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ADMIT

AdMit
A package for constructing and using an adaptive
mixture of Student-t distributions as a flexible can-
didate distribution for efficient simulation.

by David Ardia, Lennart F. Hoogerheide and Herman K.
van Dijk

Introduction

This note presents the package AdMit (Ardia et al.,
2008, 2009), an R implementation of the adaptive
mixture of Student-t distributions (AdMit) proce-
dure developed by Hoogerheide (2006); see also
Hoogerheide et al. (2007); Hoogerheide and van Dijk
(2008). The AdMit strategy consists of the construc-
tion of a mixture of Student-t distributions which
approximates a target distribution of interest. The
fitting procedure relies only on a kernel of the tar-
get density, so that the normalizing constant is not
required. In a second step, this approximation is
used as an importance function in importance sam-
pling or as a candidate density in the independence
chain Metropolis-Hastings (M-H) algorithm to esti-
mate characteristics of the target density. The esti-
mation procedure is fully automatic and thus avoids
the difficult task, especially for non-experts, of tun-
ing a sampling algorithm. Typically, the target is a
posterior distribution in a Bayesian analysis, where
we indeed often only know a kernel of the posterior
density.

In a standard case of importance sampling or the
independence chain M-H algorithm, the candidate
density is unimodal. If the target distribution is mul-
timodal then some draws may have huge weights
in the importance sampling approach and a second
mode may be completely missed in the M-H strat-
egy. As a consequence, the convergence behavior of
these Monte Carlo integration methods is rather un-
certain. Thus, an important problem is the choice of
the importance or candidate density, especially when
little is known a priori about the shape of the target
density. For both importance sampling and the in-
dependence chain M-H, it holds that the candidate
density should be close to the target density, and it
is especially important that the tails of the candidate
should not be thinner than those of the target.

Hoogerheide (2006) and Hoogerheide et al. (2007)
mention several reasons why mixtures of Student-t
distributions are natural candidate densities. First,
they can provide an accurate approximation to a
wide variety of target densities, with substantial
skewness and high kurtosis. Furthermore, they
can deal with multi-modality and with non-elliptical
shapes due to asymptotes. Second, this approxima-
tion can be constructed in a quick, iterative proce-
dure and a mixture of Student-t distributions is easy

to sample from. Third, the Student-t distribution has
fatter tails than the Normal distribution; especially
if one specifies Student-t distributions with few de-
grees of freedom, the risk is small that the tails of
the candidate are thinner than those of the target
distribution. Finally, Zeevi and Meir (1997) showed
that under certain conditions any density function
may be approximated to arbitrary accuracy by a con-
vex combination of basis densities; the mixture of
Student-t distributions falls within their framework.

The package AdMit consists of three main func-
tions: AdMit, AdMitIS and AdMitMH. The first one
allows the user to fit a mixture of Student-t distri-
butions to a given density through its kernel func-
tion. The next two functions perform importance
sampling and independence chain M-H sampling us-
ing the fitted mixture estimated by AdMit as the im-
portance or candidate density, respectively.

To illustrate the use of the package, we apply the
AdMit methodology to a bivariate bimodal distribu-
tion. We describe the use of the functions provided
by the package and document the ability and rele-
vance of the methodology to reproduce the shape of
non-elliptical distributions.

Illustration

This section presents the functions provided by the
package AdMit with an illustration of a bivariate bi-
modal distribution. This distribution belongs to the
class of conditionally Normal distributions proposed
by Gelman and Meng (1991) with the property that
the joint density is not Normal. It is not a posterior
distribution, but it is chosen because it is a simple
distribution with non-elliptical shapes so that it al-
lows for an easy illustration of the AdMit approach.

Let X1 and X2 be two random variables, for
which X1 is Normally distributed given X2 and vice
versa. Then, the joint distribution, after location and
scale transformations in each variable, can be written
as (see Gelman and Meng, 1991):

p(x) ∝ k(x) .= exp
[
− 1

2
(

Ax2
1x2

2 + x2
1 + x2

2

− 2Bx1x2 − 2C1x1 − 2C2x2
)] (1)

where p(x) denotes a density, k(x) a kernel and x .=
(x1, x2)′ for notational purposes. A, B, C1 and C2 are
constants; we consider an asymmetric case in which
A = 5, B = 5, C1 = 3, C2 = 3.5 in what follows.

The adaptive mixture approach determines the
number of mixture components H, the mixing prob-
abilities, the modes and scale matrices of the compo-
nents in such a way that the mixture density q(x) ap-
proximates the target density p(x) of which we only
know a kernel function k(x) with x ∈ Rd. Typically,
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k(x) will be a posterior density kernel for a vector of
model parameters x.

