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We use dynamic near field scattering to measure the dynamics of concentration non equilibrium
fluctuations at the steady-state of Soret separation. The analysis reveals that above a threshold wave
vector ¢, the dynamics is governed by diffusion while at smaller wave vectors, gravity dominates.
From the measurements, we extract both the mass diffusion and the Soret coefficients. Comparing
our results with literature data, we find good agreement confirming that the proposed experimental
technique can be considered a sound approach for the study of thermodiffusion processes. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4771872]

. INTRODUCTION

Non equilibrium fluctuations (NEFs) in fluids can be ob-
served in the presence of a gradient of one (or more) ther-
modynamic variable.! For example, a temperature gradient in
a pure liquid generates unusually strong temperature fluctu-
ations. Equally, a concentration or a temperature gradient in
a fluid mixture can provide a huge enhancement in its con-
centration fluctuations. One interesting aspect of NEFs is that
their amplitude increases with size that can lead to meso-
scopic and macroscopic fluctuations, which are truly long-
ranged and can be visualized optically.” The amplitude of
NEFs as a function of the wave vector g shows a power law
dependence I(g) o< g—*, which is limited at small wave vectors
due to the influence of gravity and the size of the containing
vessel. Theoretically, it was found that fluctuating hydrody-
namics (FHD) is well suited (after introducing convenient ap-
proximations) for describing both the intensity enhancement
and the interplay between diffusion and gravity.>~> Moreover,
finite-size effects due to the sample container can be handled
by means of more realistic Galerkin approximations.® Quite
recently, the equations of FHD have also been fully numeri-
cally solved in the works of Donev and co-workers!%'? pro-
viding results, which are in better agreement to experimental
microgravity data'? than those obtained by means of Galerkin
approximations.

From the experimental point of view, different variants
of light scattering techniques were used to test theoretical pre-
dictions. Both static and dynamic light scattering are sensitive
to the Soret and mass diffusion coefficients as well as the crit-
ical cut-off wave vector g. set by the influence of gravity.'>-2°
Here, the main experimental challenge is accessing very small
wave vectors where the amplitude of NEFs becomes huge.
Moreover, investigating very small wave vectors is essential
to probe the interplay between the transport processes and
gravity occurring at real macroscopic length scales. In 1993,
Segre et al.’ proposed the use of dynamic light scattering
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(DLS) to characterize NEFs. Their technique is based on the
heterodyne measurement of the temporal correlation function,
which can be related to the Soret and mass diffusion coeffi-
cient St and D as outlined below. However, their traditional
DLS-approach did not allow probing directly the gravity in-
duced frustration of NEFs at small wave vectors thus limiting
the accuracy of their analysis. Following their original work,
the values of the Soret coefficient reported by Segre et al. were
found to be inconsistent with data obtained by means of ther-
mal diffusion forced Rayleigh scattering (TDFRS)?' and of
optical beam deflection (OBD),?> with a deviation found to
be on the order of 25%.

In this article, we introduce dynamic near field scatter-
ing as a powerful tool to study NEFs. Near field scattering
(NFS) has been introduced in the late 1990’s as an alterna-
tive to conventional static and dynamic light scattering.?*-2
In a NFS experiment, one typically observes the heterodyne
contribution of scattered light obtained by interference with
the unscattered transmitted beam acting as a local oscillator.
Since the primary beam is not masked, the method can pro-
vide access to very small scattering angles and corresponding
wave vectors. Both a shadowgraph and Schlieren optical lay-
out can be used to implement NFS.'> -7 Here, we show that
by using dynamic NFS, we are able to extract both the mass
diffusion coefficient D and the critical cut-off wave vector ¢,
from a single experiment. Eventually from those values, we
can derive St and the thermodiffusion coefficient Dy as

Dr =D x Sr. (1)

Here, we present a comprehensive study of NEFs in three
binary liquid mixtures applying and critically testing this
approach.?$2

As shown later in the text, the Soret and thermodiffusion
coefficients derived from our experiments are indeed found in
good agreement with literature data. Our results thus confirm
the validity of common theoretical concepts on the dynam-
ics of concentration NEFs. The paper is organized as follows:
Sec. II describes the experimental setup, Sec. III outlines the
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NFS technique and its implementation, Sec. IV briefly intro-
duces the scattering equations used in Sec. V for the inter-
pretation of the experimental data. The article closes with a
short summary of the main results and concluding remarks in
Sec. VL.

