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An extension of the basic image reconstruction prob-
lem in discrete tomography is considered: given a graph 
G = (V , E ) and a family of chains Pi together with 
vectors h(Pi ) = (hi

1, . . . , hi
k), one wants to find a parti-

tion V 1, . . . , V k of V such that for each Pi and each color
j , |V j ∩ Pi | =  hi

j . An interpretation in terms of schedul-
ing is presented. We consider special cases of graphs 
and identify polynomially solvable cases; general com-
plexity results are established in this case and also in 
the case where V 1, . . . , V k is required to be a proper 
ver-tex k -coloring of G. Finally, we examine also the 
case of (proper) edge k -colorings and determine its 
complexity status. 
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1. INTRODUCTION

Discrete tomography deals with the reconstruction of
discrete objects from their projections.

The reader is referred to the book of Hermann and Kuba
[12] for an overview of problems in discrete tomography.

Here we shall consider a graph coloring problem which
generalizes a basic image reconstruction problem in discrete
tomography defined below.

We are given a connected graph G = (V , E) and a collec-
tion P of p subsets Pi of vertices of G. We are also given a
set of colors 1, 2, . . . , k as well as a collection H of p vectors
h(Pi) = (h1

i , . . . , hk
i ) ∈ N

k (i = 1, . . . p).
We have to find a k-partition V1, V2, . . . , Vk of V such that

∣∣∣Pi

⋂
Vj

∣∣∣ = hj
i for all i ≤ p and all j ≤ k. (1)

This problem will be called �(G, k, P , H). It is clear that in
this formulation the structure of G plays no role.

We shall from now on consider a family of chains µi

in G; we will denote by Pi the (ordered) set of vertices in
µi and the length of µi will be |Pi|. Whenever no confu-
sion may arise, we shall identify µi with its vertex set Pi.
We will then call |Pi| the length of Pi. In the case where
the structure of G plays no role, it is not restrictive to start
from chains µi (instead of arbitrary subsets Pi of vertices
as above): we can indeed link the vertices of a Pi to form a
chain µi.

The k-partition need not be a coloring of G where adja-
cent vertices have different colors. We will talk indifferently
of k-partition or k-coloring to describe a partition of the ver-
tex set into k subsets (color classes); whenever we will have
the usual requirement of having different colors on adjacent
nodes, we will call this a proper k-coloring. The correspond-
ing reconstruction problem associated to proper k-colorings
will be denoted �∗(G, k, P , H).
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Let us now consider the special case where G = (V , E)

is a grid graph; its vertex set is V = {xrs|r = 1, . . . , m; s =
1, . . . , n} and its edge set is

E = {[xrs, xr,s+1]| s = 1, . . . , n − 1; r = 1, . . . , m}
⋃

{[xrs, xr+1,s]| r = 1, . . . , m − 1; s = 1, . . . , n}

If xrs is located in row r and column s of the grid, then
by taking for P the collection of chains Pr = {xr1, . . . , xrn}
for r = 1, . . . , m and Pm+s = {x1s, . . . , xms} for s = 1, . . . , n,
�(G, k, P , H) is exactly the basic image reconstruction prob-
lem in discrete tomography; here hj

r (resp. hj
m+s) is the

number of occurrences of color j in row r (resp. in column s)
(i.e. (h1

r , . . . , hk
r ) and (h1

m+s, . . . , hk
m+s) are the horizontal and

the vertical projections, respectively). This problem is also
known as colored matrix reconstruction problem.

For k = 2 the problem consists of reconstructing a
(0, 1)-matrix from its vertical and horizontal projections, i.e.,
number of occurrences of 1 in each row and in each column;
this case is solved in polynomial time [15].

For k = 4, this problem is NP-complete [4]; for k = 3 the
complexity status is open but some special cases were solved
in polynomial time [5, 6].

In this paper we will consider some extensions and varia-
tions of this basic problem by taking more general classes of
graphs G such as trees, bipartite graphs, planar graphs, cacti.

As an application of �(G, k, P , H) let us mention the fol-
lowing problem consisting in scheduling the refurbishment
of the stations in a city subway network. The network is rep-
resented by a graph G = (V , E) where the vertices are the
stations. Each metro line is associated with a chain Pi. Assum-
ing that the renovation operation of every single station takes
1 month, we want to schedule these operations while tak-
ing into account the following requirements: in month j, the
number of stations in metro line Pi which will be closed for
renovation is hj

i . The problem of assigning a date (month) for
the renovation of every station with the above constraints
is precisely �(G, k, P , H) if the whole refurbishment has
to take place in a period of k months. In some cases, it is
desired to avoid closing two consecutive stations along the
same metro line; the assignment of dates is then a proper
k-coloring of the underlying graph G and the problem is
�∗(G, k, P , H).

In addition to the aforementioned application, our problem
may be viewed in a different context related to constraint
satisfaction in logic. Essentially we are given a collection of
n Boolean variables as well as a collection of clauses Pi (each
one of them involves a subset of the Boolean variables). It
is required to find an assignment of values True or False to
each Boolean variable in such a way that in each clause Pi the
number of variables with value False is exactly (or at most)
a given number hF

i . Notice that here we have a number k of
colors which is 2. The general k-coloring case would then
correspond to k-valued logical variables.

