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The feasibility domain of an ecological community can be described by the set of environmental abi- 

otic and biotic conditions under which all co-occurring and interacting species in a given site and time

can have positive abundances. Mathematically, the feasibility domain corresponds to the parameter space

compatible with positive (feasible) solutions at equilibrium for all the state variables in a system under a

given model of population dynamics. Under specific dynamics, the existence of a feasible equilibrium is a

necessary condition for species persistence regardless of whether the feasible equilibrium is dynamically

stable or not. Thus, the size of the feasibility domain can also be used as an indicator of the tolerance

of a community to random environmental variations. This has motivated a rich research agenda to esti- 

mate the feasibility domain of ecological communities. However, these methodologies typically assume

that species interactions are static, or that input and output energy flows on each trophic level are un- 

constrained. Yet, this is different to how communities behave in nature. Here, we present a step-by-step

quantitative guideline providing illustrative examples, computational code, and mathematical proofs to

study systematically the feasibility domain of ecological communities under changes of interspecific in- 

teractions and subject to different constraints on the trophic energy flows. This guideline covers multi- 

trophic communities that can be formed by any type of interspecific interactions. Importantly, we show

that the relative size of the feasibility domain can significantly change as a function of the biological

information taken into consideration. We believe that the availability of these methods can allow us to

increase our understanding about the limits at which ecological communities may no longer tolerate fur- 

ther environmental perturbations, and can facilitate a stronger integration of theoretical and empirical

research.

1. Introduction

In ecological research, the feasibility of a community corre- 

sponds to the existence of an equilibrium point under which all 

species have positive abundances ( Case, 20 0 0; Hofbauer and Sig- 

mund, 1998; MacArthur, 1970; Meszéna et al., 2006; Pimm, 1982; 

Roberts, 1974 ). Indeed, if one is interested in extant species, neg- 

ative or zero abundances make no biological sense. Therefore, 

studying the feasibility of an ecological community is equal to de- 

termining whether under a given set of environmental conditions 

(abiotic and biotic) the dynamics of a community exhibits a fea- 

sible equilibrium point. That is, feasibility is a binary question: a 

community is feasible or not under a given set of environmental 
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conditions. Nevertheless, one can also extend the study of feasi- 

bility by investigating the range of environmental conditions lead- 

ing to a feasible community. This specific range of environmental 

conditions is known as the feasibility domain ( Logofet, 1993 ). Thus, 

the size of the feasibility domain can be used as an indicator of 

the tolerance of a community to random environmental variations 

( Rohr et al., 2016; Saavedra et al., 2014 ). This has motivated a rich 

research agenda to estimate the feasibility of ecological commu- 

nities in a systematic manner ( Bastolla et al., 2009; Gilpin, 1975; 

Goh and Jennings, 1977; Grilli et al., 2017; Logofet, 1993; Meszéna 

et al., 2006; Rohr et al., 2014; Saavedra et al., 2017b; Stone, 2016; 

Vandermeer, 1975 ). Yet, it is still unclear how to integrate this sys- 

tematic analysis with additional biological information, such as dif- 

ferences in energy flows across trophic levels or even changes in 

the structure of ecological communities. 

Here, we present a step-by-step quantitative guideline to study 

the size of the feasibility domain of ecological communities under 
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changes of interspecific interactions and subject to different con- 

straints on the trophic energy flows. This guideline covers multi- 

trophic communities that can be formed by any type of inter- 

specific interactions. While our framework is based on the clas- 

sic Lotka-Volterra (LV) dynamics ( Page and Nowak, 2002 ), its ad- 

vantage is that the structure and limits of the feasible regions 

of a large variety of ecological communities can be systemati- 

cally studied using convex geometry and probability theory ( Ball, 

1997; Brondsted, 2012; Logofet, 1993; Rohr et al., 2014 ). Moreover, 

the applicability of this approach is not restricted to LV dynam- 

ics as long as the dynamics are topologically equivalent ( Cenci and 

Saavedra, 2018 ). 

