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Abstract

Polynomial interpolation to analytic functions can be very accurate, depending
on the distribution of the interpolation nodes. However, in equispaced nodes and
the like, besides being badly conditioned, these interpolants fail to converge even in
exact arithmetic in some cases. Linear barycentric rational interpolation with the
weights presented by Floater and Hormann can be viewed as blended polynomial
interpolation and often yields better approximation in such cases. This has been
proven for differentiable functions and indicated in several experiments for analytic
functions. So far, these rational interpolants have been used mainly with a constant
parameter usually denoted by d, the degree of the blended polynomials, which leads
to small condition numbers but to merely algebraic convergence. With the help
of logarithmic potential theory we derive asymptotic convergence results for analytic
functions when this parameter varies with the number of nodes. Moreover, we present
suggestions for how to choose d in order to observe fast and stable convergence, even
in equispaced nodes where stable geometric convergence is provably impossible. We
demonstrate our results with several numerical examples.
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1 Introduction

The rational approximation procedure we are concerned with is the following. On an
interval [a, b] of the real line, a function f , which is assumed to be analytic in a neighborhood
of [a, b], is sampled at an ordered set of n+1 distinct nodes a ≤ x0,n < x1,n < · · · < xn,n ≤
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(georges.klein@unifr.ch). This author’s work was partially supported by the Swiss National Science Foun-
dation under Grant 200020-135319.

1

Published in " "
which should be cited to refer to this work.

ht
tp

://
do

c.
re

ro
.c

h



b, and we want to approximate f on this interval by an analytic barycentric rational
interpolant rn, i.e.,

rn(xi,n) = f(xi,n) =: fi,n, i = 0, . . . , n,

with rn having no poles in [a, b]. A family of linear barycentric rational interpolants with
these properties has been presented by Floater and Hormann in [11]. They choose an
integer parameter 0 ≤ d ≤ n and approximate f by a “blend” of polynomials,

rn(x) =

∑n−d
i=0 λi,n(x)pi,n(x)∑n−d

i=0 λi,n(x)
, (1)

where pi,n is the polynomial of degree ≤ d interpolating fi,n, . . . , fi+d,n, and

λi,n(x) =
(−1)i

(x− xi,n) · · · (x− xi+d,n)
.

The original form of rn on the right-hand side of (1) is not well suited for numerical
evaluation. Floater and Hormann established the barycentric form

rn(x) =
n∑

i=0

wi,n

x− xi,n

fi,n

/ n∑
i=0

wi,n

x− xi,n

(2)

and gave explicit formulas for the barycentric weights wi,n, which do not depend on the
data values f0,n, . . . , fn,n. The rational function rn is thus linear in the data. Further
details on barycentric rational interpolation and its implementation can be found in [3].

The family of rational interpolants (1) includes polynomial interpolation as a special
case: rn simplifies to p0,n =: pn if d = n. It is well known that polynomial interpolants may
converge or diverge geometrically fast, depending on the distribution of the nodes and the
domain of analyticity of the interpolated function. To make this statement more precise,
we take advantage of some notions and a result on polynomial interpolation from [12] (see
also [22]). Let the interpolation nodes xi,n be distributed in [a, b] according to a probability
measure μ with support [a, b] and positive piecewise continuous node density

φ(x) =
dμ

dx
(x) > 0 for x ∈ [a, b]. (3)

This statement can be made precise by defining the normalized discrete measures

μn =
1

n+ 1

n∑
i=0

δxi,n
, (4)

where δx denotes the Dirac unit measure at x. We require that μn → μ, in the sense of weak-
star convergence of measures, which means that

∫
g dμn → ∫

g dμ for every continuous
function g defined on [a, b]. Associated with the limiting measure μ, which we will also
refer to as the node measure, is a logarithmic potential

Uμ(z) := −
∫ b

a

log |z − x| dμ(x) = −
∫ b

a

φ(x) log |z − x| dx.
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By the conditions on the density of μ, the real-valued function Uμ is harmonic in the
complex plane C and decays like − log |z| as |z| → ∞. The convergence or divergence of a
sequence of polynomial interpolants pn for an analytic function f is then described by the
following classical theorem (see, e.g., [12]).

Theorem 1 For a given node measure μ and the associated potential Uμ, let f be analytic

inside Cs, the level line of Uμ which passes through a singularity s of f . The polynomial

interpolant pn of f then converges to f inside Cs and diverges outside, and

lim
n→∞

|f(z)− pn(z)|1/n = exp(Uμ(s)− Uμ(z)). (5)

In the special case of equispaced nodes, i.e., if dμ/ dx = 1/(b − a), the potential
becomes [12, section 3.4]

Uμ
eq(z) = − log

(b− a

2e

)
− 1

2
Re

(
(1− z′) log(1− z′)− (−1 − z′) log(−1− z′)

)
, (6)

where z′ = (2z − a− b)/(b− a).
The Chebyshev extrema xi,n = − cos(iπ/n), which we will also refer to as Chebyshev

points, are distributed according to the density function φ(x) = 1/(π
√
1− x2), and the

associated potential is

Uμ
Ch(z) = −

∫ 1

−1

log |z − x|
π
√
1− x2

dx = − log
∣∣∣z +√

z ·
√
z − z−1

∣∣∣+ log(2),

which turns out to be constant on the interval [−1, 1]. The associated node measure μ,
with the property that there is no potential difference on [−1, 1], is the so-called equilibrium

measure. Interpolation nodes which are distributed according to that measure are, in an
asymptotic sense, optimal for polynomial interpolation.

In Figure 1 we have plotted the asymptotic rates of convergence or divergence of poly-
nomial interpolation on [−1, 1] with equispaced nodes (on the left) and Chebyshev points
(on the right) as a function of s. To be more precise, for each s in (−2, 2)× (−2i, 2i), we
took the maximum over [−1, 1] of the expression on the right-hand side of (5). The picture
on the left shows that polynomial interpolation with equispaced nodes does not converge
throughout [−1, 1] if f has a singularity s too close to the interval. On the other hand, the
picture on the right shows that polynomial interpolation with Chebyshev points converges
throughout the interval.

