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Functional connectivity (FC) as measured by correlation between fMRI BOLD time courses of distinct brain
regions has revealed meaningful organization of spontaneous fluctuations in the resting brain. However, an
increasing amount of evidence points to non-stationarity of FC; i.e., FC dynamically changes over time reflecting
additional and rich information about brain organization, but representing new challenges for analysis and inter-
pretation. Here, we propose a data-driven approach based on principal component analysis (PCA) to reveal
hidden patterns of coherent FC dynamics across multiple subjects. We demonstrate the feasibility and relevance
of this new approach by examining the differences in dynamic FC between 13 healthy control subjects and 15
minimally disabled relapse-remitting multiple sclerosis patients. We estimated whole-brain dynamic FC of
regionally-averaged BOLD activity using sliding timewindows.We then used PCA to identify FC patterns, termed
“eigenconnectivities”, that reflect meaningful patterns in FC fluctuations. We then assessed the contributions of
these patterns to the dynamic FC at any given time point and identified a network of connections centered on the
default-mode networkwith altered contribution in patients. Our results complement traditional stationary anal-
yses, and reveal novel insights into brain connectivity dynamics and their modulation in a neurodegenerative
disease.

Introduction

Spontaneous fluctuations of the functional MRI (fMRI) blood-
oxygen-level-dependent (BOLD) signal are not random but temporally
coherent between distinct brain regions. While these fluctuations
were long considered as “noise”, Biswal et al. (1995) showed that fluc-
tuations of motor areas were correlated even in the absence of a motor
task. Several other networks of coherent BOLD activity between remote

brain regions have since been identified, including visual, auditory,
language and attention networks, and a network called the “default
mode network” (DMN) which reduces its activity during attention-
demanding tasks. These networks of regionswith coherent activity dur-
ing rest are consistent across subjects and closely resemble the brain's
functional organization of evoked responses (Damoiseaux et al., 2006;
Fox and Raichle, 2007; Laird et al., 2011; Smith et al., 2009). Coherent
BOLD activity persists during sleep and in anesthetized monkeys,
suggesting that it reflects a fundamental property of the brain's func-
tional organization (Larson-Prior et al., 2009; Vincent et al., 2007).

Coherent BOLD activity, known as “functional connectivity” (FC), is
modulated by learning (Bassett et al., 2011), cognitive and affective
states (Cribben et al., 2012; Ekman et al., 2012; Eryilmaz et al., 2011;
Richiardi et al., 2011; Shirer et al., 2012) and also spontaneously (Britz
et al., 2010; Chang and Glover, 2010; Kitzbichler et al., 2009). Chang
and Glover (2010) showed that FC between the posterior cingulate cor-
tex, a key region of the default mode network, and various other brain
regions was highly dynamic over time. Standard stationary FC analyses
assume temporal stationarity and are blind to the temporal evolution of
FC. Several recent studies have since confirmed the non-stationarity of
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FC (Handwerker et al., 2012; Hutchison et al., in press; Kang et al., 2011;
Kiviniemi et al., 2011; Li et al., in press;Majeed et al., 2011).Wewill use
the terms dynamic FC to specifically refer to fluctuating connectivity
during rest, and stationary FC to refer to connectivity estimated under
the assumption of temporal stationarity. Chang et al. (2013b) reported
a link between heart rate variability and dynamic FC in some brain
regions related to arousal and vigilance, suggesting a neural basis for
these fluctuations, and Hutchison et al. (in press) showed that these
fluctuations persist in anesthetized monkeys in the absence of con-
scious, cognitive processing.

When no temporal stationarity is assumed, whole-brain and multi-
subject FC studies get vastly more complex. Also, given that there is
no task, dynamic FC patterns must be learned from the data. Due to
these challenges many studies assessing FC changes have focused on
individual brain regions or networks, such as the extensively studied
DMN. Allen et al. (in press) recently proposed a data-driven approach
based on k-means clustering to identify whole-brain “FC states” in the
resting brain. The authors showed that these states differed strongly
from FC patterns identified in stationary analyses and suggested that
they represent departures from average FC patterns as FC between indi-
vidual brain regions appears or disappears. They also highlighted the
benefit of whole-brain studies to understand the dynamic interplay
between different brain regions or networks.

Given the increasing evidence of dynamic FC during rest and its im-
portance for characterizing the brain's intrinsic functional organization,
the aim of our study was to develop a data-driven technique to reveal
characteristic fluctuations of whole-brain FC. Our method exploits
whole-brain FC of multiple subjects to identify connectivity patterns
with coherent dynamics and their contributions across time. Specif-
ically, we estimated dynamic FC by calculating the correlations between
the BOLD activity of anatomically defined brain regions covering the
whole brain using sliding time windows (Chang and Glover, 2010).
We then temporally concatenated the dynamic FC between all pairs of
brain regions across subjects to construct a connectivity × time-subject
data matrix. We then applied principal component analysis (PCA),
which finds intrinsic structure in the data that here represents
patterns of coherent FC dynamics. Using these FC patterns, termed
“eigenconnectivities”, the FC at any specific time can be represented as
a weighted sum. Thus, we can interpret the eigenconnectivities as build-
ing blocks of dynamic FC with a contribution that varies across time. In
contrast to the clustering approach employed in electroencephalography
(EEG) microstate (Pascual-Marqui et al., 1995) and FC state analysis
(Allen et al., in press), where stable EEG scalp topographies or whole-
brain FC states are identified, we used PCA to identify the most abundant
building blocks that reappear across time and subjects.

PCA has previously been applied by Friston et al. (1993, 1994) to
voxel-wise PET and fMRI data to determine patterns of correlated
brain activity, so-called “eigenimages”. In contrast to our work, the
authors applied PCA to activity and not connectivity time courses, and
to single subjects only, which complicates comparisons across subjects.
More commonly, voxels with similar resting state activity are identified
using spatial independent component analysis (ICA), which decom-
poses a voxel × time-subject data matrix into (maximally independent)
spatial maps and associated time courses (Kiviniemi et al., 2003;
McKeown et al., 1998). The application of PCA and ICA in these studies,
however, implicitly assumes FC to be temporally stationary and iden-
tifies patterns of voxels with similar resting state activity across the
entire scan.

Singular value decomposition1 (SVD) has also been applied to un-
cover patterns of relations between brain activity and experimental

conditions, behavior or the activity of other voxels in a seed region, in
a method called Partial Least Squares (PLS) (Krishnan et al., 2011;
McIntosh et al., 1996). The right singular vectors contain patterns of
voxels that are associated with e.g. reaction time or seed voxel's activity
(i.e., functionally connected). Here, rather than finding relations be-
tween the brain activities of different voxels across different conditions,
we identify relations between brain connectivity time courses in an
unsupervised manner.