This article is organized as follows. First, we discuss the mathe- 

matical definition, geometrical representation, and the probabilistic 

interpretation of the feasibility domain in multispecies communi- 

ties characterized by LV dynamics. Then, we introduce new tools 

to incorporate both changes of species interactions and trophic en- 

ergy constraints into the study of feasibility. After that we present 

an illustrative example to show how our tools can be applied to 

multi-trophic and changing communities. Finally, we discuss fu- 

ture promising avenues of research on feasibility. While we present 

an abridged guideline in the text, all the proofs can be found 

in the Appendixes A–E, and the computational codes in R Core 

Team (2017) is archived on Github. 

2. Mathematical definition of feasibility 

We start by assuming that the population dynamics in a mul- 

tispecies community can be approximated by a LV system in the 

form 

dN i 

dt 
= N i 

( 

r i + 

S ∑ 

j=1 
a i j N j 

) 

, (1) 

where the variable N i denotes the abundance of species i, S is the 

number of species, the parameter r i is the intrinsic growth rate of 

species i , and the parameter a ij is the element ( i, j ) of the inter- 

action matrix A and represents the effect of species j on species i 

( Case, 20 0 0 ). Note that both the intrinsic growth rates and the el- 

ements of the interaction matrix can take either positive, negative, 

or zero values. We take into account only non-degenerate interac- 

tion matrices, i.e., det ( A ) � = 0 . This assumption is valid since it is 

extremely rare to have degenerate cases even under the setup of 

random matrix theory ( Bruneau and Germinet, 2009 ). 

Under the LV dynamics, the equilibrium state(s) of the popu- 

lation is(are) written as the vector N 

∗, which corresponds to the 
state at which d N i /d t = 0 for all species i . This equilibrium state(s) 

is(are) given by the solution(s) of the set of equations 

N 

∗
i 

( 

r i + 

S ∑ 

j=1 
a i j N 

∗
j 

) 

= 0 . (2) 

The positivity of LV dynamics, i.e., species abundances will 

never be negative with strictly positive initial conditions, imposes 

two types of equilibria ( Takeuchi, 1996 ). There can be either a bor- 

der equilibrium, where at least a species goes extinct ( N 

∗
i 

= 0 for 

some species i ), or a feasible equilibrium (also known as interior 

equilibrium), where all species have positive abundances ( N 

∗ > 0). 

If the feasible equilibrium exists is given by N 

∗ = −A 

−1 · r . More- 
over, one can mathematically prove that for a LV model, the exis- 

tence of a feasible equilibrium point is a necessary condition for 

species persistence (and permanence), whether that feasible equi- 

librium is dynamically stable or not ( Hofbauer and Sigmund, 1998 ). 

The mathematical definition above reveals that feasibility de- 

pends strictly on the elements of both the interaction matrix A and 

the vector of intrinsic growth rates r ( Song and Saavedra, 2018 ). 

This implies that, given an interaction matrix A , only certain com- 

binations of species-specific intrinsic growth rates can generate 

feasible equilibria, i.e., for which we have −A 

−1 · r > 0 . Following 

this rationale, studies have been systematically investigating the 

feasibility of ecological communities by looking at the range of pa- 

rameter values of r as a function of a given interaction matrix A 

( Bastolla et al., 2009; Grilli et al., 2017; Logofet, 1993; Rohr et al., 

2014; Saavedra et al., 2017b; Vandermeer, 1975 ). Importantly, since 

environmental conditions can be translated into the vital rates of 

species ( Coulson et al., 2017; Levins, 1968; Meszéna et al., 2006; 

Roughgarden, 1975 ), the range of intrinsic growth rates leading to 

feasibility can represent a set of environmental variations tolerated 

by the community. 

3. Geometrical representation of feasibility 

As explained above, there is only a specific region of the param- 

eter space of intrinsic growth rates that leads to feasible equilibria 

of a community given by an interaction matrix A . This region is 

typically known as the feasibility domain ( Logofet, 1993 ). Formally, 

this feasibility domain is described as 

D F ( A ) = { r = N 

∗
1 v 1 + · · · + N 

∗
S v S , with N 

∗
1 > 0 , . . . , N 

∗
n > 0 } , (3) 

where the vector v j is the negative of the j th columns of the inter- 

action matrix A : 

A = 

⎡ 

⎣ 

a 11 · · · a 1 S 
. . . 