This theory gives an explanation of Runge’s phenomenon [10, 21]. Polynomial interpo-
lation in equispaced nodes on [−1, 1] for the Runge example 1/(1+25x2) does not converge
on the whole interval. This is explained by the fact that the level line of Uμ

eq passing through
the singularities s = ±i/5 does not enclose [−1, 1] but only [−0.7266, 0.7266], as can be
seen on the left picture in Figure 1. The Runge phenomenon appears in the form of oscil-
lations toward the ends of the interval. The level line of Uμ

Ch that passes through s = ±i/5
includes the interval [−1, 1]; see the right part of Figure 1. The phenomenon therefore
does not appear when interpolating a function, such as that given above, in Chebyshev
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Figure 1: Level lines of exp(Uμ(s)−min−1≤x≤1 Uμ(x)) in the complex plane for polynomial
interpolation in equispaced nodes (left) and in Chebyshev points (right). The central line
represents the interval [−1, 1].

points and other nodes with quadratic clustering toward the ends of the interval. These
polynomial interpolants converge geometrically fast as the number of nodes increases.

Convergence results for analytic functions, based on potential theory as in Theorem 1,
have also been derived for other interpolation schemes, such as linear barycentric rational
interpolation in mapped Chebyshev points [1], radial basis functions [16, 17], and nonlin-
ear rational interpolants [25, 30, 31]. Such a theory does not yet exist for the family of
barycentric rational interpolants (1). Our aim is to fill this gap with Theorem 2 in the
next section. The authors of [11] proved a convergence result for differentiable functions,
namely, that for any function f in Cd+2[a, b],

‖f − rn‖∞ = max
a≤x≤b

|f(x)− rn(x)| ≤ Khd+1,

where h = max0≤i≤n−1(xi+1,n − xi,n) and K is a constant depending only on d and on
derivatives of f . For d fixed, this error bound indicates that Runge’s phenomenon does
not occur. In exact arithmetic, the rational interpolants converge algebraically to f as n
increases, provided the function is sufficiently smooth, even if it has singularities very close
to [a, b].

Besides the convergence results in exact arithmetic, there is the numerical error, which,
additionally, might have been influenced by rounding errors or noise in the data values.
The condition number of linear barycentric interpolation is equal to its Lebesgue constant

Λn = max
a≤x≤b

Λn(x) = max
a≤x≤b

n∑
i=0

∣∣∣ wi,n

x− xi,n

∣∣∣/∣∣∣ n∑
i=0

wi,n

x− xi,n

∣∣∣,
4

ht
tp

://
do

c.
re

ro
.c

h



10 20 30 40 50 60
10

0

10
5

10
10

10
15

50 100 150 200
10

0

10
1

Figure 2: Lebesgue constants associated with polynomial interpolation in 1 ≤ n ≤ 60
equispaced nodes (left) and in 1 ≤ n ≤ 200 Chebyshev points (right).

which is the maximum of the Lebesgue function Λn(x). This represents the maximal
amplification of any imprecision in the data f0,n, . . . , fn,n during the interpolation process.
For the family rn from (2), it is shown in [4, 5, 13] that Λn grows logarithmically with n and
geometrically with d for equispaced and quasi-equispaced nodes. By the latter we mean
that h/h∗, with h∗ = min0≤i≤n−1(xi+1,n − xi,n), is bounded by a constant M independent
of n; see [13]. For Berrut’s rational interpolant [2], that is, rn with d = 0, the Lebesgue
constant also grows only logarithmically as n increases with more general nodes, generated
from an inverse cumulative node distribution Φ−1 from (9) satisfying a certain regularity
condition; see [6] and section 2.1. In the case of equispaced nodes and d ≥ 1, the following
upper bound has been established:

Λn ≤ 2d−1(2 + log n). (7)

For d = 0, the factor 2d−1 in the above bound may be replaced by 3/4; see [13, Thm. 2.2].
The Lebesgue constant associated with polynomial interpolation in Chebyshev points

grows very slowly with n; see [7, 9, 24]. This property, together with numerous addi-
tional facts, makes the combination of polynomial interpolation with Chebyshev points
a very successful approximation procedure that is useful for many applications such as
Chebfun [26, 27]. In equispaced nodes, however, polynomial interpolation and any other
approximation procedure with geometric convergence yield condition numbers that grow
geometrically fast as the number of nodes increases [18, 23, 28, 29]. Figure 2 illustrates
these facts. The curve in the left picture, showing Lebesgue constants associated with
polynomial interpolation in equispaced nodes, is very similar to that obtained for Lebesgue
constants associated with the Floater–Hormann family in equispaced nodes with n ≥ 60
fixed and 0 ≤ d ≤ 60. The picture on the right of Figure 2 represents the logarithmic
growth of the Lebesgue constants associated with polynomial interpolation in Chebyshev
points.
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In section 2, we establish our main asymptotic convergence theorem for general node
densities and treat the special cases of symmetric nodes and equispaced nodes, for which
further insight can be given. Section 3 presents some suggestions about the choice of d
depending on the number of nodes and the analyticity of f to find a good compromise be-
tween fast convergence and high condition numbers. Finally, we present a few experimental
results in section 4.

2 Asymptotic convergence analysis

The rational interpolants (1) are blends of the local polynomial interpolants pi,n, and we
use this fact in the derivation of an asymptotic upper bound on the interpolation error
for analytic functions. We begin with some statements about the node densities of the
subsets {xi,n, . . . , xi+d,n}, which are the interpolation nodes of pi,n. We then develop the
main convergence result of the present paper. The end of this section is concerned with
the important special cases of symmetric nodes and equispaced nodes, for which we further
expand the expression of the bound on the interpolation error and give additional insight
into the convergence of the interpolants.

