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ABSTRACT Methods that bypass analytical evaluations of the likelihood function have become an indispensable tool for statistical
inference in many fields of science. These so-called likelihood-free methods rely on accepting and rejecting simulations based on
summary statistics, which limits them to low-dimensional models for which the value of the likelihood is large enough to result in
manageable acceptance rates. To get around these issues, we introduce a novel, likelihood-free Markov chain Monte Carlo (MCMC)
method combining two key innovations: updating only one parameter per iteration and accepting or rejecting this update based on
subsets of statistics approximately sufficient for this parameter. This increases acceptance rates dramatically, rendering this approach
suitable even for models of very high dimensionality. We further derive that for linear models, a one-dimensional combination of
statistics per parameter is sufficient and can be found empirically with simulations. Finally, we demonstrate that our method readily
scales to models of very high dimensionality, using toy models as well as by jointly inferring the effective population size, the distribution of
fitness effects (DFE) of segregating mutations, and selection coefficients for each locus from data of a recent experiment on the evolution
of drug resistance in influenza.
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THE past decade has seen a rise in the application of
Bayesian inference algorithms that bypass likelihood cal-

culations with simulations. Indeed, these generally termed
likelihood-free or approximate Bayesian computation (ABC)
(Beaumont et al. 2002) methods have been applied in a wide
range of scientific disciplines, including cosmology (Schafer
and Freeman 2012), ecology (Jabot and Chave 2009, pro-
tein-network evolution (Ratmann et al. 2007), phylogenetics
(Fan and Kubatko 2011), and population genetics (Cornuet
et al. 2008). Arguably ABC has had its greatest success in
population genetics because inferences in this field are fre-
quently conducted under complexmodels for which likelihood
calculations are intractable, thus necessitating inference
through simulations.

Let us consider a modelM that depends on n parameters
u; creates data D, and has the posterior distribution

pðujDÞ ¼ ℙðDjuÞpðuÞR
ℙðDjuÞpðuÞdu;

where pðuÞ is the prior and ℙðDjuÞ is the likelihood function.
ABC methods bypass the evaluation of ℙðDjuÞ by perform-
ing simulations with parameter values sampled from pðuÞ
that generate D, which in turn is summarized by a set of
m-dimensional statistics s: The posterior distribution is then
evaluated by accepting such simulations that reproduce the
statistics calculated from the observed data (sobs)

pðujsÞ ¼ ℙðs ¼ sobsjuÞpðuÞR
ℙðs ¼ sobsjuÞpðuÞdu

:

However, for models withm� 1 the condition s¼ sobs might
be too restrictive and require a prohibitively large simulation
effort. Therefore, an approximation step can be employed
by relaxing the condition s ¼ sobs to ks2 sobsk# d; where
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kx2 yk is a distance metric of choice between x and y and d is
a chosen distance (tolerance) below which simulations are
accepted. The posterior pðujsÞ is thus approximated by

pðujsÞ ¼ ℙðks2 sobsk# djuÞpðuÞR
ℙðks2 sobsk# djuÞpðuÞdu:

An important advance in ABC inference was the development
of methods coupling ABC with Markov chain Monte Carlo
(MCMC) (Marjoram et al. 2003). These methods allow effi-
cient sampling of the parameter space in regions of high likeli-
hood, thus requiring fewer simulations to obtain posterior
estimates (Wegmann et al. 2009). The original ABC-MCMC
algorithm proposed by Marjoram et al. (2003) is as follows:

1. If now at u propose to move to u9 according to the transi-
tion kernel qðu9juÞ:

2. SimulateD usingmodelMwith u9 and calculate summary
statistics s for D.

3. If ks2 sobsk# d; go to step 4; otherwise go to step 1.
4. Calculate the Metropolis–Hastings ratio

h ¼ h
�
u; u9

�
¼ min

 
1;
p
�
u9
�
q
�
u
��u9�

pðuÞq�u9�
!
:

5. Accept u9 with probability h; otherwise stay at u: Go to
step 1.

The sampling success of ABC algorithms is given by the
likelihood values, which are often very low even for relatively
large tolerance values d: In such situations, the condition
ks2 sobsk# d will impose a quite rough approximation to
the posterior. As a result, the utility of the ABC approaches
described above is limited to models of relatively low dimen-
sionality, typically up to 10 parameters (Blum 2010; Fearnhead
and Prangle 2012). The same limitation applies to the
more recently developed sequential Monte Carlo sampling
methods (Sisson et al. 2007; Beaumont et al. 2009). Despite
these limitations ABC has been useful in addressing popula-
tion genetics problems of low to moderate dimensionality
such as the inference of demographic histories (e.g., Wegmann
and Excoffier 2010; Brown et al. 2011; Adrion et al. 2014) or
selection coefficients of a single locus (e.g., Jensen et al. 2008).
However, as more genomic data become available, there
is increasing interest in applying ABC to models of higher
dimensionality, such as to estimate genome-wide and locus-
specific effects jointly.

To our knowledge, to date, three approaches have been
suggested to tackle high dimensionality with ABC. The first
approach proposes an expectation propagation approxima-
tion to factorize the data space (Barthelmé and Chopin
2014), which is an efficient solution for situations with high-
dimensional data, but does not directly address the issue of
high-dimensional parameter spaces. The second approach
consists of first inferring marginal posterior distributions on
low-dimensional subsets of the parameter space [either one
(Nott et al. 2012) or two dimensions (Li et al. 2015)] and

then reconstructing the joint posterior distribution from
those. This approach benefits from the lower dimensionality
of the statistics space when considering subsets of the param-
eters individually and hence renders the acceptance criterion
meaningful. The third approach achieves the same benefit
by formulating the problem using hierarchical models, pro-
posing to estimate the hyperparameters first, and then fixing
themwhen inferring parameters of lower hierarchies individ-
ually (Bazin et al. 2010).

