
1. Introduction

Hard-particle model systems help to improve our under-

standing of the effect of particle shape on collective behavior 

at a fundamental level. Furthermore, these system can now be 

realized in the form of colloids or nanoparticles due to recent 

advances in synthesis techniques [1]. A driving force for these 

efforts is the possibility that these experimental systems form 

structures that can be applied as novel materials. While these 

hard-particle systems were originally studied using comp-

uter simulations [2], the application of continuum theories is 

more natural for some long-wave-length or high-symmetry 

problems.

Density functional theory (DFT) [3, 4] is a continuum 

theory for systems that are inhomogeneous or anisotropic 

either due to applied external fields [3, 5, 6] or spontaneous 

symmetry breaking [7–9]. Hard spheres represent a classical

and quite tractable system to which density functional theory 

has been applied in many studies. One of the most successful 

versions of DFT for hard-sphere mixtures is Rosenfeld’s

fundamental measure theory (FMT), which is based on the 

fundamental measures of each spherical component, namely, 

its radius, area and volume [10]. A version of FMT derived 

from the zero-dimensional limit [11, 12] has proven to be 

very successful in predicting the properties of the crystal [8]. 

This FMT has been further modified to yield the excellent 

Carnahan–Starling equation of state [13] for the homogeneous 

fluid and the resulting FMT [14, 15] predicts the hard-sphere 

freezing transition very accurately [16].

Simultaneously, the interest in liquid crystals has been a 

motivation to apply DFT to anisotropic particles, for instance, 

hard spherocylinders, idealized rod-like molecules. The  

isotropic–smectic-A and nematic–smectic-A phase trans-

itions of these rods were determined using different weighted 

density versions of DFT for anisotropic particles [17–20] and

showed reasonable agreement with the essentially exact simu-

lation results of [21]. However, the construction of the free 

energy functional of these theories is ad hoc and we would 

like to use a functional based solely on the geometry of the 

particles, such as FMT for hard spheres. Some fundamental 
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measure functionals have been constructed for mixtures 

of hard spheres and specific anisotropic particles with zero 

volume, namely infinitely thin rods [22] and disks [23].

Rosenfeld extended his version of FMT to general aniso-

tropic shapes [24]. However, this functional did not predict a 

stable nematic phase for any particle-shape due to the lack of 

additional measures which are sensitive to shape anisotropy. 

This deficiency was repaired by Hansen-Goos and Mecke  

[5, 6], who derived the so-called extended deconvolution 

FMT (edFMT) from the low-density limit by a truncated 

expansion and subsequent semi-empirical rescaling. The 

resulting isotropic-nematic transition [6, 25] shows excellent 

agreement with simulations [21]. In others studies of sphero-

cylinders, the edFMT functional has been applied to systems 

under the influence of both static and time-dependent external 

fields that couple to the orientations of the particles [25, 26]. 

The results for the time-dependent field, which were obtained 

using a dynamic version of density functional theory, were 

later confirmed to be qualitatively correct using computer 

simulations [27].

Equilibrium edFMT studies for a fluid (mixture) of poly-

hedra near a hard wall [28] confirmed the accuracy of the 

theory (with the sole exception of a pure inhomogeneous 

fluid of tetrahedra). A different study found the crystalli-

zation of rounded cubes with fixed orientations to be con-

tinuous for a surprisingly wide range of degrees of rounding 

[29], which was confirmed using simulations [29]. Whereas 

convexity is assumed at a rather fundamental level in the 

derivation of edFMT, the results for a fluid of dumbbells 

(fused pairs of hard spheres) near a hard wall [30] indicate 

that the theory is also quite accurate for mildly non-convex 

shapes.

The paper is organized as follows: first, we will discuss 

recent improvements to the theory [31, 32] that are neces-

sary even for hard spherocylinders in section 2. The improved 

theory features mixed weighted densities, that is, weighted 

densities that are calculated by integrating over the degrees of 

freedom of more than one particle, whereas the other versions 

of FMT only contain one-body weighted densities. One can 

view edFMT as based on an expansion of the mixed weighted 

densities in terms of one-body tensorial weighted densities. To 

distinguish the improved theory from edFMT we have termed 

it fundamental mixed measure theory (FMMT) even though 

in most (but not all) cases the most efficient calculation of the 

mixed weighted densities is by expanding them in products of 

one-particle weighted densities as in edFMT; the difference 

between edFMT and such an implementation of FMMT is that 

the truncation order in the latter is increased until the expan-

sion converges, while the maximum order is fixed in edFMT. 

While the inclusion of mixed weighted densities is the most 

profound change in the functional, a much less computation-

ally involved modification [31] that preserves the maximum 

tensor order of edFMT already suffices to obtain a qualita-

tively correct phase diagram for short spherocylinders. This 

step is imperative to describe dense fluids of long rods, even in 

FMMT [32]. Still, of the FMT versions considered so far, only 

FMMT reproduces the exact low-density limit of the excess 

free energy for an inhomogeneous and/or anisotropic system 

(the low-density limit for the homogeneous isotropic phase of 

convex particles is exact for all FMT versions). As a result, 

the FMMT free energy is the only suitable FMT functional 

for problems such as the isotropic–nematic interfacial ten-

sion for very long spherocylinders where anisotropies and/or 

inhomogeneities persist down to low densities. We will obtain 

closed form expressions for the elastic constants of deformed 

nematic phases and the interfacial tension by mapping FMMT 

onto phenomenological theories.

In section  3, we will present further improvements of  

F(M)MT and new results obtained with these improved versions.  

In particular, we will present modifications to the second and 

the third term of the excess free energy functional of FMT. 

First, we will show that the rescaling of the second term [6] 

that depends on the (local) nematic order parameter has a 

similar accuracy as FMMT for most of the results we have 

obtained thus far for spherocylinders. Subsequently, we pre-

sent a somewhat ad hoc rescaling of the third term in the 

excess free energy functional of FMMT and we show that this 

rescaling leads to an improved phase diagram for spherocyl-

inders indicating the need for a more systematic modification 

of the third term.

Finally, we will summarize and discuss the improvements 

presented in this work and their generalizations to mixtures in 

section 4.

