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HIGHLIGHTS

e Random-like firing characterized the majority of PV1 cells.

e QOscillations in the delta range were observed in the posterior part of PV1 nucleus.
e The asynchronous activity produces a network-driven effect on the PV1-target area.

This study reports for the first time the extracellular activity recorded, in anesthetized rats, from cells
located in an identified cluster of parvalbumin (PV)-positive neurons of the lateral hypothalamus forming
the PV1-nucleus. Random-like firing characterized the majority (21/30) of the cells, termed regular cells,
with a median firing rate of 1.7 spikes/s, Fano factor equal to 1, and evenly distributed along the rostro-
caudal axis. Four cells exhibiting an oscillatory activity in the range 1.6-2.1 Hz were observed only in
the posterior part of the PV1-nucleus. The asynchronous activity of PV1 neurons is likely to produce a
“network-driven” effect on their main target within the periaqueductal gray matter. The hypothesis is
raised that background random-like firing of PV1-nucleus is associated with functional network activity
likely to contribute dynamic information related to condition transitions of awareness and non-conscious

perception.

1. Introduction

Several types of cells intermingled with the axons of the medial
forebrain bundle are located in the lateral hypothalamic area (LHA).
These cell groups have tendency to be widely dispersed, rather than
confined within anatomically distinct nuclei, despite the fact they
often form groups of functionally related neurons [1,2]. On the con-
trary to this tendency, in the lateral hypothalamus of rodents a well
identified cluster of parvalbumin (PV)-positive neurons has been
described [3]. In rodents the PV-positive neurons represent the vast
majority of the cells belonging to a clearly distinct cytoarchitecton-
ically and neurochemically defined lateral hypothalamic area, for
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they are considered to form an entity termed PV1-nucleus [4,5].
In primates this region is referred to as the lateral tuberal nucleus
(LTN) [7].

Three cell types were observed in the rodent PV1-nucleus:
small PV immunoreactive neurons preferentially located in the
anterior part of the nucleus, large PV immunoreactive neurons
preferentially located in the posterior part of the nucleus, and
PV-negative neurons [4]. According to topographical mapping of
the gene expression and double-labeling for glutamate and for
PV it is extremely likely that the PV-positive neurons of the PV1-
nucleus are glutamatergic projecting neurons [4,8]. Glutamate is
an excitatory amino acid assumed to represent the main neuro-
transmitter used for distribution and transmission of information
in the brain [9]. The recent study of the PV1-nucleus efferent
projections revealed that its major target is a narrow column of
terminal fields located ipsilaterally at the edge of the periaqueduc-
tal gray (PAG), ventrolateral to the aqueduct, not coinciding with
any known subdivision of the PAG [5]. It is interesting to notice that
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elsewhere in the brain PV-stained neurons correspond to GABAer-
gic cells [3] mediating an inhibitory effect through GABA(A)
receptors, thus exerting a regulatory function, either via a direct
inhibition or an indirect disinhibition [10]. Hence, GABAergic neu-
rons and PV are generally associated and their role in controlling
synaptic plasticity, modulating the firing pattern, and the spike-
timing-dependent plasticity has been clearly established [11-15].
The fact that the PV1-nucleus is likely to be composed by glu-
tamatergic cells expressing PV and that its main target is a well
delimited column of cells on the edge of the ipsilateral PAG raises
the question whether its function is to integrate, relay and transmit
an information or rather to regulate the activity of the target cells.
The aim of this study is to investigate PV1-nucleus firing pattern
and to suggest its functional role.

2. Materials and methods

All experimental procedures were conducted in accordance
with ethical principles and guidelines for experiments on animals
mandated by the Swiss Academy of Medical Sciences and Swiss
Academy of Sciences (3rd ed., 2005) under control of the Veteri-
nary Commission for Animal Research of the Canton of Fribourg,
Switzerland.

2.1. Subjects and surgical procedure

Adult Wistar rats were housed in pairs on a 12h/12h light/dark
cycle, and food and water available ad libitum. The rats, weigh-
ing 280-350g, were anesthetized with a mixture of ketamine
(75 mg/kg BW) and xylazine (10 mg/kg BW) diluted in saline. All
surgical wounds were infiltrated subcutaneous with Scandicaine
0.5% (AstraZeneca) for local anesthesia. The animals were mounted
in a stereotaxic frame, a hole was drilled in the skull and one
microelectrode was advanced vertically by 5 pum steps aimed to the
lateral hypothalamic PV1-nucleus [4]. The body temperature was
monitored and maintained in the range 38-39 °C. The pedal with-
drawal reflex was periodically checked and supplemental doses
of ketamine were provided during the whole recording session if
necessary.

