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ABSTRACT: The recent financial network analysis approach reveals that the topolo-
gies of financial markets have an important influence on market dynamics. However,
the majority of existing Finance Big Data networks are built as undirected networks
without information on the influence directions among prices. Rather than understand-
ing the correlations, this research applies the Granger causality test to build the
Granger Causality Directed Network for 33 global major stock market indices. The
paper further analyzes how the markets influence one another by investigating the
directed edges in the different filtered networks. The network topology that evolves in
different market periods is analyzed via a sliding window approach and Finance Big
Data visualization. By quantifying the influences of market indices, 33 global major
stock markets from the Granger causality network are ranked in comparison with the
result based on PageRank centrality algorithm. Results reveal that the ranking lists are
similar in both approaches where the U.S. indices dominate the top position followed
by other American, European, and Asian indices. The lead-lag analysis reveals that
there is lag effects among the global indices. The result sheds new insights on the
influences among global stock markets with implications for trading strategy design,
global portfolio management, risk management, and markets regulation.
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Introduction

Financial markets, including stock markets, are extremely complicated sys-
tems in which participants are playing various roles with asymmetric access
to information at different market levels. The success and failure of financial
markets have significant influences on the economies. Recent financial
crises and market crashes urge practitioners and scholars to reevaluate the
markets and understand the fundamental dynamics that the traditional
financial theories fail to reveal. With the help of complex network theory,
it is possible to model and extract the network topological structures to
reveal hidden information and relationships among financial markets and
assets. This financial network analysis approach benefits portfolio manage-
ment, risk management, quantitative trading, and other financial practices
by providing better understandings as well as visualizations of market
dynamics.
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Financial market is considered an extremely complex system supported
by various information technology innovations, including automated trad-
ing [26], off-exchange trading [20], and crowd-based stock selection [36].
Although the information is critical in the financial markets [16, 46], recent
years have witnessed an emerging development of network science in
various financial markets [54]. From Information Systems perspective,
financial network analysis is an emerging method to analyze financial
risks [48], financial cycle [60], stock market perspective [49], and risk spil-
lover network [74]. However, based on current research of financial net-
works topologies, the networks are usually undirected graphs constructed
from correlations among the price time series. Due to the lack of capability
in revealing the information of mutual influences among the stocks, it is
challenging to answer questions such as how one stock is causal to another
stock, or which stock leads or lags to another stock. As correlation does not
imply causation, other methods are needed to construct directed networks
to catch the embedded causal relationships among the interinfluences of
stocks. The study provides new tools to traditional finance studies, adds
new insights to the undirected financial networks analysis research, and
further provides implementations to research and practices.

The economies around the world are influencing one another due to
globalization. It is thus essential to understand the dynamics of global
markets. In this paper, we investigate the global stock markets comprising
33 market indices of major stock markets using Granger causal testing and
lead/lag correlation to build directed networks and quantify the global
markets dynamics. Overall, there are three research questions:

Research Question 1: Do Granger causality and lead/lag exist significantly
in the global stock markets?

Research Question 2: What are the properties of those directed networks via
Finance Big Data visualization?

Research Question 3: How do the major market indices influence one
another and their importance in the network?

Literature Review

Financial systems are typical complex systems with a large number of
heterogeneous participants interacting with one another in nonlinear
ways. For global stock markets, it is essential to understand the interdepen-
dent relationships among the stocks. Using the price time series of a port-
folio, the price correlation matrix, which indicates how assets are interacting
with one another, can be built to further construct the correlation-based
asset networks [62]. With these networks, the applications of the network
analysis from complex network theory and random matrix theory could
extract hidden information embedded in the behaviors of assets. Significant
advancements have been made in the past few years focusing on these
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directions with many nontrivial empirical findings and applications to
market crisis study, portfolio optimization, risk management, and trading
strategy design. These achievements, compared to traditional economics
and finance approaches, bring significant new insights into the understand-
ings of the market structures and behaviors.

