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h i g h l i g h t s

• For different kinds of Facebook Apps and found that the recent and cumulative popularity play important roles.
• We present a model to regenerate the growth of popularity for different App groups.
• The recent popularity plays more important role in regenerating the popularity dynamics for more popular Apps.
• The cumulative popularity plays more important role for unpopular Apps.

Understanding the popularity dynamics of online application(App) is significant for the
online social systems. In this paper, by dividing the Facebook Apps into different groups in
terms of their popularities,we empirically investigate the popularity dynamics for different
kinds of Facebook Apps. Then, taking into account the influence of cumulative and recent
popularities on the user choice, we present a model to regenerate the growth of popularity
for different App groups. The experimental results of 917 Facebook Apps show that as
the popularities of Facebook Apps increase, the recent popularity plays more important
role. Specifically, the recent popularity plays more important role in regenerating the
popularity dynamics for more popular Apps, and the cumulative popularity plays more
important role for unpopular Apps. We also conduct temporal analysis on the growth
characteristic of individual App by comparing the increment at each time with the average
of historical records. The results show that the growth of more popular App tends to
fluctuate more greatly. Our work may shed some lights for deeply understanding the
popularity mechanism for online applications.

1. Introduction

Popularity dynamic plays an important role in online social systems [1]. Themechanisms for online object popularity have
been widely studied including movies [2], musics [3], news and other online social collective behaviors [4,5]. Many factors
affect the object popularity, such as the internal quality [6], ranking list [7], brand effect [8], recommendation system [9,10],
social communication [11,12], and so on [13–15].
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Fig. 1. The number of cumulative installation for 2705 Facebook Apps before August 14, 2007. The vertical axis shows Apps’ final cumulative installation
number, and horizontal axis reflects the corresponding rank. The difference between the smallest and the largest number of cumulative installation is over
ten millions, which indicates the gap in popularities among online Apps.

The preferential selection is regarded as a classic factor on object popularity, which leads to a ‘‘rich-get-richer’’
phenomenon that objects with more cumulative selections also tend to attract more attentions [16,17]. Borghol et al. [18]
empirically measured the popularity of videos and found that preferential selection could be used to interpret the video
popularity evolution. Szabo et al. [19] found that the long time popularity of online content could be predicted by the
early user accesses. Shen et al. [20] introduced the reinforcement Poisson mechanism to model and predict the popularity
dynamics. Comparingwith the rich-get-richer phenomenon, Bentley et al. [21] introduced a ‘‘memory’’ parameter defined as
the number of previous steps which affects an individual’s decision. Gleeson et al. [22] investigated the popularity dynamic
of the Facebook Apps and found that recent popularity plays more important role.

However, it should be noticed that the popularities of most empirical systems are heterogeneous [23]. Medo et al. [24]
found that the citation network exhibits heterogeneous fitness values. For the object popularity of the user-object networks,
Liu et al. [25] found that the online user interests could be divided as common interests and specific interests. Furthermore,
Ni and Wang et al. [26,27] found that small-degree users tend to select popular movies, while large-degree users prefer to
select the unpopular ones. The heterogeneous physics of the object popularity plays an important role for the online social
systems evolution [28,29]. As shown in Fig. 1, for the popularity of Facebook Apps, the smallest cumulative installation
number is only six, while the largest installation number is over ten millions.

In this paper, we investigate the roles of the cumulative and recent popularities in the popularity mechanisms for
Facebook Apps. By dividing the Facebook Apps into different groups in terms of their popularities, we empirically investigate
the popularity dynamics of Appswith different popularities and find that the growth rate of more unpopular Apps fluctuates
more randomly in the initial period, and the growth rate of all App groups finally stabilizes around 1. Then, we present a
model to regenerate the popularity dynamics of the empirical Facebook Apps, and find that as the Apps popularities increase,
the recent popularity plays more important role. Finally, we conduct temporal analysis on the growth characteristic of each
App by comparing the increment at each time step with the average installation time of historical records, which show that
the growth of online Apps is fluctuant and the growth of more popular App fluctuates more greatly.

2. Empirical analysis

In this section, we analyze the popularity dynamics for different kinds of Apps by dividing Facebook Apps in terms of their
popularity [30]. Firstly, we introduce the definitions to measure Apps’ popularities [22]. To measure the change in number
of cumulative installation for App i at time t , the increment fi(t) can be denoted by

fi(t) = ni(t)− ni(t − 1), (1)

where ni(t) is the total number of users who have installed App i by time t .
To compare the popularities of different Apps when they are the same age (i.e., the same number of time steps after they

were launched), the age-shifted increment f̃i(a) was introduced to measure the change in cumulative installation number
for App i at age a, which is defined as f̃i(a) = ñi(a)− ñi(a− 1), where ñi(a) = ni(ti + a) is the cumulative installation number

of App i during a time steps after its launch time ti. In order to present the popularity dynamics for a group of Apps, themean
scaled age-shifted growth rate r(a) can be defined as

r(a) = 〈 f̃i(a)
ui

〉Z , (2)
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Table 1
The basic information about each App group, whereNZ is the number of Apps
containing in each group Z .

