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A graph is H-free if it does not contain an induced subgraph isomorphic to H . For every
integer k and every graph H , we determine the computational complexity of k-Edge

Colouring for H-free graphs.
1. Introduction

A graph G = (V , E) is k-edge colourable for some in-
teger k if there exists a mapping c : E → {1, . . . , k} such 
that c(e) �= c( f ) for any two edges e and f of G that 
have a common end-vertex. The chromatic index of G is the 
smallest integer k such that G is k-edge colourable. Vizing 
proved the following classical result.

Theorem 1 ([27]). The chromatic index of a graph G with max-
imum degree � is either � or � + 1.

The Edge Colouring problem is to decide if a given 
graph G is k-edge colourable for some given integer k. 
Note that (G, k) is a yes-instance if G has maximum degree 
at most k −1 by Theorem 1 and that (G, k) is a no-instance 
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if G has maximum degree at least k +1. If k is fixed, that is, 
k is not part of the input, then we denote the problem by 
k-Edge Colouring. It is trivial to solve this problem for k =
2. However, the problem is NP-complete if k ≥ 3, as shown
by Holyer for k = 3 and by Leven and Galil for k ≥ 4.

Theorem 2 ([14,20]). For k ≥ 3, k-Edge Colouring is NP-
complete even for k-regular graphs.

Due to the above hardness results we may wish to 
restrict the input to some special graph class. A natu-
ral property of a graph class is to be closed under ver-
tex deletion. Such graph classes are called hereditary and 
they form the focus of our paper. To give an example, 
bipartite graphs form a hereditary graph class, and it is 
well-known that they have chromatic index �. Hence,
Edge Colouring is polynomial-time solvable for bipartite 
graphs, which are perfect and triangle-free. In contrast, Cai 
and Ellis [4] proved that for every k ≥ 3, k-Edge Colouring

is NP-complete for k-regular comparability graphs, which 
are also perfect. They also proved the following two re-
sults, the first one of which shows that Edge Colouring is
NP-complete for triangle-free graphs (the graph Cs denotes 
the cycle on s vertices).
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Theorem 3 ([4]). Let k ≥ 3 and s ≥ 3. Then k-Edge Colouring 
is NP-complete for k-regular Cs-free graphs.

Theorem 4 ([4]). Let k ≥ 3 be an odd integer. Then k-Edge 
Colouring is NP-complete for k-regular line graphs of bipar-
tite graphs.

It is also known that Edge Colouring is polynomial-
time solvable for chordless graphs [22], series-parallel 
graphs [16], split-indifference graphs [26] and for graphs 
of treewidth at most k for any constant k [1].

It is not difficult to see that a graph class G is hered-
itary if and only if it can be characterized by a set FG
of forbidden induced subgraphs (see, for example, [17]). 
Malyshev determined the complexity of 3-Edge Colouring

for every hereditary graph class G , for which FG con-
sists of graphs that each have at most five vertices, except 
perhaps two graphs that may contain six vertices [23]. 
Malyshev performed a similar complexity study for Edge 
Colouring for graph classes defined by a family of for-
bidden (but not necessarily induced) graphs with at most 
seven vertices and at most six edges [24].

We focus on the case where FG consists of a single 
graph H . A graph G is H-free if G does not contain an in-
duced subgraph isomorphic to H . We obtain the following 
dichotomy for H-free graphs.

Theorem 5. Let k ≥ 3 be an integer and H be a graph. If H
is a linear forest, then k-Edge Colouring is polynomial-time 
solvable for H-free graphs. Otherwise k-Edge Colouring is NP-
complete even for k-regular H-free graphs.

We obtain Theorem 5 by combining Theorems 3 and 4
with two new results. In particular, we will prove a hard-
ness result for k-regular claw-free graphs for even inte-
gers k (as Theorem 4 is only valid when k is odd).

2. Preliminaries

The graphs Cn , Pn and Kn denote the path, cycle and
complete graph on n vertices, respectively. A set I is an 
independent set of a graph G if all vertices of I are pairwise 
nonadjacent in G . A graph G is bipartite if its vertex set 
can be partitioned into two independent sets A and B . If 
there exists an edge between every vertex of A and every 
vertex of B , then G is complete bipartite. The claw K1,3 is 
the complete bipartite graph with |A| = 1 and |B| = 3.