2.1 General node densities

We assume from now on that the parameter d, defining a particular rational interpolant
from the family (1), is a variable non-negative integer d(n) such that

d(n)/n → C, n → ∞, (8)

for a fixed C ∈ (0, 1]. In practice, one could choose d(n) = round(Cn). By the positivity
of φ from (3), the cumulative node distribution

Φ(x) := μ([a, x]) =

∫ x

a

φ(x) dx

is a continuous and strictly monotonically increasing function on the interval [a, b] and
therefore has a continuous inverse

Φ−1 : [0, 1] → [a, b]. (9)

With this definition and that of the discrete measure μn from (4), we have the following
simple result, which we state as a lemma for easier reference.

Lemma 1 Assume that μn → μ as n → ∞, where the limit measure μ has piecewise

continuous positive density, and let xj(n),n be an arbitrary sequence of nodes. Then xj(n),n →
x for some x if and only if there exists some q ∈ [0, 1] such that (j(n) + 1)/(n + 1) → q.
In this case, x = Φ−1(q).
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Proof. Under the assumptions on μ, the set {x} is a continuity set of μ for every point
x ∈ [a, b]. The condition that μn → μ thus implies that μn([a, x]) → μ([a, x]). By the
definition of μn and Φ, this is equivalent to

lim
n→∞

#{xi,n : xi,n ≤ x}
n + 1

= Φ(x).

With j(n) := max{0,#{xi,n : xi,n ≤ x} − 1} and q := Φ(x) we obtain, as required,

lim
n→∞

j(n) + 1

n + 1
= q. �

We now suppose that j(n) is a sequence of indices such that j(n) ≤ n − d(n) and
xj(n),n → α for some α ∈ [a, b]. Under the condition (8) on d(n) it follows from Lemma 1
that the sequence of nodes xj(n)+d(n),n also converges to a point in [a, b], which we call β(α),
and satisfies

lim
n→∞

xj(n)+d(n),n = Φ−1(C + Φ(α)) = β(α).

The nodes xj(n),n, . . . , xj(n)+d(n),n are therefore asymptotically contained in the interval
[α, β(α)], and they are distributed with density φ restricted to that interval. More precisely,
the normalized discrete measures

νj(n),n =
1

d(n) + 1

d(n)∑
i=0

δxj(n)+i,n
(10)

converge (in the weak sense) to a probability measure να with support [α, β(α)] and density

dνα
dx

(x) =
φ(x)

Φ(β(α))− Φ(α)
=

φ(x)

C
.

Note that να is simply the normalized restriction of μ to the interval [α, β(α)]. The study
of the convergence of measures and their associated potentials is an important tool in
logarithmic potential theory [20, 22]. A main ingredient is the so-called principle of descent

(see [22, Theorem I.6.8]): If S is compact and (σn) is a sequence of finite positive Borel
measures with supp(σn) ⊂ S, then

for zn → z and σn → σ, lim inf
n→∞

Uσn(zn) ≥ Uσ(z),

for zn → z �∈ S and σn → σ, lim
n→∞

Uσn(zn) = Uσ(z).

These relations will allow us to take advantage of polynomial approximation theory for
quantifying the convergence of the local interpolating polynomials pj(n),n. The following
two lemmas are a first step in this direction as they give asymptotic upper and lower
bounds on the rational function

n−d(n)∑
i=0

λi,n(z),

which appears in rn(z) and plays an important role in the subsequent analysis.
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Lemma 2 For any C ∈ (0, 1] and z ∈ C \ [a, b], we have

lim sup
n→∞

∣∣∣∣n−d(n)∑
i=0

λi,n(z)

∣∣∣∣1/(n+1)

≤ max
α∈[a,Φ−1(1−C)]

exp(CUνα(z)).

Proof. For every n and every z ∈ C \ [a, b] we can find a dominating term λj,n(z) with
index j = j(n) such that∣∣∣∣n−d(n)∑

i=0

λi,n(z)

∣∣∣∣ ≤ (n− d(n) + 1)|λj(n),n(z)|.

With a simple computation involving (10), we rewrite the second factor of the above right-
hand side:

|λj(n),n(z)| =

d(n)∏
i=0

∣∣z − xj(n)+i,n

∣∣−1
= exp

(
−

d(n)∑
i=0

log |z − xj(n)+i,n|
)

= exp
(
(d(n) + 1)Uνj(n),n(z)

)
.

From the sequence of nodes xj(n),n we can select a subsequence, which we also denote by
xj(n),n, and which has the property that xj(n),n → α for α ∈ [a, b] fixed. Upon taking the
(n+ 1)st root and using the fact that (d(n) + 1)/(n+ 1) → C as n → ∞, we obtain that

lim sup
n→∞

∣∣∣∣n−d(n)∑
i=0

λi,n(z)

∣∣∣∣1/(n+1)

≤ lim sup
n→∞

exp (CUνj(n),n(z)) .

Since z /∈ [a, b] and νj(n),n → να, it follows from the principle of descent that the lim sup
on the right-hand side equals exp(CUνα(z)). �

In the proof of the next lemma we reuse similar tools to derive a lower bound on the
same function, but now evaluated at x ∈ [a, b].

Lemma 3 For any C ∈ (0, 1] and x ∈ [a, b], we have

lim inf
n→∞

∣∣∣∣n−d(n)∑
i=0

λi,n(x)

∣∣∣∣1/(n+1)

≥ max
α∈[a,Φ−1(1−C)]

x∈supp(να)

exp(CUνα(x)).

