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In this paper we consider two sets of points for Quasi-Monte Carlo integration on two-
dimensional manifolds. The first is the set of mapped low-discrepancy sequence by a
measure preserving map, from a rectangle U ⊂ R2 to the manifold. The second is the 
greedy minimal Riesz s-energy points extracted from a suitable discretization of the manifold.
Thanks to the Poppy-seed Bagel Theorem we know that the classes of points with minimal
Riesz s-energy, under suitable assumptions, are asymptotically uniformly distributed with
respect to the normalized Hausdorff measure. They can then be considered as quadrature
points on manifolds via the Quasi-Monte Carlo (QMC) method. On the other hand, we
do not know if the greedy minimal Riesz s-energy points are a good choice to integrate
functions with the QMC method on manifolds. Through theoretical considerations, by
showing some properties of these points and by numerical experiments, we attempt to
answer to these questions.

1. Introduction

Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods are well-known techniques in numerical analysis, statistics,
in economy, in financial engineering and in many fields where it is required to numerically compute fastly and accurately, 
the integral of a multivariate function f . Both MC and QMC methods approximate the integral 

∫
X f (x)dμ(x), with X ⊂ R

d , 
by the average of the function values at a set of N points of X uniformly distributed with respect to a given measure μ. 
Monte Carlo uses random points whereas the Quasi-Monte Carlo method considers deterministic point sets, in particular 
low-discrepancy sequences.

Let us consider the integral

1

Hd(M)

∫
M

f (x)dHd(x) (1)

where M is a d-dimensional manifold and Hd is the Hausdorff measure (for the definition of this measure we refer to 
[8, §11.2]). In this case, the QMC method is preferable to other cubature techniques, since it requires only the knowledge 
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of f on a well-distributed points set of the manifold. It is worth mentioning, that other cubature techniques may require 
more information on the approximation space, like for example in the nonnegative least squares or those based on the 
Approximate Fekete Points (cf. [2]) where it is required the knowledge of a suitable polynomial basis of the manifold. There 
exist also Chebyshev-type quadrature formulas on multidimensional domains, as those studied for instance in [11].

Convergence results and error bounds for MC and QMC methods, are usually studied on X = [0, 1)d . In particular the er-
ror bound in [0, 1)d for the QMC method is given by the well-known Koksma–Hlawka inequality (see Theorem 2 of Section 2). 
For other closed domains or manifolds there exist similar inequalities as recalled in Theorems 3 and 4 (cf. [1,4,18]).

In order to prove convergence to the integral on a manifold, we can choose a low-discrepancy sequence, which turns 
out to be uniformly distributed with respect to the Hausdorff measure of the manifold. Due to Poppy-seed Bagel Theorem
(see the weighted version, Theorem 5 of Section 4) we know that minimal Riesz s-energy points, under some assumptions, 
are uniformly distributed with respect to the Hausdorff measure Hd (see [10,9]). Therefore these points represent potential 
candidates for integrating functions via the QMC method on manifolds. As observed in [3], it is also possible to use a 
continuous and positive on the diagonal (CPD) weight function, say w , to distribute these points uniformly with respect to 
a given density.

To compute the minimal Riesz s-energy points we make use of a greedy technique, obtaining the so-called greedy 
ks-energy points (or Léja–Gorski points) and the greedy (w, s)-energy points in the weighted case (see Section 4, below). 
So far, we do not know if these approximate points of the minimal Riesz s-energy points are a good choice to integrate 
functions via the QMC method on general manifolds. As proved in [13], we only know that the greedy points are uniformly 
distributed on the d-dimensional unit sphere Sd , d ≥ 1.

In this work, we test these greedy points for the integration on different manifolds via QMC method, making a com-
parison with low-discrepancy sequences (like Halton points or Fibonacci lattices) mapped to the manifold by a measure 
preserving map aimed to maintain their uniform distribution with respect to the Hausdorff measure of the manifold (see 
Section 3), and also with the MC method by taking random points on the manifold itself.

