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Abstract—Personalized recommendation is crucial to help users find pertinent information. It often relies on a large collection of user
data, in particular users’ online activity (e.g., tagging/rating/checking-in) on social media, to mine user preference. However, releasing
such user activity data makes users vulnerable to inference attacks, as private data (e.g., gender) can often be inferred from the users’
activity data. In this paper, we proposed PrivRank, a customizable and continuous privacy-preserving social media data publishing
framework protecting users against inference attacks while enabling personalized ranking-based recommendations. Its key idea is to
continuously obfuscate user activity data such that the privacy leakage of user-specified private data is minimized under a given data
distortion budget, which bounds the ranking loss incurred from the data obfuscation process in order to preserve the utility of the data
for enabling recommendations. An empirical evaluation on both synthetic and real-world datasets shows that our framework can
efficiently provide effective and continuous protection of user-specified private data, while still preserving the utility of the obfuscated
data for personalized ranking-based recommendation. Compared to state-of-the-art approaches, PrivRank achieves both a better
privacy protection and a higher utility in all the ranking-based recommendation use cases we tested.
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1 INTRODUCTION

D EVELOPING effective recommendation engines is crit-
ical in the era of Big Data in order to provide perti-

nent information to the users. To deliver high-quality and
personalized recommendations, online services such as e-
commerce applications typically rely on a large collection of
user data, particularly user activity data on social media,
such as tagging/rating records, comments, check-ins, or
other types of user activity data. In practice, many users
are willing to release the data (or data streams) about their
online activities on social media to a service provider in ex-
change for getting high-quality personalized recommenda-
tions. In this paper, we refer to such user activity data as pub-
lic data. However, they often consider part of the data from
their social media profile as private, such as gender, income
level, political view, or social contacts. In the following, we
refer to those data as private data. Although users may refuse
to release private data, the inherent correlation between
public and private data often causes serious privacy leakage.
For example, one’s political affiliation can be inferred from
her rating of TV shows [1]; one’s gender can be inferred from
her activities on location-based social networks [2]. These
studies show that private data often suffers from inference
attacks [3], where an adversary analyzes a user’s public data
to illegitimately gain knowledge about her private data. It
is thus crucial to protect user private data when releasing
public data to recommendation engines.

To tackle this problem, privacy-preserving data publish-
ing has been widely studied [4]. Its basic idea is to provide
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protection on the private data by distorting the public data
before its publication, at the expense of a loss of utility of
the public data in the latter processing stages. For the use
case of recommendation engines, utility refers to the person-
alization performance based on the distorted public data,
i.e., whether the recommendation engines can accurately predict
the individual’s preference based on the obfuscated data. There is
an intrinsic trade-off between privacy and personalization.
On one hand, more distortion of public data leads to better
privacy protection, as it makes it harder for adversaries
to infer private data. On the other hand, it also incurs a
higher loss in utility, as highly distorted public data prevents
recommendation engines from accurately predicting users’
real preferences.

To apply privacy-preserving data publishing techniques
in the case of social media based recommendation, one
immediate strategy is to obfuscate user public data on the
user side before being sent to social media. However, such
an approach is unrealistic as it hinders key benefits for users.
In real-world use cases, social media provides users with a
social sharing platform, where they can interact with their
friends by intentionally sharing their comments/ratings on
items, blogs, photos, videos, or even their real-time loca-
tions. For example, when a user watched a good movie and
wants to share her high rating on it with her friends, she
does not want the rating to be obfuscate in any sense.

As it is inappropriate to obfuscate user public data before
being sent to social media, an alternative solution is to
protect user privacy when releasing their public data from
social media to any other third-party services. Specifically, many
third-party services for social media require access to user
activity data (or data streams) in order to provide them with
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personalized recommendations. In addition to such public
data, these services may require optional access to users’
profiles. While some privacy-conscious users want to keep
certain data from their profiles (e.g., gender) as private,
other non privacy-conscious users may not care about the
same type of private data and choose to release them.
Subsequently, an adversary could illegitimately infer the
private data of the privacy-conscious users, by learning the
correlation between the public and the private data from the
non privacy-conscious users. Therefore, it is indispensable
to provide privacy protection when releasing user public
data from social media.

In this paper, we study the problem of privacy-
preserving publishing of user social media data by con-
sidering both the specific requirements of user privacy on
social media and the data utility for enabling high-quality
personalized recommendation. Towards this goal, we face
the following three challenges. First, since users often have
different privacy concerns [5], a specific type of data (e.g.,
gender) may be considered as private by some users, while
other users may prefer to consider it as public in order to get
better personalized services. Therefore, the first challenge
is to provide users with customizable privacy protection, i.e.,
to protect user-specified private data only. Second, when
subscribing to third-party services, users often allow the ser-
vice providers to access not only their historical public data,
but also their future public data as a data stream. Although
the obfuscated historical public data can efficiently reduce
privacy leakage, the continuous release of user activity
feed will incrementally increase such leakage (see Figure 7
for details). Therefore, the second challenge is to provide
continuous privacy protection over user activity data streams.
Third, we consider the case of ranking-based (or top-N)
recommendation, which is more practical and has been
widely adopted in practice by many e-commerce platforms
[6]. As ranking-based recommendation algorithms mainly
leverage the ranking of items for preference prediction, they
are sensitive to the ranking loss incurred from the data
obfuscation process. However, the computation of ranking
losses often implies a high cost that is super-linear in the
number of items used for recommendation [7]. Therefore,
the third challenge is to efficiently bound ranking loss in data
obfuscation.

Aiming at overcoming the above challenges, we pro-
pose PrivRank, a customizable and continuous privacy-
preserving data publishing framework protect users against
inference attacks while enabling personalized ranking-
based recommendation. It provides continuous protection
of user-specified private data against inference attacks by
obfuscating both the historical and streaming user activity
data before releasing them, while still preserving the utility
of the published data for enabling personalized ranking-
based recommendation by efficiently limiting the pairwise
ranking loss incurred from data obfuscation. Our main
contributions are summarized as follows:
• First, considering the use case of recommendation

based on social media data, we identify a privacy-
preserving data publishing problem by analyzing the
specific privacy requirements and users’ benefits of
social media.

• Second, we propose a customizable and continuous

data obfuscation framework for user activity data on
social media. The key idea is to measure the privacy
leakage of user-specified private data from public data
based on mutual information, and then to obfuscate
public data such that the privacy leakage is minimized
under a given data distortion budget, which can ensure
the utility of the released data. To handle the real-world
use case of third-party services built on top of social
media, our framework considers both historical and
online user activity data:
– Historical data publishing: When a user subscribes to

a third-party service for the first time, the service
provider has access to the user’s entire historical
public data. To obfuscate the user’s historical data,
we minimize the privacy leakage from her historical
data by obfuscating her data using data from another
user whose historical data is similar but with less
privacy leakage.

– Online data publishing: After the user subscribed to
third-party services, the service provider also has
real-time access to her future public data stream. Due
to efficiency considerations, online data publishing
should be performed based on incoming data in-
stances only (e.g., a rating/tagging/checking-in ac-
tivity on an item), without accessing the user’s histor-
ical data. Therefore, we minimize the privacy leakage
from individual activity data instance by obfuscating
the data stream on-the-fly.

• Third, to guarantee the utility of the obfuscated data for
enabling personalized ranking-based recommendation,
we measure and bound the data distortion using a
pairwise ranking loss metric, i.e., the Kendall-τ rank
distance [8]. To efficiently incorporate such ranking
loss, we propose a bootstrap sampling process to fast
approximate the Kendall-τ distance.