Many recent financial network analysis studies have been conducted on
a variety of stock markets around the world, such as Brazil [68], China [32],
South Korea [57], New Zealand [64], United States [61], Iran [52], Turkey
[22], Russia [71], Sweden [42], Germany [11], European markets [14], and
global markets [56]. The body of literature on correlation and network
studies of financial markets are growing. This shows a great practical
usages in both empirical studies and modeling the correlations and con-
nectedness based on price information, as discussed in Billio et al. [7] and
Podobnik et al. [63]. Besides the stock market, the real estate stock market is
studied in Wang and Xie [73], and foreign exchange markets were studied
in Fenn et al. [28] and Jang, Lee, and Chang [43]. As an extension of recent
advances of social sentiment studies in finance, Zhang et al. [77] propose a
stock price prediction method using the network structure properties with
social sentiments. In Farmer et al. [27], a vision to model the financial
markets and economic systems as coupled networks of agents are proposed
to combine the powers of both complex network theory and computational
multiple agent simulations. In a recent 2016 Science paper, Battiston et al. [4]
argue that concepts from complexity theory like networks are necessary and
have significant potentials to anticipate financial crises because the econo-
mies and financial systems are becoming highly connected [4]. The studies
of network structure and the related properties and the dynamics provide
new insights for financial market regulators for better policy decision
makings [3, 63, 67].

In financial network analysis, there has been some work on the relation-
ships between economic entities like countries, companies, and board direc-
tors. For example, Battiston and Catanzaro [3] find that the network of
board directors of big companies shows a small-world feature. Glattfelder
[33] and Vitali, Glattfelder, and Battiston [70] investigated the corporate
control relationships from the perspective of ownership networks extracted
from the shareholder data. Several papers research the international world
trade networks in which countries are vertices and the international
import/export of goods among countries are used to build edges [5, 45].
All these works, in macro levels, depict the relationships of large economic
entities, and the results are inspirational for macro trading. Furthermore, as
a method of Financial Big Data, financial network analysis provides tools
for revealing the topological structures of financial markets. To enhance the
capability of financial network analysis, it would be interesting to apply it
with other big data approaches using multiple sources of data, including
price data, stock profiles, financial filings, and sentiments in social media [1,
66]. In the research conducted by Boginski, Butenko, and Pardalos [8], the
degree distribution of the financial market is studied, and the statistical
results show that the power law model is valid in financial networks. They
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also reveal that network structures are stable over time intervals, and
parameters such as edge density increases in recent years indicate that
stocks are influencing one another in the U.S. stock market. In the research
conducted by Caldarelli et al. [13], the authors report that financial net-
works are extracted not only from stock prices but also from board director
and stock ownership. These results show scale-free properties. Chen et al.
[17] further discuss the relationship between the interindustry closeness
and returns industry in industrial level and the stock centrality and stock
returns in stock level. The global stock markets are not only important for
the individual country but also entangled with significant influences with
one another. The understanding of the dynamics of global stock markets is
essential to industrial practices as well as to the policymakers for a better
global economy [5, 25, 45]. In the traditional finance approaches, the
dynamics of global markets have been studied in various aspects, such as
effects of the herding [18, 37] driving factors, risk and predicting of market
returns [19, 29, 38], co-movement [31], interdependence, transmission
dynamics [50], correlation [35], and structure and performance of global
markets [6]. However, there is still a lack of study on the directed network
properties of global markets with focus on causality and lead/lag effects to
reflect the influencing relationships among global markets. It is interesting
to explore from new perspective and add new evidences to further verify
the effects, factors, predictions, and dynamics. Online Appendix provides a
summary of selected representative literatures in the logic of complex net-
work theory, financial network analysis, global stock market studies,
Granger and lead/lad, and applications.

In this study, we focus on the global stock market network constructed
from price information. The market indices are treated as the vertices,
whereas the relationships are translated as edges between stock markets.
The contribution of the research is in providing findings of global stock
market directed networks built from Granger causality information and
lead/lag effects. There is some relevant research that applies the Granger
causality tests in the study of network structures of financial markets. Using
the measurements of Granger causality networks based on monthly returns,
the study [7] shows that the financial institutional sectors (hedges funds,
banks, brokers, and insurance companies) interrelate, and banks represent
more important roles. The international business cycles are studied in
Caraiani [15] using Granger causality network approach. It reveals that
the United States plays important roles in subnetworks composed by G7
and Organisation for Economic Co-operation and Development countries.
Instead of using gross domestic product (GDP) data, we use all major global
stock markets indices data and focus on the dynamics of stock market
behavior. The Chinese stock market is studied using the cointegration
approach, and the structures are studied in Tu [69], where they apply the
Engle-Granger test to extract the subnetworks of Chinese stock market. The
study on the Granger causality networks of 20 developed markets is carried
out in Vyrost, Ly6csa, and Baumohl [72], and the survival ratio measure-
ment is used to study the stability. In Kenett et al. [47], a metacorrelation,
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which is the correlation of the index return and the market mean correla-
tion, is proposed to study the components of the Dow Jones Industrial
Average (DJIA). Authors apply the Granger causality test to validate the
results and find that the index returns correlate with the mean correlations.
In Zheng et al. [78], a dynamic causality index is used to measure the
market shifts for the U.S. stock market as well.

