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ABSTRACT: We show that the statistical analysis of photon
counts in depolarized dynamic light scattering experiments
allows for the accurate characterization of the rotational
Brownian dynamics of particles. Unlike photon correlation
spectroscopy, the technique is accurate even at low temporal
resolution and enables discontinuous data acquisition, which
offers several advantages. To demonstrate the usefulness of the
method, we present a case study in which we analyze aqueous
suspensions of tunicate cellulose nanocrystals and silica
particles, and discuss aspects that are specific to particle sizing.

■ INTRODUCTION

Micro- and nanoparticles are found in both academic and
industrial laboratories in many different forms, including
powders, dispersions, colloidal suspensions, and others.1 They
are used as the basis for composite materials, paints and inks,
mining solutions, soaps and detergents, abrasives and polishes,
catalysts, cements, energy devices, food products, electronics,
textiles, biomedicine, pharmaceutical diagnostics, and ther-
apeutics. Given that many physical, physicochemical, and
biological phenomena are influenced by particle size (dis-
tribution) and interparticle interactions, exploring their
fundamental aspects is of paramount importance, and it is
without a doubt that advances in understanding the
fundamental properties of (nano)particles have in many
instances been driven by the development of the experimental
techniques available.
Scattering techniques, which probe the characteristic features

and principles of structure and dynamics at the nanometer
scale, have been at the forefront of soft matter research.2

Arguably, the most often used technique is dynamic light
scattering (DLS), also known as photon correlation spectros-
copy (PCS) or quasielastic light scattering. The popularity of
this technique is likely rooted in the fact that a wide range of
time- and length-scales can be covered and that the procedure
of data collection itself is straightforward. In an experiment, a
collimated coherent laser beam illuminates an ensemble of
particles that are subjected to Brownian motion, and the
interference of the scattered waves forms a grainy random
pattern. This is the so-called speckle pattern, and the grains of
this pattern, which are spatially coherent domains, are called
speckles. The constant movement of the particles results in a
continuously evolving interference pattern, which is described

by the appearance and disappearance of optical maxima and
vortices throughout the pattern, and appears as a chaotic
fluctuation in the brightness of a given speckle. The statistical
properties of these random temporal fluctuations carry
quantitative information about the Brownian dynamics.3,4

The optical anisotropy of particles adds another level of
complexity to DLS, which can be exploited in depolarized
dynamic light scattering (also referred to as dynamic
depolarized light scattering, DDLS).5 Depolarization is a direct
consequence of anisotropic polarizability. In the case of elastic
scattering, the induced dipole moment of an anisotropic
particlewhose polarizability is dependent on its orientation
with respect to the laser’s polarizationwill contain a
component that is perpendicular to the laser’s polarization.
The particle’s orientation uniquely determines the amplitude of
this perpendicular component, and if the particle turns, the
amplitude will change accordingly. Thus, upon rotational
diffusion, the amplitude of depolarized scattering will fluctuate,
following the particle’s orientation and optical anisotropy. As a
result, DDLS can provide direct access to probing rotational
Brownian dynamics. This provides opportunities that DLS does
not offer, and DDLS has been used for characterizing a wide
range of particle systems (Supporting Information, DDLS and
particle system). We have also shown recently that DDLS can
be employed to accurately characterize the number-averaged
size distribution of nanoparticles,6 and it has been demon-
strated recently by others that the concept behind DDLS can
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be successfully adapted to analyze partially depolarized
scattering.7−9

Although PCS has been used for 50 years and is considered
to be a mature technique, certain limitations persist.10 High-
standard instruments are delicate and costly; the photon
detector unit must be able to perform at a high speed, with
sampling times within the range of 0.1−1 ns, with a suitably low
signal-to-noise ratio, and without signal-processing artefacts.
The choice of the correlator unit is crucial. Although many
commercial digital correlators are available, most operate in
ways that are different and far from the ideal mathematical
concept,11,12 and noise and dead time must be carefully
considered.13 Multiangle studies either require a precision
goniometer or multiple detectors and correlators.14 Given that,
in the case of DDLS, the correlation can show a decay that is
several orders of magnitude faster than that in DLS, these
requirements become even more demanding. The necessary
high temporal resolution is not without consequences, and to
mitigate the impact of shot noise and detector after-pulsing, the
scattering signal must be split and cross-correlated using two
independent detector and correlator units.
Here, we propose an alternative that can eliminate these

