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We describe a combined experimental, theoretical, and simulation study of the structural correla-
tions between cross-linked highly monodisperse and swollen Poly(N-isopropylacrylamide) microgel
dispersions in the fluid phase in order to obtain the effective pair-interaction potential between the
microgels. The density-dependent experimental pair distribution functions g(r)’s are deduced from
real space studies using fluorescent confocal microscopy and compared with integral equation theory
and molecular dynamics computer simulations. We use a model of Hertzian spheres that is capable to
well reproduce the experimental pair distribution functions throughout the fluid phase, having fixed
the particle size and the repulsive strength. Theoretically, a monodisperse system is considered whose
properties are calculated within the Rogers-Young closure relation, while in the simulations the role
of polydispersity is taken into account. We also discuss the various effects arising from the finite reso-
lution of the microscope and from the noise coming from the fast Brownian motion of the particles at
low densities, and compare the information content from data taken in 2D and 3D through a compar-
ison with the corresponding simulations. Finally different potential shapes, recently adopted in stud-
ies of microgels, are also taken into account to assess which ones could also be used to describe the

structure of the microgel fluid.

I. INTRODUCTION

Colloidal suspensions have frequently been used as con-
venient model systems to address various phase transitions
in condensed matter physics.'™ While early works concen-
trated primarily on hard sphere-like and charged (Yukawa)
particles, soft colloids have recently moved into the focus of
the soft matter community. Soft colloids are a class of parti-
cles where the average interparticle distance can be smaller
than the particle diameter and correspondingly the effec-
tive interaction potential shows a finite repulsion at or be-
yond contact.’” In particular, cross-linked microgels such as
poly(N-isopropylacrylamide) (PNIPAM) that can undergo re-
versible volume phase transitions upon variations of external
stimuli such as temperature, pH, ionic strength or hydrostatic
pressure®? have been employed frequently as model systems
for soft colloids.!*!7

The physical nature of these particles lies between that
of classical hard sphere colloids and ultra-soft polymeric col-
loids such as star polymers.™'® Due to their soft-repulsive
character, microgels can compress or interpenetrate to a cer-
tain degree, which allows to create states with densities far
above close packing, so called squeezed states, with inter-
esting structural and dynamical properties.'®!>"!7 A num-
ber of previous studies on PNIPAM microgel dispersions
have focused on their microstructure, and their concentration
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and temperature dependent phase behavior.!*~!” However, de-
spite all the experimental and theoretical efforts devoted to
these systems, the exact nature of the interaction potential
between microgels and its dependence on the particle con-
centration as a vital ingredient for any attempt to theoreti-
cally model and understand these systems still needs to be
assessed.

Soft-repulsive colloids have been often modeled by dif-
ferent forms of an effective interaction pair potential such as
an inverse power law,’ a Gaussian core,'” a Hertzian,” or a
harmonic potential.>! All these different potentials theoret-
ically result in a rich and complex phase behavior, which,
however, has not been experimentally asserted yet. The inter-
action potential between microgels has also been addressed
in a number of experimental studies.'>~'7-?> However, a ma-
jor problem in an experimental study of the interaction poten-
tial between microgels arises from the intrinsic softness of the
particles in their fully swollen state as this could also lead to a
concentration dependence of the particle size and thus of the
volume fraction and potential.

Various experimental approaches such as small-angle
neutron scattering (SANS),?* confocal laser scanning mi-
croscopy (CLSM),'®!:2% or rheological investigations'®-?
have been used in the attempts to shed light on the effec-
tive interaction potential between microgels. Examples are
an evaluation of structural data using CLSM at low effec-
tive volume fractions ¢f,' 2+ or the analysis of the ¢ef-
dependence of the shear modulus (G,) in highly concentrated
microgel suspensions based on rheological studies'” and
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diffusing wave spectroscopy,'” respectively. However, until
recently we lacked a systematic study of the interactions be-
tween microgel particles over a large range of volume frac-
tions, i.e., in the entire fluid regime.

This has been addressed in the context of a recent study
of fluid-solid transitions in microgel suspensions, where we
have shown that uncharged and densely cross-linked microgel
particles in the swollen state interact via a Hertzian potential
in the entire fluid regime below freezing. This was achieved
through a quantitative comparison of the experimental pair
correlation functions g(r)’s obtained using CLSM with the
results from computer simulations.'” As a follow-up of this
study, we now provide a detailed account of the experimen-
tal determination of g(r) in the fluid regime, and describe the
parallel computer simulations and theoretical calculations re-
quired in an attempt to subject the different interaction po-
tential forms to a critical test. Moreover, we also discuss the
influence of various experimental artifacts such as the finite
resolution of the microscope and projection errors that affect
the experimental 2D and 3D g(r) through a comparison with
the corresponding simulations.