. . . 
. . . 

a S1 · · · a SS 

⎤ 

⎦ = 

⎡ 

⎢ ⎣ 

. . . 
. . . 

. . . 
−v 1 −v 2 . . . −v S 
. . . 

. . . 
. . . 

⎤ 

⎥ ⎦ 

. (4) 

In other terms, the vectors of intrinsic growth rates inside the fea- 

sibility domain are described by positive linear combinations of the 

S vectors given by the negative of each of the S columns of the in- 

teraction matrix (see Appendix A for further details). 

This definition implies that the feasibility domain, D F ( A ), of an 

interaction matrix A can be geometrically represented as an al- 

gebraic cone (see Fig. 1 a for a graphical illustration). An alge- 

braic cone in R 

S is defined as the space spanned by positive lin- 

ear combinations of S linearly independent vectors. This cone is 

also referred in the mathematical literature as a simplicial cone 

( Ribando, 2006 ). For brevity, we will refer to it simply as a cone . 

Therefore, v i can be defined as the i 
th spanning vector of the fea- 

sible cone. This geometric property confirms, as we mentioned 

before, that the shape and size of the feasibility domain can be 

systematically investigated using convex geometry and probability 

theory ( Ball, 1997; Brondsted, 2012; Logofet, 1993 ). 

4. Probabilistic interpretation of feasibility 

The definitions above allow us to quantify the size of the fea- 

sibility domain under LV dynamics by the solid angle of the cone 

generated by the interaction matrix A (see Fig. 1 b for a graphical 

illustration). By normalizing the solid angle such that it is equal 

to one for the whole unit sphere in R 

S , the normalized solid an- 

gle �( A ) is equal to the probability of sampling uniformly a vector 

of intrinsic growth rates on the unit sphere inside the feasibility 

domain. That is, the normalized solid angle is the proportion of 

the feasible parameter space inside the unit sphere. Formally, the 

normalized solid angle �( A ) can be defined by the ratio of the fol- 

lowing volumes: 

�( A ) = 

vol (D F ( A ) ∩ B 

S ) 

vol (B 

S ) 
, (5) 

where B 

S is the closed unit ball in dimension S ( Gourion and 

Seeger, 2010; Saavedra et al., 2016a ). Note that the least upper 

bound of �( A ) is 0.5, as the largest cone that can be generated by 
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Fig. 1. Visualization of the feasibility domain and its normalized solid angle . For a fictitious community of three species represented by an interaction matrix A with 

all negative entries, the figures correspond to the parameter space of intrinsic growth rates ( r = [ r 1 , r 2 , r 3 ] 
T ). In Panel a , the green cone represents the feasibility domain 

D F ( A ) generated by the negative column vectors (spanning vectors) of the interaction matrix A (see Eq. (3) ). The arrow corresponds to a hypothetical vector of intrinsic 

growth rates inside the feasibility domain. In Panel b , the blue unit sphere corresponds to the normalized parameter space. The normalized solid angle of the feasible cone 

�( A ) corresponds to the fraction of the volume in the unit sphere occupied by the cone (green region), which can be interpreted as tolerance of a community to random 

environmental perturbations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

an interaction matrix is exactly given by the half of the parame- 

ter space (see Appendix B for the mathematical derivation). There- 

fore, the closer �( A ) is to 0.5, the larger the likelihood of randomly 

sampling a feasible community for a given interaction matrix A . 

Analytically, �( A ) can be calculated by the cumulative function 

of a multivariate Gaussian distribution ( Ribando, 2006; Saavedra 

et al., 2016b ): 

�( A ) = 

1 

(2 π) S/ 2 
√ | det ( A ) | 

∫ 
· · ·

∫ 
N ∗≥0 

e −
1 
2 N 

∗T A T A N ∗
d N 

∗, (6) 

This normalized solid angle �( A ) can be efficiently computed via 

a quasi-Monte Carlo method for even relatively large communities 

( Genz and Bretz, 2002; Saavedra et al., 2016b ). The code in R to 

compute this probability is archived on GitHub. Note that there ex- 

ists a close analytic formula to compute the expectation of �( A ) 

for independent and identically distributed (i.i.d.) random matrices 

A , i.e., where each element of these matrices is drawn indepen- 

dently from the same statistical distribution ( Grilli et al., 2017 ). 

