept city surface. The fuzzy

106

3.5.1 Classical Data Warehouse Operations in Fuzzy Data Warehouse

concept city surface is an aggregated fuzzy concept. This roll-up operation is a binary
operation that first aggregates and merges the crisp fact revenue and the crisp dimension
region. In the second step, it applies the new fuzzy concept to the data collection. As
mentioned in section [3.5.1] the fuzzy concept is not involved in the aggregation of the
fact.

Considering F' contains a class membership attribute, the fuzzy concept is rolled-
up, like in the previous example, within a binary operation. In the third step, the
projection on the class membership attribute is applied. To illustrate, the roll-up op-
eration above can be modified in a way that the original cube is << region.store >, <
region.store.sur face.small >, revenue, R >:

roll — up(<< region.store >, < region.store.sur face.small >, revenue, R >, re-
gion.city, region.store.city.small, fp, fr, SUM) =<< region.city >, < region.city.sur-
face.small >, revenue, R >

When including a class membership attribute, the operation is a trinary operation
with the following steps:

e roll-up of the crisp cube
e application of the fuzzy concept on the new dimensional level

e application of the class membership attribute

The next example shows a roll-up operation in which the fuzzy concept store surface

might not be defined on dimensional level region. The cube results in a crisp cube as
F' = 0:

roll — up(<< region.store >,< region.store.sur face >,revenue, R > region.re-
gion, region.region.sur face, fp, fr, SUM) =<< region.region >,{}, revenue, R > where
A region.region.sur face.

Drill-down in fuzzy data warehouse

As previously stated in Section [2.1.5] a drill-down operation is the reciprocal operation
of a roll-up. It is not a valid operation if the roll-up operation is not defined in an earlier
step. Therefore, a drill-down operation in the fuzzy data warehouse can be defined as:

Definition 43 (Drill-down involving fuzzy concepts). drill — down(C, D', F', f5', fz',
1) = C" where C and C' are cubes according definition . D' is the dimension level

to decompose, C' = roll — up(C’', D, F, fp, fr, fm), F' is the fuzzy concept to decompose
and fo', fr' resp. f1 are the inverse function of fp, fr resp. fm.

107

3.5.1 Classical Data Warehouse Operations in Fuzzy Data Warehouse

In the case of a drill-down operation with a propagated fuzzy concept, it is possible
that F” = (). The resulting cube here is a crisp cube.

The following example shows a drill-down operation with a fuzzy cube:

drill—down(C, region.store, region.store.sur face.small, fp*, fz', fl) =< region.sto-
re >, < region.store.sur face.
small >, revenue, R >

where C' = roll — up(<< region.store >, < region.store.sur face.small >, reve-
nue, R >, region.city, region.city.sur face.small, fp, fr, fou = SUM)

(" is a cube on dimension level city. It is ordered by the fuzzy concept city surface
and limited by the class membership attribute small. The drill-down operation decom-
poses the cube to dimension level store. The fuzzy concept is not literally decomposed.
Rather, the dimension and the fact of the crisp cube are decomposed and the fuzzy con-
cept with a target attribute on the dimension level store is applied to the cube. After
this step, the fuzzy concept is limited to the class membership attribute small.

If the fuzzy concept revenue in example [16] is only propagated to dimension level re-
gion and it skips the dimension level city, the following roll-up operation will still result
in a fuzzy cube:

roll — up(<< region.store >, < region.store.revenue >,revenue, R >, region.re-

gion, region.region.revenue, fregion.regionu f’/‘egion.region.’revenuev fTevenue = SUM) =
<< region.region >, < region.region.revenue >, revenue, R >

The fuzzy drill-down operation from dimension level region to level city results in a
crisp cube as the fuzzy concept revenue is not propagated on level city in this example:

drill — down(<< region.region >,< region.region.revenue >, revenue, R > re-

. . . . —1 —1 -1 _ . .
gzon.czty,regzon.czty.revenue, fregion.region’ region.region.revenue’ revenue) =<< region.ci-
ty >, {}, revenue, R >

Slice in fuzzy data warehouse

The classical slice operation as defined in definition [13| extracts a subset of values of a
cube that are restricted with a slicer. Applying this to a fuzzy cube, the slicer belongs
either to a dimension or to a fuzzy concept. A fuzzy concept as slicer can be restricted
either by refining the fuzzy concept with its class membership attributes or by using an
a — cut [Zim91] on a class membership attribute. A definition of a slice operation in the
fuzzy data warehouse is as follows:

108

3.5.1 Classical Data Warehouse Operations in Fuzzy Data Warehouse

Definition 44 (Slice involving fuzzy concepts). slice(C,s) = C" where C' and C" are
fuzzy cubes according definition[{1] and s is the element instance that slices cube C in a
way that

e s dom(Dy,) V
o s € dom(Fy,) if granularity of F is fuzzy concept V

e s:a—cut on F if granularity of F' is class membership attribute of fuzzy concept.

A slice operation of a fuzzy cube will always result in a fuzzy cube. A slice operation
on a crisp cube will also always result in a crisp cube. In order to illustrate, the following
operation slices a fuzzy cube according its class membership attributes:

slice(<< time.month >, < time.month.revenue >,revenue, R >, time.month.reve-
nue.middle) =<< time.month >, < time.month.revenue.middle >, revenue, R >

The slice operation limits the fuzzy concept monthly revenue on its class membership
attribute middle. In the resulting cube, the class membership attributes low and high
are not considered anymore. A more fine-grained slicing can be achieved when using
«a — cuts on the class membership attributes. The resulting cube from the slice operation
above can be further sliced on the class membership attribute middle with an o — cut
of > 0.8:

slice(<< time.month >, < time.month.revenue.middle >, revenue, R >, time.month.
revenue.middle > 0.8) =<< time.month >, < time.month.revenue.middle >, reve-
nue, R >

The restriction of the slicer is applied to the class membership attribute middle in
a way that only membership degree attributes higher 0.8 are selected in the resulting
cube. Multiple a@ — cuts can be combined in a slice operation. The slice operation be-
low exemplifies a slice selecting all the data tuples that contain a membership degree
attribute between 0.6 and 0.8 of middle monthly revenue:

slice(<< time.month >, < time.month.revenue.middle >, revenue, R >,0.6 < ti-
me.month.revenue.middle < 0.8) =<< time.month >, < time.month.revenue.middle >
,revenue, R >

In order to fully include the slice operation of definition [I3] the slice operation on a
fuzzy cube can use a dimension element as slicer. The resulting cube of the last slice op-
eration can therefore be restricted to the instance February of dimension category month:

slice(<< time.month >, < time.month.revenue.middle >, revenue, R >, time.month.

month = “February”) =<< time.month >, < time.month.revenue.middle >,reve-
nue, R >

109

3.5.1 Classical Data Warehouse Operations in Fuzzy Data Warehouse

Dice in fuzzy data warehouse

A dice operation in a fuzzy cube, just as a slice operation, can restrict fuzzy concepts and
dimensions. Furthermore, restrictions of fuzzy concepts and dimension can be combined.
The slice operation in definition can be extended to a dice definition by including
logical operators to combine multiple slicers:

Definition 45 (Dice involving fuzzy concepts). dice(C,{Sm, ..., Sk}, {fms---» fe_1}) =
C" where C' and C" are fuzzy cubes according to definition Sm, - - -, Sk are element
instances that slices cube C' in a way that Yn € {m,... k} :

e s, € dom(D,) V
o s, € dom(F},) if granularity of F), is fuzzy concept V

e s, : a— cut on F, if granularity of F, is a class membership attribute of fuzzy
concept.

andVx €m,....k—1: f, € {AND, OR, NOT} are the logical operators that combine

the slicers in a way that f, combines s, with S;.1.

A dice operation on a fuzzy cube with two fuzzy concepts is illustrated as follows:

dice(<< time.month,region.city >, < time.month.revenue.middle, region.city.sur-
face >, revenue, R >, {time.month.revenue.middle > 0.7, region.city.sur face.big},
{OR}) =<< time.month,region.city >, < time.month.revenue.middle,region.city.-
sur face.big >, revenue, R >

The data set of the resulting cube only considers the class membership attribute big
of the fuzzy concept city store surface and all the data tuples with a membership degree
attribute bigger than 0.7 for middle monthly revenue. A combination of a dimension
slicer and a fuzzy concept slicer is shown in the following example:

dice(<< time.month,region.city >, < time.month.revenue.middle, region.city.sur-
face >, revenue, R >, {time.month.revenue.middle > 0.7, time.month.month = “Fe-
bruary”}, {AND}) =<< time.month, region.city >, < time.month.revenue.middle, re-
gion.city.sur face.big >, revenue, R >

The resulting cube shows only the data tuples of the month “February” that belong
to at least 0.7 to middle monthly revenue.

For the slice and the dice operation, the order how the fuzzy concept or the dimension
slicers are applied does not influence the result of the operation. This is due to the fact
that no aggregation function is applied to a fact or a dimensional attribute. Therefore,
unlike roll-up and drill-down, slice and dice operation are not partitioned in multiple
sub operations and can be considered as unary operations.

110

3.5.2 Fuzzifying and Defuzzifying Cubes

3.5.2. Fuzzifying and Defuzzifying Cubes

Two additional operations can be applied to a cube in the fuzzy data warehouse. Re-
moving the fuzzy concepts of a fuzzy cube will transform it into a crisp cube. Vice versa,
if fuzzy concepts are applied to a crisp cube, it transforms into a fuzzy cube. Definition
defines a fuzzy cube as a cube having F' = {Fy,..., F,} and consequently a crisp
cube as a cube having F' = (). Fuzzifying a crisp cube thus implies changing the empty
set I into a non-empty set. On the contrary, defuzzifying a fuzzy cube removes all fuzzy
concept in F in order to have an empty set. The two operations are defined as follows:

Definition 46 (Fuzzifying a cube). fuzzify(C, fc) = C" where C =< D = {Dx, ...,
D}, F=0,M,R>, fc={f1,..., fm} are the fuzzy concepts to add in F in a way that
Ve e {1,...,m} 3 f, : TA;, = dom(D,)V TA;, = M wherey € {1,...,n} and the
resulting cube is C' =< D ={Dy,...,D,}, F={f1,....,fm}, M\, R >.

It is important to note that only fuzzy concepts can be added to a crisp cube which
has target attributes belonging to a dimension or fact of the cube. Consequently, for
propagated fuzzy concepts, a derived fuzzy concept with the target attribute belonging
to the crisp cube must be defined prior to the fuzzification operation. For an aggregated
fuzzy concept, the corresponding membership degree attributes have to be aggregated
on the level of the crisp cube.

The contrary operation is defuzzifying: the removal of fuzzy concepts from a fuzzy
cube. Definition [47] defines therefore the operation defuzzifying.

Definition 47 (Defuzzifying a cube). defuzzify(C) = C" where C is a fuzzy cube ac-
cording definition[{1 and C" =< D ={Dy,...,D,},F =0,M,R >.

Consider the crisp cube C' =<< time.day >, revenue, R >. When applying the fuzzy
concept revenue on level day, it can be transformed to a fuzzy cube as follows:

fuzzify(C, time.day.revenue) =<< time.day >, < time.day.revenue >, revenue, R
>= ('

In a further step, a roll-up operation might be applied to the fuzzy cube. The oper-
ation merges from dimension level day to level month and the fuzzy concept is applied

accordingly.

roll—up(C’, time.month, time.day.revenue, fimemonth, ftime.month.revenue, SUM) =<<
time.month >, < time.month.revenue >, revenue, R >= C"

111

3.5.3 Aggregations with Fuzzy Concept

As explained in section [3.5.1] the roll-up operation in this case is a binary operation.
First, the dimension level day is merged to month and the daily revenue is aggregated
to monthly revenue. In the second step, the fuzzy concept monthly revenue is applied
to the cube. The resulting fuzzy cube C” can now be defuzzified to a crisp cube as follows:

defuzzify(C") =<< time.month >, revenue, R >= C"

The resulting cube C" is exactly the same cube that would result with a crisp roll-up
operation from dimension level day to month as follows:

roll — up(<< time.day >, revenue, R >, fumemonth, SUM) = C"

This behavior is due to the fact that the fuzzy concepts are meta information in the
fuzzy data warehouse and never directly affect the raw data in the original crisp data
warehouse. The fact that fuzzy concepts are meta information is also the reason why
the inclusion of fuzzy concept is always performed in additional steps where aggregation
operations of facts are executed first.

3.5.3. Aggregations with Fuzzy Concept

All the operations in section consider fuzzy concepts similar to dimension attributes
even if the fuzzy concept is applied to facts. Subsequently, the fuzzy concept is never
considered in the aggregation function of the fact. The operations are often binary or
trinary in order to aggregate first the corresponding fact according to the selectors and
then to enrich the result set with the fuzzy concept. The selector is the part of a data
set that defines the aggregation and grouping of the fact. In a classical data warehouse,
the selectors of a cube are the category attributes of the dimensions. The following cube
has the category attribute month as selector and the revenue is aggregated and grouped
over the category attribute:

C =<< time.month >, < time.month.revenue >, revenue, R >

The fuzzy concept monthly revenue adds information about the classification of the
revenue. In some cases, it might be interesting to analyze the data based on the fuzzy
concept as a selector. The fuzzy concepts are then defining directly how the fact is aggre-
gated and grouped. In the example above, when the revenue should be analyzed based
on its distribution on the class membership attributes of the fuzzy concept monthly
revenue, it acts as an additional selector.

In order to apply a fuzzy concept as selector, the membership degree attributes de-
fine how the fact instances are distributed on the different class membership attributes.
Hence, the membership degree attributes are a kind of weighting factors to distribute
the fact instances. As depicted in section , Delgado et al. in [DMST04], Scheperle
et at. in [SMHO04] and Sapir et al. in [SSRO8| propose methods for weighting facts with

112

3.5.3 Aggregations with Fuzzy Concept

membership degrees during aggregation. Sapir et al. use the concept of bridging tables
that is known in classical data warehouses for handling multivalued dimensions.

Bridge tables have been defined by Kimball [Kim98|. A multivalued dimension is a
dimension in which an instance of a category attribute might be merged into multiple
instances of the next higher category attribute. For that case, a bridge table contains
a weighting factor for each possible merging. The weighting factor helps for consistent
aggregation operation over the dimension. The example [I7] depicts a multivalued di-
mension with a bridge table in detail.

Example 17. The dimension producer has the category attribute movie producer. The
hierarchy path defines that movies are merged into producer. A movie can be produced
as a joint project of several production studios. For instance, the movie “Machete” is
produced by the studios “Overnight Films”, “Troublemaker Studios”, “Dune Entertain-
ment [II” and “Dune Entertainment”. When the revenue of the movie is aggregated to
level producer, the movie revenue must be split and distributed to the different producer
studios. Otherwise, the producer revenue would be four times the movie revenue and
the aggregation would no longer be consistent. For splitting and distributing the movie
revenue a bridge table is added between the two dimension levels. The bridge table
contains the relation between the movie and the producer and the weighting factor that
defines how the revenue is distributed between the different studios. When the revenue
is distributed equally between the studios, the weighting factor might simply be the
number of studios producing the film. The producer revenue of a studio is then calcu-
lated by dividing the movie revenue by the weighting factor. Figure demonstrates
the multivalued dimension product.

Dimension Product

Movie

Movie_Producer
_Bridge Producer
Name
Director #_movie #
Studio
Actors #7p.roducer
Release Date Weight

Figure 3.24.: Multivalued Dimension with a Bridge Table

Examining bridge tables shows their similar appearance to fuzzy membership tables.
Both types of table relate two other tables in a complex to complex relationship (multi-
ple target attributes are related to multiple class membership attributes) and contain an
attribute describing a degree of the relation (membership degree or weighting factor). A
fuzzy concept can be considered as an additional hierarchy path of the dimension and it
can therefore be used as an selector as described by Sapir et. al. in [SSRO§|. Consider
an analysis on the above cube with the fuzzy concept monthly revenue as the selector.

113

3.5.3 Aggregations with Fuzzy Concept

The measure has to be partitioned by the membership degree attributes of the fuzzy
concept. Therefore the cube is extended as follows:

C =<< time.month >,< time.month.revenue >,revenue X time.month.reve-
nue.mda, R >

The result set in this case provides a single data row with the corresponding revenue
for each class membership attribute and month combination. Example[18]illustrates the
differences between the two cubes above based on a numerical example.

Example 18. In a fuzzy data warehouse revenue of 2 month is stored. The dimension
time has the category attributes day and month. Day is merged into month. A fuzzy
concept on revenue with the class membership attributes low and high are defined. This
fuzzy concept is propagated to day and month. When rolling up the revenue on month,
the monthly revenue for month January is 500 and the revenue for February is 720.
The corresponding membership degree attributes for January high is 0.3, low is 0.7, for
February high is 0.5 and low 0.5.

Considering the first cube C' =<< time.month >, < time.month.revenue >, revenue,
R > the result set contains the month, the membership degree attribute for class mem-
bership attribute high, the membership degree attribute for class membership attribute
low and the revenue of the month. Table represents the result set.

Month | CMA high | CMA low | Revenue
January 0.3 0.7 500
February 0.5 0.5 750

Table 3.3.: Result Set of Cube C' =<< time.month >,< time.month.revenue >
,revenue, R >

The second cube C' =<< time.month >, < time.month.revenue >, revenue X time.
month.revenue.mda, R > uses the membership degrees for partitioning the revenue.
Therefore, four data rows will appear in the result set, for each class membership at-
tribute and month combination a single data row. Table shows the corresponding
result set.

The comparison of the SQL statements to retrieve these cubes shows that in the first
cube (listing the class membership attributes are restricting the join clauses and
in the second cube (listing the membership degree attributes are involved in the
aggregation function of the fact revenue. Both SQL statements are based on the table
structure described in figure [3.23]

114

3.5.3 Aggregations with Fuzzy Concept

Month | CMA | Revenue
January | high 150
January low 350
February | high 375
February | low 375

Table 3.4.: Result Set of Cube C' =<< time.month >, < time.month.revenue >, reve-
nue X time.month.revenue.mda, R >

select "month"."month" , rev_month high.mda as "time.month.
revenue. high" rev_month low.mda as "time.month.revenue.
low", sum(fact.revenue)

from fact

join "day" on fact.fk day = "day".pk day

join ("month"

join (fmt revenue month as rev_month high

join fct revenue as fct high on rev_month high.fk fct =
fct high.pk fct and fct high.cma = ’high’) on "month".
pk _month = rev_month high.fk ta

join (fmt_ revenue month as rev_month low

join fct revenue as fct low on rev_month low.fk fct =
fct _low.pk fect and fct low.cma = ’low’) on "month".
pk month = rev_month low.fk ta) on "day".fk month =
month" . pk month

group by month.month, "time.month.revenue.high", "time.month
.revenue.low"

n

Listing 3.6: SQL Statement for a Cube with Fuzzy Concept as Information

select "month"."month" fct revenue.cma, sum(fact.revenue *
rev_month.mda)

from fact

join "day" on fact.fk day = day.pk day

join ("month"

join (fmt revenue month as rev_month

join fct revenue on rev_month.fk fct = fct revenue.pk fct)
on "month".pk month = rev_month.fk ta) on "day".fk month
= "month".pk month

group by "month"."month", fct revenue.cma

Listing 3.7: SQL Statement for Cube with Fuzzy Concept as Selector

The aggregations in both cube operations are consistent, with respect to summariz-
ability, and therefore the overall revenue of both cubes is equal. It has to be noted
that the second cube operation is consistent because the membership degree attributes

115

3.5.3 Aggregations with Fuzzy Concept

are normalized and therefore the overall value of all membership degree attributes of a
target attribute is 1.0. This condition does not have to be fulfilled for all fuzzy concepts
and consequently, the aggregation involving the membership degree attributes might
not end in consistent results. In order to normalize fuzzy concepts, each membership
degree attribute of a target attribute instance can be divided by the sum of all mem-
bership degree attributes [Sch98|. Schepperle et. al. describes in [SMHO04] extensions
to summarizability for aggregation with fuzzy concepts and the main principle is the
normalization of the membership degrees. The normalization of the fuzzy concept can
therefore be considered as a crucial constraint for consistent aggregation involving fuzzy
concept in the aggregation function. If this condition is not met, an additional step that
normalizes the membership degree attributes has to be included prior to aggregation of
the fact in the cube operation.

Using this functionality of aggregating facts with fuzzy concepts opens up the possi-
bility of combining fuzzy concepts with facts independent of each other. For instance,
a fuzzy concept on store surface can be used for the aggregation of the fact revenue.
Example 19| below shows how to combine a fuzzy concept of the fact user rating with
the fact revenue.

Example 19. A fuzzy data warehouse has two facts “user rating” and “revenue” and
the dimensions customer, time and movie. A customer can rent a movie and this gener-
ates rental revenue. When returning the movie, the customer rates the movie between
1 and 10. Two fuzzy concepts are defined: the fuzzy concept rating classifies the user
rating into good, bad and average, the fuzzy concept revenue classifies the revenue into
good, middle and bad. The fuzzy concept user rating can be propagated over dimension
customer and over dimension movie. The fuzzy concept revenue can also be propagated
over dimension time. Propagation is applied to all category attributes of the dimensions.
Figure [3.25| shows the corresponding fuzzy data warehouse schema.

On this fuzzy data warehouse, a cube can be created that shows the monthly revenue
for all customers. Additionally, the cube can be extended with the fuzzy concept rating
as this concept is propagated on the category attribute customer. The fuzzy cube will
therefore be:

C =<< time.month, customer.customer >, < customer.customer.rating >,reve-
nue, R >

It is notable that the fuzzy concept rating is not dependent on the fact revenue. Con-
sidering that the fuzzy concept rating is normalized, it can be used for the aggregation

of the fact revenue. The new fuzzy cube will be:

C" =<< time.month, customer.customer >, < customer.customer.rating >, reve-
nue X customer.rating.customer.mda, R >

116

3.5.3 Aggregations with Fuzzy Concept

Fuzzy Concept Rating Dimension Movie
FCT_Rating
PK_FCT Movie
CMA Movie_Producer
PK_Movie _Bridge Producer
N
/L _ame FK_Movie PK_Producer
Director d Studio
FMT_Rating Actors FK_Producer
PK_FMT Release Date Weight
FK_FCT
FK_TA
MDA
Fact
PK_Fact
FMT_Revenue
FK_Customer — FCT_Revenue
FK_Day PK_FMT
FK_Movie FK_FCT | PK_FCT
Rating FK_TA CMA
Dimension Time Revenue MDA
Fuzzy Concept Revenue
Month Day
Year PK_Month PK_Day
PK_Year [—<] FK_Year —< FK_Month
Year Month Day
Weekda
Month name y Customer

Legend

PK_Customer
Name

Birthday FK_: Foreign Key
Address
Dimension Customer

PK_: Primary Key

Figure 3.25.: Fuzzy Data Warehouse Schema with Dimension Customer, Movie, Time,
with Facts User Rating and Revenue

Cube C’ shows the revenue earned grouped by the rating of users and month. Further,
the revenue in cube C’ can be grouped by the fuzzy concept monthly revenue. The cube
C" will become:

C" =< < time.month, customer.customer >, < customer.customer.rating, time.month
-revenue >, revenue X customer.customer.rating.mda x time.month.revenue.mda, R >

In cube C” the revenue is aggregated with two fuzzy concepts. Even if the fuzzy
concept monthly revenue has a monthly revenue as target attribute, the revenue in C”
is based on month and customer and therefore different from the monthly revenue.

The possibility to combine fuzzy concepts with different target attributes in a fuzzy
cube and in the aggregation process allows a more fine grained interpretation of data.
In order to achieve a similar analysis like in cube C” within a classical data warehouse,
at least four of the following operations have to be combined:

117

3.5.3 Aggregations with Fuzzy Concept

e querying cube C' =<< time.month, customer.customer >, userrating, R >
e querying C' =<< time.month, customer.customer >, revenue, R >

e ordering cube C and C’

e partitioning cube C' and C” which is a crisp classification

e applying the partitioned cube C” to the partitioned cube C' by joining over month
and customer

e grouping the joined result set

In database systems as PostgreSQL, it is possible to partition result sets using window
functions [PosI1d|. These operations are often limited and do not allow the fuzzy parti-
tion of data. The integration of linguistic concepts is completely missing in the steps of
a crisp cube explained above. Integration of linguistic concepts would subsequently need
further data processing steps. If fuzzy partition and integration of linguistic concepts
in a classical data warehouse system is not possible with built-in functions, it must be
outsourced to a third party system that is specialized in ranking and classifying data
collections. In any case, the classical data warechouse does not provide this seamless
integration of fuzzy concepts. The fuzzy data warehouse provides new methods of data
interpretation that is closer to natural human language, which is accessible without third
party systems.

118

3.5.3 Aggregations with Fuzzy Concept

Part Il.

Application

119

4 Application of Fuzzy Data Warehouse

4. Application of Fuzzy Data
Warehouse

This chapter presents a case study in performance measurement using a movie rental
company. The case study aims to point out the advantages of a fuzzy data warehouse
when classifying elements in a data warehouse. First, the movie rental company and
its initial, classical data warehouse are presented in section [£.1} In section [4.2] fuzzy
concepts are applied to the data warehouse in order to build a fuzzy data warehouse.
Section discusses how fuzzy concepts improve analysis in the fuzzy data warehouse.

4.1. The Movie Rental Company

The case study discusses a fictional movie rental company based in Switzerland since
2005. The company has 29 stores spread across 20 cities. It currently offers a collection
of 661 movied!] for rent. All stores are equipped with distribution machines on the out-
side of the stores where customers can rent the movies outside of the opening hours. For
each rental transaction an employee is registered in the data warehouse. If a movie is
rent from a distribution machine the employee who was working during the office hours
that day is registered. Therefore, to each record of a rental transaction, an employee is
listed. The movie rental company has a total of 50 employees. New movies are rent for
7 CHF a day and movies older than 1 year are rent for 5 CHF a day. Each customer is
asked to rate the movie when he returns it in order to provide movie charts as a service
to the customers. If the customer does not rate the movie, a standard rating value of
5.0 is assumed.

To measure the performance of their business, the movie rental company has imple-
mented a data warehouse. An important fact that the company uses to evaluate its
performance is the revenue of every single rental transaction. For each transaction, in-
formation about customer, movie, employee and type is captured. The type dimension
classifies each movie as old or new. The movie dimension aggregates movies into two
hierarchy paths. One path aggregates producer and the other the category of the movie.
Both hierarchy paths are multi-valued hierarchies. A movie can be produced by multiple
studios and can be categorized into multiple genres. In order to overcome this difficulty,
the concept of bridge tables [KC04, [Kim98§| (see example|17|for more details about bridge

IThe data about the movies for this case study was retrieved from the open movie database project
using their open API [TMD10].

120

4.1 The Movie Rental Company

tables) is used. Additional to the measure revenue, the user rating and rental duration
are kept in the fact table. Figure [4.1]| presents the snowflake scheme of the movie rental
data warehouse.

Dimension Sale Type
Legend
-
PK_: Primary Key ype Customer
FK_: Foreign Key PK_Type PK_Customer
Type Name
Dimension Time Birthday
Address
Week Fact Dimension Customer
PK_Week Day &
Year FK_Year PK_Fact
PK_Year] Week [™{ PK_Day FK_Day
- FK_Month . FK_Type
Year N FK_Week < FK_Movie Employee
o LA Day FK_Customer S |
PK_Month Weekday FK_Employee | PK_Employee
FK_Year FK_Store Name
Month Rating Birthday
Month name Revenue Di ion Emol
Rent duration Imension Employee
Y
Dimension Store
- Store Movie_Category
Region City Bri
g) PK_City PK_Store _Bridge Category
PK_Region FK_Region FK_City Vo FK_Movie PK_Category
Name Name Name ovie FK_Category Category
Surface PK_Movie Weight
Name
Director -
Movie_Producer
Actors Bridge
Release Date — Producer
FK_Movie PK_Producer
FK_Producer Studio
Weight
Dimension Movie

Figure 4.1.: Snowflake Scheme of the Data Warehouse

By using the classical data warehouse shown in Figure [4.1] the movie rental company
can analyze its performance in different aspects. Some examples are given below.

Example 20. The company might be interested in the overall revenues generated by
new movies across different regions during 2010. This is a dice operation over a sub
cube visualizing the sum of the revenues grouped by regions. The slicers of the dice
operation are executed on the dimension time (year = 2010) and the dimension type
(type = “new”). Formally, the operation is:

121

4.1 The Movie Rental Company

dice(<< region.region, type, year >,revenue, R >, {type.type = “new”, year.year =
2010}, {AND}).