2. Recent advances in fundamental measure theory

DFT is based on the exact result that the density profile can be 

obtained by minimizing an expression of the form [3]

[ ] [ ] ( )( ( ) )( ) ( )∫∑ρ ρ ρ μΩ = + −F Vr r rd ,
i

i
i i

intr ext (1)

with respect to the density profile ( )ρ ri , where ( )μ i  is the 

chemical potential and ( )V i
ext is the external potential. In 

equation  (1), we have used the notation of [24], in which i 
denotes a specific shape, size and orientation for brevity (for 

the chemical potential, ( ) ( )μ μ=i j  for all j that denote rotated 

copies of i). Accordingly, the sum over i denotes a sum over 

all species and, for each anisotropic species, an integral 

over its orientations. We will continue to use this notation 

throughout this paper. We will only consider one-component 

systems in this work, but write down the general framework 

of edFMT and FMMT for the more general case of mixtures 

of anisotropic particles. The functional [ ]ρFintr  is independent 

of ( )( )V ri
ext , allowing reliable approximations based solely on 

the bulk phase behavior. In all FMTs, the intrinsic free energy 

is written as a sum,
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where kB is Boltzmann’s constant, T denotes the temperature, 
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While the ideal gas part of the free energy density ( )Φ rid  is 

a function of the local one-body densities ( )ρ ri  at position 

r, the excess free energy density ({ ([ ] )})ρΦ νn r,ex , depends 

indirectly on the density profile through the local functionals 

([ ] )φ ρ r,2  and ([ ] )φ ρ r,3  and the weighted densities

( ) ( ) ( )( )∫∑ ρ= −ν
νn wr r r r rd ,

i
i i1 1 1 (4)

where ( )( )νw ri  are weight functions of species/orientation i and 

index { }ν∈ 0, 1, 2, 3 ; in general the ( )νw  contain δ distributions, 

see section 2.1 for their full definitions and further details. 

The dimensions of ( )ν ⋅w ,  and ν ⋅n ,  are length to the power ν− 3  

(in three spatial dimensions), where the · denotes possible 

other indices, which label, e.g. tensor components. The func-

tional always has the form given by equation (3) in FMT (but 

not in some extensions [14, 15]); the differences between the 

various versions of FMT we will discuss lie in the definitions 

of φ2 and φ3. We have verified [31] that a modification along 

the lines of [15] yields only minor corrections to the presented 

results.

We will first describe the edFMT [5, 6] for general particle 

shapes and subsequently review recent improvements.

2.1. Extended deconvolution fundamental measure theory

In edFMT, the functional can be completely expressed in 

terms of weighted densities,

φ ζ= − ⋅ −→ → ↔ ↔n n n n n n: ,2 1 2 1 2 1 2 (5)

n n n n n n n n
3

16
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π
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with [ ]ATr  equal to the trace of a matrix A and [ ]≡A B AB: Tr .

The set { ( )}( )νw ri  is comprised of four scalar weight 

functions,
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two vectorial weight functions,

( ) (ˆ) ( )( ) ( )=→w wr n r r ,i i i
2 2 (11)

( ) (ˆ) ( )( ) ( )=→w wr n r ri i i
1 1 (12)

and two tensorial weight functions of rank two,
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Here, the unit vector ˆ = | |r r r/ , (ˆ)R ri  is the distance along 

r̂ from the origin, chosen to lie inside the particle i, to the 

surface and (ˆ)n ri  is the normal to the surface at (ˆ) ˆR r ri , see 

figure  1(a). Moreover, (ˆ) (ˆ) (ˆ)κ κ=K r r ri i
I

i
II  is the Gaussian 

curvature, (ˆ) ( (ˆ) (ˆ))κ κ= +H r r ri i
I

i
II1

2
 is the mean curvature and 

(ˆ) ( (ˆ) (ˆ))κ κ κΔ = −r r ri i
I

i
II1

2
 denotes the deviatoric curvature, 

where (ˆ)κ ri
I  and (ˆ)κ ri

II  are the principal moments of the curva-

ture in the directions (ˆ)v rI  and (ˆ)v rII , respectively, at the point 

(ˆ) ˆR r ri  on the surface ∂Bi of the body Bi, see figure 1. Finally, 

( )Θ ⋅  and ( )δ ⋅  denote the Heaviside and Dirac-delta functions, 

respectively.

Note that the presence of the denominator (ˆ) ˆ⋅n r ri  of ( )wi
2  is 

caused by the specific parametrization (ˆ) ˆR r ri  that was chosen. 

This denominator is such that ( ) ( ) ( )( )F F∫ ∫= ∂B
w Ar r r rd di r

2

i
 

for an arbitrary function F where Ad r is the area element of 

the surface ∂Bi at r; in other words, including a factor of ( )wi
2  

in an integral over the whole space has the sole effect of con-

straining the integral to the surface of the particle.

Hansen-Goos and Mecke [5, 6] derived edFMT starting 

from an expansion of the Mayer function ( )−f r rij 1 2 , which 

is  −1 upon overlap of bodies i and j and zero otherwise, in 

terms of tensorial weight functions with increasing rank. 

The parameter ζ in equation  (5) is a renormalization factor 

introduced by Hansen-Goos and Mecke [5, 6] to correct for 

the truncation of this expansion of the Mayer function after 

the term involving rank-two tensors. Common values for ζ 
are ζ = 5/4, which is obtained by minimizing the difference 

between the exact and edFMT excluded volumes [5] and 

ζ = 1.6, which results from a fit to simulation results for the 

isotropic–nematic (IN) transition [5]. The edFMT form of the 

functional as written here has the following drawbacks when 

considering liquid crystals of elongated particles: (i) The IN 

transition is not accurately described unless the fitted value 

ζ = 1.6 is used [5, 6]. (ii) The width of the coexistence and 

the surface tension of the IN interface is too low [33]. (iii) The 

smectic-A phase is unstable for reasonable spherocylinder 

aspect ratios [31]. (iv) Finally, edFMT does not reduce to the 

Onsager functional in the limit of infinitely long particles, 

→∞L  and →ρ 0, at fixed concentration πρ≡c L D /42 , where 

L and D are the length and diameter, respectively, of the cylin-

drical section of the spherocylinder. As the Onsager functional 

is exact in that limit, this is a major drawback of edFMT.  

Figure 1. The surface ∂Bi of a body Bi is parametrized by a unit 
vector r̂, such that the corresponding point on the surface is (ˆ)ˆR r ri . 
The normal at this point is denoted by (ˆ)n ri .
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We will now consider a first modification of the original 

edFMT functional: the replacement of φ3 by a different expres-

sion [12] that leads to an improvement on points (ii) and (iii).