The AdMit strategy consists of the following
steps:

(0) Initialization: computation of the mode and
scale matrix of the first component, and draw-
ing a sample from this Student-t distribution;

(1) Iterate on the number of components: add a
new component that covers a part of the space
of x where the previous mixture density was
relatively small, as compared to k(x);

(2) Optimization of the mixing probabilities;

(3) Drawing a sample {x[i]} from the new mixture
q(x);

(4) Evaluation of importance sampling weights
{k(x[i])/q(x[i])}. If the coefficient of variation,
i.e. the standard deviation divided by the
mean, of the weights has converged, then stop.
Otherwise, go to step (1). By default, the adap-
tive procedure stops if the relative change in
the coefficient of variation of the importance
sampling weights caused by adding one new
Student-t component to the candidate mixture
is less than 10%.

There are two main reasons for using the coefficient
of variation of the importance sampling weights as
a measure of the fitting quality. First, it is a nat-
ural, intuitive measure of quality of the candidate
as an approximation to the target. If the candidate
and the target distributions coincide, all importance
sampling weights are equal, so that the coefficient
of variation is zero. For a poor candidate that not
even roughly approximates the target, some impor-
tance sampling weights are huge while most are (al-
most) zero, so that the coefficient of variation is high.
The better the candidate approximates the target, the
more evenly the weight is divided among the can-
didate draws, and the smaller the coefficient of vari-
ation of the importance sampling weights. Second,
Geweke (1989) argues that a reasonable objective in
the choice of an importance density is the minimiza-
tion of the variance, or equivalently the coefficient of
variation, of the importance weights. We prefer to
quote the coefficient of variation because it does not
depend on the number of draws or the integration
constant of the posterior density kernel, unlike the
standard deviation of the scaled or unscaled impor-
tance weights, respectively. The coefficient of varia-
tion merely reflects the quality of the candidate as an
approximation to the target.

Note also that all Student-t components in the
mixture approximation q(x) have the same degrees
of freedom parameter. Moreover, this value is not
determined by the procedure but set by the user; by
default, the algorithm uses the value one (i.e. the ap-
proximation density is a mixture of Cauchy) since i)

it enables the method to deal with fat-tailed target
distributions and ii) it makes it easier for the iterative
procedure to detect modes that are far apart. There
may be a trade-off between efficiency and robustness
at this point: setting the degrees of freedom to one re-
flects that we find a higher robustness more valuable
than a slight possible gain in efficiency.

The core function provided by the package is the
function AdMit. The main arguments of the function
are: KERNEL, a kernel function of the target density on
which the approximation is constructed. This func-
tion must contain the logical argument log. When
log = TRUE, the function KERNEL returns the loga-
rithm value of the kernel function; this is used for nu-
merical stability. mu0 is the starting value of the first
stage optimization; it is a vector whose length corre-
sponds to the length of the first argument in KERNEL.
Sigma0 is the (symmetric positive definite) scale ma-
trix of the first component. If a matrix is provided by
the user, it is used as the scale matrix of the first com-
ponent and then mu0 is used as the mode of the first
component (instead of a starting value for optimiza-
tion). control is a list of tuning parameters, contain-
ing in particular: df (default: 1), the degrees of free-
dom of the mixture components and CVtol (default:
0.1), the tolerance of the relative change of the co-
efficient of variation. For further details, the reader
is referred to the documentation manual (by typing
?AdMit) or to Ardia et al. (2009). Finally, the last ar-
gument of AdMit is ... which allows the user to pass
additional arguments to the function KERNEL.

Let us come back to our bivariate conditionally
Normal distribution. First, we need to code the ker-
nel:

> GelmanMeng <- function(x, log = TRUE)

+ {

+ if (is.vector(x))

+ x <- matrix(x, nrow = 1)

+ r <- -0.5 * ( 5 * x[,1]^2 * x[,2]^2

+ + x[,1]^2 + x[,2]^2

+ - 10 * x[,1] * x[,2]

+ - 6 * x[,1] - 7 * x[,2] )

+ if (!log)

+ r <- exp(r)

+ as.vector(r)

+ }

Note that the argument log is set to TRUE by default
so that the function outputs the logarithm of the ker-
nel. Moreover, the function is vectorized to speed up
the computations. The contour plot of GelmanMeng is
displayed in the left part of Figure 1.