The corresponding SQL statement is in listing [4.1]

select "region"."region", to_ char(sum(revenue), '9G999G999D99 ")
as "overall _revenue"

from fact

join ("day" join ("month" join "year" on "month".fk year =
year".pk year and "year".year = 2010) on "day".fk month = "
month".pk month) on fact.fk day = "day".pk day

join type on fact.fk type = type.pk type and type = 'new’

join (store join (city join region on city.fk region = region.
pk region) on store.fk city= city.pk city) on fact.fk store
= store.pk store

group by region.region

order by "overall_revenue" desc;

Listing 4.1: SQL Statement for selecting the Revenue per region
The result of the operation is shown in Table [4.1]

Region Overall Revenue
German 2’038’001.00
French 1'779°792.00
Rhaeto-Romanic 141°652.00
Italian 1387964.00

Table 4.1.: Result Set of Example

Example 21. The movie rental company would like to analyze the revenue sorted by
movie producers. Movies from the 20 producers with the highest revenue are preferable
for the company when choosing new movies for the portfolio. The revenues of movie
producers should be divided with the weighting factor in the bridge table to give mean-
ingful results. A significant amount of revenue comes from films that do not have an
assigned production studio. These revenues are lumped into a virtual producer named
“Not Known” and should not be considered in the result set. This query can be executed
by using a roll-up operation as follows:

roll —up(<< producer.movie >, revenue, R >, producer.studio, fyroducer.studios SUM).

The corresponding SQL statement is shown in listing

122

4.1 The Movie Rental Company

select producer.studio as studio, to char(round (sum(cast(
revenue as decimal)/mov_ prod bridge. weight) ,2),’9G999G999D99
’) as revenue

from fact

join movie on fact.fk m = movie.m id
join mov_ prod bridge on movie.m id = mov_ prod bridge.m id
join producer on mov_prod bridge.p id = producer.p id

where producer.studio <> 'Not_Known’
group by producer.studio

order by revenue desc

limit 20;

Listing 4.2: SQL Statement for selecting the Revenue per Producer Studio

The result is shown in table [£.2]

Studio Revenue
Warner Bros. Pictures 3'395°622.45
Paramount Pictures 2’791°120.27
Universal Pictures 2’113’640.23
20th Century Fox 1’5067394.33
Walt Disney Pictures 1’4117725.65
DreamWorks SKG 1’301’846.83
Columbia Pictures Corporation | 878’258.58
New Line Cinema 823’352.75
Columbia Pictures 815’260.67
Pixar Animation Studios 741°381.50
Marvel Enterprises 638°750.25
DreamWorks Animation 579°009.00
Metro-Goldwyn-Mayer 546’663.17
United Artists 5077799.58
Touchstone Pictures 476°309.42
Miramax Films 454°652.17
Apatow Productions 438'710.50
Imagine Entertainment 3807606.58
Walt Disney Company 368’420.50
Amblin Entertainment 365’394.50

Table 4.2.: Result Set of Example

Example 22. In order to offer personalized selections to customers, the movie rental
company analyzes the user rating of a movie based on the age of the customers. Using

123

4.1 The Movie Rental Company

this analysis, the company will then propose highly rated movies to customers based on
the age group the customer belongs to. Customers are grouped into three classes: old,
middle and young as follows:

e Old: Customers older than 40
e Middle: Customers between 20 and 40

e Young: Customers younger than 20

The proposition should contain the 5 best rated movies.

This analysis can be executed with a slice operation as illustrated below. The group-
ing of the customer into classes is a formatting of the result set and is not obvious
in the cube C'. In order to slice the five best-rated movies, the user rating has to be
ranked according to customer class. For each customer class, the user rating is ordered
from lowest to highest. From this ordered set of rankings, the highest five user rank-
ings are extracted. In the standard SQL syntax [ISO08], the window function rank()
allows partitioning and ranking of data sets based on an attribute. Therefore, the top
5 ranked movies can be extracted by selecting the movies with the higher rank than
max(rank(user _rating)) — 4. The slice is as follows

slice(C' =<< movie.name, customer.bday >, user _rating, R >, rank > max(rank(
user _rating)) — 4)

The SQL statement for the slice operation is divided into four nested queries. The
innermost nested query uses a case statement to group the age of the customers into
old, middle and young. The next query applies the rank() function to the user ratings
for each customer group. The third query adds the maximum ranking value for the five
movies. In the outermost query, the top five movies for each customer class are selected.
The SQL statement is as follows:

select name as "movie", cag as "customer_age_group"

from (

select b.name, b.cag , b.rank, (max(b.rank) over (partition by
b.cag) —4) as top

From (

select a.name, a.cag, rank() over (partition by a.cag order by
a.rating) as rank

from (

select movie.name as name,

case

124

4.1 The Movie Rental Company

when extract(year from age(customer.bday)) >= 40

then ’old’

when extract(year from age(customer.bday)) >= 20 and extract (
year from age(customer.bday)) < 40

then ’middle’

else ’'young’

end as cag,

avg(fact.user rating) as rating

from fact

join movie on fact.fk mont = movie.pk month

join customer on fact.fk customer = customer.pk customer

group by movie.name, cag

) a

group by a.name, a.cag, a.rating

) b

group by b.name, b.cag, b.rank

) ¢

where c.rank >= c.top

Listing 4.3: SQL Statement for selecting the Customer Age Group per Movie

The result set is as follows:

Movie Customer age group
Jackass 3 middle
The Rugrats Movie middle
Witness for the Prosecution middle
The Lion King middle
Modern Times middle
The Great Dictator old
The Night of the Hunter old
Modern Times old
Witness for the Prosecution old
Network old
Toy Story 3 young
The Lion King young
Jackass 3 young
The Rugrats Movie young
The Incredibles young

Table 4.3.: Result Set of Example

The analysis in example [22| has several limitations. The classification of customer is

125

4.1 The Movie Rental Company

crisp. A 40 year old customer might have similar taste in movies as a 39 year old cus-
tomer, yet the 40 year old customer is rated differently. This behavior can be observed
when limiting the SQL statement of example 22| to the customer age groups 39, 40 and
41. The 40 years old customers rate the top 5 movie congruent with the age group
middle, even if they are classified as old. Compared to the customer age groups 39 and
41, the age 40 rates movies closer to the 39 age group. On the other hand, the customer
age 41 rates congruent to the customer age group old. This example illustrates that
when classifying crisply, elements on the boundaries of the classes are often classified
incorrect. The SQL statement in listing [4.4] shows the query adapted in order to get the
user rating of the customer age groups 39, 40 and 41. Table shows the result of the

query.

select name, cag as "customer_age_group"

from (

select b.name, b.cag , b.rank, (max(b.rank) over (partition by
b.cag) —4) as top

From (

select a.name, a.cag, rank() over (partition by a.cag order by
a.rating) as rank

from (

select movie.name as name,

case

when extract(year from age(customer.bday)) = 41

then '41°

when extract (year from age(customer.bday)) = 40

then 40~

when extract(year from age(customer.bday)) = 39

then '39°

end as cag,

avg(fact.user rating) as rating

from fact

join movie on fact.fk movie = movie.pk movie

join customer on fact.fk customer = customer.pk customer

where extract (year from age(customer.bday)) in (39, 40, 41)

group by movie.name, cag

) a

group by a.name, a.cag, a.rating

) b

group by b.name, b.cag, b.rank

) ¢

where c.rank >= c.top

Listing 4.4: SQL Statement of Customer Age Groups 39 to 41

126

4.1 The Movie Rental Company

Movie Customer age group
Toy Story 3 39
The Lion King 39
Modern Times 39
Witness for the Prosecution 39
The Rugrats Movie 39
The Rugrats Movie 40
Modern Times 40
Witness for the Prosecution 40
Jackass 3 40
The Lion King 40
The Night of the Hunter 41
Witness for the Prosecution 41
The Great Dictator 41
Arsenic and Old Lace 41
Modern Times 41

Table 4.4.: Result Set of Customer Age Group 39 to 41

The same classification problem can be observed with the top five movie rating. Look-
ing at the user ratings for customer group old, the top eight rated movies for this age
group vary from 9.22 to 9.62. The result set is shown in table [4.5] The difference be-
tween the number five rated movie (Network) and the number six rated movie (The
Deer Hunter) is 0.02. Considering this minor difference in the rating, customers belong
to age group old might be as interested in the movie Network as in the movie The Deer
Hunter. Therefore, the limitation of 5 movies is only partly adequate to provide a movie
list for suggesting to the customer.

Movie Customer age group User rating

Witness for the Prosecution old 9.6288767123287671
Modern Times old 9.4651467505241090
The Night of the Hunter old 9.4120500782472613
The Great Dictator old 9.3853645556146887
Network old 9.2529539295392954
The Deer Hunter old 9.2390846922672278
The Exorcist old 9.2338066630256690
The Rugrats Movie old 9.2256530825496343

Table 4.5.: User Rating of Top 8 Movies of Customer Age Group Old

The analysis and the corresponding query is rather complex as it nests four subqueries.
It is probable that over time the classification will be adapted to new needs. In the
customer age group young, the top twenty movies are presented and in the age group

127

4.2 Integration of Fuzzy Concepts in the Data Warehouse

old, only the top three movies are presented. Therefore, adapting the query is a major
effort. It might be simpler to extract the user ratings per age and do the classification
outside the data warehouse. At least when a classification should have multiple names
for its classes, the cost of integrating all requirements in a single query are expensive and
therefore the classification should be done outside. The consequence of outsourcing the
classification is that only a restricted user group might have access to the classification.
In order to improve such applications of the data warehouse, it can be enhanced to a
fuzzy data warehouse.

4.2. Integration of Fuzzy Concepts in the Data
Warehouse

In addition to the classical analysis in a data warehouse, the movie rental company needs
some features that are available using fuzzy concepts.

4.2.1. Dimension Movie

The movies are classified into different genres. In the classical data warehouse, a movie
always belongs fully to one or more genres, which is represented in the hierarchy path
from movie to category in the movie dimension. In reality, movies can often be cat-
egorized into several genres while belonging more to one genre than to another. For
instance, the movies Star Wars can be classified Science Fiction and Action, but more
strongly Science Fiction. The movie Spaceballs, which is a parody of Star Wars, can be
classified as Science Fiction and more strongly as Comedy.

With the classification in the classical data warehouse approach, the movie rental
company cannot classify the movies asynchronously into different genres. Therefore, the
company classifies the movies with a fuzzy concept. Based on the method presented in
section [3.3] first the category attribute movie is defined as target attribute. The second
step is to identify the linguistic terms. In this case, the linguistic terms are the different
genres to which the movies belong. These genres can be extracted from the dimension
hierarchy category in the movie dimension. The company identifies one set of linguistic
terms. Hence, this case corresponds to case one of the second task. In the third task,
the membership functions for each genre has to be defined. The membership functions
are discrete functions, respectively step functions [MWASO05|, and a movie can belong
with 5 different degrees to a genre pigenre = [0,0.33,0.5,0.66,1]. This definition of the
membership functions corresponds to case one of task three in the modeling method in
section [3.3] The company should classify every movie manually as it is not possible to
derive the degree of belonging to a genre from existing data. A manual classification
of all the 661 movies demands initially a major effort, but considering that movies are
instances of a category attribute of a dimension, this effort has to be done only once.
Category attributes of dimensions in a data warehouse in general are static elements

128

4.2.1 Dimension Movie

and are not often modified. For newly entered movies, the classification has still to be
done once manually.

After identifying target attributes, linguistic terms and their membership functions,
the meta table structure for the fuzzy concept can be defined based on the second step
of the modeling method. According to the first and second task, one fuzzy classification
table and one fuzzy membership table have to be created. The fuzzy classification table
holds the genres as class membership attributes. The fuzzy membership table contains
membership degrees for each target attribute corresponding to class membership at-
tributes. The size of the fuzzy membership table is a Cartesian product of the movie
table and fuzzy classification table. For the third and final task, the fuzzy classification
table, the fuzzy membership table and the target attribute table have to be related to
each other. This final task is completed by relating the foreign key attributes of the
fuzzy membership table with the primary key attributes of target attribute table and of
the fuzzy classification table.

By using the proposed approach, sharp and fuzzy classification of the movies in the
data warehouse is maintained, which makes it possible to analyze the classification in
both ways, sharp and fuzzy manners. On the other hand, it is possible to remove the
category table and the corresponding bridge table as the fuzzy concept is redundant to
this dimension hierarchy path and both classification have to be maintained indepen-
dently to each other. Figure [4.2|shows the table schema of the dimension movie and the
fuzzy concept movie genre.

Legend Fuzzy Concept Movie Genre
PK_: Primary Ke i
FK_ o YK Y FMT_Movie_Genre FCT_Movie_Genre
_: Foreign Key PK_FMT
FK_FCT PK_FCT
FK_TA CMA
MDA
y
Movie_Category
_Bridge Category
Movi FK_Movie PK_Category
ovie FK_Category Category
PK_Movie Weight
Name
Director
Movie_Producer
Actors Bridge 5
Release Date — roducer
FK_Movie P— PK_Producer
FK_Producer Studio
Weight
Dimension Movie

Figure 4.2.: Fuzzy Concept Movie Genre

The movie rental company further defines that the fuzzy concept movie genre can
be aggregated with an arithmetic average function to dimension level producer. In

129

4.2.2 Dimension Customer

comparison, the crisp classification defined as dimension hierarchy path does not allow
to classify the movie producers. There, the movie is either rolled-up to producer or to
movie category.

4.2.2. Dimension Customer

The movie rental company is interested in analyzing the revenue based on customer
classifications. A common classification is an ABC analysis in which customers realiz-
ing 80% of the revenue are classified as A category customers and all other customers
are classified in B or C category. Most of the customers rent movies regularly and the
achieved revenues per customer are close to each other. Therefore, the classical ABC
analysis does not provide a satisfying classification for the movie rental company. Using
a fuzzy concept that classifies customers into good, moderate and bad customers is a
more suitable classification. The fuzzy concept allows a more fine grained classification
of customers. The customer category attribute in dimension customer is defined as tar-
get attribute in the first task of the modeling method. In the second task, one set of
linguistic terms is defined as {good, moderate,bad}. An adaptive fuzzy concept is used
and the membership functions are defined in the third task as follows:

ler = lowest customer revenue
her = highest customer revenue
cr = customer revenue

base = her — ler

cr —ler > 0.8 X base, MD. =1

Kgood(cr) = ¢ cr —ler < 0.6 x base, MD¢ =0
__ _cr—ler—0.6xbase
6l86’ M‘DCT ~ 0.8xbase—0.6xbase

cr —ler > 0.8 X base, MD. =0
cr —ler < 0.2 X base, MD,.. =0
Pmoderate(cr) = 0.4 X base < cr —ler < 0.6 x base, MDg =1
0.2 x base < cr — ler < 0.4 x base, MD,.. = 02”;;2’;902;:‘;226
_ _0.8xbase—cr—lI
else, MDer = 555 base—06xbase
cr —ler > 0.4 x base, MD.. =0
tpaa(cr) =< cr —ler < 0.2 x base, MD. =1

else,

MD. =

0.4xbase—cr—lcr
0.4xbase—0.6xbase

The base is calculated by subtracting the lowest revenue from the highest revenue.

The revenue per customer is dependent on the fact revenue. Therefore, every time a new
fact instance of revenue is added, the customer revenue is modified too. Recalculating

130

4.2.2 Dimension Customer

the fuzzy concept customer revenue on every change of the fact table would impact the
performance of the fuzzy data warehouse in a negative way. Because of this, the fuzzy
concept customer revenue is adapted on a monthly basis by the movie rental company.

Additionally, the customers are classified according to their age in order to analyze
revenue based on customer age. The target attribute is the category attribute customer
as before. The customers are classified with a fuzzy concept containing the linguistic
terms old, middle and young (second task of the modeling method). In the third task,
the company defines the membership function as follows:

customer age > 65; MDcustomer age — 1

ord(customer age) = { customer age < 40, M Deystomer age =0
t, —40
6l8€, M Dcystomer age — %
customer age > 65, M D cystomer age =0
customer age < 20, M Dcustomer age — 0
Mmiddle(customer age) = 30 < customer age < 40, M Dcystomer age — 1

customer age—20

20 < customer age < 30, M Deystomer age = 7-30
65—customer age

else, M Deustomer age — 65—40

customer age > 307 MDcustomer age — 0
Hyoung (customer age) = < customer age < 20, M Deystomer age = 1

__ 30—customer age
else, M Dcystomer age — — 30—-20

This fuzzy concept can be characterized as an open end fuzzy concept. All customers
older than 65 fully belong to the linguistic term old whereas customers younger 20 fully
belong to the linguistic term young. Although the majority of customers are between
20 and 65 years old, it is still possible to adequately classify customers older than 65 or
younger than 25.

In the first task of the second step of the modeling method, two fuzzy classification
tables are created for the fuzzy concepts, and a fuzzy membership table for each fuzzy
concept is created. Each fuzzy membership table will be the size of the Cartesian prod-
uct of the fuzzy classification table and the customer table. In the third step, the target
attribute table customer, the fuzzy membership tables and the fuzzy classification ta-
bles are related to each other using the foreign key relations. Figure illustrates the
table schema of the dimension customer and the fuzzy concepts customer revenue and
customer age.

131

4.2.3 Dimension Employee

Fuzzy Concept Customer Revenue Fuzzy Concept Customer Age
FMT_Customer_Revenue FMT_Customer_Age
FCT_Customer_Revenue PK_FMT PK_EMT FCT_Customer_Age
PK_FCT < FK_FCT FK_FCT PK_FCT
CMA FK_TA FK_TA CMA
MDA MDA
N z

Legend

PK_: Primary Key
Customer

FK_: Foreign Key
PK_Customer
Name
Birthday
Address
Dimension Customer

Figure 4.3.: Fuzzy Concepts Customer Revenue and Customer Age

4.2.3. Dimension Employee

The company is also interested analyzing the age of their employees. An employee age
concept, similar to the fuzzy concept customer age, is created. The target attribute is
the employee in the employee dimension (first task of first step in modeling method),
the linguistic terms are old, middle and young (second task). Due to the nature of
employee age, a limited fuzzy concept is used. The company has a policy that restricts
employing people younger than 18. By Swiss federal law, retirement starts at the age of
65. In contrast to the fuzzy concept of customer age, the fuzzy concept employee age
will never classify a person older than 65 or younger than 18. The membership functions
are defined as follows (third task):

employee age > 45, M D opmployee age = 1

told(employee age) = ¢ employee age < 30, M Dempioyee age = 0
else, MDemployee age — %
employee age > 45, M D epployee age = 0
employee age < 25, MD empioyee age =0
Umiddie(employee age) = { 30 < employee age < 35, M Dempioyee age = 1
25 < employee age < 30, M Dempioyee age = %
else, MDemployee age — %
employee age > 30, M Dempioyee age = 0
Kyoung (employee age) = ¢ employee age < 25, M Demployee age = 1
else, MDemployee age — Ww

132

4.2.4 Dimension Store

To build the fuzzy concept employee age, one fuzzy classification table (first task of
second step in modeling method) and one fuzzy membership table (second task) are
created. In this case, the membership table might not be the size of the Cartesian
product of the employee table and the fuzzy classification table. Considering that the
movie rental company is hiring students during the summer break, it might be possible
to have employees younger than 18. These employees are stored in the employee table
but discarded by the fuzzy concept. Therefore, no entries are made in the fuzzy mem-
bership table for these employees. Finally, the customer table, the fuzzy membership
table and the fuzzy classification table are related using the foreign key relation. Figure
[4.4] presents the table schema of the fuzzy concept employee age.

Legend Dimension Employee

PK_: Primary Key Employee
FK_: Foreign Key

PK_Employee
Name
Birthday

FMT_Employee_Age
PK_FMT

PK_FCT FK_FCT

CMA FK_TA

MDA

FCT_Employee_Age

Fuzzy Concept Employee Age

Figure 4.4.: Fuzzy Concept Employee Age

4.2.4. Dimension Store

The surface for each store is registered in the data warehouse. The movie rental com-
pany is interested knowing the sales performance of big and small stores. Therefore, the
company creates a fuzzy concept for classifying the store surface in big, medium and
small. For the first task in the first step, the table store is chosen as target attribute and
for the second task the linguistic terms big, medium and small are chosen. The fuzzy
concept has the characteristic of a limited fuzzy concept as the company will not rent
stores with a surface smaller than 40 square meters or bigger than 250 square meters.
For task three, the membership functions are defined as follows:

store sur face > 200, M Dgiore surface = 1

fbig(store sur face) = { store surface <150, M Datore surface =0

store sur face—150
else, M Dgiore surface — 200j150

133

4.2.4 Dimension Store

store surface > 200, MDgiore surface =0
store sur face < 80, MDgiore surface =0
120 < store surface < 150, M Dgiore surface = 1
Umedium (store surface) = { 80 < store surface <120, M Dsiore surface =
store surface—80
120—80
else, MDgiore surface —
200—store surface
\ 200—150

store sur face > 120, M Dgiore surface = 0
,Ufsmall(Store S’LL’I”fCLCC) = store sur face < 80, M Dgore sur face = 1

__ 120—store surface
else, M Dgiore surface — 120—80

For the second step of the modeling method, the fuzzy classification table from task
one and the fuzzy membership table from task two are defined to integrate this fuzzy
concept in the fuzzy data warehouse. Differently from the employee age fuzzy concept,
the fuzzy membership table of this limited concept has the size of the Cartesian product
of the fuzzy classification and the store table. This is due to the fact that the company
will always rent new stores in this range of surface, so all stores are classified. The
relation of the tables is established by the foreign key relations. Figure presents the
table schema of the fuzzy concept store surface.

Legend Dimension Store

PK_: Primary Key Store

. Regi Cit:
FK_: Foreign Key egion PK Ci)t,y PK_Store
PK_Region - i
—eg FK_Region FK_City

Name

Name
Surface

Name

FMT_Store_Surface

FCT_Store_Surface

PK_FMT
PK_FCT FK_FCT
CMA FK_TA

MDA

Fuzzy Concept Store Surface

Figure 4.5.: Fuzzy Concept Store Surface

The fuzzy concept store surface can be propagated to the dimension levels city and
region. The propagated fuzzy concepts are adaptive fuzzy concepts and the membership
functions calculate the membership degrees based on the specific domain of the target
attributes. Therefore, the membership function uses a ranking on the ordered set of the
domain of attributes. The membership functions are as follows:

134

4.2.5 Fact Revenue

S:{xl,...,xn} :

rank(store surface) > 0.8,
rank(store surface) < 0.6,

big(store sur face) = else

rank(store surface) > 0.8,
rank(store surface) < 0.2,

M Dgiore surface — 1
MDstore surface — 0
MDstore surface —

rank(store surface)—0.6
0.8—0.6

MDstore surface — 0
MDstore sur face = 0

0.4 < rank(store surface) < 0.6,

MDstore surface — 1

0.2 < rank(store surface) < 0.4, MDgore surface =

rank(store surface)—0.2
0.4—0.2

M Diore surface —
0.8—rank(store surface)
\ 0.8—0.6

Umedium (Store sur face) =

else,

rank(store surface) > 0.4,
srank(store surface) < 0.2,
else,

MDstore sur face = 0
M Dore surface — 1

MDstore surface =
0.4—rank(store sur face)
0.4-0.3

Wsmail (store sur face) =

The propagated fuzzy concepts reuse the fuzzy classification table. Hence, for each
dimension level on which the fuzzy concept is propagated, an additional fuzzy member-
ship table has to be defined. Figure [4.6] illustrates the fuzzy concept store surface with
the propagated fuzzy concepts on level city and region. The fuzzy membership tables
for the propagated fuzzy concepts are represented as dashed table objects.

4.2.5. Fact Revenue

The movie rental company also creates a classification on the revenue in the fact table.
According to the modeling method, the fact table is chosen in the first task of step one
as the target attribute. Revenue should be classified as high, middle and low. In task
two, the linguistic terms high, middle and low are defined. Renting a movie costs either
5 or 7 CHF a day. The revenue is defined by the cost of renting a movie times the rental
duration. Consequently, the revenue is a discrete value and always a multiple of 5 or 7.
An open end fuzzy concept with discrete membership functions can be used in this case.
In task three, the membership functions are defined as follows:

135

4.2.5 Fact Revenue

Legend Dimension Store
PK_: Primary Key - Store
FK_: Foreign Key Region PKCC”.); PK_Store
. _City —
PK_Region i
Nan 9 FK_Region FK_City
ame Name Name
/ Surface
/ \
=z A N
FMT_Region_Store_Surface FMT_City_Store_Surface FMT_Store_Surface
PK_FMT PK_FMT PK_FMT
FK_FCT FK_FCT FK_FCT
FK_TA FK_TA FK_TA
MDA MDA MDA

/

FCT_Store_Surface
PK_FCT
CMA

Fuzzy Concept Store Surface

Figure 4.6.: Propagated Fuzzy Concepts City Store Surface and Region Store Surface

revenue > 25, M D, cpenue = 1
revenue < 14, M D, cyenue = 0
Lnigh(revenue) = ¢ revenue = 15, M D;epenye = 0.33
revenue = 20, M D;epenue = 0.5
revenue = 21, M D, cpenue = 0.66

revenue = 15, M D, epenue = 1
e - revenue = 21, M D, epenue = 0.5
Himiddie \TEVENUE) =0 95 < revenue < 10, M Dyepenue = 0
revenue = 14, M D, cvenue = 0.5

revenue =95, MD,epenue = 1
revenue =7, M D,epenue = 0.66
revenue = 10, M D, cpenue = 0.33
revenue > 14, M D, cpenue = 0

Hiow(revenue) =

In the second step of the modeling method, one fuzzy classification table for task one
and one fuzzy membership table for task two are defined. The foreign keys of the fuzzy
membership table are related with the primary keys of the fact table and the fuzzy
classification table in order to build the relations in step three. Figure [4.7] presents the
table schema of the fuzzy concept revenue.

The fuzzy concept revenue is an important fuzzy concept for the movie rental com-

pany. Therefore, it is propagated to all the category attributes of every dimension. In
total, 13 category attributes exist in the data warehouse and for each category attribute

136

4.2.5 Fact Revenue

Legend
PK_: Primary Key
FK_: Foreign Key

Fact
PK_Fact
FK_Day
FK_Type
FK_Movie
FK_Customer
FK_Employee
FK_Store
Rating
Revenue
Rent duration

FMT_Revenue
PK_FMT
FK_FCT
FK_TA

MDA

FCT_Revenue
PK_FCT
CMA

Fuzzy Concept Revenue

Figure 4.7.: Fuzzy Concept Revenue

a fuzzy membership table has to be created. The propagated fuzzy concepts are de-
fined as adaptive fuzzy concepts and the membership functions are, as in section [4.2.4]
described, a ranking of the domain of the target attributes. The membership functions
for all propagated fuzzy concepts are as follows:

S=A{x1,...,zn} : V€ domTA‘/\ll <j<nAzj<zjin
) = J—
rank(z;) = ST
rank(revenue) > 0.8, M Dy eyenue = 1
() rank(revenue) < 0.6, M Dyepenue =0
io(revenue) =
Hbig else, M Dy evenue =
rank(revenue)—0.6
0.8—0.6
(rank(revenue) > 0.8, M Dy epenue =0
rank(revenue) < 0.2, M D,epenue = 0
0.4 < rank(revenue) < 0.6, M Dy epenuye = 1
Limedium (revenue) = { 0.2 < rank(revenue) < 0.4, M Dyeyenue =
rank(revenue)—0.2
0.4—0.2
else, M Dyevenue =
0.8—rank(revenue)
L 0.8—0.6
rank(revenue) > 0.4, M Dyepenue = 0
() srank(revenue) < 0.2, M Dy epenye = 1
revenue) =
Hsmall else, M Dyevenue =
0.4—rank(revenue)
0.4-0.3

It must be noted that the customer revenue fuzzy concept, discussed in section [4.2.2
for the customer dimension, is not the same fuzzy concept. The linguistic terms and the
membership functions are not identical. Therefore, the movie rental company decides to

137

4.2.6 Fact User Rating

leave the fuzzy concept customer revenue as a distinct fuzzy concept instead of redefining
it as a propagated fuzzy concept. The fuzzy concept revenue is still propagated on the
dimension customer. The dimension customer can hence be classified by two different
revenue concepts.