2.2. Tarazona–Rosenfeld FMT

Tarazona and Rosenfeld [12] completed the derivation (which 

was started in [11]) of FMT from a highly confining geometry, 

namely a cavity that is so small that it can hold only one par-

ticle. The free energy for such a system can be derived exactly 

and the derivation proceeds by demanding that the exact free 

energy is reproduced by the FMT functional at the highly 

peaked equilibrium density profile of this quasi-zero-dimen-

sional system. The form of the free energy that was derived in 

this way differed from previous versions of FMT in the third 

term, φ3. Unfortunately, the form for φ3 from this derivation 

cannot be expanded in a finite number of weighted densities3. 

Therefore, an approximation was considered [12, 35], which 

leads to the following form for φ3,

φ φ
π

= = − +n n n n:
3

16
3 Tr 2Tr .3 3

TR
2
3

2 2
2

2
3( )[ ] [ ]( ) ↔ ↔

 (14)

We will refer to edFMT with this version of φ3 theory as 

‘edFMT-TR’.
As can be seen in figure  2(a), this functional leads to a 

satisfactory agreement with the simulation results for sphero-

cylinders with �L D/ 7 when the semi-empirical parameter 

ζ is set to 5/4 [31]. The improvement of edFMT-TR upon 

edFMT based on φ3 from equation  (6) has been confirmed 

for the IN interfacial tension, the width and the location of 

the IN coexistence in the phase diagram and the equation of 

state (pressure as a function of packing fraction) for all iso-

tropic and liquid crystal phases [31]. Most importantly, the 

smectic-A phase is stable in edFMT-TR for long enough 

spherocylinders as expected from simulation results [21] and 

the location of nematic–smectic-A (NSm-A) transition is pre-

dicted quite well. This is quite an impressive result as the free 

energy differences between different liquid crystal phases are 

usually small and, as a result, difficult to resolve (although 

edFMT-TR is not the first DFT to reproduce the topology of 

the spherocylinder phase diagram [17]). Unfortunately, the 

NSm-A transition, which is known to be first-order for all 

aspect ratios from simulations [21, 36], becomes second-

order above a certain aspect ratio, 7  <  L/D  <  8, in edFMT-

TR. This spurious tricritical point is also seen in other DFTs 

[17, 37].

For longer spherocylinders, a strong increase of the 

nematic–smectic-A coexistence densities with increasing 

aspect ratio at fixed packing fraction is observed for the 

value of ζ = 5/4 and, in fact, any value of ζ in the allowed 

regime ⩽ ⩽ζ0 2 that is not equal to ζ = 2. This increase of 

the NSm-A coexistence densities for ζ< 2 and the resulting 

eventual disappearance of the smectic-A phase for long rods 

is in contradiction with simulation results [21] and all earlier 

theor etical approaches [17, 18, 38]. Unfortunately, simply 

using ζ = 2 rather than ζ = 5/4 spoils the good agreement 

between edFMT-TR and simulations for �L D/ 7 (below 

the tricritical point for ζ = 5/4). Clearly, a better approach 

than manually tweaking ζ to match simulation results is 

desirable.

In the next section, we will present such an approach, 

fundamental mixed measure theory. From now on, we will 

only use the Tarazona–Rosenfeld form of φ3, equation (14), 

although we should remark here that this version of φ3 does 

not lead to the excellent Percus-Yevick form for the direct cor-

relation function ( ) ( ) ( )( ) β δ δρ δρ= − = − Fc r r r r r: /ij i j
2

1 2
2

ex 1 2  

of hard spheres, in contrast to φ3 from equation  (6) [8]. 

Doing so, we achieve a further improvement on points 

(ii) and (iv) listed at the end of section 2.1, compared to 

edFMT-TR.

Figure 2. Phase diagram of hard spherocylinders in the l–η 
representation, where l  =  L/D is the aspect ratio, η ρ= =v vN V/  
denotes the packing fraction, N is the number of particles in the 
system, V the volume of the system and v is the volume of a particle. 
We compare our theoretical results obtained using edFMT with 
ζ = 5/4 and 2 [31] (a) and FMMT [32] (b) with simulation results 
by Bolhuis and Frenkel [21]. At small aspect ratios l  =  L/D, we 
observe a direct transition from the isotropic to the smectic-A phase. 
In all three theories, the nematic–smectic-A transition becomes 
(incorrectly) continuous beyond a certain aspect ratio. Panel (a) was 
reproduced from [31] (Copyright 2014, American Institute of Physics) 
and (b) from [32] (Copyright 2015, IOP Institute of Physics).
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3 It is possible to write down a convergent expansion in terms of weight 
functions that contain spherical harmonics of the normal vector, which will 
be reported elsewhere [34].
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2.3. Fundamental mixed measure theory

The exact expression for the low-density limit can be written 

in terms of an integral over a local functional,

∫ρ = +
ρ
F n n N rlim d ,

0
ex 0 3 12[ ] ( )

→
 (15)

with the mixed weighted density N12 and corresponding mixed 

weight function ( )W 12 ,

∫ ∫∑ ρ ρ= − −WN r r r r r r r r r: , d d ,
ij

ij i j12
12

1 2 1 2 1 2( ) ( ) ( ) ( )( ) 
(16)

κ κ
π

=
⋅ + ⋅

+ ⋅
W w w

v n v n

n n
:

4 1
,ij

i
II

i
I

j i
I

i
II

j

i i
i j

12
2 2

2 2( ) ( )
( )

( ) ( ) ( ) (17)

where in ( )W ij
12  all quantities with species/orientation index i 

or j also implicitly depend on a spatial coordinate −r r1 or 

−r r2, respectively. These mixed weight functions are related 

to the mixed curvature measures from integral geometry [39], 

as we have detailed elsewhere [40]. The fact that these mixed 

curvature measures are used (albeit not calculated) regularly 

in integral geometry was the original motivation for trying to 

calculate N12 directly, which we have done successfully for all 

liquid crystal phases of spherocylinders using a parametrized 

density profile [32].