After preliminaries given in Section 2, we will consider
the basic problem �(G, k, P , H) in Section 3 with the case

k = 2 (difficult and easy cases) and the general case k ≥ 3.
Then Section 4 will be dedicated to the case of proper color-
ings, i.e. to �∗(G, k, P , H). In Section 5 we will consider
line graphs. This amounts to replacing the vertex color-
ings by edge colorings. Again we will consider general
k-colorings and also proper k-colorings. Finally, Section
6 will present a summary of the results obtained in this
paper.

2. PRELIMINARIES

For graph theoretical terms not defined here, the reader is
referred to [3].

In the following we assume that several basic conditions
for a solution to exist are verified, in particular,

∑
j hj

i = |Pi|,
for all i = 1, . . . , p. In addition, if we want to determine
proper colorings, we have to assume that hj

i ≤ �|Pi|
2 � for all i,j.

It follows that there is at most one color such that hj
i = �|Pi|

2 �
if |Pi| is odd and at most two colors such that hj

i = |Pi|
2 if |Pi|

is even. These colors will be called saturating for Pi.
We need some more definitions and notations for P . For

a family P = (Pi | i = 1, . . . , p) of subsets Pi of a set V ,
we call cover index of P and denote by c(P) the maximum
number of members of P which may cover a single element
of V (i.e. which have a nonempty intersection).

For instance, in the basic reconstruction problem of
discrete tomography, we have c(P) = 2.

A family P = (Pi | i = 1, . . . , p) of subsets Pi of a set V
is called nested if for any Pi, Pf ∈ P , we have either Pi ⊆ Pf

or Pf ⊆ Pi or Pi ∩ Pf = ∅.
Consider now a partition of P into nested families. One

can look for a partition into the smallest possible number of
nested families. This number, denoted by Nest(P), is called
the nesticity of P .

Fact 2.1. [9] One can determine in polynomial time if for
a family P we have Nest(P) ≤ 2.

Proof of fact 2.1. Assign a vertex to each Pi ∈ P and
link by an edge Pi and Pf whenever Pi ∩ Pf 
= ∅, Pi 
⊆ Pf

and Pf 
⊆ Pi. The resulting graph is bipartite if and only if
Nest(P) ≤ 2.

Observe that c(P) and Nest (P) are unrelated: we may
have c(P) > Nest(P) or c(P) < Nest(P). In fact, for P =
({a, b}, {a, c}, {b, c}), we have c(P) = 2, Nest(P) = 3 and
for P ′ = ({a, b, c}, {a, b}), we have c(P ′) = 2, Nest(P ′) = 1.

3. ARBITRARY COLORINGS

In this section we establish some complexity results and
we exhibit some cases which can be solved in polynomial
time for �(G, k, P , H).

Notice that whenever the k-colorings are not required to be
proper, we can assume that for each edge e there is at least one
chain µi which uses e; otherwise the edge can be removed.



Notice that it may happen that we get a disconnected graph;
in such a case the problem is decomposed.

We shall start with the case where we have k = 2 colors.

3.1. Difficult Problems for k = 2

Let us first give two statements which do not refer to the
nature of the underlying graph G.

Theorem 3.1. �(G, 2, P , H) is NP-complete if P is a
3-uniform family (|Pi| = 3 for i = 1, . . . , p) which is
3-regular (each vertex is in exactly three P′

is).

Proof. We use a reduction from X3C (exact cover by
3-sets) which is known to be NP-complete [8]. In P one has
to find a set of disjoint Pi’s which cover exactly the ground
set. Or equivalently, we have to find a set S of vertices such
that each Pi contains exactly one vertex of S.

Let h1
i = 1, h2

i = 2 for each Pi; then there is a partition
V1, V2 of the ground set satisfying (1) if and only if there is
a set S of vertices containing exactly one vertex of each Pi.
In this case S = V1 and the other vertices form V2. ■

Theorem 3.2. �(G, 2, P , H) is NP-complete if
Nest(P) = 3.

Proof. We use a transformation of the three-dimensional
matching problem which is known to be NP-complete [8]. To
state a three-dimensional matching problem, we introduce a
collection of points with coordinates (α, β, γ ) with α, β, γ ∈
{1, 2, . . . , q} and three families formed by all disjoint chains
parallel to the coordinate axes; this gives P with Nest(P) =
3 = c(P).

We set h1
i = 1, h2

i = |Pi| − 1 for each Pi in P . Then
there exists a matching of size q if and only if there exists a
partition V1, V2 of the set of points which satisfies (1). ■

Notice that it follows from this transformation that
�(G, k, P , H) remains NP-complete for k = 2 and c(P) = 3.

Theorem 3.3. �(G, 2, P , H) is NP-complete when G is
bipartite of maximum degree ≤ 4 and each color occurs at
most three times in each Pi (h

j
i ≤ 3, ∀i = 1, . . . , p, ∀j = 1, 2)

and edges [x1, x12], [x12, x2], [x2, x23], . . . , [xs−1,s, xs]. For
each clause cl = {x, y, z} we know the number of occur-
rences of its variables in clauses c1, . . . , cl−1; so assume
cl = {xd , ye, zf } which means that in cl x has its dth occur-
rence, y its eth occurrence and z its f th. We introduce vertices
ul and wl with edges [xd , ul], [ul, ye], [ye, wl], [wl, zf ]. Clearly
the graph obtained is bipartite. Now we define P .