The target attribute revenue of the base fuzzy concept revenue is modified as soon as
new data is added into the data warehouse. The actual data from the source systems
is loaded every night by the ETL process of the data warehouse. The classification of
the propagated fuzzy concept revenue has to be recalculated as soon this event takes
place in order to always guarantee a realtime classification. The movie rental company
decides to trigger the recalculation of the fuzzy concept revenue after every daily load.

Figure shows the base fuzzy concept revenue and the propagated fuzzy concepts.
For simplicity the relations between the fact table and the dimensions are omitted.

Furthermore, the company requires that the fuzzy concept revenue can be propagated
on every calculated cube that contains the measure revenue. Calculated cubes are the
result of analyzing the fuzzy data warehouse and they only exist during the query process
of the analysis. Therefore, the resulting revenue is volatile and the classification of the
revenue has to be realized during the query process (see section . For the instant
calculation of the fuzzy concept, the stored procedure as described in section might
be used.

4.2.6. Fact User Rating

Customers are asked to rate every movie when they return it. The rating of the movie
is captured in the fact table as a decimal number between 0 and 10. If a customer does
not rate the movie NULL is applied to the fact entry. The rating is used to create the
company’s particular list of hit movies. This list is presented to the customers on display
screens in the movie stores as an additional service. The movie rental company uses this
customer rating to classify the movies fuzzily into very good, good and ok movies. For
this fuzzy concept, the target attribute is the user rating attribute in the fact table (task
one in first step of the modeling method) and the linguistic terms are very good, good,
and ok (task two). As the rating is always between 0 and 10 a limited fuzzy concept can
be created. The membership functions are the following (task three):

rating > 8.0, MDrating =1
[wery good(rating) =« rating < 6.0, M D;qting =0

rating—6.0
else MDyating = ﬁ

138

4.2.6 Fact User Rating

Dimension Movie Dimension Employee Legend
- Employee PK_: Primary Key
Mowe,(;ategory FK_: Foreign Ke:
_Bridge Category PK_Employee = 9 Y
Mo FK_Movie PK_Category g‘;::
ove FK_Category Category Irthday
PK_Movie Weight /
Name N Dimension Customer
N Movie_Producer " "
Director : Dimension Sale Type
Actors _Bridge Producer Customer
Release Date FK_Movie PK_Producer Type PK_Customer
FK_Producer Studio PK_Type Name
Weight Type Birthday
T Address
FMT_Revenue FMT_Revenue FMT_Revenue FMT_Revenue FMT_Revenue
PK_FMT PK_FMT PK_FMT PK_FMT PK_FMT
FK_FCT FK_FCT FK_FCT FK_FCT FK_FCT
FK_TA FK_TA FK_TA FK_TA FK_TA
MDA MDA MDA MDA MDA
Fact
PK_Fact
Eii?ay FMT_Revenue FMT_Revenue
e
FK*M{,‘;E PK_FMT FCT_Revenue PK_FMT
FK Customer <] FK_FCT PK_FCT FK_FCT
FK_TA
FK_Employee FK_TA CMA MD_A
FK_Store MDA
Rating
Revenue
Rent duration
FMT_Revenue FMT_Revenue FMT_Revenue FMT_Revenue FMT_Revenue FMT_Revenue FMT_Revenue
PK_FMT PK_FMT PK_FMT PK_FMT PK_FMT PK_FMT PK_FMT
FK_FCT FK_FCT FK_FCT FK_FCT FK_FCT FK_FCT FK_FCT
FK_TA FK_TA FK_TA FK_TA FK_TA FKiTA FKiTA
MDA MDA MDA MDA MDA MDA MDA
Fuzzy Congept Revenue
Dimensipn Store
Week
St
Region City K ;re PK_Week Day
. PK_City —Store Year FK_Year
PK_R o — i
—region FK_Region FK_City PK_Year Week \ PK_Day
Name Name Name Ye;r FK_Month
Surface \ Month FK_Week
PK_Month / Day
FK_Year Weekday
Month
Month name
Dimension Time
Figure 4.8.: Propagated Fuzzy Concepts Revenue
rating > 8.0, MD:yqting =0
rating < 2.0, M D, ating =0
,ugood(ratlng) = 4.0 < ratmg < 60, MDTating =1
. _ rating—2.0
2.0 < Tat'lng < 40, MDratzng = T1.0-20
8.0—rating
else M Drating = ~g9-6.0

rating > 4.0, M D,qting = 0
pok(rating) = ¢ rating < 2.0, M Dyaping = 1
o MDpa = L
To integrate this concept in the fuzzy data warehouse, a fuzzy classification table (task
one of the second step) and a fuzzy membership table (task two) are defined and related
to the fact table (task three). Figure presents the table schema of the fuzzy concept
user rating.

139

4.2.7 Fuzzy Data Warehouse Schema

Legend Fuzzy Concept User Rating

PK_: Primary Key FMT_User_Rating
FK_: Foreign Key PK_FMT

FK_FCT B—
FK_TA CMA
MDA

FCT_User_Rating
PK_FCT

Fact

PK_Fact
FK_Day
FK_Type
FK_Movie
FK_Customer

FK_Employee
FK_Store
Rating
Revenue
Rent duration

Figure 4.9.: Fuzzy Concept User Rating

The fuzzy concept rating might only be aggregated over the movie and customer di-
mensions as the fact user rating only provides meaningful information in conjunction
with these two dimensions. The aggregation function of the crisp fact user rating is
an average function: the user rating on level movie is the arithmetic average of all the
registered ratings in the fact table for a specific movie. Similarly, the ratings for the
levels producer and category on the dimension movie and for level client on dimension
client can be deducted. Subsequently, the user ratings for each level are aggregated from
the lower dimension level.

4.2.7. Fuzzy Data Warehouse Schema

Finally, the data warehouse schema is extended with the meta tables of the fuzzy con-
cepts. In Figure [£.10] the fuzzy data warehouse schema is presented including the meta
tables for all fuzzy concepts shaded grey. For each fuzzy concept, the fuzzy classifica-
tion table and the fuzzy membership tables are presented. The linguistic terms for a
fuzzy concept are stored in the attribute CMA in the fuzzy classification table and the
membership degrees of a target attribute to the corresponding linguistic term is stored
in the attribute MDA in the fuzzy membership table. The fuzzy membership tables
of propagated fuzzy concepts are presented as dashed fuzzy membership table objects
within the fuzzy concepts. For readability, the thirteen propagated fuzzy membership
tables of the fuzzy concept revenue are only symbolized by one fuzzy membership ta-
ble object and the relations to the category attributes are omitted. For simplicity, the
dimensions which do not have any fuzzy concept are only depicted as boxes with the
dimension name. The structures of these simplified dimensions are retained as shown in

140

4.3 Using the Fuzzy Data Warehouse

Figure 4.1

Fuzzy Concept User Rating Fuzzy Concept Movie Genre
" N FMT_User_Ratin i
Dimension Sale Type —Ser_Tamng FCT_User_Raling FMT_Movie_Genre FCT_Movie_Genre
PK_FMT — — PK_FMT PR FOT
Legend FK_FCT B PKFCT FK_FCT -
o o FK_TA CcMA FK_TA CMA
_: Primal e iy
. ey Dimension Time MDA MDA
FK_: Foreign Key 4
1
Dimension Employee Movie_Category
Employee _Bridge Category
PK_Employee Movie FK_Movie P—1 PK_Category
Name FK_Category Category
Birthday PK_Movie Weight
Name
Director
Fact A(I:lors Movieg?éoducer
PK_Fact Release Date —reee Producer
FMT_Employee_Age FK_Day FK_Movie P~ PK_Producer
FCT_Employee_Age PK_FMT FK,Type_ FK_Producer Studio
PK_FCT y FK_Movie Weight
- FK_FCT FK_Customer
MA
c FIK_TA FK_Employee Dimension Movie
MDA FK_Store
Rating
Fuzzy Concept Employee Age Revenue FMT_Revenue FMT. Revenue
Rent duration FCT_Revenue =
Dimension Store PK_FMT PK_FCT PK_FMT
FK_FCT - FK_FCT
St CMA
Region City ore FK_TA FK_TA
" PK_Store MDA MDA
. PK_City
PK_Region | —« Region [] FK-City
Name Na;n e Name Customer Fuzzy Concept Revenue
Surface PK_Customer
/ Name
. FMT_Customer_Age —
7 Birthday
FCT_Customer_Age
FMT_R s/ Surf FMT_Gi sm Surf FMT_S > Surf Acdross il PFOT ?
I 1 ity i i
_Region_Store_Surface _City_Store_Surface _Store_Surface Dimension Customer Y FK_FCT B | PK
PK_FMT PK_FMT PK_FMT FK_TA CMA
FK_FCT FK_FCT FK_FCT MDA
FK_TA FK_TA FK_TA
- — — Fuzzy Concept Customer Age
MDA MDA MDA AL g
A
FMT_Customer_Revenue
FCT_Store_Surface PK_FMT FCT_Customer_Revenue
PK_FCT FK_FCT PK_FCT
CMA FK_TA CMA
MDA

Fuzzy Concept Store Surface Fuzzy Concept Customer Revenue

Figure 4.10.: Fuzzy Data Warehouse Schema for the Movie Rental Company

4.3. Using the Fuzzy Data Warehouse

After creating the fuzzy data warehouse, the movie rental company can now take advan-
tage of the fuzzy concepts for analysis. In this section, how the movie rental company
can use the fuzzy concepts in order to improve their analysis is discussed.

Example 23. The movie rental company is interested in analyzing how much revenue
was generated by older customers. To determine this, a fuzzy slice operation on the
fuzzy data warehouse can be executed. In this operation, the fuzzy concept customer
age is used as slicer. The result set of the slice operation can be further refined with an
a-cut. The slice operation is executed as follows:

141

4.3 Using the Fuzzy Data Warehouse

slice(<< customer.customer.name, customer.customer.age >, < customer.customer.
customer _age.old >,revenue, R >, customer.customer.customer _age.old > 0.8)

The SQL statement of this slice operation is shown in listing [£.5]

select customer.name as Name, extract("year" from age(bday)) as

Age, fmt.mda as "CMA_old", sum(revenue) as Revenue

from fact

join (customer

join (fmt customer age as fmt

join fct customer age as fct on fmt.fk fct = fct.pk fct and fct
.cma = ’old’) on fmt.fk ta = customer.pk customer) on fact.
fk customer = customer.pk customer

where fmt.mda > 0.8

group by Name, Age, "CMA_old"

order by Revenue

Listing 4.5: SQL Statement for selecting the Revenue of old Customers
Table [4.6] shows the result set of the ten first customers.

Name Age | CMA old | Revenue
Kai Fischer 70 1.00 2335
Alissa Pfeiffer 63 0.92 2338
Jannis Vondembussche-haddenhausen | 65 1.00 2397
Maria Fink 65 1.00 2424
Leon Hinkel 76 1.00 2432
Pepe Petri 74 1.00 2443
Danny Thomae 68 1.00 2480
Carina Lumm 71 1.00 2493
Clemens Schlagdenhaufen 69 1.00 2513
Jean Bensing 63 0.88 2523

Table 4.6.: Result Set of Example

Example 24. The company is interested in the distribution of revenues of movie rentals
by the age of the customers. To answer this question, the company applies the fuzzy
concept customer age as selector. In order to get a result that is consistent with the
overall revenue, the membership degrees of old, middle and young for each target at-
tribute instance has to be normalized to 1. Otherwise, the sum of the revenue of all
linguistic terms will not correspond to the actual overall revenue. The cube operation
and the fuzzy selector are as follows:

142

4.3 Using the Fuzzy Data Warehouse

<<>, < customer.customer.customer _age >,revenue X customer.customer.custo-
mer_age.mda, R >

The corresponding SQL statement is in listing [4.6]

select fct.cma as "CMA", sum(revenue % fmt.mda) as Revenue
from fact

join (customer

join (fmt custage as fmt

join fct custage as fct on fmt.fk fct = fct.pk fct)

on customer.pk customer = fmt.fk ta)

on customer.pk customer = fact.fk customer

group by "CMA"

Listing 4.6: SQL Statement for selecting the Revenue per Customer Age Group
The result set is presented in Table [4.7]

CMA Revenue

old 17°183°705.52
middle | 20°944°178.78
young | 10°055'692.70

Table 4.7.: Result Set of Example

Example 25. The company also wants to analyze how much revenue small stores are
producing. The time frame July to August 2010 is chosen to reduce the size of the result
set. In addition, the data is grouped by region. For this analysis, the following dice
operation can be used:

dice(<< time.month, region.region, region.store.name, region.store.sur face >,
< region.store. _store_sur face.small >, revenue, R >, {time.year.year = 2010,
time.month.month = “July”, time.month.month = “August”, region.store.store__sur-
face = “small”}, {AND, AND, AND})

Only the revenue of the stores with a small store surface is aggregated to the dimen-
sion hierarchy level region. Hence, small store surface and not region store surface is a
slicer of the dice operation. The other slicers are the time restrictions July, August and
2010. The corresponding SQL statement is shown in listing [4.7]

select "month".monthname as "Month", region.region as "Region",
store .name as "Store", store.surface as "Surface", fmt.mda
as "CMA_small", sum(revenue) as "Revenue"

143

4.3 Using the Fuzzy Data Warehouse

from fact

join ("day"

join ("month"

join "year" on "month".fk year = "year".pk year and "year"."
year" = 20107)

on "day".fk month = "month".pk month)

on fact.fk day = "day".pk day

join (store

join (fmt storesurf as fmt

join fct storesurf as fct on fmt.fk fct = fct.pk fct and fct.

cma = ’small’ and fmt.mda > 0.00) on fmt.fk ta = store.
pk store

join (city

join region on region.pk region = city.fk region)

on store.fk city = city.pk city)

on store.pk store = fact.fk store

group by "Month", "Region", "Store", "Surface", "CMA_small"

order by "Revenue"

Listing 4.7: SQL Statement for selecting Revenue of small Stores

Contrary to the cube operation in example [24] the fuzzy concept in this dice operation
is not involved in the summation process of revenue. It is only involved as slicer in order
to list the stores with small store surface. Hence, in this case the membership degrees
do not necessarily have to be normalized.

A shortened result set of the first ten data rows is presented in table [4.8]

Month Region | Store Surface | CMA small | Revenue
February | French | Store LAC2 100 0.50 167528
February | German | Store LUZ1 90 0.75 167543
February | French | Store GEN2 90 0.75 17978
February | German | Store THU1 55 1.00 18’065
February | French | Store LAU1 90 0.75 187328
June German | Store LUZ1 90 0.75 187347
February | German | Store THU2 65 1.00 187751
November | German | Store BER1 75 1.00 187759
April German | Store LUZ1 90 0.75 18’765
August French | Store SIO1 105 0.38 187999

Table 4.8.: Result Set of Example

In example 22 the movie rental company tried to classify movies based on the user
rating of certain age groups. This classification was intended to be used as a person-

144

4.3 Using the Fuzzy Data Warehouse

alized suggestion to customers. The user in a certain age group should then receive a
list of the top five rated movies of this age group. However, the crisp classification of
age and the crisp classification of movies are not adequate to provide this personalized
offer. Furthermore, the classification in example [22|implies a rather complex nested SQL
statement that is not flexible for further extension of the classification. Therefore, the
classification with a third party tool was proposed. The next example will provide a
similar classification based on the fuzzy concepts in order to show how fuzzy concepts
can facilitate such classification.

Example 26. The aim of the classification is to provide customers with a personalized
list of movies they might be interested in. Therefore, the company classifies the movies
according the user rating of a certain age group. Only the highest rated movies should
then be shown in the list. This analysis can be completed by classifying the customers
with the fuzzy concept customer age and the movie with the aggregated fuzzy concept
user rating. Instead of proposing the top five movies, the analysis can use an a — cut on
fuzzy concept user rating to only propose the best classified movies. This analysis can
be executed using a fuzzy slice operation in which the slicer is the fuzzy concepts user
rating on movie. The slice is as follows:

slice(<< movie.movie, customer.customer >, < customer.customer.customer _age,
movie.movie.user _rating.very good >,revenue, R > movie.movie.user _rating.very

__good > 0.94)

The corresponding SQL statement for this slice is given in listing

select movie.name as "Movie", a.custcma as "Customer_age_group"
, round(avg(a.mda) ,2) as "Rating"

from fact

join (movie

join (select fctc.cma as custcma, pk movie as ta, avg(
fmt user rating.mda) as mda

from fact

join (customer

join (fmt customer age as fmtc

join fct customer age as fctc on fctc.pk fct = fmte.fk fct and
fmtc.mda > 0.00)

on customer.pk customer = fmtc.fk ta)

on customer.pk customer = fact.fk customer

join fmt wuser rating on fact.pk fact = fmt user rating.fk ta

join fct user rating on fmt user rating.fk fct = fct rating.
pf fct and fct rating.cma = ’very_good’

join movie on fact.fk movie = movie.pk movie

group by custcma, ta

145

4.3 Using the Fuzzy Data Warehouse

having avg(fmt user rating.mda) >= 0.94) a

on movie.pk movie = a.ta)

on fact.fk movie = movie.pk movie
group by "Customer_age_group", "Movie"
order by "Customer_age_group", "Movie"

Listing 4.8: SQL Statement for selecting Movie Rating

In contrast to the SQL statement in example [22] only one nested query is used. The
nested query groups the fuzzy concept user rating based on the fuzzy concept customer
age and aggregates it to the category attribute movie. This nested query is only necessary
when aggregation of the fuzzy concepts is not executed in a prior step by the fuzzy data
warehouse. Nevertheless, the query in the fuzzy data warehouse is less complex than
the corresponding query in the classical data warehouse. One major reason for the
simplification of the query is the fact that the logic of the classification of age group
and top five movies is not directly integrated in the query. The fuzzy concepts user
rating and customer age implement this logic and the fuzzy data warehouse only has to
combine the corresponding meta tables in order integrate the classification. The result
set of this query contains 27 data rows, in comparison to the 15 data rows of result set
in example 221 Table presents a shortened result set of 15 data rows.

Movie Customer age group | Rating
Modern Times middle 0.96
The Great Dictator middle 0.95
The Night of the Hunter middle 0.95
The Rugrats Movie middle 0.96
Witness for the Prosecution | middle 0.98
Harvey old 0.94
Ikiru old 0.94
old
The Rugrats Movie old 0.96
Witness for the Prosecution | old 0.99
Infernal Affairs young 0.95
Jackass 3 young 0.97
The Incredibles young 0.95
young
The Lion King young 0.97

Table 4.9.: Result Set of Example

Using the fuzzy concept user rating does not limit the analysis to five movies per
age group. With the a — cut, the movie rental company has the possibility to define
how strong the rating should belong to the desired class, here into very good rating.
In contrast, the classification in example [22| chooses the five best rated movies without

146

4.3 Using the Fuzzy Data Warehouse

regard to the actual rating of the movies. When the sixth movie is rated as high as the
fiftth one, it is still not considered. The query order might be influenced by the name
of the movie or the internal query optimizer of the data warehouse system — the crisp
selection of the movies is not only taking the user rating into consideration. Whereas,
the o — cut on the fuzzy concept user rating chooses every movie belonging to the class
very good movie by more than 0.94 without being restricted by the query order. This
effect is the reason the number of movies vairies by the different age groups, i.e. the age
group old has rated more movies as very good than the age group middle.

The main advantage of using the fuzzy concept user rating instead of the crisp user
rating is the pre-grouping of the ratings before applying the classification. The company
can use a linguistic term in order to choose only the very good rated movies. Using the
crisp ratings would end in a restriction based on the numeric values of the user rating,
i.e every rating higher 8.0, which would correspond to an a — cut of 1.0 of the linguistic
term very good. The fuzzy concept allows a global definition of what a very good movie
is according the rating. Therefore, when using fuzzy concept in multiple analysis, the
meaning of the classification remains equal.

When analyzing the age groups, it can be noted that the user rating per age group
considers every rating of a customer that belongs some degree more than 0.0 to that
class. A customer with age 45 influences the customer age groups old and middle as 45
belongs 0.8 to the middle age and 0.2 to the old age group. The movie rating classifi-
cation does not take the different membership degrees of age into account. The rating
of the 45 year old customer is fully considered for the two age groups. The user rating
and its fuzzy concept are aggregated using the arithmetic average, and movie rating is
influenced by a much broader number of customers than the crisp rating in example 22}
It consequently allows smoother transitions between the age groups and the customers
at the borderline are classified more accurately with respect to their real rating behavior.

The movie rental company has the flexibility to restrict the number of customer ages
that are taken into account by increasing the o — cut of the customer age classification.
The a — cut in the current SQL statement of example [26]is 0.0. When increasing it to
1.0, only ratings of customers that fully belong to an age group are considered. The
company has the option to use the a— cuts to fine tune their classification in a way that
a crisp classification can not provide it.

With the fuzzy classification in example [20] customer can receive a personalized list of
movie propositions according their belonging to the age groups. Considering a 45 years
old customer, who belongs to the age groups middle age (0.8) and old age (0.2), the list
can be composed of movies in both age groups. According to the level of belonging to
the groups, a specific subset of movies can be proposed in order to further personalize
the service. For example, the company might propose to the 45 year old customers
the 20% best rated movies in age group old and the 80% best rated movies of the age
group middle. This further personalization is only possible when customers can belong

147

4.3 Using the Fuzzy Data Warehouse

to more than one age group at a time and is therefore not possible to achieve with crisp
classification of customers.

Example 27. Next, the movie rental company wants to analyze rentals of movies and
rentals over time. The time period will be restricted to every month of year 2010. The
company is not only interested in the amount of revenue a movie produced during a
particular time period, but also how strongly the movie performs in overall revenue.
Additionally, the overall performance of the period should be analyzed too. In order to
combine all these needs into a single report, the company is combining the two fuzzy
concepts movie revenue and monthly revenue. The analysis can be completed by slicing
the fuzzy cube < movie.movie, time.year, time.month >, < movie.movie.revenue, ti-
me.month.revenue >, revenue, R > with the slicer 2010. The resulting operation is as
follows:

slice(< movie.movie, time.year, time.month >, < movie.movie.revenue, time.month.
revenue >, revenue, R > time.year = 2010)

The corresponding SQL statement is listed in

select "month".monthname, morevh.mda as "Month_ CMA_high"
morevin .mda as "Month_CMA_middle", morevl.mda as "Month_CMA_
low" , movie.name, mrevh.mda as "Movie CMA_high", mrevm.mda
as "Movie . CMA_middle", mrevl.mda as "Movie CMA_low" , sum(
revenue) as "Revenue"

from fact

join ("day"

join ("month"

join (fmt revenue month as "morevh"

join fct revenue as "fctmorevh" on morevh.fk fct = fctmorevh.
pk fct and fctmorevh.cma = ’"high’) on "month".pk month =
morevh.fk ta

join (fmt revenue month as "morevm"

join fct revenue as "fctmorevm" on morevm.fk fct = fctmorevm.
pk fct and fctmorevm.cma = 'middle’) on "month".pk month =
morevm . fk ta

join (fmt revenue month as "morevl"

join fct revenue as "fctmorevl" on morevl.fk fct = fctmorevl.
pk fct and fctmorevl.cma = 'low’) on "month".pk month =
morevl.fk ta

join "year" on month.fk year = "year".pk year) on "day".

fk _month = "month".pk month) on fact.fk day = "day".pk day
join (movie
join (fmt_ movrev as "mrevh"

148

4.3 Using the Fuzzy Data Warehouse

join fct revenue as "fctmrevh" on fctmrevh.pk fct = mrevh.
fk fct and fctmrevh.cma = ’high’) on movie.pk movie = mrevh.
fk ta

join (fmt movrev as "mrevm"

join fct revenue as "fctmrevm" on fctmrevm.pk fct = mrevm.
fk fct and fctmrevm.cma = 'middle’) on movie.pk movie =

mrevim . fk _ta
join (fmt_movrev as "mrevl"
join fct revenue as "fctmrevl" on fctmrevl.pk fct = mrevl.

fk fct and fctmrevl.cma = ’low’) on movie.pk movie = mrevl.

fk ta) on fact.fk movie

where "year"."year"
group by "month".monthname, morevh.mda, morevm.mda,
movie.name, mrevh.mda , mrevm.mda,

= 2010

order by sum(revenue) desc

movie.pk movie

mrevl.mda

morevl.mda,

Listing 4.9: SQL Statement for selecting Movie Revenue

In table [£.10] the results with the top ten revenues of the report are presented. It
should be noted that the highest revenues are not necessarily produced in the best rated
periods or with the highest rated movies; only the month July is belonging with 1.0 to
high monthly revenue.

Month
name

Month
CMA
high

Month
CMA
mid-
dle

Month
CMA

low

Movie
name

Movie
CMA
high

Movie
CMA
mid-
dle

Movie
CMA

low

Reve-
nue

January

0.70

0.30

0.00

Trans-
formers:
Revenge
of the
Fallen

0.82

0.18

0.00

10479

January

0.70

0.30

0.00

Cloudy
with a
Chance
of Meat-
balls

0.57

0.43

0.00

10213

January

0.70

0.30

0.00

The
Twilight
Saga:
New
Moon

0.32

0.68

0.00

10136

149

4.3 Using the Fuzzy Data Warehouse

January

0.70

0.30

0.00

It’s
Compli-
cated

0.29

0.71

0.00

10066

January

0.70

0.30

0.00

Harry
Potter
and the
Half-
Blood
Prince

0.70

0.30

0.00

9989

March

0.00

1.00

0.00

The
Secret

in Their
Eyes

0.62

0.38

0.00

9982

January

0.70

0.30

0.00

The
Blind
Side

0.32

0.68

0.00

9891

January

0.70

0.30

0.00

Fast &
Furious

1.00

0.00

0.00

9877

March

0.00

1.00

0.00

Avatar

0.26

0.74

0.00

9842

January

0.70

0.30

0.00

The
Pro-
posal

0.89

0.11

0.00

9758

Table 4.10.: 10 Highest Revenues by Movies per Month in 2010

The same picture is presented when analyzing the ten lowest revenues earned by

movies in a period in 2010, which is presented in table

Month | Month| Month| Month| Movie Movie | Movie | Movie | Reve-
name CMA | CMA | CMA | name CMA | CMA | CMA | nue
high mid- low high mid- low
dle dle
October | 0.36 0.64 0.00 Double 0.00 0.49 0.51 235
Jeop-
ardy
February| 0.00 0.00 1.00 Toy 0.00 0.41 0.59 235
Story 2
August | 0.56 0.44 0.00 Batman | 0.00 0.42 0.58 235
Forever
June 0.00 0.00 1.00 Hotaru 0.00 0.39 0.61 230
no haka

150

4.3 Using the Fuzzy Data Warehouse

October | 0.36 0.64 0.00 Lilo & | 0.00 0.49 0.51 225
Stitch
October | 0.36 0.64 0.00 The 0.00 0.43 0.57 225
World
Is Not
Enough
Novem- | 0.00 1.00 0.00 Yo6jinbd | 0.00 0.46 0.54 225
ber
October | 0.36 0.64 0.00 Barry 0.00 0.44 0.56 220
Lyndon
Decem- | 1.00 0.00 0.00 The Pi- | 0.00 0.41 0.59 215
ber anist
August | 0.56 0.44 0.00 There’s | 0.00 0.36 0.64 215
Some-
thing
About
Mary

Table 4.11.: 10 Lowest Revenues by Movies per Month in 2010

In contrast to an analysis of a sharp cube presenting the movie revenues over the
months in 2010, the fuzzy cube directly provides information about the popularity of
movies and periods based on their overall revenue. In order to get similar information by
using sharp cubes, at least three cubes have to be queried and combined first. Next to
the cube resulting from the slice, two cubes resulting from the roll-ups of the revenue over
the movies and revenue over month have to be executed. Further, the composed sharp
cube has to be classified twice: once according to movie revenue and once according to
monthly revenues. The classifications might be done in a fuzzy manner, resulting in the
same cube as the single fuzzy cube operation provided above. Still, the classifications
are only executed during the querying process of the analysis and wont be persistently
available. Considering the fact that the classification might be used several times in
different analysis, the fuzzy data warehouse provides a persistent classification which is
valid for all analysis and reduces the calculation overhead as the classification is only
calculated once.