problems. We demonstrate that the analysis of the statistical
moments of the photon count distribution is suitable for
characterizing rotational and translational Brownian dynamics,
although the smallest temporal resolution (∼10 Hz) of the
experiment is 8 orders of magnitude smaller than the one
typically used in PCS (∼1 GHz). To the best of our knowledge,
this approach is new to DDLS. We present case studies
addressing the particle size analysis of dilute aqueous
suspensions of (1) tunicate cellulose nanocrystals (tCNCs)
isolated from club sea squirts (Styela clava) and (2) silica
particles synthesized from tetraethyl orthosilicate (TEOS),
SiO2-A, -B, -C, and -D, with a nominal diameter of around 100,
200, 300, and 400 nm, respectively. While tCNCs exhibit a
highly anisotropic shape and are dominantly crystalline, the
SiO2 particles are almost spherical and amorphous. Small
deviations from the spherical shape and the internal
heterogeneities of the mass density, however, result in
anisotropic polarizability and lead to appreciable depolarized
light scattering at low scattering angles.

■ MATERIALS AND METHODS
tCNCs. tCNCs were isolated from Styela clava, following a

procedure described in detail elsewhere.15 After hydrolysis, the
isolated tCNCs were sonicated for 8 h and kept suspended at a
concentration of ∼1 mg/mL in deionized water. For light
scattering studies, the suspension was diluted until multiple
scattering was found to be negligible.
Silica Particles. The SiO2 particles were synthesized

following a procedure based on the Stöber synthesis.16 To
obtain the SiO2-A particles, a mixture of ethanol (162 mL),
water (18 mL, MilliQ grade), and ammonium hydroxide (7.8
mL) was transferred to a flask, and heated to 70 °C with the
help of an oil bath, the mixture was stirred with a magnetic
stirrer and equilibrated for 1 h before TEOS (22 mL) was
added. The mixture was then stirred for several hours.
Afterward, the ethanol was removed from the suspension by
evaporation under a reduced atmosphere. Following the
removal of the ethanol, the suspension was transferred to a
dialysis tube, and submersed in a large beaker filled with water.
To obtain the SiO2-B particles, a mixture of ethanol (161 mL),
water (13.5 mL, MilliQ grade), and ammonium hydroxide (7.8

mL) was transferred to a flask, and heated to 50.6 °C with the
help of an oil bath, while being stirred with a magnetic stirrer.
Next, TEOS (22.2 mL) was transferred rapidly to the round
bottom flask, and the mixture was stirred for several hours.
Afterward, the ethanol was removed from the suspension by
evaporation under a reduced atmosphere. Following the
removal of the ethanol, the suspension was transferred to a
dialysis tube, and submersed in a large beaker filled with water.
The water was continuously stirred and refreshed over the
course of a few days. To obtain the SiO2-C and -D particles, a
mixture of water (13.5 mL), ammonium hydroxide (40.9 mL),
and EtOH (174 mL) was heated to 60 °C and equilibrated for
1 h, before TEOS (21 mL, SiO2-B and 23 mL, SiO2-C) was
added. The mixture was stirred overnight, and then the
suspension was left to cool to room temperature. The
suspensions were washed and centrifuged at 5000g for 20
min and were finally redispersed in water. The ammonium
hydroxide (25% as solution, Honeywell), ethanol (HPLC-
grade, Honeywell), and TEOS (99%, Merck) were used as
received.

