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In recent years diode laser sources have become widespread and reliable tools in magneto-optical spectroscopy.
In particular, laser-driven atomic magnetometers have found a wide range of practical applications. More recently,
so-called magnetically silent variants of atomic magnetometers have been developed. While in conventional
magnetometers the magnetic resonance transitions between atomic sublevels are phase-coherently driven by a
weak oscillating magnetic field, silent magnetometers use schemes in which either the frequency or the amplitude
of the light beam is modulated. Here we present a theoretical model that yields algebraic expressions for the
parameters of the multiple resonances that occur when either amplitude-, frequency-, or polarization-modulated
light of circular polarization is used to drive the magnetic resonance transition in a transverse magnetic field.
The relative magnitudes of the resonances that are observed in the transmitted light intensity at harmonic m of
the Larmor frequency ωL (either by DC or phase sensitive detection at harmonics q of the modulation frequency
ωmod) of the transmitted light are expressed in terms of the Fourier coefficients of the modulation function. Our
approach is based on an atomic multipole moment representation that is valid for spin-oriented atomic states
with arbitrary angular momentum F in the low light power limit. We find excellent quantitative agreement with
an experimental case study using (square-wave) amplitude-modulated light.

I. INTRODUCTION

Magneto-optical spectroscopy of spin-polarized atomic va-
pors has received a renewed interest thanks to the development
of solid-state diode lasers. A comprehensive review of of
methods and applications of magneto-optical spectroscopy has
been given by Budker et al. [1]. One of the most prominent
applications of spin-polarized atomic vapors prepared by
optical pumping with polarized resonance radiation is atomic
magnetometry [2]. Introduced using discharge lamp pumping,
atomic magnetometry has received new interest when diode
lasers replaced the lamps [3]. Laser pumping has the distinct
advantage of allowing multiple sensor arrays to be operated
by a single light source [4,5] and allows new (magnetically
silent) approaches to magnetometry.

Early magnetometers inferred the magnetometry signal
of interest directly from the current of a photodetector
monitoring the power of the light traversing the atomic
medium. Such magnetometers suffer from low-frequency
noise, and the signal to noise ratio, and hence the sensitivity
of magnetometers, can be considerably enhanced by using
phase-sensitive detection of the photocurrent. Such lock-in
detection requires the application of a suitable modulation to
the light-atom interaction. In the so-called Mx-magnetometer
scheme [6,7] the modulation is achieved by a weak magnetic
field that oscillates at the Larmor frequency and that coherently
drives the magnetization associated with the atomic spin
polarization around the magnetic field. The Mx-magnetometer
is an implementation of optically detected magnetic resonance
(ODMR), since the driven spin precession consists, in a
quantum picture, of magnetic resonance transitions between
magnetic sublevels that are driven by the oscillating field.

In recent years several approaches to so-called magnetically
silent (or all-optical) modes of magnetometer operation have
been put forward. These schemes circumvent the application of

the oscillating magnetic field, whose implementation may pose
technical problems when the magnetometers are operated in
harsh environments, such as in ultrahigh vacuum or in the prox-
imity of high voltage [5]. One of the most successful all-optical
magnetometry techniques is frequency-modulated nonlinear
magneto-optical rotation (FM-NMOR), in which the coherent
spin drive (realized by modulation of the laser frequency) is
combined with balanced polarimetric detection [8]. Amplitude
modulation (AM) of the laser intensity is another variant of all
optical magnetometry. It has been implemented in combination
with balanced polarimetric detection [9] and by using direct
power monitoring [10]. The fact that amplitude modulated
resonance light can drive magnetic resonance transitions in
the atomic ground state had already been demonstrated by
Bell and Bloom, both with circularly [11] and with linearly [12]
polarized light. Do note, however, that those early experiments
did not use phase-sensitive detection. Yet another, to our
knowledge little-explored, modulation scheme involves the
resonant modulation of the laser polarization. Only a few
examples of polarization modulation have been discussed in
the literature [13–15]. Below we will refer to polarization
modulation as Stokes modulation (SM) (since the acronym
PM often refers to phase modulation in the literature).

In this paper we derive algebraic expressions for the mag-
netic resonance spectra of atomic vapors driven by FM-, AM-,
or SM-modulated circularly polarized laser light (modulation
frequency ωmod). We analyze the temporal structure of the
photodetector signal monitoring the light power after the
atomic medium and identify resonant signals modulated at
harmonics q ωmod of the modulation frequency as well as an
unmodulated spectrum of resonances. When demodulated by
a lock-in amplifier tuned to an arbitrary harmonic q of ωmod,
the magnetic-field-dependent in-phase and quadrature spectra
(for a fixed modulation frequency) show an infinite number
of absorptive and dispersive Lorentzian resonances located at
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multiples m ωL of the Larmor frequency. We present algebraic
expressions that relate the q- and m-dependent amplitudes of
these resonances to the Fourier coefficients of the modulation
function. Our results are based on an atomic multipole moment
approach and are thus applicable to atomic ground states with
an arbitrary angular momentum F . The obtained results are
valid only in the low light power limit, i.e., in the range where
the signal amplitudes grow quadratically with the incident
power P0. In an experimental case study using amplitude
modulation (AM) in the low power limit we find an excellent
agreement between experimental and theoretical spectra.

Spectra for frequency-modulated (FM) linearly polarized
light with polarimetric detection have previously been modeled
for a J = 1 to J = 0 transition using an algebraic density
matrix formalism [16]. We are not aware of a related theoretical
treatment for AM- or SM-magnetic resonance signals.