Example 28. The movie rental company can reuse the fuzzy cube from example 27| and
classify the revenue of the cube. The fuzzy concept, defined on the fact revenue, can be
propagated on non persistent cubes as defined in section [£.2.5] In order to complete this
classification, the adaptive fuzzy concept revenue is calculated during the execution of
the query. The operation for adding the fuzzy concept to the cube is as follows:

fuzzify(slice(< movie.movie, time.year, time.month >, < movie.movie.revenue, ti-
me.month.revenue >, revenue, R >, time.year = 2010), revenue)

151

4.3 Using the Fuzzy Data Warehouse

Considering the calculation of the volatile fuzzy concept is completed with a stored
procedure as explained in section the SQL statements for the fuzzyfying operation
are as follows:

select temp.fc_revenue(’select_month.monthname, _morevh.mda_as_"
Month_CMA_high" | _morevm.mda_as_"Month CMA_middle" ,_morevl.
mda_as_"Month CMA_low" ,_movie.name, mrevh.mda_as_"Movie CMA_
high", __mrevm.mda_as_"Movie CMA_middle",_mrevl.mda_as_"Movie_
CMA_low ", _sum(revenue)_as_"Revenue"

from_fact

join_(day

join _ (month

join_(fmt revenue month_as_"morevh"

join_fct revenue_as_"fctmorevh" _on_morevh.fk fct_=_fctmorevh.
pk fet_and_fctmorevh.cma_=_ high’)_on_month.pk month_=_
morevh.fk ta

join_(fmt revenue month_as_"morevm"

join_fct revenue_as_"fctmorevm" _on_morevm. fk fct_=_fctmorevm.
pk fet_and_fctmorevm .cma_=_ middle’)_on_month.pk month_=_
morevin . fk_ta

join_(fmt_ revenue month_as_"morevl"

join_fct revenue_as_"fctmorevl"_on_morevl.fk fct_=_fctmorevl.
pk fet_and_fctmorevl.cma_—=_"low’)_on_month.pk month_=_morevl
.tk ta

join_year_on_month.fk year_=_year.pk year)_on_day.fk month_=_
month.pk month_)_on_fact.fk day_—=_day.pk day

join_(_movie

join_(fmt movrev_as_"mrevh"

join_fct revenue_as_"fctmrevh" _on_fctmrevh.pk fct_=_mrevh.
fk fct_and_fctmrevh.cma_=_"high’)_on_movie.pk movie_=_mrevh.
fk ta

join_(fmt_movrev_as_"mrevm"

join_fct revenue_as_"fctmrevm" _on_fctmrevm.pk fct_=_mrevm.
fk fect_and_fetmrevm.cma_=_ middle’)_on_movie.pk movie_—_
mrevim . fk _ta

join_(fmt movrev_as_"mrevl]"

join_fct revenue_as_"fctmrevl" _on_fctmrevl.pk fct_=_mrevl.
fk fct_and_fctmrevl.cma_=_’low’)_on_movie.pk movie_.—~_mrevl.
fk ta_)_on_fact.fk movie_=_movie.pk movie

where_year.year_=_2010

group _by_month . monthname, _morevh.mda, morevm.mda, _morevl.mda, _
movie.name, _mrevh.mda, mrevim.mda, _mrevl.mda

152

4.3 Using the Fuzzy Data Warehouse

order _by_sum(revenue)_desc’);
select * from temp.revvol;

Listing 4.10: SQL Statement for fuzzyfying a Volatile Cube

Table shows the result set of the first ten entries ordered by month.

Month| Mo. | Mo. | Mo. | Mo- Mo- | Mo- | Mo- | Re- | Re- | Re- | Re-

name | high| mid-| low | vie vie | vie |vie | ve- | ve- | ve- | ve-
dle name | high| mid-| low | nue | nue | nue | nue
dle high | mid-| low
dle
January| 0.70 | 0.30 | 0.00 | 101 0.00 | 0.43 | 0.57 | 575 | 0.0 | 0.28 | 0.72
Dal-
ma-
tians
January| 0.70 | 0.30 | 0.00 | 12 0.00 | 0.43 | 0.57 | 530 [0.0 |0.21 | 0.79
Angry
Men
January| 0.70 | 0.30 | 0.00 | 2 Fast | 0.00 | 0.48 | 0.52 | 495 | 0.0 | 0.15 | 0.85
2 Furi-
ous
January| 0.70 | 0.30 | 0.00 | 2001 A | 0.00 | 0.33 | 0.67 | 795 | 0.0 | 0.64 | 0.36
Space
Odyssey

January| 0.70 | 0.30 | 0.00 | 2012 0.32 | 0.68 [0.00 | 8988 | 1.0 | 0.0 | 0.0
January| 0.70 | 0.30 | 0.00 | 300 0.60 | 0.40 | 0.00 | 545 | 0.0 | 0.23 | 0.77
January| 0.70 | 0.30 | 0.00 | 50 0.91 | 0.09 [0.00 | 555 | 0.0 |0.25 | 0.75
First
Dates
January| 0.70 | 0.30 | 0.00 | 8 Mile | 0.00 | 0.39 | 0.61 | 560 | 0.0 | 0.26 | 0.74
January| 0.70 | 0.30 | 0.00 | A 0.00 | 0.42 [0.58 | 800 | 0.0 | 0.65 | 0.35
Beau-
tiful
Mind
January| 0.70 | 0.30 | 0.00 | A 0.00 | 0.41 [0.59 | 520 | 0.0 | 0.19 | 0.81
Bug’s
Life

Table 4.12.: First Ten Result Sets of Fuzzy Cube of Example

With a single fuzzy concept, the movie rental company classified three different rev-
enues. Each classification provides a view of another value range of revenue while still

153

4.3 Using the Fuzzy Data Warehouse

using the same fuzzy concept definition. In example the movie rental company not
only sees how good a movie or a month performed on overall revenue, but also sees the
performance of a movie during a specific month. In a further step, the company can
extend the analysis by starting to combine the fuzzy concepts. For example, the movie
company has to remove a certain number of movies from its stock for 2011. Deciding
which movie has to be removed based only on the overall performance of the movie might
force the removal of movies that performed well in 2010. This might be seen as indicator
that the movie will also perform well in 2011. Taking the classification of month into
account, the company can analyze if some movies performed better on weak months.
Such movies might be rented more frequently during periods that have weaker overall
performance (ex: Christmas movies during winter time or summer night movies during
summer time). Therefore, these movies might improve revenue during a certain period
but compared with the overall performance they still might be classified as moderate or
weak. Such movies can be more easily identified when combining the different revenue
fuzzy concepts and might improve the decision-making process for which movie should
be removed in 2011.

Concepts can also be combined to form new classifications of movies. Using the
concept of hierarchical decomposition [Wer(8]|, the three fuzzy concepts of the cube in
example [28| can be combined in order to form a new classification for movies. The com-
pany can group movies that performed similarly with regard to the overall performance,
the performance in a specific month in 2010 and the monthly overall performance. This
classification leads to a new portfolio classifying movies from top-top-top movies: movies
that have high membership degrees in all fuzzy concepts; to worst-worst-worst movies.
This portfolio not only provides better classification of movies because of smoother
transitions between the classes, it also provides a single, global view of different revenue
aspects per movie. This is due to the fuzzy concept revenue, a single classification of
revenue, that can be applied to different value ranges (aspects) of revenue.

With the application of fuzzy concepts, the movie rental company improved its pos-
sibilities to analyze data in their data warehouse. Classifications are defined once and
can then be consistently applied to different aggregation levels. Therefore, the classifi-
cation and the subsequent interpretation of specific cubes are more traceable compared
to classifications only based on a single result set of an analysis. Using the meta table
structure of the fuzzy data warehouse, the company has the option to add variations of
fuzzy concepts in terms of different linguistic terms or different membership functions.
This gives the possibility to define classifications that takes different interpretations of
business users into consideration. Finally, the fuzzy nature of the classifications allows
smother transitions between classes and therefore allows more accurate classification
than similar sharp approaches.

154

4.3 Using the Fuzzy Data Warehouse

Part Il1l.

Implementation

155

5 Implementation

5. Implementation

Chapter 4| discussed the application of a fuzzy data warehouse for a movie rental com-
pany, and demonstrated how a fuzzy concept can be integrated in data analysis. The
corresponding SQL statements and result set were shown. However, for end users, the
application only provides direct access to the database system of the data warehouse.
Therefore, the user has to know the structure of the meta tables and the data warehouse.
This meta information can not be stored directly in the database system. In order to
facilitate interaction with the fuzzy data warehouse, a proof of concept of a fuzzy data
warehouse implementation is presented in this chapter. In addition to the raw database
application, the implementation provides a business logic that contains the meta infor-
mation about the table structures. Furthermore, a front end is created that allows easier
interaction with the fuzzy data warehouse than typing pure SQL statement in a console.

The next sections describe the implementation of the proof of concept. In section 5.1}
an overview of the architecture is given. In this overview, the structure of the proof
of concept is depicted and the dependencies between the different architectural layers
are examined. The database tier is depicted in section Section provides further
information about the processing of the meta information and the engines that provide
the communication between the first and third tiers. Finally, section discusses the
visual layer of the proof of concepts and shows how the end user can interact with the
fuzzy data warehouse.

5.1. Architectural Overview

The architecture of the prototype is based on a three-tier architecture [Eck95]. The
fuzzy data warehouse described in chapter [4] represents the database layer. It is built
with PostgreSQL [Posllal on three schemas that separate the data warehouse tables,
the meta tables of the fuzzy concept and tables that are temporary created on runtime.

The business logic acts as middle tier [Eck95)] and fulfills three tasks. First, it uses the
meta information to build the fuzzy data warehouse based on the tables of the database
layer. This meta information provides information on how dimensions are constructed
from tables, what kind of facts lie in the fact table, how the facts are aggregated and
how the fuzzy concept is built from the meta table structure. Therefore, the meta in-
formation can be seen as the transposing logic from the database tables to the fuzzy
data warehouse schema presented in figure [4.10] The second task is to interpret the user
action from the visualization layer and transform it into SQL statements for querying

156

5.2 Database

the fuzzy data warehouse. The last task is to manage fuzzy concept that can be created,
altered or deleted by users within the visualization layer.

The visualization layer provides the user interface to facilitate interaction with the
fuzzy data warehouse. The user is able to query the fuzzy data warehouse in a simpler
way than typing SQL statements and the corresponding result sets are presented in the
visualization layer. Additionally, the user is able to create, modify and delete fuzzy
concepts in the visualization layer.

Figure presents an overview of the architecture of the implementation. The
database layer contains the PostgreSQL database with its schemas. The PostgreSQL
schemas, its tables and stored procedures are further depicted in section [5.2] The busi-
ness logic layer includes the meta information represented in figure[5.1]as "Fuzzy Concept
Meta Information" and "Data Warehouse Information". Additionally, it comprises an
engine for processing the queries and an engine for processing the fuzzy concept adminis-
tration. In section [5.3] the different components of the business logic layer are discussed
in greater detail. The visual layer contains the navigation components and the fuzzy
concept administration components. All components are discussed in section [5.4] The
arrows in figure show the communication paths between the different components.

5.2. Database

The database consists of three schemas: fdwh , meta and temp. The fdwh schema holds
the tables of the classical data warehouse. To be compliant with the snowflake schema,
the tables are in third normal form. Consequently, for each category attribute of every
dimension, a unique table is created. The fdwh schema includes sixteen tables that are
described in the snowflake schema in figure [4.]

The schema meta is used to save the fuzzy concept meta tables. For each fuzzy
concept described in section (4.2 at least one fuzzy classification table and one fuzzy
membership table are created therein. For propagated fuzzy concepts, such as the fuzzy
concept revenue, an additional fuzzy membership table is created for each propagated
level. In the case of the fuzzy concept revenue, a fuzzy membership table per category
attribute of the dimensions is created. In total, it comprises fourteen fuzzy membership
tables and one fuzzy classification table as illustrated in figure The schema meta
includes thirty fuzzy concept meta tables in total, comprising all the propagated fuzzy
concepts. An overview of the tables, excluding the propagated tables of fuzzy concept
revenue, is shown in the grey boxes of figure [1.10]

The temporary schema temp is used for tables that are built during classification of

volatile target attributes. An example of how this schema can be used is given in the
trigger illustrated in listing [3.3 This trigger calculates the membership degrees of the

157

5.2 Database

Visualization Layer

Fuzzy Concept Fuzzy Data Warehouse
Administration Navigation

Business Logic Layer

Meta Information

Query
Processing
Engine

Fuzzy Concept
Administration
Engine

Fuzzy Data
f\ Concept Warehouse

Meta Meta
Information Information

AN /[

A

PostgreSQL

meta table
schema

Database Layer

Figure 5.1.: Overview of Prototype Architecture

fuzzy concept revenue for volatile target attributes. The SQL query of a cube having
revenue as fact is passed to the trigger. The trigger then creates a temporary table
in the schema temp that contains the attributes of the original cube plus an attribute
for each class membership attribute of the fuzzy concept revenue. The SQL statement
of the original cube is executed and its result set is saved in the table. In a further
step, the membership degrees are calculated and stored in the temporary table. Fi-
nally, the temporary table is queried and the result set is returned to the user interface.
It is worth noting that data in the tables of the temp schema can only be considered
as correct at the time of the query. Temporary tables are not aware of changes in the
original tables or in the meta schemas and therefore should always be purged after usage.

In addition to the tables and the schema, trigger functions and stored procedures are

158

5.2 Database

implemented in the database layer. For every fuzzy concept, at least one stored procedure
is created in order to represent the membership function. In the role of the member-
ship function, the stored procedure calculates the membership degree of every target
attribute and class membership attribute. The membership degree is then stored di-
rectly in the fuzzy membership table. The trigger function monitors the target attribute
table and calls the stored procedure each time the target attribute table changes. Based
on the type of fuzzy concept used, the stored procedure calculates only the membership
degree for the newly added or altered target attributes or, in case of an adaptive fuzzy
concept, recalculates the membership degree of every target attribute. Trigger functions
and stored procedures for the calculation of the fuzzy concept are always kept in the
schema meta. Listing below shows the stored procedure for the fuzzy concept store
surface (see section . The trigger meta.fc_storesurface trigger shown in listing [5.2
fires the stored procedure meta.fc_storesurf() after every row that is inserted or updated
in the table store (see line 1 - 3 in listing . As described in section the fuzzy
concept store surface is a limited fuzzy concept and only holds membership degrees for
surface values bigger than 40 and smaller than 250 square meters. The stored procedure
implements the membership function as if-else clauses considering values between 40 and
250 (see line 11 - 35 in listing [5.1). The if-else clauses insert the calculated membership
degrees directly in the table fmt_storesurf, which is the fuzzy membership table of the
fuzzy concept (see lines 12 - 14, 16 - 18, 20 - 22, 24 - 28 and 30 - 34 in listing 5. 1]).

In addition to the trigger meta.fc_storesurface trigger, two more triggers are created
as shown in listing |5.2| (lines 4 - 9). These triggers fire the stored procedures for the prop-
agated fuzzy concepts city store surface and region store surface. The target attributes
city and region store surface are aggregated values from store surface. Consequently, the
triggers have to be created on table store. As opposed to the trigger for the fuzzy concept
store surface, the stored procedure for the fuzzy concepts city and store surface are only
triggered once after the insert statement. The reason for this can be seen in the stored
procedure meta.fc_prop storesurf() in listing [5.3] The stored procedure aggregates all
target attributes from the table store before calculating the corresponding membership
degrees. Therefore, the stored procedure only has to be executed once and not for every
inserted or updated row. As stated in section [£.2.4] the fuzzy concepts city and region
store surface are adaptive fuzzy concepts that calculate membership degree based on a
ranking function. The aggregation and ranking of the surfaces are executed in a single
nested SQL statement in the stored procedure (see line 14 - 19 in listing [5.3)). The
calculated membership degrees are inserted into the tables meta.fmt storesurf city, re-
spectively meta.fmt storesurf region, that represent the fuzzy membership tables of
the propagated fuzzy concepts (see lines 23 - 24, 26 - 27, 29 - 30, 32 - 35 and 38 - 42 in

listing .

1 |create or replace function meta.fc storesurf() returns trigger
as $9%

2 |declare

159

0O 31 O O = W

10

11
12

13

14

15
16

17

18

19
20

21
22
23
24
25

26
27

28
29

30
31

5.2 Database

big integer; — id of linguistic term big

medium integer; — id of linguistic term medium

small integer; — id of linguistic term small

membership numeric;

begin

select PK fct into big from meta.fct storesurf where cma = ’big

).

Y
select PK fct into medium from meta.fct storesurf where cma =

medium ’ ;
select PK fct into small from meta.fct storesurf where cma =
small ’;
if 250 < NEW.surface and NEW. surface >= 200 then
insert into meta.fmt storesurf (fk fct, fk ta, mda) values
big , NEW.PK Store, 1.00);
insert into meta.fmt storesurf (fk fct, fk ta, mda) values
medium, NEW.PK Store, 0.00);
insert into meta.fmt storesurf (fk fct, fk ta, mda) values
small , NEW.PK Store, 0.00);
elsif NEW.surface <= 80 then
insert into meta.fmt storesurf (fk fct, fk ta, mda) values
big , NEW.PK Store, 0.00);
insert into meta.fmt storesurf (fk fct, fk ta, mda) values
medium, NEW.PK Store, 0.00);
insert into meta.fmt storesurf (fk fct, fk ta, mda) values
small , NEW.PK Store, 1.00);
elsif 120 <= NEW.surface and NEW. surface <= 150 then
insert into meta.fmt storesurf (fk fct, fk ta, mda) values
big , NEW.PK Store, 0.00);
insert into meta.fmt storesurf (fk fct, fk ta, mda) values
medium , NEW.PK Store, 1.00);
insert into meta.fmt storesurf (fk fct, fk ta, mda) values
small ;, NEW.PK Store, 0.00);
elsif 150 < NEW.surface and NEW.surface < 200 then
membership := (NEW.surface — 150.00) /50.00;
insert into meta.fmt storesurf (fk fct, fk ta, mda) values
big , NEW.PK Store, cast(membership as decimal(3,2)));
membership := (200.00 — NEW. surface) /50.00;
insert into meta.fmt storesurf (fk fct, fk ta, mda) values
medium, NEW.PK Store, cast(membership as decimal(3,2)));
insert into meta.fmt storesurf (fk fct, fk ta, mda) values
small , NEW.PK Store, 0.00);
elsif 40 < NEW.surface then
membership := (NEW.surface — 80.00) /40.00;
insert into meta.fmt storesurf (fk fct, fk ta, mda) values

160

Y

(
(
(

(
(
(

(

(

(

(

(

(

(

?

32

33
34

35
36
37

— — —_ =
w DO — O © 00 3O Ui W

—_
W~

5.2 Database

big , NEW.PK Store, 0.00);
insert into meta.fmt storesurf (fk fct, fk ta, mda) values (
medium, NEW.PK Store, cast(membership as decimal(3,2)));
membership := (120.00— NEW. surface) /40.00;
insert into meta.fmt storesurf (fk fct, fk ta, mda) values (
small , NEW.PK Store, cast(membership as decimal(3,2)));
end if;
end ;
$$ language plpgsql;

Listing 5.1: Stored Procedure for Fuzzy Concept Store Surface

create or replace trigger meta.fc storesurface trigger after
insert or update

on fdwh.store on each row

execute meta.fc storesurf();

create or replace trigger meta.fc city storesurface trigger
after insert or update

on fdwh.store on each statement

execute meta.fc prop storesurf(’city’);

create or replace trigger meta.fc region storesurface trigger
after insert or update

on fdwh.store on each statement

execute meta.fc prop storesurf(’region’);

Listing 5.2: Triggers for Fuzzy Concept Store Surface

create or replace function meta.fc prop storesurf(text) returns
trigger as $$

declare

level alias for $1;

query text;

big integer; — id of linguistic term big
medium integer; — id of linguistic term medium
small integer; — id of linguistic term small

membership numeric;

surface record;

begin

select PK fct into big from meta.fct storesurf where cma = ’big

).

9

select PK fct into medium from meta.fct storesurf where cma =

medium ’ ;

select PK fct into small from meta.fct storesurf where cma = ’
small ”;

if level = ’'city’ then

161

15

16
17

18
19
20
21
22
23

24
25
26

27
28
29

30
31
32
33

34
35

36
37
38

5.2 Database

query := ’'select_a.pk,_percent rank()_over_(order_by_a.
surface)_as_rank_from_(select _PK ' || level || ’_as_pk,_
sum(store.surface)_as_surface_from_fdwh.store_join _fdwh.
city_on_store.fk city_=_city.PK city)_a’;
elsif level = ’region’ then
query := ’select_a.pk,_percent rank()_over_(order_by_a.
surface)_as_rank_from_(select _PK ’ || level || 7, _sum(
store.surface)_as_surface_from_fdwh.store_join_fdwh.city._
on_store.fk city_=_city.PK city_join_fdwh.region_on_city.
FK region_=_region.PK region)_a’;
else
raise error;
end if;
for surface in execute query loop

if surface.rank >= 0.8 then

query := ’insert_into_meta.fmt storesurf ’ || level ||’ _(
fk fet ,_fk ta,_mda)_values_(big,_.’ || surface.pk || 7,_
1.00) ,_(medium, __||_surface.pk_||[_.", 0.00), (small, ||
surface.pk || 7,.0.00) " ;

execute query;
elsif surface.rank <= 0.2 then

query := ’insert_into_meta.fmt storesurf ’ || level ||’ _(
fk fet ,_fk ta,_mda)_values_(big,_." || surface.pk || 7,_
0.00) ,_(medium,__||_surface.pk_||_", 0.00), (small, ||
surface.pk || 7,.1.00)";

execute query;
elsif 0.4 <= surface.rank and surface.rank <= 0.6 then

query := ’insert_into_meta.fmt storesurf ’ || level ||’ _(
fk fet ,_fk ta,_mda)_values_(big,_.’ || surface.pk || 7,_
0.00),_(medium,__||_surface.pk_||_.’, 1.00), (small, |
surface.pk || 7,.0.00) " ;

execute query;
elsif 0.6 < surface.rank and surface.rank < 0.8 then

membership := (surface.rank — 0.6) /0.2;

query := ’insert_into_meta.fmt storesurf ’ || level ||’ _(
fk fet ,_fk ta,_mda)_values_(big,_.’ || surface.pk || 7,_
cast (7 || membership || ’_as_decimal(3,2))),.";

membership := (0.8 — surface.rank) /0.2;

query := query || ’_(medium,_’ || surface.pk || ' ,_cast(’ |
membership || ’'_as_decimal(3,2))),_(small,_surface.pk,_
0.00) 7

execute query

else
membership := (surface.rank — 0.2)/0.2;

162

39

40
41

42
43
44
45
46

5.3 Business Logic

iquery := ’insert_into_meta.fmt storesurf ’ || level || '_(
fk fet ,_fk ta,_mda)_values_(big,_.’ || surface.pk || 7,_
0.00) ,_(medium,_" || surface.pk || ’,_cast(’ || membership
|| ’_as_decimal(3,2))),.";
membership := (0.4 — surface.rank) /0.2;
query := query || ’_(small,_" || surface.pk || ’',_cast(’ ||
membership || ’'_as_decimal(3,2))),_(small,_surface.pk,_
0.00) ’;
execute query;
end if;
end loop;
end ;

$$ language plpgsql;

Listing 5.3: Stored Procedure for Propagated Fuzzy Concepts City and Region Store
Surface

While the logic for the membership functions could also be realized in the business
logic layer as it is not directly a part of the pure data storage tasks, there are several
advantages to execute this business logic on the database layer. First, the database
engine has the most reliable information when a membership degree should be calculated
for a target attribute. It is always aware of the state of its transaction and therefore it
knows best when to trigger a stored procedure after a transaction. When calculating
the membership degree on the database level, no additional communication with the
business layer is neccesary. Especially in environments where the database layer and
the business logic layer are separated on different machines, communication between
the tiers might be an performance issue. The most important factor in why stored
procedures are chosen for implementing membership functions on the database layer
is the fact that PostgreSQL provides a lot of functionalities for server programming
[Pos1ic|. Therefore, implementing membership functions using stored procedures takes
advantage of the transactional system of the database engine. It can still be programmed
with external tool such as Python or C-language code snippets where necessary.

5.3. Business Logic

The first task of the business logic is to provide meta information about the fuzzy data
warehouse. This meta information contains the necessary information for transposing
the raw database table structures into the fuzzy data warehouse schema. It has to
describe how dimensions and fuzzy concepts are mapped in the table structure, how
facts can be aggregated, and how fuzzy concepts are related to each other in case of
propagated fuzzy concepts. The chosen approach for representing meta information is
inspired by the open source data warehouse platform Mondrian [Penl0]. Mondrian uses
a XSD schema document [HMO5| in order to provide meta information. The main ad-
vantage of this approach is the ability to provide a framework of XML tags to precisely

163

5.3.1 XML Schema for Dimensions and Facts

specify elements of the data warehouse. The tags can be further used to describe an
instance of a data warehouse system. XML schemas allow defining well-formed schemas
of a data warehouse in documents that are both user readable and interpretable by ma-
chines. Mondrian has not been chosen for the prototype implementation because it is
a complete OLAP server platform and has many additional features that are not used
in the proof of concept. These features, such as user right concepts, would increase
the complexity of the prototype and would not be helpful for the objectives of the pro-
totype: to show how the fuzzy data warehouse concept of chapter [3]can be implemented.

5.3.1. XML Schema for Dimensions and Facts

The meta information of the prototype consists of a XML document describing the crisp
elements of the fuzzy data warehouse and a XML document describing the fuzzy con-
cepts. The fuzzy concepts are maintained in a separate XML document because the
fuzzy concept administration engine will later modify this document. Therefore, with
separation of the meta information into two documents, only data that must be modified
is exposed to the fuzzy concept administration engine. Separate XML schema documents
are created for both XML documents. These documents describe the valid XML nodes
in the documents and its structure. In the next paragraphs, the XML schema definitions
are presented. The application of the schemas is illustrated by excerpts from the XML
documents of the movie rental company fuzzy data warehouse. The complete XML
schemas for the fuzzy data warehouse part can be found in appendix [A] as well as in
appendix [Bl The XML documents describing the the fuzzy data warehouse instance can
be found in appendix [C] and in appendix [D]

The XML schema for describing the crisp elements of the fuzzy data warehouse in-
cludes a root node dwh. The root node can be composed of one or more cube nodes. A
cube node represents one OLAP cube of the data warehouse. It might be possible to
have a data warehouse with multiple OLAP cubes. In the example of the application in
chapter [4 only one OLAP cube is used to represent the fuzzy data warehouse. A cube
node consists of a fact node and a dimensions node. Figure illustrates the relation
between the nodes dwh, cube, fact and dimensions.

The node fact holds the information about the fact table of the fuzzy data warehouse
and the measures (facts) that are stored inside the fact table. Therefore, the node fact is
composed of a node relation and one or more nodes measure. The node relation consists
of a node table, a node key and a node column. The node column is optional and not
used for describing the fact relation. The table node contains the name of the fact table
and the key node holds the primary key attribute of the fact table. With this informa-
tion, the relation node specifies the fact table on the database layer. For each measure
of the fuzzy data warehouse, a measure node is created. A measure node contains the
necessary information to identify a fact and its aggregation behavior. Hence, a sub-node
column and a sub-node aggregator are included in the measure node. The column node

164

5.3.1 XML Schema for Dimensions and Facts

© [fdwh:dwhType

© [] fdwh:cubeType

fact
Type fdwh:factType

dimensions
Type fdwh:dimensionsType

dwh 1.0 cube .
Type fdwh:dwhType © @O LType fdwh:cubeType]O

Figure 5.2.: Node Relation “dwh”, “cube”; “fact” and “dimensions”

specifies the attribute that holds the fact instances in the fact table. The column node is
further divided into the nodes column, holding the name of the column, table node, and
the optional node display. Display makes it possible to give another name to the fact
than the column name. The node aggregator specifies how the fact is aggregated over
the dimensions. The aggregation can be SUM ;| MAX | MIN | AVG , PROD . Figure 5.3
illustrates the fact node and its sub-node.