Data Analysis and Discussion
Whole Period

Using the return data over the whole period, the Granger causality test is
conducted for all index pairs. Details of the research methodology of
Granger causality, ADF and Unit Root Test, and Data Setting Introduction
are presented in the online Appendix. The F'-statistic and critical values are
calculated. Granger binary network is generated where vertices are indices
and the directed edges are weighted as 1 if F'-statistic is larger than critical
values, as

- 1 if F>c,
¢j = { 0 ()];herwise, ’ )
where F is the F-statistic and ¢ represents the critical value. If F>c, as we
described earlier, /;—1;, that is, I; granger causes /;, then a directed edge €;
is established from J; to J;. Figure 1 plots the average correlation of each
sliding windows. In Figure 2, the granger network of 33 indices calculated
from the return data of the whole period is presented. The total number of
edges satisfying F>c is 727 of 1,089 possible directed edges. In other words,
the network has an edge density of 0.6676. For index /;, which is connected
by directed edges to other indices, we denote the in-degree as d"", out-
degree as d*, and total-degree as d”“ = d" + d**. For a given index, d"
indicates how many other indices granger cause ;. d?" indicates how many
other indices are granger caused by I;, more precisely,

A" = [8ly.; and d% = [By]izs- @

To quantify the influence for each vertex, the influence factor introduced
in Caraiani [15] is adopted, in which a Granger causality network is con-
structed by using the GDP data. Based on the granger network, the influ-
ence of each vertex (country) is measured as the relative influence factor (IF):

out in
_ di — di

IFi = i o

®)

It shows that Granger causal network better predicts the fluctuations, and
the United States has the largest influence over other countries, which
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Figure 1. The Average Correlation (p;;) for Each Sliding Time Window of 20
Trading Days in the Whole Study Period. Nofe. We see that the correlations are
positive and fluctuate dramatically.

Figure 2. The Granger Binary Network of 33 Indices Calculated From
the Whole Period
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agrees with our findings. The same measurement is also used in Tu [69] to
study the influence of different industrial sectors. Using the same method,
we present the degree information and influence factors for all 33 indices in
Table 1. We sort the rows in descending order according to the influence
factor /F;. For different regions, we average the values and present them in
Table 2. Four indices—IXIC (NASDAQ), GSPC (S&P500), DJI, and NYA
(NYSE)—rank top four positions. This shows these U.S.-based indices are
the most influential vertices in the whole global granger network. It also

Table 1. The 4", d*, df”ml, IF; for Each Index in the Granger Causality Network in
the Descending Order of IF;.

Tick Country Region dr an dier! IF; |

IXIC us American 5 32 37 0.7297
GSPC us American 10 30 40 0.5000
DJl us American 10 30 40 0.5000
NYA us American 1 30 41 0.4634
MERV Argentina Americas 10 27 37 0.4595
IPSA Chile Americas 16 26 42 0.2381

BEL-20 Belgium Europe 18 27 45 0.2000
AEX Netherlands Europe 18 25 43 0.1628
GDAXI Germany Europe 19 26 45 0.1556
IBEX Spain Europe 17 23 40 0.1500
FTSEMIB. Italy Europe 17 22 39 0.1282
Ml

SMI Switzerland Europe 18 23 4 0.1220
MXX Mexico Americas 25 31 56 0.1071
FCHI France Europe 20 24 44 0.0909
GD.AT Greece Europe 21 25 46 0.0870
FTSE UK Europe 20 23 43 0.0698
BSESN India Asia 24 27 51 0.0588
GSPTSE Canada Americas 28 30 58 0.0345
OMXC20 Denmark Europe 20 18 38 -0.0526
KsSh Korea Asia 26 23 49 -0.0612
BVSP Brazil Americas 33 28 61 -0.0820
ATX Austria Europe 25 21 46 -0.0870
JKSE Indonesia Asia 26 21 47 -0.1064
BIST100 Turkey Europe 24 18 42 -0.1429
HSI Hong Kong Asia 27 18 45 -0.2000
STI Singapore Asia 29 19 48 -0.2083
TA100 Israel Middle 31 15 46 -0.3478

East
N225 Japan Asia 29 14 43 -0.3488
AORD Australian Asia 28 1 39 -0.4359
KLSE Malaysia Asia 31 12 43 -0.4419
NZ50 New Asia 32 10 42 -0.5238
Zealand

SSE China Asia 29 9 38 -0.5263
TWII Taiwan Asia 30 9 39 -0.5385
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Table 2. The Number of Countries, (d"), (d?), (di*"'), and (IF;) for Five Regions
of the Global Indices.