II. OPTICALLY INDUCED MAGNETIC RESONANCE

Conventional magnetic resonance is a process in which the
orientation of the spin polarization �S = 〈 �F 〉 of an ensemble
of paramagnetic particles (electron, nuclei, atoms) is changed
by a resonant interaction of the associated magnetization �M =
〈�μ〉 ∝ �S with a magnetic field �b1(t) oscillating at frequency
ωrf . In the case of the atomic ensembles treated here, �F denotes
to the total atomic angular momentum.

In classical terms, the orientation change of �S is a Larmor
precession at frequency ωL ∝ | �B0|, driven by the torque
〈 �μ〉 × �b1. Magnetic resonance occurs when ωrf matches
ωL. In quantum mechanical terms, magnetic resonance is
described in terms of magnetic dipole transitions between the
magnetic sublevels |nLJ ,F,mF 〉 of the atom [Fig. 1(a)], and
the transition dynamics are determined by the Hamiltonian
H = −�μ · �b1(t), with matrix elements [17]

〈F,m′
F |H |F,mF 〉 ∝ 〈nLJ ,F,m′

F | �μ|nLJ ,F,mF 〉 · �b1(t).

(1)

+

−
ω
ω

FIG. 1. (Color online) (a) Conventional magnetic resonance:
a time-varying field �b1(t) induces transitions between magnetic
sublevels whose energies are split by the static field �B0. (b) The
light beam serves to prepare the spin orientation and to detect the
magnetic resonance transition. σ±- and π -polarized components of
an unmodulated circularly polarized light field with quantization
axis along �B0. (c) Same situation as in (b) when each polarization
component (solid lines) acquires sidebands (dashed lines) due to
amplitude modulation that induce the sublevel transitions.

For �L = 0 transitions, parity conservation requires the
operator driving the transitions to be parity even, i.e., invariant
under space inversion, which is obeyed by �μ.

Bell and Bloom have shown [11] that an intensity-
modulated resonant light field with circular polarization
induces magnetic resonance transitions in an atomic ground
state when the modulation frequency ωmod matches the ground
state’s Larmor frequency ωL in a transverse external magnetic
field �B0. The fact that an oscillating electric field can drive
�L = 0, �F = 0 magnetic resonance transitions seems to be
in contradiction with the requirement of parity conservation.
However, the light-induced magnetic resonance transitions
can be understood in terms of parity-conserving second-order
processes mediated by the interaction Hamiltonian H = −�d ·
�E(t), as follows. Consider first an unmodulated circularly
polarized light beam, that excites an atomic F = 1 → F ′ = 0
transition, in which the ground-state degeneracy is lifted by a
transverse magnetic field �B0 [Fig. 1(b)]. With the quantization
axis along B̂0, the circularly polarized optical field (oscillating
at ω) is given by

�E =
∑

q

Eqêq = E0

∑
q

aq êq = E0

(
1

2
ê+ + 1√

2
ê0 + 1

2
ê−

)
,

(2)

where the subscripts ± and 0 refer to σ± and π polarizations,
respectively, in a coordinate frame with quantization axis
along k̂, which drive transitions from all three sublevels.
Because of the energy splitting, only the 0 → 0 transition
is resonant in the case shown. When the amplitude of the
light is modulated at frequency ωmod, its Fourier spectrum
acquires sidebands that are offset by ±nωmod from the optical
frequency. In Fig. 1(c), we show the carrier E0, oscillating at
the optical frequency ω (solid lines), together with the n = ±1
sidebands E±, oscillating at ω ± ωmod (dashed lines) for
the resonant case where ωmod = ωL. For simplicity we ignore
the higher-order sidebands in the present discussion. These
sidebands are responsible for resonances at harmonics of the
Larmor frequency (see also discussion in Sec. 4D of Ref. [14]).

With this simplification, the carrier �E0, together with one
of the sidebands �E±1 resonantly drive �mF = ±1 transitions
between adjacent sublevels. The matrix elements of this
second-order process can be written in terms of an effective
Hamiltonian [18] as

〈F,m′
F |Heff|F,mF 〉

∝
∑

q,q ′=0,±1

(−1)q+q ′ 〈F,m′
F |d−q ′ d−q |F,mF 〉 Eq ′Eq. (3)

The bilinear form of the dipole operators dq in (3) en-
sures that the matrix elements are parity even and that
the effective Hamiltonian Heff indeed conserves parity.

Selection rules and relative line strengths for transitions
mediated by (3) were derived in Ref. [18]. Moreover, one
finds that the two σ± polarized components in Fig. 1(c) cannot
drive �mF = 2 transitions because of destructive quantum
interference, thus respecting the conventional �mF = 0, ± 1
selection rule for magnetic resonance transitions. However,
when using modulated linearly polarized light and a field
�B0, perpendicular to the light polarization, the two sidebands
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lead to constructive interference, thereby allowing �mF = 2
transitions to occur. In this way Bell and Bloom were able to
observe the “forbidden” �mF = 2 magnetic resonance transi-
tions [12] using amplitude-modulated linearlypolarized light.