Among these, the approach by Bazin et al. (2010) is the
most relevant for population genetics problems, since those
are frequently specified in a hierarchical fashion by modeling
genome-wide effects as hyperparameters and locus-specific
effects at lower hierarchies. In this way, Bazin et al. (2010)
estimated locus-specific selection coefficients and deme-
specific migration rates of an island model from microsatellite
data. Furthermore, this approach has inspired the develop-
ment of similar methods for estimating more complex migra-
tion patterns (Aeschbacher et al. 2013) and locus-specific
selection from time-series data (Foll et al. 2015). However, this
approach and its derivatives will not recover the true joint
distribution if parameters are correlated, which is a common
feature of such complex models.

Here, we introduce a new ABC algorithm that exploits the
reduction of dimensionality of the summary statistics when
focusing on subsets of parameters, but couples the parameter
updates in an MCMC framework. As we prove below, this
couplingensures thatour algorithmconverges to the true joint
posterior distribution even for models of very high dimen-
sions. We then demonstrate its usefulness by inferring the
effective population size jointly with locus-specific selection
coefficients and thehierarchicalparametersof thedistribution
of fitness effects (DFE) from allele frequency time-series data.

Theory

Letusdefine the randomvariableTi ¼ TiðsÞ asanmi-dimensional
function of s: We call Ti sufficient for the parameter ui if the
conditional distribution of s given Ti does not depend on ui:

More precisely, let ti;obs ¼ TiðsobsÞ: Then

ℙ
�
s ¼ sobsjTi ¼ ti;obs; u

� ¼ ℙ
�
s ¼ sobs;Ti ¼ ti;obsju

�
ℙ
�
Ti ¼ ti;obsju

�
¼ ℙðs ¼ sobsjuÞ

ℙ
�
Ti ¼ ti;obsju

�
¼: giðsobs; u2iÞ; (1)

where u2i ¼ ðu1; . . . ; ui21; uiþ1; . . . ; unÞ is u with the ith com-
ponent omitted.

It is not hard tofind examples for parameter-wise sufficient
statistics. Most common distributions are members of the
exponential family, and for these, the density of s has the form

f ðsjuÞ ¼ hðsÞexp
"XK

k¼1
hkðuÞTkðsÞ2AðuÞ

#
:
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For a given parameter ui; the vector TiðsÞ consisting of only
those TkðsÞ for which the respective natural parameter func-
tion hkðuÞ depends on ui is a sufficient statistic for ui in the
sense of our definition. Some concrete examples of this type
are studied below.

If sufficient statistics Ti can be found for each parameter ui
and their dimension mi is substantially smaller than the
dimension m of s; then the ABC-MCMC algorithm can be
greatly improved with the following algorithm that we de-
note ABC with parameter-specific statistics (ABC-PaSS)
henceforth.

The algorithm starts at time t ¼ 1 and at some initial pa-
rameter value uð1Þ:

1. Choose an index i ¼ 1; . . . ; n according to a probability
distribution ðp1; . . . ; pnÞ with

X
pi ¼ 1 and all pi . 0:

2. At u ¼ uðtÞ propose u9 according to the transition kernel
qiðu9juÞwhere u9 differs from u only in the ith component:

u9 ¼ ðu1; . . . ; ui21; ui9; uiþ1; . . . ; unÞ:

3. SimulateD usingmodelMwith u9 and calculate summary
statistics s for D. Calculate ti ¼ TiðsÞ and ti;obs ¼ TiðsobsÞ:

4. Let di be the tolerance for parameter ui: If
����ti2ti;obs

����
i # di;

go to step 5; otherwise go to step 1.
5. Calculate the Metropolis–Hastings ratio

h ¼ h
�
u; u9

�
¼ min

 
1;
p
�
u9
�
qi
�
u
��u9�

pðuÞqi
�
u9ju�

!
:

6. Accept u9 with probability h; otherwise stay at u:
7. Increase t by one, save a new parameter value uðtÞ ¼ u;

and continue at step 1.

Convergence of the MCMC chain is guaranteed by the
following:

Theorem 1. For i ¼ 1::n; if di ¼ 0 and Ti is sufficient for
parameter ui; then the stationary distribution of the Markov
chain is pðujs ¼ sobsÞ:

The Proof for Theorem 1 is provided in the Appendix.
It is important to note that the samealgorithmcan also be

applied to groups of parameters, which may be particularly
relevant in the case of very high correlations between
parameters that may render their individual MCMC up-
dates inefficient. Also, the efficiency of ABC-PaSS can be
improved with all previously proposed extensions for ABC-
MCMC. To increase acceptance rates and render ABC-PaSS
applicable to models with continuous sampling distribu-
tions, for instance, the assumption di ¼ 0 must be relaxed
to di . 0 in practice. This is commonly done in ABC appli-
cations and will lead to an approximation of the posterior
distribution pðujs ¼ sobsÞ: Because of the continuity of the
summary statistics s and the sufficient statistics Ti; we the-
oretically recover the true posterior distribution in the
limit di/0: We can also perform an initial calibration
ABC step to find an optimal starting position uð1Þ and tol-

erance di and to adjust the proposal kernel for each param-
eter (Wegmann et al. 2009).

Materials and Methods

Implementation

We implemented the proposed ABC-PaSS framework into a
new version of the software package ABCtoolbox (Wegmann
et al. 2010), which will be made available at the authors’
website and will be described elsewhere.