• Finally, we conduct an extensive empirical evaluation of
PrivRank. The results show that PrivRank can continu-
ously provide customized protection of user-specified
private data, while the obfuscated data can still be
exploited to enable high-quality personalized ranking-
based recommendation.

The rest of the paper is organized as follows. We present
the related work in Section 2. The preliminaries of our work
are presented in Section 3. Afterward, we firstly define our
threat model in Section 4, and present our historical and
online data publishing methods in Section 5 and 6, respec-
tively. The experimental evaluation is shown in Section 7.
We conclude our work in Section 8.

2 RELATED WORK

To protect user privacy when publishing user data, the
current practice mainly relies on policies or user agreements,
e.g., on the use and storage of the published data [4].
However, this approach cannot guarantee that the users’
sensitive information is actually protected from a malicious
attacker. Therefore, to provide effective privacy protection
when releasing user data, privacy-preserving data publish-
ing has been widely studied. Its key idea is to obfuscate
user data such that published data remains useful for some



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

application scenarios while the individual’s privacy is pre-
served. According to the attacks considered, existing work
can be classified into two categories.

The first category is based on heuristic techniques to
protect ad-hoc defined user privacy [4]. Specific solutions
mainly tackle the privacy threat when attackers are able to
link the data owner’s identity to a record, or an attribute
in the published data. For example, to protect user privacy
from identity disclosure, K-anonymity [9] obfuscates the
released data so that each record cannot be distinguished
from at least k-1 other records. However, since these tech-
niques usually have ad-hoc privacy definitions, they have
been proven to be non-universal and can only be successful
against limited adversaries [10].

The second category is theory-based and focuses on the
uninformative principle [11], i.e., on the fact that the pub-
lished data should provide attackers with as little additional
information as possible beyond background knowledge.
Differential privacy [12] is a well-known technique that is
known to guarantee user privacy against attackers with
arbitrary background knowledge. Information-theoretic pri-
vacy protection approaches have also been proposed in
that context. They try to quantitatively measure privacy
leakage based on various entropy-based metrics such as
conditional entropy [10] and mutual information [13], and
to design privacy-protection mechanisms based on those
measures. Although the concept of differential privacy is
stricter (i.e., against attackers with arbitrary background
knowledge) than that of information-theoretic approaches,
the latter is intuitively more accessible and fits the practical
requirements of many application domains [10]. In partic-
ular, information theory can provide intuitive guidelines
to quantitatively measure the amount of a user’s private
information that an adversary can learn by observing and
analyzing the user’s public data (i.e. the privacy leakage of
private data from public data).

In this study, we advocate the information-theoretic
approach. Specifically, we measure the privacy leakage of
user private data from public data based on mutual in-
formation, and then obfuscate public data such that the
privacy leakage is minimized under a given data distortion
budget. In the current literature, existing data obfuscation
methods mainly ensure data utility by bounding the data
distortion using metrics such as Euclidean distance [14],
Squared L2 distance [15], Hamming distance [1] or Jensen-
Shannon distance [2]. They are analogous to limiting the
loss of predicting user ratings on items, where the goal is to
minimize the overall difference (e.g., mean absolute error)
between the predicted ratings and the real ratings from the
users. Although minimizing such a rating prediction error is
widely adopted by the research community, ranking-based
(or top-N) recommendation is more practical and is actually
adopted by many e-commercial platforms [6]. Specifically,
different from rating prediction that tries to infer how
users rate items, ranking-based recommendation tries to
determine a ranked list of items for the user, where the
top items are most likely to be appealing to her. However,
we argue that bounding data distortion using traditional
metrics is not optimal for ranking-based recommendation,
whose goal is to minimize the ranking difference (e.g.,
pairwise ranking loss or mean average precision) between

the predicted ranking list and the actual list from the users.
Therefore, different from existing methods that bound data
distortion using non-ranking-based measures, our approach
considers bounding the ranking loss incurred from the data
obfuscation process using the Kendall-τ rank distance [8]
to preserve the utility of the published data for person-
alized ranking-based recommendation. In addition, as the
computation of ranking losses often implies a high cost that
is super-linear in the number of items for recommendation
[7], we develop a bootstrap sampling process to fast approx-
imate the Kendall-τ distance.

Compared to our previous work [2], this paper makes
the following improvements: 1) we extend the scope of our
privacy-preserving data publishing problem from location
based social networks to general social media; 2) we im-
prove the data utility guarantee by explicitly considering
the use case of personalized ranking-based recommenda-
tion, and re-design the privacy-preserving data publish-
ing framework by bounding ranking loss; 3) we discuss
and compare different types of ranking losses and select
Kendall-τ distance, and propose a bootstrap-sampling pro-
cess for its fast approximation; 4) we re-design and conduct
new experiments with two ranking-based recommendation
use cases to show the effectiveness of our framework and
its superiority over our previous work [2] for enabling
ranking-based recommendations; 5) we conduct a thorough
scalability study with synthetic datasets, and show that
PrivRank can scale up to large datasets.

3 PRELIMINARIES

3.1 System Workflow
Figure 1 illustrates the end-to-end workflow of our system.
PrivRank is implemented as a supplementary module to
existing social media platforms, in order to let user en-
joy high-quality personalized recommendations from third-
party services under a customized privacy guarantee.

1) When users interact with each other via a social media
service, they voluntarily share their activity data, partic-
ularly the tagging/rating/checking-in activities which
massively implies their preference.

2) When a user wants to subscribe to third-party services,
she typically needs to give them access to such kind
of activity data. Specifically, right after the user’s sub-
scription, third-party services can immediately access
the user’s historical activity data. Before releasing her
such data and according to the user’s own criteria, the
historical data publishing module obfuscates her histori-
cal activity data to protect user-specified private data
against inference attacks. Afterward, when the user
continuously report her activity on the social media, the
online data publishing module obfuscates each activity
(e.g., adding a tag to a photo, rating a movie or checking
in at a POI) from her activity streams before sending to
third-party services. All data obfuscation is performed
with the utility guarantee for personalized ranking-
based recommendation by limiting the ranking loss
incurred from data obfuscation.

3) Despite receiving obfuscated public data, the third-
party services can still provide high-quality personal-
ized ranking-based recommendation to the users.
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Fig. 1. System workflow for privacy-preserving publishing of social me-
dia data: 1) Users report their activity (i.e., public data) on social media
services; 2) PrivRank publishes the obfuscated public data to third-party
service providers; 3) The third-party service providers can still deliver
high-quality personalized ranking-based recommendation to users.

Our system workflow is beneficial to all the involved
entities. First, a user still shares her actual activities with
her friends on a social media platform, while now enjoying
high-quality personalized recommendations from a third-
party service under a customized privacy guarantee, as only
obfuscated user activity data are released from the social
media platform to the third-party service. Second, the third-
party service may attract more users (in particular privacy-
conscious users), when providing high-quality recommen-
dation services with privacy protection. Third, the social
media platform may also boost its business by attracting
more users and more third-party services by providing
privacy protection data publishing. In addition, another
advantage of our framework lies on its easy integration with
the existing social media platform, where the latter does not
need to be changed significantly (as shown in Figure 1).
Therefore, these benefits could incentivize both the social
media platform and the third-party service to implement
PrivRank.