The paper is organized as follows. After some necessary definitions, notations and results on MC and QMC integration, 
recalled in the next section, in Section 3 we present the mapping technique from the unit square [0, 1]2 to a general 
manifold M ⊂ R

2. In Section 4 we introduce other set of points, that is the minimal s-Riesz energy points, the weighted 
(w, s)-Riesz points and the greedy minimal (w, s)-energy points. In Section 5 we provide extensive numerical experiments 
for comparing these set of points for QMC integration on different functions on classical manifolds: cone, cylinder, sphere 
and torus. We conclude in Section 6 by summarizing the results and proposing some future works.

2. Preliminaries

Let X be a compact Hausdorff space and μ a regular unit Borel measure on X .

Definition 1. A sequence of points S = (xn)n≥1 in a compact Hausdorff space X is uniformly distributed with respect to the 
measure μ (or μ-u.d.) if for any real-valued bounded continuous function f : X →R we have

lim
N→∞

∑N
n=1 f (xn)

N
=

∫
X

f (x)dμ(x).

This definition tells us that, if we have a sequence uniformly distributed with respect to a given measure μ, we can 
approximate 

∫
X f dμ by using the QMC method.

Theorem 1 (cf. [12]). A sequence (xn)n∈N is μ-u.d. in X if and only if

lim
N→∞

#( J ;N)

N
= μ( J )

holds for all μ-continuity sets J ⊆ X.

Here, by #( J ; N) we mean the cardinality of the set J ∩ {xn}Nn=1.
An equivalent way to describe the uniform distribution of a sequence is in terms of the discrepancy 

∣∣∣ #( J ;N)
N − μ( J )

∣∣∣.
For [0, 1)d and μ = λd (the Lebesgue measure) it is commonly used the following definition of the discrepancy of a point 

set.

Definition 2. Let P = {x0, . . . , xN−1} denote a finite point set in [0, 1)d and B a nonempty family of Jordan measurable 
subsets of [0, 1)d . Then

DN(B; P ) := sup
B∈B

∣∣∣∣#(B;N; P )

N
− λd(B)

∣∣∣∣ .
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Depending on the family B we can distinguish the discrepancies as follows.

• Star discrepancy: D∗
N(P ) = DN(J ∗; P ), where J ∗ is the family of all subintervals of [0, 1)d of the form 

∏d
i=1[0, ai).

• Extreme discrepancy: DN(P ) = DN (J ; P ), where J is the family of all subintervals of [0, 1)d of the form 
∏d

i=1[ai, bi).
• Isotropic discrepancy: J N(P ) = DN(C; P ), where C is the family of all convex subsets of [0, 1)d .

The star-discrepancy is important on [0, 1)d in estimating the error of the QMC method by the Koksma–Hlawka inequality 
(see e.g. [12]).

Theorem 2 (Koksma–Hlawka inequality). If f has multivariate bounded variation V ( f ) on [0, 1)d (in the sense of Hardy and Krause) 
then for every P = {x1, . . . , xN } ⊂ [0, 1)d∣∣∣∣∣∣∣

1

N

N∑
n=1

f (xn) −
∫

[0,1)d
f (x)dx

∣∣∣∣∣∣∣ ≤ V ( f )D∗
N(P ), (2)

where D∗
N(P ) is the star-discrepancy of P .

For the QMC method, thanks to this inequality it is natural to take low-discrepancy sequences. Low-discrepancy se-
quences are those whose star discrepancy has decay order log(N)d/N , which is the best known order of decay. Some 
examples of low-discrepancy sequences are: Halton, Hammersley, Sobol and the Fibonacci lattice (for details see e.g. [5]).

On the other hand, if we integrate a function using the QMC method on convex subsets of [0, 1)d we have a similar 
inequality due to Zaremba (see [18]) where the isotropic discrepancy, J N , is used.

Theorem 3. Let B ⊆ [0, 1)d be a convex subset and f a function with bounded variation V ( f ) on [0, 1)d in the sense of Hardy and 
Krause. Then, for any point set P = {x1, . . . , xN } ⊆ [0, 1)d, we have that∣∣∣∣∣∣∣∣

1

N

N∑
i=1
xi∈B

f (xi) −
∫
B

f (x)dx

∣∣∣∣∣∣∣∣
≤ (V ( f ) + | f (1)|) J N (P ), (3)

where 1 = (1, . . . , 1).

