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Some epidemic spreading models are usually applied to analyze the propagation of opinions or news. However,
the dynamics of epidemic spreading and information or behavior spreading are essentially different in many
aspects. Centola’s experiments [Science 329, 1194 (2010)] on behavior spreading in online social networks
showed that the spreading is faster and broader in regular networks than in random networks. This result contradicts
with the former understanding that random networks are preferable for spreading than regular networks. To
describe the spreading in online social networks, a unknown-known-approved-exhausted four-status model was
proposed, which emphasizes the effect of social reinforcement and assumes that the redundant signals can improve
the probability of approval (i.e., the spreading rate). Performing the model on regular and random networks, it is
found that our model can well explain the results of Centola’s experiments on behavior spreading and some former
studies on information spreading in different parameter space. The effects of average degree and network size on
behavior spreading process are further analyzed. The results again show the importance of social reinforcement
and are accordant with Centola’s anticipation that increasing the network size or decreasing the average degree
will enlarge the difference of the density of final approved nodes between regular and random networks. Our
work complements the former studies on spreading dynamics, especially the spreading in online social networks
where the information usually requires individuals’ confirmations before being transmitted to others.

I. INTRODUCTION

Diseases propagation, transmission of cultures and in-
formation, or behaviors spreading are common phenomena
in human society and have attracted much attention for a
long time [1–3]. Although these phenomena possess some
similar properties, it is still difficult to analyze them under a
unified framework or use analogous models. In general, all
these processes can be classified into two classes: epidemic
spreading and information spreading. Their differences are
mainly embodied in the following three aspects: (i) Role
of spreader. People are passive to be affected in epidemic
spreading while active to make decisions in information
spreading, like approving or disapproving some news. The
social status or influences and personal interests of spreaders
may play important roles in information spreading while count
for little in epidemic contagion. (ii) Property of disseminule
(disseminule is a general term for information, rumor, behavior
and so on). The information has timeliness and reliability
requirements while diseases can be active for a long time
and are invasive during the spreading process. For example,
influenza virus can exist for thousands of years in human
society, but rumor may have only several days life length [4].
(iii) Spreading path. The spreading of diseases from person to
person usually requires physical contacts while the information
propagation is mostly via online connections presently besides
the traditional face-to-face communications.

Due to the above differences, the spreading dynamics of dis-
ease and information should be described by different models.
Up to now, two classical models, namely susceptible-infected-
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susceptible (SIS) model and susceptible-infected-recovered
(SIR) model, are proposed to describe disease propagation
[1,2,5–9]. These two models found further effectiveness in
their explanation of traditional information spreading, where
individuals communicate face to face (to some extent like
physical contacts in epidemic spreading) and are easier to be
convinced (refers to higher probability of approval) [10–14].
However, it has been pointed out that the SIS and SIR models
fail to explain the information or behavior spreading in online
social networks [15–17]. Since only a few connections are
the copies of the off-line relationships, the connections in
online social networks are usually weaker than the face-to-face
communications. It is common that the information from
our best friends (i.e., strong ties) has higher probability to
be approved than those from just acquaintances (i.e., weak
ties). Therefore, the information spreading in online social
networks should be much different from the epidemic spread-
ing or the off-line information spreading at the microscopic
or macroscopic level. To date, some models that describe
information spreading process have been presented [18,19],
but there is still not a clear picture on this issue. In 2010,
Centola conducted an experiment of behavior spreading in
online social networks; although behavior and information are
different disseminules, we believe they share some similar
properties and the behavior spreading process will make use
of the information spreading. For example, individuals often
make decisions before they transmit the information or action
signal, and individuals take action only after they received
the action information from the neighbors. So, in this paper,
we modeled Centola’s online experiment and hoped that
our research on behavior spreading can be used to describe
information spreading. Since information spreading is a part
in behavior spreading process, to avoid confusion, only the
concept of information spreading is used in the discussion of
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information itself and the behavior spreading in the following
narration.

In Centola’s experiment, it is observed that social rein-
forcement played a crucial role in the online spreading of
behavior [20]. The so-called social reinforcement is defined as
the situation in which an individual requires multiple prompts
from neighbors before adopting an opinion or behavior
[21–27]. The experiment showed that a single signal has a
very weak effect on individuals’ decision-making and that
when individuals receive multiple signals they are more likely
to accept the information and adopt the behavior. As a result,
the behavior spreads faster and farther in high-clustered regular
networks than in random ones, and the reason is that in this
case the clustering coefficient is large in regular networks,
which makes individuals receive redundant signals easier. This
result contradicts with the former understanding that random
networks are preferable for information spreading [11,28].