3.2 User Preference Modeling from Social Media Data

Users’ activities on social media massively implies their
preferences. Individual social media services often provide
users with a unique feature (or a certain type of items) for in-
teraction, such as photos for Flickr, videos for YouTube, mu-
sic for Last.fm, and POIs for Foursquare. By interacting with
these items on social media (e.g., tagging a photo, rating a
video or checking-in at a POI), users explicitly or implicitly
express their preferences on those items. In this work, we
consider such user activity as public data. Formally, let U
and I denote the sets of users and items, respectively. A
typical representation of such public data from a user u
(u ∈ U ) is a vector V u (of size |I|) that encodes any type
of user preference, such as the user’s ratings (on a 1-5 scale),
her tags/thumbs-ups (in a binary format), or her cumulative
number of interactions (e.g., the number of check-ins on
POIs). When the user subscribes to a third-party service
for the first time, the service provider will have immediate
access to the user’s (historical) public data vector V u which
contains the user’s all historical activities. Afterward, the
service provider can also observe the future user activity
feed, where each activity (e.g., rating/tagging/checking-in)

Fig. 2. A toy example of ranking loss. The real user rating a on three
items can be obfuscated to â1 or â2. While the Euclidean distances for
both obfuscations are exactly the same, the ranking loss from the two
obfuscations are different. Compared to the ranking list i1 < i2 < i3 in
the original rating a, the obfuscated rating â1 does not incur any ranking
loss as we still observe i1 < i2 < i3. However, the obfuscated rating â2
incurs a certain ranking loss as we find i1 < i3 < i2 there.

on item i (i ∈ I) will be used to update the corresponding
element V ui of the public data vector.

3.3 Ranking-Based Recommendation

Based on the aforementioned public data vectors, ranking-
based recommendation outputs a ranked list of items for a
user, where the top items are most likely to be appealing
to her. The related algorithms mainly leverage the existing
ranking of items in the learning process to predict the miss-
ing rank of the items for recommendation [16]. Therefore,
ranking-based recommendation algorithms are sensitive to
the ranking loss incurred from the data obfuscation process,
rather than other types of loss measured by the Euclidean
or Squared L2 distance, for example. Moreover, those tradi-
tional data distortion measures are not analogous to ranking
loss [16]. Figure 2 shows an example where the same data
distortion budget measured by Euclidean distance may im-
ply different ranking losses. Therefore, considering ranking
loss incurred from data obfuscation is critical for ranking-
based recommendation.

4 THREAT MODEL

In this study, we consider the inference attack [3] as the
targeted threat model. As described above, we consider that
each user has two types of data: i) public data (e.g., her
activity data) that she is willing to release for getting person-
alized recommendations, and ii) private data (e.g., gender)
that she wants to keep private. We denote public data as
X ∈ X , and private data as Y ∈ Y , where X and Y are the
sets of values that X and Y can take, respectively. Since Y
is often linked to X by their joint probability p(X,Y ), an
adversary who observes X is able to gain some knowledge
about Y . To reduce such privacy leakage, the basic idea is to
release a distorted X̂ ∈ X̂ instead of X such that it is hard
to infer Y from X̂ .

4.1 Inference Attack

Inference attacks assume that an adversary has a method
q to infer Y , where the adversary always tries to select q
such that the cost (e.g., inference error) of using q to infer Y
is minimized [13]. Therefore, before observing X̂ , q can be
obtained by solving the following problem:

c = min
q
EY [C(Y, q)] (1)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

where C(Y, q) is the expected cost function of inferring Y
using q. After observing the distorted public data X̂ , q can
be obtained by solving the following problem:

ĉ = min
q
EY |X̂ [C(Y, q)|X̂] (2)

The adversary’s cost gain after observing X̂ is as follows:

∆C = c− ĉ, (3)

which measures how much knowledge the adversary gains
w.r.t. the inference of Y after observing X̂ . The idea of
privacy protection is to find X̂ such that the privacy leakage
∆C is reduced, while the obfuscated X̂ can still be used to
enable personalized recommendation.

4.2 Basic Idea of Our Solution
In order to reduce the privacy leakage ∆C , we obfuscate
X to obtain X̂ based on a probabilistic obfuscation function
pX̂|X , which encodes the conditional probability of releasing
X̂ when observing X . Intuitively, pX̂|X should be designed
such that any inference attack on Y should be rendered
weak. Meanwhile, it also keeps some utility of X̂ by limiting
the distortion budget in the obfuscation process, which can
be modeled by a constraint ∆X as follows;

EX̂,X(dist(X̂,X)) ≤ ∆X (4)

where dist(X̂,X) is a certain distance metric that measures
the difference between X̂ and X . ∆X limits the expected
distortion w.r.t. the probabilistic obfuscation function pX̂|X .
The data distortion budget can ensure the utility of the
released data. Considering the data utility for enabling per-
sonalized ranking-based recommendation, we measure and
bound the data distortion budget using ranking distance. In
summary, the key idea of our solution is to learn pX̂|X that
minimizes ∆C under a given distortion budget ∆X .

5 HISTORICAL DATA PUBLISHING

To publish historical public data in a privacy-preserving
way, the key idea is to probabilistically obfuscate a user’s
historical public data vector to that of another user, which
are similar but have less privacy leakage. In this context,
data obfuscation operates on one’s whole public data vector,
rather than obfuscating her individual activity records one
by one (over the user’s activity stream). Compared to the
streaming scheme, we show that such a historical data
obfuscation scheme can achieve the same level of privacy
protection with a lower data distortion budget (see Section
7.3 for details).

Figure 3 gives an overview of the historical data pub-
lishing process. First, aiming at reducing the problem com-
plexity stemming from learning the optimal obfuscation
function, we incorporate a clustering step in our framework
to cluster a large number of users into a limited number of
groups based on their public data, as similar user activities
often cause similar privacy leakage [2]. Second, based on
the user clusters, we quantitatively measure the privacy
leakage of user-specified private data (e.g. gender) from
public data, and then learn the optimal obfuscation function
by minimizing the privacy leakage under a given distortion

Fig. 3. Historical data publishing

budget which bounds the ranking loss. Finally, based on the
learned obfuscation function, we perform probabilistic data
obfuscation. Customized privacy protection is achieved in
the way that, for the specified private data (e.g., gender), a
corresponding obfuscation function is generated.

5.1 User Clustering

We try to obfuscate a user’s historical public data vec-
tor to that of another user. Directly learning the optimal
obfuscation function pX̂|X from individual user’s public
data incurs the complexity growing quadratically with the
number of users |U|. To reduce the problem complexity, the
user clustering phase clusters users into a limited and fixed
number of groups according to their public data vector.
Then, the complexity related to learning the optimal obfus-
cation function between user clusters rather than between
individual users is hence reduced and independent with
|U|. Specifically, we cluster the set of users U based on their
historical public data vector V u. We adopt average-linkage
hierarchical clustering [17] using Euclidean distance for the
sake of simplicity. Based on the clustering results, we obtain
the mapping from users U to clusters G, where each element
G (G ∈ G) is the centroid of the corresponding cluster.

5.2 Cluster-wise Obfuscation Function Learning

The optimal obfuscation function is learned based on user
clusters. Therefore, values for the public data X and for the
released public data X̂ refer to user clusters G. Without loss of
generality, in the following derivation, we keep usingX and
Y for public and private data, respectively. In the following,
we first formally present our privacy-utility tradeoff, and
then the utility guarantee by bounding ranking loss, fol-
lowed by the obfuscation function learning algorithm.