Il. MATERIALS AND METHODS
A. Synthesis and particle characterization

We use fluorescently labeled PNIPAM microgels and
CLSM to study the structural ordering at various packing
fractions in the fluid phase. Different values of ¢.i are
achieved by varying the weight concentration or number den-
sity at constant temperature 7. Frequently, the temperature-
responsiveness of the microgels is used to vary ¢ through a
variation of 7. We have however chosen to change the number
density rather than vary T in order to ensure that we avoid a
possible alteration of the interaction potential in the course of
a temperature-induced change in the degree of swelling.

PNIPAM microgel particles were synthesized by
free-radical precipitation polymerization of the N-
isopropylacrylamide (NIPAM) monomers in presence
of the N,N’-methylene-bis-acrylamide (BIS) cross-linker
(5 mol%) and fluorescently labeled with copolymerized
methacryloxyethyl thiocarbamoyl rhodamine B (MRB) as
described in more details previously.'”

The swelling behavior of the particles was studied by
means of dynamic light scattering using a goniometer based
instrument that implements a modulated 3D cross correla-
tion method (LS instruments, Switzerland) at a wavelength
of A = 632.8 nm. The experiments were carried out in non-
interacting highly dilute suspensions. The normalized inten-
sity cross correlation function g®(g, 1) was measured with
3D dynamic light scattering (3D DLS) in an angular range
30° < 0 < 50°C every 5° where 6 is the scattering angle.
Here, the magnitude of the corresponding scattering vectors
given by ¢ = *"sin (£) with ny the refractive index of wa-
ter, is sufficiently low to ensure that the measurements are not
affected by the particle form factor. The field autocorrelation
function, g'"(q, 1), was extracted using the Siegert relation.
Then, g'"(q, 1) was analyzed using a second order cumulant

analysis given by

2

ing"(q.1) = —T't + % (1)
where I is the average decay rate and w, is the second-order
cumulant coefficient that is related to the degree of polydis-
persity by 1o/T'2. From T = Dyg? we have then calculated the
translational free particle diffusion coefficient Dy. The hydro-
dynamic diameter o, was finally derived through the Stokes-
Einstein-Sutherland relation Dy = kgT/(3mwno ), where kg is
the Boltzmann constant, 7 is the absolute temperature, and n
is the solvent viscosity.

The measured swelling curve is shown in Fig. 1(a). With
increasing temperature, the particle size decreases and a vol-
ume phase transition (VPT) occurs around 33 °C. Below the
VPT the particles are highly water swollen, as water then
is a good solvent for PNIPAM. Above the VPT, water now
acts as a poor solvent, leading to a complete collapse of
the microgels at sufficiently high temperatures, i.e., at or
above 40°C (Fig. 1(a)). The swelling ratio at 15 °C defined
as (R,(15°C)/R;,(45°C))* is equal to 5.5.

Small angle x-ray scattering( SAXS) experiments were
performed at the cSAXS beamline of the Swiss Light Source
(SLS) at the Paul Scherrer Institute, Switzerland in order to
measure the form factor of the microgels in the swollen state
(at T = 15.6°C) at low concentration. The form-factor is
fitted with a core-shell structure described by the so-called
fuzzy sphere model.!! This fuzzy sphere model form factor
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FIG. 1. (a) Average hydrodynamic diameter o, as a function of temperature
measured by DLS for a dilute microgel suspension. The volume phase transi-
tion (VPT) occurs around the lower critical solution temperature of PNIPAM
at 33°C. (b) Form-factor of microgels measured by SAXS in the swollen
state at a temperature 7 = 15.6 °C (open black symbol). Red line is fitted
curve using fuzzy sphere model.
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is given by
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Equation (2) describes the scattering from a monodis-
perse sphere with a fuzzy outer shell whose density gradually
decreases as an error function. R is the half-width radius and
20 gy is the half-width of the fuzzy shell. In order to capture
polydispersity, the form factor is then integrated over the size
distribution approximated by a Gaussian distribution using
the appropriate intensity weighting. In addition, a Lorentzian
function describing the scattering from the fluctuation of the
network is added to the fuzzy sphere model function and is
given by

L(g) = LO)/[1 + (£¢)*], 3)

where L(0) is the intensity at ¢ = 0 and & accounts for the
correlation length of the fluctuations and is related to the mesh
size.