Stationary FC analysis during rest has been widely applied to under-
stand the functional impact of neurological and psychiatric diseases,
such as Alzheimer's disease or schizophrenia, and to search for reliable
biomarkers (Fox and Greicius, 2010). To demonstrate the feasibility
and relevance of the proposed building blocks, we are interested
in early dynamic FC changes in patients with multiple sclerosis (MS).
MS is an inflammatory disease that attacks the myelin sheaths in the
central nervous system, causing brain lesions, which are randomly dis-
tributed in periventricular white matter, but concentrated around the
frontal and occipital horns of the lateral ventricle, and at the cortico-
subcortical junction (Compston and Coles, 2008). This was also the
case in our minimally disabled relapsing-remitting patients (RRMS)
group. MS is usually accompanied by sensory or motor deficits and cog-
nitive impairment, but the correlation between clinical disability and
focal lesions visible in structural MRI is poor (Barkhof, 2002; Filippi
and Agosta, 2010). This is because “hidden” damage occurs in normal
appearing brain tissue (NABT), extending well beyond focal lesions
(Fu et al., 1998; Hackmack et al., 2012). Alternative imaging methods,
such as resting-state fMRI, have started to address the issue of hidden
damage and shown disrupted stationary FC. While some studies re-
stricted their analysis to the DMN or motor regions (Bonavita et al.,
2011; Dogonowski et al., 2013; Lowe et al., 2002; Rocca et al., 2010),
others have reported changes in several large-scale resting state net-
works, including the sensorimotor and executive control networks
(Hawellek et al., 2011; Richiardi et al., 2012; Rocca et al., 2012;
Roosendaal et al., 2010). Together, these results are very promising for
characterizing the functional pathology of MS, but the relationship
between structural damage and functional changes is still poorly under-
stood (Schoonheim and Filippi, 2012).

Here, we study a group of minimally disabled RRMS patients and
demonstrate for the first time how dynamic FC is altered in these pa-
tients. Specifically, we examine whether the contribution of the identi-
fied FC patterns is disturbed in the early stage ofMS.We believe that the
study of dynamic FC can further contribute to elucidating functional
adaptation and reorganization in this pathology.

Methods

Subjects

Subjects and MRI data were the same as in a previous study of our
group (Richiardi et al., 2012). RRMS patients were diagnosed according
to McDonald's criteria (Polman et al., 2005) and selected using criteria
for 1) mild to moderate neurological disability with no impaired ambu-
lation (Expanded Disability Status Scale (EDSS) ≤ 2.5 (Kurtzke, 1983)),
2) no clinical relapse or corticosteroid therapy during the 6 weeks
before inclusion in the study, and 3) no other neurological or psychiatric
illness according to DSM-IV criteria. 22 RRMS patients (mean ± SD age
36.8 ± 8 years, 14 females, EDSS 1.9 ± 0.4, disease duration 4.7 ±
3.5 years) and 14 healthy control (HC) subjects (age 38.4 ± 6 years, 9
females) were included. The study was approved by the local institu-
tional ethics committee and all subjects provided informed consent.

Data acquisition

Datawere acquired on a Siemens 3T TrioTIM using a 32-channel head
coil. Functional imaging datawere acquired in one sessionusing gradient-
echo planar imaging (TE = 27 ms, TR = 1.1 s, flip angle = 90°,

1 There is awell-known relationship between SVD and PCA: for centered dataX, the left
singular vectors of SVD (which is applied to X) equal the principal components of PCA
(which is applied to the covariance matrix XXT): X = UΣVT → XXT = UΣVT(UΣVT)T =
UΣVTVΣU = UΣ2UT since VTV = I. The columns of U are called left singular vectors or
principal components.
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matrix = 64 × 64, 21 transverse slices, voxel size = 3.75 × 3.75 ×
5.63 mm3, 450 volumes). Subjects were instructed to lie still with their
eyes closed and not to fall asleep (which was confirmed in a debriefing
after the scan).

T1 anatomical scans were collected using an MPRAGE sequence
(TE = 2.98 ms, TR = 2.4 s, flip angle = 9°, 160 slices, voxel size =
1 × 1 × 1.2 mm3).

Data preprocessing

Anatomical and functional data were preprocessed using SPM8
(www.fil.ion.ucl.ac.uk/spm), and a combination of in-house MATLAB
scripts and scripts from the DPARSFA toolbox (Chao-Gan and Yu-Feng,
2010). The first ten functional volumes were discarded to allow for T1
equilibration effects. The other 440 functional volumes were spatially
realigned to the mean image, detrended (linear and quadratic trends)
and bandpass filtered (0.01 − 0.15 Hz). To further minimize spurious
changes in connectivity related to motion, we “scrubbed” our data by
removing all volumes that either 1) had a frame-wise displacement
FD = |Δx| + |Δy| + |Δz| + |Δα| + |Δβ| + |Δγ| N 0.5, where the rota-
tional displacements α,β,γwere converted tomillimeters by calculating
the displacement on the surface of a sphere of radius 50 mm (Power
et al., 2012), or 2) were considered as intensity spikes, defined as a
whole-brain intensity of more than 2 standard deviations from the
average intensity across the duration of the scan. We also excluded
the preceding 2 and following 4 volumes for both indices, correspond-
ing to a similar temporal coverage as in Power et al. (2012). Because
of the sensitivity of functional connectivity to motion and to retain suf-
ficient data for the dynamic connectivity analysis, we excluded 1 HC
subjects and 7 RRMS patients with either maximal head motion above
3 mm or 2°, or more than 10 out of 440 volumes marked for scrubbing
(before adding the 6 surrounding volumes). All results thus reflect a
total of 13 HC subjects and 15 RRMS patients.

The functional data were coregistered with each subject's anatomi-
cal data. The anatomical data were then segmented (new segmentation
algorithm of SPM8, an extension of the unified segmentation algorithm
(Ashburner and Friston, 2005)) and regionally parcellated using the au-
tomated anatomical labeling (AAL) atlas, which divided the brain into
90 anatomical regions of interest (Supplementary Table 1) (Tzourio-
Mazoyer et al., 2002). The segmentation step provided a deforma-
tion field, which was used to warp the structural atlas to the subject's
native space. We estimated regional mean time series by averaging
the fMRI signal over all voxels in each brain region. The time series
from the bilateral globus pallidus were discarded due to ventral signal
dropout in some subjects, leaving 88 brain regions. We regressed out
nuisance variables from the regional time series (6 headmotion param-
eters, average cerebrospinal fluid from ventricular masks and white
matter signal from white matter masks). The global signal was not
regressed out as this step is currently debated in the literature.

Dynamic FC estimation

Weestimated dynamic FC by calculating the pairwise Pearson corre-
lation between the residuals of all 88 brain regions using a sliding-
window technique yielding a 88 × 88 correlation matrix for each
window (Fig. 1a): the sliding-window correlation between the time
series x and y was given by ρxy(t) = corr(x[t, t + Δt], y[t, t + Δt]),
where Δt was the window length in TRs and the window was shifted
by two TRs for each estimation. Correlations ρ were Fisher r-to-z
transformed (z = atanh(ρ)) to make them approximately normally
distributed.

