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Abstract — Ranking the spreading influence of nodes in networks is a very important issue
with wide applications in many different fields. Various topology-based centrality measures have
been proposed to identify influential spreaders. However, the spreading influence of a node is
usually not only determined by its own centrality but also largely influenced by the centrality of
neighbors. To incorporate the centrality information of neighbors in ranking spreaders, we design
an iterative resource allocation (IRA) process in which the resource of nodes distributes to their
neighbors according to neighbors’ centrality. After iterations, the resource amount on each node
will be stable and the final resources of nodes are used to rank their spreading influence. The
iterative process can be applied to many traditional centrality measures including degree, K-shell,
closeness, and betweenness. The validation of our method is based on the susceptible-infected-
recovered (SIR) spreading in four representative real datasets. The results show that the ranking

accuracy of the traditional centrality measures is remarkably enhanced by IRA.

Introduction. — Spreading is one of the most success-
ful application areas of the new science of networks [1-3].
It has application in many fields such as the virus spread-
ing [4], reaction diffusion processes [5], pandemics [6], cas-
cading failures [7] and so on. Many previous works were
devoted to study it in the context of the nonequilibrium
phase transitions [8,9]. In the past a few years, more and
more attention has been paid to studying the spreading
process in a microscopic way [10-12]. Among these top-
ics, the identification of the most influential spreaders is
an important one but still remains a challenge [11,12] (for
a short review, see [13]). With an effective algorithm to
identify influential spreaders, we can, for instance, hinder
spreading in the case of diseases or accelerate spreading in
the case of information dissemination.

So far, various centrality measures have been applied
to rank spreaders in complex networks. Related classical
centrality measures include the degree as the number
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of neighbors a node connects with, the closeness cen-
trality [14] as the reciprocal of the sum of the geodesic
distances to all other nodes, betweenness centrality [15]
as the number of shortest paths through a certain node,
eigenvector centrality [16] as the component of the
eigenvector to the largest eigenvalue of the adjacency
matrix, K-shell centrality [11] as the node location in
a network. Lately, a lot of works have tried to design
effective algorithms that outperform the classical cen-
trality methods. For example, some algorithms focus on
directly modifying the basic centrality measures includ-
ing degree [17-19], closeness and betweenness [20-23].
Some works focus on improving the K-shell method by
removing the degeneracy of the method [24-26]. Some
others try to cut down the computational complexity
of the eigenvector [27]. Moreover, the concept of path
diversity is used to improve the ranking of spreaders [28].
Some methods are also designed in directed networks to
identify the influential spreaders such as LeaderRank,
which is shown to outperform the well-known PageRank
method in both effectiveness and robustness [29].
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The above classical or extended centralities could man-
ifest different spreader topology in a network, which lead
to different effectiveness and applicability for ranking the
influence of the spreaders [30]. However, the spreading in-
fluence of a node is usually not only determined by its own
centrality but also largely influenced by the centrality of
its neighbors [31]. Therefore, it is necessary to develop an
effective spreader ranking method which incorporates the
centrality information of its own and neighbors. To this
end, we design an iterative resource allocation (IRA) pro-
cess for ranking spreaders in networks. Specifically, each
node will start with one unit resource and diffuse the re-
source to all its neighbors according to the neighbors’ cen-
trality. After the resource on each node reaches the steady
state, the amount of resource of nodes is used to rank
their spreading influence. To evaluate the effectiveness of
the proposed measure, we apply the susceptible-infected-
recovered (SIR) model to estimate the true spreading
influence of nodes in four representative real networks.
Kendall’s tau coefficient is used to evaluate the correla-
tion between the rank from different algorithms and the
rank from the true spreading influence. The results show
that the IRA method can significantly improve the rank-
ing accuracy of the existing centrality measures.

Models. — We first describe four well-known centrality
measures considered in this letter. The degree centrality
is the simplest one, which is defined as the number of
connections of a node. It is reasonable to assume the nodes
with many connections to have stronger influence than
those with few connections. In most cases, the degree is a
powerful index for ranking the nodes’ influence for its low
computational cost. It works very well especially when
the infection rate is small.