Toy model 1: Normal distribution

We performed simulations to assess the performance of ABC-
MCMC and ABC-PaSS in estimating u1 ¼ m and u2 ¼ s2 for a
univariate normal distribution. We used the sample mean x
and sample variance S2 of samples of size n as statistics. Re-
call that for noninformative priors the posterior distribution
for m is Nðx; S2=nÞ and the posterior distribution for s2 is x2

distributed with n2 1 d.f. As m and s2 are independent, we
get the posterior density

p
�
m;s2� ¼ fx;S2=nðmÞ �

n2 1
S2

fx2;n21

�
n2 1
S2

s2
�
:

In our simulations the sample size was n ¼ 10 and the true
parameters were given by m ¼ 0 and s2 ¼ 5: We performed
50 MCMC chains per simulation and chose effectively non-
informative priors for m � U½210; 10� and s2 � U½0:1; 15�:
Our simulations were performed for a wide range of toler-
ances (from 0.01 to 41) and proposal ranges (from 0.05 to
1.5). We did this exhaustive search to identify the combina-
tion of these tuning parameters that allows ABC-MCMC and
ABC-PaSS to perform best in estimating m and s2: We then
recorded the minimum total variation distance (L1) between
the true and estimated posteriors over these sets of tolerances
and ranges and compared it between ABC-MCMC and ABC-
PaSS.

Toy model 2: General linear model

As a second toy model to compare the performance of ABC-
MCMC and ABC-PaSS, we considered general linear models
(GLMs) with m statistics s being a linear function of n ¼ m
parameters u;

s ¼ Cuþ e; e�Nð0; IÞ;

where C is a square design matrix and the vector of errors e is
multivariate normal. Under noninformative priors for the pa-
rameters u; their posterior distribution is multivariate normal

ujs � N
��

C9C
�21

C9s;
�
C9C

�21
�
:

We set up the design matrices C in a cyclic manner to allow
all statistics to have information on all parameters but their
contributions to differ for each parameter; namely we set
C ¼ B � detðB9BÞ21=2n; where
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B ¼

0BB@
1=n 2=n 3=n . . . n=n
n=n 1=n 2=n . . . n21=n
⋮ ⋮ ⋮ ⋱ 2=n

2=n 3=n 4=n . . . 1=n

1CCA  :

The normalization factor in the definition of C was chosen
such that the determinant of the posterior variance is con-
stant and thus the widths of the marginal posteriors are com-
parable independently of the dimensionality n. We used all
statistics for ABC-MCMC and calculated a single linear com-
bination of statistics per parameter for ABC-PaSS according
to Theorem 2, using ordinary least squares. For the estima-
tion, we assumed that u ¼ 0 and the priors are uniform
U½2100; 100� for all parameters, which are effectively non-
informative. We started the MCMC chains at a normal de-
viate Nðu; 0:01IÞ; i.e., around the true values of u: To ensure
fair comparisons between methods, we performed simula-
tions of 50 chains for a variety of tolerances (from 0.01 to
256) and proposal ranges (from 0.1 to 8) to choose the com-
bination of these tuning parameters at which each method
performed best. We ran all our MCMC chains for 105 itera-
tions per model parameter to account for model complexity.

Estimating selection and demography

Model: Consider a vector j of observed allele trajectories
(sample allele frequencies) over l ¼ 1; . . . ; L loci, as is com-
monly obtained in studies of experimental evolution. We as-
sume these trajectories to be the result of both random drift
and selection, parameterized by the effective population
size Ne and locus-specific selection coefficients sl; respec-
tively, under the classic Wright–Fisher model with allelic
fitnesses 1 and 1þ sl: We further assume the locus-specific
selection coefficients sl follow a DFE parameterized as a
generalized Pareto distribution (GPD) with mean m ¼ 0;
shape x, and scale s. Our goal is thus to estimate the joint
posterior distribution

pðNe; s1; . . . ; sL; x;sjjÞ
}
YL
l¼1

	
ℙðjljNe; slÞpðsljx;sÞ



pðNeÞpðxÞpðsÞ:

To apply our ABC-PaSS framework to this problem, we ap-
proximate the likelihood term ℙðjljNe; slÞ numerically with
simulations, while updating the hyperparameters x and s

analytically.

Summary statistics: To summarize the data j; we used sta-
tistics originally proposed by Foll et al. (2015). Specifically,
we first calculated for each locus individually a measure of
the difference in allele frequency between consecutive time
points as

Fs9 ¼ 1
t
Fs
	
12 1

��
2~n
�


2 2
�
~n

ð1þ Fs=4Þ½12 1=ðnyÞ�;

where

Fs ¼ ðx2yÞ2
zð12 zÞ;

x and y are the minor allele frequencies separated by t gen-
erations, z ¼ ðx þ yÞ=2; and ~n is the harmonic mean of the
sample sizes nx and ny:We then summed the Fs9 values of all
pairs of consecutive time points with increasing and decreas-
ing allele frequencies into Fs9i and Fs9d; respectively (Foll
et al. 2015). Finally, we followed Aeschbacher et al. (2012)
and calculated boosted variants of the two statistics to take
more complex relationships between parameters and statis-
tics into account. The full set of statistics used per locus was
Fl = fFs9il; Fs9dl; Fs9i2l ; Fs9d2l ; Fs9il 3 Fs9dlg

Wenext calculated parameter-specific linear combinations
forNe and locus-specific sl following the procedure developed
above. To do so, we simulated allele trajectories of a single
locus for different values ofNe and s sampled from their prior.
We then calculated Fl for each simulation and performed a
Box–Cox transformation to linearize the relationships between
statistics and parameters (Box and Cox 1964; Wegmann et al.
2009). We then fitted a linear model as outlined in Equation
A3 to estimate the coefficients of an approximately suffi-
cient linear combination of F for each parameter Ne and s.
This resulted in tsðFlÞ ¼ bsFl and tNeðFlÞ ¼ bNe