In this paper, we take into account the main difference
between epidemic spreading and information spreading and
propose a model that emphasizes the effect of social rein-
forcement on spreading process. Centola’s experiment shows
the behavior spreading macroscopically, and our model is
proposed in microscopic level; however, simulation results
on modeled networks show that our model can well describe
the spreading behavior, especially in online social networks.
Specifically, the spreading results are mainly affected by two
key factors, the primary spreading rate (the probability of an
individual adopts the behavior after receiving its information
at the first time) and the strength of social reinforcement.
Performing our model on regular and random networks,
four regions are found according to the spreading range: (i)
Regular networks winning region. This region corresponds to
a small primary spreading rate and a considerable strength
of social reinforcement, where the spreading is faster and
farther in regular networks than in random ones. This result is
consistent with the online experiment on behavior spreading
[20]. (ii) Random networks winning region. This region
corresponds to a medium primary spreading rate and weak
social reinforcement effect, which is consistent with the results
from former studies on off-line information spreading by using
epidemic spreading models [11,28]. (iii) Absorbing region.
In this region, the primary spreading rate is too small and
the strength of social reinforcement is too weak; thus, the
information cannot spread out. (iv) Over active region. In this
region, the primary spreading rate is too large and no matter
how strong (or weak) the social reinforcement strength is, the
information will spread to the whole networks and there is no
much difference between the spreadings on regular and random
networks. In addition, our model can degenerate to the SIR
model at certain parameters. The effects of average degree and
network size on the spreading process are also analyzed and
the results reaffirm the importance of the social reinforcement
in the behavior spreading process and prove the anticipation
of Centola’s experiments. Our work complements the former
studies on spreading dynamics, especially the spreading in
online social networks.

The rest of this paper is organized as follows: In Sec. II,
Centola’s experiment is analyzed in depth and a mathematical
model to describe this experiment is proposed. In Sec. III,
the regular and random network models used in this work are

introduced. And then, the simulation results of our model are
presented. The effects of social reinforcement, average degree,
and network size on spreading results are discussed later. In
Sec. IV, the discussion and conclusion are presented.

II. MODEL ON THE BEHAVIOR SPREADING IN ONLINE
SOCIAL NETWORKS

In 2010, Centola studied the effects of network structure
on the spreading of health behavior in online social networks
[20,29]. In his experiment, 1528 participants were recruited
and were randomly embedded in six networks that represented
Internet-based health communities. In the six networks, three
are regular lattices and the rest are random ones with the
same size and average degree as the corresponding regular
lattices. In the experiment, the participants could not contact
others directly but could receive emails informing them their
neighbors’ activities. Once a participant received an email, she
would make a decision whether to adopt the behavior or not,
and if she decided to take the same action, emails would be sent
to her neighbors who had not adopted the behavior to inform
them her activity. By and by, the behavior would spread out in
the network. From the experiment, the author found that for the
adoption of behaviors, social reinforcement is a crucial factor
for the spreading process, namely individuals are more likely
to adopt the behavior when receiving more signals, leading to
the result that the behavior spreads faster and farther in regular
networks than in random ones.

After carefully studying this experiment, we find that
besides the social reinforcement, the primary spreading rate,
denoted by λ1, is another key factor for behavior spreading in
online social networks, and only when λ1 takes small value
will the social reinforcement take effect on the spreading
process. A large primary spreading rate indicates that when
an individual received the information about her neighbor’s
activity at the first time, she has higher probability to accept
and take the same action. In this situation, the factor of social
reinforcement is meaningless. In the following part, according
to the experiment and our analysis, a spreading model will be
proposed and its validity will be discussed.