We constructed a dynamic FC matrix Cs or each subject, where each
column contained a vectorized correlation matrix (Fig. 1b). When
vectorizing the correlation matrices, we kept only the upper triangular
part due to symmetry, resulting in a (N2 − N)/2 × Ts matrix, where
N = 88 was the number of brain regions, and Ts the number of

windows for subject s. We normalized each subject's dynamic FCmatrix
by removing the global mean and dividing by its standard deviation
(mean and standard deviation over all time points and FC pairs).

The sliding-window technique has previously been used by several
other groups to investigate dynamic FC with window lengths varying
from 15 to 120 TRs (Allen et al., in press; Bassett et al., 2011; Chang
and Glover, 2010; Handwerker et al., 2012; Hutchison et al., in press)
and similar step sizes (Allen et al., in press; Handwerker et al., 2012;
Hutchison et al., in press). We used window lengths of 30, 40, 60 and
120 TRs, covering 33, 44, 66 and 132 s respectively, to investigate the
effect of the window length.

Eigenconnectivity estimation

To estimate characteristic connectivity patterns across time and sub-
jects, we applied PCA to amatrix containing the dynamic FCmatrices of
all HC subjects and RRMS patients; i.e.X = [C1, C2,… CS]. PCA is a statis-
tical technique to detect unknown, yet structured patterns that explain
the differences in the collection of vectorized correlationmatrices. A few
patterns typically explainmost of the variation present in all of the orig-
inal correlationmatrices, allowing to automatically summarize the data.

Before applying PCA, the mean of each row is normally subtracted
from the data: X′ ¼ X−X, where X is a matrix that contains the row-
wise means. However, we observed that PCA was partly driven by
inter-individual differences in mean correlation levels rather than
correlation fluctuations when we subtracted the mean of the concate-
nated matrix (see the Motion section). Therefore, we subtracted
the row-wise means of Cs for each subject s individually before
we concatenated all subjects along the temporal dimension: X′ ¼
C1−C1;C2−C2; :::;CS−CS

h i
(Figs. 1b, c).

We then applied PCA, which finds the eigenvectors and eigenvalues
of the covariance matrix of X′ (Fig. 1c): X′X′T = UΛUT, where U contains
orthonormal eigenvectors on its columns and Λ the corresponding
eigenvalues on its diagonal; i.e., Λkk = λk. These eigenvectors (or equally
principal components) can be seen as features (or spatial modes)
that characterize the variation across the collection of correlation matri-
ces. Because they capture connectivity patterns, we call them
“eigenconnectivities”.

The matrix U is of size (N2 − N)/2 × (N2 − N)/2; i.e., we obtain
(N2 − N)/2 eigenconnectivities. However, the eigenconnectivities
with the largest associated eigenvalues explain most of the variation
in the collection of dynamic FC matrices and a small number can be
used to efficiently approximate the data. Approximating the data using
only the K eigenconnectivities with the K largest eigenvalues, results in
a retained variance of ∑k = 1

K λk/∑λk. The retained variance is equal to
the approximation accuracy 1−jjX′−X′

approxjj2=jjX′jj2, where X′
approx ¼

UredU
T
redX

′, and Ured contains only the first K eigenconnectivities.

Time-dependent contribution of eigenconnectivities

A subject's dynamic FC matrix can be efficiently represented by

projecting it onto a few eigenconnectivities: Ws ¼ UT
red Cs−Cs

� �
, where

Ws is a matrix of size K × Ts containing the weights of K
eigenconnectivities at all Tswindows (Fig. 1d). These weights are similar
to the time-dependent profiles obtained for the “eigenimages” in Friston
et al. (1993), and conceptually related to the subject-dependent time
courses calculated in independent component analysis (ICA) by dual re-
gression (Beckmann et al., 2009). In ICA, spatial maps from group-ICA
are used as regressors to estimate a time course for each independent
component and subject. Here, we use the eigenconnectivities obtained
from group analysis as regressors to estimate associated time courses
for each subject: since the eigenconnectivities are orthonormal we can
reformulate the equation above as Cs−Cs ¼ UredWs , where Ured acts as
the regressor. Thus, for a single set of “group” eigenconnectivities,
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which we can interpret as building blocks of dynamic FC, we obtain
subject-specific time-dependent weightsWs that describe their contribu-
tion in representing dynamic FCmatrix over time.We inspected the time-
dependentweights tomake sure that the eigenconnectivities contributed
to dynamic connectivity in all subjects (i.e., non-zero weights for all
subjects).

Comparing HC subjects and RRMS patients

We first compared the average dynamic FC strength Cs between HC
subjects and RRMS patients using two-sample t tests. Statistically signif-
icant differences were determined using non-parametric permutation
testing, by estimating a maximal statistic under the null hypothesis of
no difference; i.e., observed differences in the 95th percentile of the
null distribution of differences between subjects randomly assigned to
the two groups were significant at the 5% level (n = 1000 randomiza-
tions, corrected p-value) (Nichols and Holmes, 2002).

We next assessed whether the contribution of the eigencon-
nectivities was different between HC subjects and RRMS patients by
comparing the percentage of time-dependent weights with positive
signs. A difference between groups would indicate that the contribu-
tion of a specific FC pattern is biased in the RRMS patients. We com-
pared such a summary measure since individual time points are not
consistent across subjects in RS studies. We tested for differences in
the percentages using Hotelling's T2 multivariate test. Hotelling's T2

test can also be seen as amaximumunivariate t2 test for a specific linear
combination of the means of the two groups; i.e., the weighted sum
∑k = 1

K ak(mk
HC − mk

MS) is maximal, where ∑K
k¼1a

2
k ¼ 1, mk is the

average percentage for eigenconnectivity k across each group of
subjects and HC and MS indicate the HC and RRMS subjects,
respectively. Hotelling's T2 test identifies group and interaction
(group ×eigenconnectivity) effects. For the interaction effect, theweight-
ed sum is modified as ∑k = 1

K − 1 ak{(mk
HC − mk + 1

HC ) − (mk
MS − mk + 1

MS )}.
We estimated the effect size from the Mahalanobis distance

(a multivariate generalization of Cohen's d), which is defined as: D ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 1=n1 þ 1=n2ð Þ

q
, where T2 = FK(n1 + n2 − 2)/(n1 + n2 − K − 1)

and n1, n2 are the sizes of the HC and RRMS groups and K = 10 is the
number of variables (eigenconnectivities).

We calculated a summary measure of percentage positive weights
according to the weights of the Hotelling's T2 test for each subject and
assessed whether it was correlated with clinical disability (EDSS)
using Pearson correlation within RRMS patients.