5.2.1 Balancing Privacy and Utility

The privacy leakage in this paper is measured by ∆C ,
which represents the information gain of an adversary after
observing the released public data X̂ . When using a log-loss
cost function, Calmon et al. [13] proved that ∆C becomes
the mutual information between the released public data X̂
and the specific private data Y :

∆C = I(X̂, Y ) =
∑

x̂∈X̂,y∈Y

p(x̂, y) log
p(x̂, y)

p(x̂)p(y)
(5)
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As noted above, we use the probabilistic obfuscation
function pX̂|X to generate the released public data X̂ . There-
fore, the joint probability of X̂ and Y can be computed as:

p(x̂, y) =
∑
x∈X

pX̂|X(x̂|x)pX,Y (x, y) (6)

The marginal probability pX̂(x̂), pX(x) and pY (y) can be
calculated as follows:

pX̂(x̂) =
∑

x∈X,y∈Y
pX̂|X(x̂|x)pX,Y (x, y) (7)

pX(x) =
∑
y∈Y

pX,Y (x, y), pY (y) =
∑
x∈X

pX,Y (x, y) (8)

Combined with the above Equations, the mutual informa-
tion between the release public data X̂ and the private data
Y can be derived as:

I(X̂, Y ) =
∑

x̂∈X̂,y∈Y

p(x̂, y) log
p(x̂, y)

p(x̂)
−

∑
y∈Y

p(y) log p(y)

(9)
where the second term is the entropy of Y , i.e.,
−
∑
y∈Y p(y) log p(y), which is a constant for the specified

private data (e.g., gender) in a given dataset. Hence, we
ignore this term in the following derivations and obtain:

I(X̂, Y ) =
∑

x̂∈X̂,y∈Y

p(x̂, y) log
p(x̂, y)

p(x̂)
(10)

Combined with Equations 6 and 7, the mutual information
can then be derived as a function of only two factors, namely
the joint probability pX,Y which can be empirically obtained
from a given dataset, and the obfuscation function pX̂|X :

I(X̂, Y ) =
∑
x̂∈X̂
x∈X
y∈Y

pX̂|X(x̂|x)pX,Y (x, y)

· log

∑
x′∈X

pX̂|X(x̂|x′)pX,Y (x′, y)∑
x′′∈X
y′∈Y

pX̂|X(x̂|x′′)pX,Y (x′′, y′)

(11)

The optimal obfuscation function pX̂|X is learned such that
I(X̂, Y ) is minimized under a given distortion budget ∆X .

5.2.2 Bounding Ranking Loss for Utility
To provide optimal utility guarantees for personalized
ranking-based recommendation, we consider bounding the
data distortion dist(X̂,X) based on ranking loss. There are
typically three types of ranking loss functions [16], namely
pointwise, pairwise, and listwise, which are defined on the
basis of single items, pairs of items, and all ranking items,
respectively. As a pointwise loss function measures the loss
of (ranking) score for individual items, it is analogous to
non-ranking-based distance metrics. A theoretical study on
these three types of ranking loss functions [16] shows that
pairwise and listwise losses are indeed upper bounds of two
quantities 1-MAP and 1-NDCG, respectively, where Mean
Average Precision (MAP) and Normalized Discounted Cu-
mulative Gain (NDCG) are two popular metrics for evalu-
ating ranking-based information retrieval algorithms [18],

[19]. In other words, for ranking-based recommendation
algorithms, minimizing pairwise/listwise loss is equivalent
to maximizing the predicted ranking quality measured by
MAP or NDCG. Following this idea, we also want to bound
the data distortion incurred from data obfuscation by limit-
ing the pairwise ranking loss when obfuscating X into X̂ .

We choose to measure the pairwise ranking loss using a
widely known metric, i.e., the Kendall-τ rank distance [8].
It measures the number of pairwise disagreements between
two ranking lists. For two users a and b, we denote their
public data vectors as V a and V b, respectively. The Kendall-
τ rank distance K(V a, V b) is then computed as:

K(V a, V b) =
∑

V a
i >V

a
j

1V b
i <V

b
j

(12)

where V ai is the ranking score of item i in list V a, and
so on. 1cond is an indicator function which is equal to 1
when cond is true and 0 otherwise. As Eq. 12 counts the
absolute number of pairwise disagreements, we normalize
it by dividing by |I|(|I| − 1)/2, so that the normalized
Kendall-τ distance lies in the interval [0,1]:

K(V a, V b) =
1

|I|(|I| − 1)/2

∑
V a
i >V

a
j

1V b
i <V

b
j

(13)

A value of 1 indicates maximum disagreement while 0
indicates that the two lists express the same ranking. For
the sake of simplicity, all terms of the Kendall-τ distance
refer to the normalized Kendall-τ distance (Eq. 13) in the
following.

In practice, a large number of items yields a high
cost when computing the Kendall-τ distance. Since the
computation of the Kendall-τ distance requires a total of
|I|(|I|− 1)/2 pairwise comparisons, the resulting computa-
tion complexity isO(n2), where n is the number of items |I|.
To efficiently compute the Kendall-τ distance for large item
sets, we propose to use a bootstrap sampling process [20]
to approximate the Kendall-τ distance. Specifically, instead
of computing all |I|(|I| − 1)/2 comparisons, we randomly
sample S pairs of items for comparison. After counting the
absolute number of disagreements in S sampled pairs, we
then normalize it by dividing by |S|:

K(V a, V b) ≈ 1

|S|
∑

V a
i >V

a
j ,(i,j)∈S

1V b
i <V

b
j

(14)

5.2.3 Optimal Obfuscation Function Learning
Considering the above ranking loss as a constraint to ensure
high data utility, we now present our algorithm that learns
the optimal cluster-wise obfuscation function pĜ|G. For a
given dataset, we can empirically determine pG,Y according
to private data Y (e.g., gender). Thus, the obfuscation func-
tion pĜ|G can be learned by Algorithm 1, which contains a
convex optimization problem with three constraints (can be
solved by many solvers such as CVX [21]). The first con-
straint is for the distortion budget that bounds the expected
Kendall-τ distance w.r.t. the probabilistic obfuscation func-
tion pĜ|G. Note that it is easy to compute the Kendall-τ dis-
tance for Ĝ and G. The last two constraints are probability
constraints of p ˆG|G. To stress the protected private data Y ,
we denote the corresponding optimal obfuscation function
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Algorithm 1 Cluster-wise obfuscation function learning
Require: Joint probability pG,Y , and distortion budget ∆X
1: Solve the optimization problem for pĜ|G

min
p ˆG|G

I(Ĝ, Y )

s.t., EĜ,G(K(Ĝ,G)) ≤ ∆X

pĜ|G(ĝ|g) ∈ [0, 1], ∀g, ĝ ∈ G∑
ĝ

pĜ|G(ĝ|g) = 1, ∀g ∈ G

2: return pĜ|G,Y

Algorithm 2 Probabilistic historical data obfuscation
Require: Obfuscation functions pĜ|G for all possible Y

1: for u ∈ U do
2: Get u-specified private data Y
3: Get obfuscation function pĜ|G,Y for Y
4: Get u’s cluster G, where u ∈ G
5: Obfuscate the user’s cluster G to Ĝ based on pĜ|G,Y (Ĝ|G)

6: Randomly select a user û in cluster Ĝ
7: Obfuscate V û to V u

8: end for

as pĜ|G,Y . Note that we do not assume any inference attack
methods in our framework, and that any inference attacks
on Y should be rendered weak.