Another important probabilistic interpretation of the feasibility 

domain can be derived by calculating the average probability ω( A ) 

that a randomly chosen species i from a given community is fea- 

sible (i.e., N 

∗
i 

> 0 ). Assuming that this choice is i.i.d. for all species, 

which can be valid when the coupling of interactions is not too 

strong in the community ( Sugihara et al., 2012 ), we compute ω( A ) 

as ω( A ) = �( A ) 1 /S . Indeed, the product of the average probability 

ω( A ) across all species in the community has to equal the size of 

the feasibility domain of the whole community, i.e., ω( A ) S = �( A ) . 

In other words, ω( A ) translates the probabilistic interpretation of 

feasibility from the community to the species level. 

In the hypothetical case where all species in a community 

do not interact (i.e., the interaction matrix becomes A = H = 

diag { h 1 , . . . , h S } < 0 ), we have ω( H ) = 0 . 5 . Indeed, for the whole 

community to be feasible there must be r i > 0 for all species. 

Therefore, the size of the feasibility domain is given by the strictly 

positive part of the parameter space, i.e., D F ( H ) = R 

S 
> 0 

, which has 

the normalized solid angle of �( H ) = 0 . 5 S . This is equivalent to say 

that the probability that any of the species in the community has 

positive abundance at equilibrium is the probability of its intrin- 

sic growth rate being positive (assuming that positive and negative 

values are equally possible). Thus, the more ω( A ) departs from the 

benchmark of 0.5, the larger the relevance of a nontrivial interac- 

tion matrix A to the feasibility of species. 

5. Changes of species interactions and feasibility 

In line with the majority of feasibility studies, so far we have 

assumed that species interactions do not change, i.e., there is only 

one interaction matrix A . Yet, ecological communities are dynamic 

and permanently changing ( Grant and Grant, 2014; Saavedra et al., 

2016a; 2016b ). Thus, the challenge is to integrate the informa- 

tion given by changes of species interactions under a systematic 

analysis of the feasibility domain ( Cenci et al., 2018; Saavedra 

et al., 2017a ). For instance, consider the case of a community that 

switches between two patterns of interactions characterized by the 

interaction matrices A and B . Then, one can estimate the combined 

�( A ∪ B ) or shared �( A ∩ B ) normalized solid angles, i.e., the range 

of conditions for which the community is feasible by switching 

back and forth or under both matrices simultaneously. For this pur- 

pose, we can compute the union and the intersection of the feasi- 

bility domains of the matrices A and B . Following the geometric 

representation of the feasibility domain, these can be written as: 

�( A ∪ B ) ︸ ︷︷ ︸ 
combined feasibility 

= �( A ) + �( B ) − �( A ∩ B ) , ︸ ︷︷ ︸ 
shared feasibility 

(7) 

where �( A ∪ B ) = vol ((D F ( A ) ∪ D F ( B )) ∩ B 

S ) / vol (B 

S ) and �( A ∩ 

B ) = vol ((D F ( A ) ∩ D F ( B )) ∩ B 

S ) / vol (B 

S ) . 

The intersection of the two feasibility domains D F ( A ) and D F ( B ) 

can be algebraically formalized as the linear combination 
∑ 

N 

∗
i 
v i 

of the spanning vectors of A , where N 

∗
i 
satisfies ⎧ ⎪ ⎨ 

⎪ ⎩ 

S ∑ 

i =1 
N 

∗
i v i = 

S ∑ 

i =1 
μi w i 

N 

∗
i , μi ≥0 , i = 1 , . . . , S, 

(8) 
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Fig. 2. Visualization of the combined and shared normalized solid angles generated by two feasibility cones . Panel a shows the combined space generated by two 

feasibility cones ( D F ( A ) and D F ( B )) representing two different interaction matrices A and B formed by a fictitious community of three species. Panel b shows the geometric 

projection of the two feasibility cones. The combined, normalized, solid angle (area described by the dashed lines) is computed by the sum of the two relative volumes 

generated by the feasibility cones minus the relative volume generated by the intersection (overlap) between the cones. This intersection is shown by the dark region. Since 

the intersection of two polyhedrons can be triangulated ( Hatcher, 2002 ), to find the overlap between the cones we have to locate the extreme points that generated the 

intersection. These are of two types: one type belongs to the original extreme points of each polyhedron (blue points), the other type belongs to the intersection of the 

edges of two polyhedrons (red points). See Appendix D for further details. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

and v 1 , . . . , v S and w 1 , . . . , w S are the spanning vectors of the cones 