For each variable x, each edge [x1, x12], [x12, x2], . . . ,
[xs−1,s, xs] becomes a chain P′

i with h(P′
i) = (1, 1). For

each clause cl = {xd , ye, zf } we introduce a chain P′′
i =

{xd , ul, ye, wl, zf } with h(P′′
i ) = (3, 2) and also chains P∗

l =
{ul}, P∗∗

l = {wl} with h(P∗
l ) = h(P∗∗

l ) = (1, 0).
The family P of chains obtained verifies clearly |Pi∩Pf | ≤

1 for all i, f ≤ p (i 
= f ). Furthermore, no vertex of G has
degree more than 4.

If an instance of ONE-IN-THREE 3SAT has answer “yes”,
then assigning color 1 to vertices ul, wl (for all l) and to
x1, x2, . . . , xs if variable x is “true” or to x12, x23, . . . , xs−1,s

otherwise and giving color 2 to the remaining vertices gives a
positive answer to the corresponding instance �(G, 2, P , H).
Conversely if an instance of �(G, 2, P , H) is positive, then all
vertices ul, wl (for all l) have color 1, so for each chain P′′

i =
{xd , ul, ye, wl, zf } there is exactly one vertex in {xd , ye, zf } with
color 1. Furthermore from the requirements on the chains P′

i,
for each variable x, all vertices x1, x2, . . . , xs have the same
color. So assigning the value ‘true’ to x if x1, x2, . . . , xs have
color 1 or value ‘false’ otherwise we get a positive answer to
ONE-IN-THREE 3SAT. ■

Theorem 3.4. �(G, 2, P , H) is NP-complete when G is a
tree with maximum degree 3.

Proof. Again, we reduce from the NP-complete prob-
lem ONE-IN-THREE 3SAT with no negated literal, already
defined. We denote by x1, . . . , xν the variables and by
c1, . . . , cα the clauses. We construct a tree as follows: there
is a main path � with ν + α vertices. Each one of the ν first
vertices of � is linked by an edge to a leaf, the ith leaf being
labeled by xi (we shall speak of a variable leaf ). Each one of
the α next vertices of � is linked to a clause gadget (so that,
in our tree, there is one gadget for each clause): the gadget for
a clause ch = xi ∨ xj ∨ xk is a tree with five vertices (labeled
ah, bh, xi, xj, and xk), xi, xj, and xk being the 3 leaves, and
ah being linked to � by an edge. The edges inside the gad-
get are [ah, xi], [ah, bh], [bh, xj], and [bh, xk] (see Fig. 1 for an
example). Note that the tree constructed so far has maximum
degree 3.

FIG. 1. The tree constructed for the instance (x1 ∨x2 ∨x3)∧ (x2 ∨x3 ∨x4).

and |Pi ∩ Pf | ≤  1 for all 1 ≤ i, f ≤ p (i 
= f ).

Proof. The transformation is from the NP-complete 
problem ONE-IN-THREE 3SAT which is defined as follows 
[8]:

INSTANCE: A set U of variables, a collection C of clauses 
over U such that each clause c ∈ C has |c| =  3 variables.

QUESTION: Is there a truth assignment for U such that 
each clause in C has exactly one true literal?

This problem is also NP-complete in the case where there 
is no negated literal.

We build a graph by associating with each variable x 
occurring s times vertices x1, x12, x2, x23, x3, . . . , xs−1,s, xs



FIG. 2. The three possible colorings for the clause gadget of
ch = xi ∨ xj ∨ xk .

It remains to describe the collection P . First, in the gadget
of clause ch = xi ∨ xj ∨ xk , there is a chain Ph = {ah} with
h(Ph) = (1, 0), a chain P′

h = {xi, ah, bh} with h(P′
h) = (2, 1),

and a chain P′′
h = {xj, bh, xk} with h(P′′

h) = (1, 2). Then, the
path � is a chain in P with h(�) = (ν+α, 0). Eventually, for
each occurrence of a variable xi in a clause cr there is a chain
from the variable leaf i to the leaf xi in the clause gadget of
cr . Let us denote by Pr

i this chain. If the leaf xi in the clause
gadget of cr is linked to ar then we have h(Pr

i ) = (|Pr
i |−1, 1)

else we have h(Pr
i ) = (|Pr

i | − 2, 2).
Now, the important point is that, because of all the chains

of the form Ph, P′
h, and P′′

h , there are only three ways of
coloring each clause gadget (see Fig. 2: black vertices have
color 1, white vertices have color 2).

Moreover, because of all the chains of the form Pr
i , given

one of the 3 possible colorings of the clause gadget of ch =
xi ∨ xj ∨ xk , one and only one of the variable leaves labeled
xi, xj and xk has color 1: xi in the coloring of Figure 2a, xj

in the coloring of Figure 2b, xk in the coloring of Figure 2c.
Hence, given a solution for �(G, 2, P , H) on this instance,
we can easily obtain a solution for the associated satisfiability
instance, by assigning true to variables whose variable leaves
have color 1 and false to the others. Conversely, given a truth
assignment, assign color 1 to variable leaves associated with
true variables and color 2 to the others, and color each clause
gadget with respect to the only variable equal to true in the
associated clause. It follows from the above discussion that
we obtain a valid coloring. ■

In the above construction, by contracting � into a single
vertex v, and all the ah into v (i.e., a1 = · · · = aα = v) we
obtain:

Theorem 3.5. �(G, 2, P , H) is NP-complete in trees of
diameter at most 4 when |Pi| ≤ 4 for each Pi in P , hj

i ≤
3 (i ≤ p, j = 1, 2) and |Pi ∩ Pf | ≤ 2 for each Pi and Pf

(Pi 
= Pf ) in P (i, f ≤ p).