Let G1 and G2 be two vertex-disjoint graphs. The join
operation × adds an edge between every vertex of G1
and every vertex of G2. The disjoint union operation +
merges G1 and G2 into one graph without adding any new 
edges, that is, G1 + G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). 
We write rG to denote the disjoint union of r copies of a 
graph G .

A forest is a graph with no cycles. A linear forest is a 
forest of maximum degree at most 2, or equivalently, a 
disjoint union of one or more paths. A graph G is a co-
graph if G can be generated from K1 by a sequence of join 
and disjoint union operations. A graph is a cograph if and 
only if it is P4-free (see, for example, [3]). The following 
well-known lemma follows from this equivalence and the 
definition of a cograph.

Lemma 1. Every connected P4-free graph on at least two ver-
tices has a spanning complete bipartite subgraph.

Let G = (V , E) be a graph. For a subset S ⊆ V , the 
graph G[S] = (S, {uv ∈ E | u, v ∈ S}) denotes the subgraph 
of G induced by S . We say that S is connected if G[S]
is connected. Recall that a graph G is H-free for some 
graph H if G does not contain H as an induced sub-
graph. A subset D ⊂ V (G) is dominating if every vertex of 
V (G) \ D is adjacent to least one vertex of D . We will need 
the following result of Camby and Schaudt.

Theorem 6 ([5]). Let t ≥ 4 and G be a connected Pt -free graph. 
Let X be any minimum connected dominating set of G. Then 
G[X] is either Pt−2-free or isomorphic to Pt−2.

Let G = (V , E) be some graph. The degree of a ver-
tex u ∈ V is equal to the size of its neighbourhood N(u) =
{v | uv ∈ E}. The graph G is r-regular if every vertex of G
has degree r. The line graph of G is the graph L(G), which 
has vertex set E and an edge between two distinct vertices 
e and f if and only if e and f have a common end-vertex 
in G .

3. The Proof of Theorem 5

To prove our dichtomy, we first consider the case where
the forbidden induced subgraph H is a claw. As line graphs 
are claw-free, we only need to deal with the case where 
the number of colours k is even due to Theorem 4. For 
proving this case we need another result of Cai and Ellis, 
which we will use as a lemma. Let c be a k-edge colouring 
of a graph G = (V , E). Then a vertex u ∈ V misses colour i
if none of the edges incident to u is coloured i.

Lemma 2 ([4]). For even k ≥ 2, the complete graph Kk has a 
k-edge colouring with the property that V (Kk) can be parti-
tioned into sets {ui, u′

i} (1 ≤ i ≤ k
2 ), such that for i = 1, . . . , k2 , 

vertices ui and u′
i miss the same colour, which is not missed by 

any of the other vertices.

We use Lemma 2 to prove the following result, which 
solves the case where k is even and H = K1,3.

Lemma 3. Let k ≥ 4 be an even integer. Then k-Edge Colour-

ing is NP-complete for k-regular claw-free graphs.

Proof. Recall that k-Edge Colouring for k-regular graphs 
is NP-complete for every integer k ≥ 4 due to Theorem 2. 
Consider an instance (G, k) of k-Edge Colouring, where G
is k-regular for some even integer k = 2� ≥ 4. From G we 
construct a graph G ′ as follows. First we replace every ver-
tex v in G by the gadget H(v) shown in Fig. 1. Next we 
connect the different gadgets in the following way. Every 
gadget H(v) has exactly k pendant edges, which are in-
cident with vertices v1, . . . , v�, v�+1, . . . , v2� , respectively. 
As G is k-regular, every vertex has k neighbours in G . 



Fig. 1. The gadget H(v) where Ki(v) is a complete graph of size 2� for i = 1,2. Note that edges inside K1(v) and K2(v) are not drawn.
Hence, we can identify each edge uv of G with a unique 
edge uh vi in G ′ , which is a pendant edge of both H(u) and 
H(v). It is readily seen that G ′ is k-regular and claw-free.