The fit to the corresponding form factor using a polydis-
persity of 4% is shown in Fig. 1(b). From the fit we obtain R
= 268 nm and 20 4,r = 84 nm and thus an overall radius of
Rsaxs = R + 20 gy = 352 nm with a mesh size of £ = 11 nm.

CLSM was employed to study the structural ordering at
various packing fractions in the fluid phase. Real space stud-
ies were carried out at 15°C with an inverted CLSM (Leica
DMI6000 and a SP5 tandem scanner in the resonant mode)
at 50 frames/s at 512 x 256 with an excitation wavelength
of 543 nm using a 63x immersion objective with a numeri-
cal aperture of 1.4. The CLSM is mounted in a thermostated
enclosure which allows us to maintain the temperature with
an accuracy of £ 0.2°C. Samples for the confocal studies are
prepared using rectangular capillary tubes with an inner di-
ameter of 0.1 x 2.0 mm (Vitrotubes Inc). All measurements
were done more than 10 um (~1507) away from the surface
of the cover slide to minimize wall effects. 3D pair correla-
tion functions g(r) were calculated using the coordinates (x;,
¥j» zj) of the tracked particles obtained from the 3D stacks
of 2d images averaged over different regions of the sample.
Effective volume fractions ¢, are determined by first mea-
suring the particle number density n, directly from extensive
3D scans with the CLSM in a concentrated mother suspen-
sion where the particles diffusion is arrested. ¢ is then cal-
culated using ¢y = (n/6)a3n,,, where o is the diameter of
the particle in the swollen state at 7 = 15 °C. We use an av-
erage diameter 0 = 0.714 um based on the DLS and SAXS
measurements.

The resolution of the CLSM for determining the center
of mass of the particles is crucial for the quantitative determi-
nation of g(r). We estimated this by measuring fluorescently
labeled highly monodisperse PMMA particles of similar size
that were fixed in optical glue to remove the additional un-
certainty caused by the rapid thermal motion of the particles
in the liquid phase. We find values for the error in the center
coordinates of Ax &~ Ay ~ 11 nm, and Az =~ 23 nm, i.e.,
an error of Ax/oc ~ Aylo ~ 0.015 and of Az/o ~ 0.03.

We subsequently take this into account in our comparisons
with theory/simulation. These values also need to be com-
pared to the optical resolution of the CLSM, which is about
220 nm in the x — y —plane and about 600 nm in the
z-direction.

B. Models, theory, and simulations

To theoretically describe the effective pair-interaction
potential between microgel particles, we first consider a
Hertzian potential which describes the interactions between
elastic spheres,”’

_ 5/2
T @)

0 r > o,

where €y is the repulsive strength of the potential and o is
the diameter of the particles. To optimize the potential pa-
rameters in comparison with the experimental results, we first
solve the Ornstein-Zernike equation to compute the radial dis-
tribution function within the Rogers-Young (RY) closure,*
which is known to provide good results for purely repulsive
potentials.?’~%° In addition, the RY approximation guarantees
thermodynamic consistency of the results. In our analysis,
the diameter value, and accordingly the packing fractions,
are taken directly from the experiments so that the only pa-
rameter left to vary is the repulsion strength €. The use of
integral equation theories allows us to produce a fast scan-
ning of the phase diagram for several values of ¢ and ep,
and therefore it provides an efficient method to rapidly ob-
tain the right potential parameters in comparison to experi-
ments. However, RY suffers, as all integral equations, of being
an approximate method, therefore we compare the theoreti-
cal results with numerical simulations, in order to verify their
validity.

We perform standard molecular dynamics (MD) simula-
tions (NVT equilibration, followed by NVE production runs)
of a system composed of N = 2000 particles in a cubic box
at varying packing fractions. We also consider polydisperse
spheres with average diameter o, where the individual sizes
are taken from a Gaussian distribution of standard deviation
s = 0.04. To compute the 3D radial distribution function,
we average over at least 100 independent configurations for
each state point. The simulations also allow us to compute
the 2D g(r) taken from slices of the simulation box with var-
ious thicknesses. To ensure that each slice contains enough
particles, we have carried out additional simulations of
N = 50000 particles for the desired state points in order to
have a good estimate for the 2D g(r). In this case, the box
is cut along one direction and the results are averaged over
different slices.