Proof. We first suppose that x ∈ (xk,n, xk+1,n). For every n and every such x it is shown
in the proof of [11, Thm. 2] that∣∣∣∣n−d(n)∑

i=0

λi,n(x)

∣∣∣∣ ≥ |λj,n(x)|
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for all j ∈ J := {i ∈ {0, 1, . . . , n − d(n)} : k − d(n) + 1 ≤ i ≤ k}. On the other hand,
if x coincides with a node xi,n, then this inequality is trivially valid (the left-hand side is
+∞). For every n, we choose j = j(n) ∈ J such that λj(n),n(x) is the largest, and we form
the corresponding sequence j(n). From the sequence of nodes xj(n),n we select, as in the
proof of Lemma 2, a subsequence such that xj(n),n → α. Upon taking the (n + 1)st root
on both sides of the above inequality, the principle of descent yields the asserted relation
analogously as in the proof of Lemma 2. �

We are now prepared to investigate the asymptotic convergence of the family of rational
interpolants (1). As it is explained, for instance, in [16, Thm. 3.2 and Corol. 3.4], it will
be sufficient to investigate interpolants of “prototype functions” g(x, s) = 1/(s−x) with a
simple pole s ∈ C \ [a, b]. An explicit expression for the local polynomial interpolants pi,n
of such a particular function is

pi,n(x) =
1− λi,n(s)

λi,n(x)

s− x
.

It is easily verified that this is indeed a polynomial satisfying pi,n(xj,n) = 1/(s− xj,n) for
all nodes xj,n involved in λi,n. Hence, the rational interpolant (1) of g, which we denote by
rn[g], is

rn[g](x) =
1

s− x
·
∑n−d

i=0 λi,n(x)
(
1− λi,n(s)

λi,n(x)

)
∑n−d

i=0 λi,n(x)
(11)

=
1

s− x
·
(
1−

∑n−d
i=0 λi,n(s)∑n−d
i=0 λi,n(x)

)
,

and therefore

g(x, s)− rn[g](x) =
1

s− x
·
∑n−d

i=0 λi,n(s)∑n−d
i=0 λi,n(x)

. (12)

To make the subsequent notation more compact, we define the “potential function”

V C,μ(z) :=

⎧⎨⎩maxα∈[a,Φ−1(1−C)] CUνα(z), z ∈ C \ [a, b],
maxα∈[a,Φ−1(1−C)]

z∈supp(να)
CUνα(z), z ∈ [a, b].

(13)

Combining Lemmas 2 and 3, and using the monotonicity of the exponential function (note
that the potentials Uνα are real-valued functions), we finally arrive at

lim sup
n→∞

|g(x, s)− rn[g](x)|1/n ≤ exp(V C,μ(s)− V C,μ(x)).

This statement closely resembles that from Theorem 1 and contains the latter as a special
case: The rational interpolants reduce (asymptotically) to polynomial interpolants if C = 1,
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and in this case the function V C,μ in (13) reduces to Uμ. Moreover, the potential V C,μ(z)
is a continuous function when the condition “z ∈ supp(να)” in the second case of (13) is
redundant, which is the case for any reasonable node measure μ.

The uniform convergence over the whole interval [a, b] is often of major interest in
approximation theory. To establish such a result for the rational interpolants (1), we
define the contours

CR :=

{
z ∈ C :

exp(V C,μ(z))

minx∈[a,b] exp(V C,μ(x))
= R

}
, (14)

which can be seen as levels of “worst-case” convergence with rate at least R for every point
x ∈ [a, b].

If an arbitrary function f is analytic inside a simple, closed, and rectifiable curve C which
is contained in a closed simply connected region around the nodes, it can be represented
by the Cauchy integral formula

f(x) =
1

2πi

∫
C

f(s)

s− x
ds =

1

2πi

∫
C
f(s)g(x, s) ds.

The representation (11) and the linearity of the rational interpolants imply that

rn(x) =
1

2πi

∫
C

f(s)

s− x
·
(
1−

∑n−d
i=0 λi,n(s)∑n−d
i=0 λi,n(x)

)
ds

is the rational interpolant for f . The interpolation error therefore is

f(x)− rn(x) =
1

2πi

∫
C

f(s)

s− x
·
∑n−d

i=0 λi,n(s)∑n−d
i=0 λi,n(x)

ds,

which is a Hermite-type error formula [8] for the family of rational interpolants (1). Finally,

‖f − rn‖∞ ≤ D
sups∈C

∣∣∑n−d
i=0 λi,n(s)

∣∣
minx∈[a,b]

∣∣∑n−d
i=0 λi,n(x)

∣∣ ,
where D = length(C)maxs∈C |f(s)|

2π dist([a,b],C) is a constant independent of n. We summarize the above
expansion in the following main theorem.

Theorem 2 Let f be a function analytic in an open neighborhood of [a, b], and let R > 0
be the smallest number such that f is analytic in the interior of CR defined in (14). Then

the rational interpolants rn defined by (2), with limiting node measure μ and d(n)/n → C,

satisfy

lim sup
n→∞

‖f − rn‖1/n∞ ≤ R.
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Figure 3: Level lines of convergence for barycentric rational interpolation for C = 0.2
in equispaced nodes (left) and nodes distributed according to the density φ(x) = (4 +
arctan(4x))/8 (right) on [−1, 1].

In Figure 3 we illustrate the level lines CR for the parameter C = 0.2 with equispaced
nodes on the left and with nodes distributed according to the density dμ/ dx = φ(x) =
(4+ arctan(4x))/8 on the right. The interval is [−1, 1]. In section 2.3 we give more details
on how we computed these level lines in the case of equispaced nodes; for arbitrary node
densities we integrated the potential function V C,μ numerically. For equispaced nodes, a
line corresponding to R = 1 appears close to the interval, which means that rn might not
converge throughout [a, b] to a function f with a singularity s in the interior of that curve.
Runge’s phenomenon is therefore likely to appear for such a function if d increases with
n. An intuitive explanation of why there is no Runge phenomenon with d fixed goes as
follows: The interpolation error may be written as

f(x)− rn(x) =

∑n−d
i=0 λi,n(x)(f(x)− pi,n(x))∑n−d

i=0 λi,n(x)

(see [11]) and is a blend of an increasing number of polynomial interpolation errors as n
increases. The polynomials pi,n have fixed maximal degree d and interpolate f in subin-
tervals [xi,n, xi+d,n] of decreasing length, so that the region where f needs to be analytic
shrinks.