On a smooth compact d-dimensional manifold there is a Koksma–Hlawka like inequality (see [4]).

Theorem 4. Let M be a smooth compact d-dimensional manifold with a normalized measure dx. Fix a family of local charts {ϕk}Kk=1 , 
ϕk : [0, 1)d → M, and a smooth partition of unity {ψk}Kk=1 subordinate to these charts. Then, there exists a number c > 0, which 
depends on the local charts but not on the function f or the measure μ, such that∣∣∣∣∣∣

∫
M

f (y)dμ(y)

∣∣∣∣∣∣ ≤ cD(μ)|| f ||Wd,1(M), (4)

where D(μ) = supU∈A
∣∣∫

U dμ(y)
∣∣, A is the collection of all images of intervals in M and

|| f ||Wn,p(M) =
∑

1≤k≤K

∑
|α|≤n

⎛
⎜⎝ ∫

[0,1)d

∣∣∣∣ ∂α

∂xα
(ψk(ϕk(x)) f (ϕk(x)))

∣∣∣∣
p

dx

⎞
⎟⎠
1/p

,

with Wn,p a Sobolev space.

Notice that, if dμ = 1
N

∑
x∈XN

δx − dx in (4), we have the analogue of the Koksma–Hlawka inequality for manifolds. 
Therefore, in order to minimize the error, we have to minimize the discrepancy.

We also remark that in general is not easy to compute an estimate of the error using this inequality since we have to 
compute the supremum of the collection of all images of intervals in the manifold.
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The case of the sphere has been solved by a different approach. Let S2 be the 2-sphere, then (see e.g. [14]) it is proved 
that, the worst case error

sup
f

∣∣∣∣∣∣∣
1

N

∑
x∈XN

f (x) − 1

4π

∫
S2

f (x)dσ(x)

∣∣∣∣∣∣∣
is proportional to the distance-based energy metric

EN(XN) =
⎛
⎝4

3
− 1

N2

∑
xi∈XN

∑
x j∈XN

|xi − x j|
⎞
⎠
1/2

.

The proof is based on the Stolarsky’s invariance principle (see e.g. [16,17,15]).
Thus, if we want to minimize the worst case error we have to maximize the sum of distance term 

∑
xi∈XN

∑
x j∈XN

|xi −
x j | which is easier to check computationally than the calculation of the spherical cap discrepancy.

This is the reason why in the next section we explore the use of sequences uniformly distributed with respect to the 
Hausdorff measure on a given manifold M.

3. Measure preserving maps on 2-manifolds

Let S = (XN )N≥1 be uniformly distributed with respect to the Lebesgue measure on a rectangle U ⊂ R
2, M a regular 

manifold of dimension 2 and 
 a map from U to M.

Take A ⊂M. The measure μ
 of A in M is defined as

μ
(A) := λ2(

−1(A)) =

∫

−1(A)

dλ2.

By construction, the sequence 
(S) is then uniformly distributed with respect to the measure μ
 .

Now, let us consider the Hausdorff measure H2 on the manifold M which, by means of the area formula [8, p. 353] is∫
U

g(x)dx, (5)

with g a density function that depends on the parametrization 
 of M. We look for a change of variables from another 
rectangle U ′ ⊂ R

2 to U such that

� : U ′ −→ U
x′ −→ �(x′) = x .

(6)

Then, we wish that

g(�(x′))| J�(x′)| = g(x) = 1 . (7)

This is equivalent to equalize the “natural” measure μ
◦� (which comes from the parametrization) and the Hausdorff 
measure H2 on the manifold M:

H2(M) =
∫
U

g(x)dx =
∫
U ′

g(�(x′))| J�(x′)|dx′ =
∫
U ′
dx′ = μ
◦�(M) .

Summarizing, starting from a sequence S ′ uniformly distributed with respect to the Lebesgue measure on a rectangle 
U ′ ⊂ R

2, using the change of variables (6), we will get the sequence 
(�(S ′)) that will be uniformly distributed with 
respect to the measure H2 on M.