Light Scattering. Given that the suspensions might contain
some agglomerates and bundles, the suspensions (silica and
tCNCs) were left to stand for over 48 h in a vial, and when
collecting light scattering data, a sample was taken from the top
of the vial. To ensure that in our experiments multiple
scattering did not contribute either to depolarization or to the
dynamics of speckle fluctuations, multiple scattering was
minimized by using sufficiently dilute suspensions of the
particles, and thus each sample was prepared at a low
concentration where multiple scattering was negligible. To
confirm that contributions from multiple scattering was
negligible or at most not significant, we performed conventional
DLS (non-depolarized) measurements using a three dimen-
sional (3D)-cross correlation scheme (Supporting Information,
multiple scattering).17 Data were collected at constant
temperature (21 °C) using a commercial goniometer instru-
ment (3D LS Spectrometer; LS Instruments AG, Switzerland).
The primary beam was formed by a linearly polarized and
collimated laser beam (Cobolt 05-01 diode pumped solid state
laser, λ = 660 nm, Pmax = 500 mW), and the scattered light was
collected by single-mode optical fibers equipped with integrated
collimation optics. With respect to the primary beam,
depolarized scattering was observed via cross-polarizers. The
incoming laser beam passed through a Glan−Thompson
polarizer with an extinction ratio of 10−6, and another Glan−
Thompson polarizer, with an extinction ratio of 10−8, was
mounted in front of the collection optics. For the SiO2
particles, data were collected at a scattering angle of θ = 30°,
and for the tCNCs, data were collected at scattering angles of
15° ≤ θ ≤ 150°.

Photon Correlation. To construct the intensity autocorre-
lation function, g2(t), the collected light was coupled into two
APD detectors via laser-line filters (Perkin Elmer, single photon
counting module), and their outputs were fed into a two-
channel multiple-tau correlator. To improve the signal-to-noise
ratio and to eliminate the impact of detector after-pulsing on
g2(t) at early lag times below 1 μs, these two channels were
cross-correlated.

Speckle Visibility and Photon Counting. Without any
modifications made, the photon counts of one of the APD
detectors were obtained through the same detection line as
above, at a sampling rate of ∼9.5 Hz (0.105 s integration time).
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Transmission Electron Microscopy. Micrographs were
taken with a Tecnai Spirit electron microscope (FEI), operating
at 120 kV. All images were recorded at a resolution of 2048 ×
2048 pixels (Veleta CCD camera, Olympus). Prior to imaging,
the SiO2 particles were diluted with ethanol (99.98%, VWR
chemicals) and 5 μL of this mixture was drop cast onto a
carbon-film square mesh copper grid (CF-300-Cu; Electron
Microscopy Sciences) and left to dry under ambient air. For
particle characterization, the images were bi-leveled in ImageJ
(National Institutes of Health, NIH) using the default
threshold method (IsoData-based variation).18 The binary
images were analyzed by a built-in routine (Analyze Particles)
without separation methods and constraints. Prior to imaging,
the suspension of tCNCs was diluted to 0.01 mg/mL, sonicated
for 30 min, and one drop of the dispersions was evaporated on
a carbon-coated TEM grid in a ventilated oven at 60 °C for 1 h.

■ THEORY
Given that the energy of light is quantized into discrete
portions, detecting the intensity of scattered light is never
instantaneous, but involves integration over a finite time
interval τ > 0. Furthermore, detecting a photon is intrinsically
random, and the consequence of this is that the number of
photons detected during a fixed length of τ is a random
variable. Even if the scattered light does not fluctuate at all and
its intensity is constant, the photon count distribution follows a
Poisson distribution. This is due to the uncertainty associated
with the measurement and inherent to the quantized nature of
light.19 This phenomenon is referred to as shot noise.
In the presence of Brownian motion and the consequent

speckle fluctuations, the photon count distribution becomes
broader than a Poisson distribution. It can be shown that the
coefficient of variation (δ) of the photon count distribution
defined as the standard deviation normalized by the meanis
the sum of two independent terms3,19

δ τ
τ τ

τ τ τ
=

⟨ ⟩ − ⟨ ⟩
⟨ ⟩
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+
n n

n n M
( )

( ) ( )
( )

1
( )

1
( )

2 2

(1)