As we try to find the optimal obfuscation probability
between each pair of user clusters, the problem complexity
of learning optimal pĜ|G in Algorithm 1 is O(n2), where n
is the number of user clusters |G| rather than the number of
users |U|. The later evaluation shows that a small number
of G can indeed provide an efficient privacy protection (see
Section 7.7 for details).

5.3 Probabilistic Historical Data Obfuscation
Since the learned obfuscation function is based on user
clusters, we still need to bridge the gap between clusters
and users to obfuscate individual public data vectors. Algo-
rithm 2 describes the probabilistic data obfuscation process.
Specifically, for a user u, we first obtain the corresponding
obfuscation function pĜ|G,Y to protect her private data Y
(Line 2-3). We then obfuscate her cluster G to another Ĝ
based on the obfuscation function pĜ|G,Y (Ĝ|G) (Line 4-5).
Finally, since all users in cluster Ĝ share the similar public
data vectors, we randomly select one user û in the cluster
Ĝ, and leverage her public data vector V û to obfuscate
(replace) V u (Line 6-7).

6 ONLINE DATA STREAM PUBLISHING

After a user subscribed to third-party services, the service
providers have access to the user’s future activity streams.
Therefore, we protect her private data by obfuscating her
activity stream on-the-fly. Different from historical data
publishing, the streaming nature of user activity imposes
the following constraint on online data obfuscation: Due
to time and space efficiency requirements of real-time data
publishing (i.e., single-pass processing with limited mem-
ory) [22], online data obfuscation can only be performed based
on the incoming activity data instance itself (e.g., a new

Fig. 4. A toy example of online data obfuscation causing different ranking
losses. The public data vector encodes the count of check-ins at POIs
(i.e., the cumulative count of a user’s interactions with items), and
incrementally incorporates incoming check-ins from user activity feed.
Suppose the incoming activity is a check-in at POI i2, and the obfus-
cation maps it to i3. By adding this activity/obfuscated activity to two
different users’ public data, we observe different ranking losses. While
this obfuscation causes no ranking loss for user a (i.e., we always find
i3 > i2 > i1 before and after obfuscation), it causes some ranking loss
for user b (i.e., the ranking of i2 > i3 no longer holds after obfuscation).

Fig. 5. Online data publishing

rating/tagging/checking-in activity on an item), without
accessing the user’s historical data. In other words, we
want to obfuscate each activity to another with less privacy
leakage. However, a rating/tagging/checking-in activity of
a user will probably lead to a certain modification of the
user’s public data vector that encodes a certain type of user
preference, such as the user’s ratings (on a 1-5 scale), her
tags/thumbs-ups (in a binary format), or her cumulative
number of interactions (e.g., the number of check-ins on
POIs). Therefore, obfuscating an activity to another often
causes different ranking loss for different public data vectors
(i.e., different users). Figure 4 shows a toy example where
the same obfuscation causes different ranking losses for two
different users’ public data. Therefore, the probabilistic ob-
fuscation function here should be personalized, i.e., ranking
loss measured based on the user’s own public data.

Figure 5 shows the online data publishing process. First,
by measuring the privacy leakage of the user-specified
private data from each activity, we learn the personalized
optimal obfuscation function such that the privacy leakage
is minimized under a given distortion budget. Second, for
each incoming data instance of a user from the user activ-
ity data stream, we perform the probabilistic obfuscation
according to the learned obfuscation function of that user.

6.1 Personalized Activity-wise Obfuscation Function
Learning
The activity-wise obfuscation function is learned based
on individual activities, where an activity refers to a
rating/tagging/checking-in activity on an item. The idea
here is to obfuscate an activity on one item using another
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Algorithm 3 Personalized activity-wise obfuscation func-
tion learning
Require: Joint probability pi,Y , distortion budget ∆X , user public data

vector V u

1: Solve the optimization problem for pî|i

min
p
î|i

I (̂i|i, Y )

s.t., Eî,i(K(V u + i, V u + î)) ≤ ∆X

pî|i (̂i|i) ∈ [0, 1], ∀i, î ∈ I∑
î

pî|i (̂i|i) = 1, ∀i ∈ I

2: return pu
î|i,Y

Algorithm 4 Probabilistic online activity obfuscation
Require: Obfuscation functions pu

î|i
for all possible Y , an incoming

activity of user u on item i
1: Get u-specified private data Y
2: Get personalized obfuscation function pu

î|i,Y
for u and Y

3: Obfuscate i to î based on pî|i,Y (̂i|i)
4: return obfuscated activity of user u on item î

item with less privacy leakage. Therefore, values for the public
data X and for the released public data X̂ refer to the item set
I . To minimize the privacy leakage of private data Y from
public data i (i ∈ I), we follow the same privacy-utility
trade-off framework for cluster-wise obfuscation function
learning (Section 5.2.1), and try to minimize I (̂i, Y ).

The personalized obfuscation function is learned by
considering individual users’ public data in order to better
bound the ranking loss. Let V u + i denote the public data
resulting from adding an incoming activity i to the public
data V u of user u. For an obfuscation from item i to item
î, we measure the ranking loss caused by this obfuscation
as K(V u + i, V u + î). Note that we can easily fast compute
K(V u+i, V u+ î) instead of using bootstrap sampling based
approximation, as the potential pairwise ranking differences
can only be related to ranking pairs involving item i or item
î. Subsequently, the computation complexity becomes O(n),
where n is the number of items |I|.

In summary, we first empirically calculate pi,Y , and learn
the optimal obfuscation function pu

î|i,Y for each user u using
Algorithm 3 which is also a convex optimization problem.
The complexity of solving the optimization problem in
Algorithm 3 depends only on |I|.

6.2 Probabilistic Online Activity Obfuscation
Based on the learned obfuscation functions, we obfuscate
each incoming activity from a user’s activity stream using
Algorithm 4. For each incoming activity on item i, we
first obtain the corresponding obfuscation function pu

î|i,Y
to protect u-specified private data Y (Line 1-2). We then
obfuscate the activity on item i based on pu

î|i,Y (̂i|i), and map

the activity onto item î as obfuscated data (Line 3-4).

7 EXPERIMENTAL EVALUATION

We empirically evaluate the effectiveness and efficiency of
our framework. Specifically, based on real-world datasets,

we first investigate the trade-off between privacy protection
and personalization performance for ranking-based recom-
mendation. Second, we study the continuous privacy pro-
tection performance by evaluating the privacy leakage over
time. Third, we evaluate the customization performance of
privacy protection by comparing the privacy leakage of
user-specified private data and that of other data. Fourth,
we further explore the utility guarantee for ranking-based
recommendation under different loss metrics. Fifth, based
on synthetic datasets, we study the impact of private data
settings. Finally, we evaluate the runtime performance of
our framework. We start by introducing our experimental
setup below before reporting on the evaluation results.

7.1 Experimental Setup

7.1.1 Dataset

Although there are many public social media datasets avail-
able for benchmarking recommendation systems, very few
of them provide the corresponding private data for privacy
studies. Therefore, we collected our own dataset from a
location based social network Foursquare for evaluation.
Specifically, users can share their real-time presence on
Foursquare by checking-in at Point of Interests (POIs), e.g., a
bar or a supermarket. Such spatiotemporal user activity data
are widely used for enabling various personalized recom-
mendations [23], [24], [25], as check-in data can be regarded
as “foot rating”, where a higher visiting frequency of a
POI implies a more positive preference. Using the method
described in [26], [27], we crawled Foursquare check-in data
via Twitter Public Streams1 for about 18 months (from Apr.
2012 to Sep. 2013) in two big cities (i.e., New York City and
Tokyo), and consider them as public data. Table 1 shows the
statistics of the resulting datasets we collected.