3.2. Polynomially Solvable Cases with k = 2

We recall that the basic image reconstruction problem
in discrete tomography is polynomially solvable for k = 2
when the P′

is are the rows and the columns of the associated
grid graph G. Remember that in this special case we have
c(P) = 2.

More generally, we can state:

Theorem 3.6. �(G, 2, P , H) is polynomially solvable if
c(P) = 2.

Proof. We construct a multigraph G′ as follows: Assign
a vertex Pi to each chain Pi in P . Each vertex of G, which is
in Pi and in Pf is represented by an edge in G′ between Pi and
Pf . Each vertex, which is covered by a unique Pi is associated
to an edge in G′ between vertex Pi and a new vertex P′

i. So
there is a one-to-one correspondence between the vertices of
G and the edges of G′.

Then a solution, if there is one, will correspond to a subset
F of edges of G′ such that for each vertex Pi, F has h1

i edges
adjacent to Pi (there is no restriction for the vertices P′

i).
In G′, the edges of F will give V1 in G and the edges

not in F will correspond to V2 in G. There are polynomial
algorithms (see [13]) to construct such subsets F if they exist
or to decide that there is no solution. ■

One can derive the following from results in [9].

Theorem 3.7. �(G, 2, P , H) is polynomially solvable if
Nest(P) = 2.

Proof. Starting from the inclusion tree of each one of the
two nested families covering P , one can build a network flow
model where a compatible integral flow will define the subset
V1 ⊆ V and V2 = V − V1 will be obtained immediately as
shown in [9].

Assume P can be decomposed into nested subfamilies
A and B. We represent both families by the inclusion tree
of their subsets Pi. A source a (resp. a sink b) is linked to
all maximal (inclusionwise) subsets of A (resp. B). We link
each l ∈ V to the unique minimal subset Ar of A (resp.
Bs of B) which contains l by an arc (Ar , l) (resp. (l, Bs)).
The network is obtained by orienting all remaining edges
from a to b. The arc entering (resp. leaving) each Pi in A
(resp. B) has a capacity and a lower bound of flow equal to
h1

i . The arcs adjacent to the vertices corresponding to the
elements of V have capacity 1 and a lower bound of flow
equal to 0.

In Figure 3 an example is given for a set V =
{1, 2, . . . , 7} and a family P with Nest(P) = 2. Here

FIG. 3. The network associated with a family P with Nest(P) = 2.



whether the system has a solution; if it is the case there is an
integral solution (since A is totally unimodular) which gives
V1, and V2 = V − V1 which form a partition of V satisfying
all requirements. ■

3.3. The Case k ≥ 3

Let us first consider the special case where all Pi’s have
size |Pi| ≤ 2.

Theorem 3.10. For any graph G and any P such that every
|Pi| ≤ 2, �(G, k, P , H) can be solved in polynomial time.

Proof. Consider �(G, k, P , H). Eliminate all Pi’s such
that hj

i = 2 for some color j ≤ k (these have a unique color-
ing) and apply the reductions implied by these eliminations.
We also apply the reductions due to chains Pi with |Pi| = 1.
Consider a pair Pi, Pj with |Pi ∩ Pj| = 1. Let �l be the set of

colors j with hj
l > 0. If �i ∩ �j = ∅, there is no solution; if

|�i∩�j| = 1, then assign this color to the vertex in Pi∩Pj and
the rest of Pi, Pj is also determined. We apply these reductions
until either we get a contradiction or we have a collection of
connected components C1, . . . , Cr where in each connected
component all Pi’s have the same set �i of possible colors
(remember that |Pi| = 2 and |�i| = 2). Then our problem
has a solution if and only if every connected component is
bipartite. ■

For the case where the number of colors is k = 3, we have
the following:

Theorem 3.11. �(G, 3, P , H) is NP-complete when |Pi| =
3, hj

i = 1 for i = 1, . . . , p, j = 1, 2, 3 and c(P) = 2.

Proof. We use a transformation from edge three-
coloring of a three-regular graph G′. This problem is known
to be NP-complete [10].

We will construct a graph G and a family P of chains in
G. We will associate a chain Pi in G to each vertex wi of G′;
each edge [wi, wf ] of G′ is associated with a vertex vif ≡ vfi

of V(G). Pi will be a chain in G containing the three vertices
corresponding to the three edges adjacent to wi in G′. If in
G′ vertex wi is adjacent to wr , ws, wt (r < s < t) then in G
Pi = {vir , vis, vit} and the corresponding chain will be formed
by edges [vir , vis], [vis, vit].

We set hj
i = 1 for i = 1, . . . , p and j = 1, 2, 3. Then

there is an edge three-coloring of G′ if there is a partition
V1, V2, V3 of V(G) such that for each Pi, |Pi ∩ Vj| = 1 = hj

i
for any i, j. ■

Theorem 3.11 is best possible since from Theorem 3.10
the problem is easy when |Pi| ≤ 2 for all i ≤ p.

Remark 3.1. According to Brooks theorem (see [3]), the
chromatic number χ(G) of a three-regular connected graph
G is 3 unless G is either a clique on four nodes (in which case
χ(G) = 4) or a bipartite graph (in which case χ(G) = 2).