Proposition 1. Let U be a reference rectangle in R2 and 
 : U → M the corresponding measure preserving map. The measure 
preserving maps for the cone, cylinder and sphere are:

cone: U = [0,1] × [0,2π ] 
(u, θ) = (
√
u cos(θ),

√
u sin(θ),

√
u)

cylinder: U = [−1,1] × [0,2π ] 
(u, θ) = (cos(θ), sin(θ),u)

sphere: U = [−1,1] × [0,2π ] 
(u, θ) = (
√
1− u2 cos(θ),

√
1− u2 sin(θ),u).
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Proof. It is an easy exercise. �
Notice that another possible way of computing the integral is by taking any coordinate chart for the parametrization

ϕ : U → M of the manifold and then integrate with the QMC method directly in U ⊂ R
2 with a low-discrepancy sequence 

multiplying the integrating function by the determinant of the Jacobian of ϕ . Unfortunately, with this approach we will not 
have points which will lie on the manifold. In fact, mapping the points directly with the parametrization ϕ will not give a 
sequence of points uniformly distributed with respect to the Hausdorff measure of the manifold. This approach also depends 
on the determinant of the Jacobian since it will make the integrating function a different function.

4. Minimal Riesz-energy points

We start by introducing the s-Riesz energy of a set of points.

Definition 3 (cf. [10]). Let XN = {x1, . . . , xN } ⊂ A ⊆ R
d be a set of N distinct points. For each real s > 0, the s-Riesz energy 

of XN is

Es(XN ) :=
∑

x,y ∈ XN
x�=y

1

|x− y|s , (8)

where | · | denotes the Euclidean distance in Rd . The N-point minimal s-energy over A is then

Es(A,N) := inf
XN⊂A

Es(XN) (9)

Note that in (9), by convention, the sum over an empty set of indices is taken to be zero and the infimum over an empty 
set is ∞. Notice also that Es(A, N) = Es( Ā, N) and Es(A, N) = 0 if A is unbounded. Hence, without loss of generality, we 
could restrict ourselves to the case when A is compact.

A Continuous and Positive on the Diagonal (CPD) weight function is defined as follows.

Definition 4. Let A ⊂ R
d be an infinite compact set whose d-dimensional Hausdorff measure Hd(A) is finite. A symmetric 

function w : A × A → [0, +∞) is called a CPD weight function on A × A if

(i) w is continuous as function on A × A at Hd-almost every point of the diagonal D(A) = {(x, x) : x ∈ A},
(ii) there is some neighborhood G of D(A) such that infG w > 0,
(iii) w is bounded on any closed subset B ⊂ A × A such that B ∩ D(A) = ∅.

This definition allows us to define the weighted Riesz s-energy of a point set XN , of a subset A ⊂ R
d and the weighted 

Hausdorff measure of Borel sets B ⊂ A.

Definition 5. Let s > 0 and XN = {x1, . . . , xN } ⊂ A. The weighted Riesz s-energy of XN is

Ew
s (XN ) :=

∑
1≤i �= j≤N

w(xi, x j)

|xi − x j|s ,

the N-point weighted Riesz s-energy of A is

Ew
s (A,N) := inf{Ew

s (XN) : XN ⊂ A, #XN = N} ,

and the weighted Hausdorff measure Hs,w
d on Borel sets B ⊂ A is then

Hs,w
d (B) :=

∫
B

(w(x, x))−d/sdHd(x).

We need another property for the set A. A set A is said to be d-rectifiable (see e.g. [7]) if and only if there exists a 
Lipschitz function φ mapping some bounded subset of Rd onto A, i.e. there exists a constant L and a compact set B ⊂ R

d

such that

|φ(x) − φ(y)| ≤ L|x− y| , ∀ x, y ∈ B

and φ(B) = A.
The connection between the s-Riesz energy and a sequence uniformly distributed with respect to the Hausdorff measure 

is given by the Weighted Poppy-seed Bagel Theorem (cf. [3,10]).
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Theorem 5. Let A ⊂R
d′
be a compact subset of a d-dimensional C1-manifold in Rd′

, d < d′ , and w is a CDP weight function on A × A. 
Then

lim
N→∞

Ew
d (A,N)

N2 logN
= Vol(Bd)

Hd,w
d (A)

. (10)