First of all, we describe the spreading process in the
model. At the beginning, there emerges an individual who
knows some information, and she will send signals to all her
neighbors. All her neighbors receive the signal but only a
part of the neighbors will believe the information; they are
called approved individuals. Then the approved individuals
will send their states to their own neighbors. By and by, the
information will spread out. During this process, the more
times the individuals receive the signal, the easier it is for them
to approve the information. Thus, there are four states in the
system for individuals [18]: (i) Unknown state. The individual
has not received the signal, analogous to the susceptible state
of the SIR model. (ii) Known state. The individual is aware
of the information (i.e., received the signal at least once) but
does not approve. (iii) Approved state. The individual approves
the information and then sends the signal to all her neighbors.
(iv) Exhausted state. After transmitting the approved signal,
the individual will never transmit it again, analogous to the
recovered state in the SIR model.
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In our model, at the beginning, one node is randomly
chosen as the “seed” and all others are in the unknown
state. This seed node knows some information and transmits
the signal to all her neighbors and then becomes exhausted.
At each time step, if an individual (in either an unknown
or a known state) receives the signal, she will change to
approved state with probability λm, where m is the number
of times the individual has received the signal, and larger m

corresponds to larger λm. Thus, the more times the individual
receives the signal, the easier it is for her to approve the
information. Once the individual approves the information,
she will transmit it to all her neighbors in the next time step
and then becomes exhausted. If an individual, in either an
unknown or a known state, does not receive any signal in the
current time step, nothing will happen no matter how many
times this individual has received the signal. In our model, the
updates of the states of the individuals are synchronous, i.e.,
all the individuals evaluate their states simultaneously. And
when no new individuals change their states any more, the
spreading process goes to the end. It is worth noting that
each connection is used at most once in our model. This
is a significant difference between epidemic spreading and
information spreading, where individuals always run the risk
of being infected by their infectious neighbors, while people
rarely transmit the same news to one person once and once
again.

Now the key point is how to define λm. When an individual
receives the signal at the first time, she will approve the
information with probability λ1, which is the so-called primary
spreading rate. And when an individual receives the signal
twice, she will approve the information with probability λ2,
and when she receives the signal three times the probability
will be λ3, and so on. In our model, the approving probability
with different times that an individual receives the signal is
defined as the following:

λ1 = λ1,

λ2 = λ1 + b × (1 − λ1),

λ3 = λ2 + b × (1 − λ2),
...

λm = λm−1 + b × (1 − λm−1), (1)

where b ∈ [0,1] is the social reinforcement strength. Larger
b means redundant information will have stronger influence
on the individuals. The iterative Eq. (1) indicates that if the
individual has received the signal m times, the approving
probability will increase b(1 − λm−1) compared with λm−1

(i.e., receiving the signal m − 1 times). The increase can
be considered as an increment of spreading rate converted
from disapproving probability 1 − λm−1 under the effect of
social reinforcement. There are two extreme cases: When
b = 0, it means no social reinforcement effect, and this model
degenerates to the standard SIR model; When b = 1, the social
reinforcement effect is very strong, and the probability of
approval for m � 2 equals 1, meaning that once an individual
receives the signal twice, she will definitely approve the
information. In summary, the above Eq. (1) can be simplified

FIG. 1. (Color online) The spreading rate λm as a function of m

at different (a) primary spreading rate λ1 and (b) social reinforcement
strength b. λm as a function of b at (c) different λ1 and (d) different m.

as the following:

λm =

⎧⎪⎨
⎪⎩

λ1 b = 1, m = 1;

1 b = 1, m � 2;

1 − (1 − λ1)(1 − b)m−1 0 � b < 1, m � 1.

(2)

In Eq. (2), when parameters λ1 and b are kept fixed, λm

will increase monotonically with the increasing of m, i.e., the
more times the individuals receive the signals, the larger the
spreading rate will be. And b has the same effect on λm. The
change of λm with parameters m and b are shown in Fig. 1.

III. SIMULATION RESULTS

A. Experiment networks

We perform our model on two regular networks, namely
Hexagonal lattice and Moore lattice [29], and their correspond-
ing homogeneous random networks. The sketch maps of the
modeled networks are shown in Fig. 2. Both the Hexagonal
and Moore lattice networks with size N = H × L will be

(a) (b) (c)

FIG. 2. (Color online) (a) The neighborhood structure for the
Hexagonal lattice network and (b) the corresponding network in
periodic boundary condition. (c) The neighborhood structure for the
Moore lattice network.
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constructed in periodic boundary condition, or in simple term,
they are located on tori (i.e., toroidal surfaces). In all simula-
tions, the ratio of the number of nodes in the row and column
is fixed at 2:1, as in Centola’s experiment. We have checked
the effects of the ratio on our experiment and found that in a
broad range of the ratio the results have no essential difference.
The homogeneous random networks are constructed by using
the Maslov-Sneppen small world rewiring technique [30,31],
which is described as the following: At each time step,
a pair of edges A-B and C-D are randomly selected, and
these two edges are rewired to be A-D and B-C. During
the rewiring process, self-connection and reconnection are
forbidden. In order to obtain a completely random topology,
this operation should be repeated many times. In our work, we
implement pN

E
steps, where p indicates the randomness of the

network and N
E

is the number of connections in the network.
Theoretically speaking, a homogeneous random network is
obtained only for p → ∞. When p > 1, the simulation shows
that the topological statistics are very close to those of random
networks. So, we here set p = 10.