In addition, we also collected the corresponding user
profile data as private data. Due to Foursquare’s privacy
policy, only limited profile data (i.e., name and gender) is
included in the check-ins. Fortunately, as the dataset is col-
lected via Twitter, we also have access to the corresponding
Twitter profiles, which typically include additional informa-
tion such as number of followers and “followings”, etc. In
this paper, due to the limited availability of user profile data
in the collected dataset, we define two attributes as private,
i.e, gender (male/female) and social status [28] (a yardstick
to measure the popularity of a user in social network). For a
user u, social status is computed as the ratio of the number
of u’s followers to the number of users u follows (i.e.,
“followings”): social(u) = #followers(u)

#followings(u) . We also discretize
u’ social status as popular (social(u) > 1) and non-popular
(social(u) ≤ 1). We note that our framework is not limited
to these two types of private data, and it can incorporate
any categorical attributes as private data.

7.1.2 Evaluation Use Cases and Metrics

Privacy evaluation is traditionally based on simulations,
and tries to show that the defined privacy is satisfied with
a reasonable computation overhead [29]. In this paper, we
take a step forward to quantitatively evaluate both our

1. https://dev.twitter.com/streaming/public
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TABLE 1
Characteristics of the experimental dataset

Dataset New York City Tokyo
User number 3,669 6,870
POI number 1,861 2,811

Check-in number 893,722 1,290,445

privacy protection and data utility. Specifically, we imple-
ment two inference attack methods to directly assess the
performance of our privacy protection and use two real-
world ranking-based recommendation use cases to evaluate
the resulting utility of the obfuscated data.

Privacy. Inference attacks [3] on private data try to
infer a user’s private information Y (e.g., gender) from
her released public data X̂ , which can be regarded as a
classification problem for discrete data. Therefore, we adopt
here two common classification algorithms as inference
attack methods, namely Support Vector Machine (SVM) and
Naive Bayes (NB). We assume that adversaries have trained
their classifiers based on the original public data X and
private data Y from some non privacy-conscious users [13],
who do not care about their privacy and publish all their
data. We randomly sample 50% of all users as such non
privacy-conscious users for training the classifiers, and then
perform inference attacks on the private data Y of the rest
of the users based on their obfuscated activity data X̂ . We
use the Area Under the Curve (AUC), which is a widely
used metric for classification problem [30], to evaluate the
performance of the inference attacks. We report the value
(1-AUC) as a privacy protection metric in the experiments.
Higher value of (1-AUC) implies better privacy protection. The
ideal privacy protection is achieved when AUC = 0.5 (i.e.,
1 − AUC = 0.5), which implies that any inference attack
method performs no better than a random guess.

Utility. In this work, utility refers to the ranking-based
recommendation performance. We select two typical use cases,
i.e., POI recommendation [23] and context-aware activity
recommendation [24], as our target scenarios.

• POI Rec. POI recommendation [23] tries to recommend
to a user a list of POIs that she would be interested
in. To implement this use case, we first consider the
cumulative check-in number of a user on a POI as the
rating (i.e., the cumulative number of interactions as
preference score) to build a user-POI matrix, and then
leverage a Bayesian personalized ranking algorithm
[31] to predict the ranked list. Note that the POI Rec
is a common use case for user-item recommendation.

• Activity Rec. Context-aware activity recommendation
[24] tries to come up with a list of activities (represented
by POI categories, e.g., restaurant or bar) that a given
user may be interested in based on her current context
(i.e., location and time). We first discretize the context
(i.e., time slots and location grid cells) of check-in data
to build a user-context-activity tensor using the 0/1-
based scheme (i.e., binary format of preference score),
and then leverage a ranking tensor factorization algo-
rithm [32] for ranking prediction.

For both use cases, we first randomly split the original
public data X into a training dataset Xtrain (80%) and

a test set Xtest (20%), and then use our framework to
obfuscate Xtrain into X̂train. Subsequently, we apply the
recommendation algorithms on the obfuscated data X̂train,
and then make predictions for the test dataset Xtest, which
represents the users’ true preference. Our goal is to verify
that the obfuscated data X̂train can still be used to accurately
predict the users’ true preference in Xtest. To evaluate the
quality of the resulting recommendations, we use Mean
Average Precision (MAP) [18], which is a widely used metric
in information retrieval to assess the quality of rankings.
Higher value of MAP implies better performance. Each reported
result is the mean value of ten repeated trials.

7.1.3 Baseline Approaches

In order to demonstrate the effectiveness of our framework,
we compare it with the following baselines:

• Random obfuscation (Rand). For historical data obfus-
cation, it randomly obfuscates each user public data
vector V u to another V u

′
with a given probability

prand. For online activity obfuscation, it randomly ob-
fuscates each user activity on i to another item i′ with
probability prand. Here, prand controls the distortion
budget in both cases.

• Frapp [33]. It is a generalized matrix-theoretic frame-
work of data perturbation for privacy-preserving min-
ing. Its key idea is to obfuscate one’s activity data to
itself with higher probability than to others. For his-
torical data obfuscation, it obfuscates a user u’s public
data vector V u to V u

′
with probability pfrapp = γe

if u = u′, otherwise pfrapp = e. Here e is used for
probability normalization, i.e., e = 1

γ+|U|−1 . For online
data obfuscation, it obfuscates each activity on item i to
another item i′ with probability pfrapp = γe if i = i′,
otherwise pfrapp = e (here e = 1

γ+|I|−1 ). The distortion
budget is controlled by γ in both cases.

• Differential privacy (Diff ) [12] is a state-of-the-art
method to protect privacy regardless of the adver-
sary’s prior knowledge. It can be implemented for
different types of data, such as numeric data [34],
categorical data [35], set-valued data [36] or location
data [37]. Here we adopt exponential mechanism [35],
[38], [39] in our experiments as it fits our use case
of categorical data. More importantly, it is straightfor-
ward to be implemented for online data obfuscation,
which we explicitly consider in PrivRank. We exclude
other sophisticated differential privacy methods for
categorical data (such as [40]), as they do not handle
online data obfuscation. We implement exponential
mechanism as follows. For historical data obfuscation,
it obfuscates V u to V u

′
with a probability that de-

creases exponentially with the distance d(V u, V u
′
), i.e.,

pdiff (V u
′ |V u) ∝ exp(−βd(V u, V u

′
)), where β ≥ 0. β

actually controls the distortion budget. The exponential
mechanism satisfies 2βdmax-differential privacy, where
dmax = maxu,u′∈U d(V u, V u

′
). For online activity ob-

fuscation, this method obfuscates each activity of user
u on item iwith pdiff (i′|i) ∝ exp(−βd(V u+i′, V u+i)).
Here we also use the Kendall-τ distance for d(·, ·). The
distortion budget is controlled by β in both cases.
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(a) POI Rec with SVM (b) POI Rec with NB

(c) Activity Rec with SVM (d) Activity Rec with NB

Fig. 6. Privacy-Utility trade-off with different methods on the NYC dataset
(All baselines are significantly outperformed by PrivRank at the **0.01
or *0.05 level (p-value) with paired t-test.)