© [] fdwh:factType

© [] fdwh:simpleRelationType

table

Type xs:string

key

Type xs:string

0..00 column ®
Type fdwh:columnType

© [] fdwh:measureType

fact
—@e
e © [] fdwh:columnType
column
®
column o @ = ype xs:string
Type fdwh:columnType .

display
e
Type xs:string
aggregator
Type fdwh:aggregatorType

Figure 5.3.: Node “fact” and its Children

relation o .
Type fdwh:simpleRelationType

©

1.0 [measure o
Type fdwh:measureType .

Listing shows the instance of the fact node for the fuzzy data warehouse. The
relation identifies the fact table "fact" with the primary key fact id (lines 2 - 5 in listing
b.4). In the measure nodes, the two facts revenue (lines 6 - 11) and user rating (lines
12 -18) are defined. It is notable that the fact user rating is defined in the fact table as
user _rating but will be displayed as "User Rating" in the fuzzy data warehouse. Ad-
ditionally, revenue is aggregated using a summation function and user rating using an

165

0 3 O Ol i W N~

e e e o T e T e S =SS =t
© 00 O UL W N~ OO

5.3.1 XML Schema for Dimensions and Facts

average function.

<fact>
<relation>

<table>fact</table>

<key>fact _
</relation>
<measure>

<column>

id</key>

<column>revenue</column>

</column>

<aggregator>SUM</aggregator>

</measure>
<measure>
<column>

<column>user _rating</column>
<display>User Rating</display>

</column>

<aggregator>AVG</aggregator>

</measure>
</fact>

Listing 5.4: “Fact” Node of Fuzzy Data Warehouse

In order to be compliant with the data warehouse definitions of Kimball [KR02] and
Inmon [Inm05] (see also section [2.1)), at least one time dimension and one additional
dimension has to be specified in a data warehouse. Therefore, the node dimensions is
composed of at least two dimensions each represented by a dimension node. The dimen-
ston node itself is composed of a node name, wich provides the name of the dimension,
and a node hierarchy. Figure |5.4] illustrates the nodes dimensions, dimension and the

relation to its child

nodes.

© [] fdwh:dimensionsType

dimensions
Type fdwh:dimensionsType

© [] fdwh:dimensionType

name
Type xs:string

2.« | dimension .
]O .O Type fdwh:dimensionType]e

1.2 | hierarchy
Type fdwh:hierarchyType

Figure 5.4.: Node “dimensions” and its Children

A dimension has at least one hierarchy over which a fact can be aggregated. The
hierarchy node represents the hierarchies of the dimension. It is composed of the node

166

5.3.1 XML Schema for Dimensions and Facts

name, relation and level as shown in figure [5.5, The node name holds the name of
the hierarchy. The structure, how the hierarchy is stored in the database, is described
within the node relation. The relation node is composed of a key mode and either a
table, join or relation node. Figure [5.6| illustrates the relation node and its children.
The relation node can include other relation nodes, and can therefore construct the
hierarchy structure iteratively. The uppermost parent relation node always holds an-
other relation node and a key node that identifies the foreign key attribute in the fact
table. Each subsequent relation node can be composed with one of the following variants:

® [] fdwh:hierarchyType

name
Type xs:string

hierarchy relation
‘ © @e f ‘ ®
Type fdwh:hierarchyType LType fdwh:complexRelationType

1. | level ®
Type fdwh:levelType

Figure 5.5.: Node “hierarchy” and its Children

e A key node and a table node. This variant can be used to specify a one-table
relation. If the parent node of the relation is a join node and the relation is the
last child of the parent node, then the key node holds the primary key of the table
specified in the table node. Otherwise, the key node holds the foreign key that
relates the table to the key node of the neighbor node.

e A key node and a join node. This variant can be used when the hierarchy is
spread over multiple tables in the database. The join node is composed of exactly
two relation nodes. The relation nodes themselves can be composed of one of
the variants stated here. The key node specifies the primary key of the table in
the first child node. Translated into an SQL statement, the first child would be
the leftmost join table. Additionally, this key node provides the relation to the
neighbor element of the parent.

e A key node and a relation node. A relation node always remains for another
iteration step. The key node holds the primary key if the parent element is a
relation node (except if the parent is the first relation in the node hierarchy) or if
the parent element is a join node and the relation node is the last child. Otherwise,
it holds a foreign key attribute.

In order to visualize these variants, the relation in hierarchy path time month of di-
mension time (see dimension time in figure [4.1)) is presented in listing [5.5. The category
attribute at the highest level of dimension time is year. The relation node defined on

167

00 ~J O Ul i W N

5.3.1 XML Schema for Dimensions and Facts

© [] fdwh:complexRelationType

join
Type fdwh:joinType

relation ®
Type fdwh:complexRelationType

relation o .
Type fdwh:complexRelationType

Type xs:string

Figure 5.6.: Node “relation” and its Children

lines 14 - 17 defines the corresponding table and primary key for year (type: key and
table node). This relation is joined (capsuled in the join node from line 9 to 18) with
the relation for the category attribute month (lines 10 - 13; type key and join node).
The key node in relation month (line 12) is the foreign key attribute in table month that
references the primary key attribute in table year (key node on line 16). The join node
is further capsuled in a relation node (lines 8 - 20). According to the second variant
above, the key node (line 19) in this relation node represents the primary key attribute
of the table month. Next, the relation is joined within a join node (lines 3 - 21) and
with another relation node (lines 4 - 7). The relation node on lines 4 to 7 contains the
table specification for the category attribute day. As explained in the first variant, the
key node on line 6 represents the foreign key in table day that relates to the primary
key of table month (type: key and join node) represented in the key node on line 19.
Lastly, the key node on line 22 is the primary key attribute of the table day (type: key
and join node). These join and key nodes are consolidated in another relation node
(lines 2 - 23; type key and relation node). This relation defines the complete dimension
hierarchy structure of the database layer. The uppermost relation node then defines
the foreign key (line 24) in the fact table which references to the primary key of the
day table (line 22). This structure solely represents the inner join statements of the
FROM-clause in a SQL statement when navigating over the dimension hierarchy time
month. Therefore, this XML structure can be directly interpreted into the FROM part
of an SQL statement as represented in listing [5.6

<relation>
<relation>
<join>
<relation>
<table>day</table>
<key>tk m</key>
</relation>
<relation>

168

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

=W N =

5.3.1 XML Schema for Dimensions and Facts

<join>
<relation>
<table>month</table>
<key>tk y</key>
</relation>
<relation>
<table>year</table>
<key>y id</key>
</relation>
</join>
<key>m id</key>
</relation>
</join>
<key>d id</key>
</relation>
<key>tk d</key>
</relation>

Listing 5.5: Hierarchy Time Month of Dimension Time

FROM fact
join day on fact.fk d = day.d id
join month on day.fk m = month.m_id
join year on month.fk y = year.y id

Listing 5.6: From Clause of SQL Statement based on XML Relation Tree

Next to the relation node, the node level describes each hierarchy level of the dimen-
sion hierarchy. In contrast to the relation node, which describes the table structure on
the database layer, the level node describes how each level is presented and from which
relation the corresponding information is extracted. Thus, the level node is composed
of the nodes name, holding the name of the level, relation and optionally bridge. In
contrast to the relation node explained above, the relation node in node level is a simple
relation and thus only provides the sub-nodes table, key and optionally column. This
relation node is used to define which table holds the dimensional attributes of the hi-
erarchy level. The table node defines the corresponding table, the key node defines the
primary key of the table and the column node defines which table attributes should be
presented in the user interface for this level. Figure illustrates the node level, its
children and the children of simple node relation.

Listing exemplifies the [evel nodes of dimension hierarchy time month. The level
node from lines 1 to 10 describes the level day, level node from 11 - 21 describes level
month and the last level node describes the level year. In the sub-node name, the name
of the corresponding level is defined. Each relation node identifies which table attribute
has to be displayed and the table in which the attribute is found. For level day, the

169

O ~J O O i W N

DO R DD DN DD = = b= b b b e s
= W N = OO0 Tt WN = OO

5.3.1 XML Schema for Dimensions and Facts

© [] fdwh:levelType

name
Type xs:string

© [] fdwh:simpleRelationType

© "
relation

level
—@
Type fdwh:levelType

Type fdwh:simpleRelationType

@

bridge ®
Type fdwh:bridgeType

table
Type xs:string

Type xs:string

Q.. column ®
Type fdwh:columnType

Figure 5.7.: Node “level”, Simple Node “relation” and their Children

corresponding table is day (line 4) and the attribute to be shown on the user interface is
weekday (line 7). On the user interface it is displayed as "Week Day", which is defined

in node display on line 8.

<level>
<name>day</name>
<relation>
<table>day</table>
<key>d id</key>
<column>
<column>weekday</column>
<display>Week Day</display>
< /column>
</relation>
</level>
<level>
<name>month< /name>
<relation>
<table>month</table>
<key>m_id</key>
<column>
<column>monthname</column>
<display>Month</display>
< /column>
</relation>
</level>
<level>
<name>year</name>

170

25
26
27
28
29
30
31
32
33

5.3.1 XML Schema for Dimensions and Facts

<relation>
<table>year</table>
<key>y id</key>
<column>
<column>year</column>
<display>Year</display>
< /column>
</relation>
</level>

Listing 5.7: Level Nodes of Dimension Hierarchy Time Month

The optional bridge node in node level is used when the dimension levels are related
to each other over bridge tables (see example [17] for further information about bridge
tables). This is for example the case with dimension movie. The dimension level movie
is related to level producer over a bridge table thus a movie can be produced by multiple
producers. In order to correctly aggregate the facts from level movie to level producer,
it is necessary to know how the weighting factor of the bridge table is applied. Hence,
a bridge node must be specified for level producer. Sub nodes of the bridge node are
relation of type simple relation, weight and factor. The relation node specifies the bridge
table and its foreign key to the level above the bridge table. The weight node specifies
the attribute in the bridge table holding the weighting factor. The factor node specifies
the operation how the weighting factor should be applied. Figure [5.§ illustrates the
bridge node and its children.

© [] fdwh:bridgeType

relation
Type fdwh:simpleRelationType

weight
Type xs:string

factor ®
Type fdwh:factorType

bridge o .
Type fdwh:bridgeType

Figure 5.8.: Node “bridge” and its Children

Listing [5.8 shows the level nodes for the hierarchy producer of dimension movie. The
level producer contains the bridge node (lines 42 - 49) in order to define how facts are
aggregated from movie to producer. Its weighting factor is defined in the node weight
on line 47 and the node factor on line 48 specifies the mathematical operation PROD.
When a fact is aggregated to producer, the weighting factor is multiplied with the ag-
gregated fact in order to give the final result on dimension level producer.

171

CO 1O Ul W N+

o R e e W W W W W W W WWWNNDNDDNDNDNDDNDDNDNDN
WP O OO0 Ok WP OOWWWTO Ui WNhEFE O OO0 Uk Wwhh+—~=O o

5.3.1 XML Schema for Dimensions and Facts

<level>
<name>movie</name>
<relation>
<table>movie</table>
<key>m id</key>
<column>
<column>name</column>
<display>Name</display>
</column>
<column>
<column>overview</column>
<display>Overview</display>
</column>
<column>
<column>director</column>
<display>Director</display>
< /column>
<column>
<column>actors</column>
<display>Actors</display>
</column>
<column>
<column>release date</column>
<display>Released</display>
</column>
<column>
<column>runtime</column>
<display>Runtime</display>
</column>
</relation>
</level>
<level>
<name>Producer</name>
<relation>
<table>producer</table>
<key>p id</key>
<column>
<column>studio</column>
<display>Producer Studio</display>
< /column>
</relation>
<bridge>
<relation>
<table>mov_cat_ bridge</table>

172

45
46
47
48
49
20

5.3.2 XML Schema for Fuzzy Concepts

<key>p id</key>
</relation>
<weight>weight</weight>
<factor>PROD</factor>
</bridge>
</level>

Listing 5.8: Level Nodes for Dimension Hierarchy Movie Producer including Bridge
Nodes

5.3.2. XML Schema for Fuzzy Concepts

Based on the discussion in section [3.4.4] a XML schema for fuzzy concepts can be spec-
ified. The XML schema describing the fuzzy concept consists of the root node concepts.
The concepts node can have zero or more fconcept nodes that hold information about
the fuzzy concepts. It is worth noting that the node concepts might be empty when
no fuzzy concept is specified or when the user removes all fuzzy concepts within the
fuzzy concept administration user interface. This behavior is not fully compliant with
the fuzzy concept meta model in section as the meta model defines a fuzzy data
warehouse having at least one fuzzy concept. However, it might be possible to remove
all fuzzy concepts and turn the fuzzy data warehouse into a crisp data warehouse. Con-
sequently the prototype should implement this possibility.

The node fconcept is composed of the nodes name, relation and optionally the node
aggregation. The name node contains the name of the specified fuzzy concept. The
relations of the tables in the database are specified within the relations node, which is
discussed in greater detail below. When the fuzzy concept can be aggregated by propa-
gation, aggregation or applied to volatile cubes, the aggregation node is specified. Figure
5.9| illustrates the root node concepts, its child node feconcept and its children.

© [] fcconceptsType

© [] fc:fconceptType

name
Type xs:string

relation
Type fcrelationType

concepts 0..0 fconcept
Type fc:conceptsType Type fc:fconceptType

aggregation
Type fc:aggregationTypeJ

Figure 5.9.: Root Node “concepts”, Node “fconcept” and its Children

173

T W N =

(=}

5.3.2 XML Schema for Fuzzy Concepts

The relation node holds the information about the fuzzy concept structure in the
database layer. It consists of the five child nodes ta, fmt, fct, memfunc and trigger. The
node ta provides the information about the target attribute of the fuzzy concept. There-
fore, it is further divided into the nodes table, key and target. The table node defines
the table in which the target attribute resides and the key node defines the primary
key of the table. Finally, the target node defines the target attribute. Either the target
attribute is an attribute of the table, or for volatile target attributes, the target node
defines the SQL query how the target attribute is aggregated. Listing illustrates the
ta node of a volatile target attribute. The ta node specifies the target attribute for the
fuzzy concept city store surface. The target attribute is aggregated from the attribute
store surface that resides in the hierarchy level store. Consequently, the target attribute
table is city, as the fuzzy concept is applied to level city, but the target attribute itself
has to be aggregated first by a SQL query.

<ta>
<table>city</table>
<key>c_id</key>
<target>
<query>select c¢_id, sum(surface) as ta from fdwh.store join
fdwh.city on store.fk ¢ = city.c_id group by c_id</
query>
</target>
</ta>

Listing 5.9: TA Node of Fuzzy Concept City Store Surface

The nodes fmt, fct and memfunc are simple nodes that define the name of the fuzzy
membership table, fuzzy classification table and the stored procedure holding the mem-
bership function. In contrast to crisp dimension and fact definitions, these tables are
precisely defined in their structure and therefore no additional information, such as pri-
mary key attribute, is needed. As described in section [5.1], the membership functions
are directly integrated as stored procedures into the database layer. Consequently, the
XML schema does not have to provide more information about the membership function
than the name of the stored procedure. The fuzzy concept administration engine can
directly access and modify the stored procedure in the database tier. The trigger node
is more complex. For aggregated fuzzy concepts, the trigger has to be applied to the
table where the target attribute originates from and not to the table specified in the ta
node. Hence the node trigger is composed of a node table and a node name. The table
node contains the name of the table on which the trigger is applied and the name node
defines the name of the trigger. Figure [5.10| shows the complete structure of the node
relation and its children.

Listing illustrates the relation node of the fuzzy concept city store surface. Lines
2 through 8 describe the ta node that is previously discussed in listing The nodes

174

5.3.2 XML Schema for Fuzzy Concepts

© [fcrelationType

© [] fctaType

table
Type xs:string

Type xs:string

ta
Type fctaType © .

©
© [] fctargetType

-column
target .
ype fctargetType -
query

fmt
Type xs:string

relation
—@e
Type fcrelationType fet

Type xs:string

memfunc
g
Type xs:string

© [] fctriggerType

trigger Type xs:string
) S

Type fcitriggerType name

Type xs:string

Figure 5.10.: Node “relation” and the Complete Structure of its Children

fmt, fct and memfunc contain the name of the corresponding tables and stored procedure
(lines 9 - 11). It is interesting to note that memfunc not only contains the name of the
stored procedure but also a parameter 'city’. The fuzzy concept administration engine
can subsequently take the complete string from memfunc and pass it directly into an
SQL statement without previously parsing it. Finally, the trigger node defines the table
store and the trigger function fc_storesurf city trigger on line 12 to 15.

DO W N =

© 00

10

<relation>
<ta>
<table>city</table>
<key>c id</key>
<target>
<query>select c¢_id, sum(surface) as ta from fdwh.store
join fdwh.city on store.fk ¢ = city.c_id group by c_id
</query>
</target>
</ta>
<fmt>fmt storesurf city</fmt>
<fct>fct storesurf</fct>

175

11
12
13
14
15
16

5.3.2 XML Schema for Fuzzy Concepts

<memfunc>fc_storesurf prop(’city ’)</memfunc>
<trigger>
<table>store</table>
<name>fc storesurf city trigger</name>
</trigger>
</relation>

Listing 5.10: Relation Node of Fuzzy Concept City Store Surface

The last child node of feconcept is the optional node aggregation. This node is only used
when the fuzzy concept is aggregated over dimensions of the fuzzy data warehouse or
applied to volatile cubes. As defined in section [3.4.2] a fuzzy concept can be aggregated
or propagated in the fuzzy data warehouse. Hence, the aggregation node comprises the
three sub-nodes aggregator, propagation and volatile. If a fuzzy concept can be aggre-
gated, the aggregator node contains the aggregation operation that is used to aggregate
the membership degrees. The operation can be: SUM, MAX, MIN, AVG or PROD.
When propagated, the propagation node contains the propagated fuzzy concepts. So
the node propagation comprises one or more fconcept nodes. Finally, when the fuzzy
concept can be applied to volatile cubes, the node wvolatile is specified. With the child
node ta of the node wvolatile, the target attribute, which has to exist in the volatile cube,
is defined. It has to be stated here, that the ta node is of type simple and only contains
the name of the target attribute. The child node proc defines the stored procedure that
calculates the membership degrees of the volatile cube. This stored procedure takes as a
parameter the SQL statement of the volatile cube, the target attribute and returns the
volatile fuzzy cube with the membership degrees. Such a stored procedure is discussed
in section [3.4.5 and illustrated in listing [3.3] Figure [5.11] visualizes the node aggregation
and its children.

© [] fc:aggregationType

aggregator
Type fc:aggregatorTypeJ

© [] fc:propagationType

propagation 1.0 (fconcept
aggregation — .O Type fCZpropagationTvpeJO @O LType fc:fconceptTypeJe

Type fciaggregationType

© [] fcvolatileType

volatile
i O ©
Type fcvolatileType

ta

Type xs:string
proc
Type xs:string

Figure 5.11.: Node “aggregation” and its Children

176

O © 00 IO Ui Wi+~

—_

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

5.3.2 XML Schema for Fuzzy Concepts

Listing [5.11] provides the complete aggregation node of the fuzzy concept store surface.
This fuzzy concept can be propagated on the hierarchy level city and region. Therefore,
for each hierarchy level a new fuzzy concept is created. In the aggregation node, the two
fuzzy concepts are defined as feconcept nodes (for city lines 3 -21 and for region lines 22
- 40). It is noteworthy that the fuzzy concepts have different fuzzy membership tables,
but the fuzzy classification table remains the same as in the original fuzzy concept. The
stored procedure for calculating the membership degrees in both fuzzy concepts is the
same, but the calling parameter for the procedure differs (see line 15 and 34). Both
fuzzy concepts define a trigger on the store table as shown on lines 16 to 19, respectively
lines 35 to 38.

<aggregation>
<propagation>
<fconcept>
<name>City Store Surface</name>
<relation>
<ta>
<table>city</table>
<key>c id</key>
<target>
<query>select c¢_id, sum(surface) as ta from fdwh.store
join fdwh.city on store.fk ¢ = city.c_id group by
c¢_id</query>
</target>
</ta>
<fmt>fmt storesurf city</fmt>
<fct>fct storesurf</fct>
<memfunc>fc storesurf prop(’city’)</memfunc>
<trigger>
<table>store</table>
<name>fc storesurf city trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Region store surface</name>
<relation>
<ta>
<table>region</table>
<key>r id</key>
<target>
<query>select r_id, sum(surface) as ta from fdwh.store
join fdwh.city on store.fk ¢ = city.c id join fdwh.

177

30
31
32
33
34
35
36
37
38
39
40
41
42

N O Ol W N~

5.3.3 The Query and the Fuzzy Concept Administration Engine

region on city.fk r = region.r id group by r_id</
query>
</target>
</ta>
<fmt>fmt storesurf region</fmt>
<fct>fct storesurf</fct>
<memfunc>fct storesurf prop(’region’)</memfunc>
<trigger>
<table>store</table>
<name>fc storesurf region trigger</name>
</trigger>
</relation>
</fconcept>
</propagation>
</aggregation>

Listing 5.11: Aggregation Node of Fuzzy Concept Store Surface

According to the discussion in section [3.4.4], fuzzy concepts on facts often contains ag-
gregations over volatile cubes. The fuzzy concept user rating is a concept which defines
aggregation using either aggregation of the membership degrees with an average oper-
ation or over volatile cubes. In listing [5.12] the aggregation node of the fuzzy concept
user rating is illustrated. The wvolatile node (lines 3 - 6) defines how the fuzzy concept
might be applied to volatile cubes. The volatile cube must contain the target attribute
user rating. If this is the case, the stored procedure fc_rating vol can be used to cal-
culate the membership degrees. It is subsequently called with the SQL statement of the
cube as first parameter and the target attribute name as second.

<aggregation>
<aggregator>AVG</aggregator>
<volatile>
<ta>user rating</ta>
<proc>fc_rating vol</proc>
</volatile>
</aggregation>

Listing 5.12: Aggregation Node of Fuzzy Concept User Rating

5.3.3. The Query and the Fuzzy Concept Administration Engine

The query engine is realized within the thesis of Stefan Niiesch |[Niiell]. In [Niell], an
OLAP cube implementation is presented which provides the crisp part of the business
logic and the visualization of the fuzzy data warehouse. The fuzzy part, including the
fuzzy cube visualization and the fuzzy concept administration engine, is discussed within

178

5.3.3 The Query and the Fuzzy Concept Administration Engine

the thesis of Christoph Rathgeb |[Ratll].

The query and administration engines provide functionalities for parsing, editing the
XML files and querying the database. The parsing and editing functionalities for the
XML files are realized with the Java Architecture for XML Binding (JAXB) [Incl1b].
JAXB allows the creation of a Java object for every node specified in an XML schema
definition. The content of an XML file, that follows the schema definition, can then be
loaded and edited in the Java objects. This method allows efficient handling of XML
files. Further, the administration engine can efficiently edit the fuzzy concept meta in-
formation by Java object rather than by editing XML files.

Communication from the engines to the database is performed with the JDBCTem-
plate class of the Spring Framework [Inclle]. The JDBCTemplate reduces the com-
plexity of low level communications with databases such as opening, closing connections
and parsing database exceptions [IncI1d|. With the JDBCTemplate, the engines have
a persistence tier for communication with the underlaying database. Similar to JAXB,
it projects the relational data into Java objects. This function is commonly known as
object-relational mapping [Gon09].

The query engine provides information about the fuzzy data warehouse structure and
transforms request from the visualization layer into database queries. The structure is
defined in the XML files that are read out during the startup process of the fuzzy data
warehouse. It then passes the structural information to the visualization layer in order
to create the visualization elements of the fuzzy data warehouse. When the visualization
layer passes a request to the query engine, it transform the request into a database query
using the JDBCTemplate. Once the database returns a query result, it is prepared for
the visualization layer. The preparation task distinguishes wheter the visualization layer
requested a pivot table or a simple table. In the case of a pivot table, the query engine
parses the result and wraps it into a data table object. This object is then forwarded
to the visualization layer. For simple table, the query result is directly forwarded to the
visualization layer.

In contrast to the query engine, the fuzzy concept administration engine also provides
write capabilities to the XML files and the database. This is the main reason the two
engine are separated in the fuzzy data warehouse architecture. When the fuzzy data
warehouse starts up, the administration engine reads the fuzzy concept definitions from
the XML file. For a visualization request from the visualization layer, the administration
engine first checks the selected crisp data warehouse elements and then returns the valid
fuzzy concepts. A fuzzy concept is only valid if it can be applied to one of the selected
crisp data warehouse elements. This restriction simplifies navigation of the fuzzy data
warehouse because the end user only sees valid fuzzy concepts for his query. The fuzzy
query results are processed by the query engine and further passed to the visualization
layer. The second task of the administration engine is the management of the fuzzy
concepts. This includes creating, editing and deleting fuzzy concepts. When adding a

179

5.4 Visualization

new fuzzy concept, the visualization layer passes it as an object to the administration
engine. The engine then persistently stores it in the XML file by using JAXB to create
a new node in the XML file. Further, the necessary database objects such as fuzzy
membership table, fuzzy classification table, membership function are created. Finally,
the trigger functions are fired on the database to create the initial set of membership
degrees. When editing a fuzzy concept, the objects of the fuzzy concept is manipulated
and then persistently stored. The deletion operation deletes the fuzzy concept objects
and all references to them in the XML file and in the database.

5.4. Visualization

The visualization layer provides the user interface for the fuzzy data warehouse, allows
navigation of the fuzzy data warehouse and administration of fuzzy concepts. Stefan
Niiesch [Niiell] and Christoph Rathgeb [Ratll] contributed the visualization layer for
the fuzzy data warehouse.

To create the visualization layer, Java Server Faces |[Incllc] and ICEFaces [INC11al
are used. Java Server Faces is the standard framework for user interfaces in Java En-
terprise Edition [Hef07]. It is based on Java Server Pages and Enterprise JavaBeans
[Hef11] and allows simple development of the visualization components in web appli-
cation. ICEFaces is a framework that enables AJAX [Per06l, (GbGAOG| for Java Server
Faces. With AJAX, requests from the visualization layer to the business layer can be
handled asynchronously. In traditional web applications, the user interface waits for
the answer from the business layer and is blocked as long the business layer has not
finished. Using AJAX, the visualization layer processes requests to the business layer in
JavaScript and therefore can continue interacting with the user while the request is on
hold.

The visualization layer is divided into two parts: navigation and the fuzzy concept
administration. In the navigation part, the user can query the fuzzy data warehouse
either crisp or fuzzy. In the administration part, the user can manage fuzzy concepts in
a six step wizard. The next subsections discuss the two parts in greater detail.

5.4.1. Navigation of the Fuzzy Data Warehouse

The navigation is split into two parts: pivot navigation and fuzzy navigation. The pivot
navigation allows navigation of the fuzzy data warehouse in a sharp manner and presents
the query results in a pivot table. Whereas, the fuzzy navigation allows querying of the
fuzzy data warehouse fuzzily and the result set is presented in simple table form.

For both navigation forms, the user has similar user interfaces. Figure presents

the navigation elements of a pivot navigation. On the left-hand side, a tree with dimen-
sion elements is presented. Dimension elements can be dragged into the column or row

180

5.4.1 Navigation of the Fuzzy Data Warehouse

box for selection. When a category attribute of a dimension is chosen, every dimensional
attribute that belongs to the category attribute is inserted in the selection box. The
selection boxes specify where in the pivot table the element is going to appear; either
in the column or in the row. The facts are listed as checkboxes next to the dimension
tree. Once the user selects the elements, the button “Create Table” becomes active and
the user can execute a query on the fuzzy data warehouse.

E Dimensions
Customer
Employee
B Time Measures Columns Rows Slicers [Dicers

EH Time Month }
revenue
day User Rating
»

month Y

KL
RL>

B year
B vyear
Time Week
Store
Type

Movie

Figure 5.12.: Navigation of a Sharp Cube

The selected dimension elements can be moved from one box to another by using the
blue arrows between the boxes. Further, the position of the elements can be changed or
removed with the arrows and the red cross at the side of the boxes. Figure [5.13]shows a
query of the fuzzy data warehouse. The years in the column box, the region in the row
box and the fact revenue are selected. The pivot table of the query result is presented
below the navigation.

For slicing and dicing, the user can define the slicers by clicking on the “Slice / Dice”
button. A popup window opens, in which slicers can be defined based on the selected
dimension elements. Figure shows the popup window with two slicers defined: Year
EQUALS 2010 and Region EQUALS German. The slicers are further displayed in the
third selection box called “Slices / Dices”. Figure presents the navigation and the
resulting pivot table of the query with the slicers.