Phase randomized data

Handwerker et al. (2012) showed that the sliding-window tech-
nique can result in spurious dynamic FC changes and it is thus crucial
to compare the results to an appropriate null model.We phase random-
ized both brain activity time courses before estimating dynamic FC
(Handwerker et al., 2012), and connectivity time courses estimated
from original activity (Allen et al., in press) in separate simulations. Spe-
cifically, we Fourier transformed each subject's activity or connectivity
time courses, randomized the phases independently for each brain
region or connectivity pair, and transformed back to the time domain
using the amplitude of the real data but randomized phases (Theiler
et al., 1992). Phase randomizations preserve the mean, variance and
autocorrelation properties of the time courses, while randomizing
their precise timing. Fluctuations in FC estimated from phase random-
ized brain activity are thus due to random activity timing. Randomized
connectivity destroys its precise timing, while preserving inter-subject
variability in the mean and variance of connectivity (i.e., we can disen-
tangle effects of inter-subject variability in mean FC values from FC
fluctuations).

We also assessed the significance of each eigenconnectivity by com-
paring its eigenvalue to a null distribution obtained using the phase
randomized data. Analytic methods to estimate the dimensionality cur-
rently employed for activity time courses, such as Laplace PCA (Minka,

Fig. 1. Diagram of the analysis pipeline: (a) Dynamic FC between 88 brain regions was computed as sliding window correlations between the activities of all regions for each subject.
(b) The upper triangular part of each 88 × 88 correlation matrix was unfolded and concatenated across time to form a dynamic FC matrix Cs. The mean correlation value across time
was subtracted from all connectivity pairs (i.e., row-wise centering). (c) The dynamic FC matrices were concatenated across subjects to form X′ to which we applied PCA, yielding
eigenconnectivities (columns of U). Eigenconnectivities can be visualized after reshaping them into a 88 × 88 matrix and symmetrizing. (d) A set of time-dependent weights Ws for
each subject was calculated by projecting the centered dynamic FC matrix onto a few eigenconnectivities.
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2000), overestimate the dimensionality in the presence of correlated
noise (Cordes and Nandy, 2006). Comparing the eigenvalues to a null
distribution obtained using surrogate data avoids making parametric
assumption about the noise. This approach is similar to how significant
latent dimensions are estimated in PLS (Krishnan et al., 2011; McIntosh
et al., 1996) and in other fields studying time series (e.g. Bjornsson and
Venegas, 1997). The intersection of the real eigenvalue spectrum and
the 95th percentile of the phase randomized spectrum estimates the
dimensionality of the data (n = 100 randomizations, maximal statistic
to correct the p-value).

Motion

Asdescribed above,we scrubbed the data and regressed out headmo-
tion parameters from the regional time series. However, residual motion
may still drive changes in dynamic FC. We thus tested for relationships
between the time-dependent weights and four summary measures of
motion using Pearson's correlation. We converted FD defined above and

root mean square displacement D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δy2 þ Δz2

p
to a measure

for each window by estimating the intensity (average) and fluctuation
of motion (standard deviation) in each window.

Statistically significant correlations with motion were determined
using non-parametric testing, similar to above; i.e., observed correla-
tions in the 95th percentile of the null distribution of correlation with
phase-randomized motion time series were significant at the 5% level
(n = 1000 randomizations, corrected p-value). Note that these phase
randomizations were not the same as those used above to obtain a
null distribution of dynamic FC.

Results

Dynamic FC estimation

After scrubbing, each subject had between 401 and 440 volumes left,
from which we estimated dynamic FC matrices Cs. For a window length
of 30 TRs, themulti-subject datamatrixXwas of size 3828 × 5554, i.e., it

Fig. 2. (a) Example of dynamic FC for a HC subject (unfolded and temporally concatenated correlationmatrices). (b) Example FCnetworks, corresponding to thewindowsmarkedwith red
arrows in (a) and reshaped into correlation matrices.
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contained 5554 unfolded correlation matrices across all subjects. Each
subject had an average of T ¼ 198� 5 windows and this number did
not differ between HC subjects and RRMS patients (two-sample t test,

p = 0.8). Fig. 2 and Supplementary Movie 1 show an example of the
estimated dynamic FC for a HC subject. FC is visibly dynamic over the
course of the scan as indicated by the change of color across windows.
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For this subject, the majority of correlations were positive, but we also
observed alternations between positive and negative correlations.

Eigenconnectivities

The average dynamic FC strength Cs across each group of subjects
showed functional clusters typically observed in stationary FC analyses
(Supplementary Fig. 1): strongly connected visual areas (bilateral
calcarine, cuneus, lingual gyri and other occipital regions), motor areas
(bilateral pre- (Precen) and postcentral gyri, rolandic opercula (RolOp),
supplementary area (SMA), paracentral lobule (Paracen)), and regions
of the DMN (bilateral superior frontal gyri (SFG), cingulate gyri, angular
gyri and precuneus (PreC)).

We then identified dynamic FC patterns across all HC subjects and
RRMS patients by calculating the eigenvectors of the covariance matrix
of the concatenated, demeaned dynamic FC matrices. The first ten
eigenconnectivities retained 34%of the variance or equally, approximat-
ed the data with an accuracy of 34% (Supplementary Fig. 2 shows all
3828 eigenvalues). The intersection of the real and phase-randomized
eigenvalue spectra estimated that the first 30 eigenconnectivities pre-
dominantly carried signal (5% corrected significance level, Suppl.
Fig. 2). In the remainder of this manuscript we restrict our analysis to
the first 10 eigenconnectivities, which have eigenvalues well above

the significance level, and because the multivariate Hotelling's T2 test
sets an upper limit on the number of components due to group sizes.

Fig. 3 shows some of the estimated “group” eigenconnectivities,
which represent orthogonal (independent) connectivity patterns with
coherent fluctuations. Since the mean FC strength of each pair has
been removed for each subject, these patterns encode how dynamic
FC fluctuates around the average connectivity strength over time. The
first few eigenconnectivities, which explain most of the variance in
the dynamic FC matrices, represent distributed connectivity patterns.
Eigenconnectivity 1 identifies an all-positive pattern and reflects overall
FC strength (“excursions” around themeanwhere whole-brain dynam-
ic FC is globally increased or decreased; Fig. 3a): connections between
superior frontal regions (23–26) and other regions in the brain were
strong (dark red areas) while connections of limbic (38–42) and sub-
cortical regions (71–74) were weaker (yellow areas).

The following eigenconnectivities have both positive and negative
patterns (red and blue areas in Fig. 3, respectively). Windows with
strong FC in red areas andweak FC in blue areas will have large positive
weights for a given eigenconnectivity. Windows with weak FC in red
areas and strong FC in blue areas on the other handwill have large neg-
ative weights. Therefore, an eigenconnectivity contrasts windows with
strong FC in red areas andweak FC in blue areas with those of the oppo-
site character. Also, we can interpret the connectivity patterns as
representing connections that covary (i.e., within red areas and within

Fig. 3. Eigenconnectivities estimated from dynamic FC across all 28 subjects show large-scale connectivity patterns. (a–j) Eigenconnectivities 1–10 in matrix representation (column 1), and
sagittal, axial and coronal views of the 2% strongest connections in brain space (columns 2–4). Brain regions are shown as spheres where their size represents their degree and the color
represents their sign (red for positive and blue for negative degrees). Connections use the same color convention (red = positive, blue = negative). Percentage of positive weights of each
eigenconnectivity over time (column 5) and amplitude spectra of the time-dependent weights for HC subjects (black) and RRMS patients (gray), error bars represent standard errors (column
6). (k, l) Eigenconnectivities 50 and 500, (m) linear combination of the percentages according to theweights of Hotelling's T2 test; combined percentage per subject (circle), groupmeans for HC
subjects and RRMS patients, respectively (line).ht
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blue areas) or anti-covary (i.e., between red and blue areas) according
to that dimension of the representation. It should be noted that the
sign (i.e., positive and negative for red and blue, respectively) is arbi-
trary and should not be confounded with anti-correlation for negative
signs.