Finally, in order to mimic the uncertainty in the experi-
mental measurements, we have also considered the effect of
adding noise along one or more directions to the configura-
tions obtained by MD simulations.*” In accordance with the
poorer experimental resolution along the z-direction, we ran-
domly displace one of the coordinate (e.g., z) of all particles
in each configuration by a Gaussian noise taken from a dis-
tribution with standard deviation w centered around unity.
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Then, we recalculate g(r) for such modified configurations
for different values of w. The effect of the noise is that of
smearing out the peaks, in analogy with the effect of increas-
ing polydispersity. Good agreement with the experimental re-
sults is found for all packing fractions using a noise of width
w = 0.025 along one direction (e.g., z) only, which reason-
ably correlates with the reduced resolution of the CLSM along
the z-direction.

To complete the study we then extend the theoretical cal-
culations to other types of potentials recently applied to de-
scribe effective microgel interactions. The simplest models
that have been considered show a dependence on a single
length scale o, that is the (outer) diameter of the microgel
particles, similar to the Hertzian model discussed so far.%%-?!
More sophisticated models adopt two levels of description, re-
spectively, for the inner core and for the corona around it.'>??

With respect to the former class of potentials, some au-
thors have for instance considered a Harmonic potential with
a spring constant 2€ g,

€harm(1 — r/O_)Z’ r=o

Uharm(r) = { (5)
0 r> o,
while others have proposed to use inverse power law pair
potentials,®

Un(r) = €x(a/1)", (6)

where n is the power-law exponent describing the potential
softness and €, is the associated interaction strength. Senff
and Richtering, for example, found that an inverse power law
pair potential with n & 12 could satisfactorily describe their
rheological data.'” It is to be noted that for this class of mod-
els, the potential does not strictly go to zero at o, and the
concept of an effective diameter’® needs to be introduced®® to
scale appropriately the unit length.

More recently, a brush-like model for microgel particles
was introduced by Scheffold and co-workers, > where the soft
corona layer around the inner core was modeled using the
Alexander-De Gennes scaling, while the inner core was as-
sumed to be incompressible. The result is an effective har-
monic potential, whose spring constant explicitly shows a de-
pendence on microgel concentration. The compressibility of
the core was very recently included in the treatment by Romeo
and Pica Ciamarra®> who modified the inner potential using
a different harmonic strength. We have also solved the OZ
equation with RY closure for all these models in order to test
whether they can be used to describe the structure of our mi-
crogel particles in the fluid regime.

lll. RESULTS AND DISCUSSION

A. Comparison of the measured g(r) in 2 and 3
dimensions with theory/simulations

Modern confocal laser scanning microscopes with their
high scanning speed allow us to obtain reconstructed 3D im-
ages of a large number of colloidal particles in suspension,
and thus offer direct access to quantities such as the pair cor-
relation function g(r). In the fluid state, the microgel particles
are in a disordered state and constantly undergoing Brownian

motion. When using the CLSM to probe a large ensemble of
particles, the spatial resolution of the microscope which dif-
fers along the z-direction and the x-y image plane, its finite
scanning speed and the exact nature of the dye distribution in-
side the particles significantly influence the determination of
the particle coordinates. In turn this also significantly affects
the quality of the obtained information on their microstructure
such as the pair correlation function g(r) calculated from this
ensemble of particles. This results typically in a broadening
of the peaks in g(r), combined with a significant reduction
of the peak height and a shift of their positions. These arti-
facts have already been noticed in previous studies with hard
sphere-like’*? and microgel colloids.>* Unfortunately, the
extent of these various contributions in quantitative CLSM
data varies with the system considered, and depends for exam-
ple on ¢.¢ due to the concentration dependence of the particle
mean square displacement (Ar(f)?) in relation to the scanning
speed, but also on the degree of particle labeling, the particle
size and the mismatch of refractive index, to name some of the
more important factors only. Any attempt to use CLSM data
to determine g(r) and subsequently gain insight on the pair po-
tential between microgels at different packing fractions thus
requires a careful analysis of these effects.

One way to improve the data quality obtained with fluid
samples is to take into account the significant differences in
resolution between the z-axis and the x-y-image plane, to
avoid adding the z-noise and to calculate a 2D-g(r) from thin
optical slices instead. The differences between the thus ob-
tained 3D- versus 2D-g(r) data are illustrated in Fig. 2, where
the corresponding pair correlation functions are shown for a
sample with ¢, = 0.52. We clearly see the significant dif-
ferences between the two sets of data, with a much larger
peak height for the 2D-g(r), and a broader shoulder at small 7-
values for the 3D-g(r) that could be interpreted as the result of
a much softer potential when relying on experimental 3D-g(r)
only.