The navigation elements of the fuzzy navigation are similar to the elements of the
pivot navigation. Figure [5.16] shows the fuzzy navigation elements. The tree on the left
hand side contains not only dimension elements, but also fuzzy concept elements. The
shown fuzzy concepts depend on the selection of the fact and the dimension elements.
In figure the fuzzy concept store revenue, store surface and monthly revenue are
shown. These fuzzy concepts are the only concepts that can be applied to the selected
fact revenue and the selected dimensional attributes month and city. The selection boxes
are now labeled “Dimension Attributes” and “Fuzzy Concepts”. In the first box, the di-
mensional attributes can be dragged in, and in the second box the fuzzy concepts can

181

5.4.1 Navigation of the Fuzzy Data Warehouse

E Dimensions
Customer
Employee
B Time
E Time Month
day Measures Columns Rows Slicers / Dicers
month Time Month.year.Year store.Region.Region
revenue &
. I\;al‘fcar et 3 j A Create Table
® A} ® Slice / Dice
Time Week
B store
B store
Store
City
Region
Type
Maovie
year Year 2005 2006 2007 2008 2009 2010 2011
Region
Region
French 3420129 3378420 3420412 3435003 3453435 3434462 382271
German 3985124 3872219 3907133 3037668 3942517 3042741 445704
Italian 267810 269101 272069 248559 257313 266034 29125
Rhaeto-Romanic 2706819 261144 283823 255155 262244 275487 26958

Figure 5.13.: Navigation of the Fuzzy Data Warehouse including a Pivot Table

Add slicers and dicers

Time Month.year.Year EQUALS 2010 w
store.Region.Region EQUALS| German w
Dimensions /| Measures

Not Time Month.year.Year | 4 | Equals 42007 4 Qf

ok

Figure 5.14.: Slice / Dice Window with two selected Slicers

be dragged in. The first box is the conjunction of the two boxes in the pivot navigation.
A selection in the pivot navigation is automatically applied to the fuzzy navigation.
Therefore, a user can first query a pivot table and then switch to the fuzzy navigation,
preserving the selection of the first query.

In the tree navigation, the fuzzy concepts are listed similarly to the dimensions. First,
the fuzzy concept name is shown. Beneath the name, the linguistic terms are listed.
It is possible to drag the fuzzy concept name to the fuzzy concept box. That way, all
linguistic terms are dragged to the box. Figure [5.17|shows the navigation with the fuzzy
concept monthly revenue and the resulting cube. In the fuzzy navigation, the slicing

182

5.4.1 Navigation of the Fuzzy Data Warehouse

E Dimensions
Customer
Employee
EH Time

E Time Month
day
month

B year

B vear

Time Week
EH store
B store
Store
City
Region
Type

Maovie

year Year
Region
Region

German

Measures Columns Rows Slicers | Dicers
Time Month.year.Year store.Region.Region Time Month.year. Year EQUALS 2010 AND

revenus [‘__“j store.Region.Region EQUALS German
User Rating |

A P A [Create Table |

W ¢ e

*® ¢« g¢ | Slice / Dice |

2010
3942741

Figure 5.15.: Navigation of the Fuzzy Data Warehouse including Slicers and a Pivot

B Dimensions
Customer
B store
B store
Store
B city
Name
Region
B Time
Bl Time Month
day
month
year
Time Week
Movie
Employee
Type
El Fuzzy Concepts
City Store Surface
Month Revenue

City Revenue

Table

Dimension Attributes Fuzzy Concepts Slicers / Dicers Fuzzy Alpha-Cuts

Time Month.menth.Month

Measures store.City.Name Create Table
A A
@ revenue v w
[J User Rating ® ® Slice / Dica |

. Fuzzy Alpha-Cut
Use volatile Concept

(*) none

) Use MDA as weight

Figure 5.16.: Navigation of a Fuzzy Cube

window is extended with the possibility to do a-cuts. a-cuts can be selected in the slice
window the same way as sharp slices. Furthermore, it is possible to select volatile fuzzy
concepts or to use the membership degree attributes for the aggregation of the facts.

183

5.4.2 Administration of Fuzzy Concepts

= re
tor
B city
N
Reg
Ep Dimension Attributes Fuzzy Concepts Slicers / Dicers Fuzzy Alpha-Cuts
me
B Time Mot Time Manth.month.Manth high
ime Measures store.City Name mi Create Table
¥ A low A
" ™ revenue v v
User Rating ® ® Slice / Dice
year

. Fuzzy Alpha-Cut
Time Week Use volatile Concept

=) none

Use MDA as weight

nnnnnnnnn thname name month_revenue_high month_revenue_middle month_revenue_low
15647 May Chur 0.00 0.10 0.90

Luzem 0.00 0.00 1.00

January

17292 January Neuenburg 0.00 1.00 0.00
January Luzem 0.00 082 0.08
J ry

Lugano 0.00 0.00 1.00

18041 June Lugano 0.00 0.99 0.01

Figure 5.17.: Fuzzy Navigation of the Fuzzy Data Warehouse

5.4.2. Administration of Fuzzy Concepts

Administrating fuzzy concepts can be done in a six-step wizard. In the first step, the
user can chose a fuzzy concept to either edit or delete. Additionally, a new fuzzy concept
can be added by clicking on the “add” link. In the second step, the name of the fuzzy
concept, the table in which the target attribute resides and the target attribute have to
be set. The target attribute can either be a column in the target attribute table or a
query that returns the target attribute and its key. Figure presents in a) the first
step in b) the second step with a column as target attribute and in ¢) the second step
with a query as target attribute.

Linguistic terms can be managed in the third step. Next, the membership functions
have to be defined. First, the type of fuzzy concept is specified. Then, the user has
the choice of three types of functions: trapezoid, discrete and manual. Different options
are presented based on the type of the membership function. The manual member-
ship function does not provide any options because it assumes that the user defines
the membership degrees directly in the fuzzy membership table. Additionally, it has to
be specified on which table the trigger, that calls the membership function, has to be
applied. Figure shows a) the third step, b) the fourth step with the options for a
trapezoid membership function and c¢) the fourth step with the options for a discrete
membership function.

184

5.4.2 Administration of Fuzzy Concepts

a b
) s)
Fuzzy Concept Wizard
Category Revenue edit delete
City Revenue edit delete 1. Define target attribute and name
City Store Surface edit delete
Customer Age edit delete Name: City Revenue
Customer Revenue edit delete
Table: ity
Customer Revenue Propagated edit delete
Day Revenue edit delete Target
Employee Age sdit_ delste Choose Target Type @columnquery
Employee Revenue edit delete
Month Revenue edit delete Column: name &
Movie Genre edit delete
c)

Fuzzy Concept Wizard
1. Define target attribute and name

Name: City Revenue

Table: dity

Target

Choose Target Type column@query
TA: | revenue

Query:

Build: [generate query

select ¢_id, sum(revenue) as ta from fdwh.fact join
fdwh.store on fact.fk_s = store.s_id join fdwh.city on
store.fk_c = city.c_id group by e_id

4

If you write the query by hand make sure you select at
least two colums. One 'AS id' and one 'AS ta'. If possible
first test the generated query with your DB to avoid
mistakes.

Cancel || Back || Continue

Figure 5.18.: First and Second Step of the Wizard

In the fifth step, how the fuzzy concept can be aggregated, propagated or if it can be
a volatile fuzzy concept must be specified. For aggregation, an aggregation operation
can be chosen. When the fuzzy concept can be propagated, the siblings can either be
chosen from the existing fuzzy concepts or new fuzzy concepts can be defined. When
a new fuzzy concept has to be defined, the wizard restarts from step two. In this case,
it already contains information such as linguistic terms from the parent concept. If the
fuzzy concept should be available as volatile fuzzy concept, the checkbox under volatile
has to be activated. Figure [5.20] shows the fifth step with the options for aggregation in
a), the options for propagation in b) and the checkbox option for a volatile fuzzy concept
in c).

Finally, step six provides a summary of the fuzzy concept and a button to save the
concept. When saving, the fuzzy concept is passed as an object to the administration
engine and the engine processes the necessary task on the database and in the XML
file. In every step in the wizard, the user has the possibility to go back or to cancel the
process.

185

5.4.2 Administration of Fuzzy Concepts

a) b)
Fuzzy Concept Wizard Fuzzy Concept Wizard

2. Define the linguistic terms 3. Define membership functions

Enter FC Terms: add Fuzzy concept type: @limited / open endadaptiv value range [0,1]
1 high delete Membership function: trapezoid ¢
2 middle delete
3 low delete Trigger table: category %
high 4
S: oo
F1=30 F2=70
C) F1: oo
. F2: oo
Fuzzy Concept Wizard
E: [oo
3. Define membership functions limited slo - 20 EX80
Fuzzy concept type: @limited / open end O adaptiv value range [0,1] middle
8: 0.0
Membership function: [discrete <] F1: o0
F2: 0.0
Trigger table: category ¢ E o
limited
v
high
x(=_:llo0 iy=loo add =5 y=1
middie x=12,y=0.7
x| = 00 |;y=o0 add 07 -
low
X[= 00 |;y=o0 add
5 12 x
Cancel Back Continue
Figure 5.19.: Third and Fourth Step of the Wizard
a) b)
. .
Fuzzy Concept Wizard Fuzzy Concept Wizard
4. Choose aggregation 4. Choose aggregation
Aggregation Type: | aggregation * Aggregation Type: | propagation ¢ |
Select aggregation function: Add an existing concept as propagation:
=sum Category Revenue : | add
(avg
_max
min
_prod Create a new propagated concept:
) The wizard will be reloaded with a new concept. Please make sure you first save the
C

current concept.

Fuzzy Concept Wizard —
4. Choose aggregation
Aggregation Type: | volatile .

Volatile Conecpt:

Create volatile function

Figure 5.20.: Fifth step of the Wizard

186

5.4.2 Administration of Fuzzy Concepts

Part V.

Evaluation and Conclusion

187

6 Evaluation and Conclusion

6. Evaluation and Conclusion

6.1. Evaluation

6.1.1. Concept
Benefits of the Concept

As shown in chapter [d] the application of fuzzy concepts for analysis can provide better
results than classical analysis. The interpretation of measures in non-numeric, mean-
ingful linguistic terms provide a more accurate interpretation of measures for business
users. In [FZ09], a fuzzy data warehouse was proposed for a web analytics system. In
this research paper, it is shown that the raw measures of web analytics are not always
simple to interpret. The metric page visits counts how often a user visited a web site. It
is not always possible to count visits of distinct users accurately. Therefore, this metric
is imprecise. When classifying users, a crisp concept of page visits is only limited accu-
rate. A user that has 75 visits might be classified as a bad visitor, whereas a visitor with
80 visits might be classified as good visitor. Because of the imprecision of the metric,
a user might be classified in the wrong class. It is therefore difficult to compare users.
By using a fuzzy classification the user can belong to both linguistic terms at the same
time. This allows a smoother transition between the classes and it can better handle
the imprecision of the metric. The fuzzy concept page visit is therefore a more accurate
classification than the crisp classification.

As discussed in section approaches to integrate fuzzy concepts in data warehouse
and OLAP cubes have been already discussed in the past. However, most of these ap-
proaches have been developed for a certain field of application and they often imply
restrictions on how fuzzy concepts can be applied. It has been proposed that fuzzy
concepts are integrated into the hierarchy structure of dimensions. This implies the
normalization of fuzzy concepts. Other propositions replace the original values of the
data warehouse with information from the fuzzy concept. Consequently, it is no longer
possible to analyze the original values of the data warehouse. The proposed concept
in section addresses these drawbacks and provides a more flexible method of inte-
grating fuzzy concepts using a meta table structure. With meta tables, it is possible
to integrate fuzzy concepts on every hierarchy level of dimensions without affecting the
hierarchy path or the summarizability of the dimension. Hence, the fuzzy concepts can
stay unnormalized. The fuzzy concepts might be normalized during runtime only in
specific analysis operation (see example [24] in section for a operation using normal-
ization).

188

6.1.1 Concept

Another major improvement of the proposed concept is the ability to analyze the
fuzzy data warehouse simultaneously crisp and fuzzy. Due to the fact that the infor-
mation of the fuzzy concepts is rolled out into meta tables, the fuzzy data warehouse
can be queried crisp and by applying the presented fuzzify and defuzzify functions in
section the crisp query can be extended with the fuzzy concept information. With
regard to the existing approaches, only approaches that integrate the crisp and fuzzy
information into multiple cubes can offer a similar functionality, but in order to receive
both information, multiple cubes have to queried.

Aggregation of the fuzzy concepts is discussed in detail and different aspects of ag-
gregation are presented. The fuzzy concept can be aggregated, propagated or can even
be applied to volatile cubes that only exist during the query process. This discussion of
aggregation, compared to existing literature, is much more detailed and allows handling
fuzzy concepts very similarly to facts or dimensional attributes. Hence, it improves the
integration of fuzzy concepts in data warehouses.

A functionality that has not yet been proposed is the possibility to create variants of
the fuzzy concepts. Because of the separation of the linguistic term and membership de-
grees in two meta tables, it is possible to combine these tables in different variations with
each other. For instance, a fuzzy concept and its variant can classify a target attribute
with the same membership degrees but different linguistic terms. Vice versa, another
fuzzy concept and its variant have the same linguistic terms but use other membership
functions to calculate the membership degrees of the target attributes. For example, the
fuzzy concept user rating discussed in section might be not only used for creating
the list of movie hits but also for internal decision making about how prominently a
movie should be placed in the store. The fuzzy concept can then be extended with
a variant having other class membership attributes such as "showcase", "front store",
"backend". This functionality further improves the flexibility of the concept proposed
in this thesis.

A final benefit of the proposed concept, with regard to the discussed approaches in
section is the ability to apply fuzzy concepts in the modeling process of a data
warehouse as well as on already existing classical data warehouses. To better support
application on existing data warehouses, a method for modeling a fuzzy data warehouse
is presented in section [3.3] The meta table structure of the fuzzy data warehouse allows
the extension of operational data warehouses with fuzzy concepts without having to
touch the existing data structure of the data warehouse.

To sum up, it can be stated that the proposed concept in section can be used to
implement all approaches discussed in section [3.1} Furthermore, it provides additional
functions such as fuzzy concept variants, simultaneous analysis of fuzzy and crisp data,
application on new and operational data warehouses and highly flexible aggregation of
fuzzy concepts. In comparison to classical data warehouses and fuzzy data warehouse

189

6.1.1 Concept

approaches shown in section the flexibility and the set of new functionalities of the
proposed concept can improve the analysis of data considerably.

Limitations of the Concept

The fuzzy data warehouse concept in section is based on a relational approach for
data warehouses. Therefore, it uses snowflake schemas for the classical data warehouse
part. The meta model in section further substantiates the relational approach by
using fact table and dimension table classes in the classical data warehouse class. Rela-
tional databases, especially when the data is stored in third normal form, can negatively
influence the performance of data warehouses. For data processing in OLAP systems,
specific multidimensional database applications such as Hyperion [Oral(] have been de-
veloped. Hyperion stores data in blocks that are arranged according to the dimensions.
By this type of storage engines, facts can be modeled in a separate measure dimension
similar to the multidimensional cube described by Agrawal et al. in [AGS95|. There-
fore, the meta model described in section has to be adapted before being applied
to multidimensional OLAP cubes. It is necessary to analyze in future research whether
the meta table structure can be implemented in multidimensional databases or if a new
implementation of fuzzy concepts would be necessary.

One of the main characteristics of a data warehouse is that data is stored on a timely
basis. Therefore, a time dimension is mandatory in order to have data in different states
at different points of time (ex: Revenue of Store A in 2011, Revenue of Store A in 2012).
The meta table structure has not foreseen any chronological versioning or historization
of fuzzy concepts. Subsequently, it is not possible to have different versions of fuzzy con-
cepts in different points in time. The ability to see how data was classified at a certain
time might be of interest. In order to this, the meta table structure would have to be
extended with temporal attributes as proposed for classical data warehouse structures

[CS99, [Ede01], MV00].

Finally, the fuzzy data warehouse concept describes how to implement fuzzy concepts
but does not explain how business users can derive such concepts from real world situa-
tions. The end user still has to define manually the linguistic terms and the membership
function of the fuzzy concepts. No method is provided to derive the membership func-
tions or degrees from data or from external sources. In order to derive fuzzy concepts
from data, approaches like inductive fuzzy classification [Kaul2| has been analyzed.
However in this thesis, this topic has been considered as out of scope.

190

6.1.2 Application and Implementation

6.1.2. Application and Implementation
Benefit of the Application and Implementation

Chapter (4] illustrates how a fuzzy data warehouse can be used to improve analysis of a
virtual movie rental company. Different analyses involving fuzzy concepts are executed
in order to show the benefit of the fuzzy concepts. Example 28 uses three fuzzy concepts
in a single analysis. Two concepts are propagated fuzzy concepts that show classifica-
tions of category attributes. The third concept is a volatile fuzzy concept that classifies
the cube measures. With a single analysis, the movie rental company can not only see
the sales performance of movies per month but also how strong monthly sales and overall
movie sales are. In order to achieve such an analysis with a classical data warehouse, the
company would have to execute at least three query statements and combine the results.
Thus, the application in section provides scenarios that show the improvement in
analysis using fuzzy concepts.

The implementation in chapter [5| provides a proof of concept prototype that let end-
users easily access the fuzzy data warehouse. It abstracts the database layer and uses
meta information in order to create a tree structure based navigation through the data
warehouse and the fuzzy concept. The meta information is structured using XML doc-
uments. The structure itself is defined with XML schema documents. As a result, the
prototype can be applied to different data warehouses, which might store its data in
different table structures. This flexibility allows extending the prototype in the future
to support other data warehouse applications.

The fuzzy concepts are administrated using a wizard that helps the enduser through
the complex process of defining fuzzy concepts. Table structures, stored procedures
and triggers on the database layer are automatically created by the administration en-
gine. This separation of data layer and meta layer improves the ability to use different
database technologies and different data structure models. Yet the XML schema provides
all necessary elements and dependencies for defining a complete fuzzy data warehouse

as defined in chapter [3]

Limitations of the Application and Implementation

The major limitation of the application is the fact that the movie rental company exam-
ple is not based on a real world scenario. An application on a productive data warehouse
would increase the validity of the fuzzy data warehouse approach presented. Neverthe-
less, the fuzzy data warehouse of the movie rental company uses more than 3 million
fact entries from more than five years in order to provide a large enough data sample for
analysis. The information about the movies is extracted from the open movie database
[TMDI10] in order to provide accurate movie data. The fact entries have been created
using random generators in conjunction with information about real world movie sales
and ratings from the open movie database and the internet movie database [IMD11].

191

6.1.3 Further Outlook

The prototype is considered to be a proof of concept and only implements the navi-
gation over the fuzzy data warehouse and the administration of the fuzzy concepts. In
order to provide a fully operational data warehouse, the prototype has to be extended
with support for user management and with ETL functionalities. Furthermore, caching
of the data in memory would greatly increase the performance for querying the fuzzy
data warehouse.

The data structure of the crisp data warehouse part is modeled using a snowflake
schema. Subsequently, dimensions are built with tables in the third normal form. When
querying the fuzzy data warehouse, cost intensive inner join statements have to be used.
The database might perform better when using a data model that does not imply third
normal form such as the star schema. Another possibility might be the creation of
aggregated views that denormalize the dimension structure and provide flat views on
dimensions [CS96]. Furthermore, another database engine such as Vertica [Verl1] might
be used. Vertica stores data in a column-based access method rather than a traditional
row-based access method. Column based access methods can improve query performance
of a data warehouse.

6.1.3. Further Outlook

It might be interesting to extend the fuzzy data warehouse concept for use with mul-
tidimensional databases such as Hyperion [Oral0]. To accomplish this, the meta table
structure has to be adapted and it would be necessary to analyze whether it would make
more sense to create a fuzzy concept dimension. The calculation of the membership
degrees could be realized in calculation scripts (see [Orall] for more information about
calculation in Hyperion).

A further future task is the application of fuzzy concept on an operational data ware-
house. The application described in chapter [4] shows the advantage of using fuzzy con-
cept, but is based on a virtual company. Applying the fuzzy concept to real world data
would further strengthen the validity of the fuzzy data warehouse concept.

Besides the application on a productive data warehouse, the prototype should be fur-
ther developed. In order to use the prototype as a productive fuzzy data warehouse,
missing features such as user management, ETL functionalities and stability improve-
ments have to be included. It might be interesting to apply the fuzzy data warehouse
to different database technologies.

In an information system architecture of a company, the data warehouse is the analyt-
ical part. It might be interesting to analyze how fuzzy concepts can be applied to other
information systems. Fuzzy concepts could then be maintained by operational systems
and imported to the data warehouse by using the ETL process. Consequently, it might

192

6.2 Conclusion

be analyzed how such ETL processes for fuzzy concepts have to be designed. Applying
fuzzy concepts to the complete information system infrastructure will have further im-
pact on the company’s ability to analyze data. Therefore, the impact of decision making
should be further analyzed when applying fuzzy concept on OLTP and OLAP systems
of a company.

6.2. Conclusion

Data warehouse is used for analysis of businesses performance. One potential pitfall of
the classical data warehouse is that the numeric values of a data warehouse may be diffi-
cult to interpret for business users, or may be interpreted incorrectly. For more accurate
understanding of numeric values, business users require an interpretation in meaningful,
non-numeric terms. However, if the classification between linguistic terms is crisp, true
values cannot be measured and smooth transition between classes cannot take place. A
solution to this is the use of a fuzzy based approach.

In chapter [3] of this thesis, a fuzzy data warehouse modeling approach, which allows
integration of fuzzy concepts as meta tables without affecting the core of a classical data
warehouse is discussed. The essence of this approach is that meta table structure is
added for classification, which enables integration of fuzzy concepts in dimensions and
facts, while preserving the crisp data structures. The key benefits of this approach are
as follows:

e Data can be analyzed in crisp and fuzzy manner.
e The model is generic enough to cover all the approaches discussed in section [3.1}

e The model can be used for modeling new data warehouses or applying to an existing
data warehouse.

e Aggregation of fuzzy concepts allows applying fuzzy concept to different hierarchy
levels and on volatile cubes.

The proposed fuzzy data warehouse addresses the research questions that have been
listed in section as described in the next paragraphs.

How can facts in data warehouses be handled fuzzily?

The proposed fuzzy data warehouse concept does not differentiate between facts or
dimensions as target attribute for a fuzzy concept. Consequently, the facts can be
enriched with fuzzy concepts by taking facts as target attributes. The fuzzy membership
table provides a relation to the fact table. Section discusses in detail how the meta
table structure can be created in order to build fuzzy concepts on facts.

193

6.2 Conclusion

How can dimensions in data warehouses be handled fuzzily?

Fuzzy concepts can be applied to dimensional attributes in every level of a dimension
hierarchy. By using the meta table structure, the dimension navigation path is not influ-
enced by the fuzzy concepts and the fuzzy concepts do not have to be normalized. The
fuzzy membership table provides the relation to the dimension table in which the dimen-
sional attribute resides. Section provides a detailed discussion of how to implement
fuzzy concepts on dimensions.

How can data warehouse operations like roll-up, drill-down, slice and dice be
applied to fuzzy data in a data warehouse?

In section the operation roll-up, drill-down, slice and dice are defined in detail for a
fuzzy data warehouse. It is notable that these operations can be applied to both fuzzy
and crisp cubes. Therefore, the proposed operations can handle both fuzzy and crisp
data at the same time. In addition to the definition of the classical operation, two new
operation have been proposed that can turn a crisp cube into a fuzzy cube and vice
versa. These operations further improve the flexibility of the fuzzy data warehouse as
they allow one to switch easily from crisp to fuzzy data analysis.

How can fuzzy data be aggregated?

The aggregation of fuzzy concepts over dimensions is discussed in section Briefly,
three different types of aggregation of fuzzy concepts have been identified: aggregation,
propagation, and application on volatile cubes. Aggregation allows aggregating the
membership degrees of a fuzzy concept to a new hierarchy level. This method only pro-
vides consistent results if the crisp aggregation of the target attribute is not a summation
function and does not change the value range of other hierarchy levels. An application
of an aggregation has been shown with the fuzzy concept user rating in section

Propagation redefines the structure of the fuzzy concept on other hierarchy levels.
Therefore, at a minimum the fuzzy membership table and the membership function are
redefined for the new target attribute. Propagation is a flexible way to aggregate fuzzy
concepts, but increases the number of meta tables in the fuzzy data warehouse.

Finally, fuzzy concepts on facts might be applied to resulting cubes of queries. These
cubes exist only during the time of the analysis and the aggregated fact is not persistently
stored in the fuzzy data warehouse. Fuzzy concepts can be applied to these volatile cubes
by calculating the membership degrees of the non-persistent target attribute during
the analysis. The end user can apply fuzzy concepts on their temporary query results
which greatly improves the flexibility of the fuzzy data warehouse. As disadvantage, the
calculation of membership degrees during querying of the fuzzy data warehouse increases
the query time.

194

6.2 Conclusion

Is it possible to propose generic modeling methods for fuzzy data warehouses?

As discussed in section every application presented in the literature review in sec-
tion can be realized with the proposed fuzzy data warehouse concept. The problems
identified in the discussed approaches can be omitted by outsourcing the fuzzy con-
cepts into meta tables. The meta model of the fuzzy data warehouse takes a common
snowflake modeling approach into consideration. It is therefore possible to integrate the
fuzzy data warehouse model into the conventional data warehouse modeling process.
It can be stated that the proposed fuzzy data warehouse approach is able to provide
a generic modeling approach. It fits for modeling existing fuzzy data warehouse ap-
proaches and furthermore smoothly integrates into classical data warehouse modeling.
However, the snowflake schema is optimized for data warehouse on relational database
technologies. It has to be noted that the fuzzy data warehouse model is optimized for
relational OLAP applications. When using multidimensional OLAP applications, the
fuzzy data warehouse model has to be adapted.

How is it possible to integrate a fuzzy data warehouse into an existing
information system infrastructure in a company in the easiest manner?

The meta table structure separates the fuzzy concepts from the actual data warehouse
structure. This is also pointed out in the meta model in section [3.2] in which the fuzzy
data warehouse model is separated from the classical data warehouse model (see figure
. Therefore, existing classical data warehouses can be transformed into fuzzy data
warehouses by adding the meta table layer to the data warehouses. This will not impact
the structure or data of the classical data warehouse. Furthermore, section [3.3| describes
a method for modeling a fuzzy data warehouse based on a classical data warehouse.
This method aims to provide users with a guideline on how to transform classical data
warehouses into fuzzy data warehouses.

What kind of technologies can be used for implementing a fuzzy data
warehouse?

In order to answer this question, a prototype was implemented in chapter f] The im-
plementation is inspired from the open source data warehouse Mondrian from Pentaho
Corporation [Penl0]. The technology used for the database layer is PostgreSQL [Pos11al,
which is a commonly used open source relational database management system. Fur-
ther, the meta information that is used for transposing the dimension structure, the
facts and the fuzzy concepts onto the table structure is implemented by XML docu-
ments [HMO05]. XML schema documents have been used to define the structure and the
necessary elements in the XML documents. The engines for the query translation, the
fuzzy concept administration and the visualization have been realized using Java. The
prototype shows that the fuzzy data warehouse can be realized with common technolo-
gies that have already been used, for instance Mondrian, for implementing classical data
warehouses.

195

6.2 Conclusion

How does a fuzzy data warehouse behave in comparison with a crisp data
warehouse?

The physical distinction between fuzzy concepts and crisp data allows the fuzzy data
warehouse to be both a crisp and fuzzy data warehouse at the same time. It is pos-
sible to use the presented fuzzy data warehouse as a crisp data warehouse simply by
not defining any fuzzy concepts. Even when fuzzy concepts are defined, the fuzzy data
warehouse can be queried crisp. Due to the separation of fuzzy concepts, the query
performance and the overall behavior of the fuzzy data warehouse corresponds exactly
to a crisp data warehouse. As soon as fuzzy concepts are included in the query process,
additional joins have to be done in the SQL statements. Therefore, the fuzzy concept
directly impacts the query performance of the fuzzy data warehouse. However, if the
fuzzy concept would have been implemented in the crisp data warehouse structure, as
proposed by other approaches, it would directly impact the navigation logic or the data
structure of the crisp part of the data warehouse. It can be stated that the fuzzy data
warehouse behaves analogous to a crisp data warehouse for crisp data analysis and, as
soon as fuzzy concepts are included in the query, it adds additional information, but
also reduces query performance.