The coefficient of variation is a dimensionless number that
quantifies the degree of variability relative to the mean. The first
term of the right sidewhere ⟨n(τ)⟩ is the average number of
photons counted during a series but otherwise fixed sampling
interval τcorresponds to shot noise. The second termthe
so-called interference termcorresponds uniquely to the
random fluctuation of the speckles. It is well-known that the
rate of fluctuation of the depolarized speckles carries
information about rotational Brownian dynamics, and hence
it can be used to describe the dimensions of the particles
suspended.5 The rate of the speckle fluctuations is usually
quantified by PCS and via the intensity autocorrelation function
g2(t) and its relaxation rate. The relaxation rate is inversely
proportional to the coherence time Tc (also frequently referred
to as the correlation time) of the speckle fluctuation. Tc
represents the length of the period over which the scattered
light may be considered to be coherent. It can be shown that
when τ ≫ Tc, that is, the integration time is much larger than
the coherence time of the speckle fluctuation, the interference
term in eq 1 is given by20

τ τ≅M T( ) / c (2)

The inaccuracy of eq 2 is smaller than 5% when τ/Tc > 10,
smaller than 1% when τ/Tc > 50, and smaller than 0.5% when

τ/Tc > 100. Thus, M(τ) ≅ τ/Tc is in fact a measure of the
average number of coherent time intervals included within τ.
When τ ≫ Tc, the shot noise is negligible because ⟨n(τ)⟩ ≫
M(τ), and the corresponding photon count distribution
essentially follows a Gaussian distribution20

τ
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(3)

where μ = ⟨n(τ)⟩ and σ2 = ⟨n(τ)⟩2·M(τ)−1. Consequently
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≅ ⟨ ⟩
M
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2 (4)

To summarize, the coefficient of variation (δ) can be
considered as a measure of the relative visibility of individual
speckles, hence the name “speckle-visibility”. The visibility of a
speckle is proportional to the intensity contrast between bright
and dark speckles. Given that the speckle contrast observed is
inversely proportional to the integration time, the Brownian
dynamics can be characterized by analyzing the photon count
distribution of the scattered light.
There are some criteria for this analysis. The coherence time

Tc of the speckle fluctuationdefined by Brownian dynamics
and the angle of scatteringpartially stipulates the exper-
imental parameters required for a successful statistical analysis.
Generally, the overall length of the photon trace (t) should be
considerably longer than the integration time (τ), and the
sampling time should be considerably longer than the
coherence time: t ≫ τ ≫ Tc. Considering the latter, if τ >
50 Tc, eq 2 is accurate within 1%, and therefore this criterion is
easily fulfilled. The other condition ensures that the size of the
sample is sufficiently large and statistically representative. We
define a sample as a finite set of photon counts collected within
the integration time τ. A sample has s = t/τ elements, where s is
the sample size. The coefficient of variation is always estimated
from a finite sample, which is, in our case, a stream of photon
counts consisting of s > 2 elements.
When considering what should be the overall size of a

sample, one must keep in mind that probabilities only give the
odds of (complementary) events. Accordingly, one ought to
seek a compromise between the expected ranges of accuracy
and uncertainty and the amount of experimental evidence
collected. The accuracy and precision of determining the
coherence time of the speckle fluctuation are ultimately dictated
by those of determining the coefficient of variation of the
photon counts. The term “accuracy” refers to the closeness of
an estimate to the true value (or population value), and the
term “precision” refers to the degree of agreement in a series of
estimates (Figure SI1).
To determine the influence of the sample size on our

statistical analysis, we derived the probability density function
(PDF) of the coefficient of variation as a function of sample
size s (δs), which is also known as the sampling distribution of
the coefficient of variation. We began with McKay’s
approximation.21,22 This approximation addresses finite-size
samples drawn randomly from a normally distributed
population, and defines a variable Ks as the following function
of the sample statistic