B. Effects of social reinforcement

In our simulation, ρt denotes the density of approved nodes
in time step t , and ρ∞,reg and ρ∞,ran denote the density of
approved nodes at the final steady states in regular networks
and random networks, respectively. To compare the spreading
range between these two types of networks at the final steady
states, the difference δρ = ρ∞,reg − ρ∞,ran are calculated,
and positive value of δρ indicates the spreading range is broader
in regular networks than in random networks, and negative
value indicates the reverse case.

Figures 3(a) and 3(b) plot ρ∞,reg and ρ∞,ran in the param-
eter space (λ1,b) in Hexagonal lattice and the corresponding
homogeneous random networks, respectively. By comparison,
it is clearly seen that in the space where b is larger but λ1 is
small, the spreading range is much larger in regular networks
than in random networks. However, in the space where λ1

is a little larger (at about 0.3) and b is small, the spreading
range is larger in random networks than in regular ones.
Figure 3(c) plots the difference of ρ∞ between the Hexagonal
lattice and its corresponding homogeneous random networks
in the space (λ1,b). There are two islands in the parameter
space: One is region I with small λ1 and large b, where the
spreading range is broader in regular networks, consistent with
Centola’s experiment [20]; the other one is region II, with
relatively larger λ1 and smaller b, where the spreading range
is broader in random networks, consistent with the former
results that spreading in random networks is farther than in
regular networks [11,28]. Except the two islands, the value of
δρ in all the other regions is about 0. However, region III (with
small λ1 and small b) and region IV (with larger λ1) present
totally different situations: In region III, the primary spreading
rate is too small and the strength of social reinforcement is
too weak, thus, the information cannot spread out in both
kinds of networks, and as a result, the difference of spreading
range is about 0; in region IV, the primary spreading rate
is too large and no matter how strong (or weak) the social
reinforcement strength is, the information will spread to almost
the whole networks and there is not much difference between

FIG. 3. (Color online) (a) ρ∞,reg in Hexagonal lattice, (b) ρ∞,ran
in the corresponding homogeneous random networks of Hexagonal
lattice, and (c) the difference δρ between the Hexagonal lattice and
its corresponding homogeneous random networks in the parameter
space (λ1,b). (d) The difference δρ between the Moore lattice and
its corresponding homogeneous random networks. The results are
obtained by averaging over 10 000 times of implements (100 network
configurations and 100 initial states of each configuration).

the spreadings on regular and random networks; thus, the
difference of spreading range is approximately 0.

The result of δρ between Moore lattice and its correspond-
ing homogeneous random networks is also shown in Fig. 3(d).
Interestingly, region I in this case covers a larger range of b

compared with Fig. 3(c), indicating that a larger average degree
may decrease the threshold of b and make regular networks
defeat random networks, even when b = 0.145. The reason for
this phenomenon is that it is easier for individuals to receive
signals from neighbors in networks with k = 8 than k = 6.
For the case of different system size, the situation of larger N

can be considered in our model, which is hard to realize in
online experiments. The simulation results show the locations
of regions I and II are almost the same for different system
size, and only the value of the difference δρ becomes more
prominent.

To further show the interpretability of our model to
Centola’s experimental results, in Fig. 4 we plot the number
of approved nodes as a function of time on regular networks
(black squares) and on random networks (red circles). For
comparison, we copy the result from Centola’s experiment
in Fig. 4(a), where the solid black circle and open triangle
curve are time series of the fraction of individuals who
adopted the behavior in clustered Hexagonal lattice network
and homogeneous random network with the same degree,
respectively. From the figure it can be seen that for both
the spreading speed at the beginning and the spreading range
at the final steady state, regular network won a victory over
the random one. Figure 4(b) gives the result with parameters
λ1 = 0.18 and b = 0.40. The curves show almost the same
trend as the experiment: The spreading is faster and farther
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FIG. 4. (Color online) (a) The adoption proportion of a health
behavior spreading through clustered-lattice (solid black circles) and
random (open triangles) social networks (which is cited from the
article [20]). (b–d) The density of approved nodes as a function
of time in regular networks (black squares) and in homogeneous
random networks (red circles). In (b), the open dot curves indicate the
increment of density of approved nodes at each time step ρt − ρt−1.
The network size N = 16 × 8 = 128 and degree k = 6. The results
are obtained by averaging over 10 000 implements.