2.2. Electrophysiological recordings

The recordings were performed in the left hemisphere with
glass-coated platinum-plated tungsten microelectrodes having an
impedance in the range 0.5-2 M2 measured at a frequency of
1 kHz. Signals from the microelectrodes were amplified, filtered
(400 Hz-20kHz) viewed on an oscilloscope, and digitally recorded
in WAV format (44,100 Hz sampling rate, 16 bit resolution) for
computerized offline analysis with template matching spike sor-
ting algorithm at a time resolution of 1 ms [16]. The first recording
session started approximately 90 min after the end of the surgical
preparation. The data were gathered during spontaneous activity,
i.e. in the absence of any operator-induced stimulation, for a con-
tinuous interval of 300-600 s. All recordings started at least 15 min
after any supplementary dose of anesthetic and terminated at least
20 min before a new injection, thus assuming the recording condi-
tions corresponded to a steady level of anesthesia.

2.3. Histological and immunohistological procedures

At the end of the recording sessions (lasting 4-6 h) electrolytic
lesions were placed at specific depths of the electrode track using 10
current pulses of 8 wA for 7s at regular intervals of 10 s. At the con-
clusion of the experiments, animals were deeply anesthetized and
transcardially perfused with isotonic saline immediately followed
by fixative solution (4% paraformaldehyde in phosphate buffer

Fig. 1. Histological analysis. (A) Microphotograph of a coronal section (at Interaural
level 6.1 stained with cresyl violet and PV-immunostaining showing a represen-
tative electrode penetration aiming the PV1-nucleus. The entire electrode track is
represented by a dotted line. (B) Enlargement of the previous panel emphasizing
the electrolytic lesion within the PV1-nucleus at the center of the circle. Scale bar is
1mm.

0.1 M, pH 7.3). Brains were removed and placed in 18% solution of
sucrose in phosphate buffered containing 0.1% sodium azide for one
day at 4°C. They were then frozen in pulverized dry ice. The speci-
mens were cryosectioned into 50 pm-thick sections and collected
in 0.1 M phosphate buffer (pH 7.3). Immunofluorescence- and
immunoperoxidase-staining techniques were conducted accord-
ing to published protocols [4]. The sections were stained with cresyl
violet for the reconstruction of the electrode tracks and localization
of the electrolytic lesions.

2.4. Statistical analysis

Spike trains were analyzed by renewal density histograms
scaled in rate units (spikes/s). For each histogram, the 99% con-
fidence limits were calculated, assuming that spike occurrences
followed a Poisson distribution. The Fano factor (equal to 1 for data
following a Poisson process) was used to characterize the variabil-
ity of the spike train [17]. Statistical analyses were performed with
the R Project for Statistical Computing (http://www.r-project.org/).

3. Results

Animals found to have tracks with placements outside of the
targeted area corresponding to the PV1-nucleus were excluded
from analysis. The final sample included a total of 15 electrode
penetrations performed in the left hemisphere of 8 rats. Taking
into consideration the tissue retraction during the histological
processing, the backlash of the electrode advancement and the
stereotaxic positioning of the electrodes, it is assumed that the
site of a single unit recording can be estimated with a margin of
50-80 wm of uncertainty along the vertical track. Fig. 1 illustrates
an example of a recording track with an electrolytic lesion within
the PV1-nucleus. A total of 30 single units were clearly localized
in the area of the PV1-nucleus. These cells were characterized by
stable firing activity, i.e. same firing rate during the first 100s and
the last 100s of the recording session. Additional 25 single units
were recorded along the same tracks, but their location was clearly
not in the PV1-nucleus after histological check.

Three types of firing patterns of PV1 cells were identified during
the spontaneous activity by the analysis of the autocorrelograms.
The first pattern is typical of those neurons with a constant prob-
ability to spike, corresponding to a flat autocorrelogram, thus
forming the “regular” (REG) type class of cells (Fig. 2A). This class
was the most frequently observed (70%, n=21) with a median firing
rate equal to 1.7 spikes/s. Cells showing a tendency to deviate from
a constant probability of firing were classified either in “bursting
cells” (BC, n=5), characterized by a hump in the autocorrelogram
near time zero (Fig. 2C), or in “oscillatory cells” (OSC, n=4), in the
range 1.6-2.1 Hz (Fig. 2D).
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Fig. 2. Firing patterns during spontaneous activity. (A, C, D) In the upper part of
each panel there is a raster display of the spike train and in the lower part there are
the oscilloscope trace of the extracellularly recorded single unit and the autocorrel-
ogram smoothed by a Gaussian bin of 25 ms showing the firing rate (spikes/s) as a
function of the lag (ms). (A) A regular cell (#PA1D02c1). (B) Distribution (in loga-
rithmic scale) of the regular cells’ firing rate with the kernel density plot (solid line)
and the Gaussian fit (dotted line). (C) A bursting cell (#PA1D01nc3). (D) An oscilla-
tory cell (#PA6D03c2). (E) Distribution of PV1 cells types (REG, black dots; BC, grey
dots; OSC, white dots) along the rostro-caudal axis, (Interaural coordinates 5.0-7.0).
Abbreviations: 3dv: third ventricule; DMH: dorsomedial hypothalamic nucleus; fx:
fornix; IHA1: part of the intermediate hypothalamic area; ISM: interstitial nucleus of
the stria terminalis; ot: optic tract; sm: medullary stria; TUL: lateral tuberal nucleus;
TUMM: tuberomammillary nucleus; VMH: ventromedial hypothalamic nucleus.
Modified from [4].