D F ( A ) and D F ( B ), respectively (see Eq. (3) ). Then, we need to ap- 

ply the triangulation of the intersected region into several cones 

so that the intersected volume can be computed by adding the 

volume of each cone together through Eq. (6) . See Fig. 2 for an 

illustration of this triangulation. The proof of the computational 

method and the code in R to compute �( A ∩ B ) and �( A ∪ B ) is 

archived on GitHub. As before, we can translate both the com- 

bined and the shared normalized solid angles from the commu- 

nity to the species level by defining ω( A ∪ B ) = �( A ∪ B ) 1 /S and 

ω( A ∩ B ) = �( A ∩ B ) 1 /S , respectively. 

6. Constraints on trophic energy flows and feasibility 

Similarly, in line with the majority of feasibility studies, so 

far we have assumed that there are no constraints acting on en- 

ergy flows across trophic levels modulating the values that the 

intrinsic growth rates can possibly take. Although this is a valid 

mathematical approach, these assumptions make little biologi- 

cal sense for many multi-trophic communities ( Svirezhev and Lo- 

gofet, 1983 ). In fact, numerous works have already introduced con- 

straints on trophic energy flows in population dynamics models 

( Borrvall et al., 20 0 0; Otto et al., 2007; Rossberg, 2013; Yodzis and 

Innes, 1992 ). For example, constraints on trophic energy flows in 

a food web can be translated into positive and negative intrin- 

sic growth rates for basal and higher trophic levels, respectively 

( Rossberg, 2013 )—i.e., a plant takes energy from the sun, but a lion 

cannot survive without prey. In this section, we will explain how to 

systematically incorporate these constraints into the study of fea- 

sibility. While our focus is on linear constraints, our methods can 

also be expanded to nonlinear constraints (see Appendix E). 

In general, the effect of constraints can be formalized by: 

�c ( A ∩ Constraints ) = 

vol (D F ( A ) ∩ Constraints ∩ B 

S ) 

vol (B 

S ∩ Constraints ) 
. (9) 

This general definition implies that constraints can either increase 

or decrease the size of the feasibility domain of a community, de- 

pending on how the constraints intersect the feasibility domain 

of the interaction matrix and the closed unit ball. Note that con- 

straints decrease both the volume in the numerator and that in 

the denominator; however, the decrease can be larger either in the 

numerator or denominator. Focusing on linear constraints, here we 

study linear inequalities and linear equalities ( Bertsimas and Tsit- 

siklis, 1997 ). Linear inequalities allow us to take into account, for 

example, the sign constraints of intrinsic growth rates of species 

in the computation of the feasibility domain for a multi-trophic 

community. Linear equalities can allow us to incorporate, for ex- 

ample, as a first-order approximation, the correlations among in- 

trinsic growth rates, such that species with similar constraints (or 

metabolic rates) could be constrained to have similar values (i.e., 

allometric relationships). 

Formally, the most simple kind of linear inequalities in the in- 

trinsic growth rates of a species i can be written as 

L i ≤ r i ≤ U i , (10) 

where L i and U i are the lower and upper bounds, respectively. Note 

that L i and U i do not depend on the intrinsic growth rates, nor 

on the properties of other species. They only depend on species 

i . Ecologically, this means that the intrinsic growth rates of some 

species are bounded. Importantly, these local constraints on indi- 

vidual species can introduce global constraints on the abundances 

of all species. Formally, we can write the constraints on the equi- 

librium species abundances N 

∗ based on Eqs. (2) and (10) in the 

form of 

L i ≤
S ∑ 

j=1 
a i j N 

∗
j ≤ U i i = 1 , . . . , S, (11) 

where a ij are the elements of the interaction matrix A . These con- 

straints shrink the feasibility cone to a bounded polytope of a con- 

vex subset of the original cone ( Ball, 1997 ). See Fig. 3 for a graphi- 

cal illustration. 