in regular networks than in random ones. To quantitatively
describe the spreading speed, we plot the increment value of
approved nodes density at each time step, namely ρt − ρt−1,
in regular networks (open black square) and random networks
(open red circle). The trends of the two curves are almost
the same. At the beginning, the spreading speed in both
networks increase sharply, and then the two curves reach their
own maximum almost at the same time, which denotes the
occurrence of outbreak, and after that the curves decrease
sharply with the increasing of t . During the whole process
the value of ρt − ρt−1 in regular networks is always larger
than in random networks, which indicates the spreading speed
in regular networks is faster. ρt − ρt−1 = 0 indicates the
spreading has stopped and the spreading range has reached the
maximum. From the above results, it can be concluded that
our model is appropriate to describe the behavior spreading in
online social networks.

In the parameter space, there are some special points
presenting some interesting phenomena. Two typical examples
are shown in Figs. 4(c) and 4(d). In Fig. 4(c), the parameter
λ1 = 0.1, which is too small to make the information spread
out in random networks, while in regular networks, with a
strong social reinforcement, namely b = 0.40, there are still
20% individuals who approved the information. In Fig. 4(d),
with the primary spreading rate λ1 = 0.14 and the social
reinforcement strength b = 0.52, there is an extremely large
difference of ρ∞ between regular and random networks.
The above results show that by regulating the primary
spreading rate and social reinforcement strength, the spreading
in regular networks and in random networks show diverse

FIG. 5. (Color online) The distribution of (a) approved nodes pm

and (b) disapproved nodes pm,d after receiving the signal m times. The
parameters are λ1 = 0.18, b = 0.4, and k = 6. The data are obtained
from 10 000 samples with fixed network size N = 16 × 8 = 128. The
statistics are obtained at the steady state.

properties. It has been found that our model can describe
Centola’s experiment rather well with λ1 = 0.18 and b =
0.40, thus, hereinafter, we will concentrate our study on this
case.

We have known that the social reinforcement is crucial for
the behavior spreading, and then a natural question emerges:
How strong does social reinforcement affect individuals? In
other words, how many times do individuals have to hear the
information before approving it? To answer this question, we
define pm as the ratio of the number of approved individuals
after receiving the signals m times to the number of final
approved individuals. The distribution of pm at the steady
state is shown in Fig. 5(a). It can be seen that only 17.6% of
the total approved individuals approve the information after
receiving the signal once (i.e., m = 1). When m = 2, pm

increases to more than 30%, and after that with the increasing
of m, pm decreases, but the values of p3 and p4 are still very
large. Similar to pm, we further define pm,d as presenting
the probability of individuals who have received the signal m

times but do not approve it. From Fig. 5(b), we can see that
more than 80% of individuals don’t approve the signal after
receiving only one signal, indicating that most individuals are
affected by the social reinforcement effect. That is to say that
the redundant signals can significantly increase the likelihood
of approval. Therein, the effect of the second signal is the
most significant. This conclusion has been tested by Centola’s
experiment [20].

C. Effects of average degree and network size

In our model, the average degree is increased by adding
edges between each node and its next-nearest neighbors. And
when changing the network size, the number of nodes in
row and column keeps fixed ratio at 2:1. In this part, we
focus on Hexagonal lattice. The effects of average degree k

on the density of approved individuals at the steady states
ρ∞ for regular (filled dot solid line) and random (open dot
dash line) networks at different network size are shown in
Fig. 6(a). Clearly, ρ∞ increases monotonically with k for both
kind of networks, and with the same degree, the spreading in
regular networks is generally broader than in random ones.
Why regular networks perform better? It is mainly resulted
from the ability of receiving redundant signals. When k is
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FIG. 6. (Color online) (a) The density of approved nodes ρ∞ on
regular (filled dot solid line) and random (open dot dash line) networks
against the degree k given different N values. (b) The density of
approved nodes ρ∞ on regular (filled dot solid line) and random
(open dot dash line) networks against N given different degree k.
The parameters are λ1 = 0.18, b = 0.4. The data are obtained from
10 000 samples.