Alzetta et al. [19] devised an elegant method that allowed
the photographic visualization of Bell-Bloom type magnetic
resonance processes induced by polychromatic light fields.
The method has since become known as coherent population
trapping (CPT). We stress an important aspect of CPT
spectroscopy: Since in the ground state the magnetic sublevel
coherences excited by bichromatic or polychromatic light
fields may be very long lived (up to seconds), one has to
ensure that the individual Fourier components of the exciting
light field have a phase coherence which lives at least as long
as the atomic coherence. With Fourier components produced
as sidebands by a modulation technique, the phase coherence
is determined by the phase stability of the generator driving
the modulator. However, when the multimode light field is
produced by a superposition of independent laser sources,
special care has to be taken to actively phase lock the individual
optical fields.

III. MAGNETIC RESONANCE WITH
CIRCULARLY-POLARIZED MODULATED LIGHT

A. Experimental geometry

Figure 2 shows the geometry of the experiments discussed
in this paper. A circularly polarized laser beam, resonant with
an F → F ′ transition, traverses an atomic vapor cell of length
L that is exposed to a transverse static magnetic field �B0. The
power P (t) of the light transmitted through the cell is measured
by a photodetector. For suppression of technical noise, one may
wish to use a balanced polarimeter detecting alterations of the
light polarization rather than merely detecting the light power.
Such extensions of the method will not be addressed here.

We will discuss three distinct experiments, in which a given
property, viz., the power P0(t), the frequency detuning δω(t)
from the atomic transition, or the helicity ξ (t) of the incident
light field is subject to a periodic modulation at frequency
ωmod. The modulated property will imprint a characteristic
periodic modulation at ωmod, or harmonics q thereof, onto the
power of the transmitted beam, with amplitude(s) and phase
shift(s) that depend on the detuning of the Larmor frequency

ω
ξ

ω

φ

FIG. 2. (Color online) Experiments addressed in this paper. A
circularly polarized resonant light beam traverses an atomic medium
exposed to a static magnetic field �B0. Either the power P0, the
frequency ωlaser, or the polarization (helicity) ξ of the light is
modulated at frequency ωmod and a phase sensitive detector (PSD),
tuned to qωmod, extracts the in-phase component (I), the quadrature
component (Q), and the phase (φ) of the signal from the photodiode
(PD) detecting the transmitted modulated power P (t).

ωL = γF | �B0| from q ωmod, where γF is the gyromagnetic ratio
of the polarized ground state F .

In the experiments, the time dependent photodetector
signal P (t) is analyzed by a phase-sensitive detector (PSD),
referenced to ωmod or its q-th harmonic. At each demodulation
frequency q ωmod, one observes a series of resonances at
multiples m ωL (m, arbitrary integer) of the Larmor frequency.
The aim of the present paper is the derivation of algebraic
expressions for the amplitudes aq,m and dq,m of the in-phase
and quadrature components of P (t).

B. Light transmission through a spin-polarized vapor

The light power P transmitted by an unpolarized optically
thin atomic vapor of length L is given by

P = P0 e−κ(δω) L ≈ P0 − P0 κ(δω) L, (4)

where

κ(δω) = κ0 D(δω) (5)

is the optical absorption coefficient, parametrized in terms of
the peak absorption coefficient κ0 and a spectral line-shape
function D(δω), typically a Doppler or Voigt profile with
D(0) = 1, that depends on the detuning δω = ωlaser − ω0

of the laser frequency ωlaser from the atomic resonance
frequency ω0.

When the medium is spin polarized, the peak absorption
coefficient for light with circular polarization σξ has to be
replaced by

κ0 → κ0[1 − αF,F ′ ξ Sz − βF,F ′ Azz], (6)

where

Sz = 1

F

F∑
mF =−F

mF pmF
(7)

and

Azz = 1

F (2F − 1)

F∑
mF =−F

[
3m2

F − F (F + 1)
]

pmF
(8)

are the vector polarization (orientation) and tensor polarization
(alignment) of the medium, respectively, with pmF

being the
normalized sublevel populations

∑
pmF

= 1. Both Sz and Azz

are defined here to be normalized to unity when the system is
in the stretched state defined by pmF

= δmF ,F . The coefficients
αF,F ′ and βF,F ′ depend on the angular momenta F,F ′ of the
states coupled by the optical transition.

Optical pumping with circularly polarized light produces
both orientation and alignment in the ground state. In order
not to overcharge the present paper we will consider only
orientation contributions by setting βF,F ′ = 0. As discussed at
the end of the paper, we have in fact observed weak signal
components that can be assigned to alignment contributions.
Since these components are spectrally resolved from the
orientation contributions, they will not be addressed here. With
the above restrictions the transmitted power is given by

P = [1 − κ0LD(δω)] P0 + ακ0LD(δω) ξ Sz P0. (9)

We will not address the dependence of αF,F ′ on F and F ′, and
drop the indices in consequence. The combinations κ0L and
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ακ0L can be seen as experimental parameters, which can be
determined empirically.

C. Modulation schemes

We address the following three modulation schemes.
(i) Amplitude modulation (AM): The laser frequency is

set to resonance, D(δω = 0) = 1, the polarization is fixed
to ξ = +1, and the incident light power is modulated by
an arbitrary periodic time dependent function according to
P0(t) = P0 f AM

ωmod
(t). The corresponding time dependence of

the detected power then reads

P AM(t) = (1 − κ0L) P0(t) + ακ0LSAM
z (t) P0(t) (10)

= (1 − κ0L) P0 f AM
ωmod

(t) + ακ0LP0 SAM
z (t)

× f AM
ωmod

(t) (11)

≡ AAM + BAM f AM
ωmod

(t) + CAM SAM
z (t)

× f AM
ωmod

(t). (12)

(ii) Frequency modulation (FM): The incident power is
fixed to P0, the helicity of the light polarization is fixed to ξ =
+1, and the laser detuning δω(t) is periodically modulated.
The corresponding time dependence of the detected power
reads

P FM(t) = [1 − (κ0L) D(δω(t))] P0 + (α κ0L) P0 SFM
z (t)

×D(δω(t)). (13)

The modulation function can be modeled by replacing
D(δω(t)) by a periodic function f FM

ωmod
(t), with 0 � f FM

ωmod
� 1.