The fundamental mixed measure functional can be obtained 

from the FMT functional, equation (3) by setting

φ = N2 12 (18)

From equation (15), we see that this choice leads to an exact 

functional in the low density limit. The phase diagram for sphe-

rocylinders as predicted by FMMT is shown in figure 2(b), 

where as in edFMT-TR we used the Tarazona–Rosenfeld 

form, equation (14), for φ3. The agreement for �L D/ 7 is still 

good, although edFMT-TR with ζ = 5/4 is slightly more accu-

rate than FMMT for the NSm-A transition due to a cancella-

tion of errors in that case (as the ζ parameter was introduced 

to correct for truncation errors, any deviation of edFMT-TR 

results from the non-truncated FMMT should be considered 

an error). The spurious increase of the NSm-A transition with 

increasing rod length in edFMT-TR with ζ< 2 is not found in 

FMMT as we anticipated in section 2.2. Most importantly, the 

results for long rods at low density have the kind of accuracy 

we would expect from a DFT; in particular, the width of the 

IN transition is reproduced by FMMT quite nicely. Similar 

improvement has been found also for the IN interfacial ten-

sion (not shown) [32], which is strongly correlated with the 

width of the IN coexistence.

For the smectic-A phase and the isotropic–nematic inter-

face, we calculated the free energy for a parametrized den-

sity profile [32] using Monte Carlo integration4 with recursive 

stratified sampling [41, 42]. These calculations are very 

computationally intensive, which is why we proposed an 

expansion of N12 in tensors [32] that converges more quickly 

than the tensor expansion that was originally proposed [6]. 

Alternatively, one can use Wertheim’s expansion of the Mayer 

bond in spherical harmonics [43], which we will report on 

elsewhere [34]. We recommend that such an expansion is 

used whenever it converges quickly, which is guaranteed if 

the expansion of the orientational distribution in spherical har-

monics converges quickly. We repeat that one should use a 

high enough order to ensure that the expansion has converged 

to obtain FMMT.

2.4. Mapping onto phenomenological theories

The complexity of the problems for which DFT is designed 

and the microscopic nature of FMT lead to a necessarily com-

plex formulation of the theory; therefore, analytical results 

are rare. Phenomenological approaches, such as Landau–de 

Gennes [44, 45] theory, frequently lead to analytical formulas 

in terms of their adjustable constants, which usually have no 

direct microscopic meaning. These prefactors can be fixed by 

comparing with the predictions from a microscopic DFT for 

some simple problems. We have used such a procedure in two 

(related) cases; further work is required to generalize the pro-

cedure to other cases, especially deformations of smectic-A 

phases or crystals.

In the following, we only consider one-component systems 

of uni-axial rods, so we will write ( ˆ)ρ ur, , instead of (ρ ri ), for 

the density profile of a particle with orientation û and posi-

tion r, where the orientation is given by the direction û of the 

particle’s long axis.

First, we consider the Frank elastic energy for long-wave-

length deformations of the director field ˆ( )n r  (local axis of 

preferred alignment) in the one-component nematic phase,

(
)

[ ˆ ] ( ˆ ) ( ˆ ( ˆ ))

( ˆ ( ˆ ))
∫= ∇ ⋅ + ⋅ ∇×

+ × ∇×

F K K

K

n r n n n

n n

1

2
d

,

d 1
2

2
2

3
2

 

(19)

where the prefactors εK , with { }∈ε 1, 2, 3 , are called the Frank 

elastic constants and the three terms penalize different modes 

of deformation, called splay, twist and bend.

By considering the free energy of a deformed nematic 

liquid crystal explicitly from a microscopic point of view and 

comparing to equation (19), Poniewierski and Stecki were able 

to express the Frank elastic constants in terms of the direct 

correlation function ( ˆ ˆ ) ( )( ) ( )≡c cr u u r, ,i j ij
2 2  in the undeformed 

nematic phase. In this case, the expression for ( ˆ ˆ )( )c r u u, ,2
1 2  

from edFMT(-TR) or expanded FMMT (up to a finite order) 

is simple enough that we were able to find analytic (albeit 

lengthy) expressions for εK  using Piewierski and Stecki’s 

method [40]. As an example, we give the expansion of the 

elastic constants to quadratic order in the order parameter

∫
ρ
ρ

= ⋅ −⎜ ⎟⎛
⎝

⎞
⎠S u u n

u
d

3

2

1

2
0

2ˆ [ ˆ ˆ ] ( ˆ )
 (20)

of the homogeneous and unperturbed nematic phase with den-

sity profile ( ˆ ) ( ˆ )ρ ρ=r u u, , where ˆ ( ˆ )∫ρ ρ= = N Vu ud /  is the 

4 We have performed the integrals in the mixed weighted density directly in 
real space; we did not consider the possible optimization of using Fourier 
transforms to perform the convolution-like integrals.
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orientationally averaged bulk density and n̂0 is the undistorted 

nematic director.

The tensor expansion of FMMT leads to expressions that 

can be resummed to the closed formulas

K D
l l

l
S

l l l

l
S S

135 2

28 1 3 2

81 1 1

7 1 3 2
,

1
MM

2 2 2

2
2

3 2 2

2 3
2 3

( )
( )( )

( )( )
( ) ( )

( )

( )

O

β
η

π η
η
π η

=
+

− +

+
+ +

− +
+

 

(21)

K D
l l

l
S

l l l

l
S S

45 9

28 1 3 2

27 1 2 9

14 1 3 2

2
MM

2 2 2

2
2

3 2 2

2 3
2 3

( )
( )( )

( )( )
( ) ( )

( )

( )

O

β
η

π η
η
π η

=
+

− +

+
+ +
− +

+
 

(22)

and ( )( ) ( )= +OK K S3
MM

1
MM 3  [40], which, in addition to 

the nematic order parameter S, only depend on the rod 

aspect ratio l  =  L/D and the packing fraction η ρ= v, where 

π π= +v LD D/4 /62 3  is the volume of a spherocylinder. With 

these expressions or the full expansions from [40], the Frank 

elastic theory becomes a microscopic theory for long-wave-

length deformations of the nematic phase, which requires as 

input only these three parameters. As a result, all applications 

of the Oseen–Frank theory [46] can be directly translated to 

systems of hard spherocylinders with no adjustable constants 

other than S.

The numerical Frank constants from FMMT [40] are com-

pared to simulation results [47] and the predictions from more 

ad-hoc DFTs [48, 49] in figure 3. Note that the difficulty of 

obtaining these elastic constants in computer simulation leads 

to a scarcity of available results: there is only one simula-

tion data point (the diamond) for each of the elastic constants 

in figure  3. The results from FMMT, especially for K3 are 

somewhat less accurate than the results from other DFTs. We  

propose a semi-empirical modification of the FMMT func-

tional in section  3.2 that leads to improved results for the 

elastic constants (among others).