A = ({1, 2}, {3, 4, 5}, {6, 7}) and B = ({1, 3, 6}, {2, 4}, {5, 7},
{1, 3, 5, 6, 7}). The values hi

1 are shown in brackets.
There is a one-to-one correspondence between the feasible 

integral flows from a to b and the subset V1 of vertices in a 
coloring (V1, V2) satisfying the requirements. ■

Theorem 3.8. Let G be an arbitrary graph and P a family of 
chains Pi such that any Pi has at most two vertices belonging 
to some other chains of P . Then �(G, 2, P , H) can be solved 
in polynomial time.

Proof. We shall transform the problem into a 2SAT 
problem which is known to be polynomially solvable [2].

We associate a binary variable x to every vertex of G which 
belongs to at least two chains Pi. Notice that we may assume 
that min{hi

1, hi
2} ≥  1, i ≤ p, otherwise there is only one color 

occurring in Pi and the problem can be reduced. We first 
remove all vertices which belong to exactly one Pi (these 
will be considered later). Now each Pi contains one or two 
vertices. For each Pi which has exactly two vertices, say x, y, 
which belong to other chains, we write a clause ci as follows.

If hi
1 = 2, hi

2 = 1, we set ci = x ∨ y (this means that 
at least one of the vertices x, y must have color one) and if 
hi

1 = 1, hi
2 = 2, we set ci = x̄ ∨ ȳ (at least one of x, y must 

have color 2). If min{hi
1, hi

2} ≥  2, we do nothing (since x and 
y can get any color). Finally, when hi

1 = hi
2 = 1, we introduce 

a constraint x = ȳ (because x and y must get different colors). 
For any Pi which has exactly one vertex belonging to more 
than one chain in P , we do nothing since by assumption 
(min{hi

1, hi
2} ≥ 1) this vertex can have any color. We define 

C = ∧i
q 

1ci and using the equality constraints x = ȳ we may

substitute
= 

variable ȳ to variable x. We are left with a 2SAT 
instance. It has a solution if and only if �(G, 2, P , H) has a 
solution.

From a solution of 2SAT, we derive a partition V1, V2 of 
the vertices associated to the binary variables. The bicoloring 
V1, V2 of the vertices of G belonging to more than one chain 
of P is given by V1 = {v| v is true}, V2 = {v| v is false}.

For each Pi it is possible to assign color 1 or 2 to the 
uncolored yet vertices so that the number of occurrences of

color j is hi
j (for j = 1, 2). This will provide the required 

coloring of G.
Conversely if �(G, 2, P , H) has a solution, then by setting 

x = true (resp. x = false) for all variables corresponding to 
the vertices x which are in more than one chain and have color 
1 (resp. color 2), we will satisfy all clauses in C (as well as 
the equality constraints). ■

Theorem 3.9. If G = (V , U) is a tree where all arcs have 
an orientation and each Pi ∈ P is an oriented path, then 
�(G, 2, P , H) can be solved in polynomial time.

Proof. Notice that the incidence matrix (paths × 
vertices) of such a graph is totally unimodular. So if we write 
the system Ax = b, 0 ≤ x ≤ 1 where aiv = 1 if path Pi 
contains vertex v (or aiv = 0 else) and bi = hi

1, then we may 
check in polynomial time with a linear programming solver



Since edge three-coloring is NP-complete in three-regular
graphs [10], we can state: edge 3-coloring in a three-regular
graph G is NP-complete even if χ(G) = 3.

Conversely, note that if a connected graph G is edge three-
colorable then �(G) ≤ 3 and thus either G is a clique on
four nodes or χ(G) ≤ 3.

3.4. The Case Where G is a Chain or a Tree and k > 2

We will now consider �(G, k, P , H) where G is a tree,
each Pi is a chain of G and furthermore for any two chains
Pi, Pf in P we have |Pi ∩ Pf | ≤ 1. In such a case we have the
following:

Lemma 3.1. If G is a tree and if the family P of chains of G
satisfies |Pi ∩ Pf | ≤ 1 for all i, f ≤ p, then there is an order
(which we call canonical order) of chains such that for any
q > 1 ∣∣∣∣∣∣

Pq

⋂



q−1⋃
i=1

Pi




∣∣∣∣∣∣
≤ 1

Proof. Notice first that we can assume |Pi| ≥ 2 for each
i ≤ p. This implies that we cannot have Pi ⊂ Pf for any
i, f ≤ p (i 
= f ). Now G has a pendent vertex contained in
exactly one chain Pi of P . This chain will be called P1; we
remove it from P as well as all vertices belonging to P1 only.
Now we can find another pendent vertex of the remaining tree
G′ and this determines P2. We will thus find a numbering of
the chains of P which satisfies the requirements. ■

We will describe below an algorithm for solving
�(G, k, P , H) in a tree G = T ; in this procedure (called FFC)
we will have to determine for each vertex of T the “forced”
colors as well as the “forbidden” colors; such a procedure will
also be able to detect contradictions in the data which imply
that no solution exists. A color c is said to be forced (resp.
forbidden) for a vertex v if there exists no feasible solution
where v has a color c′ 
= c (resp. where v has color c).

The procedure FFC which makes a repeated use of a
maximum flow in a bipartite graph can be sketched as follows.