Z Range of log(ui) NZ

Z1 [−3,−1) 94
Z2 [−1, 0) 381
Z3 [0, 1) 296
Z4 [1, 2) 112
Z5 [2, 3) 26
Z6 [3, 4) 8

where 〈·〉Z denotes an ensemble average over all Apps in a group Z , and ui is the temporal average increment of App i over
its first thalf observations (i.e., more than one half of the data collection window), which could be written as

ui =
∑thalf

a=1 f̃i(a)
thalf

. (3)

By weighting Apps over the same number of observations, the temporal average increment ui measures the average
popularity of each App comparably among all.

2.1. Description of the dataset

The original dataset includes the number of cumulative installations for every Facebook App in each hour from June 25,
2007 to August 14, 2007, spanning tmax = 1209 h (n = 2705 Apps total available during this period) [31]. When t = 0, there
are already 980 Apps in the system, whose launch times are unknown. In this paper, we only take into account the Apps
which are launched after the data collection and have at least thalf ≡ 650 h observations. Denoting the launch time of App
i by ti, the selected Apps satisfy the following conditions: ti > 0 and ti < tmax − thalf = 559. Finally, the amount of Apps
mentioned in our following study is Ntotal = 917.

2.2. Empirical results

Considering that the distribution of Apps’ average popularity value ui is heavy-tailed,we divide the 917Apps into 6 groups
by calculating the corresponding logarithm of their ui values. Specifically, the log(ui) values are set as [−3, −1), [−1, 0), [0,
1), [1, 2), [2, 3) and [3, 4), respectively. The basic information of each group is shown in Table 1. Apps in the first three groups
are unpopular Apps, and Apps in another three groups are popular Apps.

Then we analyze the popularity dynamics for different App groups, which are reflected by the mean scaled age-shifted
growth rate r(a). The empirical analysis results for six groups of popular and unpopular Apps are shown in Fig. 2. In Fig. 2(A)–
(C), the growth rates of the unpopular Apps fluctuate randomlywith large values in initial period. Specifically, themaximum
r(a) for more unpopular Apps is larger, which are 19.03, 7.05 and 3.89 respectively as shown in Fig. 2(A)–(C). In Fig. 2(D)–(F),
the growth rate of the popular Apps fluctuate with 24-h period, which gradually increase in initial period. In addition, the
growth rates of all App groups finally stabilize around 1.

Actually, the difference in popularity dynamics can be explained with lots of factors. Namely, one can imagine that newly
launched Apps are initially installed by friends of the authors of the Apps due to social support [32]. Imagine that each App
receives the same amount of social support. Then, the quality Apps will start to aggregate installations and will become
popular eventually. However, the unpopular Apps (maybe with the poor quality or inconvenient function) are only installed
at initial launch and soon after that are forgotten by public, which brings about the relatively large values in initial period of
the growth rate r(a). The investigation simply dealing with Apps all together may ignore the different popularity dynamics
and interfere with the accuracy of experimental results.

The popularity dynamics are different among Apps groups, which could indicate that the popularity mechanisms for
different kinds of Apps are heterogeneous. Therefore, we constructmodel to investigate the popularitymechanisms of online
Apps with different popularities.

3. Regenerative model construction

In this section, we present amodel incorporating the cumulative and recent popularities to regenerate the Facebook Apps
popularity dynamics which are presented by the mean scaled age-shifted growth rate r(a). The cumulative popularity [16]
and recent popularity [22] could affect the probability of individual choice. The cumulative popularity in our model is
corresponding with the ‘‘rich-get-richer’’ phenomenon that Apps with more previous installations also tend to attract more
adoptions, and the recent popularity is defined as the number of installations grown recently.
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Fig. 2. Themean scaled age-shifted growth rate r(a) for different kinds of Apps, which are divided into six groups according to the logarithm of their average
popularity ui , and Apps’ log(ui) values are set as [−3, −1), [−1, 0), [0, 1), [1, 2), [2, 3) and [3, 4), respectively. The horizontal axis denotes the number of
hours after Apps’ launch. The results in the subplots (A)–(C) show that the growth rate of more unpopular Apps fluctuate more randomly with larger values
in initial period, while the results in the subplots (D)–(F) show that the growth rate of popular Apps fluctuate with steady 24-h period.