In conclusion, it can be shown that the fuzzy data warehouse improves analysis in
comparison to classical crisp data warehouses. A major advantage of the fuzzy data
warehouse concept in this thesis is the ability to directly integrate into existing data
warehouses. The fuzzy concepts do not influence the structure of the classical data
warehouse and allow querying of the data both fuzzy and crisp at the same time. This
is a novelty compared to existing fuzzy data warehouse applications. Finally, with the
prototype, a proof of concept is implemented that demonstrates how a fuzzy data ware-
house can be realized using common data warehouse technologies. The prototype further
demonstrate the ease of navigating the fuzzy data warehouse and the administration of
the fuzzy concepts.

196

Bibliography

Bibliography

[AAGT96]

[AGS95]

IAGS97]

[AKO3]

[Als85]

[Ass11]

[BDJH05]

[CCS93]

[CDY7]

[Che76]

[Cod70]

S. Agrawal, R. Agrawal, E.A. Gupta, J.F. Naughton, R. Ramakrishnan,
and S. Sarawagi. On the Computation of Multidimensional Aggregates.
In Proceedings of the 22th International Conference on Very Large Data
Bases, pages 506-521. Morgan Kaufmann Publishers Inc., 1996.

R. Agrawal, A. Gupta, and S. Sarawagi. Modeling Multidimensional
Databases, Research Report. Technical report, IBM Almaden Research
Center, San Jose, California, 1995.

R. Agrawal, A. Gupta, and S. Sarawagi. Modeling Multidimensional
Databases. In Proceedings of the Thirteenth International Conference on
Data Engineering, pages 232-243. IEEE Computer Society, 1997.

Reda Alhajj and Mehmet Kaya. Integrating Fuzziness into OLAP for Mul-
tidimensional Fuzzy Association Rules Mining. In Proceedings of the Third
IEEFE International Conference on Data Mining, 2003.

C. Alsina. On a Family of Connectives for Fuzzy Sets. Fuzzy Sets and
Systems, 16(3):231-235, 1985.

Web Analytics Association. Web Analytics Association. http://www.
webanalyticsassociation.org, 11 2011.

D. Burdick, P.M. Deshpande, T.S. Jayram, R. Ramakrishnan, and
S. Vaithyanathan. OLAP Over Uncertain and Imprecise Data. In Proceed-

ings of the 31st international conference on Very large data bases, pages
970-981, 2005.

E. F. Codd, S. B. Codd, and C. T. Smalley. Providing OLAP to User-
Analysts: An IT Mandate 1993. Codd & Date Inc, 1993.

S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and OLAP
Technology. ACM Sigmod record, 26(1):65-74, 1997.

P. P. Chen. The Entity-Relationship Model towards Unified View of Data.
ACM Transactions on Database Systems (TODS), 1976.

E.F. Codd. A Relational Model for Large Shared Data Banks. Communi-
cations of the ACM, 13(6):377-387, 1970.

197

Bibliography

[Cod71]

[Cod87]

[CS94]

[CS96)

[CS99]

[DMSS)]

[DMS*04]

[DP80)

[DP85]

[Eck95]

[Ede01]

[Fas09]

EF Codd. Further Normalization of the Database Relational Model. In
R. Rustin, editor, Database Systems Courant Computer Science Sympo-
sium, volume 6. Prentice-Hall, Englewood Cliffs, NJ, 1971.

E F Codd. More Commentary on Missing Information in Relational
Databases (Applicable and Inapplicable Information). ACM SIGMOD
Record, 16:42-50, March 1987.

S. Chaudhuri and K. Shim. Including group-by in Query Optimization.
In Proceedings of the International Conference on Very Large Data Bases,
pages 354-354. IEEE, 1994.

S. Chaudhuri and K. Shim. Optimizing Queries with Aggregate Views.
In Proceedings of the 5th International Conference on Ezxtending Database
Technology: Advances in Database Technology, pages 167-182. Springer-
Verlag, Springer, 1996.

Peter Chamoni and Steffen Stock. Temporal Structures in Data Warehous-
ing. DataWarehousing and Knowledge Discovery, pages 802-802, 1999.

B. A. Devlin and P. T. Murphy. An Architecture for a Business and Infor-
mation System. IBM Systems Journal, 27(1):60 —80, 1988.

M. Delgado, C. Molina, D. Sanchez, A. Vila, and L. Rodriguez-Ariza. A
Fuzzy Multidimensional Model for Supporting Imprecision in OLAP. In

IEEE International Conference on Fuzzy Systems, volume 3, pages 1331 —
1336. IEEE, 2004.

D. Dubois and H.M. Prade. Fuzzy Sets and Systems: Theory and Applica-
tions, volume 144. Academic Press, Inc., 1980.

D. Dubois and H. Prade. A Review of Fuzzy Set Aggregation Connectives.
Information Sciences, 36(1-2):85-121, 1985.

Eckerson, W.W. Three Tier Client/Server Architectures: Achieving Scal-
ability, Performance, and Efficiency in Client/Server Applications. Open
Information Systems, 10(1), 1995.

Eder, J. and Koncilia, C. Changes of Dimension Data in Temporal Data
Warehouses. Data Warehousing and Knowledge Discovery, pages 284-293,
2001.

Daniel Fasel. A Fuzzy Data Warehouse Approach for the Customer Per-
formance Measurement for a Hearing Instrument Manufacturing Company.
In Proceedings of Fuzzy Systems and Knowledge Discovery. IEEE Explore,
20009.

198

Bibliography

[FDO3]

[FS10]

[FS12]

[FZ09]

[GbGAOG]

[GCB*97]

[Gil76]

[Gon09|

[GUPO4]

[Ham78|

[Has08|
[Hef07]

Ling Feng and Tharam S. Dillon. Using Fuzzy Linguistic Representations to
Provide Explanatory Semantics for Data Warehouses. [EFEE Transactions
on Knowledge and Data Engineering, 15(1), 2003.

Daniel Fasel and Khurram Shahzad. A Data Warehouse Model for Inte-
grating Fuzzy Concepts in Meta Table Structures. In 17th IEEE Interna-

tional Conference and Workshops on the Engineering of Computer-Based
Systems, pages 100-109. IEEE Computer Society, 2010.

Daniel Fasel and Khurram Shahzad. Fuzzy Data Warehouse for Perfor-
mance Analysis. In Andreas Meier and Laurent Donzé, editors, Fuzzy
Methods for Customer Relationship Management and Marketing: Applica-
tions and Classifications, pages 217-251. IGP Global, 2012.

Daniel Fasel and Darius Zumstein. A Fuzzy Data Warehouse Approach
for Web Analytics. In M. D. Lytras, E. Damiani, J. M. Carroll, R. D.
Tennyson, D. Avison, A. Naeve, A. Dale, P. Lefrere, F. Tan, J. Sipior,
and G. Vossen, editors, Visioning and Engineering the Knowledge Society
— A Web Science Perspective, volume 5736 of Lecture Notes in Computer
Science, pages 276-285. Springer, 2009.

J. Gethland, b. Galbraith, and D. Almaer. Pragmatic Ajax — A Web 2.0
Primer. The Pragmatic Bookshelf, 2006.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data Cube: A Relational Aggregation
Operator generalizing group-by, cross-tab, and sub-totals. Data Mining
and Knowledge Discovery, 1(1):29-53, 1997.

R. Giles. Lukasiewicz logic and fuzzy set theory+. International Journal
of Man-Machine Studies, 8(3):313-327, 1976.

Antonio Goncalves. Beginning Java EE 6 Platform with GlassFish 3.
Apress, 2009.

José Galindo, Angélica Urrutia, and Mario Piattini. Representation of
Fuzzy Knowledge in Relational Databases. In Proceedings of the 15th In-
ternational Workshop on Database and Ezpert Systems Applications, pages
917-921. IEEE, 2004.

H. Hamacher. Uber logische Aggregationen mnicht-bindr explizierter
Entscheirdungskriterien. Fischer Verlag, Frankfurt - Germany, 1978.

M. Hassler. Web Analytics. MITP, Heidelberg, 2008.

David R. Heffelfinger. Java EE Development using GlassFish Application
Server. Packt Publishing, 2007.

199

Bibliography

[Hef11]

[HKYC04]

[HMO5]

[HMPRO4]

[HRO4]

[IMD11]

[INC11a]

[Inc11b]

[Incllc|

[Inc11d]

[Inclle]

[InmO05|

[Ton08)|

[ISNOS]

[1SO08]

David R. Heffelfinger. Java EE Development with NetBeans 6. Packt
Publishing, 2011.

Hsin-Ginn Hwang, Cheng-Yuan Ku, David C. Yen, and Chi-Chung Cheng.
Critical Factors influencing the Adoption of Data Warehouse Technology:

a Study of the Banking Industry in Taiwan. Decision Support Systems,
37(1):1 — 21, 2004.

Eliotte Rusty Harold and W. Scott Means. XML in a Nutshell, volume 3.
O’Reilly, 2005.

A.R. Hevner, S.T. March, J. Park, and S. Ram. Design science in informa-
tion systems research. MIS Quarterly, 28(1):75-105, 2004.

D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics of
"Semantics"? Computer, 37(10):64 — 72, October 2004.

IMDb.com, Inc. The Internet Movie Database. http://www.imdb.com/,
September 2011.

ICESOFT TECHNOLOGIES INC. ICEFaces. http://www.icefaces.
org/main/home, 11 2011.

Oracle America Inc. Java Architecture for XML Binding. http://jaxb.
java.net, 11 2011.

Oracle America Inc. Java Server Faces. http://www.oracle.com/
technetwork/java/javaee/javaserverfaces-139869.html, 11 2011.

VMWare Inc. JDBCTemplate documentation. http://static.
springsource.org/spring/docs/2.0.x/reference/jdbc.html, 11
2011.

VMWare Inc. Spring Framework. http://www.springsource.org, 11
2011.

W. H. Inmon. Building the Data Warehouse. Wiley Publishing, Inc., 4
edition, 2005.

Andrea Ionas. Modellierung, Entwicklung und Nutzung eines Data Ware-
house fiir medizinische Communication Centers. PhD thesis, Departement
fiir Informatik — Universitat Fribourg, 2008.

W. H. Inmon, D. Strauss, and G. Neushloss. DW 2.0 — The Architecture for
the Next Generation of Data Warehousing. Morgan Kaufmann Publishers,
2008.

ISO. ISO/IEC 9075(1-4,9-11,18,14):2008 - Information Technology —
Database Languages — SQL. Geneva Switzerland, 2008.

200

Bibliography

[Kas96]

[Kau07|

[Kaul2]

[KC04]

[K193]

[Kim9s]

[KKO07]

[KKDO5|

[Kos90|

[Kos94a|

[Kos94b]

[KRO2]

[KRT+08]

[KW99]

Nikola K. Kasabov. Foundations of Neural Networks, Fuzzy Systems, and
Knowledge Engineering. The MIT Press, 1996.

A. Kaushik. Web Analytics — An Hour a Day. O’Reilly, New York, 2007.

Michael Kaufmann. Inductive Fuzzy Classification - yet to publish. PhD
thesis, University of Fribourg - Switzerland, 2012.

Ralph Kimball and Joe Caserta. The Data Warehouse ETL Toolkit. Wiley
Publishing, Inc., 2004.

B. Kosko and S. Isaka. Fuzzy logic. Scientific American, 269(1):76-81,
1993.

R. Kimball. Help for Dimensional Modeling Helper tables let you design
and manage multivalued dimensions successfully. DBMS Online, Miller
Freeman, Inc, 1998.

D. P. V. Kasinadh and P. Radha Krishna. Building Fuzzy OLAP Using
Multi-attribute Summarization. In Proceedings of the International Confer-
ence on Computational Intelligence and Multimedia Applications (ICCIMA
2007), volume 01, pages 370-374. IEEE, 2007.

K. V. N. N. Pavan Kumar, P. Radha Krishna, and Supriya Kumar De.
Fuzzy OLAP Cube for Qualitative Analysis. In Intelligent Sensing and
Information Processing, pages 290-295, 2005.

B. Kosko. Fuzziness vs. probability. International Journal of General
Systems, 17(2):211-240, 1990.

B. Kosko. Fuzzy systems as universal approximators. IFEE Transactions
on Computers, 43(11):1329-1333, 1994.

B. Kosko. The Probability Monopoly. ITEEE Transactions on Fuzzy Sys-
tems, 2(1):32-33, 1994.

Ralph Kimball and Margy Ross. The Data Warehouse Toolkit. Wiley
Publishing, Inc., 2002.

Ralph Kimball, Margy Ross, Warren Thornthwaite, Joy Mundy, and Bob
Becker. The Data Warehouse Lifecycle Toolkit. Wiley Publishing, Inc.,
2008.

N. Kasabov and B. Woodford. Rule insertion and rule extraction from
evolving fuzzy neural networks: algorithms and applications for building
adaptive, intelligent expert systems. In Fuzzy Systems Conference Proceed-
ings, 1999 IEEE International, volume 3, pages 1406-1411. IEEE, 1999.

201

Bibliography

[Lehos)

[Leh03]

[LLO3]

[LS97]

ILTO1]

[Mic10]

[MMWS03]

[MRASV06|

[MS95]

[MS97]

IMSSVO1]

[MSWO7]

[MSWO08]

Wolfgang Lehner. Modeling Large Scale OLAP Scenarios. In Advances in
Database Technology — EDBT’98, volume 1377, pages 153-167. Springer,
1998.

Wolfgang Lehner. Datenbanktechnologien fiir Data- Warehouse-Systeme —
Konzepte und Methoden. dpunkt.verlag, 2003.

Mark Levene and George Loizou. Why is the Snowflake Schema a Good
Data Warehouse Design? Information Systems, 28(3):225-240, May 2003.

H.-J. Lenz and Arie Shoshani. Summarizability in OLAP and Statistical
Data Bases. Statistical and Scientific Database Management, 1997.

H.J. Lenz and B. Thalheim. OLAP Databases and Aggregation Functions.
In Scientific and Statistical Database Management, 2001. SSDBM 2001.
Proceedings. Thirteenth International Conference on, page 0091. Published
by the IEEE Computer Society, 2001.

Microsoft Corporation. MDX Specifications. http://msdn.microsoft.
com/en-us/library/Aa216767, April 2010.

Andreas Meier, Christian Mezger, Nicolas Werro, and Giinter Schindler.
Zur unscharfen Klassifikation von Datenbanken mit fCQL. In Proceedings
of the GI-Workshop LLWA Lernen, Lernen, Wissen, Adaptivitat, 2003.

Carlos Molina, Lazaro Rodriguez-Ariza, Daniel Sanchez, and M. Amparo
Vila. A New Fuzzy Multidimensional Model. IEEE Transactions on Fuzzy
Systems, 14(6):897-912, December 2006.

S.T. March and G.F. Smith. Design and Natural Science Research on
Information Technology. Decision Support Systems, 15(4):251-266, 1995.

A. Motro and P. Smets. Uncertainty Management in Information Systems:
from Needs to Solutions. Kluwer Academic Publishers, 1997.

Andreas Meier, Christian Savary, Giinter Schindler, and Yauheni Veryha.
Database Schema with Fuzzy Classification and Classification Query Lan-
guage. In Proceedings of the International Congress on Computational
Intelligence—Methods and Applications, Bangor, UK, 2001. University of
Wales.

Andreas Meier, Giinter Schindler, and Nicolas Werro. Extending Relational
Databases with Fuzzy Classification. Department of Informatics — Univer-
sity of Fribourg, 2007.

Andreas Meier, Giinter Schindler, and Nicolas Werro. Fuzzy Classification
on Relational Databases. In J. Galindo, editor, Handbook of Research on

Fuzzy Information Processing in Databases, volume 2, pages 586-614. IGI
Global, 2008.

202

Bibliography

IMTS1]

[MT02]

[MV00]

[MWASO05]

IMZ04]

[Nau00]

[NHO4|

[Niiell]

[OLA10]

[Oral0]

[Orall

[Pen10)]

[Per06]

M. Mizumoto and K. Tanaka. Fuzzy Sets and their Operations. Information
and Control, 48(1):30-48, 1981.

Enrique Medina and Juan Trujillo. A Standard for Representing Mul-
tidimensional Properties: The Common Warehouse Model (CWM). In
Y. Manolopoulos and P Navrat, editors, Advances in Databases and Infor-
mation Systems, volume 2435/2002 of Lecture Notes in Computer Science,
pages 232-247. Springer Verlag, 2002.

A.O. Mendelzon and A.A. Vaisman. Temporal queries in OLAP. In Pro-
ceedings of the 26th International Conference on Very Large Data Bases,
pages 242-253. Morgan Kaufmann Publishers Inc., 2000.

Andreas Meier, Nicolas Werro, Martin Albrecht, and Miltiadis Sarakinos.
Using a Fuzzy Classification Query Language for Customer Relationship
Management. Proceedings of the 31st VLDB Conference, 2005.

E. Malinowski and E. Ziméanyi. Representing Spatiality in a Conceptual
Multidimensional Model. In Proceedings of the 12th annual ACM interna-
tional workshop on Geographic information systems, pages 12-22. ACM,
2004.

Detlef D. Nauck. Data Analysis with Neuro-Fuzzy Methods. Technical
report, Fakultat fiir Informatik der Otto-von-Guericke-Universitat Magde-
burg, 2000.

R. Ng and J. Han. Efficient and Effective Clustering Method for Spatial
Data Mining. In Proc. 1994 Int. Conf. Very Large Databases, pages 144—
155, 1994.

Stefan Niiesch. OLAP Cube for a Fuzzy Data Warehouse. Bachelor Thesis,
University of Fribourg - Switzerland, 2011.

OLAP Council. OLAP and OLAP Server Definitions. http://www.
olapcouncil.org/research/resrchly.htm, 08 2010.

Oracle. Oracle Essbase Hyperion. http://www.oracle.com/
technetwork/middleware/essbase/overview/index.html, January
2010.

Oracle. Oracle Essbase Hyperion Databse Administration Documen-
tation. http://download.oracle.com/docs/cd/E17236_01/epm.1112/
esb_dbag/launch.html, September 2011.

Pentaho Corporation. Mondrian OLAP Server. http://mondrian.
pentaho.org/, 04 2010.

B. W. Perry. Ajax Hacks. O’Reilly, 2006.

203

Bibliography

[Pet94]

[PJ01]

[PJD99

[Posl11al

[Pos11b]

[Posl1c]

[Pos11d]

[PSPO7]

[Pur02]

[Rat11]

IRS90)

[Sch9s]

[Sch10]

[Sho82]

S. Peterson. Stars: A Pattern Language for Query Optimized Schema.
Sequent Computer Systems. http://c2.com/ppr/stars.html, 1994.

T.B. Pedersen and C.S. Jensen. Multidimensional Database Technology.
Computer, 34(12):40 —46, December 2001.

T. B. Pedersen, C. S. Jensen, and C. E. Dyreseon. Supporting Imprecision
in Multidimensional Databases Using Granularities. Fleventh International
Conference on Scientific and Statistical Database Management, 1999.

PostgreSQL Global Development Group. PostgreSQL. http://www.
postgresql.org/, January 2011.

PostgreSQL Global Development Group. PostgreSQL Documentation.
http://www.postgresql.org/docs/current/static, January 2011.

PostgreSQL Global Development Group. PostgreSQL Documentation
of Server Programming. http://www.postgresql.org/docs/current/
static/server-programming.html, 09 2011.

PostgreSQL Global Development Group. PostgreSQL Documentation
of Window Functions. http://www.postgresql.org/docs/current/
static/functions-window.html, June 2011.

David Pérez, Maria J. Somodevilla, and Ivo H. Pineda. Fuzzy Spatial
Data Warehouse: A Multidimensional Model. FEighth Mezican Interna-
tional Conference on Current Trends in Computer Science, 2007.

T. Purcell. Star Join Optimization: DB2 UDB for z/OS and OS/390. The
International DB2 User Group (IDUG) Solutions Journal, 9(1):17 — 19,
2002.

Christpoh Rathgeb. Entwicklung eines Fuzzy Data Warehouse. Bachelor
Thesis, University of Fribourg - Switzerland, 2011.

M. Rafanelli and Arie Shoshani. STORM: A Statistical Object Representa-
tion Model. Statistical and Scientific Data Base Management Conference,
pages 14-29, 1990.

Giinther Schindler. Fuzzy-Datenanalyse durch kontextbasierte Datenbank-
abfragen. PhD thesis, Technische Hochschule Aachen, 1998.

Lukas Scheuner. Entwurf und Erstellung eines Data Warehouse fiir die
Schweizerische Futtermitteldatenbank. Master’s thesis, Universitat Ziirich
and Universitat Fribourg, 2010.

Arie Shoshani. Statistical Databases: Characteristics, Problems, and Some
Solutions. In Proceedings of the 8th International Conference on Very Large
Data Bases, pages 208-222. Morgan Kaufmann Publishers Inc., 1982.

204

Bibliography

[SMHO4]

[SSROS]

[Ter11]

[Til91]

[TMD10]

[TZZ79)

[Vas98|

[Verl1]

[VS99]

[VS00]

[Wer88|

[Wer08]

[Yag80]

|Zad65]
[Zad75a]

[Zad75b]

Heiko Schepperle, Andreas Merkel, and Alexander Haag. Erhalt von Im-
perfektion in einem Data Warehouse. Internationales Symposium: Data-
Warehouse-Systeme und Knowledge-Discovery, 2004.

L. Sapir, A. Shmilovici, and L. Rokach. A Methodology for the Design of
a Fuzzy Data Warehouse. In Intelligent Systems, 2008. 1S°08. 4th Interna-
tional IEEE Conference, volume 1, 2008.

Teradata. Teradata. http://www.teradata.com, 06 2011.

Thomas Tilli. Fuzzy-Logik: Grundlagen, Anwendungen, Hard- und Soft-
ware. Franzis-Verlag GmbH, Miinchen, 1991.

TMDb Inc. The Open Movie Database Project. http://www.themoviedb.
org/, December 2010.

U. Thole, H.J. Zimmermann, and P. Zysno. On the Suitability of Minimum
and Product Operators for the Intersection of Fuzzy Sets* 1. Fuzzy Sets
and Systems, 2(2):167-180, 1979.

Panos Vassiliadis. Modeling Multidimensional Databases, Cubes and Cube
Operations. In Proceedings of the 10th International Conference on Scien-
tific and Statistical Database Management, pages 53-62. IEEE, 1998.

Vertica. Vertica Database. http://www.vertica.com/, September 2011.

P. Vassiliadis and T. Sellis. A Survey of Logical Models for OLAP
Databases. ACM Sigmod Record, 28(4):64-69, 1999.

P. Vassiliadis and S. Skiadopoulos. Modelling and Optimisation Issues for
Multidimensional Databases. In Advanced Information Systems Engineer-
ing, pages 482-497. Springer, 2000.

B. Werners. Aggregation Models in Mathematical Programming. Mathe-
matical Models for Decision Support, 48:295-305, 1988.

Nicolas Werro. Fuzzy Classification of Online Customers. PhD thesis,
University of Fribourg, 2008.

R.R. Yager. On a General Class of Fuzzy Connectives. Fuzzy Sets and
Systems, 4(3):235-242, 1980.

Lofti Asker Zadeh. Fuzzy Sets. Information and Control, 8(338-353), 1965.

L. A. Zadeh. The Concept of a Linguistic Variable and its Application to
Approximate Reasoning - Part 1. Information Science, (8):199-249, 1975.

L. A. Zadeh. The Concept of a Linguistic Variable and its Application to
Approximate Reasoning - Part II. Information Science, (8):301-357, 1975.

205

Bibliography

[Zad75¢]

[Zad78al

[Zad78b]

[Zad83)

[Zad94]

Zad96]

[Zim91]

[ZKY96]

2.7:30]

L. A. Zadeh. The Concept of a Linguistic Variable and its Application to
Approximate Reasoning - Part II1. Information Science, (9):43-80, 1975.

Lofti Asker Zadeh. Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy
Sets and Systems 1, 3(28), 1978.

Lofti Asker Zadeh. PRUF — A Meaning Representation Language for Nat-
ural Languages. Int. J. Man-Machine Studies, 10:395-460, 1978.

L.A. Zadeh. A Computational Approach to Fuzzy Quantifiers in Natural
Languages™ 1. Computers & Mathematics with Applications, 9(1):149-184,
1983.

L.A. Zadeh. Fuzzy logic, neural networks, and soft computing. Communi-

cations of the ACM, 37(3):77-84, 1994.

Lotfi A. Zadeh. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected
Papers, volume 6, chapter Test-Score Semantics for Natural Languages and
Meaning Representation via PRUF. World Scientific Pub Co Inc, 1996.

Hans-Jiirgen Zimmermann. Fuzzy Set Theory and its Applications. Kluwer
Academic Publishers, 1991.

Lotfi A. Zadeh, G.J. Klir, and B. Yuan, editors. Fuzzy Sets, Fuzzy Logic,
and Fuzzy Systems: Selected Papers, volume 6. World Scientific Pub Co
Inc, 1996.