δ δ
δ

δ
δ
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where δ and δs are the population and sample coefficients of
variation, respectively, and s is the sample size. McKay showed
that when δ < 1/3, the PDF of Ks can be described by a central
χ2-distribution with s − 1 degrees of freedom
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The value limiting δ ensures that the occurrence of negative
numbers has practically zero chance, that is
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The exclusion of negative numbers is fully consistent with
photon counting. To calculate the PDF of the sample
coefficient of variation p(δs), we transform McKay’s approx-
imation23
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After evaluating eq 8, we obtained the sampling distribution of
the coefficient of variation of Gaussian variables
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where δ is the true value (or population parameter), and s is the
sample size. We tested the validity of eq 9 against independent
computational experiments using pseudorandom numbers. In
the Supporting Information, we provide a detailed analysis of
the coefficient of variation estimated from a finite set of samples
(accuracy and precision of the coefficient of variation). We
found excellent agreement between the theory (eq 9) and the

results of the computational experiments (Figures SI2 and SI3),
and therefore we were confident in applying it further to
estimate the expectable accuracy and precision as a function of
the sample size. In general, one can collect a sufficient amount
of experimental evidence in two ways. One can collect
numerous samples of identical size (e.g., s = 25, 10 times)
and use their mean value. It can be shown that (eqs 1−6 of SI)
the expected sample mean approaches the true value fast
(Figure SI4a), and the expected range of accuracy is already
within 3% when the samples have only 10 elements (Figure
SI4c). At this value, the uncertainty is, however, relatively high
(Figure SI4b), because the distribution of the coefficient of
variation is still broad (Figure SI3). To arrive within 1%
accuracy, on average a sample of s > 26 elements is sufficient,
and the precision is 14% at this value.
We also considered the particular case when one single

sample is collected, and we were interested in the expectable
accuracy and precision of the results as a function of its size. As
anticipated, when the sample size increases, the probability of
accuracy increases (Figure SI5a). For instance, the probability is
over 0.9 for finding accuracy within 10% when the sample size
is larger than 150. To arrive at a probability of 0.9 inside the 1%
interval, the sample size must be 100 times larger. To achieve a
probability of 0.99 inside the 1% interval, the sample size must
have more than 36 000 elements. Considering photon counting
experiments, if τ = 1 μs, this bias and sample size would require
a less than 0.4 s long photon trace, which is short indeed. We
addressed this the other way around as well, that is, we
determined the range of accuracy in which δs is expected to fall
within a given probability as a function of the sample size.
Figure SI5b shows that the accuracy increases as the sample size
increases. For example, when the sample size is larger than 147,
δs is close to δ within 10% with a 0.9 probability, whereas a 0.99
probability requires a sample size that is larger than 400.
We note that eq 9 provides the starting point if one was to

quantify the propagation of uncertainty that originates from the
statistical fluctuations in determining any function of δs. If, for
example, one is interested in the accuracy and precision of
determining Tc beyond the commonly used small-error
approximation, the general casethe PDF of Tc as a function
of sample sizecan be easily obtained by using s = t/τ and δ =
Tc/τ, and by applying again the rule of transforming random

Figure 1. (a) Schematic representation of the simple algorithm used for obtaining photon counts at different integration times from a single trace
sampled with τ time. When τ ≫ Tc, any ni and nj are uncorrelated and independent of one another. Using this algorithm, the sample size decreases
systematically as the integration time increases. (b) The probability density distribution of photon counts constructed at six integration times (log−
lin scale). f(n) × dn quantifies the probability that the photon count number is found in dn interval about n. The depolarized scattering from a dilute
aqueous suspension of tCNCs was observed at θ = 150°.
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variables. By having the sampling distribution at hand, the
expectable accuracy and precision of Tc can be calculated in the
same manner as that for δ and for any sample size. Naturally,
the same is true for Tc

−1 and the hydrodynamic radius.