We redistribute the total increment FZ (a) of Apps in group Z at each age a. The FZ (a) values are taken from the empirical
data by following equation:

FZ (a) =
∑
i∈Z

f̃i(a), (4)

where Z = {Z1, Z2, . . . , Z6} contains six App groups.
For each group Zj (j = 1, 2, . . . , 6), the total increment FZj (a) at each age a is redistributed to each App i that including in

group Zj with probability pi(a), which is set as a weighted sum,

pi(a) = γ pci (a)+ (1− γ )pri (a), (5)

where pci (a) is the ‘‘cumulative-popularity rule’’ that users choose App i at age a with a probability proportional to its
cumulative popularity ñi(a − 1), yielding

pci (a) = ñi(a − 1)∑
i∈Zj ñi(a − 1)

, (j = 1, 2, . . . , 6), (6)

and pri (a) is the ‘‘recent-popularity rule’’ that users choose App i at age a with a probability proportional to its recent
popularity, which is described as

pri (a) =
∑a−1

τ=1 e
−(a−τ )̃fi(τ )∑

i∈Zj
∑a−1

τ=1 e−(a−τ )̃fi(τ )
, (j = 1, 2, . . . , 6), (7)

where e−(a−τ ) is an exponential ‘‘memory’’ function which assigns weight to the age-shifted increment f̃i from τ hours
ago [21,33].

In the process of regenerating at each time step, the ñi(a) in Eq.(6) and f̃i(τ ) in Eq.(7) are obtained from the real data
to determine the probability pi(a). The installation probability pi(a) interpolates between the extremes of γ = 0 (recent
popularity) and γ = 1 (cumulative popularity). In each group Zj, after distributing each total increment FZj (a), we regenerate

the age-shifted increment f̃i(a) of each App i from a = 2 to a = 650, and the App’s initial age-shifted increment f̃i(1) is
extracted from the empirical data.
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Fig. 3. The normalized difference EZj
∗
(γ ) under different weight coefficients γ for six App groups dividing in terms of the logarithm of Apps popularities

log(ui), where the dashed line reflects the optimal parameter γ ∗ of the regenerative model for different App groups. From the experimental results, one
can find that as the Apps’ popularities increase, the optimal parameter γ ∗ would decrease from 1 to 0, suggesting that the recent popularity plays more
important role for popular Apps.

3.1. Measurement

For each App group Zj, to investigate the performance of cumulative and recent popularities for App’s popularity, we

measure the difference EZj (γ ) between the regenerated r(a) under different weight coefficients γ denoted by r
γ
reg and the

empirical data denoted by rdata during first thalf = 650 time steps, which could be written as

EZj (γ ) =
√√√√ thalf∑

a=1
(r

γ
reg (a)− rdata(a))2, (8)

where j = 1, 2, . . . , 6, and γ = 0, 0.2, . . . , 1.
To compare the differences EZj (γ ) in each App group, we normalize the EZj values under different weight coefficients γ

of each group, which is defined as EZj
∗
(γ ),

EZj
∗
(γ ) = EZj (γ )−min EZj

max EZj −min EZj
, (9)

where min EZj and max EZj are the minimum and maximum of EZj (γ ) values under different weight coefficients γ in the
group Zj. The normalized difference EZj

∗
for each group has a value between 0 and 1, where EZj

∗
(γ ) = 0 means that the

regenerative performance fits the most closely with the empirical data, thus the γ that leads to EZj
∗
(γ ) = 0 is the optimal

parameters γ ∗ of the regenerative model for corresponding App group Zj.

3.2. Experimental results

The normalized difference EZj
∗
(γ ) and the optimal parameters γ ∗ of the regenerativemodel of each App group are shown

in Fig. 3, from which one can find that as the popularities of Apps increase, the recent popularity plays more important role.
Specifically, for regenerating in groups of popular Apps, the optimal parameter γ ∗ changes to 0, while the optimal parameter
γ ∗ equals to 1 for the most unpopular Apps. That is to say the users’ choice among popular Apps is more likely to be affected
by the Apps’ recent popularities, while choosing among unpopular Apps is affected more by Apps’ cumulative popularities.

After investigating the popularity mechanisms for different App groups, we focus on investigate the popularity for
individual App. Considering the fact that Apps’ popularities are result of attracting more and more user attentions over
time [34,35], we continue to conduct temporal analysis of growth characteristic for each App.