Eigenconnectivity 2 contrasts a network of connections involving
mostly regions of the DMN (blue) with regions involved in motion,
vision, speech and hearing (red), i.e., it contrasts windows with strong
FC in DMN regions with windows with strong FC in sensori-motor
regions (Fig. 3b): Blue areas include connections of the medial frontal
(23–26), anterior (ACC) and posterior cingulate gyri (PCC; 31, 32, 35,
36), angular gyri (65, 66) and precuneus (67, 68). Red areas include
connections of the primary sensori-motor areas (1, 2, 18 − 20, 57, 58,
69, 70), occipital, ventral and dorsal visual areas (43 − 56, 59, 60),
speech (17, 63, 64, 79, 80), auditory areas (77–82), and the insula
(29,30). Eigenconnectivity 3 identifies a network between regions
involved in memory and higher cognitive processing (25 − 28, 35,
37 − 39, 67, 68), the rolandic operculi (17, 18) and Heschl's gyri (77,
78; red), and another network of connections of the inferior (IFG) and
middle frontal gyri (MFG; 7–14), and inferior parietal gyri (IPG; 61,
62; blue; Fig. 3c). Eigenconnectivity 4 identifies a network of connec-
tions for thalamic basal ganglia (71–76) and the insula (29, 30; red),
and another network of regions involved in visuo-spatial processing
(43 − 56, 59 − 62, 83 − 88; blue, Fig. 3d).

Fig. 3 also shows thatmost FC patterns contain connectionsof regions
situated in both hemispheres, with the exception of eigenconnectivity 6
where the network of blue connections lies predominantly in the left
hemisphere (inferior frontal areas) and red ones in the right hemisphere
(parietal areas); and eigenconnectivity 9 where most blue connections
lie in the left hemisphere.

Eigenconnectivities of higher order, such as e.g. eigenconnectivity
500, resemble purely artifactual components that do not identifymean-
ingful functional clusters (Fig. 3l).

Results with phase-randomized activity or dynamic FC resulted
in eigenconnectivities with no apparent structure (Fig. 4, Supplemen-
tary Fig. 4e) and little explained variance (5% for the first ten
eigenconnectivities for both randomizations).

Time-dependent contribution of eigenconnectivities

Fig. 5a shows the time-dependentweightsWs obtained for the same
example subject as in Fig. 2 by projecting the dynamic FC matrix onto
the first ten eigenconnectivities (see Supplementary Fig. 3 for all sub-
jects). The weights varied smoothly across time but presented pro-
nounced variability, again indicating that FC is highly dynamic. The
5th and 95th percentiles of weights observed for phase-randomized
correlation time courses indicate that the observed weights were both
within and outside of ranges observed for the surrogate data, and for
which time points there is strong evidence for a large contribution of
an eigenconnectivity.

The weights of eigenconnectivity 1 (dark blue) track the overall
change in FC strength and perfectly correlate with themean correlation
of eachwindow(column-sumofCs), ρ = 1, p b 0.001 for all subjects: at
time points when whole-brain dynamic FC is strong, or in other words
above average dynamic FC strength (red areas in Fig. 2a), the weight
is positive, while at time points when whole-brain dynamic FC is
weak (blue areas in Fig. 2a), the weight is negative. The weights of the
other eigenconnectivities track more subtle changes in dynamic FC
patterns.

Figs. 5b–c show which four eigenconnectivities contributed most
strongly to the demeaned example dynamic FC networks of Fig. 2b.
The eigenconnectivities with the strongest contributions capture differ-
ent aspects at a specific window, such as the strong positive occipito-
parietal FC and weak FC between limbic regions and the rest of the
brain in Fig. 5b.

The weights were highly variable for all subjects, which indicated
that the eigenconnectivities captured inherent structure in the fluctua-
tions across all subjects and not just within a single subject.

Comparing HC subjects and RRMS patients

First, we examined whether the average dynamic FC strength Cs

differed between HC subjects and RRMS patients. Supplementary
Fig. 1 indicates a widespread reduction in FC strength in RRMS patients
and two-sample t tests revealed 22 significantly weaker connections,
mainly between the left amygdala and occipital and parietal regions;
and connections of themiddle and posterior cingulate gyri and bilateral
superior frontal gyri (p b 0.05, corrected, see Supplementary Table 2 for
a full list).

Next, we compared the percentage of positive weights of the ten
first eigenconnectivities between HC subjects and RRMS patients
(Fig. 3, column 5). HC subjects and RRMS patients differed strongly in
the percentage of positive weights, indicating a bias in the contribution
of some eigenconnectivities (F(10,17) = 4.1, p = 0.005, D = 3.0 for the
group effect; F(10,17) = 3.5, p = 0.01,D = 2.8 for the interaction effect;
Fig. 3m). The Hotelling's T2 group difference was ∑k = 1

K ak(mk
HC −

mk
MS) = 6.8 ± 5.3%, with a1 = 0.06, a2 = 0.13, a3 = −0.09, a4 =

0.17, a5 = −0.11, a6 = −0.72, a7 = 0.09, a8 = 0.10, a9 = −0.18,
and a10 = −0.63. The most important differences thus stemmed
from eigenconnectivities 6 and 10, which was confirmed in post hoc
two-sample t tests (p = 0.002, d = −1.29; p = 0.06, d = −0.74,
respectively, p N 0.1 for the other 8 eigenconnectivities). For both
eigenconnectivities RRMS patients had more positive contributions
than HC subjects (mean percentage N 50%), i.e., their red connections
were more often strongly connected (positive weights increase the FC
of red areas, and “strongly” here means above average) and their blue
ones were more often weakly connected (positive weights reduce the
FC of blue areas). Red connections of eigenconnectivity 6were for exam-
ple concentrated in posterior regions of the DMN (SPG, PreC, angular
gyri, supramarginal gyri (SupMarg)), while blue connections lay mostly