Il. THERMODIFFUSION EXPERIMENTS

Our thermodiffusion cell (see Fig. 1) consists of two
square sapphire plates (40 x 40 x 8 mm?®) kept at differ-
ent temperatures by two square Peltier elements (Kryotherm,
TB-109-1.4—1.5 CH) with a central circular aperture (¢
= 13mm). The two Peltier elements are driven by two tem-
perature controllers (TCs) making use of a proportional-
integral-derivative (PID) feedback system (Wavelength Elec-
tronics, TCS651) maintaining the temperature of the internal
side of each Peltier element with a stability better than 1 mK
RMS over 1 day. Such a high temperature stability is needed
in particular when working close to the critical point of the
mixture while for the present study a lower accuracy would
have been also sufficient. The excess heat at the other side
of each Peltier is removed by water circulating in two alu-
minum plates. The two sapphire windows are kept apart by
four adjustable spacers. In our experiments, we set the liquid
layer thickness to 2 = 1.3 mm or # = 1.53 mm. The sample is
horizontally confined within a Viton O-Ring with an internal
diameter d = 26 mm.

We perform our experiments by imposing different tem-
perature gradients on the horizontally positioned thin cell con-
taining the initially homogenous fluid mixtures. The samples

CCD

FIG. 1. Experimental setup: a mono-mode optical fiber (F) delivers the low
coherent light beam, which is then collimated by a lens (L) and passes a lin-
ear polarizer (P1) before entering the thermodiffusion cell. A second linear
polarizer (P2) after the sample cell acts as an analyzer to modulate the inten-
sity of light impinging onto the CCD sensor. The liquid mixture is confined
horizontally by an O-ring (OR) and vertically by two sapphire plates (S1,S2)
in thermal contact with two Peltier elements (Pel,Pe2). The excess heat is
removed by two water-cooled aluminium plates.
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are chosen from the Fointainebleu benchmark.’® We study
three different combinations of 50% w/w binary mixtures
containing the three fluids: 1,2,3,4-tetrahydronaphthalene,
isobuthylbenzene, and n-dodecane (in the following, THN,
IBB, and n-C12, respectively). The imposed temperature dif-
ferences span the range from 8 to 20 K. The resulting temper-
ature gradients range from approximately 50 to 150 K/cm.
The mass diffusion coefficients are of the order of 10~°m?/s
and thus the vertical diffusion time across the layer of thick-
ness & is about 4 = h*/D ~ 0.5 h. A typical experimental run
consists in applying the temperature gradient to the mixture
and letting the Soret separation completely evolve for about
4 h. The chosen cell thickness is # = 1.3 mm for the THN-
IBB and the IBB-n-C12 mixtures and # = 1.53 mm for the
THN-n-C12 mixture.

lll. OUTLINE OF DYNAMIC NEAR FIELD SCATTERING
EXPERIMENTS

In a light scattering experiment, monochromatic light
with a wave vector k; impinges on a sample and is scat-
tered in directions k;. For an elastic scattering process
ks = ki = k, the modulus of the momentum transfer is equal
to Q = |ks — ki| = 2ksin(0/2), 6 being the scattering angle.
At a point far from the sample, the scattered field es(r, ¢) is a
superposition of waves scattered around Q. Under near field
conditions, eg(r, t) is composed of contributions arising from
many different Q. In principle, the individual @ components
can be recovered by simply computing the spatial power spec-
trum of eg(r, 1),%

|Es(q, D> = I,(q. 1), 2)

where I5(q, t) is the scattered intensity, Eq(q, t) is the spatial
Fourier transform of the field distribution e (r, t) for r in a
plane perpendicular to k;, and ¢ = Q[1 — (Q/2k)*]"/2.

However, practically all scattering experiments are based
on measurements of the scattered intensity iy(r,¢) instead
of the field amplitude. This complication can be avoided
by adopting a heterodyne detection scheme in which the
scattered field is mixed with the transmitted one e, (r). For
eo(r) > e(r, t), the measured intensity is well approximated
by im(r, 1) = io(r) + 2Re{es(r, )i (r)},> where the first term
is constant and equal to the intensity of the transmitted beam
and the second term is the fluctuating heterodyne signal. By
analogy with Eq. (2), Is(q, t) can be obtained by computing
the power spectrum of the heterodyne signal,'”

[Tm(g, 1) — Io(@)* = a{T (@)1, ) + B@)}, 3

where I,(q, t) and I,(q) are the spatial Fourier transforms of
im(r, t) and i,(r), a is a renormalization constant, 7'(g) is the
transfer function of the imaging optics, and B(g) is the noise
of the measurement.