However, in a real experimental situation it is difficult to
achieve the very thin optical slices required for a true 2D-g(r)
due to the lower spatial resolution along the z-direction. As
a consequence we will always see particles which have their
center of mass away from the focal plane. That is, a CLSM
picture generated by a standard x-y scan will correspond to a
thick illuminated sheet rather than an ideal 2D slice as shown

0]

20

e
R
S
e

FIG. 2. A comparison of a 3D experimental g(r) (red open symbols) at ¢
= 0.52 with the 2D-g(r) (black solid symbols) for the same sample.
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FIG. 3. (a) Schematic representation of the resolution problem encountered in CLSM studies of the microstructure present in a microgel dispersion. Cross-
section of a x-y scan at constant z in the CLSM. The center of the bright particle (red line) is in the focal plane located in the center of the confocal volume,
whereas the centers of all other less bright particles (yellow line) are located above and below the focal plane, thus creating a projection error in 2D and
introducing a larger error in the in-plane g(r). (b) The apparent 2D-g(r) (black solid symbols) calculated using all particles seen in the x-y-scan is compared
with that of a full 3D-g(r) (open red symbols) at ¢ = 0.52. Inset: Snapshot where the particles are labeled according to A based on their intensity (out of
plane: yellow line; in-plane: red line). (c) Apparent 2D-g(r) (black solid symbols) where we have excluded the part of the out of focus particles that have
the lowest intensity and are thus far away from the focal plane. The inset shows an example of a snapshot where the used particles are labeled either by a
yellow (out of plane) or red (in plane) line. Also shown is the initial 3D-g(r) (open red symbols). (D) “Correct” asymptotic 2D-g(r) where only particles in
the center plane are used. The inset shows an example of a snapshot where the used particles are labeled by the red line. Also shown is the initial 3D-g(r)

(open red symbols).

in Fig. 3(a). This schematic figure demonstrates that the cen-
ter of the bright particle with the red line is directly in the fo-
cal plane, while the center of the less bright particles marked
with a yellow line are significantly away from the focal plane.
This thus leads to a projection error in the in-plane 2D-g(r) at
distances comparable to the thickness of the slice. As a result,
the thus obtained 2D-g(7) from untreated individual 2D im-
ages will not be identical with an “ideal” 3D-g(r), as pointed
out by previous studies.” This problem has been overcome
by discriminating particles which are far from the focal plane
based on their intensity. Such a post-treatment of CLSM im-
ages allows us to create a correct 2D image of particles that
have their center in a chosen plane and to calculate a correct
2D-g(r) that now is equivalent to an ideal 3D-g(r) in the ab-
sence of all resolution effects and projection errors. We have
adopted this method and obtain 2D-g(r) from thin slices as
illustrated in Figs. 3(b)-3(d) for ¢y = 0.52. Here we system-
atically remove all particles from the 2D images that are not
in the plane centered at the middle of the CLSM focus, and
accordingly reduce the noise normally introduced by the con-
tributions from out of focus particles, with a significant effect
on the resulting 2D-g(7).

Fig. 3(b) demonstrates the dramatic effect from the pro-
jection error on the resulting apparent 2D-g(r) when we use
all particles seen in a x-y scan. As a result, the thus obtained
2D-g(r) is significantly broadened at low r-values, and has
a reduced peak height. Moreover, the first peak of the 2D-
g(r) is shifted when compared to the 3D-g(r). Figs. 3(c) and
3(d) show the evolution of the 2D-g(r) when we start to re-
move out of focus particles. We finally obtain a fully corrected
asymptotic 2D-g(r) for a given sample after collecting 4000—

5000 frames from x—y scans in different positions in the bulk
suspension, and analyzing these images using standard meth-
ods to obtain ensemble-averaged pair correlation functions.*
The corresponding 2D- and 3D-g(r) differ as expected in peak
width and height, but the peak positions are almost overlap-
ping. These pair correlation functions now provide the basis
for a comparison with computer simulations in order to as-
sess the effective interaction potential between the microgels
at different effective volume fractions.