First suppose that G is k-edge colourable. Let c be a 
k-edge colouring of G . Consider a vertex v ∈ V (G). For ev-
ery neighbour u of v in G , we colour the pendant edge
in H(v) corresponding to the edge uv with colour c(uv).
As c assigned different colours to the edges incident to v ,
the 2� pendant edges of H(v) will receive pairwise dis-
tinct colours, which we denote by x1, . . . , x�, y1, . . . , y� .
By Lemma 2, we can colour the edges of K1(v) in such
a way that for i = 1, . . . , �, vi and v ′

i miss colour xi . For
i = 1, . . . , �, we can therefore assign colour xi to edge v ′

i w .
Similarly, we may assume that for i = 1, . . . , �, v�+i and
v ′

�+i miss colour yi . For i = 1, . . . , �, we can therefore
assign colour yi to edge v ′

�+i w . Recall that the colours
x1, . . . , x� , y1, . . . , y� are all different. Hence, doing this
procedure for each vertex of G yields a k-edge colouring c′
of G ′ .

Now suppose that G ′ is k-edge colourable. Let c′ be a 
k-edge colouring of G ′ . Consider some v ∈ V (G). Denote
the pendant edges of H(v) by ei for i = 1, . . . , 2�, where
ei is incident to vi (and to some vertex uh in a gadget
H(u) for each neighbour u of v in G). Suppose that c′
gave colour x to an edge w v ′

i for some 1 ≤ i ≤ �, say to
w v ′

1, but not to any edge ei for i = 1, . . . , �. Note that
w v ′

2, . . . , w v ′
� cannot be coloured x. As every vertex of

G ′ has degree k = 2�, every vi with 1 ≤ i ≤ � and every
v ′

j with 2 ≤ j ≤ � is incident to some edge coloured x.
As x is neither the colour of e1, . . . , e� nor the colour of 
w v ′

2, . . . , w v ′
� , the complete graph K1(v) − v ′

1 contains a
perfect matching all of whose edges have colour x. How-
ever, K1(v) − v ′

1 has odd size 2� − 1. Hence, this is not 
possible. We conclude that each of the (pairwise distinct) 
colours of w v ′

1, . . . , w v ′
� , which we denote by x1, . . . , x� , is 

the colour of an edge ei for some 1 ≤ i ≤ �.
Let y1, . . . , y� be the (pairwise distinct) colours of 

w v ′
�+1, . . . , w v ′

2� , respectively. By the same arguments as
above, we find that each of those colours is also the colour 
of a pendant edge of H(v) that is incident to a vertex v�+i
for some 1 ≤ i ≤ �. Note that x1, . . . , x� , y1, . . . , y� are 2�

pairwise distinct colours, as they are colours of edges in-
cident to the same vertex, namely vertex w . Hence, we 
can define a k-colouring c of G by setting c(uv) = c′(uh vi)
for every edge uv ∈ E(G) with corresponding edge uh vi ∈
E(G ′). �

We note that the graph G ′ in the proof of Lemma 3 is 
not a line graph, as the gadget H(v) is not a line graph: the 
vertices v ′

1, v
′
2, v1, w form a diamond and by adding the

pendant edge incident to v1 and the edge w v ′
�+1 we ob-

tain an induced subgraph of H(v) that is not a line graph.
To handle the case where the forbidden induced sub-

graph H is a path, we make the following observation.

Observation 1. If a graph G of maximum degree k has a domi-
nating set of size at most p, then G has at most p(k +1) vertices.

We use Observation 1 to prove the following lemma.

Lemma 4. Let k ≥ 0 and t ≥ 1. Every connected Pt -free graph 
of maximum degree k has at most f (k, t) vertices for some func-
tion f that only depends on k and t.

Proof. Let G be a connected Pt -free graph of maximum 
degree at most k. We use induction on t .

First suppose t = 4 (and observe that if the claim holds 
for t = 4, it also holds for t ≤ 3). As G is connected, G
has a dominating set of size 2 due to Lemma 1. Hence, 
by Observation 1, we find that G has at most f (k, 2) =
2(k + 1) vertices.

Now suppose t ≥ 5. Let X be an arbitrary minimum 
connected dominating set of G . By Theorem 6, G[X] is 
either Pt−2-free or isomorphic to Pt−2. In the first case 
we use the induction hypothesis to conclude that G[X]
has at most f (k, t − 2) vertices. Hence, G has at most 
f (k, t − 2)(k + 1) vertices by Observation 1. In the second 
case, we find that G has at most (t − 2)(k + 1) vertices. We 
set f (k, t) = max{ f (k, t − 2)(k + 1), (t − 2)(k + 1)}. �

We use Lemma 4 to prove our next lemma.