The closeness centrality [14] of node i is defined as the
reciprocal of the sum of the geodesic distances to all other
nodes. Nodes with high closeness have short distances to
others, and thus generally more influential in spreading.
In the case of information diffusion, people usually con-
sider individuals with high closeness value as being well
positioned to obtain novel information early. Likewise,
nodes with high closeness value in an epidemic network
are positioned to infect others easily.

The betweenness centrality [15] of a node is defined as
the fraction of the shortest paths in the network pass-
ing through it. Nodes with high betweenness is usually
considered to have considerable influence. The closeness
centrality and the betweenness centrality could effectively
quantify the influence of nodes, but they are with high
computational complexity due to calculating the shortest
paths between all pairs of nodes in a network.

Kitsak et al. [11] presented a coarse-grained method
by using K-shell decomposition to identify the influential
nodes. The K-shell decomposition method [32,33] could
be implemented to identify the network shell in the fol-
lowing way. Firstly, it removes all nodes with degree one,
and then keeps pruning the existed nodes until all nodes’

degrees are larger than 1. The removed nodes would form
a node set whose K-shell value is equal to one (ks = 1).
In a similar way, it iteratively removes the next K-shell
(ks = 2), and continues removing higher-k shells until all
nodes are removed. At the end of the decomposition, each
node is associated with its own K-shell index, which in-
dicates the topological location of a node. It should be
noticed that the K-shell method assigns many nodes with
the same K-shell value even though they perform differ-
ently in the spreading process.

We now introduce the iterative resource allocation
(IRA) process. The basic idea is that each node has a unit
resource as the initial configuration, and then diffuses the
resource to its neighbors according to neighbors’ central-
ity. After some iterations, the resource of each node will
approach a steady state and the final amount of resource
in each node will be used to rank the spreading influence
of nodes. The TRA process can be detailedly described as
follows.

An undirect network G = (V, E) with n = |V| nodes
and e = | E| links could be represented by an adjacent ma-
trix Q = {d;;} € R™", where d;; = 1(i # j) if node ¢ and
node j are connected, and d;; = 0 otherwise. At each time
step, resources in each node are allotted to its neighbors,
and the allocation rule is determined by its neighbors’ cen-
trality. Denoting J(7) as the set of node i’s neighbors, the
total resource node i received will be

Lt+1) = > Ri(t+1)=
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o
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where R;_,;(t+ 1) is the amount of resource allotted from
Jj to i at step t + 1. I;(t) stands for the resources held by
node j at step t. 0; is a certain centrality of the node 1.
The tunable parameter « is used to nonlinearly adjust the
weight of the centrality. Equation (1) can be expressed in
terms of a matrix as follows:

ail N A1n Il (t)
It+1)=AIt)=| = . ] (2
I,(t)
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where the elements of matrix A are given by

28
aij = ﬁéw (3)
u€J(j)
Since a;; > 0 and ZZ a;; = 1, the spectral radius

(p(A4)) of matrix A (i.e., the largest absolute value of
an eigenvalue) is no greater than 1 according to the Ger-
shgorin disk theorem [34]. Furthermore, we can see that
if a;; > 0, then a;; > 0. According to the Perron-
Frobenius theorem [34], A’ converges to a constant ma-
trix for infinite ¢t = t., and the lower bound of t. is
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Fig. 1: (Color online) Example of networks with N = 5. The
node label is 0, 1, 2, 3, 4, respectively. (a) ks(q,1,2) = 2,

k5(374) =1. (b) k’S‘((LLQ7 3) = 2, k5(4) =1. (C) k}S(O’ 1,2,3,4) — 2.
(d) ks(,1,2,3,4) = 3.
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Fig. 2: (Color online) Illustration of the AI(t) value which
evolves with iteration times (¢) on the small network in fig. 1(a).
Inset: illustration of each node resource I(t) value which
evolves with iteration times (t) on the small network.

determined (t. < 2N — 1). That is to say, we set
small enough € (¢ > 0) as initial condition (we assume
I1(0) = (1,1,--- ,1)T), then I(t) will converge in the limit
of infinite t. as | I(t.) — I(t. — 1) |< &. Consequently, it
is clear that I(t.) is the dynamic equilibrium state of the
resource allocation in our model. In practice, we can carry
out the network allocation as follows:

i) Initialize resource of the network:
(1,1,---, )T

ii) Update the resource of each node in step ¢ based on
I(t) = AI(t — 1) or I(t) = A'I(0).

iii) If AI(t) =| I(t) — I(t — 1) |< & (¢ = 107° in this
letter), terminate the iteration; otherwise, continue the
iteration process according to ii).