With this choice, the transmitted power can be written as

P FM(t) = P0 − (κ0LP0) f FM
ωmod

(t) + (α κ0LP0) SFM
z (t)

× f FM
ωmod

(t) (14)

≡ AFM + BFM f FM
ωmod

(t) + CFM SFM
z (t)

× f FM
ωmod

(t). (15)

(iii) Polarization modulation (SM): The laser frequency is
set to resonance, D(δω = 0) = 1, the incident power is fixed to
P0, and the helicity (degree of circular polarization) of the light
is periodically modulated as ξ (t) = f SM

ωmod
(t), with |f SM

ωmod
| � 1.

The corresponding time dependence of the detected power
reads

P SM(t) = (1 − κ0L) P0 + (α κ0LP0) SSM
z (t)

× f SM
ωmod

(t) (16)

≡ ASM + BSM f SM
ωmod

(t) + CSM SSM
z (t)

× f SM
ωmod

(t). (17)

We see that all three types of experiments (TOE) can be
parametrized in terms of distinct time-independent and time-
dependent terms of the general form

P TOE(t) = ATOE + BTOE f TOE
ωmod

(t) + CTOE STOE
z (t) f TOE

ωmod
(t).

(18)

TABLE I. Characteristic parameters ATOE, BTOE, and CTOE for ex-
periments with amplitude- (AM), frequency- (FM), and polarization-
modulated (SM) light, respectively. The last column gives the lower
and upper bounds of the modulation functions f TOE

ωmod
(t) for achieving

a maximal contrast of the system’s response.

TOE ATOE BTOE CTOE f TOE
ωmod

(t)

AM 0 (1 − κ0L) P0 α κ0LP0 f AM
ωmod

∈ [0,1]

FM P0 −κ0L P0 α κ0LP0 f FM
ωmod

∈ [0,1]

SM (1 − κ0L) P0 0 α κ0LP0 f SM
ωmod

∈ [−1,1]

The parameters A, B, C for amplitude-, frequency-, and
polarization-modulation are summarized in Table I.

We note the following facts:
(i) The time-independent term ATOE gives no contribution

to the lock-in signals.
(ii) The term BTOE has the same Fourier spectrum as the

time-dependent modulation, but contains no magnetic-field-
dependent quantities. In AM and FM experiments it will lead
to a field-independent background that is, for an optically thin
medium, κ0L � 1, substantially larger in AM experiments
than in FM experiments, while in SM experiments it is absent.

(iii) The CTOE term leads to a richer spectrum because of the
mixing of frequencies of its two time-dependent contributions
Sz(t) and f TOE

ωmod
(t). We note that only the CTOE term depends—

via Sz(t)—on the magnetic field, while the ATOE and BTOE

terms form a signal background that influences the contrast and
the signal to noise ratio of the magnetic resonance structures.

In Sec. IV we will first derive algebraic expressions that
relate the time-dependent spin orientation STOE

z (t) to the
specific drive function f TOE

ωmod
(t), and in Sec. V we will then

derive and discuss the complete Fourier spectra of the signals
P TOE(t).

IV. SPIN ORIENTATION Sz(t) UNDER
PERIODIC MODULATION

As stated above, we will not address alignment contribu-
tions to the atomic polarization and describe the latter only in
terms of its vector polarization (orientation) �S. The dynamics
of Sz(t), i.e., the only polarization component that contributes
to the signals, is governed by the Bloch equations

�̇S = �S × �ωL − γ �S + 
TOE
p (t) k̂, (19)

whose components read

Ṡx = −γ Sx (20)

Ṡy = +ωL Sz − γ Sy (21)

Ṡz = −ωL Sy − γ Sz + 
TOE
p (t), (22)

where we have assumed that the longitudinal and transverse
relaxation rates are identical γ1 = γ2 ≡ γ , and where 
TOE

p (t)
is a source term that describes the rate at which longitudinal
orientation Sz is produced by optical pumping. We note that
the pumping rate 
p(t) is proportional to the product of the
incident power P0, the light helicity ξ , and the optical line
shape D(δω). The modulation of any of these quantities thus
yields a modulation of the pumping (and probing) rate, that
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can be parametrized as


TOE
p (t) = γp f TOE

ωmod
(t), (23)

where f TOE
ωmod

(t) is the modulation function which varies
periodically within the bounds listed in Table I. The pumping
rate amplitude can be related to the light power P0 (or the light
intensity IA) by introducing a saturation parameter G, defined
as

G ≡ γp

γ
≡ P0

Ps

≡ I

Is

, (24)

where Ps and Is are the saturation power and saturation
intensity, respectively.

We note that the Bloch equations above, and hence the
solutions below, are only valid in the low-power approximation

P0 � PS , i.e., γp � γ , which expresses the fact that less than
one optical pumping (absorption/fluorescence) cycle occurs
during the lifetime γ −1 of the ground-state polarization.