Similarly, linear equalities can be formally introduced by as- 

suming that two species i and j have exactly the same intrinsic 

growth rate. This constraint can be written explicitly as 

S ∑ 

m =1 
a im 

N 

∗
m 

= 

S ∑ 

m =1 
a jm 

N 

∗
m 

. (12) 
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Fig. 3. Visualization of the feasibility domain with constraints imposed on energy flows across trophic levels . For a fictitious community of three species, the figures 

correspond to the parameter space of intrinsic growth rates ( r = [ r 1 , r 2 , r 3 ] 
T ). The green cones represent the feasibility cones generated by the column vectors of the inter- 

action matrix negation ( −A ) with linear constraints on intrinsic growth rates. Panel a shows the linear inequalities r 3 ≥ r 2 , and r 1 , r 2 , r 3 ≥0 (represented by the gray area), 

which shrinks the feasibility cone and unit sphere. Panel b shows the constrained, normalized, solid angle that this constrained feasibility cone generates. Panel c shows the 

linear equality r 2 = r 3 on the feasibility cone (represented by the gray area), which projects the 3-dimensional cone into a 2-dimensional one. Similarly, Panel d shows the 

constrained, normalized, solid angle that this constrained feasibility cone generates. 

A direct consequence of this constraint is that the dimension of 

the sampling space is reduced by one dimension. See Fig. 3 for a 

graphical illustration. 

Linear constraints are strongly connected to linear program- 

ming ( Bertsimas and Tsitsiklis, 1997 ), which can be integrated into 

the calculation of the constrained, normalized, solid angle �c ( A ). 

Note that both the feasibility cone and the entire parameter space 

are reduced to the region of intrinsic growth rates dictated by the 

given linear constraints (see Fig. 3 for a graphical illustration). The 

code in R to introduce different linear constraints and compute 

�c ( A ) is archived on GitHub. Note that there exists a close ana- 

lytic formula to compute the expectation of �c ( A ) for i.i.d. random 

matrices with constraints imposed on the abundances of species 

( Grilli et al., 2017 ). Similarly, the constrained, normalized, solid an- 

gle can be better represented by the constrained probability of fea- 

sibility of a species: ω c ( A ) = �c ( A ) 1 /S . 

7. Illustrative example 

To illustrate the application of our quantitative tools, we cal- 

culated the simple ω( A ), combined ω( A ∪ B ), shared ω( A ∩ B ), and 

constrained ω c ( A ) normalized solid angles at the species level of a 

simple 3-level trophic chain characterized by one basal, one con- 

sumer, and one top-predator species (see Fig. 4 for a graphical il- 

lustration). The elements a ij of A for this trophic chain were ran- 

domly drawn from a normal distribution N (0, 1), but the signs of 

the interactions were established according to the expected intake 

of food or energy (predator–prey interactions shown in Fig. 4 ). 

All species were assumed to be self-regulated (i.e., a ii = −1 ). To 
calculate the combined and shared, normalized, solid angles of a 

hypothetical change of species interactions, we introduced small 

proportional random perturbations to the original matrix A . These 

changes generated the new matrix B . To calculate the constrained, 

normalized, solid angle we introduced sign constraints to the in- 

trinsic growth rates of the basal (allowing only positive values) and 

predator species (allowing only negative values), following trophic 

energy constraints ( Logofet, 1993; Rossberg, 2013 ). Fig. 4 summa- 

rizes the results of our example. Overall, the figure clearly shows 

that the relative size of the feasibility domain of ecological com- 

munities can significantly change depending on the biological in- 

formation taken into consideration. 
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Fig. 4. Illustrative example of how the size of the feasibility domain changes as a function of adding biological information. The figure shows the simple ω( A ), 

combined ω( A ∪ B ), shared ω( A ∩ B ), and constrained ω c ( A ) normalized solid angles at the species level of a 3-level trophic community characterized by one basal, one 

consumer, and one top predator species. Panel a depicts a cartoon of this trophic chain. Each blue symbol corresponds to a species, whose intrinsic growth rate (shown 

inside the symbol) is constrained according to its position in the trophic chain. These species are linked by arrows showing the standard energy flow in the trophic chain. 