H. Zimmermann and P. Zysno. Latent Connectives In Human Decision
Making. Fuzzy Sets and Systems 4, 4:37-51, 1980.

206

A The XML Schema of the Crisp Part

A. The XML Schema of the Crisp
Part

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:fdwh="http://diuf. unifr.ch/is /fdwh" targetNamespace="
http://diuf.unifr.ch/is/fdwh" elementFormDefault="qualified"
attributeFormDefault="qualified ">
<xs:complexType name="complexRelationType">
<xs:sequence>
<xs:choice>
<xs:element name="join" type="fdwh:joinType" maxOccurs="
1” />
<xs:element name="table" type="xs:string" maxOccurs="1"/
>
<xs:element name="relation" type="
fdwh:complexRelationType" maxOccurs="1" />
</xs:choice>
<xs:element name="key" type="xs:string" minOccurs="1"
maxOccurs="1" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="columnType">
<xs:sequence>
<xs:element name="column" type="xs:string" minOccurs="1"
maxQOccurs="1" />
<xs:element name="display" type="xs:string" minOccurs="0"
maxOccurs="1" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="simpleRelationType">
<xs:sequence>
<xs:element name="table" type="xs:string" minOccurs="1"
maxQOccurs="1" />
<xs:element name="key" type="xs:string" minOccurs="1"
maxQOccurs="1" />
<xs:element name="column" type="fdwh:columnType" minOccurs

207

A The XML Schema of the Crisp Part

="0" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:simpleType name="aggregatorType">
<xs:restriction base="xs:string">
<xs:enumeration value="SUM" />
<xs:enumeration value="MAX" />
<xs:enumeration value="MIN" />
<xs:enumeration value="AVG" />
<xs:enumeration value="PROD"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="factorType">
<xs:restriction base="xs:string">
<xs:enumeration value="TIMES" />
<xs:enumeration value="PROD"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="measureType">
<xs:sequence>
<xs:element name="column" type="fdwh:columnType" minOccurs
="1" maxOccurs="1"/>
<xs:element name="aggregator" type="fdwh:aggregatorType"
minOccurs="1" maxOccurs="1" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="joinType">
<xs:sequence>
<xs:element name="relation" type="fdwh:complexRelationType
" minOccurs="2" maxOccurs="2" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="bridgeType">
<xs:sequence>
<xs:element name="relation" type="fdwh:simpleRelationType"
minOccurs="1" maxOccurs="1"/>
<xs:element name="weight" type="xs:string" minOccurs="1"
maxOccurs="1" />
<xs:element name="factor" type="fdwh:factorType" minOccurs
="1" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="levelType">
<xs:sequence>

208

A The XML Schema of the Crisp Part

<xs:element name="name" type="xs:string" minOccurs="1"
maxQOccurs="1" />
<xs:element name="relation" type="fdwh:simpleRelationType"
minOccurs="1" maxOccurs="1"/>
<xs:element name="bridge" type="fdwh:bridgeType" minOccurs
="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="hierarchyType">
<xs:sequence>
<xs:element name="name" type="xs:string" minOccurs="1"
maxOccurs="1" />
<xs:element name="relation" type="fdwh:complexRelationType
" minOccurs="1" maxOccurs="1"/>
<xs:element name="level" type="fdwh:levelType" minOccurs="
1" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="dimensionType">
<xs:sequence>
<xs:element name="name" type="xs:string" />
<xs:element name="hierarchy" type="fdwh:hierarchyType"
minOccurs="1" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="factType">
<xs:sequence>
<xs:element name="relation" minOccurs="1" maxOccurs="1"
type="fdwh:simpleRelationType" />
<xs:element name="measure" minOccurs="1" maxOccurs="
unbounded" type="fdwh:measureType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="dimensionsType">
<xs:sequence>
<xs:element name="dimension" minOccurs="2" maxOccurs="
unbounded" type="fdwh:dimensionType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="cubeType">
<xs:sequence>
<xs:element name="fact" type="fdwh:factType" minOccurs="1"
/>

<xs:element name="dimensions" type="fdwh:dimensionsType"

209

A The XML Schema of the Crisp Part

minOccurs="1"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="dwhType">
<xs:sequence>
<xs:element name="cube" type="fdwh:cubeType" minOccurs="1"
maxQOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
<xs:element name="dwh" type="fdwh:dwhType" />
</xs:schema>

Listing A.1: XML Schema of Crisp Part

210

B The XML Schema of the Fuzzy Part

B. The XML Schema of the Fuzzy
Part

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlns:fc="http://diuf.unifr.ch/is/fc" xmlns:xs="
http://www.w3.org /2001 /XMLSchema" attributeFormDefault="
qualified" elementFormDefault="qualified" targetNamespace="
http://diuf.unifr.ch/is/fc">
<xs:complexType name="targetType">
<xs:choice>
<xs:element name="column" maxOccurs="1" minOccurs="1"/>
<xs:element name="query" minOccurs="1" maxOccurs="1" />
</xs:choice>
</xs:complexType>
<xs:complexType name="taType">
<xs:sequence>
<xs:element maxOccurs="1" minOccurs="1" name="table" type
="xs:string" />
<xs:element maxOccurs="1" minOccurs="1" name="key" type="
xs:string" />
<xs:element maxOccurs="1" minOccurs="1" name="target"
type="fc:targetType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="fmtType">
<xs:sequence>
<xs:element maxOccurs="1" minOccurs="1" name="table" type
="xs:string" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="triggerType">
<xs:sequence>
<xs:element name="table" type="xs:string" maxOccurs="1"
minOccurs="1" />
<xs:element name="name" type="xs:string" minOccurs="1"
maxOccurs="1" />
</xs:sequence>

211

B The XML Schema of the Fuzzy Part

</xs:complexType>
<xs:complexType name="relationType">
<xs:sequence>
<xs:element maxOccurs="1" minOccurs="1" name="ta" type="
fc:taType" />
<xs:element maxOccurs="1" minOccurs="1" name="fmt" type="
xs:string" />
<xs:element maxOccurs="1" minOccurs="1" name="fct" type="
xs:string" />
<xs:element maxOccurs="1" minOccurs="1" name="memfunc"
type="xs:string" />
<xs:element maxOccurs="1" minOccurs="1" name="trigger"
type="fc:triggerType" />
</xs:sequence>
</xs:complexType>
<xs:simpleType name="aggregatorType">
<xs:restriction base="xs:string">
<xs:enumeration value="SUM" />
<xs:enumeration value="MAX" />
<xs:enumeration value="MIN"/>
<xs:enumeration value="AVG"/>
<xs:enumeration value="PROD" />
</xs:restriction>
</xs:simpleType>
<xs:complexType name="propagationType">
<xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="1" name="
fconcept" type="fc:fconceptType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="volatileType">
<xs:sequence>
<xs:element name="ta" minOccurs="1" maxOccurs="1" type="
xs:string" />
<xs:element name="proc" minOccurs="1" maxOccurs="1" type=
"xs:string" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="aggregationType">
<xs:sequence>
<xs:element maxOccurs="1" minOccurs="0" name="aggregator"
type="fc:aggregatorType" />
<xs:element maxOccurs="1" minOccurs="0" name="propagation
" type="fc:propagationType" />

212

B The XML Schema of the Fuzzy Part

<xs:element maxOccurs="1" minOccurs="0" name="volatile"
type="fc:volatileType" />
</Xs:sequence>
</xs:complexType>
<xs:complexType name="termType">
<xs:sequence>
<xs:element maxOccurs="1" minOccurs="1" name="name" type=
"xs:string" />
<xs:element maxOccurs="1" minOccurs="1" name="key" type="
xs:string" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="fconceptType">
<Xs:sequence>
<xs:element maxOccurs="1" minOccurs="1" name="name" type=
"xs:string" />
<xs:element maxOccurs="1" minOccurs="1" name="relation"
type="fc:relationType" />
<xs:element maxOccurs="1" minOccurs="0" name="aggregation
" type="fc:aggregationType" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="conceptsType">
<Xs:sequence>
<xs:element maxOccurs="unbounded" minOccurs="0" name="
fconcept" type="fc:fconceptType" />
</xs:sequence>
</xs:complexType>
<xs:element name="concepts" type="fc:conceptsType" />
</xs:schema>

Listing B.1: The XML Schema of the Fuzzy Part

213

C The XML Document of the Crisp Fuzzy Data Warehouse Elements

C. The XML Document of the Crisp
Fuzzy Data Warehouse Elements

<?xml version="1.0" encoding="UTF-8"7>
<dwh xmlns="http://diuf.unifr.ch/is/fdwh" xmlns:xsi="http://www
.w3.0rg /2001 /XMLSchema—instance" xsi:schemalLocation="http://
diuf.unifr.ch/is /fdwh_file: /Users/faseldan /Documents/Uni/IS
%20Group/0—Doktorat /xml/cube . xsd">
<cube>
<fact>
<relation>
<table>fact</table>
<key>f id</key>
</relation>
<measure>
<column>
<column>revenue</column>
< /column>
<aggregator>SUM< /aggregator>
</measure>
<measure>
<column>
<column>user rating</column>
<display>User Rating</display>
</column>
<aggregator>AVG</aggregator>
</measure>
</fact>
<dimensions>
<dimension>
<name>Time< /name>
<hierarchy>
<name>Time Month</name>
<relation>
<relation>
<join>
<relation>

214

C The XML Document of the Crisp Fuzzy Data Warehouse Elements

<table>day</table>
<key>fk m</key>
</relation>
<relation>
<join>
<relation>
<table>month</table>
<key>tk y</key>
</relation>
<relation>
<table>year</table>
<key>y id</key>
</relation>
</join>
<key>m_id</key>
</relation>
</join>
<key>d id</key>
</relation>
<key>tk d</key>
</relation>
<level>
<name>day</name>
<relation>
<table>day</table>
<key>d id</key>
<column>
<column>weekday</column>
<display>Week Day</display>
</column>
</relation>
</level>
<level>
<name>month< /name>
<relation>
<table>month</table>
<key>m_id</key>
<column>
<column>monthname</column>
<display>Month</display>
</column>
</relation>
</level>
<level>

215

C The XML Document of the Crisp Fuzzy Data Warehouse Elements

<name>year</name>
<relation>
<table>year</table>
<key>y id</key>
<column>
<column>year</column>
<display>Year</display>
</column>
</relation>
</level>
</hierarchy>
<hierarchy>
<name>Time Week</name>
<relation>
<relation>
<join>
<relation>
<table>day</table>
<key>tk w</key>
</relation>
<relation>
<join>
<relation>
<table>week</table>
<key>tk y</key>
</relation>
<relation>
<table>year</table>
<key>y id</key>
</relation>
</join>
<key>w_id</key>
</relation>
</join>
<key>d id</key>
</relation>
<key>tk d</key>
</relation>
<level>
<name>day</name>
<relation>
<table>day</table>
<key>d id</key>
<column>

216

C The XML Document of the Crisp Fuzzy Data Warehouse Elements

<column>weekday</column>
<display>Week Day</display>
</column>
</relation>
</level>
<level>
<name>week< /name>
<relation>
<table>week</table>
<key>w_id</key>
<column>
<column>week</column>
<display>Week Number</display>
</column>
</relation>
</level>
<level>
<name>year</name>
<relation>
<table>year</table>
<key>y id</key>
<column>
<column>year</column>
<display>Year</display>
</column>
</relation>
</level>
</hierarchy>
</dimension>
<dimension>
<name>Movie</name>
<hierarchy>
<name>Movie Category</name>
<relation>
<relation>
<join>
<relation>
<table>movie</table>
<key>m_id</key>
</relation>
<relation>
<join>
<relation>
<table>mov_cat_ bridge</table>

217

C The XML Document of the Crisp Fuzzy Data Warehouse Elements

<key>c_id</key>
</relation>
<relation>
<table>category</table>
<key>c id</key>
</relation>
</join>
<key>m_id</key>
</relation>
</join>
<key>m _id</key>
</relation>
<key>tk m</key>
</relation>
<level>
<name>movie</name>
<relation>
<table>movie</table>
<key>m_id</key>
<column>
<column>name</column>
<display>Name</display>
</column>
<column>
<column>overview</column>
<display>Overview</display>
</column>
<column>
<column>director</column>
<display>Director</display>
</column>
<column>
<column>actors</column>
<display>Actors</display>
</column>
<column>
<column>release date</column>
<display>Released</display>
</column>
<column>
<column>runtime</column>
<display>Runtime</display>
</column>
</relation>

218

C The XML Document of the Crisp Fuzzy Data Warehouse Elements

</level>
<level>
<name>category</name>
<relation>
<table>category</table>
<key>c_id</key>
<column>
<column>category</column>
<display>Category</display>
</column>
</relation>
<bridge>
<relation>
<table>mov_cat bridge</table>
<key>c_id</key>
</relation>
<weight>weight</weight>
<factor>PROD</factor>
</bridge>
</level>
</hierarchy>
<hierarchy>
<name>Movie Producer</name>
<relation>
<relation>
<join>
<relation>
<table>movie</table>
<key>m_id</key>
</relation>
<relation>
<join>
<relation>
<table>mov_ prod bridge</table>
<key>p id</key>
</relation>
<relation>
<table>producer</table>
<key>p id</key>
</relation>
</join>
<key>m_id</key>
</relation>
</join>

219

C The XML Document of the Crisp Fuzzy Data Warehouse Elements

<key>m_id</key>
</relation>
<key>tk m</key>
</relation>
<level>
<name>movie</name>
<relation>
<table>movie</table>
<key>m_id</key>
<column>
<column>name</column>
<display>Name</display>
</column>
<column>
<column>overview</column>
<display>Overview</display>
</column>
<column>
<column>director</column>
<display>Director</display>
< /column>
<column>
<column>actors</column>
<display>Actors</display>
</column>
<column>
<column>release date</column>
<display>Released</display>
</column>
<column>
<column>runtime</column>
<display>Runtime</display>
</column>
</relation>
</level>
<level>
<name>Producer</name>
<relation>
<table>producer</table>
<key>p id</key>
<column>
<column>studio</column>
<display>Producer Studio</display>
</column>

220

C The XML Document of the Crisp Fuzzy Data Warehouse Elements

</relation>
<bridge>
<relation>
<table>mov_prod bridge</table>
<key>p id</key>
</relation>
<weight>weight</weight>
<factor>PROD</factor>
</bridge>
</level>
</hierarchy>
</dimension>
<dimension>
<name>Type</name>
<hierarchy>
<name>Type</name>
<relation>
<relation>
<table>type</table>
<key>t id</key>
</relation>
<key>fk t</key>
</relation>
<level>
<name>Type</name>
<relation>
<table>type</table>
<key>t id</key>
<column>
<column>type</column>
<display>Type</display>
</column>
</relation>
</level>
</hierarchy>
</dimension>
<dimension>
<name>Customer< /name>
<hierarchy>
<name>Customer</name>
<relation>
<relation>
<table>customer</table>
<key>c_id</key>

221

C The XML Document of the Crisp Fuzzy Data Warehouse Elements

</relation>
<key>fk c</key>
</relation>
<level>
<name>customer</name>
<relation>
<table>customer</table>
<key>c_id</key>
<column>
<column>name</column>
<display>Name</display>
</column>
<column>
<column>bday</column>
<display>Birth Day</display>
</column>
<column>
<column>address</column>
<display>Address</display>
</column>
</relation>
</level>
</hierarchy>
</dimension>
<dimension>
<name>Employee< /name>
<hierarchy>
<name>Employee< /name>
<relation>
<relation>
<table>employee</table>
<key>e id</key>
</relation>
<key>fk e</key>
</relation>
<level>
<name>Employee< /name>
<relation>
<table>employee</table>
<key>e id</key>
<column>
<column>name</column>
<display>Name</display>
</column>

222

C The XML Document of the Crisp Fuzzy Data Warehouse Elements

<column>
<column>bday</column>
<display>Birth Day</display>
</column>
</relation>
</level>
</hierarchy>
</dimension>
<dimension>
<name>Store</name>
<hierarchy>
<name>store</name>
<relation>
<relation>
<join>
<relation>
<table>store</table>
<key>fk c</key>
</relation>
<relation>
<join>
<relation>
<table>city</table>
<key>fk r</key>
</relation>
<relation>
<table>region</table>
<key>r id</key>
</relation>
</join>
<key>c id</key>
</relation>
</join>
<key>s id</key>
</relation>
<key>fk s</key>
</relation>
<level>
<name>Store</name>
<relation>
<table>store</table>
<key>s id</key>
<column>
<column>name</column>

223

C The XML Document of the Crisp Fuzzy Data Warehouse Elements

<display>Name</display>
</column>
<column>
<column>surface</column>
<display>Surface</display>
</column>
</relation>
</level>
<level>
<name>City</name>
<relation>
<table>city</table>
<key>c_id</key>
<column>
<column>name</column>
<display>Name</display>
</column>
</relation>
</level>
<level>
<name>Region</name>
<relation>
<table>region</table>
<key>r id</key>
<column>
<column>region</column>
<display>Region</display>
</column>
</relation>
</level>
</hierarchy>
</dimension>
</dimensions>
</cube>
< /dwh>

Listing C.1: The XML Document of the Crisp Fuzzy Data Warehouse Elements

224

D The XML Document of the Fuzzy Concepts

D. The XML Document of the
Fuzzy Concepts

<?xml version="1.0" encoding="UTF-8"7>
<concepts xmlns="http://diuf.unifr.ch/is/fc" xmlns:xsi="http://

www.w3.org /2001 /XMLSchema—instance" xsi:schemaLocation="

http://diuf.unifr.ch/is/fc_file: /Users/faseldan/Documents/
Uni/IS%20Group/0—Doktorat /xml/fuzzy . xsd">
<fconcept>
<name>Store Surface</name>
<relation>
<ta>
<table>store</table>
<key>s id</key>
<target>
<column>surface</column>
</target>
</ta>
<fmt>fmt storesurf</fmt>
<fct>fct storesurf</fct>
<memfunc>fc_storesurf ()</memfunc>
<trigger>
<table>store</table>
<name>fc _storesurf trigger</name>
</trigger>
</relation>
<aggregation>
<propagation>
<fconcept>
<name>City Store Surface</name>
<relation>
<ta>
<table>city</table>
<key>c_id</key>
<target>
<query>select c¢_id as id, sum(surface) as ta
from fdwh.store join fdwh.city on store.fk ¢

225

D The XML Document of the Fuzzy Concepts

= city.c_id group by c_id</query>
</target>
</ta>
<fmt>fmt storesurf city</fmt>
<fct>fct storesurf</fct>
<memfunc>fc storesurf prop(’city’)</memfunc>
<trigger>
<table>store</table>
<name>fc storesurf city trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Region store surface</name>
<relation>
<ta>
<table>region</table>
<key>r id</key>
<target>
<query>select r_id, sum(surface) as ta from
fdwh.store join fdwh.city on store.fk c¢ =
city.c_id join fdwh.region on city.fk r =
region.r id group by r id</query>
</target>
</ta>
<fmt>fmt storesurf region</fmt>
<fct>fct storesurf</fct>
<memfunc>fct storesurf prop(’region’)</memfunc>
<trigger>
<table>store</table>
<name>fc storesurf region trigger</name>
</trigger>
</relation>
</fconcept>
</propagation>
</aggregation>
</fconcept>
<fconcept>
<name>Customer Revenue</name>
<relation>
<ta>
<table>customer</table>
<key>c_id</key>
<target>

226

D The XML Document of the Fuzzy Concepts

<query>select c¢_id as id, sum(revenue) as ta from
fdwh.fact join fdwh.customer on fact.fk c¢ =
customer.c_id group by c_id</query>
</target>
</ta>
<fmt>fmt custrev</fmt>
<fet>fct custrev</fct>
<memfunc>fc custrev ()</memfunc>
<trigger>
<table>fact</table>
<name>fc custrev trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Customer Age</name>
<relation>
<ta>
<table>customer</table>
<key>c_id</key>
<target>
<query>select c¢_id as id, extract(years from age(bday
)) as ta from fdwh.customer</query>
</target>
</ta>
<fmt>fmt custage</fmt>
<fct>fct custage</fct>
<memfunc>fc custage ()</memfunc>
<trigger>
<table>customer</table>
<name>fc custage trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Employee Age</name>
<relation>
<ta>
<table>employee</table>
<key>e id</key>
<target>
<query>select e id as id, extract(years from age(bday
)) as ta from fdwh.employee</query>
</target>

227

D The XML Document of the Fuzzy Concepts

</ta>
<fmt>fmt emplage</fmt>
<fct>fct _emplage</fct>
<memfunc>fc_emplage ()</memfunc>
<trigger>
<table>employee</table>
<name>fc_emplage trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>User Rating</name>
<relation>
<ta>
<table>fact</table>
<key>f id</key>
<target>
<column>user rating</column>
</target>
</ta>
<fmt>fmt rating</fmt>
<fct>fct rating</fct>
<memfunc>fc_ rating ()</memfunc>
<trigger>
<table>fact</table>
<name>fc rating trigger</name>
</trigger>
</relation>
<aggregation>
<aggregator>AVG</aggregator>
</aggregation>
</fconcept>
<fconcept>
<name>Movie Genre</name>
<relation>
<ta>
<table>movie</table>
<key>m_id</key>
<target>
<column>m_id</column>
</target>
</ta>
<fmt>fmt movcat</fmt>
<fet>fct movcat</fct>

228

D The XML Document of the Fuzzy Concepts

<memfunc />
<trigger>
<table />
<name />
</trigger>
</relation>
<aggregation>
<aggregator>AVG</aggregator>
</aggregation>
</fconcept>
<fconcept>
<name>Revenue</name>
<relation>
<ta>
<table>fact</table>
<key>f id</key>
<target>
<column>revenue</column>
</target>
</ta>
<fmt>fmt revenue</fmt>
<fct>fct revenue</fct>
<memfunc>fc revenue</memfunc>
<trigger>
<table>revenue</table>
<name>fc revenue trigger</name>
</trigger>
</relation>
<aggregation>
<propagation>
<fconcept>
<name>Movie Revenue</name>
<relation>
<ta>
<table>movie</table>
<key>m_id</key>
<target>
<query>select m_id as id, sum(revenue) as ta
from fdwh.fact join fdwh.movie on fact.fk m
= movie.m_id group by m id</query>
</target>
</ta>
<fmt>fmt revenue movie</fmt>
<fct>fct _revenue</fct>

229

D The XML Document of the Fuzzy Concepts

<memfunc>fc_revenue prop(movie’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc revenue movie trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Category Revenue</name>
<relation>
<ta>
<table>category</table>
<key>c_id</key>
<target>
<query>select category.c id as id, sum(revenue)
as ta from fdwh.fact join fdwh.movie on
fact .tk m = movie.m id join fdwh.
mov_cat bridge on movie.m id =
mov_cat bridge.m_id join fdwh.category on
mov _cat bridge.c id = category.c id group by
category.c id</query>
</target>
</ta>
<fmt>fmt revenue category</fmt>
<fct>fct _revenue</fct>
<memfunc>fc revenue prop(’category’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc _revenue category trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Producer Revenue</name>
<relation>
<ta>
<table>producer</table>
<key>p id</key>
<target>
<query>
SELECT producer.p id AS id, SUM(revenue) AS ta FROM
fdwh. fact INNER JOIN fdwh.movie ON fdwh. fact .tk m
=fdwh . movie.m_id
INNER JOIN fdwh.mov cat bridge ON fdwh.movie.m_ id=

230

D The XML Document of the Fuzzy Concepts

fdwh.mov cat bridge.m id
INNER JOIN fdwh.mov prod bridge ON fdwh.movie.m_ id=
fdwh.mov_prod bridge.m _id
INNER JOIN fdwh.producer ON fdwh.mov_ prod bridge.
p_id=fdwh.producer.p id
GROUP BY producer.p id
</query>
</target>
</ta>
<fmt>fmt revenue producer</fmt>
<fct>fct revenue</fct>
<memfunc>fc_revenue prop(’producer’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc revenue producer trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Employee Revenue</name>
<relation>
<ta>
<table>employee</table>
<key>e id</key>
<target>
<query>select e _id as id, sum(revenue) as ta
from fdwh.fact join fdwh.employee on fact.
fk e = employee.e id group by e id</query>
</target>
</ta>
<fmt>fmt revenue employee</fmt>
<fct>fct _revenue</fct>
<memfunc>fc_ revenue prop(’employee’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc _revenue employee trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Type Revenue</name>
<relation>
<ta>
<table>type</table>

231

D The XML Document of the Fuzzy Concepts

<key>t id</key>
<target>
<query>select t id as id, sum(revenue) as ta
from fdwh.fact join fdwh.type on fact.fk t =
type.t id group by t id</query>
</target>
</ta>
<fmt>fmt_ revenue type</fmt>
<fct>fct _revenue</fct>
<memfunc>fc _revenue prop(’type’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc_revenue type trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Customer Revenue Propagated</name>
<relation>
<ta>
<table>customer</table>
<key>c_id</key>
<target>
<query>select ¢ _id as id, sum(revenue) as ta
from fdwh.fact join fdwh.customer on fact.
fk ¢ = customer.c id group by c¢ id</query>
</target>
</ta>
<fmt>fmt revenue customer</fmt>
<fct>fct _revenue</fct>
<memfunc>fc_revenue prop(’customer’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc _revenue customer trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Store Revenue</name>
<relation>
<ta>
<table>store</table>
<key>s id</key>
<target>

232

D The XML Document of the Fuzzy Concepts

<query>select s _id as id, sum(revenue) as ta
from fdwh.fact join fdwh.store on fact.fk s
= store.s_id group by s_id</query>
</target>
</ta>
<fmt>fmt revenue store</fmt>
<fct>fct _revenue</fct>
<memfunc>fc_revenue prop(’store’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc revenue store trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>City Revenue</name>
<relation>
<ta>
<table>city</table>
<key>c id</key>
<target>
<query>select ¢ _id as id, sum(revenue) as ta
from fdwh.fact join fdwh.store on fact.fk s
= store.s _id join fdwh.city on store.fk ¢ =
city.c_id group by c_id</query>
</target>
</ta>
<fmt>fmt revenue city</fmt>
<fct>fct revenue</fct>
<memfunc>fc_revenue prop(’city ’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc _revenue city trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Region Revenue</name>
<relation>
<ta>
<table>region</table>
<key>r id</key>
<target>
<query>select r_id as id, sum(revenue) as ta

233

D The XML Document of the Fuzzy Concepts

from fdwh.fact join fdwh.store on fact.fk s
= store.s_id join fdwh.city on store.fk ¢ =
city.c_id join fdwh.region on city.fk r =
region.r_id group by r id</query>
</target>
</ta>
<fmt>fmt revenue region</fmt>
<fct>fct revenue</fct>
<memfunc>fc_revenue prop(’region’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc _revenue region trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Day Revenue</name>
<relation>
<ta>
<table>day</table>
<key>s id</key>
<target>
<query>select d_id as id, sum(revenue) as ta
from fdwh.fact join fdwh.day on fact.fk d =
day.d id group by d_id</query>
</target>
</ta>
<fmt>fmt revenue day</fmt>
<fct>fct revenue</fct>
<memfunc>fc_revenue_ prop(’day’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc_revenue day trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Month Revenue</name>
<relation>
<ta>
<table>month</table>
<key>m_id</key>
<target>
<query>select m_id as id, sum(revenue) as ta

234

D The XML Document of the Fuzzy Concepts

from fdwh.fact join fdwh.day on fact.fk d =
day.d id join fdwh.month on day.fk m = month
.m_id group by m_id</query>
</target>
</ta>
<fmt>fmt revenue month</fmt>
<fct>fct _revenue</fct>
<memfunc>fc_revenue prop(’month’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc_revenue month trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Week Revenue</name>
<relation>
<ta>
<table>week</table>
<key>w_id</key>
<target>
<query>select w_id as id, sum(revenue) as ta
from fdwh.fact join fdwh.day on fact.fk d =
day.d id join fdwh.week on day.fk w = week.
w_id group by w_id</query>
</target>
</ta>
<fmt>fmt revenue week</fmt>
<fct>fct revenue</fct>
<memfunc>fc_revenue prop(’week’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc_revenue week trigger</name>
</trigger>
</relation>
</fconcept>
<fconcept>
<name>Year Revenue</name>
<relation>
<ta>
<table>year</table>
<key>y id</key>
<target>
<query>select y_id as id, sum(revenue) as ta

235

D The XML Document of the Fuzzy Concepts

from fdwh.fact join fdwh.day on fact.fk m =
day.d id join fdwh.month on day.fk m = month

.m_id join fdwh.year on month.fk y = year.
y_id group by y_id</query>
</target>

</ta>
<fmt>fmt revenue year</fmt>
<fct>fct revenue</fct>
<memfunc>fc_revenue prop(’year’)</memfunc>
<trigger>
<table>revenue</table>
<name>fc revenue year trigger</name>
</trigger>
</relation>
</fconcept>
</propagation>
<volatile>
<ta>revenue</ta>
<proc>fc_revenue volatile</proc>
</volatile>
</aggregation>
</fconcept>
</concepts>

Listing D.1: The XML Document of the Fuzzy Concepts

236

	Introduction
	Motivation
	Research Methodology
	Chapter Overview
	Publications

	Concept
	Fundamental Concepts
	Data Warehouse Concepts
	Dimension
	Fact
	Summarizability
	Star and Snowflake Schema
	Classical Operations

	Concepts of Fuzzy Logic
	Fuzzy Set Theory
	Linguistic Concepts
	Application of Fuzzy Logic

	Fuzzy Data Warehouse
	Existing Research
	Data Warehouse Approaches for Handling Imprecise Data
	Approaches for Implementing Fuzziness into Data Warehouse
	The Feng and Dillon Framework for Implementing Fuzziness into Data Warehouse
	Evaluation and Comparison of the Existing Approaches

	Fuzzy Data Warehouse Concept
	Basic Definitions and Fuzzy Meta Tables
	Fuzzy Data Warehouse Model
	Guidelines for Modeling the Fuzzy Data Warehouse
	The Fuzzy Data Warehouse Meta Model

	A Method for Modeling a Fuzzy Data Warehouse
	Defining Classification Elements
	Building Fuzzy Data Warehouse Model

	Characteristics of Fuzzy Concepts in Fuzzy Data Warehouse
	Types of Fuzzy Concepts
	Aggregation and Propagation of Fuzzy Concepts
	Persistency of Target Attributes
	Metaschema for Fuzzy Concepts
	Calculation of Membership Function

	Operations in Fuzzy Data Warehouse
	Classical Data Warehouse Operations in Fuzzy Data Warehouse
	Fuzzifying and Defuzzifying Cubes
	Aggregations with Fuzzy Concept

	Application
	Application of Fuzzy Data Warehouse
	The Movie Rental Company
	Integration of Fuzzy Concepts in the Data Warehouse
	Dimension Movie
	Dimension Customer
	Dimension Employee
	Dimension Store
	Fact Revenue
	Fact User Rating
	Fuzzy Data Warehouse Schema

	Using the Fuzzy Data Warehouse

	Implementation
	Implementation
	Architectural Overview
	Database
	Business Logic
	XML Schema for Dimensions and Facts
	XML Schema for Fuzzy Concepts
	The Query and the Fuzzy Concept Administration Engine

	Visualization
	Navigation of the Fuzzy Data Warehouse
	Administration of Fuzzy Concepts

	Evaluation and Conclusion
	Evaluation and Conclusion
	Evaluation
	Concept
	Application and Implementation
	Further Outlook

	Conclusion

	The XML Schema of the Crisp Part
	The XML Schema of the Fuzzy Part
	The XML Document of the Crisp Fuzzy Data Warehouse Elements
	The XML Document of the Fuzzy Concepts