Furthermore, if Hd(A) > 0 and X∗
N is a sequence of configurations on A satisfying (10), with Ew

d (A, N) replaced by Ew
d (X∗

N ), then

1

N

∑
x∈X∗

N

δx(·) ∗−→ Hd,w
d (·)|A

Hd,w
d (A)

as N → ∞. (11)

Assume now that A ⊂R
d′

is a closed d-rectifiable set. Then for s > d,

lim
N→∞

Ew
s (A,N)

N1+s/d
= Cs,d

(Hs,w
d (A))s/d

, (12)

where Cs,d is a finite positive number independent of A and d′ . Moreover, if Hd(A) > 0, any sequence X∗
N of configurations on A

satisfying (12), with Ew
s (X∗

N) instead of Ew
s (A, N), satisfies (11).

4.1. Greedy minimal Riesz-energy points

The computation of an approximation of these minimal Riesz s-energy points can be done by the following greedy 
algorithm which provides a good approximation of the minimal set and which attains the correct asymptotic main term for 
the energy for s < d.

Algorithm 1. Let k : X × X → R ∪{∞} be a symmetric lower-semicontinuous kernel on a locally compact Hausdorff space X , 
and let A ⊂ X be a compact set. A sequence (an)∞n=1 ⊂ A such that

(i) a1 is selected arbitrarily on A;
(ii) for n ≥ 1, an+1 is chosen so that

n∑
i=1

k(an+1,ai) = inf
x∈A

n∑
i=1

k(x,ai), for every n ≥ 1.

The sequence {an}n≥1 is called a greedy minimal k-energy sequence on A (or Léja-Gorski points).
The Riesz kernel in X = R

d′
, which depends on the parameter s ∈ [0, +∞), is the radial kernel

ks(x, y) := Ks(‖x − y‖), x, y ∈ R
d′
,

where ‖ · ‖ is the Euclidean norm, with

Ks(t) :=
{
t−s if s > 0

− log(t) if s = 0.

Hence, for k = Ks we generate the greedy minimal ks-energy points, while taking k = w Ks we get the greedy minimal 
(w, s)-energy points.

As proved in [13] for the unit sphere Sd , the greedy minimal (w, d)-energy points are asymptotically distributed as the 
real ones suggesting that they can be a good choice for integration on manifolds.

Theorem 6. Assume that w : Sd × S
d → [0, +∞) is a continuous function such that w(x, x) > 0 for all x ∈ S

d. Let {Xw
N,d} be an 

arbitrary greedy (w, d)-energy sequence on Sd, d ≥ 1. Then

lim
N→∞

Ew
d (Xw

N,d)

N2 logN
= Vol(Bd)

Hd,w
d (Sd)

,

and furthermore

1

N

∑
x∈Xw

N,d

δx(·) → Hd,w
d (·)|

Sd

Hd,w
d (Sd)

.

In particular, any greedy kd-energy sequence (XN,d) on Sd is asymptotically d-energy minimizing on Sd.
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Unfortunately this result is not valid for s > d. On the other hand, for any compact A ⊂ R
d′
with Hδ(A) > 0 (where δ is 

arbitrary), the following order of growth for Ew
s (Xw

N,s) holds (cf. [13]).

Theorem 7. Let

H∞
δ (A) := inf

{∑
i

(diamGi)
δ : A ⊂ ∪iGi

}
, 0< δ ≤ d′.

Assume A ⊂R
d′

be compact with Hδ(A) > 0. Let w be a bounded lower semicontinuous CDP weight function on A × A and consider 
an arbitrary greedy (w, s)-energy sequence (Xw

N,s) ⊂ A, for s ≥ δ. Then for N ≥ 2

Ew
s (Xw

N,s) ≤
{

Ms,δ,A ||w||H∞
δ (A)−s/δN1+s/δ, s > δ

Mδ,A ||w||H∞
δ (A)−1N2 logN, s = δ,

(13)

where Ms,δ,A, Mδ,A > 0 are independent of w and N, and ||w|| = sup{w(x, y) : x, y ∈ A}.

The previous theorem leads us to the following Corollary which is helpful to understand the use of greedy 
(w, s)-sequences for integration on manifolds.

Corollary 1. Let A ⊂R
d′
be a d-rectifiable set. Suppose s > d and w is a bounded lower semicontinuous CDP weight function on A × A. 