As an example, a toy network with 5 nodes and 5 links
is shown in fig. 1(a). The initial resource of each node
equals 1 (I(0) = [1,1,1,1,1]7). We take the K-shell as
the node centrality (0 = ks as an example) and set o = 1.
The resource allocation matrix is as follows:

0 1/2 1/2 1 1

10) =

1/3 0 1/2 0 0

A=|1/3 1/2 0 0 0 (4)
16 0 0 00
16 0 0 00

To make the final resource allocation value convergent,
we set large enough iteration steps t. = 50 and I(50) =
AP°1(0) = [15/8, 5/4, 5/4, 5/16, 5/16]7. As shown in
fig. 2, the AI(t) value rapidly decreases as the iteration
steps increase.

Table 1: The resource of each node in small networks shown
in fig. 1, where 6 is the K-shell value, & = 1, and the iteration
times t. = 50.

Network 0 1 2 3 4
(a) 1.88 1.25 1.25 0.31 0.31
(b) 1.59 091 1.36 091 0.23
(c) 1.43 0.71 1.07 1.07 0.71
(d) 1.25 094 094 094 094

To better understand the IRA method, we add some
links to the toy network in fig. 1(a). We can observe
that the degree, closeness and K-shell centralities of the
node 0 are the same in fig. 1(a)-(d) (note that ks of
node 0 changes in (d)). However, the centralities of the
neighboring nodes are changing as new links are added to
the network. We set § = ks in the IRA method as an
example, the final resource of each node is presented in
table 1. One can clearly see that the resource of node 0
gradually decreases as new links are added to the network.
This confirms that the IRA method can incorporate neigh-
bors’ centrality information when estimating the influence
of the target node.

Data and metric. — In this letter, we test IRA method
in four representative real networks: 1) Internet network
at the autonomous system (AS) level. This network is
collected by the archipelago active measurement infras-
tructure developed by the Cooperative Association for
Internet Data Analysis [35]. Nodes represent autonomous
systems (aggregations of Internet routers under the same
administrative policy), and links represent the existence of
border gateway protocol (BGP) peer connections between
the corresponding autonomous systems. 2) Pretty-good-
privacy (PGP) network. This network is defined by
the users of the PGP encryption algorithm for secure
information exchange. Nodes represent users of the PGP
algorithm [36]. A connection between two nodes indicates
that each user has signed the encryption key of the other.
3) Enron email communication (Enron) network. The net-
work covers all the email communication within a dataset
of around half-million emails [37]. Nodes of the network
are email addresses. If an address i sends at least one email
to address j, the network contains an undirected link be-
tween ¢ and j. 4) Condense matter physics collaboration
(Cond-mat) network. The network covers scientific collab-
orations between authors [38]. If an author ¢ co-authors a
paper with author j, the network contains an undirected
link between ¢ and j. The relevant topological features of
the different networks are summarized in table 2.

Each method discussed above will generate a ranking
list for nodes. In principle, the ranking from an effective
ranking method should be as close as possible to the rank-
ing based on the real spreading process. In this letter, we
employ the SIR model [4] to simulate the spreading process
on networks. In the SIR model, we set all nodes as ini-
tially susceptible except for one infectious node. At each
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Table 2: Topological features of the real network datasets con-
sidered: network node size (N), network link size (E), aver-
age degree ((k)), assortativity coefficient (r) [39], the epidemic
threshold (\.) [40].