A second empirical theory is Landau–de Gennes theory 

[44, 45] where the free energy is again written as an integral 

over a local free-energy density

[ ] [ ( ( )) ( ( ))]∫β ωΩ = +αβ αβ γ
−Q Q f Qr r rd

V

1
b d , (23)

(the density of the grand potential our case) that depends on the 

order tensor ( )( ) ˆ ˆ ˆ ( ˆ ) ( )∫ δ ρ ρ= −αβ α β αβQ r u u u r u rd , /
3

2

1

2
, where 

( ) ˆ ( ˆ )∫ρ ρ=r u r ud , , and its derivatives = ∂ ∂αβ γ αβ γQ Q r: /, . The 

local free energy can be written as the sum of a bulk contrib-

ution ωb, which is the free energy of a (unaxial) nematic phase 

to fourth order in the components αβQ  of the order tensor, and 

the free energy of deformation, which is equivalent to the 

Frank elastic energy to second order in the derivatives αβ γQ ,  

(assuming low orientational order, the Frank elastic energy 

can be obtained from the Landau–de Gennes free energy of 

deformation by setting ( )( ) ˆ ( ) ˆ ( )= −αβ α βQ Sr n r n r 1

3
 with S 

constant).

For the IN interface, the free energy can be written as a 

square gradient form containing only a local scalar order 

parameter [45], so that [50] we can analytically calculate 

the density profile and the interfacial tension ( )γ≡ Ω−Ω A/b  

where Ωb is the bulk grand potential at the coexistence chem-

ical potential and A the interfacial area. Using the analytical 

formulas for the Frank elastic constants, equations  (21) and 

(22), and fixing the remaining prefactors in the phenomeno-

logical free energy by comparing to bulk properties [33, 40], 

we obtain the analytical formula for the dimensionless inter-

facial tension

Figure 3. The elastic constants, K1, K2 and K3 corresponding 
to splay, twist and bend deformation, respectively, for hard 
spherocylinders: a comparison between FMMT results reproduced 

from [40] (dashed lines), FMMT-
4

9
 TR results from this work (dot-

dashed lines), predictions from other DFTs (PH-DFT [49]: squares; 
ST-DFT [48]: circles) and simulation results [47] (diamonds). 

FMMT-
4

9
 TR was obtained from FMMT by a semi-empirical 

rescaling of φ3, see section 3.2.
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( )( )βγ η ω= ΔD b l v S, ,
t
MM 2

t N m N (24)

where ηN and SN are the packing fraction and nematic order 

parameter, respectively, of the nematic phase at IN coexistence. 

Furthermore, [ ( ) ( )]ω ω μ ω μΔ = −< <v S vmax ,S Sm 0 b c 0 cN
 is 

the maximum dimensionless grand-potential density for a 

non-equilibrium homogeneous nematic phase with order 

parameter < <S S0 N at the coexistence chemical potential 

μ μ= c relative to the value ( )ω μ0 c  for the isotropic phase 

at coexistence. Finally, the prefactor in equation  (24) reads 

( ) [ ( ) ( ) ( )η η η η η= − + + + − +b l l l l l, 15 5 10 5 72 5 3Nt N
3

N
2

N N

η π η− − +l48 5 2 8/21 / 1 3 2N
1/2

N
2( )] [ ( )( ) ]  for the equilibrium

 

alignment of the director, which is tangential to the interface. 

The result, equation (24), for the dimensionless surface ten-

sion has the form of a geometric average of typical (non-

dimensionalized) values, [ ( ) ]ηb l S, N Nt
2 and ωΔ vm , for the 

deformation free energy fd and the bulk free energy difference 

ω ω−b 0, respectively (see also [33, 45], which have slightly 

different definitions of bt).

This expression [51] performs quite well for the IN inter-

facial tension when compared with direct results from FMMT 

(not shown), where SN, ηN and ωΔ m, which only depend on 

the aspect ratio, are calculated using FMMT.

3. Further improvements of FMT

In this section, we discuss two possibilities to adapt FMT for 

anisotropic shapes which are of a somewhat empirical nature. 

The presented results show that, first of all, it is not always 

necessary to employ the full mixed weighted density or a 

high-order expansion and, secondly, that FMMT with φ3 from 

equation (14) can be further improved upon. In particular, the 

predictions for the IN transition at intermediate aspect ratios 

(point (i) at the end of section 2.1) can be improved.

3.1. Order parameter dependent ζ correction

While the computational complexity of FMMT is required to 

accurately describe very long rods at low packing fractions, 

edFMT-TR with an appropriate choice for ζ already exhibits a 

similar accuracy as FMMT for intermediate packing fractions. 

Unfortunately, the optimal choice for ζ not only depends on 

the specific shape of the particle; it also depends on the density 

profile. Hansen-Goos and Mecke [6] assumed that the optimal 

choice of ζ depends only on the degree of alignment, mea-

sured using the nematic order parameter S, for hard spherocyl-

inders (for other families of shapes, it would also depend on 

the aspect ratio). The proposed S-dependent ζ correction, ( )ζ S , 

was determined by numerically minimizing the mean square 

deviation of the FMT excluded volume from the exact result 

with respect to ζ in the nematic phase with order para meter S 

[6]. (The excluded volume is defined as ( ˆ ˆ )∫ fr r u ud , ,1 2 , where 

( ˆ ˆ )f r u u, ,1 2  is the Mayer function.)

It is convenient for the minimization of FMT to have an 

analytical approximation for ( )ζ S . We propose the following 

form

( ) ⎜ ⎟⎛
⎝

⎞
⎠∑ζ = + − + +

=

S a S b S b S1
1

2
,

k

k

k
k

q

fit
0

1 2

t

 (25)

where the − S1  dependence of the second term is essen-

tial to obtain the correct scaling of the order parameter 

( )= + −OS l1 2  with ≡l L D/  at finite packing fraction [31]. 

This term is missing from the earlier parabolic approximation 

( )ζ Spar  of Hansen-Goos and Mecke [6]. We further included 

a term with an exponent 1  <  q  <  2 that allows the second 

derivative of ( )ζ Sfit  to similarly diverge at the other extremal 

value S  =  −1/2; this seems to be a possibility if we consider 

the numerical data [6]. In the following, we use equation (25) 

including the polynomial in S of degree =k 5t , impose 

the conditions ( )ζ =0 5/4, ( )ζ =1 2, ( )ζ − =1/2 16/11 and 

( )ζ =′ 0 0 and determine the remaining parameters through a fit 

to ( )ζ S . We obtain a0  =  −27.90, a1  =  −65.87, a2  =  −1.229, 

a3  =  0.7880, a4  =  −1.233, a5  =  0.3174, b1  =  −2.525, 

b2  =  64.23 and q  =  1.025.