However, it is clear that such procedures are not
always unambiguous, and we thus perform additional system-
atic computer simulations of the corresponding experimental
conditions in order to demonstrate the consistency of the ex-
perimentally obtained 2D- and 3D-g(r)s. Here we simulate
the effect of the projection error on the calculation of the 2D-
g(r)’s analogous to the situation sketched in Fig. 3(a), and the
effect of the lower z-resolution and thus the added noise on
the experimental z-coordinates in the calculation of the 3D-
g(r) from the experimental data for ¢,z = 0.52. The results
from these simulations are summarized in Figs. 4(a) and 4(b),
respectively. In the simulations, we use particles with a diam-
eter 0 = 0.714 um and a polydispersity of 4%, interacting
via a soft Hertzian potential given by Eq. (4) with a potential
strength € = 496kpT.""

In Fig. 4(a), we see that with increasing slice thickness,
the corresponding 2D-g(r) systematically deviates from the
true 3D-g(r) with respect to peak position and peak height.
The 2D-g(r) also shows a broadening at low r with in-
creasing slice thickness. The simulations thus reproduce the
experimental observations described in Fig. 3. It is how-
ever important to point out that a slice thickness of half the
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FIG. 4. (a) Simulated 2D-g(r)’s for different slice thicknesses (in units of
the particle diameter o) in comparison to the simulated 3D (black solid line)
g(r) at ¢of = 0.52. Red dashed, blue dotted, and green dashed dotted lines
correspond to slice thickness 0.50, 1.00, and 2.00, respectively. (b) Simu-
lated 3D-g(r) obtained with different z-noise values at the same ¢, = 0.52.
Black solid, Red dashed, blue dotted, and green dashed dotted lines corre-
spond to z-noise 0%, 1.0%, 2.0%, and 5.0%, respectively. See text for more
details.

diameter o, i.e., a condition that can easily be matched by our
ability to use the intensity as a measure of the particle posi-
tion within the confocal volume, is virtually identical with the
correct 3D-g(r). This confirms that our experimentally deter-
mined 2D-g(r) correctly reproduces the 3D structure of the
suspensions. The simulations with increasing added z-noise
shown in Fig. 4(b) demonstrate that the peak height in g(r)
decreases and the broadening at lower r increases with in-
creasing z-noise, while the peak position remains unchanged.
We now test the consistency of the experimentally de-
termined 2D- and 3D-g(r) pair correlation functions. This is
demonstrated in Fig. 5, where we compare both experimental
data sets with the corresponding 3D-g(r) obtained from simu-
lations and the Rogers-Young (RY) calculation. Fig. 5 shows
that both data sets agree very well with the predictions for a
Hertzian potential with € = 496k T when taking into account
an additional z-noise of 2.5% in the simulation of the 3D-g(r)
(Fig. 5(a)), confirming the consistency of our approach to ex-
perimentally determine the correct liquid structure.

B. Density dependence of g(r) in the fluid phase

The findings summarized in Fig. 5 allow us to draw a
few important first conclusions. The pair correlation functions
g(r) derived from theory and simulations using a model of
particles interacting via a Hertzian interaction potential with

80 05 10 15 20 25
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FIG. 5. (a) Experimental 3D-g(r)’s (open red symbols) compared with the
3D-g(r) obtained from a simulation with added z-noise of 2.5% at ¢y =
0.52 (b) Experimental 2D-g(r) (solid black symbols) from a thin 2D slice
compared with the corresponding 3D-g(r) from theory (dotted red line) and
simulation(solid black line) with no further added z-noise at ¢ = 0.52. Sim-
ulations are done with 4% of polydispersity. See text for details.

€ =496kgT are in very good agreement with the experimental
g(r) in 3- and 2-dimensions at ¢,y = 0.52, provided that the
lower resolution of the CLSM in the z-direction is taken into
account for the analysis of the 3D data. The 2D-g(r) from a
properly constructed thin slice by discriminating the out of
focus particles is virtually noise-free, and is also suffering
less from the additional noise caused by the Brownian mo-
tion of the particles. In the following, we thus concentrate on
calculating 2D-g(r), where we first construct thin slices from
x—y-scans, and study structural ordering as a function of @
throughout the fluid regime.