Theorem 2 gives only an asymptotic upper bound on the rate of convergence of rn → f
as n → ∞, as opposed to the polynomial case, where equality holds (see Theorem 1). This
means that, unlike the case with polynomial interpolation, we generally cannot infer the
level line CR with the closest singularity of f from a known or observed approximation
rate R. This is not a problem of our derivation, but an intrinsic property of barycentric
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rational interpolation with alternating signs in the blending functions λi,n, as we explain
in the following.

2.2 Symmetric nodes

One reason why convergence may be faster than predicted by the asymptotic upper bound
from Theorem 2 is cancellation in the terms of the error representation (12). As an illus-
tration, we assume that the nodes xi,n are pairwise symmetric with respect to the midpoint
(a+ b)/2 of the interval, i.e.,

xi,n + xn−i,n
2

=
a + b

2
, i = 0, 1, . . . , n.

For these nodes, the upper bound in Lemma 2 may be crude for points z relatively close
to the interval and with Re(z) ∈ [a, b]. This situation is illustrated in Figure 4, which shows
the level lines of |∑n−d

i=0 λi,n(z)|1/(n+1) for equispaced nodes on [−1, 1] with n = 100 and
d = 9 in the top left picture, and the levels of the asymptotic upper bound exp(V μ(z)). The
level lines agree well if Re(z) is outside [−1, 1]. The reason for the observed discrepancy
above and below the midpoint of the interval is the fact that some terms in the sum

n−d(n)∑
i=0

λi,n(z) =

n−d(n)∑
i=0

(−1)i

(z − xi,n) · · · (z − xi+d(n),n)

cancel mutually for certain values of z, or may at least be reduced. For example, the
absolute value of the sum of the 
th and (n − d(n) − 
)th terms, evaluated at a point z
with Re(z) = (a+ b)/2, yields after a short computation

|λ�,n(z) + λn−d(n)−�,n(z)| = |λ�,n(z) + (−1)n+1λ�,n(z)|
(15)

=

{
2|Re(λ�,n(z))| if n is odd,
2|Im(λ�,n(z))| if n is even.

This simplification occurs for all 0 ≤ 
 ≤ �(n−d)/2
 and obviously reduces the interpolation
error at these particular points z, causing the cusp in the level curves.

However, if we slightly perturb the equispaced grid, leading to almost equispaced nodes,
then the levels of |∑n−d

i=0 λi,n(z)|1/(n+1) look much more similar to the predicted level curves
exp(V μ(z)); see the bottom left picture in Figure 4. The presented convergence theory is
asymptotic in the sense that we only require convergence μn → μ of the node measures
in a weak sense. Not necessarily all the μn need to have perfectly symmetric mass points
in order to satisfy this condition. It is therefore not reasonable to expect that our theory
will capture the error reduction effects appearing with symmetric nodes. The difference
between the levels of |∑n−d

i=0 λi,n(z)| for equispaced nodes and almost equispaced nodes also
becomes apparent from the error curves for the interpolation of a function with a singularity
inside the cusp region, say, f(x) = 1/(x − 0.3i). This is illustrated in the bottom right
picture in Figure 4. The error curves for the interpolation of f for 1 ≤ n ≤ 150 with
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Figure 4: Top: Level lines of |∑n−d
i=0 λi,n(z)|1/(n+1) (left) with d = 9 for n = 100 equispaced

nodes in [−1, 1] (solid central line) and level lines of exp(V μ(z)) (right) on a log10 scale.
Bottom: Level lines for almost equispaced nodes (left). Relative error curve for the inter-
polation of f(x) = 1/(x−0.3i) with C = 0.1 and both node sequences, asymptotic relative
error bound, and upper bound on eps·Λn (right).
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C = 0.1 and both node sequences indicate that the symmetry in equispaced nodes results
in a convergence acceleration as compared to the predicted rate. The oscillating behavior
of the curve corresponding to interpolation in equispaced nodes is caused by different
reductions of |∑n−d

i=0 λi,n(z)| taking place for even and odd values of n; see (15).

2.3 Equispaced nodes

In the case of equispaced nodes xi,n, distributed according to the density φ(x) = 1/(b− a)
on [a, b], we can give a more explicit statement of the rates of convergence. First, the
subintervals of the local polynomial interpolants stay of constant length C(b − a) as α
varies in [a, b− C(b− a)]:

[α, β(α)] = [α, α+ C(b− a)].

A formula for the potential of να is given explicitly from (6):

Uνα(z) = −
∫ β(α)

α

1

β(α)− α
log |z − x| dx

= − log
(C(b− a)

2e

)
− 1

2
Re

(
(1− z′) log(1− z′)− (−1− z′) log(−1 − z′)

)
,

where z′ = (2z− 2α)/(Cb−Ca)− 1. Furthermore, the right-hand side of the inequality in
Lemma 3 can be bounded easily from below for x ∈ [a, b]: Since on the real line all the Uνα

are concave and symmetric with respect to the midpoint of the subinterval [α, α+C(b−a)]
and are simply translates of each other when α is varied, the minimum

min
x∈[a,b]

exp(V C,μ(x)) = min
x∈[a,b]

max
α∈[a,Φ−1(1−C)]

exp(CUνα(x))

is obtained either for x = a and α = a or by symmetry for x = b and α = Φ−1(1 − C).
Choosing the former pair of parameters and with x′ = −1, it follows that

Uνa(a) = − log

(
C(b− a)

2e

)
− log(2) = log

(
e

C(b− a)

)
,

so that

min
x∈[a,b]

exp(V C,μ(x)) =

(
e

C(b− a)

)C

. (16)

The contours can thus be given more explicitly as

CR =

{
z ∈ C : exp(V C,μ(z)) = R

(
e

C(b− a)

)C
}
.

Remark. The lower bound

min
x∈[a,b]

∣∣∣∣∣
n−d∑
i=0

λi,n(x)

∣∣∣∣∣ ≥
((

b− a

n

)d+1

d!

)−1
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was derived in the proof of [11, Thm. 2] for the case of equispaced nodes and is valid for any
set of nodes after the factor (b − a)/n is replaced by h. This lower bound asymptotically
coincides with (16): Using Stirling’s approximation

d! ∼
√
2πd

(
d

e

)d

,

we obtain, with d = Cn and upon taking the nth root, that((
b− a

n

)d+1

d!