Fl: To com-
bine information across loci when updating Ne; we then
calculated

tNeðFÞ ¼
XL
l¼1

bNe
Fl;

where F ¼ fF1; . . . ; FLg In summary, we used the ABC
approximation

ℙðjjjNe; sjÞ � ℙ
���tsðFlÞ2 ts

�
Flobs

���, dsl ;

ktNeðFÞ2 tNeðFobsÞk, dNe jNe; sjÞ:

Simulations and application

We applied our framework to allele frequency data for the
whole influenza H1N1 genome obtained in a recently pub-
lished evolutionary experiment (Foll et al. 2014). In this
experiment, influenza A/Brisbane/59/2007 (H1N1) was se-
rially amplified on Madin–Darby canine kidney (MDCK) cells
for 12 passages of 72 hr each, corresponding to �13 gener-
ations (doublings). After the three initial passages, samples
were passed either in the absence of drug or in the presence
of increasing concentrations of the antiviral drug oseltamivir.
At the end of each passage, samples were collected for whole-
genome high-throughput population sequencing. We obtained
the raw data from http://bib.umassmed.edu/influenza/ and,
following the original study (Foll et al. 2014), we down-
sampled it to 1000 haplotypes per time point and filtered it
to contain only loci for which sufficient data were available
to calculate the Fs9 statistics. Specifically, we included all loci
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with an allele frequency $   2% at $   2 time points. There
were 86 and 42 such loci for the control and drug-treated
experiments, respectively. Further, we restricted our analysis
of the data of the drug-treated experiment to the last nine
time points during which drug was administered.

We performed all our Wright–Fisher simulations with in-
house C++ code implemented as a module of ABCtoolbox.
We simulated 13 generations between time points and a
sample of size 1000 per time point. We set the prior for Ne

uniform on the log10 scale such that log10ðNeÞ � U½1:5; 4:5�
and for the parameters of the GPD x � U½20:2; 1� and for
log10ðsÞ � U½22:5; 2 0:5�: For the simulations where no
DFE was assumed, we set the prior of s � U½0; 1�:

As above,we ran all our ABC-PaSS chains for 105 iterations
per model parameter to account for model complexity. To
ensure fast convergence, the ABC-PaSS implementation
benefited from an initial calibration step we originally de-
veloped for ABC-MCMC and implemented in ABCtoolbox
(Wegmann et al. 2009). Specifically, we first generated 10,000
simulations with values drawn randomly from the prior.
For each parameter, we then selected the 1% subset of these
simulations with the smallest distances to the observed data
based on the linear combination specific for that parameter.
These accepted simulations were used to calibrate three
important metrics prior to the MCMC run: First, we set the
parameter-specific tolerances di to the largest distance among
the accepted simulations. Second, we set the width of the
parameter-specific proposal kernel to half of the standard
deviation of the accepted parameter values. Third, we chose
the starting value of the chain for each parameter as the
accepted simulation with smallest distance. Each chain
was then run for 1000 iterations, and new starting values
were chosen randomly among the accepted calibration simu-
lations for those parameters forwhich no updatewas accepted.
This was repeated until all parameters were updated at least
once.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results

Toy model 1: Normal distribution

We first compared the performance of ABC-PaSS and ABC-
MCMC under a simple model: the normal distribution with
parameters mean (m) and variance (s2). Given a sample of
size n, the sample mean (x) is a sufficient statistic for m, while
both x and the sample variance (S2) are sufficient for s2

(Casella and Berger 2002). For ABC-MCMC, we used both
x and S2 as statistics. For ABC-PaSS, we used only x when
updating m and both x and S2 when updating s2:

We then compared the accuracy between the two algo-
rithms by calculating the total variation distance between the
inferred and the true posteriors (L1 distance from kernel
smoothed posterior based on 10,000 samples). We computed
L1 under a wide range of tolerances to find the tolerance for
which each algorithmhad the best performance (i.e., minimum
L1). As shown in Figure 1, A and C, ABC-PaSS produced amore
accurate estimation form than ABC-MCMC. The two algorithms
had similar performance when estimating s2 (Figure 1, B
and D).

The normal distribution toy model, although simple, is
quite illustrative of the nature of the improvement in per-
formance by using ABC-PaSS over ABC-MCMC. Indeed, our
results demonstrate that the slight reduction of the summary
statistics space by ignoring a single uninformative statistic
when updatingm already results in a noticeable improvement
in estimation accuracy. This improvement would not be pos-
sible to attain with classic dimension reduction techniques,
such as partial least squares (PLS), since the information
contained in x and S2 is irreducible under ABC-MCMC.

Toy model 2: GLM

Weexpectourapproach tobeparticularlypowerful formodels
of the exponential family, for which a small number of sum-
mary statistics per parameter are sufficient, regardless of
sample size. To illustrate this, we next compared the perfor-
mance of ABC-MCMC and ABC-PaSS under GLM models of
increasing dimensionality n. For all models, we constructed
the design matrix C such that all statistics are informative for
all parameters, while retaining the total information on the

Figure 1 Performance to infer parameters of a normal distribution. Shown is the average over 50 chains of the L1 distance between the true and
estimated posterior distributions for m (A) and s2 (B) for different tolerances for ABC-MCMC (blue) and ABC-PaSS (red). The dashed horizontal line is the
L1 distance between the prior and the true posterior distribution. (C and D) The estimated posterior distribution for m (C) and s2 (D) using the tolerance
that led to the minimum L1 distance from the true posterior (black). The dashed vertical line indicates the true values of the parameters.
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individual parameters regardless of dimensionality (seeMa-
terials and Methods). For a GLM, a single linear function is a
sufficient statistic for each associated parameter, and this
function can easily be learned from a set of simulations,
using standard regression approaches (see Theorem 2 in
the Appendix). Therefore, for ABC-MCMC, we used all sta-
tistics s; while for ABC-PaSS, we employed Theorem 2 and
used a single linear combination of statistics ti per parame-
ter ui: As above, we assessed performance of ABC-MCMC
and ABC-PaSS by calculating the total variation distance
(L1) between the inferred and the true posterior distribu-
tion. We calculated L1 for several tolerances to find the
tolerance where L1 was minimal for each algorithm (see
Figure 2A for examples with n ¼ 2 and n ¼ 4). Since in
ABC-MCMC distances are calculated in the multidimensional
statistics space, the optimal tolerance increased with higher
dimensionality. This is not the case for ABC-PaSS, because
distances are always calculated in one dimension only
(Figure 2A).