With this fitted ( )ζ S  we obtained the IN interfacial tension 

and liquid crystal phase diagram for spherocylinders. For all 

bulk phases, S is constant as we used an approximation for the 

Figure 4. The coexistence of (a) the isotropic and the nematic and 
(b) the nematic and the smectic-A phases from FMMT and edFMT-

TR with the ( )ζ Sfit  approximation in equation (25): coexistence 
packing fractions as a function of the inverse aspect ratio D/L. 
In the first case, we also include the results with the parabolic 

approximation ( )ζ Spar  from [6].

0 0.05 0.1 0.15 0.2 0.25
D/L

0

0.1

0.2

0.3

0.4

0.5

η

FMMT
edFMT-TR, ζpar(S)

edFMT-TR, ζfit(S)
simulation

nematic

isotropi c

0 0.1 0.2
D/L

0.4

0.45

0.5

η

FMMT
edFMT-TR, ζfit(S)
simulation

smectic-A

nematic

(a)

(b)

5 Note that the fitted value for q is close to one and, thus, b2 and a1 are 
strongly correlated. However, we were unable to obtain a satisfactory fit for 
S  <  0 without the S q1

2
( )+  term.
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density profile of the smectic-A phase where the orientational 

order is independent of the position [31]. For the IN interface, 

we used [6] ( )( ) ( ) ˆ ( ˆ ˆ ) ( ˆ ) ( )∫ ρ ρ= = ⋅ −S S zr u u n r u rd , /
3

2 0
2 1

2
. 

Generally, we find very good agreement between FMMT and 

the ( )ζ Sfit  approximation [51] (not all results are shown); as 

an example, we show the IN and the NSm-A transition as a 

function of inverse aspect ratio D/L in figure 4. Both phase 

trans itions are quite well described by the theory with the 

( )ζ Sfit  correction, but the IN transition is poorly described by 

( )ζ Spar  from [6]6. Reassuringly, the predictions of edFMT-

TR with ( )ζ Sfit  and FMMT for the density of the (incorrectly 

continuous) NSm-A transition coincide exactly for infinitely 

long rods, whereas ( )ζ Spar  yields the same results as a constant 

ζ = 2, see figure 2(a).

We should note that the approach of [6] is not the only pos-

sibility for rescaling the ↔ ↔n n:1 2 term in φ2. One could also have 

approximated ( )φ r2  as

φ ζ− ⋅ −�
⎛
⎝⎜

⎞
⎠⎟n n n n n n

n n

n n
:

:
,2 1 2 1 2 1 2

1 2

1 2

→ → ↔ ↔
↔ ↔

 (26)

where the parameter ζ in equation (5) is replaced by a function 

( )ζ x  of ( )= ↔ ↔x n n n n: /1 2 1 2  instead of a function ( )ζ S  of S. Then 

one could determine ( )ζ x  in the nematic phase described by the 

parametrized density profile of [6] (by fitting ( )ζ x  to numerical 

data for ↔ ↔n n n/ :12 1 2, where = − ⋅ −→ →n n n n n N:12 1 2 1 2 12).

This approach has the advantage that the rescaling is form-

ulated solely in terms of weighted densities. As such, it is 

directly applicable to inhomogeneous systems and there is 

no ambiguity on how to define ( )S r  locally as for the ( )ζ S  

approach. For the liquid crystal phase diagram we have pre-

sented here, we do not expect a large improvement as the 

values for ζ are likely very similar in both approaches in the 

relevant case, i.e. whenever ↔ ↔n n:1 2 is large. However, it would 

be interesting to consider the ( ( ))ζ ↔ ↔n n n n: /1 2 1 2  approach for 

strongly inhomogeneous anisotropic fluids, such as a nematic 

phase near a hard wall.

3.2. Rescaling of φ3

The prefactor ( )π3/ 16  in both forms for φ3, equations (6) and 

(14), is obtained by rescaling to match the third virial coef-

ficient for the homogeneous and isotropic fluid of spheres. 

There is no guarantee that this particular prefactor is the best 

for other shapes.

In a recent publication [31], we determined a suitable value 

for the prefactor by considering a simpler problem (than the 

full phase diagram for hard spherocylinders): the homoge-

neous phase of perfectly aligned hard particles. We showed 

that our FMMT equation of state (EOS) for aligned cylinders 

reduces to the results from an FMT specifically derived for 

parallel cylinders [52] if we set

( )φ φ=
4

9
.3 3

TR
 (27)

This choice, which we will refer to as ‘ FMMT-
4

9
TR’, has the 

advantage that the prefactor applies for all aspect ratios of cyl-

inder-like particles, as the phase behavior of the hard parallel  

cylinder system is independent of the cylinder aspect ratio 

[52]. We showed that FMMT-
4

9
TR accurately predicts the 

properties of the IN transition of infinitely thin disks [31], 

which is arguably the simplest phase transition where the third 

virial coefficient matters [53]. In fact, our modified FMMT is 

about as accurate for the IN transition as an FMT-like DFT 

developed specifically for hard disks [23], see [31].

Now we consider the question of whether a rescaling of 

this kind could result in a better functional for spherocylin-

ders by examining the liquid crystal phase behavior obtained 

with φ3 from equation (27). We show the phase diagram from 

FMMT-
4

9
TR together with the results from the FMMT without 

rescaling and simulation data in figure 5. Clearly, including 

the prefactor 4/9 yields a much better agreement with the sim-

ulation results of Bolhuis and Frenkel [21] than for the ‘bare’ 
FMMT, in particular, for the NSm-A transition. In addition, 

the Frank elastic constants are predicted with higher accuracy 

by FMMT-
4

9
TR than by FMMT, especially for K3, as shown 

in figure 3. This improvement for the εK  is mostly caused by 

more accurate predictions for the nematic order parameter, on 

which the elastic constants depend strongly.

Most quantities at intermediate packing fractions are pre-

dicted more accurately by FMMT-
4

9
TR than by FMMT [51], 

while the results at low packing fraction remain accurate as 

we have only rescaled the φ3 term, which does not affect the 

leading-order term, equation  (15), in the density expansion. 