An elegant way to remove the transmitted beam intensity
in Eq. (3) is to compute the difference Ain(r,t) = in(r, ")
— im(r, t* + t) between two measured images separated by a
delay time £.°"!7 For delay times much larger than the re-
laxation time of the system at a given ¢, the two scattering
fields are uncorrelated and the power spectrum |Al(q, t)|?
is again proportional to the scattered intensity Is(q). Here,
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FIG. 2. Results of a near field scattering experiment (Shadowgraph layout) on a binary liquid mixture stressed by a thermal gradient (THN-IBB, AT = 16K).
Upper panels: (a) 2048 x 2048 near field image of the sample, (b) and (c) image differences having a time delay of t = 0.33 s and 33 s, respectively, (d) spatial
Fourier transform (| AI(g, 1)|?) of (c). Lower panels: Power spectra {| Aly(g, £)|*) computed from a set of 3000 images. (e) Results as a function of wave vector
¢ for 1 =0.33 s (dashed gray line) and 33 s (continuous black line) and (f) as a function of the delay time ¢ for g = 110cm™~" (black squares) and g = 192 cm ™!
(gray circles) together with fitting lines as per Eq. (4), providing time decays of = 7.1 s and 3.3 s. Inset: (e) Scattered intensity /;(g) as obtained after division
by the Shadowgraph transfer function and its fit to Io/[1 + (g/q.)*], where A. = 27 /q. = 0.6 mm is the size of the systems critical fluctuations.?

Al (g, 1) is the spatial Fourier transformation of Aiy(r, t). If
the system has not relaxed yet, the power spectrum has an ad-
ditional contribution characteristic of the system’s dynamics.
More specifically, the temporal evolution of the power spec-
trum at a given ¢q is given by [1 — f(q, t)], where f(q, t) is the
normalized intermediate scattering function (ISF), commonly
studied in scattering experiments and statistical mechanics,

(IAIn(g, ) = 2a{T (@[] — f(q. D]+ B(@)}, (4

where I(q) = (I(q, t)) is the ensemble averaged scattered
intensity. Provided the dynamics of the system is stationary
and the relaxation time scale is short compared to the mea-
surement time, the ensemble average of the power spectrum
can be obtained by calculating the time average. For isotropic
scattering, additional statistical accuracy is obtained by per-
forming radial averages. In our experiment, we also normalize
each image by its spatial average to eliminate the influence of
residual fluctuations of the primary beam intensity.

The double-frame differential analysis described above
is a generic approach that can be applied in various near
field scattering techniques ranging from Shadowgraph and
Schlieren detection layouts to near field light and X-ray scat-
tering or differential dynamic microscopy.!®13-17:25.31-38 1p
this work, we have implemented the shadowgraph detection
scheme mainly due to the very simple and robust setup and
experimental procedures.

In Fig. 1, a sketch of the optical setup is also shown. The
shadowgraph makes use of a low coherence light source (Su-
per Lumen Diodes, Broad Lighter S680, A = 680 &= 10 nm)
delivered through a single-mode fiber (F). The resulting di-
verging beam is collimated by an achromatic doublet lens
(L, f =15cm, ¢ = Scm) and then passes through a fixed
linear film polarizer (P1) in order to set the beam polariza-
tion before entering the thermodiffusion cell. A second lin-