small, individuals have very few connections to others. In
this case, a high clustering coefficient can help to obtain
more signals in the low-nutrient situation. Therefore, with the
same average degree, the regular network whose clustering
coefficient is larger has advantage for spreading when the
effect of social reinforcement is taken into account. However,
when k is large, in both random and regular networks, there
are enough opportunities for individuals to obtain redundant
signals via the sufficient connections to others. At this moment,
the advantage of regular networks becomes negligible although
owning larger clustering coefficient. For example, when k =
16 in both networks, about 95% individuals will approve the
information. For the special case when k = 4, neither the
clustering coefficient (about zero) nor the average degree of
these two networks is large enough to make the individuals
obtain enough redundant signals, so that the information in
the two kinds of networks will not spread out, i.e., ρ∞ is
almost zero.

Furthermore, in Fig. 6(b) we investigate the dependence
of the number of final approved individuals on the network
size given different average degree k. It shows that when k is
small, ρ∞ in random networks decreases with the increasing
of network size (steep at the beginning and slow down later),
while in regular networks ρ∞ keeps almost the same. The
reason is in random networks, the clustering coefficient will
decrease with the increase of the network size. As we have
analyzed above, the networks with higher clustering coefficient
have advantage of receiving more signals and, therefore, lead
to larger spreading range. However, the clustering coefficient
of regular networks in our experiment keeps constant; thus,
the individuals will not be affected so much for receiving
redundant signals, leading to a relatively stable spreading
ranges. Again, when k is large, the difference between random
and regular networks is not prominent due to the higher
probability to obtain redundant signals via large number of
connections to others. Generally speaking, our conclusion is
accordant with Centola’s anticipation that when the network
is sparse, increasing the network size or decreasing the
average degree may enlarge the difference of ρ∞ between
regular and random networks, and when the average degree

is large enough, the influence of topological difference on the
spreading ability is no longer notable [29].

IV. CONCLUSION AND DISCUSSION

In summary, we propose a four-status model to describe
the spreading in online social networks, namely an unknown-
known-approved-exhausted states model. We carry out the
simulations on Hexagonal lattice and Moore lattice net-
works with periodic boundary condition, which have similar
topological structure with the networks in Centola’s online
experiments, and further compare the results with simulations
on the corresponding random networks. The results show
that the density of final approved nodes is strongly affected
by the combined effects of the primary spreading rate λ1 and
the social reinforcement b, which are two key factors in the
spreading process. In the parameter space (λ1,b), four regions
(labeled in Fig. 3) are found according to the spreading range.
It can be seen that even if the primary spreading rate λ1 is
too small to make the spreading breakout, with stronger social
reinforcement strength b, regular networks can promote the
diffusion better than random networks. In other words, under
certain conditions, the spreading is faster and farther in regular
networks than in the corresponding random networks (see
region I in Fig. 3). These results support Centola’s experiment
[20]. The best parameters to explain the results of Centola’s
experiment are λ1 = 0.18 and b = 0.4. When λ1 is a little
larger and b is small (corresponding to region II in Fig. 3), the
spreading in regular networks is not as good as in random ones.
This result is accordant with the traditional understanding of
network spreading [11,28]. In the extreme case, when λ1 is
very large, the individuals have high probability to approve
no matter how strong (or weak) the social reinforcement
strength is. Therefore, the information will spread to almost
the whole network, leading to not much difference between
the spreadings on regular and random networks. When b = 0,
namely there is no social reinforcement effect, our model
degenerates to the standard SIR model. We further study
the effects of average degree and network size on spreading
and the result is again accordant with Centola’s anticipation
that in region I increasing the network size or decreasing the
average degree can enlarge the difference of the density of final
approved nodes ρ∞ between regular and random networks.

Although our model is simple, it can very well explain
Centola’s experiment of behavior spreading in online social
networks [20], and we believe that our model is easy to
expand to describe other spreading processes, such as rumor
or information that are usually required confirmations before
being transmitted. Of course, some real experiments on these
spreading processes are needed to further test the validity
of the model. Besides, the study on the effects of other
important structural features, such as clustering coefficient,
average distance, etc., are lacking, which will be expected in
future studies. Moreover, in our work we only consider the
networks with homogenous degree, namely each node has
the same number of neighbors, but in real world networks, the
degrees generally distribute heterogeneously [13,32,33]. Thus,
to study the spreading process on such networks and to find out
the key spreaders are of great practical significance [34–36],
which are also set as our future tasks.
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