A counterexample is the EOS of the nematic and smectic-A 

phases for spherocylinders with L/D  =  5 [51], which becomes 

(slightly) less accurate by the rescaling. In addition, the third 

order virial coefficient (of the isotropic phase) [54] is underesti-

mated already by FMT and rescaling ( )φ3
TR  by any factor smaller 

than one makes the disagreement worse, as it decreases the 

Figure 5. The phase diagram for spherocylinders, packing fraction 
η versus the aspect ratio L/D. We compare results from FMMT with 

φ3 from equation (14) and FMMT-
4

9
 TR, for which φ3 is given by 

equation (27), with simulation results [21]. The dotted lines in the 
second case indicate the extrapolation to a continuous transition at 
η = 0.4056 in the limit →∞L D/ .

6 From the predictions of edFMT with equation (6) for 3φ , the opposite 
conclusion can be drawn, i.e. the better fit to the excluded volume shows the 
worst agreement with simulation results [6].
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third virial coefficient from FMT (the isotropic EOS is the same 

for FMMT and FMT). However, increasing the factor in front 

of φ3 to obtain a more accurate third virial coefficient would 

ruin the reasonable accuracy of the FMT equation of state for 

the isotropic phase (away from the low-density limit), which is 

mostly accurate due to a cancellation of errors: at low densities 

the pressure increases too slowly because FMT underestimates 

the low-order virial coefficients, while the increase of the pres-

sure at higher densities is overestimated by FMT (presumably 

because FMT underestimates the short-ranged order that leads 

to improved local packing in the fluid).

Finally, the value 4/9 is a bit arbitrary; in fact, the EOS of 

infinitely long parallel spherocylinders from FMMT-
4

9
TR does 

not reduce to the EOS from the FMT for parallel hard cyl-

inders. As an infinitely long spherocylinder and an infinitely 

long cylinder are equivalent, this difference presents a some-

what worrying lack of consistence within all current FMT ver-

sions based on an approximate φ3 including at least rank-two 

tensors [31].

4. Summary and discussion

We discussed recent advances in fundamental measure theory 

(FMT) for non-spherical hard particles [51], which we sum-

marize in table  1. Using fundamental mixed measure theory 

(FMMT) featuring a two-particle mixed weighted density, we 

were able to obtain a reliable liquid crystal phase diagram for 

rods. An important improvement has also been to build FMMT 

on the functional for hard spheres from [12] rather than that from 

[8] that was used almost exclusively in previous FMT studies. 

We also showed some analytical formulas that can be obtained 

by mapping a simpler phenomenological theory on density 

functional theory (DFT) for long-wave-length deformations.

We have focused on spherocylinders in this and past works 

as there is a wealth of simulation results with which we can 

compare our results. Other density functional theories are 

available for spherocylinders and some of these theories are as 

accurate as FMMT. Nevertheless, the strength of F(M)MT lies 

its formulation as a theory for mixtures of arbitrary convex (or 

not too non-convex) particles. Results that will be published 

elsewhere show that F(M)MT is as accurate for polyhedral 

rods as for spherocylinders [34]. In addition, the FMT results 

for the less demanding problem of hard-body fluids near 

a hard wall are very accurate for all non-spherical particles 

studied thus far [6, 28, 30] (with the exception of tetrahedra 

[28]) indicating that F(M)MT is an accurate generic DFT for 

non-spherical hard particles.

We also showed that it is possible to obtain accurate results 

by truncating the expansion of the mixed weighted density in 

terms of products of weighted densities to second order and 

rescaling by a factor ( )ζ S  that depends on the local nematic 

order S. This calculation is much less computationally 

involved than the full FMMT calculation (even if we use a 

convergent expansion). Additionally, we considered the pref-

actor of the third term φ3 in the functional of the form given 

by equation (3), which is fixed in the original theory by the 

requirements that the third virial coefficient for hard spheres 

is exact and that the functional for the excess free energy 

depends only on the weighted densities. If we allow a different 

prefactor for highly anisotropic particles for which the former 

requirement arguably is less useful, we can improve the agree-

ment between FMMT and simulations further.

We did not consider the high-density limit in this work. 

Groh and Mulder [57] studied the high-density limit for the 

hard-sphere crystal in DFT. All functionals considered by 

Groh and Mulder [57] predict the same logarithmic divergence 

of the free energy in the close-packing limit as cell theory [58, 

59]. It is is not very difficult to show that any FMT that has 

an excess free energy functional that is bounded from below 

by a constant and that leads to a finite excess free energy for 

a single cavity in the zero-dimensional limit has this same 

divergence in the high-density limit, see the appendix. The 

next term in the free energy, which remains constant in the 

high-density limit, determines the accuracy of the theory. The 

predictions for this constant term from the versions of FMT 

that were derived from the zero-dimensional limit with mul-
tiple cavities [8, 12] agree well with computer simulations 

[57] for the high-density crystal of hard spheres. As FMMT is 

also correct for two cavities, we expect it also yields accurate 

predictions for the crystal of non-spherical particles. It should 

be noted that an expansion of FMMT is likely to converge 

slowly for the highly peaked density profile of a crystal.

Both the ( )ζ S  correction and the rescaling of φ3 compli-

cate the implementation of FMT for mixtures of differently 

shaped particles, as a prefactor that depends on the particle 

Table 1. The consecutive improvements made to Rosenfeld’s fundamental measure theory [10] (more precisely, Tarazona’s version [8]) to 
obtain a suitable density functional theory for non-spherical particles.

Designation and reference Modification Main advantage

edFMT [5, 6] Rank-two tensors added to φ2, see equation (5) Stable nematic phase

edFMT-TR [31] φ3, equation (6), replaced by φ3
TR, equation (14) Stable smectic phase

FMMT [32] Implemented exact φ = N2 12, see equation (18) Exact low-density limit

edFMT-TR, ( )ζ S  [6] (this work) Reverted to φ2 from equation (5) but with ( )ζ ζ= S Efficient compared to FMMT

FMMT-
4

9
 TR [31] (this work) φ = N2 12 and rescaled φ3

TR, see equation (27) Improved phase diagram

Notes: Each modification is applied in addition to the modifications listed before it. The S( )ζ  modification, where the semi-empirical prefactor ζ depends on 
the nematic order parameter S defined in equation (20), was proposed in [6] for edFMT (with 3φ  from [12]); in this work, we implemented this modification 

in edFMT-TR (with 3
TRφ  from [12]). The improvements made in [14, 15, 55, 56] to improve the FMT prediction for the hard-sphere equation of state are not 

contained in this table.
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shape is introduced in the theory. For the ( )ζ S  correction, this 

is not a problem if only one component is non-spherical: the 

rescaling is not required for spheres, whose treatment is exact 

at this order. For all other cases and also the third term φ3, 

the prefactor could be absorbed into new weighted densities 

which contain sums over the one-component weighted densi-

ties rescaled by a prefactor that depends on the species (and, 

possibly, on S) and that is equal to the optimal value for the 

one-component problem. In this case, one of the defining 

assumptions of FMT, that the excess free energy only depends 

on the density profile through the weighted densities, would 

be restored.