)−1/n
∼

((
b− a

n

)Cn+1√
2πCn

(
Cn

e

)Cn
)−1/n

∼ eC

CC(b− a)C

as n → ∞.

3 Stabilization

In the literature there are only few recommendations for how to choose the parameter d
in rn. As is suggested in [19], in practice, d is typically chosen as a fixed small integer and
n is successively increased until the desired accuracy is achieved. Based on the asymptotic
convergence theory from section 2, we may give a different recommendation for how to
choose d if some information on f is available—for example, its region of analyticity. For
simplicity of exposition, we will focus on equispaced nodes, but the same reasoning applies
to arbitrary nonconstant node density functions φ.

For an arbitrary distribution of interpolation nodes and f ∈ Cd+2[a, b], the interpolation
error decreases like Khd+1, as explained in the introduction. Large values of d should
therefore lead to fast convergence as long as the function f is sufficiently smooth. However,
rounding errors and their amplification during the interpolation process also come into play.
We thus need to address the growth of the condition number, i.e., the Lebesgue constant
Λn, which increases exponentially with d at least for equispaced node (see (7)) and almost
equispaced nodes [4, 5]. When d grows too fast with n, the rounding errors might be so
highly amplified that the approximation error increases again after a certain precision had
been reached for relatively small n.

To see how the interpolation error might behave in the presence of rounding imprecision
in the data, we suppose that to every function value fi,n is added a relative perturbation
fi,nεi,n, where every |εi,n| is less than or equal to some positive ε. The rational interpolants
of these perturbed values will be denoted by r̃n. As the interpolants are linear in the data,
the error can be estimated as

‖f − r̃n‖∞ = max
a≤x≤b

∣∣∣∣f(x)−
∑n

i=0
wi,n

x−xi,n
(fi,n + fi,nεi,n)∑n

i=0
wi,n

x−xi,n

∣∣∣∣
≤ ‖f − rn‖∞ + ε max

a≤x≤b

∑n
i=0

|wi,n|
|x−xi,n| |fi,n|∣∣∑n
i=0

wi,n

x−xi,n

∣∣
≤ ‖f − rn‖∞ + ε‖f‖∞Λn.
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Figure 5: Convergence rates R for C varying in (0, 1] and various s on the upper imaginary
axis (left), and on the positive real line outside the interval [−1, 1] (right); the dotted lines
show the upper bound on the Lebesgue constant for n = 50.

The numerical error is thus governed by two terms—the theoretical error from exact arith-
metic and the amplification of the rounding error. If f satisfies the hypotheses of Theo-
rem 2, then for n large enough,

‖f − r̃n‖∞ � DRn + ε‖f‖∞Λn.

In IEEE double precision, ε = eps = 2−52 ≈ 2.22 · 10−16.
With the choice d = round(Cn) for a fixed C ∈ (0, 1], the upper bound (7) on Λn

grows at least like 2Cn. This indicates that simultaneously large C and n are prohibitive,
which equivalently corresponds to choosing a large parameter d for rn. The convergence
rate R in Theorem 2 also depends on C—however, not monotonically for every admissible
singularity s. The solid, dashed, and dash-dot lines in Figure 5 illustrate the behavior of R
for C ∈ (0, 1] and various values of s on the upper imaginary axis in the left picture, and
positive values outside the interval [−1, 1] on the right. The dotted lines show the nth root
of the upper bound (7) on the Lebesgue constant multiplied by ε. The maximum of the
dotted line and that corresponding to a convergence rate gives a good approximation for
(Rn + εΛn)

1/n, which can be interpreted as the observed convergence or divergence rate.
We set both factors D and ‖f‖∞ to 1 since we focus on relative errors. One can see that
R monotonically decreases with increasing C when s is a real number, so that in this case
it would be attractive to choose C as large as possible in exact arithmetic. On the other
hand, if s is on the imaginary axis, then choosing too large a C might result in a large R
as well.

Let us now investigate what a good choice of C would be if we want to find a compromise
between fast convergence and a reasonably small condition number. From [18] we know
that no interpolation method for equispaced nodes exists that converges geometrically and
whose condition number does not increase geometrically. Our aim is thus the determination
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Figure 6: Relative errors (solid line) together with predicted relative error slope (dashed
line) and upper bound on eps·Λn (dotted line) for the functions f1(x) = 1/(x − 1.5) (a)
and f2(x) = 1/(x− 0.3i) (b) after choosing, for each n ∈ {1, . . . , 250}, the value of C such
that the predicted error slope is nearly minimal (c) and interpolating with d = round(Cn)
(d).

of an optimal value of C for a given singularity s and number of nodes n. This C should
lead to an interpolation error that is nearly as small as possible and that is not dominated
by the amplification of errors in the interpolated data. Our suggestion is to minimize an
upper bound on the numerical error which is a superposition of geometric convergence or
divergence of the interpolant in exact arithmetic (e.a.) and the amplification of rounding
errors:

observed error(C, n) ≈ interpolation error in e.a.+ imprecision × condition number

� D
(
exp(V C,μ(s)− C)

(
C(b− a)

)C)n

+eps · 2Cn−1(2 + logn)‖f‖∞
=: predicted error(C, n).