Fig. 4. Eigenconnectivities 1–4 estimated from phase-randomized dynamic FC matrices lose all structure.
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in anterior (IFG, gyri recti) and midtemporal regions (MTP, Fig. 3f). Red
connections of eigenconnectivity 10 included temporal regions (MTP,
middle temporal gyrus (MTG), Heschl), and the angular gyri, while
blue connections spanned a network of the orbito-frontal regions,
right amygdala and motor regions (Precen, Paracen; Fig. 3j). Fig. 3j
also shows that many connections in eigenconnectivity 10 were across
the hemispheres and ran along the anterior–posterior axis. To explore
whether the percentage positive weights were dominated by small
weights, we repeated the analysis after excluding the smallest 10% and
20% weights and obtained similar results (F(10,17) = 4.2, p = 0.005,
D = 3.1 for the group effect, post hoc tests significant for the sixth
p = 0.006 and tenth components p = 0.038; and F(10,17) = 3.8, p =
0.008, D = 2.9, post hoc tests significant for the sixth p = 0.02, and
10th components p = 0.02, respectively). The percentage positive
weights of the first ten eigenconnectivities for phase-randomized data
were not different between HC subjects and RRMS patients (Hotelling's
T2, p N 0.4 for both groups and interaction effects for both randomiza-
tions). The combination of unstructured eigenconnectivities and altered
dynamics suggests that realfluctuations drove the results obtained from
the original data. The Hotelling's T2 combination of percentage positive
weights did not correlate with EDSS.

The time-dependent weights of eigenconnectivity 10 showed a sig-
nificantly increased frequency amplitude at 0.003 Hz in RRMS patients
(d = −1.5, p b 0.02, corrected, Fig. 3).

We then varied the window length from short (30 s) to long (2 min)
and increased step sizes from 2 to 8 TRs. Supplementary Figs. 4a–d show
that while the first eigenconnectivities estimated from different window
lengths roughly resemble each other, the estimated connectivity patterns
are not the same. Notably, the covarying FC between themiddle and infe-
rior frontal regions apparent in eigenconnectivity 3 at awindow length of
30 TRs is not detected at longer window lengths. We also observe that
eigenconnectivity 5 breaks into two patterns, 4 and 6, at awindow length
of 120 TRs. In general, the visible block structure of eigenconnectivities
progressively vanishes at larger window lengths. The Hotelling's T2 test
did not reveal significant differences between the average weights of HC
subjects and RRMS patients for window lengths above 30 TRs (p N 0.2).

In exploratory work, we also repeated our analysis using dif-
ferent band pass filters and obtained similar results in terms of
eigenconnectivities and explained variance for a high-frequency cut-
off of 0.2 Hz and 0.3 Hz, but no significant group difference (p = 0.12,
0.08; 0.64, 0.75 for group and interaction effects and the two cut-offs
respectively).

Fig. 5. (a) Time-dependent weights of the 10 first eigenconnectivities for the same example subject as in Fig. 2. Straight lines represent the 5th and 95th percentiles of phase-randomized
weights across all subjects and eigenconnectivities. (b–d) Example FC networks of Fig. 2b after row-wise demeaning (first column) and the eigenconnectivities with the four largest
weights (2nd to 5th columns). We flipped the sign of eigenconnectivities with negative weights (e.g. in (c) eigenconnectivity 1 had a negative weight and thus appears as “blue”).
(b), (c) and (d) correspond to the windows marked with arrows in (a).
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Influence of intra-individual differences

We then repeated our analysis without row-wise demeaning each
subject's dynamic FC matrix but only subtracting the average dynamic
FC across time and subjects. The first ten eigenconnectivities explained
42% of the variance in the data. They resembled the FC patterns esti-
mated from the subject-wise demeaned data but were not the same
(Fig. 6a). For example, the first eigenconnectivity shows much more
pronounced differences between limbic and subcortical connections
(more yellow than in Fig. 3), the blue connections of the 2nd one bear
little resemblance, within frontal and within visual connections are
less pronounced for the 3rd one, and the 6th one bears little resem-
blance. Eigenconnectivity 6 includes connections of the parietal regions
(59–62), and the thalami (75, 76)with the rest of the brain, connections
with visual regions (red); and the putamen (73, 74) to the rest of the
brain and between the motor (1, 2, 19, 20, 57, 58) and frontal regions
(blue).

The contribution of thefirst ten eigenconnectivitieswas significantly
different between the two groups (group effect F(10,17) = 2.7, p = 0.04,

D = 2.4, interaction effect F(10,17) = 3.0, p = 0.02, D = 2.6). The
Hotelling's T2 group difference was ∑k = 1

K ak(mk
HC − mk

MS) = −48 ±
46%, with a1 = −0.76, a2 = 0.02, a3 = 0.03, a4 = −0.20, a5 = 0.04,
a6 = −0.01, a7 = 0.30, a8 = −0.32, a9 = 0.43, and a10 = −0.03. The
largest contributions thus came from the first and seventh to ninth
eigenconnectivities. The percentage of positive weights for the first
eigenconnectivity was 66 ± 27% for HC subjects and 29 ± 22% for
RRMS patients (p b 0.001). As this is an all-positive pattern, this again
indicates that RRMS patients had a reduced overall FC strength. Post hoc
t tests also indicated a trend for eigenconnectivity 7 (61 ± 32%, 40 ±
23%, p = 0.052). Aswedidnot demeaneach subject's dynamic FCmatrix,
large positive percentages can here be interpreted as reflecting stronger
FC in red areas, and low percentages as reflecting stronger FC in blue
areas (positive weights increase the FC of red areas, negative weights
that of blue areas). Eigenconnectivity 7 contrasted connections centered
on the right PCC and left Heschl gyrus (red), with connections of the lim-
bic regions (hippocampi (HP), PAH, amygdala), the left thalamus and the
left middle temporal pole (MTP, blue; Fig. 6b). The Hotelling's T2 combi-
nation of percentage positive weights did not correlate with EDSS.

Fig. 6. (a) Eigenconnectivities 1–6 estimated from the concatenated dynamic FC matrices without subject-wise demeaning. (b) Axial, sagittal and coronal views of the strongest connec-
tions of eigenconnectivity 7. Connections in red were temporally overrepresented in HC subjects, and blue ones in RRMS patients. Only the 2.5% strongest connections are shown for
visualization purposes. (c) Eigenconnectivities estimated from phase-randomized dynamic FC matrices retain large-scale structure.
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Eigenconnectivities estimated from phase-randomized dynamic
FC matrices showed structured patterns (Fig. 6c), still retained a large
amount of variance (23% for the first ten), and the average weights
differed significantly between the groups (F(10,17) = 3.4, p = 0.01,
D = 2.7 for the group effect, F(10,17) = 2.6, p = 0.04, D = 2.4 for the
interaction effect). These results indicate that average correlation values
rather than FC fluctuations drove the PCA and the group difference if no
individual demeaning is performed.

Eigenconnectivities estimated from phase-randomized activity time
courses showed no structure (Supplementary Fig. 4f), explained 5% of
variance for the first ten and Hotelling's T2 were not significant as this
simulation did not preserve the mean correlation values.