Region Country (dim) (dovry (droraly (IF;)

American 4 9 30.5000 39.5000 0.5483
Europe 12 19.7500 22.9167 42.6667 0.0736
Asia 1 28.2727 15.7273 44 -0.3029
Americas 5 224 28.4000 50.8000 0.1514
Middle East 1 31 15 46 -0.3478

agrees with the findings in Caraiani [15] that the U.S. economy places top
position in the GDP-based Granger network. Second, we find that European
countries dominated the middle part of the ranking after the United States
but followed by the Asian countries.

The average in-degree <d™ > 22.0303 , as in-degree and out-degree is
symmetrical, so we have the same value for (d*) as 22.0303. By averaging
all (IF;), the average influence factor is <IF; > 0.0047, which indicates that
the there is a positive overall influence factor among the indices. For
different regions, we summarize the average values in Table 2, and find
that the United States ranks first with a dominated influence factor followed
by Americas, Europe, Asia, and Middle East. This shows that Asian coun-
tries with a small average influence factor </F; > —0.3029 are less influen-
tial in the global stock market. This adds new insights of the global stock
market dynamics, indicating that the global influence is not only related to
the economy but also deeply rooted with the stock market price dynamics
in terms of causality.

As shown in Figure 2, the binary network is very dense with 727
edges, it is necessary to filter the network and adapt the weights of the
edges. In Caraiani [15], authors use the F -statistic value to assign differ-
ent weights to the edges. The basic idea is that a weight value is assigned
to the edge based on the relevant significance level. However, the short-
coming is that all F -statistic information is lost. In Figures 3(a) and 3(b),
we present the Granger networks with the top 5 percent and 25 percent
edges with largest F -statistic values. Our results in these two filtered
networks show that the four U.S.-based indices are the most influential
indices with direct influences over most of the other indices. Meanwhile,
they are nearly independent from the remaining parts without inbound
edges. The indices of Americas mainly influence the Asian countries. The
European indices are influenced by both U.S. and Americas indices, and
they influence mainly the Asian indices. For Asian indices, they have
nearly no influences on other indices and not all of them are greatly
influenced by the rest indices, even the top 25 percent edges are included
as shown in Figure 3(b). For individual index, NZ50 (New Zealand) are
the most Granger caused by DJI (United States) and NYA (United States).
The FTSE (London, UK) is mainly influenced by the four U.S. indices. In
Asia, N225 (Japan), AORD (Australia), NZ (New Zealand), and JKSE



//doc.rero.ch

http

@oar
O .'i_Ex @rsemiem

ll

.C HI

@ nixczo

@cx

(!

@is7100

(a) Top 5% edges

@oxr
‘-‘f" &F‘x @rsevem

@
h \ MXC20
@rse A £
%\\ e\ 3 ' \ DA eL20
‘(ﬂ_ ._M; = “\_-.\_\\ i : -\: : \ . .1
e\ = : SN 'y ( ST 100
: @
T @s:
@n

\}“\‘zso @use
(b) Top 25% edges

Figure 3. The Granger Networks of the 33 Indices Calculated From the
Whole Period With Edges of Top 5 Percent and 25 Percent, Respectively
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(Indonesia) have the highest in-degree from the United States, Americas,
and European indices. The other Asian indices are little influenced with
no inbound edges among the top 5 percent edges as shown in Figure 3(a)
and only weak inbound edges among the top 25 percent edges as shown
in Figure 3(b). Notably, the SSE (Shanghai, China), the index of the
Shanghai Stock Exchange, is almost independent from other indices
with no edges among the top 5 percent edges. This result reconfirms
the previous findings that China’s stock market, even as an important
global economy, is rather isolated. In other words, the internal factors are
more influential than the external factors for SSE. The AT100 (Israel,
Middle East) has no edges among the top 5 percent and has inbound
edges from U.S. indices among top 25 percent, indicating that AT100 is
only mainly influenced by the U.S. markets.