Similar reasoning has been followed by the authors of [28]. We propose determining
C ∈ (0, 1] such that the predicted error slope is nearly minimal. We performed this
minimization for the functions f1(x) = 1/(x−1.5) and f2(x) = 1/(x−0.3i) and display the
results in Figure 6 together with the values of C chosen by the minimization process for
each n. Observe that we are minimizing only an approximate upper bound on the observed
error; the convergence of the interpolation process can be faster than predicted, for instance,
because of symmetry effects as described in section 2.2 or other favorable simplifications in
the error term. This is also the reason for the nonmonotone error curve obtained with the
interpolation of f2. One can expect only that the observed error curve will stay (up to a
constant factor) below the predicted slope. We observed that this nonmonotone behavior
disappears with almost equispaced nodes, or if one heuristically chooses D < 1 in order to
take the faster convergence into account. The rightmost picture illustrates the choice of d
from the minimization process. For small n, d may be increased quickly, but then it needs
to be decreased again in order to maintain the attained precision and avoid the growth of
the condition number.
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Remark. Our asymptotic upper bound on the interpolation error may be crude due
to symmetry effects. However, we observe that the convergence is typically geometric

with a rate R̃ ≤ R if d = round(Cn), that is, error(C, n) ≈ KR̃n with some constant
K. In many applications, the closest singularity s of f , in terms of level lines, is not
known or difficult to determine. In such situations, interpolation is usually done for an
increasing number n of nodes until the approximation is accurate enough. The indication
that convergence is geometric allows us to establish a heuristic method for the estimation
of a value of C for which the approximation error, error(C, n), is below some prescribed
relative tolerance reltol and n is as small as possible. To this end, we assume that we
have an estimator esterr(C, n) for the error of the rational interpolant with n nodes and
parameter d = round(Cn). Such an estimator can be obtained, e.g., from the evaluation
of |f(x) − rn(x)| at sufficiently many points in the interval. After choosing moderate
numbers n1 and n2 of nodes, say, n1 = 10 and n2 = 40, and computing esterr(C, n1)
and esterr(C, n2), these estimators can be used to calculate the observed convergence or
divergence rate as

R̃ ≈
(
esterr(C, n2)

esterr(C, n1)

)1/(n2−n1)

.

Slightly more sophisticated and robust ways of calculating R̃ could certainly be derived,
e.g., by taking into account more than just two values of n. Under the assumption that
convergence is indeed geometric, in order to find a smallest possible n, we are interested in
minimizing the rate R̃ among all C ∈ (0, 1] under the constraint that the error contribution
of the growing Lebesgue constant stays below reltol. In the following we sketch a simple
golden-section search (see [19, Sec. 10.2]) for locally optimal C and n:

1. Set C1 = 0 and C4 = 1.

2. Set C2 = φC1 + (1− φ)C4 and C3 = (1− φ)C1 + φC4, where φ =
√
5−1
2

.

3. Compute estimates esterr(Cj, n1) and esterr(Cj, n2) of the interpolation error for
j = 1, . . . , 4 (or reuse previously computed values).

4. Compute an estimate for the slope of convergence as

R̃j =

(
esterr(Cj , n2)

esterr(Cj , n1)

)1/(n2−n1)

, j = 1, . . . , 4.

5. Compute critical values nj such that

R̃
nj

j = 2Cjnj−1(2 + log nj)eps, j = 1, . . . , 4.

6. If log(reltol)/ log(R̃j) > nj for some j, set Rj = 1 + Cj (the desired accuracy is not
attainable with this value of Cj, and hence Rj is interpreted as divergence).

7. If R̃2 ≥ R̃3, then set C1 = C2; else set C4 = C3.
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Figure 7: Relative errors for the interpolation of f(x) = log(1.2− x)/(x2 + 2).
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Figure 8: Relative errors for the interpolation of f(x) = arctan(πx).

8. If C4 − C1 is larger than some tolerance (e.g., 0.01), go to Step 2.

9. Use C4 as an approximation to the optimal C, and n = log(reltol)/ log(R̃4).

4 Numerical experiments

In this section we demonstrate the convergence result from Theorem 2 and the approach
for the stabilization of the rational interpolants presented in section 3. We sampled in
1 ≤ n ≤ 250 points from [−1, 1] various functions whose regions of analyticity are known
and computed the relative errors in their rational interpolants. Moreover, we computed
the relative error for all admissible values of d with every n and kept the smallest error
together with the corresponding d. For every example, we display, in addition to the
relative interpolation error, the chosen values of C and d in the smaller pictures.

The first example, the interpolation of f(x) = log(1.2 − x)/(x2 + 2), illustrates the
behavior of the relative interpolation error for C fixed, namely, 0.01, 0.03, and 0.1; see
Figure 7 (left). The steps in the error curves are caused by the restriction that d must be
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Figure 9: Relative errors for the interpolation of f(x) = Γ(x+ 1.1).

an integer and every step corresponds to a change of d, taken as d = round(Cn). The curve
labeled var C is obtained by choosing C and d according to the minimization process. For
n ≈ 150, the value C = 0.1 is optimal, and the corresponding curves intersect. The curve
corresponding to constant C increases again because of the bad conditioning with d too
large.

Figure 8 shows that for the interpolation of f(x) = arctan(πx) the error behavior is
similar to that of f2(x) = 1/(x − 0.3i) in Figure 6. Since the poles ±i/π are too close
to the interval, polynomial interpolation of this function yields Runge’s phenomenon. We
observed that rational interpolation with a fixed d = 6 converges rather slowly and a
relative error of 10−12 is attained with as many as n = 100 nodes, whereas with the help
of our minimization process, the latter error is already attained for n = 50. For small
n, our method chose near-optimal values of d leading to minimal errors. However, with
n larger than 75, this is not true any more. This is due to the fact that the level lines
of |∑n−d

i=0 λi(z)|1/(n+1) with equispaced nodes yield cusps in the region where f has poles;
see again the top left picture in Figure 4. The speed of convergence is thus faster than
predicted, and the slope of the predicted error is less steep than that of the experimental
error, so that the minimization procedure does not take the growth of the Lebesgue constant
into account, which leads to a recommendation of slightly too large values of d compared
to optimal values. This is, however, not a contradiction to our theory: The error decreased
faster than predicted and therefore suffers earlier from the amplification for rounding errors
measured by the Lebesgue constant. If we considerably increase the contribution of the
Lebesgue constant in our minimization algorithm, then such a hump in the error curve
does not show up, and the values chosen for d are almost equal to those giving minimal
errors. This strategy might be adopted when it is known that a function has a singularity
exactly in the cusp region of the level lines describing the speed of convergence.