Lemma 5. Let k ≥ 3 and t ≥ 1. Then k-Edge Colouring is 
linear-time solvable for Pt -free graphs.

Proof. Let G be a Pt -free graph. We compute the set of 
connected components of G in linear time. For each con-
nected component D of G we do as follows. We first 



compute in linear time the maximum degree �D of D . If 
�D ≤ k − 1, then D is k-edge colourable by Theorem 1. If
�D ≥ k + 1, then D is not k-edge colourable. Hence, we
may assume that �D = k. By Lemma 4, D has at most
f (k, t) vertices for some function f that only depends
on k and t . As we assume that k and t are constants,
this means that we can now check in constant time if
D is k-edge colourable. Note that G is k-edge colourable
if and only if every connected component of G is k-edge
colourable. Hence, by using the above procedure, deciding
if G is k-edge colourable takes linear time. �

We are now ready to prove Theorem 5, which we re-
state below.

Theorem 5. (restated) Let k ≥ 3 be an integer and H be a 
graph. If H is a linear forest, then k-Edge Colouring is linear-
time solvable for H-free graphs. Otherwise k-Edge Colouring 
is NP-complete even for k-regular H-free graphs.

Proof. First suppose that H contains a cycle Cs for some 
s ≥ 3. Then the class of H-free graphs is a superclass of 
the class of Cs-free graphs. This means that we can ap-
ply Theorem 3. From now on assume that H contains no 
cycle, so H is a forest. Suppose that H contains a vertex 
of degree at least 3. Then the class of H-free graphs is a 
superclass of the class of K1,3-free graphs, which in turn 
forms a superclass of the class of line graphs. Hence, if k is 
odd, then we apply Theorem 4, and if k is even, then we 
apply Lemma 3. From now on assume that H contains no 
cycle and no vertex of degree at least 3. Then H is a linear 
forest, say with � connected components. Let t = �|V (H)|. 
Then the class of H-free graphs is contained in the class of 
Pt -free graphs. Hence we may apply Lemma 5. This com-
pletes the proof of Theorem 5. �
4. Conclusions

We gave a complete complexity classification of k-Edge

Colouring for H-free graphs, showing a dichotomy be-
tween linear-time solvable cases and NP-complete cases. 
We saw that this depends on H being a linear forest 
or not. It would be interesting to prove a dichotomy re-
sult for Edge Colouring restricted to H-free graphs. Note 
that due to Theorem 5 we only need to consider the 
case where H is a linear forest. However, even determin-
ing the complexity for small linear forests H , such as 
the cases where H = 2P2 and H = P4, turns out to be 
a difficult problem. In fact, the computational complex-
ity of Edge Colouring for split graphs, or equivalently, 
(2P2, C4, C5)-free graphs [10] and for P4-free graphs has 
yet to be settled, despite the efforts towards solving the 
problem for these graph classes [6,8,21].

On a side note, a graph is k-edge colourable if and 
only if its line graph is k-vertex colourable. In contrast to 
the situation for Edge Colouring, the computational com-
plexity of Vertex Colouring has been fully classified for 
H-free graphs [19]. However, the computational complex-
ity for k-Vertex Colouring restricted to H-free graphs has
not been fully classified. It is known that for every k ≥ 3,
k-Vertex Colouring on H-free graphs is NP-complete if H
contains a cycle [9] or an induced claw [14,20], but the 
case where H is a linear forest has not been settled yet. 
The complexity status of k-Vertex Colouring is even still 
open for Pt -free graphs. More precisely, it is known that 
the cases k ≤ 2, t ≥ 1 (trivial), k ≥ 3, t ≤ 5 [13], k = 3, 
6 ≤ t ≤ 7 [2] and k = 4, t = 6 [7] are polynomial-time 
solvable and that the cases k = 4, t ≥ 7 [15] and k ≥ 5, 
t ≥ 6 [15] are NP-complete. However, the remaining cases, 
that is, the cases where k = 3 and t ≥ 8 are still open. We 
refer to the survey [11] or some recent papers [12,18,25]
for further background information.
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