Panel b shows the different average probabilities of feasibility for a randomly chosen species in the trophic chain (normalized solid angles) that can be computed based on 

the biological information taken into account. See text for details on how the matrix, interaction changes, and constraints are generated. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

8. Conclusions 

In this article, we have provided a basic quantitative guideline 

to help carry out a systematic analysis of the size of the feasi- 

bility domain for multi-trophic and changing ecological communi- 

ties. While numerous and important work has been devoted to the 

analysis of feasible communities, there is still a central and urgent 

gap to fill regarding how to integrate feasibility analysis with addi- 

tional biological information into a rigorous methodological frame- 

work. Typically, the majority of work on feasibility assumed ei- 

ther no structure of species interactions, a static view of communi- 

ties, or that energy flows can happen equally across trophic levels. 

However, this may violate central biological principles depending 

on the developmental stage of a community ( Odum, 1969 ). Thus, 

it becomes essential to have tools that can allow us to explore the 

extent to which all of this information is necessary for a better 

understanding about the conditions leading to feasible ecological 

communities, and the limits at which communities may no longer 

tolerate environmental perturbations ( Cenci et al., 2017 ). In this di- 

rection, our tools have shown that, by integrating these biological 

properties, the size of the feasibility domain of ecological commu- 

nities can drastically change. Moreover, constraints on trophic en- 

ergy flows can significantly increase the feasibility domain, which 

may provide a potential explanation for the prevalence of such 

configurations. Yet, more work on this area needs to be done be- 

fore reaching any final conclusions. 

As potential new directions derived from our guideline, first 

we would like to stress how important is the probabilistic in- 

terpretation of our measures. Since communities are perma- 

nently changing and it is extremely difficult to field parameter- 

ize a population dynamics model involving more than 2 species 

( Vandermeer, 1975 ), the concept of how likely different parameter- 

izations lead to a feasible community can be mapped back onto 

how likely a community of species can coexist under given and 

changing environmental conditions. Of course, feasibility is only 

a necessary, but not a sufficient condition for species coexistence 

( Hofbauer and Sigmund, 1998 ), which implies that other dynamical 

properties that could grant this sufficiency when found along with 

feasibility (such as dynamical stability) should be explored under a 

similar framework ( Arnoldi and Haegeman, 2016; Song and Saave- 

dra, 2018 ). We also believe that species-based metrics of feasibility, 

such as the rescaled volume of the feasible domain ω( A ), can pro- 

vide a more intuitive interpretation of the community feasibility, 

especially when comparing communities of different dimensions. 

In particular, we encourage the investigation of potential trade- 

offs involved during changes in species interactions by moving 

communities from unfeasible to feasible regions and vice versa. 

For instance, as we have seen in Fig. 4 , changes of species inter- 

actions can increase the feasibility of a community, as expressed 

by the combined feasibility between interaction matrices A and B . 

However, these changes could require a very different set of in- 

trinsic growth rates to which species might even not be able to 

adapt. This can be captured by the fraction ω( A ∩ B )/ ω( A ), where 

the higher the value, the larger the range of intrinsic growth rates 

shared between the feasibility cones D F ( A ) and D F ( B ). Thus, it 

might not always be possible for a community to increase both its 

combined and shared, normalized, solid angles at the same time, 

suggesting a trade-off between feasibility and adaptability. Future 

studies could investigate this type of trade-offs during the devel- 

opment and reorganization of ecological communities. 

Similarly, introducing constraints on trophic energy flows can 

help us to infer parameterizations, to identify missing or improb- 

able interspecific interactions, or to study the effect of parameter 

correlations on the feasibility of ecological communities. Moreover, 

these constraints can help us to shift the focus from the struc- 

ture of species interactions to the structure of the parameter space, 

which appears to be a necessary step towards a better understand- 

ing of species persistence ( Saavedra et al., 2017b ). Overall, we envi- 
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sion that tools like the ones presented in this guideline can open a 

new and prosperous dialogue for a stronger synthesis of theoretical 

and empirical work on multi-trophic and changing communities. 
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