We found that ABC-MCMC performance was good for low
n, but worsened rapidly with increasing number of parame-
ters, as expected from the corresponding increase in the di-
mensionality of statistics space (Figure 2B). For a GLM with
32 parameters, approximate posteriors obtained with ABC-
MCMC differed only little from the prior (Figure 2B). In
contrast, performance of ABC-PaSS was unaffected by
dimensionality and was better than that of ABC-MCMC even
in low dimensions (Figure 2B). These results support that by
considering low-dimensional parameter-specific summary
statistics under our framework, ABC inference remains feasi-
ble even under models of very high dimensionality, for which
current ABC algorithms are not capable of producing mean-
ingful estimates.

Application: Inference of natural selection
and demography

One of the major research problems in modern population
genetics is the inference of natural selection and demographic
history, ideally jointly (Crisci et al. 2012; Bank et al. 2014).
One way to gain insight into these processes is by investigat-
ing how they affect allele frequency trajectories through time
in populations, for instance under experimental evolution.
Several methods have thus been developed to analyze allele

trajectory data to infer both locus-specific selection coeffi-
cients (s) and the effective population size (Ne). The model-
ing framework of these methods assumes Wright–Fisher
(WF) population dynamics in a hidden Markov setting to
evaluate the likelihood of the parameters Ne and s given the
observed allele trajectories (Bollback et al. 2008; Malaspinas
et al. 2012). In this setting, likelihood calculations are feasi-
ble, but very time-consuming, especially when considering
many loci at the genome-wide scale (Foll et al. 2015).

To speed up calculations, Foll et al. (2015) developed an
ABC method (WF-ABC), adopting the hierarchical ABC
framework of Bazin et al. (2010). Specifically, WF-ABC first
estimates Ne based on statistics that are functions of all loci
and then infers s for each locus individually under the inferred
value of Ne: While WF-ABC easily scales to genome-wide
data, it suffers from the unrealistic assumption of complete
neutrality when inferring Ne; which potentially leads to
biases in the inference.

Here we show that by employing ABC-PaSS, Ne and locus-
specific selection coefficients can be inferred jointly, which is
not possible with ABC-MCMC due to high dimensionality of
the summary statistics that is a direct function of the number
of loci considered.

Finding sufficient statistics: All ABC algorithms, including
ABC-PaSS introducedhere, require that statistics are sufficient
for estimating the parameters of a givenmodel. Asmentioned
above, parameter-wise sufficient statistics as required byABC-
PaSS are trivial to find for distributions of the exponential
family. Since many population genetics models do not follow
such distributions, sufficient statistics are known for the most
simple models only. The number of haplotypes segregating in
a sample, for example, is a sufficient statistic for estimating the
population-scaled mutation rate under Wright–Fisher equi-
librium assumptions (Durrett 2008).

Formore realisticmodels involvingmultiple populationsor
population size changes, only approximately-sufficient statis-
tics can be found. Choosing such statistics is not trivial,
however, as too few statistics are insufficient to summarize
the data while too many statistics can create an excessively
large statistics space that worsens the approximation of
the posterior (Beaumont et al. 2002; Wegmann et al. 2009;
Csilléry et al. 2010). Often, such statistics are thus found

Figure 2 Performance to infer parameters of GLM
models. (A) The average L1 distance between the
true and estimated posterior distributions for differ-
ent tolerances for ABC-MCMC (blue) and ABC-PaSS
(red). Solid and dashed lines are for a GLM with two
and four parameters, respectively. (B) The minimum
L1 distance from the true posterior over different
tolerances for increasing numbers of parameters.
(A and B) The dashed line is the L1 distance between
the prior and the posterior distribution.
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empirically by applying dimensionality reduction techniques
to a larger set of statistics initially calculated (Blum et al.
2013).

Fearnhead and Prangle (2012) suggested amethodwhere
an initial set of simulations is used to fit a linear model, using
ordinary least squares that expresses each parameter ui as a
function of the summary statistics s: These functions are then
used as statistics in subsequent ABC analysis. Thus Fearnhead
and Prangle’s approach reduces the dimensionality of statis-
tics space to a single combination of statistics per parameter.
However, the Pitman–Koopman–Darmois theorem states that
for models that do not belong to the exponential family, the
dimensionality of sufficient statistics must grow with increas-
ing sample size, suggesting that multiple summary statistics
are likely required in this case as any locus carries indepen-
dent information for the parameter Ne: A method similar in
spirit but not limited to a single summary statistic per param-
eter is a partial least-squares transformation (Wegmann et al.
2009), which has been used successfully in many ABC appli-
cations (e.g., Veeramah et al. 2011; Chu et al. 2013; Dussex
et al. 2014).