■ RESULTS

We collected photons using a commercial instrument designed
and built for correlation spectroscopy. The low concentration
and the nonfocused beam used in our experiments ensured that
the speckle fluctuations were independent of one another.24

There was only one available time resolution to count photons.
The sampling rate was relatively low, ∼9.5 Hz, which
corresponds to an integration time of τ = 0.105 s. Accordingly,
we had to collect photons during relatively long measurements.
Photons from tCNCs were collected for t = 300 s and those
from SiO2, for t = 600 s. These lengths defined maximum
sample sizes of 2857 and 5714, respectively. Photon traces with
2τ, 3τ, 4τ, and so forth were constructed as illustrated in Figure
1a. Figure 1b shows the influence of the integration time on the
probability density distribution of photon counts. The mean
value is proportional to the integration time, whereas the
relative width of the distribution decreases with τ.

tCNCs. Figure 2a shows a part of a photon trace of
depolarized light scattering from a dilute aqueous suspension of
tCNCs. Indeed, as is predicted by eqs 1−4, the distributions of
photon counts followed normal distributions, and the
coefficient of variation δ decreased with integration time
(Figure 2b−d).
Following eq 4, the dynamics of Brownian motion can be

determined via the dependence of δ on τ. Figure 2e,f shows that
M was linearly proportional to τ. Via eq 2 and a linear
regression, we determined a coherence time of Tc = 1.04 ms.
Figure 2f shows M as a function τ computed over 3 orders of
magnitude. We found that the linear relationship was valid over
a wide range, and the agreement between theoretical prediction
and experimental evidence was preserved up to τ ≈ 20 s
(Log10[τ(s)] = 1.3). Above this value, however, some deviation
was appreciable. Given that the sample size was systematically
decreasing with increasing τ, we attribute this deviation to
statistical fluctuations.
To probe the scattering-angle dependence of the observed

Brownian dynamics, we collected photon traces at several
scattering angles (Figure 2g). The relaxation rate corresponding
to translation diffusion was found to be proportional to q2,
whereas the relaxation rate of the speckle fluctuations

Figure 2. Analysis of photon counts of depolarized scattering from an aqueous suspension of tCNCs. (a−f) the scattering angle was θ = 150°. (a)
Plot showing the numbers of photons counted over 45 s with τ = 0.105 s integration time. (b−d) Distributions of photon counts obtained at three
different integration times. The dashed lines show unadjusted Gaussian functions corresponding to the mean and the variance of the respective
photon counts. The numbers typed in italic are the coefficients of variation of the photon counts (eq 1). (e) Plot of M as a function of τ (symbol)
and the linear regression to the data pairs. (f) Plot of the logarithms of M and τ on an extended range (0.105 s ≤ τ ≤ 100.5 s). The solid line is
redrawn from panel (e), and the dashed line is the extrapolation of the solid line. (g) Plot showing the q2-dependence of the relaxation rate
determined from depolarized speckle-visibility analysis (15° ≤ θ ≤ 150°). Each value of M was obtained as shown in panel (e), and Tc was obtained
using eq 2. The uncertainty (error bar) is given by the standard deviation determined from 10 measurements per angle. The solid line is a linear
regression.
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corresponding to rotational dynamics was expected to be
independent of the scattering angle

= +−T D q D6c
1

R
2

T (10)

The diffusion coefficients, DR and DT, correspond to rotational
(DR) and translational (DT) diffusivity, respectively.

5,25 kB is the
Boltzmann constant, T is temperature, η is the viscosity of the

solvent, q is the momentum transfer = π
λ

θ( )q n sin4
2
, θ is the

scattering angle, λ is the wavelength of the scattered waves, and
n is the refractive index of the suspension. Equation 10 defines a
straight line, and indeed, the results of the statistical analysis of
the photon count traces recorded at several scattering angles
showed this tendency (Figure 2g). The corresponding line has
two independent parameters: a slope and an intercept, which
relate to the translational and rotational diffusivities, which in
turn are related to the dimensions of the tCNCs. The diffusion
coefficients of long and straight rods can generally be expressed
by a common form26,27

πη
=D

k T L W
L

3 ln( / )
R

B
3 (11)