Sliding Windows

To investigate how influences among indices evolve in our study period
between April 1, 2007, and June 11, 2015, sliding window approach is
adopted. A window size of L =50 trading dates, that is, two trading
months, is selected. For each sliding window at time ¢, we cover a period
in[t—L+1, ¢]. This results in 2,307 windows. Granger causality for all
indices and the average over all windows is analyzed. We get a set of
average values of (d"), (d°'), (d*'), and (IF;) for each index. In Table 3,
results of descending order according to the influence factor are presented.
U.S. indices are at the top of all indices with largest IF; followed by other
American indices. The European indices are in the middle leading the Asian
indices, which have negative /F; indicating that Asian indices are mainly
influenced by the rest indices while contributing less influences to the rest
indices. In Figures 4(a) and 4(b), we present the averaged Granger causality
networks with top 5 percent edges and 25 percent edges. Comparing with
Figures 3(a) and 3(b) directly computed from the whole period, the net-
works are similar indicating that the causal patterns are stable. The United
States is a key player, and Asian indices like N255 (Japan), HSI (Hong
Kong), AORD (Australia), NZ50 (New Zealand), and KS11 (Korea) have
the highest in-degrees and are influenced by U.S. and European indices. It is
very interesting to find that N255 is influenced by both U.S. and European
indices, whereas AORD is influenced by all U.S., European, and American
indices, but KS11, NZ50, and KLSE are influenced only by U.S. indices. This
gives new insights to the global indices dynamics that have potential
implication for global macro hedge funds.

Because the Granger causality networks are directed, it is interesting to
apply the PageRank algorithm from the graph theory to study the influences
of each index. First introduced to rank web pages in the design of web
search engine, PageRank is very efficient to quantify the importance of
vertices [59]. To carry the PageRank algorithm, at first, for a vertex v;, we
initialize it with a probability P;(0) = 1/N, where N is the number of

10
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Table 3. (d™"), ("), (d”"'), and (IF;) for Each Index of the Granger Causality
Network in the Descending Order of IF; Averaged Over All Sliding Windows.

Tick Country Region (dim) (dovty (drotaly (IF}) |
NYA us American 7.5611 18.4207 25.9818 0.5174

GSPC us American 7.5629 18.0580 25.6209 0.5128
DIl us American 7.7325 17.6820 25.4145 0.5007
IXIC us American 7.3472 18.3074 25.6546 0.4902
MXX Mexico Americas 9.5195 12.7418 22.2613 0.4308
GSPTSE Canada Americas 8.9539 12.4544 21.4083 0.3963
BVSP Brazil Americas 9.5837 12.5961 22.1798 0.3774
MERV Argentina Americas 9.3180 11.9105 21.2285 0.3697
IPSA Chile Americas 9.1678 8.6355 17.8034 0.3065
FTSEMIB Italy Europe 9.1497 11.8959 21.0456 0.2730
GDAXI Germany Europe 8.6413 11.9823 20.6236 0.2573
IBEX Spain Europe 10.3082 11.6470 21.9553 0.2207
FTSE UK Europe 10.0341 10.6067 20.6408 0.2186
FCHI France Europe 9.7467 12.2285 21.9752 0.2172
ATX Austria Europe 9.8539 12.3849 22.2387 0.1948
AEX Netherlands Europe 9.7489 9.4066 19.1554 0.1923
BEL-20 Belgium Europe 20.1630 7.0651 27.2281 0.1879
SMI Switzerland Europe 17.3570 7.4978 24.8547 0.1362
OMXC20 Denmark Europe 9.7099 7.2294 16.9393 0.0970
GD.AT Greece Europe 16.2644 7.9712 24.2356 0.0687
BIST100 Turkey Europe 20.9451 7.6980 28.6430 0.0355
SSE China Asia 11.4504 9.1236 20.5740 -0.0245
BSESN India Asia 14.5673 6.9854 21.5527 -0.0672
TA100 Israel Middle 15.6050 7.5664 23.1714 -0.0830

East

KLSE Malaysia Asia 17.8609 8.2427 26.1036 -0.2813

JKSE Indonesia Asia 17.8503 7.4889 25.3392 -0.3166
STI Singapore Asia 16.7086 7.2042 23.9128 -0.3404
NZ50 New Asia 7.9043 14.5323 22.4367 -0.3555

Zealand

T™WII Taiwan Asia 7.8773 14.8330 22.7104 -0.3749
HSI Hong Kong Asia 7.7600 15.4663 23.2263 -0.3948
KsT Korea Asia 8.1554 12.1461 20.3016 -0.4051
AORD Australian Asia 7.3313 12.5239 19.8552 -0.491

N225 Japan Asia 10.9486 8.1554 19.1041 -0.4993

vertices. At iteration ¢, we update the probability according to the outbound

edges of each vertex as

1—-d P:(t
P =1ty O
]

(4)

where d is the damping factor to mimic the random behavior of a browser,
and Z; is the total out-degree of v;, we require a directed edge €; to exist
between v; and v;. By repeating this updating for enough time, we can get