Herewe chose to calculate the per locus statistics proposed
by Foll et al. (2015) and to then apply and empirically com-
pare both methods to reduce dimensionality for this particu-
lar model. Before dimension reduction, however, we applied
a multivariate Box–Cox transformation (Box and Cox 1964)
to increase linearity between statistics and parameters, as
suggested by Wegmann et al. (2009). To decide on the re-
quired number of PLS components, we performed a leave-
one-out analysis implemented in the R package “PLS” (Mevik
and Wehrens 2007). In line with the Pitman–Koopman–
Darmois theorem, a small number (two) of PLS components
were sufficient for s, but many more components contained
information about Ne; for which many independent obser-
vations are available (Supplemental Material, Figure S1).
However, the first PLS component alone explained already
two-thirds of the total variance than can be explained with
up to 100 components, suggesting that additional compo-
nents add, besides information, also substantial noise. We
thus chose to evaluate the accuracy of our inference with

three different sets of summary statistics: (1) a single linear
combination of summary statistic for each s and Ne chosen
using ordinary least squares, as suggested by Fearnhead and
Prangle (2012) (LC 1/1); (2) two PLS components for s and
five PLS components forNe; as suggested by the leave-one-out
analysis (PLS 5/2); and (3) an intermediate set of one PLS
component for s and three PLS components for Ne (PLS 3/1).

Performance of ABC-PaSS in inferring selection and de-
mography: To examine the performance of ABC-PaSS under
the WF model, we inferred Ne and s on sets of 100 loci simu-
lated with varying selection coefficients. We evaluated the es-
timation accuracy by comparing the estimated vs. the true
values of the parameters over 25 replicate simulations, first
using a single linear combination of summary statistics per
parameter found using ordinary least squares (LC 1/1). As
shown in Figure 3A, Ne was estimated well over the whole
range of values tested. Estimates for s were on average unbi-
ased and accuracy was, as expected, higher for larger Ne (Fig-
ure 3B). Note that since the prior on swas U½0; 1�; these results
imply that our approach estimates Ne with high accuracy even
when the majority of the simulated loci are under strong selec-
tion (90% of loci had Nes.10). Hence, our method allows us
to relax the assumption of neutrality on most of the loci, which
was necessary in previous studies (Foll et al. 2015).

Wenext introducedhyperparameters for thedistributionof
selection coefficients (the so-called DFE). Such hyperpara-
meters are computationally cheap to estimate under our frame-
work, as their updates can be done analytically and do not
require simulations. Following previous work (Beisel et al.
2007; Martin and Lenormand 2008), we assumed that the
distribution of the locus-specific s is realistically described by
a truncated GPD with location m ¼ 0 and parameters shape s
and scale x (Figure S2).

Wefirst evaluated the accuracy of estimating x andswhen
fixing the value of the other parameter and found that both
parameters are well estimated under these conditions (Fig-
ure 3, C and D, respectively). Since the truncated GPD
of multiple combinations of x and s is very similar, these
parameters are not always identifiable. This renders the

Figure 3 Accuracy in inferring demographic and selection parameters. Results were obtained with ABC-PaSS using a single combination of statistics for
Ne and each s (LC 1/1). Shown are the true vs. estimated posterior medians for parameters Ne (A), s per locus (B), and x and s of the generalized Pareto
distribution (C and D, respectively). Boxplots summarize results from 25 replicate simulations, each with 100 loci. Uniform priors over the whole ranges
shown were used. (A and B) Ne assumed in the simulations is represented as a color gradient of red (low Ne) to yellow (high Ne). (C and D) Parameters m
and Ne were fixed to 0 and 103; respectively; log10s was fixed to 21 (C); and x was fixed to 0.5 (D).
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accurate joint estimation of both parameters difficult (Figure
S3, B and C). However, despite the reduced accuracy on the
individual parameters, we found the overall shape of the GPD
to be well recovered (Figure S3, D–F). Also,Ne was estimated
with high accuracy for all combinations of x and s (Figure
S3A).

We then checked whether the accuracy of these estimates
can be improved by using summary statistics of higher di-
mensionality. Specifically, we repeated these analyses with a
high-dimensional set (PLS 5/2) consisting of the first five and
thefirst twoPLS components forNe and each s, respectively, as
well as a set of intermediate dimensionality (PLS 3/1) con-
sisting of the first three PLS components for Ne and only the
first PLS component for each s. Overall, all sets of summary
statistics compared here resulted in very similar performance
as assessed both visually (compare Figure 3, Figure S4, and
Figure S5 for LC 1/1, PLS 5/2, and PLS 3/1, respectively)
and by calculating the both root mean square error (RMSE)
and Pearson’s correlation coefficient between true and
inferred values (Table S1). Interestingly, the intermediate
set (PLS 3/1) performed worst in all comparisons, while
the differences between LC 1/1 and PLS 5/2 were very subtle,
particularlywhenuniformpriorswere used on all s (simulation
set 1; Table S1). However, in the presence of hyperparameters
on s, resultsweremore variable (simulation sets 2–4; Table S1)
and we found the effective population size Ne to be consis-
tently overestimated when using high-dimensional summa-
ries such as PLS 5/2 (simulation sets 2–4; Table S1). These
results suggest that while our analysis is generally rather
robust to the choice of summary statistics, the benefit of
extra information added by additional summary statistics
is offset by the increased noise in higher dimensions. We
expect that robustness of results to the choice of summary
statistics will be model dependent and recommend that the
performance of multiple-dimension reduction techniques
should be evaluated in future applications of ABC-PaSS like
we did here.

Analysis of infuenza data: We applied our approach to data
from a previous study (Foll et al. 2014)where cultured canine

kidney cells infected with the influenza virus were subjected
to serial transfers for several generations. In one experiment,
the cells were treated with the drug Oseltamivir, and in a
control experiment they were not treated with the drug. To
obtain allele frequency trajectories of all sites of the infuenza
virus genome (13.5 kbp), samples were taken and sequenced
every 13 generations with pooled population sequencing.
The aim of our application was to identify which viral muta-
tions rose in frequency during the experiment due to natural
selection and which due to drift and to investigate the shape
of the DFE for the control and drug-treated viral populations.

Following Foll et al. (2014), we filtered the raw data to
contain loci for which sufficient data were available to calcu-
late the summary statistics considered here (see Materials
and Methods). There were 86 and 42 such loci for the control
and drug-treated experiments, respectively (Figure S6).