We now use the function AdMit to find a suit-
able approximation for the density whose kernel is
GelmanMeng. We use the starting value mu0 = c(0,
0.1) for the first stage optimization and assign the
result of the function to outAdMit.

> set.seed(1234)

> outAdMit <- AdMit(KERNEL = GelmanMeng,

+ mu0 = c(0, 0.1))
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Figure 1: Left: contour plot of the kernel GelmanMeng. Right: contour plot of the four-component Student-t
mixture approximation estimated by the function AdMit.

$CV

[1] 8.0737 1.7480 0.9557 0.8807

$mit

$mit$p

cmp1 cmp2 cmp3 cmp4

0.54707 0.14268 0.21053 0.09972

$mit$mu

k1 k2

cmp1 0.3640 3.2002

cmp2 3.7088 0.3175

cmp3 1.4304 1.1240

cmp4 0.8253 2.0261

$mit$Sigma

k1k1 k1k2 k2k1 k2k2

cmp1 0.03903 -0.15606 -0.15606 1.22561

cmp2 0.86080 -0.08398 -0.08398 0.02252

cmp3 0.13525 -0.06743 -0.06743 0.09520

cmp4 0.03532 -0.04072 -0.04072 0.21735

$mit$df

[1] 1

$summary

H METHOD.mu TIME.mu METHOD.p TIME.p CV

1 1 BFGS 0.21 NONE 0.00 8.0737

2 2 BFGS 0.08 NLMINB 0.08 1.7480

3 3 BFGS 0.12 NLMINB 0.08 0.9557

4 4 BFGS 0.20 NLMINB 0.19 0.8807

The output of the function AdMit is a list. The first
component is CV, a vector of length H which gives the
value of the coefficient of variation of the importance
sampling weights at each step of the adaptive fit-
ting procedure. The second component is mit, a list

which consists of four components giving informa-
tion on the fitted mixture of Student-t distributions:
p is a vector of length H of mixing probabilities, mu
is a H × d matrix whose rows give the modes of the
mixture components, Sigma is a H× d2 matrix whose
rows give the scale matrices (in vector form) of the
mixture components and df is the degrees of free-
dom of the Student-t components. The third compo-
nent of the list returned by AdMit is summary. This is
a data frame containing information on the adaptive
fitting procedure. We refer the reader to the docu-
mentation manual for further details.

For the kernel GelmanMeng, the approximation
constructs a mixture of four components. The value
of the coefficient of variation decreases from 8.0737
to 0.8807. A contour plot of the four-component ap-
proximation is displayed in the right-hand side of
Figure 1. This graph is produced using the func-
tion dMit which returns the density of the mixture
given by the output outAdMit$mit. The contour plot
illustrates that the four-component mixture provides
a good approximation of the density: the areas with
substantial target density mass are covered by suffi-
cient density mass of the mixture approximation.

Once the adaptive mixture of Student-t distribu-
tions is fitted to the density using a kernel, the ap-
proximation provided by AdMit is used as the impor-
tance sampling density in importance sampling or as
the candidate density in the independence chain M-
H algorithm.

The AdMit package contains the AdMitIS func-
tion which performs importance sampling using the
mixture approximation in outAdMit$mit as the im-
portance density. The arguments of the function
AdMitIS are: (i) N, the number of draws used in im-
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portance sampling; (ii) KERNEL, a kernel function of
the target density; (iii) G, the function of which the
expectation IEp

[
g(x)

]
is estimated; By default, the

function G is the identity so that the function outputs
a vector containing the mean estimates for the com-
ponents of x. Alternative functions may be provided
by the user to obtain other quantities of interest for
p(x). The only requirement is that the function out-
puts a matrix; (iv) mit, a list providing information
on the mixture approximation; (v) ... allows addi-
tional parameters to be passed to the function KERNEL
and/or G.

Let us apply the function AdMitIS to the kernel
GelmanMeng using the approximation outAdMit$mit:

> outAdMitIS <- AdMitIS(N = 1e5,

+ KERNEL = GelmanMeng,

+ mit = outAdMit$mit)

$ghat

[1] 0.9556 2.2465

$NSE

[1] 0.003833 0.005639

$RNE

[1] 0.6038 0.5536

The output of the function AdMitIS is a list. The first
component is ghat, the importance sampling estima-
tor of IEp

[
g(x)

]
. The second component is NSE, a

vector containing the numerical standard errors (the
variation of the estimates that can be expected if the
simulations were to be repeated) of the components
of ghat. The third component is RNE, a vector con-
taining the relative numerical efficiencies of the com-
ponents of ghat (the ratio between an estimate of the
variance of an estimator based on direct sampling
and the importance sampling estimator’s estimated
variance with the same number of draws). RNE is an
indicator of the efficiency of the chosen importance
function; if target and importance densities coincide,
RNE equals one, whereas a very poor importance den-
sity will have a RNE close to zero. Both NSE and RNE
are estimated by the method given in Geweke (1989).