Motion

Motion parameters for each subject were small (Supplementary
Table 3). The four summarymotionmeasureswere not significantly dif-
ferent between the two groups (HC subjects and RRMS patients respec-
tively, FD: mean 0.11, 0.11; SD 0.05, 0.05; D: mean 0.05, 0.05, SD 0.03,
0.03, p N 0.4 for all). Dynamic weights of the eigenconnectivities were
not significantly correlated with any of the four motion parameters, ex-
cept for two HC subjects (time-dependentweights of eigenconnectivity
4 with the standard deviation of FD, R2 = 0.64; time-dependent
weights of eigenconnectivity 9 with the mean and standard deviation
of D, R2 = 0.75, 0.73 respectively).

As scrubbing may affect the estimation of dynamic FC, we repeated
the analyses without scrubbing and found highly similar results in
terms of explained variance, extracted connectivity patterns and altered
contributions in MS patients.

Discussion

In this study, we introduce a novel data-driven approach for
extracting dynamic FC patterns in the resting brain. This exploratory
technique applies PCA to dynamic whole-brain FC of multiple subjects
during resting state. PCA identified FC patterns, the eigenconnectivities,
that capture FC pairs with similar dynamics. We found large-scale con-
nectivity patterns that encompassed regions from different functional
clusters. The temporal contributions of these eigenconnectivities can
be obtained by projection and reveal their importance in explaining
dynamic FC over time. On the example of MS, we identified a subset
of connections with altered dynamics in minimally-disabled RRMS
patients.

Related methodological studies

Previous studies reported large-scale reorganizations ofwhole-brain
functional brain networks during learning (Bassett et al., 2011), task
preparation (Ekman et al., 2012), or rest (Allen et al., in press). Bassett
et al. (2011) studied dynamic community organization, Ekman et al.
(2012) predicted upcoming tasks and errors from network measures
(e.g. degree), and Allen et al. (in press) employed clustering to identify
stable FC topologies. Our approach employs PCA to characterize the
most abundant building blocks of dynamic FC and, like previous studies,
identifies prominent changes in network topology. In contrast to “fixed”
FC states detected using clustering, the eigenconnectivities overlap in
time and their combined contributions give rise to varying network
topologies. As such, they represent basic building blocks of network
configurations that occur over time, rather than discrete states. How-
ever, clustering could also be applied to the time-dependent weights
to identify eigenconnectivities with similar temporal profiles (in con-
trast to Allen et al. (in press) who clustered windowed correlations).
We here opted for another approach and looked at summary measures
of the contributions of these patterns over time.

The most prominent technique to study spontaneous brain activity
is spatial ICA, which however assumes temporal stationarity. Smith

et al. (2012) recently applied a cascade of spatial and temporal ICA
to fast-TR data to detect functionally (temporally) distinct, spatially
overlapping networks. The identified networks are static over time in
terms of included voxels but their activity is dynamic. While both stud-
ies are interested in the variable architecture of the brain, the authors
decomposed brain activity and not connectivity time courses in contrast
to ourwork. As such, they identified networks of brain regionswith cor-
related activity, whereas we identify networks of connections with
correlated fluctuations. One could also consider ICA as an alternative
decomposition to extract connectivity patterns from multisubject
dynamic FC matrices. In the case of PCA, which optimizes for explained
variance and orthogonality, we obtain an efficient, linear representa-
tion; however, determining relevant components using spatial ICA
might be more difficult due to the sorting problem. Also, temporal ICA
might be inappropriate for dynamic FC given its intrinsic slow
dynamics.

The most prominent technique to study spontaneous brain activity
and to identify voxels with similar activity is spatial ICA. To identify
connections with similar fluctuations, we used PCA, which optimizes
for explained variance and orthogonality, and gives an efficient, linear
representation. One could also consider ICA as an alternative decompo-
sition to extract connectivity patterns from multisubject dynamic FC
matrices. It is however not clear if the assumption of statistical indepen-
dence would lead to better components and, because of the indepen-
dence assumption, ICA components have no inherent ordering, which
would complicate the determination of relevant ones. Smith et al.
(2012) recently applied a cascade of spatial and temporal ICA to fast-
TR data to detect functionally (temporally) distinct, and spatially
overlapping networks.While both studies are interested in the architec-
ture of the brain during rest, the authors decomposed brain activity,
while we studied brain connectivity. As such, they identified networks
of brain regions with similar activity, whereas we identified networks
of connections with similar fluctuations. Temporal ICA might not be
appropriate to decompose dynamic FC because dynamic FC fluctuates
slowly due to the sliding window estimation (temporal ICA needs a
large number of time points to perform robustly) and because temporal
ICA implicitly assumes temporal stationarity, i.e., constant moments
across time (see also Allen et al., in press; Calhoun et al., 2012, for a
discussion).

Stationary and dynamic FC in RRMS patients

We identified eigenconnectivities 6 and 10 that contributed differ-
ently between HC subjects and RRMS patients, indicating aberrant
dynamic FC in RRMS patients (Figs. 3f, j): The affected connections
were concentrated in parietal regions such as the PCC, SPG and angular
gyrus (more frequently strongly connected in RRMS patients), and pre-
frontal regions (e.g. orbitofrontal gyrus, gyrus rectus) and the amygdala
(more frequently weakly connected). The importance of these regions
suggests that the dynamic FC of at least part of the DMN is altered in pa-
tients. These results add to, and complement, several studies which
have reported disturbed stationary FC in different parts of the DMN in
MS patients (Bonavita et al., 2011; Hawellek et al., 2011; Richiardi
et al., 2012; Rocca et al., 2012). The distinction between posterior and
anterior/temporal DMN regions seen in eigenconnectivity 6 is similar
to the DMN fragmentation observed in Allen et al. (in press) and
would be missed in conventional stationary FC analyses.

When repeating the analysis without removing each subject's aver-
age connectivity strength, we found distinct patterns of connections
that differed between HC subjects and RRMS patients, which were
average- rather than dynamically-driven (Fig. 6). The identified brain
regions are largely consistent with those in a previous study by our
group, which aimed at discriminating between HC subjects and RRMS
patients based on stationary FC (Richiardi et al., 2012); i.e., the left
Heschl's gyrus, right rolandic operculum, and right superior parietal
gyrus, were identified as being more strongly connected in HC subjects
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in both studies. Reduced stationary FC inMSpatients is indeed commonly
observed and is thought to stem from structural damage (Bonavita et al.,
2011; Lowe et al., 2002; Richiardi et al., 2012; Roosendaal et al., 2010).
However, we also confirmed the bilateral parahippocampal gyri, right
amygdala, left thalamus and left midtemporal pole as more strongly
connected in RRMS patients (Richiardi et al., 2012). Such selective in-
creased FC has been reported by several other studies as well (Bonavita
et al., 2011; Dogonowski et al., 2013; Hawellek et al., 2011; Richiardi
et al., 2012; Rocca et al., 2012; Roosendaal et al., 2010) and has been
interpreted as a compensatory mechanism (Bonavita et al., 2011;
Roosendaal et al., 2010) because activation studies have shown increased
activity in regions devoted to the task and the recruitment of additional
regions in MS patients (Pantano et al., 2002; Rocca et al., 2005). It is
however also possible that these increases originate from a loss of
flexibility in functional interactions, rather than as a compensatorymech-
anism (Hawellek et al., 2011). Interestingly, the connections in
eigenconnectivity 10 obtained from the dynamic FC analysis showed
an increased low-frequency amplitude in RRMS patients, which might
support the latter hypothesis.