In discussing the rescaling of φ3, we have not specified how 

to determine the prefactor in general. We only showed that an 

additional prefactor smaller than one (we used 4/9) gives an 

improved theory for spherocylinders. We emphasize that this 

is not the prefactor that would give the exact third virial coef-

ficient in the isotropic phase of spherocylinders; in fact, that 

prefactor would be much larger than one for long spherocylin-

ders, which would not lead to an accurate theory for interme-

diate and large packing fractions.

We speculate that an improvement will be found gener-

ally when rescaling φ3 such that the FMMT equation of state 

(EOS) for the nematic phase in the limit of perfect alignment 

reduces to the EOS from a parallel particle FMT, i.e. an FMT 

specifically derived for perfectly aligned particles. Note that 

while deriving such a parallel particle FMT is possible [30, 

appendix B] [35] for arbitrary (convex) shapes (by using the 

zero-dimensional limit), the functional is not nearly as easily 

evaluated as the elegant functionals for perfectly aligned 

cubes [60] and cylinders [52] (this connects to the hitherto 

unsolved problem of finding closed form expressions for the 

mixed Minkowski volumes in integral geometry [39]).

Alternatively, one could make the prefactor of φ3 depend 

on the nematic order parameter S and some fit parameters, 

which would be similar to the ( )ζ S  modification of φ2 [6] (see 

also section 3.1). The fit parameters can be obtained by con-

sidering the nematic phase with a prescribed orientational dis-

tribution ( ˆ )f uS  that depends on the nematic order para meter 

S. The resulting FMT free energy could then be expanded 

with respect to ρ0 and the coefficient of the third order could 

be fitted to the exact third virial coefficient for the orienta-

tional distribution ( ˆ )f uS . An interesting topic for future work 

would be to determine the accuracy of this new functional 

for spherocylinders and other shapes, but it would require a 

numerical calculation of the virial coefficient for each S value 

and particle shape of interest.

These implementation details aside, FMMT promises to 

be an accurate theory for the collective equilibrium behavior 

of non-spherical particles. As will certainly be discussed 

elsewhere in this special issue, DFT can be extended to non-

equilibrium systems. All formulations thus far require an accu-

rate free energy functional for the corresp onding equilibrium 

system. Moreover, it has been demonstrated that an effective 

equilibrium theory can be used to describe active systems [61]. 

Therefore, our work is also important for non-equilibrium prob-

lems, such as colloidal swimmers or swimming bacteria that are 

non-spherical [62] in general.

Future work could also address phases with less contin-

uous symmetries, such as a nematic phase near a hard wall. 

DFT studies of phases with no or only one continuous sym-

metry, such as the crystal of non-spherical particles or a 

columnar phase of disk-like particles, are also possible but 

highly computationally intensive, even when using (rescaled) 

tensorial weighted densities with a rank at most two instead 

of (a high-order expansion of) the full mixed weighted den-

sity. A problem of the same dimensionality as the crystal of 

uniaxial hard particles, the solvation of molecules in solvents 

consisting of linear molecules, has been studied using a DFT 

with a fully resolved density profile [63], which shows that 

problems with few continuous symmetries are also amendable 

to density functional treatments.
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Appendix. High-density limit

For all anisotropic hard-particle systems that we know of, the 

state in the high-density limit (in the bulk) is a crystal with 

an equilibrium density profile that is a sum of infinitely sharp 

peaks around the equilibrium one-particle configurations 

(position and orientation; we will restrict ourselves to one-

component systems for simplicity). In fact, the width of the 

peak in each degree of freedom scales as ( )α ρ ρ= −/ 1cp
1/3 , 

where ρcp is the (average) density at close packing. As a result, 

the ideal-gas free energy diverges as ( )α−d logf  in the limit 

→α 0, where df is the number of degrees of freedom.

We make the assumptions that the excess free energy Fex 

of a given FMT functional is bounded by a constant  −C0 from 

below and that Fex remains finite for a single cavity in the 

zero-dimensional limit (the limit in which the cavity shrinks 

such that only one configuration remains accessible to the par-

ticle at a fixed average number of particles ¯ ⩽N 1 [11, 12]).  

In that limit, the ideal gas will show the same logarithmic 

divergence as in the high-density limit for the bulk. Therefore, 

the total single-cavity free energy has the same logarithmic 

divergence as exhibited by cell theory [58, 59].

Now consider again the crystal and define a cavity for 

every lattice site that contains the corresponding particle at 

its equilibrium configuration such that no two particles in 

different cavities may overlap (an explicit example of such 

a construction would be a (set) Voronoi tesselation). In the 

high-density limit, this means that whenever any two particles 

are in the same cavity they must overlap. This is, of course, 

the construction used in cell theory. The equilibrium density 

profile for an external potential that is the result of these cavi-

ties is a sum of sharp peaks that do not overlap. In addition, 

each weighted density is a sum of similarly non-overlapping 

functions as can be seen from the definition in equation  (4) 

and the fact that the particles in their entirety (i.e. not just their 
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centers) are confined inside to the cavities. Thus the intrinsic 

free energy separates into a sum of single-cavity free energies, 

such that it diverges in the same way as the cell theory free 

energy in the high-density limit, ( ) ( )α= − +F Od log 1f  for 

→α 0.

We can connect this result to the bulk crystal by real-

izing that the intrinsic free energy functional evaluated at this 

density profile is larger than (or equal to [57]) its minimum  

(at fixed average density), which is the Helmholtz free energy 

of the bulk crystal, because the intrinsic free energy does not 

depend on the external potential. Thus, we have obtained an 

upper bound on the FMT free energy of the bulk crystal. The 

lower bound is much simpler as we have assumed >−F Cex 0; 

therefore, > −F F Cid 0. Since its lower and upper bound show 

the cell theory divergence, ( ) ( )α− +Od log 1f , the FMT free 

energy must also diverge in the same way.
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