A. Monochromatic modulation

Using Wolfram MATHEMATICA 8.0 [20], one can show
that the Bloch equation for Sz(t) driven by a monochromatic
modulation around a DC offset value


AM,FM
p (t) = γp

2
[1 + cos (ωmodt)] . (25)

has a time-dependent solution of the form

SAM,FM
z (t) = γp

2
[T (t) + R(t)] , (26)

with

T AM,FM(t) =
[

2 ωL

ω2
L + γ 2

+ ωL − ωmod

(ωL − ωmod)2 + γ 2
+ ωL + ωmod

(ωL + ωmod)2 + γ 2

]
sin(ωLt) e−γ t

−
[

2 γ

ω2
L + γ 2

+ γ

(ωL − ωmod)2 + γ 2
+ γ

(ωL + ωmod)2 + γ 2

]
cos(ωLt) e−γ t , (27)

RAM,FM(t) = 2 γ

ω2
L + γ 2

+
[

γ

(ωmod − ωL)2 + γ 2
+ γ

(ωmod + ωL)2 + γ 2

]
cos(ωmodt)

+
[

ωmod − ωL

(ωmod − ωL)2 + γ 2
+ ωmod + ωL

(ωmod + ωL)2 + γ 2

]
sin(ωmodt). (28)

The function T AM,FM(t) is a damped transient, so that for
t 
 γ −1 Sz(t) shows a steady-state oscillation given by

SAM,FM
z (t) = γp

2
R(t)AM,FM (29)

= G

2
H(ωL) + G

2
[A(ωL) + A(−ωL)]

× cos(ωmodt) (30)

+ G

2
[D(ωL) + D(−ωL)] sin(ωmodt), (31)

with resonance line shapes

H(ωL) = 2 γ 2

ω2
L + γ 2

(32)

A(ωL) = γ 2

(ωmod − ωL)2 + γ 2
(33)

D(ωL) = γ (ωmod − ωL)

(ωmod − ωL)2 + γ 2
. (34)

The spin polarization thus contains an unmodulated DC
Lorentzian (Hanle) resonance centered at ωL = 0, as well
as absorptive and dispersive Lorentzians, centered at ωL =
±ωmod.

We note that the DC term in the pumping rate (25) occurs
only in the AM and FM schemes, while the SM modulation
function (normalized to the same peak-peak modulation

amplitude)


SM
p (t) = γp

2
cos (ωmodt) (35)

has no DC part.
The steady-state Bloch oscillations in that case are given

by

SSM
z (t) = G

2
{[A(ωL) + A(−ωL)] cos(ωmodt)

+ [D(ωL) + D(−ωL)] sin(ωmodt)}, (36)

and show no Hanle resonance in the unmodulated DC
signal.

B. Arbitrary periodic modulation

We consider next an arbitrary symmetric (gm = g−m)
periodic modulation that can be represented in terms of its
cosine-Fourier series


TOE
p (t) = γp f TOE

ωmod
(t) = γp

∞∑
m=−∞

gm cos (m ωmodt) . (37)

Since the Bloch equations are linear in γp, they can be solved
for each Fourier component cos(m ωmodt) independently,
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yielding

S(m)
z (t) = gm G {[Am(ωL) + Am(−ωL)] cos(mωmodt) + [Dm(ωL) + Dm(−ωL)] sin(mωmodt)}

= gm G {[Am(ωL) + A−m(ωL)] cos(mωmodt) + [Dm(ωL) − D−m(ωL)] sin(mωmodt)} , (38)

with

Am(ωL) = γ 2

(mωmod − ωL)2 + γ 2
, (39)

Dm(ωL) = γ (mωmod − ωL)

(mωmod − ωL)2 + γ 2
. (40)

Note that we have replaced the experiment indicating super-
script TOE on Sz(t) by the order m of the resonance behavior
of the Fourier coefficient, and have added the subscript m to
A(ωL) and D(ωL) to denote the Fourier component at mωmod.
By a proper choice of the coefficients gm, the expressions can
be applied to all three types of experiments.

Summing all Fourier components, we find that the time-
dependent spin polarization is given by

Sz(t) =
∞∑

m=−∞
S(m)

z (t) = 2 G

∞∑
m=−∞

gm

[Am(ωL)

× cos(mωmodt) + Dm(ωL) sin(mωmodt)
]
. (41)

The factor 2 in the last expression originates from the
symmetries A−m = Am and D−m = −Dm of the line-shape
functions. The Hanle resonance of (31) is now explicitly
contained as the m = 0 term in the sum since H = A0 + A−0.

V. THE LOCK-IN SIGNALS

In Appendix A we show that the transmitted power (photo-
diode signal) contains time-independent and time-dependent
contributions

P TOE(t) = BTOE
DC +

√
2

∞∑
q=1

ITOE
q cos (q ωmodt)

+
√

2
∞∑

q=1

QTOE
q sin (q ωmodt) . (42)

The time-independent (DC) signal is given by

BTOE
DC = ATOE + g0 BTOE + GCTOE

∞∑
m=−∞

g2
m Am(ωL),

(43)

which represents an infinite series of absorptive Lorentzians,
centered at ωL = m ωmod, respectively, that are superposed
on a field-independent background ATOE + g0 BTOE. The
constants ATOE, BTOE, and CTOE are given in Table I for the
different types of experiments. We note that for TOE = AM,
the m = 0 term represents the magnetic resonance described
in the early work of Bell and Bloom [11].