Table 1 shows the values of the firing rates and Fano factor
for all cell classes. The firing rates were not Gaussian distributed
(D’Agostino-Pearson normality test, omnibus kK%2=2.97, p<0.01),
but taking the logarithm of the firing rates of all cell groups
we observed a normal distribution (D’Agostino-Pearson normal-
ity test, omnibus kK% =1.61, p=0.45). It is interesting to notice the

Table 1
Firing rate (median, mean+S.E.M.) and Fano factor of PV1-nucleus spike trains.
Statistics are described in the text.

Cell type Total REG BC 0sC
N 30 21 5 4
(100%) (70%) (17%) (13%)
Firing rate 1.7 1.7 1.5 2.5
(spikes/s) (2.240.2) (2.0+£0.2) (2.24£0.9) (2.9+0.8)
Fano factor 1.0 1.0 1.6 1.1
(1.1£0.1) (1.0£0.1) (1.6£0.1) (1.1£0.1)

log-normal distribution of the firing rates of class REG neurons
(Fig. 2B). A Fano factor value near 1 suggests that the dynamics
of the processes producing the neuronal discharge is essentially
random. The REG and OSC Fano factor values were Gaussian dis-
tributed (D’Agostino-Pearson normality test, omnibus K2 =1.26,
p=0.53).

The firing rates of the three cell groups were compared with a
one-way ANOVA. Bartlett’s test did not show a violation of homo-
geneity of variances (K2(2)=1.12, p=0.57) and no significant effect
was found of the cell type on the logarithmic distribution of the fir-
ing rate ((2,27)=0.70, p=0.51). The comparison between the three
groups using nonparametric Kruskal-Wallis test revealed a signifi-
cant effect of the cell type on Fano factor (x%2=12.34, p<0.01). A
post-hoc test using Mann-Whitney tests with Holm-Bonferroni
correction showed no difference between REG and OSC cells and
significant differences between OSC and BC cells (p <0.05, r=0.66)
and between REG and BC cells (p<0.01, r=0.82). These results
should nevertheless be considered with caution because the sample
size of BC and OSC groups is extremely small. The PV1 nucleus was
subdived on the basis of the anatomical sampling. The four most
anterior tracks (in the Interaural range 6.3-6.8) and the four most
posterior tracks (in the Interaural range 5.4-6.2) were grouped in
two samples. Fig. 2E shows that regular cells were evenly sampled
throughout the nucleus, whereas the BC cells tended to appear
in the anterior part and OSC cells in the posterior part. The like-
lihood of obtaining the observed distributions of firing patterns
across the two parts of PV1-nucleus was estimated by comput-
ing the likelihood-ratio statistics (2 =7.39, p<0.05) that rejected
the hypothesis that no difference existed between the anterior and
posterior part.

Pairs of cells were recorded from the same electrode tip in 8
sites. In two of these sites three cells were recorded simultaneously.
Overall thirteen crosscorrelograms could be computed and all were
characterized by a flat curve, thus showing the independance of
firing and no interaction between pairs of simultaneously recorded
cells.

4. Discussion

The main finding of this study is that regular cells, with a median
firing rate of 1.7 spikes/s and Fano factor equal to 1, represent the
typical class (70% of the recordings) of PV1 cells evenly distributed
along the rostro-caudal axis. The regular cells firing pattern is char-
acterized by a random spike train so that successive spike intervals
are statistically independent and generate a flat autocorrelogram
[18]. Pairs of cells recorded simultaneously did not show any sign of
functional interaction and four cells exhibiting an oscillatory activ-
ity within a narrow range of the §-frequency band (0.5-4 Hz) were
observed only in the posterior part of the PV1-nucleus.