ear polarizer after the cell (P2) allows us to adapt the average
transmitted light intensity. The detection plane is located at
about z = 26 cm from the sample plane. As a sensor, we use
a charge coupled device (CCD4000, Vosskiihler, Germany)
with 2048 x 2048 square pixels each of size 7.4 x 7.4 um?
and a dynamic range of 12-bit. After reaching the steady-state
of Soret diffusion, sequences of 3000 images are acquired at a
frame rate of 3 Hz. Each image contains 2048 x 2048 pixels
and exposure times are varied from 0.35 to 35 ms for differ-
ent runs. After the acquisition, the temperature difference is
incremented and a new acquisition run is started after wait-
ing for another 4 h. A resulting near field image is presented
in Fig. 2(a). The borders of the cell as well as the Gaussian
profile of the primary beam and residual interferences due to
reflections and diffraction are visible in the image. However,
the subtraction of images efficiently removes these undesired
effects as well as stray light contributions yielding a homo-
geneous speckle pattern Aiy(r, ¢) similarly to subtracting a
reference image.?® This is illustrated in Fig. 2 for a time delay
of (b) r =0.33 s, (c) and 33 s. We next compute the time aver-
aged spatial power spectrum of image differences with equal ¢
(Fig. 2(d) for t = 33 s). In our experiment, the scattering pro-
cess is isotropic and the power spectrum can be averaged over
scattering vectors having the same modulus ¢ = |q|. A selec-
tion of power spectra (| Al (g, 1)|?) is presented in Figs. 2(e)
and 2(f) as a function of ¢ and ¢, respectively. The scattered
intensity is obtained by extrapolating the time power spectra
towards short and long times. Indeed, the noise contribution
B(q) can be extracted from the short time limit of (|Aly(q,
H|?) where fig, t — 0) = 1, whereas T(¢)I;(q) is obtained at
long times where f(q, t — o0) = 0.

We now turn our attention to the dynamic part of the
scattering signal. As mentioned above, the time resolved
analysis of the scattering signal provides access to the
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intermediate scattering function of NEFs for each wave vec-
tor covered by the NFS experiment and each delay time con-
tained in the image sequence. Working at 1:1 magnification,
the theoretically accessible wave vectors are set by the size
of the area detector and the pixel size. If L is the edge length
of the area detector, then g-values range from g,,,;, = 27/L to
GMax = Gmin X N V2 /2 where N? is the total number of pixels
(2048 x 2048 in our case). In practice, not all the wave vec-
tors can be probed primarily due to a limited sample size and
the poor signal to noise ratio at the extremes. This limits the
range of accessible wave numbers in our experiment to about
q € [10gin, 150¢in]. The accessible time delays range from
tmin = At, set by the interframe time difference, to the maxi-
mum value of #y,, = M At where M is the number of acquired
images and therefore in our experiments ¢ € [0.33s, 1000 s].

In addition to the relaxation time, it is possible to extract
from our measurements the relative intensity of the scattered
signal I;(q). Such a static low angle scattering analysis has al-
ready been described in detail elsewhere'> %3 and we will
only discuss it here briefly. First, we point out that measured
static signal is actually convoluted by the imaging transfer
function T(g), which depends on the optical setup. In the case
of a shadowgraph layout, the transfer function shows oscilla-
tions, which need to be finely characterized before performing
a deconvolution.?3%40 The static signals as obtained after di-
vision by the Shadowgraph transfer function I5(g), is plotted
in the inset of Fig. 2(e) for a typical case.?’-2%3%40

Finally, we note that for processing the large amount of
data acquired in a single experimental run (about 24 GB), we
take the advantage of parallel processing on a graphics pro-
cessing unit (GPU) with the aim to reduce the computational
time to less than one hour per experiment.** Our personal
computer motherboard is equipped with an 8-core CPU (IN-
TEL, XEON X3440 at 2.53GHz) and a GPU-board (NVIDIA,
Tesla C2050). The double-frame differential analysis is im-
plemented in C++/CUDA as described in Ref. 39.

IV. THEORY OF LIGHT SCATTERING
FROM NON EQUILIBRIUM FLUCTUATIONS

A binary mixture subject to a thermal stress can undergo
mass separation, a phenomenon known as the Ludwig-Soret
effect or thermodiffusion. Immediately after applying the ther-
mal gradient, a linear temperature profile is established in
the fluid mixture. A dynamic equilibrium is reached once the
Soret diffusion is balanced by mass diffusion. The exact time
required to reach a stationary state again depends on the mass
diffusivity D. We note that this picture is valid only for ordi-
nary binary mixtures where the Lewis number Le = D/Dr
<« 1 where Dy is the thermodiffusion coefficient given by
Eq. (1). The direction of the concentration gradient is deter-
mined by the sign of the Soret coefficient St defined by an
empirical relation valid at steady-state conditions,*"4?