The photodiode signal further contains (periodic) time-
dependent components that oscillate in-phase and in quadra-
ture with the fundamental and higher harmonics of the

modulation frequency ωmod. ITOE
q (ωL) and QTOE

q (ωL) rep-
resent the rms amplitudes of these signals, when extracted
by a lock-in amplifier (Fig. 2) referenced by cos qωmod,
respectively,

ITOE
q (ωL) = hq +

∞∑
m=−∞

aq,m Am(ωL), (44)

with

hq =
√

2 gq BTOE and

aq,m =
√

2 GCTOE gm (gq−m + gq+m). (45)

The corresponding quadrature signals read

QTOE
q =

∞∑
m=−∞

dq,mDm(ωL), with

dq,m =
√

2 GCTOE gm (gq−m − gq+m). (46)

At each demodulation harmonic q, one thus observes an infi-
nite series of absorptive and dispersive Lorentzians, centered
at ωL = ±m ωmod. The absorptive resonances of the in-phase
spectrum have amplitudes given by aq,m which are expressed
in terms of a type-of-experiment specific constant CTOE, the
peak optical pumping rate γp (itself proportional to the incident
laser power P0), and a simple algebraic function of the Fourier
coefficients gi of the specific modulation function f TOE(t)
of similar composition. The quadrature spectrum consists of
dispersive Lorentzians of amplitudes dq,m.

We note that the in-phase resonance spectrum is superposed
on a magnetic-field-independent background of amplitude hq ,
which vanishes for polarization modulation (TOE = SM), and
is reduced by a factor ακ0L in FM experiments compared
to AM experiments. The quadrature spectrum is background
free at all demodulation harmonics and for all three types
of experiments. We further note that the in-phase spectrum
contains absorptive zero-field (m = 0) Hanle resonances at
all demodulation harmonics q ωmod, which have no dispersive
counterparts in the quadrature signals since dq,0 = 0.

The linear zero crossings at the centers of the dispersive
resonances offer a convenient discriminator signal for mag-
netometers in which active feedback is used to stabilize the
Larmor frequency ωL to the modulation frequency ωmod (or
vice versa).

VI. MAGNETIC RESONANCE INDUCED BY AMPLITUDE
MODULATED LIGHT

A. Experiments

In order to illustrate how well Eqs. (44)–(46) describe
experimental spectra, we present the result of a case study
using amplitude-modulated light. Related experiments were
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in phase signals quadrature signals

experiment theory experiment theory

5 4 3 2 1 0 1 2 3 4 5 5 4 3 2 1 0 1 2 3 4 5 5 4 3 2 1 0 1 2 3 4 5 5 4 3 2 1 0 1 2 3 4 5

m L Ωmod

FIG. 3. (Color online) Comparison of experimental and theoretical magnetic resonance spectra excited by amplitude-modulated circularly
polarized light (50% duty cycle) in a transverse magnetic field (Larmor frequency ωL). The modulation frequency ωmod = (2π )127Hz was kept
constant while the magnetic field was scanned. The magnetic field amplitude is represented in units of the modulation frequency (m = ωL/ωmod).
The left and right parts of the figure show, respectively, the lock-in extracted in-phase I and quadrature Q components of the photocurrent
monitoring the transmitted modulated light intensity. The parameter q denotes the harmonic of ωmod at which the signal was demodulated. In
each column, all spectra are normalized to the amplitude of the q = 1,m = 1 resonance in that column.
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TABLE II. Comparison of theoretical and experimental peak-peak amplitudes dq,m/d1,1 of the dispersive resonances in an AM experiment,
normalized to the amplitude of the resonance with q = 1 and m = 1. The row label q refers to the frequency q ωmod at which the signals are
demodulated. The column label m denotes the position of the resonances at ωL = ±m ωmod.

m = 1 2 3 4 5 6

q = 1 theo. 1 0 0 0 0 0
exp. 1 0 0 0 0 0

2 theo. +16/3π = 0.849 0 −16/15π = −0.170 0 −16/105π = −0.024 0
exp. +0.844(27) 0 −0.168(5) 0 −0.023(1) 0

3 theo. 0 0 −1/3 = −0.333 0 0 0
exp. 0 0 −0.343(10) 0 0 0

4 theo. −32/15π = −0.340 0 −32/21π = −0.243 0 +32/45π = +0.113 0
exp. −0.348(11) 0 −0.247(8) 0 +0.117(4) 0

5 theo. 0 0 0 0 +1/5 = 0.200 0
exp. 0 0 0 0 +0.205(7)

6 theo. +48/35π = +0.218 0 +16/27π = +0.094 0 +48/55π = +0.139 0
exp. +0.229(8) 0 +0.095(3) 0 +0.141(5) 0

reported in the literature [9,10]. Our experiments were done in
a paraffin-coated Cs vapor cell, using a laser beam whose
frequency was actively stabilized to the 4 → 3 hyperfine
transition of the D1 line. Following the procedure outlined
in Ref. [21], we choose the light power to be sufficiently low
(1.4μW ) to ensure the validity of the theoretical model. The
experiments were carried out in a threefold μ-metal shield,
in which the power of the circularly polarized laser beam
traversing the cell was recorded by a photodiode. We used a
compact fiber-coupled sensor, similar to the one described in
Ref. [22], that contained the polarization optics, the vapor cell
and the photodiode, and that was mounted inside of a long
solenoid producing the transverse magnetic field.

The laser intensity was given a square-wave on/off modula-
tion with a 50/50 duty cycle using an acousto-optic modulator.
The photocurrent was amplified by a transimpedance amplifier
and analyzed by a Zurich Instruments (model HF2LI) lock-in
amplifier, which allowed the simultaneous extraction of the
in-phase and quadrature components at six selected harmonics
of its reference frequency.