Data sets N E (k) r Ae
AS 23752 58416 492 —-0.19 0.0034
PGP 10680 24316 4.55 0.25 0.0530
Enron 36692 183831 10.00 —0.11 0.0071
Cond-mat 23133 93439 8.08 0.15 0.0453

step, the infected nodes will spread the virus to suscep-
tible neighbors with a certain infectious rate (), and an
infected node will recover after two spreading steps. The
spreading influence of node 7 is denoted as S!, which is
quantified in terms of the total prevalence of the epidemic
process, i.e. the fraction of nodes being infected when
the infection starts at node 7. Based on this, we could
obtain the true spreading influence of nodes and a corre-
sponding ranking can be generated. We employ Kendall’s
tau coefficient [41] to measure the correlation between the
topology-based ranking and the spreading-based ranking.
Kendall’s tau coefficient counts the difference between the
number of concordant pairs and the number of discordant
pairs of two rankings, according to

> sgnf(zi — x5)(yi — y5)]

i#£]
T N(N —1) ’ 5)

where sgn(z) is the sign function, which returns 1 if z > 0;
—1lifz <0; and 0 if = 0. Here (z; —x;)(y; —y;) >0
means concordant, and a negative value means discordant.
A higher Kendall’s tau value indicates a more accurate
ranking of the nodes’ spreading ability.

Numerical results. —

Effectiveness of the IRA method. The TRA method
requires the node centrality as the input. Here, we assign
the node centrality 0 as the degree (k), K-shell (ks), close-
ness (C), and betweenness (B), respectively. The final
resources are received by the nodes based on these central-
ities which are respectively denoted as I*¥, I**, I¢ and IZ.
We start our analysis by considering the basic IRA method
(i.e. a =1). In fig. 3, we report the improved ratio in
7 when applying the IRA method to different centrality

FIRA __(0)

) 5
where 7(© is Kendall’s tau value of a certain centrality
method and 7'R4 is the tau value after applying the IRA
process to this centrality method. Clearly, n > 0 indicates
an advantage of the IRA method. As shown in fig. 3, one
can find that the ranking accuracy has been considerably
improved by the IRA method in different traditional cen-
trality measurements. The largest n for degree, K-shell,
closeness, betweenness could reach 55%, 35%, 90%, and
25%, respectively.

Furthermore, we see the dependence of 1 on the infec-
tious rate in fig. 3. We observe that n has two distinct

measures. The improved ratio is defined as n =
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Fig. 3: (Color online) The improved ratio (n) of different in-
fectious rates (u) with different centralities including degree,
K-shell, closeness, and betweenness on AS, PGP, Enron, Cond-
mat networks. The parameter a = 1 is fixed.

trends with the infectious rate in different networks, i.e.,
1 decreases with the infectious rate in the AS and Enron
networks (with positive assortativity coefficient), while 7
increases with the infectious rate in the PGP and Cond-
mat networks (with negative assortativity coefficient) [39].
However, § = C' is a special setting for the IRA method.
71 increases with the infectious rate in the assortative net-
works but decreases with the infectious rate in the dis-
assortative networks. In PGP and Cond-mat networks,
n can be even lower than 0, which we will discuss again
below.

Breaking the ties in the ranking. Local ranking algo-
rithms such as degree and K-shell have low ranking reso-
lution, i.e., many nodes are ranked the same even though
they actually have very different spreading influence [25].
Since many real networks have power-law degree distribu-
tion, the networks are usually dominated by small degree
nodes. A large number of nodes cannot be distinguished
if ranked by degree. This problem is even more serious
in the K-shell method since it is a more coarse-grained
method than degree.

We find that the IRA method can help these local rank-
ing algorithms remove the degeneracy in the ranking. In
fig. 4, we select all the nodes with the same k£ and study
their spreading influence S*. The results show that S* of
these nodes is significantly different from each other. How-
ever, the degree in this case is not an appropriate index
to rank the spreading influence of these nodes since they
are with the same degree. In this case, 7 = 0 according to
the definition of Kendall’s tau. In fig. 4, we show that the
IRA method can lead to 7 > 0 when applied to ranking
these nodes, which indicates that the ranking from TRA
and the rank of the spreading ability are positively cor-
related. Therefore, the nodes with the same degree are
well distinguished by the IRA method. We test different
values of infectious rate p and the results are consistent.
A similar analysis is carried out for the K-shell method.
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Fig. 4: (Color online) Kendall’s 7 between S* and I* (I**) of
the nodes with the same k (ks). Two representative infectious
rates p are selected for comparison.
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Table 3: The improved ratio n, =
Kendall’s tau value of a certain centrality method and 77 "
is the tau value of the IRA method with 6 = ks. «” is the
optimal parameter for the I*® ranking according to fig. 5, and
the infectious rate (p) is 0.04.