Procedure FFC (Forced and Forbidden Colors). Let
us consider a chain Pi and let us denote by x1, . . . , xν the
vertices in Pi. Let �i be the set of colors required in Pi :
�i = {j | hj

i > 0}. For each vertex xl, l = 1, . . . , ν, πl

denotes the set of possible colors for xl, i.e. πl = ∩i|xl∈Pi�i.
We construct the following bipartite graph G = (X, Y , E)

with X = {x1, . . . , xν}, Y = �i, and [xl, j] ∈ E if j ∈ πl;
the capacity of [xl, j] is equal to 1. To get a network N , we
add a source s with an arc of capacity 1 from s to each vertex
in X and a sink t with an arc from each vertex j in Y to t;
the capacity of (j, t) is equal to hj

i for all j ∈ Y . Any integral
flow from s to t saturating the arcs out of s gives a possible
coloring of the vertices in Pi. To any edge [xl, j] ∈ E which is
saturated in every maximum flow corresponds a forced color
j for xl. To any edge [xl, j] ∈ E with a flow equal to 0 in every
maximum flow corresponds a color j forbidden for xl.

Note that it is easy to determine all the edges saturated
(resp. with no flow) in every maximum flow. For each edge
[xl, j] in E, suppress [xl, j] (resp. force a flow from s to t
through [xl, j]) and compute a new maximum flow in the
obtained network. If the value of this flow is lower than the
original maximum flow, then [xl, j] is saturated (resp. with no
flow) in every maximum flow.

Procedure FFC either finds the forbidden colors or a forced
color for a vertex v or concludes that there is no more forbid-
den color nor forced color. If the set πv of possible colors for
v is πv = {1, . . . , k} initially for each vertex v, we notice that
finding a forced color c for v reduces πv to a set πv = {c} and
finding the forbidden colors ci1 , . . . , ciq for v replaces πv by
πv = πv − {ci1 , . . . , ciq}.

Since we will apply FFC as long as forbidden or forced
colors can be found, it will be called at most |V |k times.

Clearly we remove all vertices which have a forced color
and we update the values hj

i accordingly as well as the sets �i.
At the end of the repeated applications of FFC we will

either have discovered a contradiction (πv = ∅ for some
vertex v) or obtained for each vertex v a set πv with | πv |≥ 2.

Theorem 3.12. If G is a tree and P a family of chains of
G satisfying |Pi ∩ Pf | ≤ 1 for any i, f ≤ p (i 
= f ), then
�(G, k, P , H) can be solved in polynomial time.

Proof. We start by applying the FFC procedure; it may
happen that one has to remove some vertices with forced
colors; in such a case we get a forest and we apply the
procedure on each connected component separately.

Wlog we consider a tree G and we construct a canonical
order P1, . . . , Pp of the chains of P . Since we apply proce-
dure FFC until there are no more forced colors and neither
forbidden colors, we have the following:

Fact 3.1. If in a chain Pi a single arbitrary vertex v has been
given a possible color c ∈ πv, there exists an assignment of
possible colors c(w) ∈ πw to all remaining vertices w of Pi

such that Pi has exactly hj
i vertices of color j (1 ≤ j ≤ k).

It is then possible to color the vertices of G by considering
the chains P1, . . . , Pp in the canonical order (starting from
any vertex of P1). Clearly we will be able to extend the col-
oring to all vertices of G since, having colored the vertices
of P1, . . . , Pi, the chain Pi+1 has exactly one vertex which is
already colored (with a color in πv).

The whole procedure is polynomial:
FFC consists of applying for each chain Pi a maximum

flow algorithm in a bipartite network with |Pi| vertices on the
left and k vertices on the right. To find the forbidden colors
and the forced colors, we have to find at most |Pi|k times an
augmenting chain (this takes O(|Pi|k) time); globally we have
a complexity O((|Pi|k)2) for getting the forbidden colors and
the forced colors. For a maximum flow we have O((|Pi| +
k)3) (see [1]). Hence an application of FFC has a complexity
O((|Pi| + k)3 + (|Pi|k)2). Since we apply FFC at most |V |k



times, we have O(((|Pi| + k)3 + (|Pi|k)2)|V |k) and since
|Pi| ≤ |V | we have finally O(((|V |+k)3 + (|V |k)2)|V |k). ■

Proposition 3.1. If G is a cycle and if the family P is
such that |Pi ∩ Pf | ≤ 1 for any i, f ≤ p with i 
= f , then
�(G, k, P , H) can be solved in polynomial time.

Proof. We take a consecutive numbering of the chains
Pi as in the case where G is a tree so that |Pi ∩ Pi+1| = 1 for
all i ≤ p − 1 and in addition |Pp ∩ P1| = 1; let v0 ∈ Pp ∩ P1.

We simply consider the following problems Oj (for j =
1, . . . , k): find a feasible coloring such that v0 has color j.

This amounts to removing v0 and updating the hj
i accord-

ingly; this is simply �(G − v0, k, P ′, H ′) where G − v0 is a
chain. ■

More generally if G is a cactus, i.e., a connected graph
where any two cycles have at most one common vertex, then
we can proceed as for a tree in the following special case:
let us assume that each Pi belongs to exactly one cycle (or to
a chain not contained in a cycle). Each cycle C has some
vertices which may belong to other cycles or to external
chains; we shall assume that all these vertices are necessarily
endpoints of chains Pi.

It is not difficult to see that we can number the Pi’s in P
in such a way that for all f ≤ p |Pf ∩ (∪ f −1

i=1 Pi)| ≤ 1 (except
for the last Pi’s which “close” a cycle in G).