Further, the AdMit package contains the AdMitMH
function which uses the mixture approximation in
outAdMit$mit as the candidate density in the inde-
pendence chain M-H algorithm. The arguments of
the function AdMitMH are: (i) N, the length of the
MCMC sequence of draws; (ii) KERNEL, a kernel func-
tion of the target density; (iii) mit, a list providing in-
formation on the mixture approximation; (iv) ... al-
lows additional parameters to be passed to the func-
tion KERNEL.

Let us apply the function AdMitMH to the kernel
GelmanMeng using the approximation outAdMit$mit:

> outAdMitMH <- AdMitMH(N = 101000,

+ KERNEL = GelmanMeng,

+ mit = outAdMit$mit)

$draws

k1 k2

1 7.429e-01 3.021e-01

2 7.429e-01 3.021e-01

3 7.429e-01 3.021e-01

4 1.352e+00 1.316e+00

5 1.011e+00 1.709e+00

6 1.011e+00 1.709e+00

7 1.005e+00 1.386e+00

...

$accept

[1] 0.5119

The output of the function AdMitMH is a list of two
components. The first component is draws, a N × d
matrix containing draws from the target density p(x)
in its rows. The second component is accept, the ac-
ceptance rate of the independence chain M-H algo-
rithm.

The package coda (Plummer et al., 2008) can
be used to check the convergence of the MCMC
chain and obtain quantities of interest for p(x).
Here, for simplicity, we discard the first 1’000
draws as a burn-in sample and transform the output
outAdMitMH$draws in a mcmc object using the func-
tion as.mcmc provided by coda. A summary of the
MCMC chain can be obtained using summary:

> library("coda")

> draws <- as.mcmc(outAdMitMH$draws)

> window(draws, start = 1001)

> colnames(draws) <- c("X1", "X2")

> summary(draws)$stat

Mean SD Naive SE Time-series SE

X1 0.9643 0.9476 0.002996 0.004327

X2 2.2388 1.3284 0.004201 0.006232

We note that the mean estimates are close to the val-
ues obtained with the function AdMitIS. The relative
numerical efficiency (RNE) can be computed using
the functions effectiveSize and niter:

> effectiveSize(draws) / niter(draws)

X1 X2

0.3082 0.3055

These relative numerical efficiencies reflect the good
quality of the candidate density in the independence
chain M-H algorithm.

The approach is compared to the standard Gibbs
sampler, which is extremely easy to implement here
since the full conditional densities are Normals. We
generated N = 101000 draws from a Gibbs sampler
using the first 1’000 draws as a burn-in period. In
this case, the RNE were 0.06411 and 0.07132, respec-
tively. In Figure 2 we display the autocorrelogram
for the MCMC output of the AdMitMH function (up-
per graphs) together with the autocorrelogram of the
Gibbs (lower part). We clearly notice that the Gibbs
sequence is mixing much more slowly, explaining the
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Figure 2: Upper graphs: Autocorrelation function (ACF) for the AdMitMH output. Lower graphs: ACF for the
Gibbs output.
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lower RNE values. This example illustrates the phe-
nomenon that the autocorrelation in the Gibbs se-
quence may be high when assessing a non-elliptical
distribution, and that the AdMit approach may over-
come this.

Summary

This note presented the package AdMit which pro-
vides functions to approximate and sample from a
certain target distribution given only a kernel of the
target density function. The estimation procedure is
fully automatic and thus avoids the time-consuming
and difficult task of tuning a sampling algorithm.
The use of the package has been illustrated in a bi-
variate bimodal distribution.

Interested users are referred to Ardia et al. (2009)
for a more complete discussion on the AdMit pack-
age. The article provides a more extensive intro-
duction of the package usage as well as an illus-
tration of the relevance of the AdMit procedure
with the Bayesian estimation of a mixture of ARCH
model fitted to foreign exchange log-returns data.
The methodology is compared to standard cases of
importance sampling and the Metropolis-Hastings
algorithm using a naive candidate and with the
Griddy-Gibbs approach. It is shown that for inves-
tigating means and particularly tails of the joint pos-
terior distribution the AdMit approach is preferable.
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