B. Analysis and discussion

The results are shown in Fig. 3, together with the theoretical
prediction based on (44)–(46), evaluated with the Fourier
coefficients

g0 = 1

2
and gk �=0 = 1

π

sin
(
k π

2

)
k

(47)

of the symmetric, fmod(t) = fmod(−t), square-wave modula-
tion function. The only posttreatment applied to the recorded
data was the subtraction of the DC offset of the in-phase
components and the scaling of all experimental data Qq ,
and Iq (after the mentioned offset subtraction) by a one
common multiplicative factor, chosen such that the theoretical
amplitudes of the dispersive resonance in the first harmonic
(q = 1) spectrum match the amplitudes of the corresponding
experimental spectrum. One sees that this single scaling
factor yields an excellent agreement between the experimental

spectra and the theoretical predictions for the whole range of
investigated q and m values.

In Table II we present a quantitative comparison of
the predicted and measured peak-peak amplitudes of the
dispersive resonances, since the quadrature resonances have
a superior signal to noise ratio (SNR). The experimental zero
in the Table II means that under our experimental conditions
a resonance was not observed. The poorer SNR of the
in-phase signals arises from the background signal BTOE that
is proportional to the incident laser power P0, so that power
fluctuations of P0 produce noise on the in-phase components
that surpasses the noise on the quadrature components by
a factor on the order of BAM/CAM ≈ (ακ0L)−1. We note
that this excess noise factor reduces to α−1 in the case of
FM experiments, and that it is unity for SM experiments,
since the in-phase components in such experiments are
background free.

C. Hanle resonances

As anticipated by the model, zero-field Hanle resonances
are only observed on the in-phase spectra. Here we do not
attempt to analyze the relative magnitudes of the ωL = 0
resonance(s) and the resonances with m �= 0, since the widths
and amplitudes of the zero-field level crossing resonances are
strongly affected by field inhomogeneities, i.e., by residual
transverse field components. In the experiments reported here,
no effort was made to precisely cancel such transverse com-
ponents, since the resonances of interest are only marginally
affected by such field components.

D. Alignment resonances

The experimental quadrature spectra show small resonant
structures at multiples of ωL/2 (Fig. 3). Our initial guess was
that these resonances originate from an imperfect degree of
circular polarization, i.e., from a small degree of linear polar-
ization. During completion of the present work we realized
that these resonances are due to atomic alignment along the
light propagation direction that is produced (and probed) by
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the circularly polarized laser beam. It so happens that the
production and detection of alignment is very inefficient on
the 4 → 3 transition that was chosen for the above case
study. Subsequent experiments, not shown here, have shown
that these alignment contributions are much more pronounced
on the other three hyperfine components of the D1 line, and
that the corresponding resonance amplitudes may even surpass
those of the orientation-based signals in some cases. These
resonances are a topic for future study.

VII. SUMMARY AND CONCLUSION

We have presented a quantitative algebraic model that
describes the features of the complex magnetic resonance
patterns that are observed in experiments using synchronous
optical pumping with modulated circularly polarized light
in a transverse magnetic field. The model considers only
contributions from atomic spin orientation (vector polariza-
tion), but is general in the sense that it can be applied—
with a suitable choice of model parameters—to amplitude-,
frequency-, and polarization-modulation experiments. In all
three types of experiments the polarization production and
detection efficiencies are modulated in a periodic manner. The
model is also general in the sense that it applies to states with an
arbitrary angular momentum F , since we used a description
of the medium absorption in terms of irreducible multipole
moments (here the k = 1 vector polarization).

Explicit expressions are given for the signal background
and the resonances that occur with DC (i.e., low-pass filtered)
detection as well as with phase-sensitive detection of the signal
components that oscillate in-phase and in quadrature with
multiples of the modulation frequency.

As a case study we have recorded the in-phase and
quadrature spectra with amplitude-modulated light, detected
at the first six harmonics of the modulation frequency. We find
that the experimental results are well described by our model
at a level of better than 5%.

We have found indications for distinct signal contributions
that arise from the production and detection of atomic spin
alignment (tensor polarization) that are not included in the

present model. The theoretical modeling and experimental
study of these alignment resonances is ongoing.

Note added. Recently, we have tested our model pre-
dictions against polarization modulation experiments. We
find—as in the amplitude modulation case reported above—an
excellent agreement (both for low-pass filtered and for lock-in
detected signals) between experiments and model predictions.
Moreover, we have observed that the relative amplitudes of all
resonances (in the q and m space) are perfectly well described
by the model predictions, even when the power is increased
to levels that exceed the the model’s range of validity by a
factor of 20. It is nearly the overall amplitude of the signals
that shows a saturation behavior.
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APPENDIX A: FOURIER STRUCTURE OF PTOE(t)

The time dependence of the transmitted power P TOE(t) is
obtained by inserting expression (37) for 
p


p(t) = γp

∞∑
k=−∞

gk cos (k ωmodt) ≡ γp f TOE
ωmod

(t), (A1)

here with summation index k instead of m, and the time-
dependent polarization (41)

STOE
z (t) = 2 G

∞∑
m=−∞

gm [Am(ωL) cos(mωmodt)

+Dm(ωL) sin(mωmodt)], (A2)

into the general system response function (18)

P TOE(t) = ATOE + BTOE f TOE
ωmod

(t) + CTOE STOE
z (t) f TOE

ωmod
(t).