Consider an arbitrary greedy (w, s)-energy sequence (Xw
N,s) ⊂ A. Then (Xw

N,s) is dense in A. If s = d and A is assumed to be a compact 
subset of a d-dimensional C1-manifold, the same conclusion holds for any greedy (w, d)-energy sequence. Taking w = 1 the result is 
applicable to greedy ks-energy sequences.

Remark. We do not know yet if greedy minimal (w, d)-energy (or ks) sequences are a good choice for integrating functions 
on a manifold with respect to the measure Hw

d as it is for the minimal energy points. Or whether we should prefer them 
to a low discrepancy sequences mapped on the manifold with measure preserving maps. This is what we try to understand 
by the numerical experiments in the next section.

5. Numerical experiments

In this section we present some numerical tests showing that the greedy minimal ks-energy sequences are a good 
choice for integrating a function when a measure preserving map is available, whereas they have a similar behavior of 
low-discrepancy sequences if instead a generic map is used.

The functions we consider on the cone, cylinder, sphere and torus are

f1(x, y, z) := √
(1+ z)(1− z) cos

( x

2
+ y

3
+ z

5

)
,

f2(x, y, z) :=
{
cos(30xyz) if z < 1

2

(x2 + y2 + z2)3/2 if z ≥ 1
2 ,

f3(x, y, z) := e− sin(2x2+3y2+5z2),

f4(x, y, z) := e−√
x2+y2+z2

1+ x2
cos(1+ x2) sin(1− y2)e|z|.

(14)

To compute the integrals

1

Hd(M)

∫
M

f i(x)dHd(x), i = 1, . . . ,4

we use the QMC method with

(a) low discrepancy points mapped on the manifolds,
(b) greedy minimal ks-energy points.

To emphasize the significance of the QMC approach we did also a comparison with the MC method taking N points 
randomly distributed on the rectangle and then mapped on the manifolds. Because of the random nature of these points, 
we computed 10 times the integrals with MC and averaged them.

About (b), to compute N greedy minimal ks-energy points we started from a uniform mesh on a rectangle consisting of 
N2/2 points and mapped them, if available by using the corresponding measure preserving map, to the manifold. Then we 
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Table 1
Map for the torus (d).

[0,2π ] × [0,2π ] � (u, v) →

⎧⎪⎨
⎪⎩

x = (2+ cos(u)) cos(v)

y = (2+ cos(u)) sin(v)

z = sin(u)

(15)

Table 2
Exact values of the integrals.

Cone Cylinder Torus Sphere

f1 6.378e−01 7.125e−01 3.435e−01 7.295e−01
f2 0.130e+01 5.784e−01 0.470e+01 2.809e−01
f3 0.116e+01 0.132e+01 0.131e+01 0.1340e+01
f4 1.458e−01 −1.160e−01 −1.269e−02 8.950e−02

extracted N greedy minimal ks-energy points from this mapped mesh. Here s = 2 because of the dimension of the manifold 
(a surface immersed in R3).

For the torus we used the map (Table 1) which does not preserve the Lebesgue measure.
To compare the results with the greedy minimal k2-energy points, we computed the integrals (Table 2) by QMC method 

using Halton points and Fibonacci lattices mapped on the manifolds. Because of the peculiarity of Fibonacci points, we 
generated for all sequences a number of points like the Fibonacci sequence, starting from 144 (i.e. the twelfth Fibonacci 
number) up to 2584, the eighteenth Fibonacci number (Figs. 1–4). But in the tables below (Tables 3–19) the results are only 
presented for 144, 610 and 2584 points. The exact value of the integral has been considered, after a variable change, using 
the built-in Matlab function dblquad with tolerance of 10−11. The relative errors are then computed referring to this value. 
Here only some experiments on the cone, cylinder, sphere and the torus are presented. More experiments are available in 
the Master’s thesis of the second author (see [6]). All the tests have been performed on a laptop with Intel Core i3-3120M 
@2.50 GHz, 4GB of RAM, Windows 10 and MATLAB 8.5.0.197613.