If a neuron fires randomly, it is likely to have little effect, if any,
on its target unless its activity is time-locked to a series of other
spikes converging to the same cell [19]. Asynchronous activity in
an unstructured, sparsely connected network with weak synaptic
couplings falls in a state such that an external input may favor infor-
mation transmission in the target structure [20,21] and trigger the
transition of an activity pattern in a neural network [22-24]. The
random firing properties of PV1 neurons suggest that glutamate
is released asynchronously at synaptic terminals and that “net-
work driven” PV1 excitatory activity might contribute to achieve
temporal frequency modulation of selected patterns of activity
[25-27]. Notice that all cells were recorded under general anes-
thesia induced by ketamine and xylazine and not by urethane, but
this does not discard that quite different activity could occur during
normal behavior.
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Spontaneous activity is determined by a combination of cir-
cuit and cellular electrophysiological properties. Sources of cellular
noise include the ion channels of excitable membranes, synap-
tic transmission and network interactions. Despite the dominance
of K* currents the contribution of Ca-activated K currents to the
resting potential of neurons is widely recognized, particularly
in PV-expressing neurons firing randomly and in burst [14,28].
Large-conductance calcium-activated potassium channels (BK),
small-conductance Ca2*-activated potassium channels (SK) and
Ca2*-activated nonselective cation channels regulate spontaneous
firing in a complementary manner [29,30]. Parvalbumin is a Ca2*
buffer protein characterized by a slow-onset Ca%* binding that
generally does not affect the initial amplitude of CaZ* transients,
but then accelerates the early phase of the intracellular Ca%* con-
centration, thus affecting short-term plasticity and controlling the
intracellular Ca2* available to SK channels [30]. Loss of PV leads to
enhanced susceptibility to epileptic seizure [12] and modifications
of the firing patterns at the thalamocortical level [ 13,15]. The ques-
tion is raised whether firing patterns other than the regular firing
correspond to distinct cell populations, maybe lying in the border
of the nucleus, or whether they are generated by cells that are in a
different functional state.

Three cell types, namely small and large PV-positive neurons
as well as PV-negative ones, were reported in PV1-nucleus [6,4].
Despite the small numbers of our samples the few cells (n =4) char-
acterized by activity in the §-frequency range were all recorded in
the posterior part of the nucleus. The experimental method used
here does not allow to identify which cell type is associated to
which firing pattern, but the largest observed amplitudes of the
extracellularly recorded spike waveforms were those of the oscil-
latory cells. The spike amplitude is roughly proportional to the sum
of the cross-sectional areas of the dendrites connected to the cell
body [31]. Thus, larger neurons are likely to generate extracellu-
lar spikes with larger amplitudes and the large PV immunoreactive
neurons were preferentially reported in the posterior part of the
nucleus [4].

The few oscillatory cells were observed with frequencies asso-
ciated with deep sleep. Interestingly, in the dendrites of other
PV-positive cells (located in the thalamic reticular nucleus) the
interplay of SK channels, transient voltage-gated calcium channels
(T channels), and sarcoendoplasmic reticulum calcium transport
ATPases comprises a specialized Ca2* signaling triad to regulate
oscillatory dynamics related to sleep [32]. The current continuous
recording time for one cell was at most 20 min, well below the ultra-
dian rhythm of 1 cycle per 100 min [33]. The possibility that the
oscillatory cells are not part of a separate population, but cells in
a particular state of sleep, cannot be discarded a priori, in spite of
the fact that no cell was observed switching between regular and
oscillatory firing modes.

In Huntington’s disease [34] and Pick’s disease [35] selec-
tive neuropathological changes were observed in the human
LTN. Despite different etiology both diseases exhibit progres-
sive impairement of speech production akin of speech apraxia
accompanied by a decrease in cognitive abilities leading to demen-
tia akin of frontotemporal dementia. No precise functions are
known to be associated with the area of the PAG reached by
PV1-nucleus efferent projections. However, it is worth repor-
ting that lesions of PAG affect states of consciousness [36] and
that PAG receives afferences from the prefrontal cortex [37] and
projects to intralaminar and midline thalamic nuclei [38]. More-
over, PV is highly expressed in the thalamic reticular nucleus
[13] which plays a key role in ‘gating’ consciousness [39]. These
observations taken together with the present findings may suggest
that the activity of PV1-nucleus regulates psychomotor functions
in the framework of an extended reticular thalamic activating
system.

5. Conclusions

It is possible to speculate that the asynchronous activity char-
acteristic of the PV1 neurons is generated intrinsically, subject to
modulation by synaptic inputs, intracellular Ca%* concentrations,
and that the “network-driven” effect on their target may pro-
duce various firing patterns with transitions induced through small
changes in PV1 neuronal activity. The hypothesis is raised that the
firing pattern of PV1-nucleus participates to functional network
activity controlling dynamic information related to condition tran-
sitions associated with awareness and non-conscious perception.
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