11
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Figure 4. The Granger Networks of 33 Indices Averaged Over All
Sliding Windows With Edges of Top 5 Percent and 25 Percent,
Respectively
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the PageRank order of all vertices. For our case, on the contrary, the
influencing vertex has more out degrees and less in degrees, whereas the
influenced vertex has more in degrees and less out degrees. The influencing
vertex is more important than the influenced vertex in the network.
Therefore, the original version of PageRank is not suitable here. We used
the alternative PageRank centrality to calculate the importance of each
vertex. Similar to the original algorithm, using the data of the 33 indices,
we apply the PageRank centrality [9, 51, 53, 59] to study the influence
distribution among the markets. As an alternative eigenvector centrality,
the PageRank centrality values indicate the importance with which we
further rank the indices of the network. In Table 4, we present the rankings
of all indices in the descending order of PageRank centrality values com-
pared with the averaged influence factor (IF;) . We find an astonishing
similarity of rankings from this PageRank centrality approach with the
results based on averaged influence factor (/F;) as shown in Table 3. In
the PageRank table, U.S. indices again dominate the top positions followed
with Americas indices and Asian indices.

Lead/Lag Network

As we discussed in the previous section, by conducting a Granger causality
test for index /; and J;, we can establish a directed edge é; from /; to /; if the
test tells 7; Granger causes /;. In this section, we study the importance of the
effect of the lead/lag between stocks. The Granger causality from I; to I;
indicates if we include the past information of I;, we can improve the
prediction of /; in a linear model manner. However, this does not necessa-
rily reveal the lead /lag relationship between the two stocks. The correlation
coefficients indicate how the stocks co-move with one another in a synchro-
nous way. However, we have evidence that the markets are not perfectly
efficient where impacts or signals spread over the market in an asynchro-
nous way. When market participants absorb, respond, and adjust with
different speeds, as a result, some might move ahead of others with differ-
ent lead/lag time gaps. The lead/lag effect, as an evidence against the
Efficient Market Hypothesis, has great potential implications for investors
and traders. Some recent literatures study the lagged correlations to explore
the lead/lag effect. In Curme et al. [23], a lagged correlation network is
constructed for the stock market with discussion of the topological proper-
ties, and the result reveals the growth in efficiency and instability. In this
study, the intraday price data are used at time horizons from five minutes
up to 130 minutes. In another study, the daily price data are used for NYSE
market [30], in which the author points that the lead /lag effect will be much
smaller in daily data but may not be negligible nonetheless. Our following
study based on the daily price data of all 33 indices around the world
provides additional evidence for this argument by revealing positive
lead/lag effects among the major international stock market indices.
Time-dependent correlation (lagged correlation) is investigated for

13
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Table 4. PageRank Centrality Values and Averaged Influence Factor
(IF;) of All 33 Indices Ranked in Descending Order of PageRank.

Tick Country Region (IF;) PageRank |
GSPC us American 0.5128 0.0791
NYA us American 0.5174 0.0787
DJI us American 0.5007 0.0773
IXIC us American 0.4902 0.0749
MXX Mexico Americas 0.4308 0.0641
BVSP Brazil Americas 0.3774 0.0477
GSPTSE Canada Americas 0.3963 0.0365
MERV Argentina Americas 0.3697 0.0267
IPSA Chile Americas 0.3065 0.0258
FCHI France Europe 0.2172 0.0250
FTSE UK Europe 0.2186 0.0239
AEX Netherlands Europe 0.1923 0.0239
GDAXI Germany Europe 0.2573 0.0236
BEL-20 Belgium Europe 0.1879 0.0234
FTSEMIB. Italy Europe 0.2730 0.0233
Ml
IBEX Spain Europe 0.2207 0.0232
SMI Switzerland Europe 0.1362 0.0231
ATX Austria Europe 0.1948 0.0229
OMXC20 Denmark Europe 0.0970 0.0219
BIST100 Turkey Europe 0.0355 0.0207
GD.AT Greece Europe 0.0687 0.0200
BSESN India Asia -0.0672 0.0188
JKSE Indonesia Asia -0.3166 0.0180
TA100 Israel Middle -0.0830 0.0179
East
STI Singapore Asia -0.3404 0.0179
N225 Japan Asia -0.4993 0.0177
HSI Hong Kong Asia -0.3948 0.0177
SSE China Asia -0.0245 0.0177
AORD Australian Asia -0.491 0.0177
KLSE Malaysia Asia -0.2813 0.0177
NZ50 New Asia -0.3555 0.0177
Zealand
KST Korea Asia -0.4051 0.0177
TWII Taiwan Asia -0.3749 0.0177