(A3)

Expansion of the result yields

P TOE(t) = ATOE + BTOE
∞∑

k=−∞
gk cos (k ωmodt) + 2 CTOE G

∞∑
m=−∞

gm Am(ωL) cos (m ωmodt)
∞∑

k=−∞
gk cos (k ωmodt)

+ 2 CTOE G

∞∑
m=−∞

gm Dm(ωL) sin (m ωmodt)
∞∑

k=−∞
gk cos (k ωmodt)

= ATOE + BTOE
∞∑

k=−∞
gk cos (k ωmodt) + GCTOE

∞∑
m=−∞

gm Am(ωL)
∞∑

k=−∞
gk{cos [(k + m) ωmodt]

+ cos [(k − m) ωmodt]} + GCTOE
∞∑

m=−∞
gm Dm(ωL)

∞∑
k=−∞

gk {sin [(k + m) ωmodt] − sin [(k − m) ωmodt]} . (A4)

After translating the summation indices k → q = k + m and k → q = k − m of the two terms in the sums of the CTOE term,
and renaming the summation index k in the BTOE term to q, the time-dependent power can be rewritten as
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P TOE(t) = ATOE + BTOE
∞∑

q=−∞
gq cos (q ωmodt) + GCTOE

∞∑
m=−∞

gm Am(ωL)

[ ∞∑
q=−∞

gq−m cos (qωmodt)

+
∞∑

q=−∞
gq+m cos (qωmodt)

]
+ GCTOE

∞∑
m=−∞

gm Dm(ωL)

[ ∞∑
q=−∞

gq−m sin (qωmodt) +
∞∑

q=−∞
gq+m sin (qωmodt)

]

= ATOE + BTOE
∞∑

q=−∞
gq cos (q ωmodt) + GCTOE

∞∑
q=−∞

∞∑
m=−∞

gm (gq−m + gq+m)Am(ωL) cos (qωmodt)

+GCTOE
∞∑

q=−∞

∞∑
m=−∞

gm (gq−m − gq+m)Dm(ωL) sin (qωmodt)

= ATOE + BTOE g0 + γp CTOE
∞∑

m=−∞
g2

m Am(ωL) + BTOE
∞∑

q=−∞
q �=0

gq cos (q ωmodt)

+GCTOE
∞∑

q=−∞
q �=0

∞∑
m=−∞

gm (gq−m + gq+m)Am(ωL) cos (qωmodt)

+GCTOE
∞∑

q=−∞
q �=0

∞∑
m=−∞

gm (gq−m − gq+m)Dm(ωL) sin (qωmodt) . (A5)

In the last transformation we have extracted explicitly the time-independent (q = 0) terms from the sums over q. Lock-in
demodulation is done at frequencies q ωL, where q is a positive nonzero integer. As a last step, we therefore transform (A5) to
have the sum over q run over positive values only,

P TOE(t) ≡ ATOE + BTOE g0 + GCTOE
∞∑

m=−∞
g2

m Am (ωL) + 2BTOE
∞∑

q=1

gq cos (q ωmodt)

+GCTOE
∞∑

q=1

∞∑
m=−∞

gm (gq−m + gq+m + g−q−m + g−q+m)Am(ωL) cos (qωmodt)

+GCTOE
∞∑

q=1

∞∑
m=−∞

gm (gq−m − gq+m − (g−q−m − g−q+m))Dm(ωL) sin (qωmodt)

= ATOE + BTOE g0 + GCTOE
∞∑

m=−∞
g2

m Am (ωL) + 2BTOE
∞∑

q=1

gq cos (q ωmodt)

+ 2 GCTOE
∞∑

q=1

∞∑
m=−∞

gm (gq−m + gq+m)Am(ωL) cos (qωmodt)

+ 2 GCTOE
∞∑

q=1

∞∑
m=−∞

gm (gq−m − gq+m)Dm(ωL) sin (qωmodt) , (A6)

where we have used gi = g−i .

1. Lock-in signals

The transmitted laser power contains a time-independent
term

BDC(ωL) ≡ ATOE + BTOE g0 + GCTOE
∞∑

m=−∞
g2

m Am (ωL),

(A7)

in addition to the harmonic sum of all oscillating terms.
In the experiments, the time-dependent terms that oscillate

in phase and in quadrature at harmonics q of the fundamental

modulation frequency ωmod are extracted by phase-sensitive
(lock-in) detection. We recall that lock-in extraction of the
in-phase and quadrature amplitudes at the qth harmonic
(demodulation) consists in mixing (multiplying) the pho-
todiode signal P TOE(t) with cos(qωmodt) and sin(qωmodt),
respectively, followed by low-pass filtering of that product.
For calculational purposes, low-pass filtering is the equivalent
of taking the rms time average of the mixed signal, which
is equivalent to replacing cos(qωmodt) and sin(qωmodt) by
1/

√
2 in (A6) and setting to zero the time-independent terms.

Applying this procedure to the signal (A6) we obtain the
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rms amplitudes of the in-phase signals following demodulation
at qωmod

ITOE
q (ωL)√

2
= BTOE gq + GCTOE

×
∞∑

m=−∞
gm (gq−m + gq+m)Am(ωL) (A8)

and the corresponding quadrature amplitudes

QTOE
q (ωL)√

2
= GCTOE

∞∑
m=−∞

gm (gq−m − gq+m)Dm(ωL),

(A9)

respectively.
The structure of the resulting spectra is discussed in the

body of the paper.
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