πη
=D

k T L W
L3

ln( / )
T

B

(12)

where L andW are the length and width, and L/W is the aspect
ratio. Equations 11 and 12 do not take into account whether
the ends of the rods are flat or round, which in fact can affect
Brownian dynamics when the aspect ratio is small. Given that
the tCNCs have a high aspect ratio (Figure 3), this was not a
concern in our analysis. The linear regression (Figure 2g, solid
line) determined an intercept of (40.13 ± 4.3) s−1 and a slope
of (1.45 ± 0.02) × 10−12 m−2 s−1. Via eq 10−12 and by
applying the rule of propagation of small independent errors,
we obtained an average length (L) of (1394 ± 75) nm and
width (W) of (13 ± 3.4) nm. These values are in good
agreement with values reported elsewhere,28 and are also
consistent with our TEM analysis (Figure 3). The TEM
micrograph shows that the tCNCs are dominantly straight and
exhibit a high aspect ratio. Via image analysis, we estimated a
width of W = 24 ± 7 nm, a length of L = 1858 ± 620 nm, and
an aspect ratio of L/W = 77 ± 9. The length and width exhibit a
clear correlation with a correlation coefficient = 0.92.
Silica Particles. TEM micrographs of the SiO2 particles and

the results of the image analyses are shown in Figure 4. The
orientation-averaged Feret diameters exhibit small dispersions,
and the coefficients of variation are below 10% (Figure 4a). The
mean diameters determined by image analysis are 96, 238, 305,
and 397 nm for SiO2-A, SiO2-B, SiO2-C, and SiO2-D,
respectively. As shown by two close-up views, the existence
of shape anisotropyresulting from slight elongation and
moderate deformationsis evident. We quantified the degree
of shape anisotropy by the circularity (Figure 4b), which
measures the deviation of the perimeter of the particle from a
perfect sphere with a smooth surface. The circularity was found
to be below onethe mean values are 0.92, 0.94, 0.89, and 0.92
for SiO2-A, SiO2-B, SiO2-C, and SiO2-D, respectively
indicating anisotropic polarizability and leading to a small but
nonvanishing depolarization ratio.6,29

The depolarization ratio of the silica particles is much smaller
than that of the tCNCs, and due to their low concentration and
relatively large diameter, the intensity of depolarized scattering

in our instrument was only sufficiently high at lower scattering
angles. Therefore, we did not access the whole full q-range, and
restricted our analysis to one angle (θ = 30°). Figure 5 shows
the SVS analysis of depolarized light scattered from dilute
suspensions of silica particles. The analyses were performed as
in the case of tCNCs but this time the intensity autocorrelation
function g2 was also computed for PCS analysis. The field
autocorrelation function g1 was obtained from the intensity
autocorrelation function, via the Siegert relation = −g g 11 2 .

To determine the relaxation rate via PCS, the experimental
spectra were fitted against a single negative exponential
function: g1(t) = e−t/Tc (Figure 5c).
Table 1 lists the correlation times of the fluctuations of the

depolarized speckles obtained via SVS and PCS. For
comparison, the TEM results are also included. The agreement
between the two techniques is indeed very good. The sphere-
equivalent hydrodynamic radii were estimated via eq 10, where

πη
=D

k T
r8
1

R
B

3 (13)

and

Figure 3. Top: TEM micrograph of the tCNCs used. Bottom: Width
and length distribution functions of the tCNCs obtained from TEM
image analysis.
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πη
=D

k T
r6
1

T
B

(14)

correspond to the rotational (DR) and translational (DT)
diffusivities of a perfect sphere of radius r, respectively.5,25,30−32

In comparison to the dimensions established by TEM, both
SVS and PCS supplied larger particle sizes, except for SiO2-D,
where the average diameter determined by TEM is slightly
larger (6 and 4%, respectively).

■ DISCUSSION
We have demonstrated the equivalence of SVS and PCS in
determining the coherence times of speckle fluctuations
resulting from depolarized light scattering. Our approach has
a few potential benefits. First, the theory shows that the
statistics of relatively small samples are highly accurate if one
has the possibility to collect a sufficiently large number of
independent samples. We point out that to not affect the
correlation coefficients, PCS requires that the photon trace is
fully continuous along its length (t ≫ Tc), and that the
integration time is much smaller than the relaxation time (τ ≪
Tc). Our approach, on the other hand, is not limited by these
requirements and therefore offers more flexibility. In particular,

when using one single detector, it enables time-shared
multiplexing either between different optical lines aligned to
observe different q-values and/or between polarized versus
depolarized modes (standard DLS vs DDLS), whose
combination enables better characterization.33 This also waives
the necessity of a motorized precision goniometer and the
utilization of multiple parallel detection/correlation units,
which are required for multiangle DLS apparatus (MALS or
MDLS).14,34 A lower price−performance ratio is evidently
desirable when anticipating an eventual priority of miniatur-
ization and integration of depolarized light scattering into, for
example, microfluidic lab-on-a-chip platforms dedicated to
automation and parallelization for high-throughput.35−41