Chinese stock market in Geo, Zeng, and Cai [32] showing that a few large
companies are leading the market. It is worth noting that the co-integration
between time series provides information on how two series are related, but
this provides no information of lead/lad effect. Using an approach by
studying the co-integration relationships among global market, co-integra-
tion directed networks are studied in Yang et al. [76]. This is different from
our following lagged correlation approach.
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Consider two returns of indices /; and /;, for a certain period; the lagged
correlation coefficient or cross-correlation coefficient,

Yi(t)Yi(t+ 1) — Yi(t)Y;(t +7)
\/ (20 = vit?) (20 = vt +27)

©)

Pzt'j(f) =

indicates how the index J; is correlated to index /; with a lag of 7, where <Y;(¢) >
1/L3Y", Y,(¢) is the average of returns for /; in a period with a length of L. Because
the introduction of 7, we see that pj;(t) #p};(7), so the lagged correlation matrix of
all indices is asymmetric. This lagged correlation coefficient also ranges in the
interval of [—1, 1], that is, —1 < pj(z) < 1.1If pj;(z)>0, then ; is positively
correlated with /; in a lead of 7. In other words, J; is afollower of /;. In a less strict
but safe way, we say /; influences /; to move in the same direction as /; does. For
the case of pj;(7)<0, a negative value of pj() indicates /; has an influence on J; to
move in a counter direction with a lead of 7. If pj(z)#0, we can use this
information to extract the lead /lag structure among all pairs in the set of indices.
To simplify the lead /lag network, we compare the correlation coefficients on the
directed edges of é; and €;;,

%:{@@#
0

>

Pf‘j(f) /’]t'i(f) ] (6)
otherwise,

in other words, we only keep the lead /lag effect with larger absolute correlation
in the two directed edges of é; and &;; . In this way, only one edge is kept to link /;
and J; . This approach greatly simplifies the network by filtering out half of the
total edges. We consider 7 ranges up to 20 days. In Figure 5, we plot the average
lagged correlation coefficient (p;) and standard deviation o; for each lag value,
we see that when 7 = 1, both values are significantly different from the mean
values. This implicates the lead/lag effect is relatively significant at 7 = 1 and
fades out with the increasing lag length. This actually agrees with some macro
economy observations that the impact of global indices spread around the world
and the time window to react to external influence is very short. If it is a daily
basis, the effective lead /lag time would be no longer than one day. This empirical
finding suggests that there is a lead /lag effect among indices even if the corre-
sponding correlation is smaller than 0.1. Using the filtering approach (Equation
6), we extract the top 5 percent and 25 percent edges and present the lead/lag
networks in Figures 6(a) and 6(b), respectively. As shown in the figures, we find
that there is a great similarity of top edges in the lead/lag networks with the
Granger networks of the whole period (Figure 3) and the average of all sliding
windows (Figure 4), especially for the case of top 5 percent networks. Again, we
confirmed that U.S. indices are leading indices and Asian indices of N255
(Japan), HSI (Hong Kong), AORD (Australia), NZ250 (New Zealand), and
TWII (Taiwan) are lagged mainly to U.S. indices and some European indices.
To evaluate the leading effects of all indices, we apply the PageRank centrality
algorithm to the lead/lag networks with a lag of 7 = 1; we rank the indices in a
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Figure 5. The Average Correlation (p;;) and standard Deviation ¢;; of Lead/Lag
Network of 33 Indices Over the Whole Study Period for Different Lag Lengths From 1
to 20

descending order according to the PageRank centrality values and present the
resultin Table 5. We see that the indices rankings based on lead /lag networks are
similar to the results based on the ranking of influence factor values of Granger
causality networks of whole period (Table 1) and averaged over all sliding
windows (Table 3). The ranking is also similar to the rankings of PageRank
centrality values of Granger causality networks (Table 4). In the PageRank
ranking of lead/lag networks, the U.S. indices again top the leading positions
with exception of MXX (Mexico), ranked in the third place. Most European
indices are in the middle part, followed by the Asian indices. This finding
indicates that Granger causality and the lead /lag effect from the lagged correla-
tion approach reveal the same pattern of the dynamics of global indices.

Conclusion

Financial network analysis is an innovative method to quantitatively study
the dynamics of financial markets. As a Financial Big Data approach, it
provides new tools to analyze and visualize the interrelationships of assets.
Different from the undirected financial network analysis, which omits the
causal or influence direction, the directed financial network analysis can
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Figure 6. The Lead/Lag Networks (z = 1) of 33 Indices of the Whole Study Period
With Edges of Top 5 Percent (a) and 25 Percent (b), Respectively
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Table 5. PageRank Centrality Values in Descending Order Calculated
for All Indices of the Top 5 Percent Edges of Lead/Lag (r = 1) Network
for All 33 Indices.