7.2 Privacy & Utility Trade-off
In this experiment, we vary the parameters that control
the distortion budget for our method and baselines, and
observe the resulting trade-off between privacy (AUC) and
utility (MAP). As our framework and baselines use different
parameters to control the distortion budget, they are not
directly comparable. Therefore, we tune the obfuscation
budgets in different methods to directly show the privacy-
utility trade-off, which is more informative for comparison.
We consider gender as private data in all experiments except
explicitly mentioned otherwise. For the sake of runtime
efficiency, we empirically select the number of user clusters
|G| and the number of pair samples |S|when approximating
the kendall-τ distance for each use case: |G| = 200, S = 104

for POI Rec and |G| = 200, S = 103 for Activity Rec.
The selection of these parameters is discussed below in the
experiment for runtime performance in Section 7.7.

Figure 6 shows the privacy-utility trade-off results for
different privacy-preserving data obfuscation methods on
the NYC dataset. First, we observe clearly the trade-off
between privacy protection and utility of enabling ranking-
based recommendation for all methods. On one hand, a
better privacy protection can be achieved with a higher
distortion budget, as highly distorted public data makes
it harder for adversaries to infer user private data. On the
other hand, higher distortion budgets incur a higher loss
of data utility, as highly distorted public data also prevent
recommendation algorithms from accurately predicting user
preferences. Second, we observe that compared to other
methods, PrivRank consistently achieves better privacy pro-
tection and higher utility at the same time (i.e., the resulting
data points are closer to the upper-right corner of the plot)
in all cases. We also conduct a paired t-test between each
baseline method and PrivRank, and find that PrivRank
significantly outperform all baselines at either 0.01 or 0.05
level (p-value). Due to the space limitation, we only show
results obtained for the NYC dataset in all the experiments

(results for the Tokyo dataset are similar).

7.3 Privacy Protection over User Activity Streams
To study the privacy protection performance over time, we
first obfuscate the historical data using our method, and
then compare different online obfuscation methods for the
future activity streams. Specifically, we select the first 14
month data as historical data, and the last 4 month data
as activity streams. Such a setting corresponds to the case
that a user subscribes to a third-party service at the end of
the 14th month, where the service can access her activity
stream from that time. To obfuscate the historical data, we
set the distortion budget of our method to 0.2, leading to a
privacy protection performance of 1-AUC=0.44 (with SVM)
and a utility of MAP=0.05 for POI Rec, and 1-AUC=0.45
(with SVM) and MAP=0.4 for Activity Rec. Based on the
obfuscated historical data, we now focus on how different
online data obfuscation methods perform over time.

First, as our method and baselines use different pa-
rameters to control the distortion budget for online data
obfuscation, we tune these parameters to maintain the same
level of data utility (i.e., MAP=0.05 for POI Rec and MAP=0.4
for Activity Rec), and shows the privacy protection perfor-
mance over time. Figure 7 shows the results on the NYC
dataset. We observe that although historical data obfusca-
tion can effectively protect user private data (at time 0), the
privacy protection performance rapidly decreases over time
if attackers observe the actual user activity streams (shown
as No privacy in Figure 7). To provide continuous privacy
protection, online data obfuscation can actually alleviate this
problem to some extent, as we observe a slower decrease
of the privacy protection performance over time for all
data obfuscation methods. More importantly, our method
outperforms all baselines by achieving the highest values of
1-AUC over time in all cases. However, all the methods still
show decreasing privacy protection performance over time.

Second, we maintain the same level of privacy protection for
our online data obfuscation method by increasing the distortion
budget, and obtain PrivRank (MAP=0.043) for POI Rec and
PrivRank (MAP=0.36) for Activity Rec (as shown in Figure
8). Such an observation shows that for the same level of
privacy protection, online data obfuscation needs to sacrifice
more utility (caused by higher data distortion budget) than
historical data obfuscation. This is due to the real-time data
publishing constraint, i.e., online obfuscation can only be
done based on the incoming activity data instance itself
without an overview of users’ whole public data history.
Meanwhile, PrivRank still outperforms all baseline methods
by achieving the best privacy protection performance over
time under the same data utility guarantee.

7.4 Performance of Customized Privacy Protection
Since users often have different privacy requirements, our
framework is designed to protect user-specific private data.
In this experiment, we consider aforementioned two types
of private data, i.e., gender and social status. Specifically,
users have three options according to the types of private
data to be protected: 1) protecting gender only (PrivRank-
Gender); 2) protecting social status only (PrivRank-Social);
3) protecting both gender and social status (PrivRank-Both).
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(a) POI Rec with SVM (b) POI Rec with NB

(c) Activity Rec with SVM (d) Activity Rec with NB

Fig. 7. Privacy protection performance over time on NYC dataset (main-
taining the same level of data utility)

(a) POI Rec with SVM (b) POI Rec with NB

(c) Activity Rec with SVM (d) Activity Rec with NB

Fig. 8. Privacy protection performance over time on NYC dataset (main-
taining the same level of privacy protection for PrivRank)

We configure our framework with those three settings, and
report on the customized privacy protection performance.
We tune the distortion budget for all the data obfuscation
methods to keep the same data utility, i.e., MAP=0.05 for
POI Rec and MAP=0.4 for Activity Rec.

Figure 9 shows the privacy protection results for both
gender and social status on the NYC dataset. We observe
that PrivRank-Gender (or PrivRank-Social) outperforms all
other methods when protecting the targeted gender data
(or social status), by achieving the highest values of 1-
AUC. Particularly, compared to PrivRank-Both, which treats
both data as private, PrivRank-Gender (or PrivRank-Social)
can provide better privacy protection on gender (or social
status). In other words, better privacy protection can be
achieved under the same data utility guarantee when less
private data has to be protected.

In addition, we observe that different types of private
data suffer from different levels of privacy leakage. For
example, Figure 9 shows that a user’s gender can be inferred
more accurately than that of her social status. In practice,
this observation can be used to help users decide which
private data should be protected, by providing them with
a quantitative metric based on AUC to indicate the privacy

(a) POI Rec with SVM (b) POI Rec with NB

(c) Activity Rec with SVM (d) Activity Rec with NB

Fig. 9. Customization performance of privacy protection

leakage of all potential private data.

7.5 Utility with Different Loss Metrics
In this experiment, we study the privacy-utility trade-off
using our method with different loss metrics, including
Euclidean distance, squared L2 distance, cosine distance,
Jensen-Shannon distance (JSD), and two ranking based met-
rics, i.e., Spearman correlation and Kendall-τ distance. We
keep other parameters the same as in previous experiments.

Figure 10 shows the privacy-utility trade-off with dif-
ferent loss metrics. First, we observe that ranking-based loss
metrics outperform non-ranking based metrics by achieving
better privacy protection and utility at the same time. In
other words, bounding the ranking loss incurred from data
obfuscation can better preserve the ranking relations in the
public data, which leads to smaller utility loss in learning-
to-rank algorithms. Moreover, our proposed method using
Kendall-τ distance achieves the best results in all cases,
as most of the learning-to-rank algorithms actually rely on
pairwise/listwise ranking relations in the training data [16],
which are optimally preserved by our method.

Compared to our previous work [2] that uses Jensen-
Shannon distance, PrivRank can effectively improve the
utility of ranking-based recommendation under the same
level of privacy protection. For example, for a given privacy
protection 1-AUC=0.4 for the use case of POI Rec, PrivRank
shows an improvement of 9% and 12% in MAP under the
attack methods SVM and NB, respectively.