We can work separatly on each cycle C and determine the
possible colors for the last vertex, i.e. the vertex connecting
C to some cycle or some external chain covered by chains Pi

with smaller indices.
We proceed as in the case of trees by applying an FFC pro-

cedure first and then, in case no contradiction has occurred,
we will be in the situation where we have either a single Pi

(contained in an external chain) to color where exactly one
vertex is already colored or we reach a cycle (with exactly one
vertex already colored). In the first case we proceed as before
and in the second one, we have that the cycle can be colored
by extending the coloring from the vertex which has been
colored and we continue. This will finally color the whole
graph.

As in the case of trees, the procedure will give a feasible
coloring or exhibit a contradiction.

4. PROPER COLORINGS

Having discussed �(G, k, P , H) we shall examine the case
where the k-partition is a proper k-coloring (�∗(G, k, P , H)).

Here we shall assume that for every edge e = [x, y] in G,
there is a chain µi which uses e; this implies in particular
x, y ∈ Pi. This assumption is not restrictive: let e = [x, y]
be an edge which is not covered by any µi in the collec-
tion defined in �∗(G, k, P , H). We replace e by a chain
µe = (x1

e = x, u1
e , x2

e , u2
e , . . . , xk−1

e , uk−1
e , xk

e = y) where
x2

e , . . . , xk−1
e are new vertices and u1

e , . . . , uk−1
e are new edges;

we set Pe = {x1
e , . . . , xk

e } and hj
e = 1 for j = 1, . . . , k.

Clearly there is a proper k-coloring of the resulting graph
G∗ which is solution of �∗(G∗, k, P , H) if there is a proper
k-coloring which is solution of �∗(G, k, P , H) because x and
y will necessarily get different colors in any feasible coloring
of G∗.

4.1. Solvable Cases of Proper Colorings

Let us now consider some cases for which polynomial
time algorithms can be found.

Fact 4.1. �∗(G, 2, P , H) is polynomially solvable.

Justification. Notice that in each Pi with odd |Pi|, the
vertices have necessarily forced colors. So we can assume
that there are only chains of even length and each vertex may
be colored with color 1 or 2. The problem then consists in
verifying whether the graph is bipartite or not, which can be
done in polynomial time.

We obtain from Theorem 3.12 and its proof:

Corollary 4.1. �∗(G, k, P , H) can be solved in polynomial
time if G is a tree, P is such that |Pi ∩ Pf | ≤ 1 for i, f ≤ p

(i 
= f ) and hj
i ≤ 1 for all i ≤ p, j ≤ k.

From now on we will have to consider repeatedly proper
k-colorings of chains Pi of G (with possibly k > 2 and with
hj

i occurrences of color j in chain Pi). So we will start by
stating some elementary properties of such colorings.

We recall that a color j is saturating in a chain P if hj =
�|P|

2 �. The set of colors j such that hj > 0 will be denoted
by �.

Remark 4.1. If P is an odd chain with a saturating color
a, then a occurs necessarily at both endpoints of P in any
coloring.

Remark 4.2. If P is an even chain with a saturating color
a, then a occurs necessarily at least at one endpoint of P in
any coloring.

Lemma 4.1. Let P be a chain to be colored and assume
there is no saturating color in �. For any two colors e, d in
�, one can find a proper k-coloring of P where e and d occur
at the endpoints of P. In case hd ≥ 2, we can have a coloring
with d occurring at both endpoints.

Proof. Let P = {1, 2, . . . , n} and let d, e be the colors
which have to occur at the ends. Assume first that n is even.
Start from the left, assigning hd times color d to vertices
1, 3 . . . , 2hd − 1 and from the right, assign he times color e
to vertices n, n − 2, . . . , n − 2(he − 1). It remains max{0, n −
2he − 2hd + 2} adjacent vertices in the center. We can find
max{0, n

2 − he − hd + 1} nonadjacent vertices among them.
Together with the vertices 2, 4, . . . , 2hd − 2 and n − 1, n −
3, n − 2he + 3, this gives n

2 − 1 nonadjacent vertices.



If n is odd, we choose a color f 
= d, e (which exists since
there is no saturating color). We color vertex n with e and
we decrease he by one. Then we apply the previous coloring,
with color f replacing color e, to P′ = P−{n}; this will give a
proper coloring of P since vertex n−1 has color f and vertex
n has color e.

Finally we start by coloring the nonadjacent vertices with
the remaining colors. If he + hd − 1 ≥ n

2 , then all uncolored
vertices are nonadjacent and the coloring can be completed.
In the other case (he + hd − 1 < n

2 ), we have an interval I
of n − 2he − 2hd + 2 consecutive uncolored vertices in the
center. We color the remaining vertices in the order 2hd , 2hd+
2, . . . , n−2he, n−2he +3, . . . , n−1, 2, 4, . . . , 2hd −2, 2hd +
1, 2hd +3, . . . , n−2he+1 exhausting one color before taking
the next one. Since there is no saturating color we will get a
proper coloring of the chain.

To obtain a coloring with d occurring on 1 and n, consider
P′ = P−{n} and (hd)’= hd −1. Apply the coloring algorithm
to P′ with colors d, e. Clearly vertex n−1 will not have color
d and we can color vertex n with d to get the required proper
coloring of P. ■

Lemma 4.2. If P is an even chain with exactly one satu-
rating color a, one can choose any color b and construct a
coloring of P such that a and b are occurring at the endpoints.

Proof. Assume first b 
= a. Color the nodes
1, 3, 5, . . . , |P|−1 with color a and color the nodes |P|, |P|−
2, . . . , 2 with the remaining colors starting with color b.