Tick Country Region PageRank |
NYA us American 0.0701
IXIC us American 0.0596
GSPC us American 0.0484
MXX Mexico Americas 0.0455
DJI us American 0.041
GSPTSE Canada Americas 0.0304
GDAXI Germany Europe 0.0301
BVSP Brazil Americas 0.0278
AEX Netherlands Europe 0.0276
FTSE UKk Europe 0.0276
BEL-20 Belgium Europe 0.0275
FCHI France Europe 0.0275
SMI Switzerland Europe 0.0275
MERV Argentina Americas 0.0274
IPSA Chile Americas 0.0264
FTSEMIB. Italy Europe 0.0262
Mi
IBEX Spain Europe 0.0262
ATX Austria Europe 0.0262
GD.AT Greece Europe 0.0251
OMXC20 Denmark Europe 0.0251
BIST100 Turkey Europe 0.0251
N225 Japan Asia 0.0251
HSI Hong Kong Asia 0.0251
SSE China Asia 0.0251
STI Singapore Asia 0.0251
AORD Australian Asia 0.0251
BSESN India Asia 0.0251
JKSE Indonesia Asia 0.0251
KLSE Malaysia Asia 0.0251
NZ50 New Asia 0.0251
Zealand
KST Korea Asia 0.0251
™I Taiwan Asia 0.0251
TA100 Israel Middle 0.0251
East

reveal how the information or influence is spreading among the assets. The
directed financial network analysis is an essential supplement to the undir-
ected approaches. In this study, we discussed the Granger causality net-
work and time lead/lag network built using global indices. Our approach
can be applied to stock markets, future markets, and so on. The two assets
in the lead/lag pair can be from the same market or two markets, such a
stock market and a future market. To take advantages of the findings of the
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causality networks or lead/lag networks in designing of trading strategies,
one can use the leading asset as an indicator for the lagged asset. The lead/
lag relationship between assets and financial markets is important for the
studies of trading strategies design and high-frequency analysis [12, 21, 39,
44]. For lead/lag correlated pair assets, when the leading reaches the local
maximum, we long the lagged, or when the leading reaches the local
minimum, we short the lagged. First, we use the Granger and lead/lag
approaches to identify the lead /lag pairs and their time lags, then we apply
the trading strategies and monitor the lags. In our research, both
approaches reveal similar ranking of influences for the 33 indices of global
major stock markets. Our work contributes to the literature in multiple
folds. First, we provide a systematical study of the global markets by
modeling as directed financial networks both in the Granger causality net-
work and the lead/lag network. Second, the topological properties of the
directed networks are discussed, revealing the influence relationships
among the global markets. Third, through the directed edge information,
we reveal that the U.S. stock markets are dominating the networks with the
highest influences, whereas the Asian stock markets are the most influenced
markets by other markets. Forth, we verify the influence rankings using the
PageRank centrality approach. Finally, we observed a lead/lag effect in the
global markets through directed networks. These findings bring new evi-
dence and implications of global trading strategy design as well as global
market risk monitoring. However, this work still needs further efforts to
overcome the limitations. More price data in higher frequencies could be
used to explore the market behaviors in small time scales; other causality
tests can be used to build directed networks. Also, we should be aware that
the causality revealed from the Granger causality tests is valid in the scope
of the Granger causality test. We shall not take it too far to conclude that
there is specific causality between concerned series, as all causalities have
been embedded in the final test results: This is the same way that all market
information has been reflected in the final prices. The causality indicates
that the predictive information is embedded in one series for another series.
Although the limitations of Granger causality, the observed causality can be
informative for the dynamics analysis.

It is worth mentioning that in designing trading strategy in the global
markets, the asynchronous market opening and closing need to be con-
sidered, for the different trading periods of global markets in different
time zones. Moreover, it would be both exciting and rewarding to explore
the possibilities of combining financial network analysis with other big
data approaches such as sentiment analysis [1, 66]. As further research,
one might study how the directed global financial network changes with
the sentiment reflected from other data sources like investor activities or
social media. With the availability of Financial Big Data and network
analysis theories and tools, by building the directed networks of global
financial markets, we can not only further visualize the networks but also
monitor the evolvement of the topological structures. Because global
economies are becoming increasingly interconnected, it is crucial for
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governments, regulators, and policymakers to closely watch the networks
of global stock markets in hopes of avoiding systemic failures like finan-
cial crises.
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