While we did not observe correlations between the Hotelling's T2

combinations of positive percentages and clinical disability for the
dynamically- or average-driven analysis, it should be noted that our
sample size was relatively small (15 patients), and our patients mini-
mally disabled (EDSS range 1.5–2.5,meaning that they can live a normal
life). It would be interesting to study changes in dynamic FC in larger
samples of MS patients, at different phases of the disease, and using
additional clinical measures. Nonetheless, given the complementary in-
sights gained from the analysis of dynamic FC, such as which connec-
tions fluctuate coherently or which connections fluctuate more slowly,
we believe that studies of dynamic FC can help in understanding the
functional impact of MS. However, we note that the choice of sliding
window length and band pass filter affected our results as opposed to
scrubbing or the removal of small weights. Therefore, while our results
are promising, studies in independent cohorts are needed to further
explore these effects and validate our findings.

Timescales and potential confounds of dynamic FC

Correlations estimated from short windows have more variance
due to the small number of samples but are more sensitive to changes
in FC since long windows reduce temporal variability and may miss
anticorrelations (Chang and Glover, 2010; Hutchison et al., in press).
Some studies have reported that 30 s of data suffices to discriminate be-
tween cognitive states and to estimate reliable modular graph metrics
(Jones et al., 2012; Shirer et al., 2012).We therefore chose a slidingwin-
dow length of 30 TRs to capture changes in FC over time. Given the sim-
ilarities between estimated eigenconnectivities at different window
lengths, it seems unlikely that it is random variability that drove FC pat-
terns at short window lengths. Exploratory work using different band
pass cut-off frequencies also suggested that the large-scale structure of
the eigenconnectivities was largely preserved across broad frequency
ranges. In ourmain analysis we chose a cut-off of 0.15 Hz as slidingwin-
dow correlations are estimated from a small number of samples and a
lower cut-off helps to remove noise. The chosen cut-off is similar to
what has been used in other studies on dynamic FC (Allen et al., in
press; Bassett et al., 2011; Handwerker et al., 2012; Kang et al., 2011;
Li et al., in press), but it would be interesting to further investigate the
effects of different frequency cut-offs on dynamic FCwhen physiological
data is available to reduce noise in resting-state activity time courses.
Together, these results suggest that patterns of covarying connections
were largely similar across varying window lengths, frequency cut-
offs and with or without scrubbing.

We also tested for correlations between the contributions of the
eigenconnectivities across time and motion measures. Out of the 28
subjects, these contributions were only significantly correlated for two
subjects and one of the eigenconnectivities. While we cannot exclude

that motion-related or physiological noise is potentially driving the
observed FC patterns, the large-scale organization of these patterns,
the importance of the precise timing of FC fluctuations as shown by
the results with phase-randomized dynamic FC and the minimal corre-
lationswithmotion parameters, suggest that these patterns are not sim-
ply the result of noise.

Chang et al. (2013b) recently linked heart rate variability to dynamic
FC in regions associated with vigilance and arousal, suggesting the con-
tribution of autonomic factors to the observed nonstationarity. Chang
and colleagues also showed that alpha band power in EEG was related
to FC fluctuations between the DMN and the dorsal attention network
(Chang et al., 2013a). Further concurrent EEG–fMRI studies will be cru-
cial in clarifying the relationship between these fluctuations and neural
dynamics, as well as how they relate to attentional states. Along those
lines, the scale-free dynamics of EEG microstate sequences have been
shown to reach timescales of fMRI resting-state fluctuations (Van de
Ville et al., 2010) and the link between EEG microstates and dynamic
fMRI FC is an intriguing future research question.

Variability as a signal in its own right

Not only has interest in the variability of brain connectivity in-
creased, but several recent studies have also highlighted that the vari-
ability of brain activity is a signal of interest and provides information
complementary to the analysis ofmean brain activity. Notably, brain ac-
tivity variability has been linked to task performance, development and
disease and it has been suggested that signal variability is not “noise”
but crucial for spontaneous or stimulated reorganizations of the brain
(Garrett et al., 2010; McIntosh et al., 2008). Just as studies on brain sig-
nal variability provided novel insights into brain function, we believe
that studies on brain connectivity variability will further our under-
standing of the brain's functional organization. Calhoun and Adali
(2012) and Starck et al. (2012) recently reported changes in dynamic
FC variability in patients with schizophrenia and autism. We believe
that our proposed approach can go beyond identifying changes in dy-
namic FC variability and reveal patterns in FC fluctuations. Our approach
is also applicable to other neurodegenerative diseases and the temporal
evolution of the brain's functional network at longer time scales, such as
during learning or development.

Methodological limitations and future directions

In this study we used anatomically defined regions and a simple
linear estimator of dynamic FC, but other parcellations ormore complex
estimators of dynamic FC could easily be used with the proposed
approach.

A comparison between the real eigenvalues and those obtained from
the phase-randomized data suggested that the first 30 components pre-
dominantly carried signal, while the latter ones were not statistically
different from noise. As the eigenvalues were close in magnitude, it
seems however reasonable to not take this number too literally but
rather as an indication of the overall range. An alternative method to
estimate the dimensionality of our data, Laplace PCA (Minka, 2000),
grossly overestimated its dimensionality (1362 dimensions). The com-
parison of the eigenvalues to those obtained from surrogate data on
the other hand provided a reasonable, rough estimate to guide the
choice of dimensionality. Other dimensionality estimation approaches,
such as those used in activation studies (Yourganov et al., 2011) or
ICA (Varoquaux et al., 2010), could be adapted to dynamic FC and eval-
uated in future studies. The ten first eigenconnectivities used for further
analysis did not use the full “signal space” and explained 34% of the
variance in dynamic FC, but our results suggest that they captured im-
portant differences between the groups. To identify connectivity pat-
terns across subjects (rather than modeling subject-specific patterns
or noise), it might indeed not be necessary to explain a majority of the
variance. This is also highlighted by recent work of Li et al. (in press)
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who identified 16 FC states using a dictionary learning approach and
whose optimal model had residuals of around 50%.

It should also be noted that PCA is a linear decomposition and only
sensitive to linear relations among connectivity pairs. To identify FC
patterns based on nonlinear relations, one could for example employ
kernel PCA, an extension of PCA, which has shown promising results
for face recognition (Schölkopf et al., 1998).

Finally, we also mention that other measures should be explored to
exploit the full potential of temporal dynamics of eigenconnectivity
time-dependent weights, in addition to the proposed percentage of
positive weights.

In conclusion, we proposed a novel approach to estimate building
blocks of dynamic brain connectivity and assessed their disturbance in
minimally disabled RRMS patients.
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