Fig. 6 shows the experimentally measured 2D-g(r) at dif-
ferent ¢ At the lowest ¢er = 0.154, where particle posi-
tions can still be measured with sufficient accuracy, g(r) has a
weak first peak and quickly approaches its asymptotic value
of one at higher r and thus exhibits the typical features of
a weakly correlated liquid state. With increasing e, g(r)
shows a systematic increase in the height of the first peak, and
higher order peaks also develop due to the increasing spatial
correlations among the particles as the density increases. The
experimental results at different ¢ are then compared with
the theoretical predictions for Hertzian spheres obtained from
RY and simulations, shown respectively in Figs. 6(a) and 6(b).
In both cases we keep the strength of the repulsion and diame-
ter fixed and only vary ¢.¢. The good agreement between ex-
perimental and theoretical data for all densities investigated,
strongly supports a model where the microgel size and thus
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FIG. 6. Experimentally measured 2D pair-correlation functions 2D-g(r)
(open circles) at different ¢ at a temperature 7' = 15°C. Lines represent
g(r) obtained from (a) theory (RY) and (b) from simulation for the same ¢est
as in the experiments and for a fixed diameter o = 0.714 pm and a strength
of the Hertzian repulsion of € = 496kgT. Simulations are done with 4 % of
polydispersity.

also the interaction potential remains independent of concen-
tration throughout the fluid domain, i.e., almost up to close
packing. The simulations with added polydispersity are in
slightly better agreement with experiments than the monodis-
perse RY, but the differences are minor except at the high-
est volume fraction, which is not surprising given the highly
monodisperse nature of the particles and the very soft poten-
tial. For the lowest concentrations investigated ¢eg = 0.154
and 0.26, the first peak of g(r) appears to be slightly broad-
ened and the correlation function increases less steeply than
predicted at small distances r < o. We believe that this is
mostly due to the enhanced diffusivity of the particles at low
values of ¢.s during the duration of a scan and a reduced sta-
tistical accuracy given the significantly reduced total number
of particles sampled. We estimate this additional error caused
by the Brownian motion of the particles to add an uncertainty
of approximately 1% for the x-y positions in case of unre-
stricted free particle diffusion at lower ¢, and less in case of
nearly arrested particle motion at higher ¢ close to the glass
transition. In addition, at lower ¢ particle tracking errors
can also contribute to some extent.

Finally, we make some general remarks on the quality
of the agreement of typical experimental g(r)’s obtained for
colloidal suspensions deduced from real space studies using
fluorescent confocal microscope with those obtained from
theory/simulations. Minor but noticeable discrepancies be-
tween model (simulation) and experimental results have also
been observed in previous studies on well-defined classical
hard sphere systems®"** or hard sphere colloids with de-
pletion interactions.’® We feel that the most important point

for claiming quantitative agreement is the ability to not only
reproduce an individual g(r), but recover the volume frac-
tion dependence of the main features of g(r). In our case,
we clearly demonstrate that once we fix the strength of the
Hertzian interaction parameter € for one concentration, we
can reproduce the experimental data within experimental ac-
curacy over a fairly extended range of densities without any
additional adjustable parameters.

C. Testing different potential models

We now solve the OZ equation for harmonic and inverse
power law potentials with n = 6, 12 for the fluid packing
fractions whose g(r) have been measured via CLSM, namely,
¢ = 0.154, 0.26, 0.44, 0.52, respectively. The repulsive
strength of each model has been chosen to match the peak
height of g(r) for the Hertzian at ¢ = 0.154. We then compare
the resulting g(r)’s with the results obtained with the Hertzian
potential which match the experimental data within experi-
mental errors. Although the OZ-RY results are approximate,
we build on the fact that RY works quite well for the Hertzian
potential in the considered range of densities, therefore we ex-
pect that it will work reasonably well also for other potentials
in the studied fluid regime. From this analysis, we thus can
assess whether the correct density dependence of g(r) is also
captured by the different potentials.

In Fig. 7(a), the various potentials are shown. The result-
ing g(r)’s are reported in Fig. 7(b). Here, in the left panel,
Hertzian and harmonic results are compared. It is easy to
notice that the results are virtually indistinguishable in the
range of densities investigated. A real distinction between
them could become more evident at larger packing fractions,
i.e., beyond the fluid regime, and will be addressed in future
work. For the present study, we thus conclude that we could
equally adopt either of the two models in order to describe
the structure of our microgel suspensions in the entire fluid
regime. However, our preference goes to the Hertzian model
because it correctly describes the interactions between elastic
spheres in a regime of not-too-large compression, hence the
regime under investigation in this study.