7.6 Impact of Private Data Setting
In this experiment, we study the impact of different settings
for private data, i.e., the number of private attributes and
the size of their domain. As our real-world Foursquare
dataset has a very limited number of private attributes
(only two), here we use synthetic datasets generated by the
IBM synthetic data generator for itemsets2, which is orig-
inally designed for frequent itemset mining. We generate

2. https://github.com/zakimjz/IBMGenerator
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(a) POI Rec with SVM (b) POI Rec with NB

(c) Activity Rec with SVM (d) Activity Rec with NB

Fig. 10. Privacy-Utility trade-off with different loss metrics for data obfus-
cation (NYC dataset)

(a) Number of private attributes (b) Private attribute domain size

Fig. 11. Impact of different settings for private data

50K transactions with 100 items per transaction on average
(1K different items in total), and keep other parameters as
default. We regard each transaction as a user, and randomly
sample m items as private attributes while regarding the
rest as public data. The utility is computed using the POI
Rec task, where we now want to recommend items to users.
We tune the parameters for each method to let it has the
same utility MAP=0.16.

Figure 11(a) shows the average (1-AUC) of all private
attributes w.r.t. the number of private attributes. Here we set
the domain size of private attributes to two. We observe that
PrivRank outperforms all baselines, while its performance
slightly decreases with the increasing number of private at-
tributes. With a small number of private attributes, PrivRank
is able to put more focus on protecting the specified data by
minimizing its privacy leakage from public data, and thus
provides better customized privacy protection.

Figure 11(b) shows the impact of the domain size for
one private attribute. We observe that PrivRank still outper-
forms all baselines. Similar to the impact of the number of
private attributes, the performance of PrivRank also slightly
decreases with increasing domain sizes, because a larger
domain size implies less obfuscation budget on each value
for the private attribute.

7.7 Runtime Performance

As our framework includes both a historical and an
online data publishing modules, we separately discuss
their runtime performance. The prototype of our frame-

(a) Privacy protection (b) Total learning time

Fig. 12. Runtime and privacy performance for POI Rec with SVM

work is implemented on a commodity PC (Intel Core i7-
4770HQ@2.20GHz, 16GB RAM, OS X), running MATLAB
and CVX with MOSEK [21].

7.7.1 Historical Data Publishing

For learning obfuscation function, we adopt a user cluster-
ing step to reduce the problem complexity and a bootstrap
sampling process for fast computation of Kendall-τ ranking
loss. Subsequently, we study the total learning time of the
obfuscation function w.r.t. the number of user clusters |G|,
the bootstrap sampling size |S| and the number of users |U|.

First, by varying |G| and |S|, we report privacy protec-
tion results (1-AUC) and the total learning time (including
user clustering, Kendall-τ distance computation and obfus-
cation function learning), for the NYC dataset with POI
Rec, the NYC dataset with activity Rec and the synthetic
dataset, in Figure 12, 13 and 14, respectively. For the NYC
dataset, we fix the utility of MAP=0.05 for POI Rec and
MAP=0.4 for Activity Rec, and consider gender as private
data. For synthetic dataset, we fix the utility of MAP=0.16,
and randomly sample one item as private data. On one
hand, we observe that the privacy protection performance
improves when increasing |G| and |S|. Specifically, larger
|G| can capture finer-grained user groups, which allow our
method to find the optimal function that achieves a better
privacy protection under the same distortion budget. Mean-
while, a larger bootstrap sampling size |S| can approximate
the actual Kendall-τ distance more accurately, which can
better measure the ranking loss incurred by the optimal
obfuscation function. In addition, we also find that 1-AUC
converges after a certain point. On the other hand, the total
learning time continuously increases when increasing |G|
and |S|. Therefore, the two parameters |G| and |S| can be
selected at the convergence point for 1-AUC.

Second, by fixing |G| and |S| to the convergence point
for 1-AUC, we vary the number of users |U| in synthetic
datasets and report the learning time in Figure 15(a). We
observe that only user clustering time linearly increases
with |U|, while the Kendall-τ distance computation and
obfuscation function learning time are independent from
|U|. PrivRank can easily scale up to 100K users (taking 3,378
seconds on our test PC). Note that learning the optimal
obfuscation function is an offline step, and only depends
on the joint probability pG,Y . In practice, we can regularly
update the obfuscation function to sustain its effectiveness.

Based on the learned obfuscation function, the proba-
bilistic data obfuscation in Algorithm 2 can be performed
very efficiently (i.e., 3.3ms per user in all cases).
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(a) Privacy protection (b) Total learning time

Fig. 13. Runtime and privacy performance for Activity Rec with SVM

(a) Privacy protection (b) Total learning time

Fig. 14. Runtime and privacy performance on synthetic dataset

7.7.2 Online Data Publishing

The complexity of learning obfuscation function for online
data publishing (Algorithm 3) depends only on the number
of items |I|. For the synthetic dataset, we vary the number of
items and show the its impact on the runtime performance
in Figure 15(b). We observe that both Kendall-τ distance
computation time and obfuscation function learning time
increases with the number of items. PrivRank can easily
scale up to a large dataset with 10K items (taking 6,291
seconds on our test PC). For the Foursquare datasets, we
keep the same parameters as in previous experiments and
report the runtime performance for both NYC and TKY
datasets in Table 2. Our test PC is able to learn the optimal
obfuscation function in a reasonable time in all cases. In
addition, although learning the personalized obfuscation
function needs to be performed for each individual for
online data publishing, this offline step can be easily paral-
lelized w.r.t. the number of users, as one user’s obfuscation
function learning process is independent from the others.

Due to the streaming nature of user activity data, the
efficiency of probabilistic online data obfuscation is par-
ticularly important. Our method (Algorithm 4) is able to
perform the obfuscation process with a high speed of 2,200
activity instance per second on all datasets, which can easily
accommodate user activity streams from most social me-
dia platform. For example, the Foursquare check-in stream
has the peak-day record showing 8 million check-ins/day

(a) Impact of |U| on historical data
publishing

(b) Impact of |I| on online data
publishing

Fig. 15. Impact of |U| and |I| on the scalability

TABLE 2
Runtime performance for online data publishing

Dataset
(Utility)

NYC
(POI Rec)

NYC
(Activity Rec)

TKY
(POI Rec)

TKY
(Activity Rec)

Obfuscation
function
learning

662 sec 120 sec 1,438 sec 276 sec

(about 92 check-ins/sec on average) in 20163.

8 CONCLUSIONS AND FUTURE WORK

This paper introduced PrivRank, a customizable and con-
tinuous privacy-preserving social media data publishing
framework. It continuously protects user-specified data
against inference attacks by releasing obfuscated user activ-
ity data, while still ensuring the utility of the released data
to power personalized ranking-based recommendations. To
provide customized protection, the optimal data obfuscation
is learned such that the privacy leakage of user-specified
private data is minimized; to provide continuous privacy
protection, we consider both the historical and online ac-
tivity data publishing; to ensure the data utility for en-
abling ranking-based recommendation, we bound the rank-
ing loss incurred from the data obfuscation process using
the Kendall-τ rank distance. We showed through extensive
experiments that PrivRank can provide an efficient and
effective protection of private data, while still preserving
the utility of the published data for different ranking-based
recommendation use cases.

In the future, we plan to extend our framework by
considering the data types with continuous values rather
than discretized values, and explore further data utility
beyond personalized recommendation.
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