1 Ve
co(l —¢) %T '
where ¢, is the initial concentration of the denser component

of the mixture, Vc is the resulting steady-state concentration
gradient, and VT is the imposed temperature gradient.

Sr = &)

J. Chem. Phys. 137, 234202 (2012)

It has been shown by means of fluctuating hydrodynam-
ics that the intensity of the light scattered by concentration
NEFs at the steady-state of a Soret-driven separation process

under the influence of gravity can be written as>

I,
TT @/ (6)
q/49c)
where I, = [kgT/(167%p)] % [Vc/(Bg) — (dc/ap)p, 7] is the
intensity of NEFs at the plateau arising due to the quenching
effect of gravity for wave vectors g < q., kp is the Boltzmann
constant, 7T is the average temperature of the mixture, p is the
density, B = 1/p (dp/dc) is the solutal expansion coefficient,
g is the gravitational acceleration, u is the chemical potential
per unit mass, and ¢, is the gravitational critical wave vector

set by
N V7t
Bg-Vc
c = s 7
qe ( D 7

where v is the kinematic viscosity of the mixture.

The reported results of FHD are obtained after introduc-
ing two main approximations: first, it is assumed that the fluid
properties (v, p, etc.) are constant within the sample; sec-
ond, periodic or quasi-periodic approximations are involved
to make the equations solvable. In the present experimental
conditions, the concentration difference in the sample are al-
ways smaller than 6%, therefore, we assume that the sam-
ple properties are essentially constant within the sample. The
latter approximation should not affect the system dynamics,
therefore is not relevant to the present study.

At the steady-state of a Soret separation process, the con-
centration gradient can be related to the temperature gradient
via Eq. (5). Thus, the critical wave vector can be expressed in
terms of the Soret coefficient

L o2 1/4
[ ﬂg-VTSTco(l—co)]
gc = | — .

vD ®

The time auto-correlation function C(g, f) probed in dy-
namic NFS can be expressed as the sum of three different ex-
ponentials (for details see, for example, Egs. (6.1) and (6.2) in
Ref. 4). The first term is due to thermal fluctuations, the sec-
ond to viscous fluctuations, and the third one to concentration
fluctuations. In typical binary mixtures, the first two terms de-
cay much faster than the third one and can thus be neglected
in our experiments as discussed in Ref. 4. In the following,
we will consider only the contribution of concentration NEFs
as a single exponential decay f(q, r) = exp (— #/t(g)) and thus

C(g.t)=B(g) + LI;(q)f(g,1), )

where B(q) is a background noise level, I (g) is the ampli-
tude of concentration NEFs as described above, and t(g) is
the time constant at a specific wave vector g. The time con-
stant for the concentration component in the presence of grav-
ity can be obtained by combining Eqgs. (22) and (25) in Ref. 5
and taking into account the comments made after Eq. (26) in
the same article

1

@)= Dg?[1 + (gc/9)*1

10)
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FIG. 3. Normalized intermediate scattering function derived for the sample
THN-IBB, stressed by a temperature gradient of 123 K/cm for 4 different val-
ues of the wave vector ¢, namely: black squares for ¢ = 60/cm (r = 3.65),
red circles for ¢ = 110/cm (v = 7.15), green up-triangles for ¢ = 192/cm
(r = 3.3s) and blue down-triangles for ¢ = 247/cm (t = 2.1 ).

This result is obtained with the further approximation g
> qc(4D/v)”4, i.e., in conditions where traveling waves are
not present in the system. This approximation fully holds for
all our measurements, for example, for the THN-n-C12 sam-
ple traveling waves appear for ¢ < 27 cm~! while our wave
vector range starts at 50 cm~!. Here, q. is the same critical
value appearing in Egs. (6)—(8). For wave vectors ¢ > ¢, the
fluctuations behave diffusively, while for ¢ <« ¢, the effect
of gravity (Archimedes’ buoyancy) is dominant.> 1>-7+43 The
relaxation time reaches a maximum exactly at g = g..

V. RESULTS AND DISCUSSION

By fitting the time dependent part of the experimental
power spectra with Eq. (4), we obtain the normalized inter-
mediate scattering functions for every wave vector. In Fig. 3,
some typical examples of the intermediate scattering function
are shown clearly revealing the monoexponential decay.