We investigated the same example with quasi-equispaced nodes and mesh ratio M = 3,
and we estimated the error using the bound on the Lebesgue constant associated with this
kind of nodes. The resulting error follows the predicted error curve more closely. We omit
the corresponding plots. We repeated a similar computation with a numerically estimated
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Figure 10: Relative errors for the interpolation of f(x) = sin(x) on [−5, 5] with 1 ≤ n ≤
1000.

Lebesgue constant, which again gave very similar results. Such a procedure might be used
for nodes with unknown Lebesgue constant (or bounds thereof).

We also applied the minimization process to the Runge example 1/(1 + 25x2) and ob-
served error curves such as those in Figure 8—however, with a slightly slower convergence;
a relative error of about 10−14 was observed for n ≈ 125. This was to be expected since
the poles are closer to the interval. The chosen values for C did not exceed 0.12, so that d
increased very slowly and decreased for n larger than 200.

The relative error in the interpolation of f(x) = Γ(x+1.1) is plotted in Figure 9. This
function has a singularity at s = −1.1, which is very close to the left endpoint of the
interval. The convergence is therefore rather slow. In the minimization process, d can thus
be chosen larger, as effects of the growing Lebesgue constant become apparent only with
larger n. Therefore, the values for d chosen by our method are very close to those giving
the smallest relative errors. The estimate of the condition number is slightly too large
since we manipulate only upper bounds on the Lebesgue constants, which are not always
very tight, and the Lebesgue constant itself already is an upper bound on the condition
number.

Although the function f(x) = sin(x) is entire, we may arbitrarily take s = 10 in our
algorithm, which is sufficiently far away from the interval to guarantee fast convergence.
We changed the interval to [−5, 5] for this example in order to compare the present results
with those obtained in [11, Tab. 1] for d = 4 constant. The authors of the latter paper
tabulated absolute errors, equivalent to relative errors in this example, on the order of
10−12 for n > 600. Figure 10 shows that an error of the same magnitude is attained for
n ≈ 30 already with the choice of d of our minimization process. The chosen values for d
are smaller than in most of the previous examples. For this example we plotted the error
for 1 ≤ n ≤ 1000 to show that it remains close to machine precision even for large values
of n. With n in the tens of thousands the error did not increase significantly either.

The next demonstration concerns the heuristic for choosing “optimal” parameters n
and d without having any information on the function f , as proposed in the remark of
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Table 1: Results of the algorithm described in the remark of section 3.

Target relative error Function f Copt n d Observed error

log(1.2− x)/(x2 + 2) 0.61 40 24 5.56 · 10−8

Γ(x+ 1.1) 0.42 75 32 5.90 · 10−7

10−6 Γ(x+ 2) 0.29 26 7 3.66 · 10−8

arctan(πx) 0.19 31 6 2.27 · 10−7

sin(5x) 0.33 22 7 4.80 · 10−6

log(1.2− x)/(x2 + 2) 0.30 73 22 2.36 · 10−10

Γ(x+ 1.1) 0.15 151 22 3.06 · 10−9

10−9 Γ(x+ 2) 0.29 39 11 2.51 · 10−11

arctan(πx) 0.19 47 9 2.47 · 10−10

sin(5x) 0.39 34 11 5.50 · 10−10

section 3. For all functions in this section we have run this algorithm with a targeted
relative error tolerance of 10−6 and 10−9, respectively. The convergence slope was estimated
using interpolants with n1 = 10 and n2 = 40 points. The results are shown in Table 1.
They indicate that this approach can give quite good results, although a careful user would
always revalidate the accuracy of the obtained interpolant rn by comparing f and rn at
sufficiently many points.

The last example demonstrates that the presented convergence theory is also valid for
nonequispaced nodes. To this end we consider the node density φ(x) = (4+ arctan(4x))/8
on the interval [−1, 1]. We have computed the nodes xi,n distributed according to this
density by evaluating the inverse cumulative node distribution Φ−1(i/n) for i = 0, 1, . . . , n;
see Figure 11 (left). The level lines with the convergence rates for C = 0.2 are shown
in Figure 3 (right). They predict the somewhat counterintuitive effect which we observe
numerically in Figure 11 (right): When interpolating f+(x) = (x−1.2)−2, the convergence
is slower than for f−(x) = (x + 1.2)−2, although for f+ the singularity s = 1.2 is to the
right of [−1, 1], where the nodes are about twice as dense as on the left end of the interval.
This suggests that local refinement close to a singularity may not yield the desired faster
convergence; the overall node distribution φ must be taken into account.

5 Conclusion

We have presented a convergence theory for the family of analytic linear barycentric rational
interpolants proposed by Floater and Hormann [11]. This convergence theory is valid if
the blending parameter d is chosen proportional to the number of nodes, and gives an
upper bound on the asymptotic convergence rate when interpolating analytic functions.
Our theory contains that of polynomial interpolants as a special case. Based on this theory
we gave recommendations of how to choose the involved parameters heuristically in a near-
optimal way, balancing a best possible convergence rate with a controlled growth of the
condition number, i.e., the Lebesgue constant associated with the interpolants. Typically,
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Figure 11: Nonequispaced nodes with their density φ(x) = (4 + arctan(4x))/8 on [−1, 1]
(left) and convergence of the interpolation in these nodes for f− and f+ with singularity
s = −1.2 and s = 1.2, respectively, together with the predicted error slope 0.860n and
0.914n, respectively, for 1 ≤ n ≤ 150 (right).

our heuristic algorithms choose the parameter d as large as possible, but not too large,
to ensure that the amplification of rounding errors, measured by the associated Lebesgue
constant, is below the accuracy of the interpolant. Numerical tests indicate that this
approach allows for a quite robust “black-box” construction of linear rational interpolants
in the fewest possible nodes.

We hope that our results enhance the understanding of the convergence behavior of
linear barycentric interpolation and that they make it possible to compare such interpola-
tion schemes with other available methods for interpolation in equispaced nodes, such as
the approach proposed in [14] and in the references therein, that in [15], or the schemes
reviewed and cited in [18].
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