We then employed ABC-PaSS to estimate Ne; s per locus
and the parameters of the DFE, first using a single summary
statistic per parameter (LC 1/1). We obtained a low estimate
for Ne (posterior medians 350 for drug-treated and 250 for
control influenza; Figure 4A), which is expected given the
bottleneck that the cells were subjected to in each transfer.
While we obtained similar estimates for the x parameters for
the drug-treated and for the control influenza (posterior me-
dians 0.44 and 0.56, respectively), the s parameter was es-
timated to be much higher for the drug-treated than for the
control influenza (posterior medians 0.047 and 0.0071, re-
spectively; Figure 4B). The resulting DFE was thus very dif-
ferent for the two conditions: The DFE for the drug-treated
influenza had a much heavier tail than the control (Figure
4C). Posterior estimates for Nes per locus also indicated that
the drug-treated influenza had more loci under strong posi-
tive selection than the control (19% vs. 3.5% of loci had
PðNes. 10Þ. 0:95; respectively; Figure 4D and Figure S6).
Almost identical results were also obtained when using
higher-dimensional summary statistics based on PLS com-
ponents (Figure S7). These results indicate that the drug
treatment placed the influenza population away from a fit-
ness optimum, thus increasing the number of positively
selected mutations with large effect sizes. Presumably these

Figure 4 Inferred demography and selection for experimental evolution of influenza. We show results for the no-drug (control) and drug-treated
influenza in gray and orange, respectively. Shown are the posterior distributions for log10Ne (A) and log10s and x (B). In C, we plotted the modal DFE
with thick lines by integrating over the posterior of its parameters. The thin lines represent the DFEs obtained by drawing 100 samples from the posterior
of s and x. Dashed lines in A and C correspond to the prior distributions. In D, the posterior estimates for Nes per locus vs. the position of the loci in the
genome are shown. Open circles indicate nonsignificant loci whereas solid, thick circles indicate significant loci [PðNes.10Þ.0:95, dashed line].
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mutations confer resistance to the drug, thus helping influ-
enza to reach a new fitness optimum.

Our results for influenza were qualitatively similar to those
obtained by Foll et al. (2014). We obtained slightly larger
estimates for Ne (350 vs. 226 for drug-treated and 250 vs.
176 for control influenza). Our estimates for the parameters
of the GPDwere substantially different from those of Foll et al.
(2014) but resulted in qualitatively similar overall shapes of
the DFE for both drug-treated and control experiments. These
results underline the applicability of our method to a high-
dimensional problem. In contrast to Foll et al. (2014) who
performed estimations in a three-step approach, combining a
moment-based estimator for Ne; ABC for s, and a maximum-
likelihood approach for the GPD, our Bayesian framework
allowed us to perform joint estimation and to obtain posterior
distributions for all parameters in a single step.

Discussion

Due to the difficulty to find analytically tractable likelihood
solutions, statistical inference is often limited to models that
made substantial approximations of reality. To address this
problem, so-called likelihood-free approaches have been
introduced that bypass the analytical evaluation of the likeli-
hood functionwith computer simulations.While full-likelihood
solutions generally have more power, likelihood-free methods
havebeenused inmanyfields of science toovercomeundesired
model assumptions.

Here we developed and implemented a novel likelihood-
free,MCMC inference framework that scales naturally to high
dimensions. This framework takes advantage of the observa-
tion that the information about one model parameter is often
contained in a subset of the data, by integrating two key
innovations: First, only a single parameter is updated at a
time, and theupdate is acceptedbasedona subset of summary
statistics sufficient for this parameter. We proved that this
MCMC variant converges to the true joint posterior distribu-
tion under the standard assumptions.

Since simulations are accepted based on lower dimension-
ality, our algorithm proposed here will have a higher accep-
tance rate than other ABC approaches for the same accuracy
and hence require fewer simulations. This is particularly
relevant for cases in which the simulation step is computa-
tionally challenging, such as for population genetic models
that are spatially explicit (Ray et al. 2010) or require forward-
in-time simulations (as opposed to coalescent simulations)
(Hernandez 2008; Messer 2013).

Wedemonstrated the power of our framework through the
application to multiple problems. First, our framework led to
more accurate inference of the mean and standard deviation
of a normal distribution than standard likelihood-freeMCMC,
suggesting that our framework is already competitive in
models of low dimensionality. In high dimensions, the benefit
was even more apparent. When applied to the problem of
inferring parameters of a GLM, for instance, we found our
framework to be insensitive to the dimensionality, resulting in

a performance similar to that of analytical solutions both in
lowand inhighdimensions. Finally,weusedour framework to
address the difficult and high-dimensional problem of infer-
ring demography and selection jointly from genetic data.
Specifically, and through simulations and an application to
experimental data, we show that our framework enables the
accurate joint estimation of the effective population size, the
distribution of fitness effects of segregating mutations, and
locus-specific selection coefficients from allele frequency
time-series data.