The measured relaxation time constants t(g) as a func-
tion of the wave vector are plotted in Fig. 4 for all three liquid
mixtures. As expected, we recover the typical bell-shape pre-
dicted for NEFs subject to gravitational forces. As outlined in
the literature,> '>~!7 this shape mirrors the presence of two dis-
tinct regimes. For wave vectors larger than the critical value
q., the fluctuations are dominated by diffusion, whereas for
wave vectors smaller than ¢, the buoyancy effect of gravity
is dominant. The combined action of both mechanisms leads
to the g-dependence of the relaxation time constant given by
Eq. (10). Interestingly, the sensitivity of NEF’s to gravity al-

J. Chem. Phys. 137, 234202 (2012)
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FIG. 4. Time constant of NEFs as a function of the wave vector. Dashed lines
show the results of a fit with Eq. (10) for three different samples, namely:
red triangles for THN-n-C12 (g = 138.1/cm, D = 6.6x10~'%cm?/s); blue
squares for THN-IBB (g, = 93.8/cm, D = 7.9x10~%cm?/s); black circles
for IBB-n-C12 (g, = 88.1/cm, D = 11.6x10~'%m? /s). All data shown are
for AT = 16K.

lows us to extract both g, and D independently, provided we
can resolve the maximum of t(g) with sufficient accuracy as
it is the case here (Figure 4). Owing to the high accuracy and
the extended g-range, we obtain a very robust and accurate
fit to the experimental data. Both fitting parameters, g, and
D, are only weakly correlated. While the former is set by the
peak-position, the latter is mostly determined by the power
law decay at larger g-values. From the measured values of ¢,
and D, the Soret coefficient S can be extracted (Eq. (8))

gtvDh

T BgATc,(1—c,)’ (b

St
taking into account the other known parameters of the fluid
mixtures.>® From the same data set, the thermodiffusion coef-
ficient can be calculated through Eq. (1).

The experimental values of D, St, and Dy are reported in
Table I together with literature data®® for direct comparison.
The reported literature data are obtained by averaging results
from different experimental methods, therefore they represent
high quality benchmark values for the analyzed mixtures. The
values obtained from our measurements using dynamic NFS
are in good agreement with literature data. Our results thus
indicate that the proposed method is not sensitive to the prob-
lems encountered previously in the work of Sengers and co-
workers.? We think this is because our experimental approach
is based on a coherent analysis of the dynamics fully covering
the relevant ¢ —range. Sengers and co-workers on the other
side, lacking access to wave vectors around ¢, had to use

TABLE 1. Measured and reference values®? of the mass diffusion, Soret, and thermodiffusion coefficients of the

three analyzed binary mixtures.

D St Dr
(10710 21y (1073 K™Y (10712 m2s~ 1K)
This work Literature®” This work Literature®” This work Literature®”
THN-n-C12 6.3+0.1 6.21 +0.06 9.6 0.1 9.5+0.5 6.0+0.2 59403
THN-IBB 7.8 +0.1 85+£0.6 34+£0.2 33+£03 2.7+0.3 2.8+0.1
IBB-n-C12 10.0 £ 04 9.5+04 39+04 39+0.1 39+0.7 37402
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information from static scattering. It remains however unclear
whether this discrepancy has its origin in a fundamental dis-
crepancy between (static) scattering theory and experiment
or whether it is merely due to limitations in the data analy-
sis procedure implemented in the early work of Sengers and
co-workers.

Finally, we wish to emphasize another important advan-
tage of the NFS technique applied to the study of thermod-
iffusion. In contrast to all the other optical techniques, no
prior knowledge about the so-called optical contrast factors
on/dT and dn/dc of the mixture is required. This can be an
important experimental advantage since these fluid parame-
ters are not always known or accessible, in particular for ex-
treme situations such as high temperatures or high pressure
conditions.***

VI. SHORT SUMMARY AND CONCLUSIONS

We have performed a near field scattering study of the
dynamics of concentration non equilibrium fluctuations dur-
ing the Soret separation of binary liquid mixtures in a wave
vector range well suited for distinguishing the diffusive and
gravitational regimes. The analysis of the time constants of
NEFs independently provides the mass diffusion and Soret
(and thermodiffusion) coefficients of the fluid mixtures under
study. Comparing these results with literature data confirms
that the proposed experimental technique can be considered a
sound approach for the study of thermodiffusion processes.
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