Networks —o*  mx (%) ks (%) nc (%) ns (%)
AS 4 37.4 33.1 9.6 88.9
PGP 1.5 4.9 7.5 21.3 52.7
Enron 3 49.6 43.9 9.8 69.6
Cond-mat 5 18.7 14.3 1.6 78.5

In fig. 4, we also can see that a high 7 can be achieved as
well in different ks values.

We remark that the monotonic ranking in the IRA
method occurs because it incorporates the centrality of
neighbors. If a node is connecting to neighbors with high
centrality, the spreading initialized from it will finally have
wider coverage than the nodes with the same k (or ks) but
connecting to lower centrality neighbors.

Improvement from the tunable parameter. In this sub-
section, we will discuss the effect of the tunable parameter
« in the IRA method. We fix the infectious rate as 0.04
and show the results in fig. 5. One can observe that there
exists an optimal o when TRA is applied to each centrality.
Interestingly, the optimal « is around 0 in the between-
ness case and its 7 is relatively low, which indicates that
the betweenness is not a suitable centrality to be used in
the IRA method. Generally speaking, the closeness is the
best centrality for IRA since it can achieve the highest
7 value. However, since the closeness is with high com-
putation complexity, one can use the degree or K-shell
measure as an alternative centrality in the IRA method.
They can lead to a similar 7 as the closeness when used in
the IRA method, but they are much faster than closeness
to calculate. In table 3, we report the improved ratio n of
the I** method to the traditional centrality methods as an
example. One can easily see that the I** considerably out-
performs these traditional centrality methods. We remark
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Fig. 5: (Color online) The performance (7) of different pa-
rameters o with different centralities including degree, K-shell,
closeness, and betweenness on AS, PGP, Enron, Cond-mat net-
works. The infectious rate (u) is 0.04.

Fig. 6: (Color online) The correlation between influence (I1%)
and node centralities § on AS, PGP, Enron, Cond-mat net-
works with different . The 3 is the estimated exponent and
the error bars denote the standard deviation of 1Y of the nodes
with the same 6.

that the optimal « still exists when the infectious rate is
larger. Moreover, for negative 7 in the closeness case in
fig. 3, optimal « can finally lead to positive 7.

The distribution of resource in the IRA method.  Fi-
nally, we analyze the distribution of resource in the IRA
method under different values of parameter o. Taking the
degree as an example, we average I* of the nodes with the
same k, and study the correlation of (I*) and k. For other
centrality measures, we also do the same procedure and re-
port the results in fig. 6. It shows that the nodes with high
k could have high resource (I*). Interestingly, there seems
to be a positive correlation as (I?) ~ 67 in all centrality
cases. One can see that g nonlinearly increases with «,
which indicates that the final resource distribution is non-
trivially controlled by a. Moreover, the error bars as the
standard deviation of I? are shown in fig. 6. The big error
bar indicates that I? of the nodes with the same 6 are well
separated, thus leading to the breaking of the degeneracy.
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Conclusions and discussions. — In summary, we pro-
pose an iterative resource allocation method to rank the
spreader spreading influence. It can be applied to many
classical centrality measures such as degree, K-shell, close-
ness, betweenness and can improve the performance of
them, i.e. by enhancing their accuracy in ranking spread-
ers. The simulation results show that the performance of
the IRA can be further improved when an optimal pa-
rameter is assigned. Our results might also find practical
applications in optimized immunization strategies, which
can be designed to monitor the actual spreaders. In a
broader context, our work could be relevant to other fields
of spreading processes, such as information, behavior, ru-
mor spreading or other dynamical processes, which may
provide insights in the analysis of these collective behav-
ior, from social influence to biomedical responses.

This work may lead to many extensions. In the IRA
method, the final resource of a node is not only determined
by its centrality but also by its neighbors’ centrality. It
would be very interesting to test the modified centrality in
other dynamic process. For example, one can investigate
whether the malicious attack according to the IRA-based
degree will cause more harmful results to the giant compo-
nent of networks [42,43]. In addition, the interdependent
networks have attracted much attention recently [44]; how
to design an iterative resource allocation in these systems
can also be an interesting and important open problem.
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