The Matlab package GMKs (Greedy Minimal ks points) allows to reproduce all the experiments presented here and inter-
ested people can download it at http://www.math.unipd.it/~demarchi/software/GMKs.

Fig. 1. 610 points on the cone.
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Table 3
Relative errors for f1 on the cone with Fibonacci, Halton, Greedy Min-
imal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 1.215e−02 5.352e−03 2.097e−01 1.325e−02
610 4.939e−03 1.270e−03 1.470e−01 6.137e−03
2584 1.241e−03 3.029e−04 9.817e−02 4.850e−03

Table 4
Relative errors for f2 on the cone with Fibonacci, Halton, Greedy Min-
imal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 9.101e−03 6.250e−03 2.366e−01 3.498e−02
610 5.277e−03 1.173e−03 1.764e−01 2.294e−02
2584 6.766e−04 3.678e−04 1.212e−01 8.212e−03

Table 5
Relative errors for f3 on the cone with Fibonacci, Halton, Greedy Min-
imal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 1.059e−02 1.416e−03 7.048e−02 4.324e−02
610 3.763e−04 3.389e−04 7.172e−02 2.050e−02
2584 1.289e−04 8.026e−05 3.790e−02 1.613e−02

Table 6
Relative errors for f4 on the cone with Fibonacci, Halton, Greedy Min-
imal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 2.767e−02 1.384e−02 2.333e−01 8.209e−02
610 9.623e−03 3.230e−03 1.782e−01 1.708e−02
2584 3.068e−03 7.594e−04 1.313e−01 1.818e−02

Fig. 2. 610 points on the cylinder.
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Table 7
Relative errors for f1 on the cylinder with Fibonacci, Halton, Greedy 
Minimal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 1.092e−03 5.264e−04 2.240e−01 3.043e−02
610 3.131e−04 6.400e−05 1.603e−01 9.933e−03
2584 1.029e−04 6.929e−06 9.533e−02 5.645e−03

Table 8
Relative errors for f2 on the cylinder with Fibonacci, Halton, Greedy 
Minimal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 6.513e−02 8.764e−03 3.830e−01 1.597e−01
610 2.900e−02 2.964e−03 2.267e−01 4.026e−02
2584 1.436e−03 6.975e−04 1.502e−01 2.273e−02

Table 9
Relative errors for f3 on the cylinder with Fibonacci, Halton, Greedy 
Minimal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 1.792e−02 2.930e−04 1.150e−01 4.584e−02
610 2.359e−03 1.125e−05 8.751e−02 1.633e−02
2584 3.287e−04 6.267e−07 4.895e−02 7.310e−03

Table 10
Relative errors for f4 on the cylinder with Fibonacci, Halton, Greedy 
Minimal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 6.611e−03 1.506e−04 3.879e−02 2.047e−01
610 1.457e−02 8.382e−06 2.524e−02 8.602e−02
2584 4.730e−04 4.671e−07 2.339e−02 5.468e−02

Fig. 3. 610 points on the sphere.
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Table 11
Relative errors for f1 on the sphere with Fibonacci, Halton, Greedy 
Minimal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 2.833e−03 6.448e−04 1.595e−03 1.974e−02
610 1.001e−03 7.411e−05 1.202e−03 7.526e−03
2584 1.017e−04 8.504e−06 1.324e−03 4.495e−03

Table 12
Relative errors for f2 on the sphere with Fibonacci, Halton, Greedy 
Minimal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 1.476e−01 1.089e−02 8.406e−02 1.281e−01
610 4.415e−02 8.045e−05 4.872e−03 1.080e−01
2584 6.847e−04 3.115e−06 5.177e−03 4.666e−02

Table 13
Relative errors for f3 on the sphere with Fibonacci, Halton, Greedy 
Minimal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 3.282e−03 1.025e−04 2.834e−03 4.531e−02
610 1.755e−03 5.727e−06 2.251e−03 1.244e−02
2584 7.294e−05 3.190e−07 1.325e−03 8.174e−03

Table 14
Relative errors for f4 on the sphere with Fibonacci, Halton, Greedy 
Minimal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 1.549e−03 1.425e−03 1.912e−03 1.113e−01
610 6.631e−03 7.970e−05 3.702e−03 4.988e−02
2584 2.725e−04 4.442e−06 4.756e−03 1.955e−02

Fig. 4. 610 points on the torus.