Moreover, the coherence time can be accurately measured no
matter how small Tc is, as long as Cr · Tc ≫ 1; Cr is the
counting rate defined as the average number of photons
detected per second Cr = ⟨n(τ)⟩τ−1. The usual unit of the
counting rate is Hz, that is, Cr = 100 kHz means that on
average 105 photons are counted in a second. Therefore, a low
temporal resolutioneven several orders of magnitude smaller
than the relaxation rate of the depolarized speckle fluctuation
itselfcan be sufficiently sensitive for determining Brownian
dynamics if one works with high-average photon count rates.
This is in striking contrast to photon correlation analysis, which
requires a temporal resolution that is several orders of
magnitude smaller than the correlation time. This implies
that when PCS fails to provide the sufficient temporal
resolution and dynamic range, photon counting may solve
the problem by replacing the necessity of a high temporal
resolution with that of a high counting rate.
In addition, speckle fluctuations represent a stationary and

ergodic stochastic process. This, in essence, means that the
statistical moments are time invariant and can be estimated
from a single but sufficiently large sample of the process, and
that time averages and ensemble averages are equivalent. There
are noteworthy benefits of exploiting stationarity and
ergodicity. Instead of analyzing time averages, one may analyze
ensemble averages. For example, by imaging the speckle pattern
onto the pixels of a camera, a single “static” snapshot recorded
with τ exposure (as integration time) will, in fact, carry the
same information about Brownian dynamics as the temporal
photon counts do. Therefore, information describing structure
(static light scattering, ⟨n(τ)⟩) and Brownian dynamics can be
obtained simultaneously at once. Consequently, the statistical
analysis on a multitude of single speckles is equivalent to that
obtained via one single detector, or equivalently, by one single
pixel. Furthermore, a two-dimensional area detector intrinsi-
cally provides q-space resolved access to Brownian dynamics.
Simultaneous access to multiple q-values within a single
snapshot of τ exposure is an option that may have considerable
advantages, including rapidity and dense information content.
Finally, photon counting offers a means to handle a large

intensity burst caused by “foreign” scattering centers (typically
dust and aggregates). The presence of outliers and intensity
drift deteriorates the correlation function, and hence, corrupts
PCS analysis. The negative impact of this can be mitigated only
when certain conditions are satisfied.42 Although outliers and
drift can be easily recognized in a photon stream and rejected
once the photon count distribution is constructed,24 their real-
time exclusion from a photon stream has pitfalls.43

Figure 4. TEM analysis of the SiO2 particles used. In top frame:
micrographs and close-up views of SiO2 particles. Bottom: (a) The
distributions of the orientation-averaged Feret diameters. Orange:
SiO2-A (mean 96 nm), cyan: SiO2-B (238 nm), green: SiO2-C (305
nm), and red: SiO2-D (397 nm). (b) The distributions of the
circularities (orange: SiO2-A, cyan: SiO2-B, green: SiO2-C, and red:
SiO2-D).
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■ SUMMARY
We presented an experimental approach to study Brownian
dynamics through the statistical analysis of depolarized
speckles. By identifying a simple linear scalingwhich is
valid over a broad dynamic rangewe established a
straightforward relationship between photon count statistics
and Brownian dynamics. We treated as well as tested
exhaustively the expectable accuracy and precision. Theory
and experiments were found to be in very good agreement. To
the best of our knowledge, this approachbeing analogous to
SVS4 and a viable alternative to differential dynamic
microscopy44is new to depolarized DLS and can provide
benefits. Finally, the theory is also valid for standard polarized
scattering if the corresponding relationships are used.
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