Contrarily to the Hertzian and harmonic models, the fam-
ily of inverse power law potentials for the softness parameters
commonly used in the literature fails to capture the behavior
of the experimental g(r) in the investigated fluid region. In-
deed, as shown in the right panel of Fig. 7, we find that both
studied cases (n = 6, 12), once we have fixed the repulsion
strength €, display a much stronger variation of the peak po-
sition (even when taking into account a rescaled core distance
due to the softness): while the Hertzian and harmonic poten-
tials result in a variation that is of the order of 1%—2% in the
investigated range of densities, for n = 6 the peak position
decreases by around 25% between the two extreme packing
fractions and for n = 12 the variation reaches 15%. In ad-
dition, the peak heights are respectively lower (higher) than
the Hertzian/experimental ones with increasing density for n
= 6 (n = 12). Therefore, in order to match the experimental
results one would need to adjust either the repulsive strength
or the effective diameter in Eq. (6) at each density (with a
considerable variation throughout the studied state points).
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FIG. 7. (a) Different potentials used. Their strengths have been chosen to match the peak height of g(r) for the Hertzian at ¢ = 0.154. Hence: €pnarmonic
= 169kpT, €6 = 3.25kpT and €12 = 1.95kpT. (b) Radial distribution functions for the investigated packing fractions ¢ = 0.154, 0.26, 0.44, 0.52 for the
potentials described above. On the left panel harmonic and Hertzian predictions are superimposed and virtually indistinguishable; on the right the inverse power

law results for n = 6 (top) and n = 12 (bottom) are reported.

This is at odds with independent neutron scattering
experiments®> that unambiguously demonstrate that the size
and shape of the particles remain constant throughout the fluid
regime. Therefore, we conclude that inverse power law poten-
tials have to be discarded in terms of a description of the struc-
ture of our microgel particle suspensions in the fluid regime.
We now examine the brush-like model proposed in
Ref. 15. We start by considering the harmonic model for
the corona layer with varying spring constant as described
by the Alexander-De Gennes model throughout the whole
range, hence in conditions of a fully compressible core. Then,
we compare this to the case where the harmonic corona is
complemented by an incompressible core modeled by a r~3°
strong repulsion. Both studies use the experimental parame-
ters for the inner core (0.760) and the corona layer (width
0.240). We use the same repulsion strength at the lowest den-
sity of ¢ = 0.154 as for the purely harmonic potential stud-

15+

a(r)
T

—an 0=0.154 ||
— =026 | (0.5 — ©=0.52 (brush; no core)
s 0=044 |4 | + $=0.52 (brush; with core)
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FIG. 8. (Left) RY predictions for the g(r) at ¢ = 0.154, 0.26, 0.44, 0.52
for the brush model introduced in Ref. 15 without an incompressible core;
(Right) g(r) for ¢ = 0.52 for the brush with a fully compressible core
and one with an incompressible core, compared with the corresponding
Hertzian results. In the inset, we compare the brush potentials with com-
pressible/incompressible core for ¢ = 0.52 with the Hertzian model.

ied above. With increasing density, the strength of repulsion
decreases from 169kgT to 41kgT at ¢ = 0.52, and the result-
ing g(r)'s do not reproduce the experimentally observed den-
sity dependence as can be seen in Fig. 8. When we add an
incompressible core, we notice that for the parameters un-
der consideration, this has little effect on the g(r) because
at the inner core, the repulsive barrier is already quite high
~5 — 10kgT for the studied range of strengths. The only
noticeable effect is the sharp decrease of g(r) at the inner
core. We expect that the role of the core might become more
and more dominant either for higher densities or for smaller
strengths, where particles would be more easily allowed to
overlap.

IV. CONCLUSIONS

We have shown that the microstructure in suspensions
of swollen microgel particles as expressed through the pair
correlation function g(r) is in very good agreement with a
model of particles interacting through a soft Hertzian poten-
tial with fixed repulsion strength. No evidence was found for
a concentration dependence of the particle diameter and the
strength of the interaction throughout the fluid regime, i.e., for
Gett < Pfreezing. While confocal laser scanning microscopy is
an ideal tool to directly determine particle coordinates and
thus g(7), care has to be taken to avoid systematic errors in g(r)
due to the reduced resolution of the CLSM in the z-direction.
Here simulations compared with a quantitative analysis of
the deviations of the z-coordinate of the particles imaged in
fast x—y-scans based on their fluorescent intensity allow us
to either include the resolution in the analysis of experimen-
tal 3D-g(7)’s, or experimentally determine virtually noise-free
2D-g(r)’s. Our study thus for the first time provides a set of
structural data over an extended range of concentrations that
together with simulations allows us to develop a consistent
description of the microstructure based on a Hertzian-type
interaction potential and using a particle size that has been
independently determined from DLS and SAXS. It will of
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course be interesting now to extend these investigations to
higher densities above close packing, where previous stud-
ies have described intriguing dynamic behavior, and where
we expect that the particle size and interaction potential may
eventually respond to the ultra-high density.
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