More generally, we envision that any hierarchical model
withgenome-wideandlocus-specificparameterswouldbewell
suited for application of ABC-PaSS. Such models may include
hyperparameters like genome-wide mutation and recombina-
tion rates or parameters regarding the demographic history,
along with locus-specific parameters that allow for between-
locus variation, for instance in the intensity of selection, mu-
tation, recombination, or migration rates. Among these, the
prospect of jointly inferring selection and demographic history
even from data of a single time point is particularly relevant,
since it allows for the relaxation of a frequently used yet
unrealistic assumption that neutral loci can be identified a
priori. In addition, such a joint estimation allows for hierarchi-
cal parameters to aggregate information across individual loci
to increase estimation power, for instance for the inference of
locus-specific selection coefficients by also jointly inferring pa-
rameters of the DFE, as we did here.
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Appendix

Proof for Theorem 1. The transition kernel Kðu; u9Þ associated with the Markov chain is zero if u and u9 differ in more than one
component. If u2i ¼ u92i for some index i, then we have

K�u; u9� ¼ piri
�
u; u9

�þ �12 rðuÞ�du�u9�; (A1)

where riðu; u9Þ ¼ qiðu9juÞℙ
�
Ti ¼ ti;obs

��u9�hðu; u9Þ; du is the Dirac mass in u; and

rðuÞ ¼
Xn
i¼1

pi

Z
ri

�
u; u9

�
du9ig:

We may assume without loss of generality that

p
�
u9
�
qi
�
u
��u9�

pðuÞqi
�
u9ju� # 1:

From (1) we conclude

ℙðs ¼ sobsjuÞ ¼ ℙ
�
Ti ¼ ti;obsju

�
giðsobs; u2iÞ:

Setting

c :¼
�Z

ℙðs ¼ sobsjuÞpðuÞdu
�21

and keeping in mind that u2i ¼ u92i and hðu9; uÞ ¼ 1; we get

pðujs ¼ sobsÞri
�
u;
��u9� ¼ pðujs ¼ sobsÞqi

�
u9ju

�
ℙ
�
Ti ¼ ti;obs

��u9�h�u; u9�
¼ c  ℙðs ¼ sobsjuÞpðuÞqi

�
u9ju

�
ℙ
�
Ti ¼ ti;obs

��u9�p�u9�qi�u��u9�
pðuÞqi

�
u9ju�

¼ c  ℙ
�
Ti ¼ ti;obsju

�
giðsobs; u2iÞℙ

�
Ti ¼ ti;obs

��u9�p�u9�qi�u��u9�
¼ c  ℙ

�
Ti ¼ ti;obs

��u9�gi�sobs; u92i

�
ℙ
�
Ti ¼ ti;obsju

�
p
�
u9
�
qi
�
u
��u9�

¼ c  ℙ
�
s ¼ sobs

��u9�ℙ�Ti ¼ ti;obsju
�
p
�
u9
�
qi
�
u
��u9�h�u9; u�

¼ p
�
u9js ¼ sobs

�
ri

�
u9; u

�
:

From this and Equation A1 it follows readily that the transition kernel Kð�; �Þ satisfies the detailed balanced equation

pðujs ¼ sobsÞK
�
u; u9

� ¼ p
�
u9
��s ¼ sobs

�K�u9; u�
of the Metropolis–Hastings chain.

h

Suppose that, given the parameters u; the distribution of the statistics vector s is multivariate normal according to the GLM

s ¼ cþ Cuþ e;

where e � Nð0;SsÞ and for any m3 n matrix C: If the prior distribution of the parameter vector is u � Nðu0;SuÞ; then the
posterior distribution of u given sobs is

ujsobs�NðDd;DÞ (A2)
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with D ¼ ðC9S21
s C þ S21

u Þ21 and d ¼ C9S21
s ðsobs 2 cÞ þ S21

u u0 (see, e.g., Leuenberger and Wegmann 2010). We have the
following:

Theorem 2. Let ci be the ith column of C and bi ¼ S21
s ci: Moreover, let

ti ¼ tiðsÞ ¼ b9is:

Then ti is sufficient for the parameter ui and the collection of statistics

t ¼ ðt1; . . . ; tnÞ9

yields the same posterior (A2) as s:
In practice, the design matrix C is unknown. We can perform an initial set of simulations from which we can infer that

Covðs; uiÞ ¼ VarðuiÞci:

A reasonable estimator for the sufficient statistic ti is then t̂i ¼ bb9is with

b̂i ¼ Ŝ
21
s Ŝsui ; (A3)

where Ŝs and Ŝsui for i ¼ 1; . . . ; n are the covariances estimated, for instance, using ordinary least squares.
Proof for Theorem 2. It is easy to check that the mean of ti is mi ¼ t9iðCuþ cÞ and its variance is s2

i ¼ ti9Ssti9: The covariance
between s and t is given by

Sst ¼ Eððs2Cu2 cÞðti 2miÞÞ
¼ Eðee9tiÞ ¼ Ssti

Consider the conditional multinormal distribution sjti: Using the well-known formula for the variance and the mean of a
conditional multivariate normal (see, e.g., Bilodeau and Brenner 2008), we get that the covariance of sjti is given by

Ssjt ¼ Ss2s22
i SstS9st

and thus is independent of u: The mean of sjti is

msjt ¼ Cuþ cþ s22
i Sstti9ðs2Cu2 cÞ:

The part of this expression depending on ui is �
I2

Sstiti9
ti9Ssti

�
ciui:

Inserting ti ¼ S21
s ci we obtain  

  ci 2
SsS

21
s cici9S

21
s ci

ci9S
21
s SsS

21
s ci

!
ui ¼ ðci 2 ciÞui ¼ 0:

Thus the distribution of sjti is independent of ui and hence ti is sufficient for ui:
To prove the second part of Theorem 2, we observe that t is given by the linear model

t ¼ C9S21
s s ¼ C9S21

s Cuþ C9S21
s cþ h

with h ¼ C9S21
s e: Using CovðhÞ ¼ C9S21

s C we get for the posterior variance�
C9S21

s

�
C9S21

s C
�21

C9S21
s C þ S21

u

�21

¼
�
C9S21

s C þ S21
u

�21 ¼ D:

Similarly we see that the posterior mean is Dd:

h
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B C D

log10Ne log10σ
χ

σ χ
Nes

P (Nes > 10) > 0.95
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R2

log10Ne s
log10Ne s

Ne s U [0.5, 4.5] U [0, 1]
s σ χ χ U [−0.2, 1] σ = 0.01

log10σ U [−2.5,−0.5] χ = 0.5
σ χ log10Ne = 3 R2
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