4. Growth characteristic of individual App

In this section, we conduct the temporal analysis of growth characteristic for every App, by comparing the installation
increment in each period with average-level of the historical records. At each age a in the growth duration of Facebook App
i, we define the growth fluctuation Si(a) as follow,

Si(a) = f̃i(a)−
∑a−1

a′=1 f̃i(a
′)

a − 1
, (10)
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Fig. 4. The growth fluctuation of 917 Apps, where σS′
i
is the standard deviation of 27 days extended growth fluctuation sequence S ′

i (d) which is calculated by

comparing the increment of App i at time d, f̃ ′
i (d), with the average-level of its historical records,

∑d−1
d′=1 f̃

′
i (d

′) /d − 1 , and d is the number of App’s existing
days. The correlation between growth fluctuation of 27 days σS′

i
and App’s popularity ui indicates that as the popularities of Apps increase, the growth of

Apps fluctuate more greatly. The subplot shows the extended growth fluctuation S ′
i (d) of the most popular App, from which one can find that its growth is

fluctuant and exists 7-days periods.

where Si(a) = 0 means that the increment of installations for App i at age a is at the same level with the average of all
previous period, and Si(a) > 0 means that the App i grows faster at age a than previous average installation, and vice versa.

To remove the 24-h periodicity of function Si(a), we extend the period from an hour to a day represented by variable d,
and the extended growth fluctuation is expressed as

S ′
i (d) = f̃ ′

i (d)−
∑d−1

d′=1 f̃
′
i (d

′)
d − 1

, (11)

where f̃ ′
i (d) is the sum of periodical age-shifted increment f̃i(a) for the dth 24 h. Limited in the shortest observation duration

of the 917 Apps which is 650 h, our temporal analysis covers the first 27 days after the App’s launch (i.e., d ∈ [2, 27]).
In order to measure the extended growth fluctuation S ′

i (d) in total 27 days for each App i, we calculate the standard
deviation σS′

i
of the extended growth fluctuation S ′

i (d) sequence. A larger σS′
i
value reflects a more greatly fluctuation during

the growth of App i.
The result of the standard deviation σS′

i
for all the 917 Apps are shown in Fig. 4, which indicates that as the popularities

of Apps increase, the growth of Apps tend to fluctuate more greatly. Specifically, the standard deviation σS′
i
of the extended

growth fluctuation S ′
i (d) for the most popular App is more than 3 × 104, and that for the App with the least popularity ui

decreases to below 0.5. Furthermore, we take the extended growth fluctuation S ′
i (d) sequence of the most popular App for

example, which shows that its growth is fluctuant and exists 7-days periods, in each of which the S ′
i (d) values are larger at

beginning and tend to reduce later. The characteristic of growth fluctuation and the larger standard deviation values of the
more popular Apps indicate that the development to the popular is not growing continuously, and the great fluctuation is
more likely to bring great growth.

5. Conclusion and discussions

In this paper, taking into account the physics of popularity dynamics for online social systems [23], we investigate
the popularity mechanisms for different groups of Facebook Apps divided in terms of their average popularity. Firstly, we
empirically analyze the popularity dynamics of different kinds of Apps, where the growth rates of popular Apps fluctuate
with a steady 24-h cycle and the growth rate of more unpopular Apps fluctuates more randomly with a larger value at initial
period. Then,we propose amodel by combining cumulative and recent popularities to regenerate the empirical growth rates,
and to investigate the optimal popularity mechanisms for different App groups. The experimental results show that as the
Apps’ popularities increase, the recent popularity plays more important role in attracting more user choice. Specifically, the
cumulative popularity plays more important role for the unpopular Apps, and the recent popularity plays more important
role for popular Apps. Finally, in order to investigate the growth characteristics of individual App, we temporally analyze the
growth characteristics of each of the 917 Facebook Apps by comparing the increment at each time step with the average of
historical records. The result shows that as the Apps’ popularities increase, the Apps growth of attracting more installations
fluctuatemore greatly. Specifically, the standard deviations of 27 days growth fluctuation sequence of the 917 Apps increase
with the rising of Apps’ popularities.

We investigated the heterogeneous popularity mechanisms of online Apps [36], and found that neither the recent
popularity nor cumulative popularity can guide the growth of all kinds of Apps, which could form some new insights in
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the popularity prediction. And our results also show that the users’ choice of different types of online contents are not only
affected by a simply factor, thus considering the different properties among different populations, and analyzing separately
if possible are necessary for accurate prediction of the growth. However, on the one hand, we would enhance our model to
regenerate the long-term popularity of online objects [37] and consider more popularity mechanisms from the perspective
of social system in our future works, such as community [38–40], trust relationship, and friend relationship, and so on. On
the other hand, the potential factors on Apps’ becoming popular is still ameaningful field to improve the popularity of online
objects. Nowadays, the smart phones become more and more popular, and people spend more and more time on playing
phones for different kinds of purposes and preferences, thus uncovering the popularity dynamics for different kinds of Apps
or different populations at recent time is also a meaningful question.
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