11

ht
tp
://
do
c.
re
ro
.c
h



Table 15
Relative errors for f1 on the torus with Fibonacci, Halton, Greedy Min-
imal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 2.152e−01 1.777e−01 6.894e−02 2.030e−01
610 1.888e−01 1.780e−01 5.367e−02 1.768e−01
2584 1.788e−01 1.780e−01 4.014e−02 1.687e−01

Table 16
Relative errors for f2 on the torus with Fibonacci, Halton, Greedy Min-
imal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 1.218e−01 1.690e−01 3.081e−02 1.778e−01
610 1.453e−01 1.410e−01 4.728e−02 1.272e−01
2584 1.414e−01 1.411e−01 2.297e−02 1.562e−01

Table 17
Relative errors for f3 on the torus with Fibonacci, Halton, Greedy Min-
imal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 3.033e−02 3.426e−02 4.949e−03 4.531e−01
610 2.716e−03 8.821e−03 1.349e−02 2.811e−01
2584 8.763e−03 6.453e−03 1.673e−03 1.049e−01

Table 18
Relative errors for f4 on the torus with Fibonacci, Halton, Greedy Min-
imal k2-energy points and MC method.
N Halton Fibonacci GM k2 MC

144 6.015e−01 5.339e−01 2.435e−01 5.692e−01
610 5.109e−01 5.237e−01 1.874e−01 4.779e−01
2584 5.252e−01 5.238e−01 1.319e−01 5.238e−01

Table 19
Time in seconds to compute the greedy minimal k2-energy points.
N Cone Cylinder Torus Sphere

144 0.217 0.218 0.248 0.208
610 20.067 21.046 19.340 19.284
2584 1519.112 1513.211 1571.449 1511.768

5.1. Greedy minimal ks-energy points: tuning the parameter s

In the previous section we set s = 2 because of the dimension, but we can consider a tuning of s and see how the errors 
change as a function of s. The script demo2 of the Matlab package GMKs, previously mentioned, allows us to make the 
experiments that we are going to present.

In Figs. 5–8, we see the behavior of the relative errors of the integrals for s ∈ [0, 10], with step 0.05, using 200 greedy 
minimal ks-energy points.

6. Conclusion

In this paper we tested the QMC integration on manifolds by mapped low-discrepancy points and greedy minimal 
ks-energy points.

Analyzing the relative errors we observed that if we have a measure preserving map it is better to use low-discrepancy 
sequences, especially the Fibonacci ones, than greedy minimal k2-energy points. On the other hand, if we do not dispose 
of a measure preserving map, as in the case of the torus, or we use mapped points by another parametrization, the best 
approximation are with the greedy minimal k2-energy points (as in the case of the functions f1 and f2). The time for 
extracting the greedy minimal ks-energy points grows as the number of points. Therefore, in the case of greedy minimal
energy points it is advisable to use less points especially in case of reduced computational resources. Moreover by using an 
increasing number of greedy minimal energy points the errors decay, but slower than mapped low-discrepancy points.

12

ht
tp
://
do
c.
re
ro
.c
h



Fig. 5. Relative errors using 200 points for the function f1.

Fig. 6. Relative errors using 200 points for the function f2.
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Fig. 7. Relative errors using 200 points for the function f3.

Fig. 8. Relative errors using 200 points for the function f4.
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We have also noticed that keeping the same number of points but tuning the parameter s, values below the manifold 
dimension (in our case s = 2) should be avoidable since the relative errors are worse than those for s > 2. Indeed for s > 2
the relative errors showed to be almost of the same order and, as suggested by the theory, the “optimal” s is around the 
manifold dimension. The only exception is the sphere, where we obtained relative errors of the same order for all values of 
the parameter.

We wish also to underline that the QMC approach for integration on manifolds is preferable to the MC method as 
confirmed by all tests. Producing points well distributed on a manifold could be useful not only for QMC integration on 
manifolds but also for other approximation methods involving sequences of points on manifolds such as radial basis func-
tions (RBF) approximation or meshless approximation of PDEs. These are future works that we wish to investigate more 
deeply.
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