If b = a, then color a occurs at both ends: we color nodes
1, 3, 5, . . . , |P| − 3 and |P| with color a. Since there are no
other saturating color, we can color the nodes |P| − 2, |P| −
4, . . . , 2, |P| − 1 with the remaining colors and no conflict
will occur. ■

We shall say that the singletons Pi in P have the CS
property (Consecutive Singletons) if the following holds:
if a singleton Pi is an intermediate vertex of some Pc =
{x1

c , x2
c , . . . , xr

c = Pi, xr+1
c , . . . , xs

c} then either x1
c , . . . , xr−1

c or
xr+1

c , . . . , xs
c are also singletons in P .

Proposition 4.1. Let G be a chain. For any �∗(G, k, P , H)

with |Pi ∩ Pf | ≤ 1 ∀i 
= f (i, f ≤ p) and where all single-
tons Pi have the CS property, there is an equivalent problem
�∗(G∗, k, P∗, H∗) where the family P∗ satisfies:

(a) |P∗
i | ≥ 2

(b) |P∗
i ∩ P∗

i+1| ≤ 1 (i < p∗) and P∗
i ∩ P∗

f = ∅ (i 
∈ {f −
1, f , f + 1})

Here “equivalent” means that one problem has a solution if
and only if the other one has a solution.

Proof. Assuming that the vertices are given in increasing
order of numbering along the chain, we can say that a chain
Pi starts at some vertex xd (or ends at some vertex xe) if d is
the smallest (e is the largest) index in Pi.

Now consider a chain Pc = {x1
c , . . . , xr

c , xr+1
c , . . . , xs

c}
where x1

c , . . . , xr
c are singletons P1

c , . . . , Pr
c in P . We remove

x1
c , . . . , xr

c and replace Pc by P∗
c = {xr+1

c , y1, . . . , yk−2} with
h(P∗

c ) = (1, . . . , 1, 0, 1, . . . , 1) where the missing color is
the color of xr

c and y1, . . . , yk−2 are new vertices. We also

introduce P∗∗
c = {xr+1

c , . . . , xs
c} with updated values of hj

i
according to the colors already assigned to x1

c , . . . , xr
c . Sim-

ilarly, if there is a chain Pd = {x1
d , . . . , xt

d = x1
c } ending

at vertex x1
c we replace it by a chain P∗

d = Pd − x1
c =

{x1
d , . . . , xt−1

d } and introduce P′
d = {xt−1

d , z1, . . . , zk−2} with
h(P′

d = (1, . . . , 1, 0, 1, . . . , 1) where the missing color is the

color of x1
c . We update the values hj

i accordingly. Then we
have an equivalent problem since xt

d will not get the color of
x1

c and xr+1
c will not get the color of xr

c . So we have cut the
problem into two subchains and singletons in Pc have been
removed. By repeating this we get an equivalent problem with
all Pi’s verifying |Pi| ≥ 2. ■

Theorem 4.1. If G is a chain where the singletons Pi have
the CS property and P is such that |Pi∩Pf | ≤ 1 ∀i 
= f (i, f ≤
p), then �∗(G, k, P , H) can be solved in polynomial time.

Proof. As already remarked, we can assume that k ≥ 3.
Wlog we can assume that P has the properties (a) and

(b) given in Proposition 4.1. Consider now the problem
�∗(G, k, P, H). To solve it we use a procedure similar to the
one used for �(G, k, P, H). If any contradiction occurs during
the following forced assignments then there is no solution.

• Whenever a vertex v ∈ Pi ∩ Pi+1 is assigned some color j
we update the parameters as follows: hj

i ← hj
i − 1; hj

i+1 ←
hj

i+1 − 1; if hj
i = 0 then set �i ← �i − {j}; if hj+1

i = 0 then
set �i+1 ← �i+1 − {j}.

• If there exists 1 ≤ i < p such that �i ∩ �i+1 = ∅, then there
is no solution.

• If there exists 1 ≤ i < p such that |�i ∩ �i+1| = 1 then color
Pi ∩ Pi+1 with the common color.

• For each odd Pi with a saturating color, say j, assign color j to
both endpoints of Pi.

• For each even Pi with a saturating color, say j, j must be
assigned to one of the endpoints of Pi. For 1 < i < p,

if j /∈ �i−1 ∪ �i+1 then there is no solution
if j /∈ �i−1 then assign color j to Pi ∩ Pi+1

if j /∈ �i+1 then assign color j to Pi ∩ Pi−1.

For any colored vertex, propagate the possible implica-
tions of this coloring to the previous and next intersections
in the following way; if any contradiction occurs, there is no
solution.

Assume that v ∈ Pi ∩ Pi+1 has been colored with j:

• if l 
= j is a saturating color of Pi (resp. Pi+1) then color the
left (resp. right) endpoint of Pi (resp. Pi+1) with l,

• if |�i∩�i−1| = 1 (i > 1) (resp. |�i+1∩�i+2| = 1 (i < p−2))

assign the unique color l such that hl
i ≥ 1 and hl

i−1 ≥ 1 (resp.
hl

i+1 ≥ 1 and hl
i+2 ≥ 1) to Pi ∩ Pi−1 (resp. Pi+1 ∩ Pi+2).



At this step, if no contradiction occurred, we have a set
of colored vertices located at intersections of chains Pi. In
addition, any pair {Pi, Pi+1} (i < p) such that Pi ∩ Pi+1 is
uncolored verifies |�i∩�i+1| ≥ 2 and if j is a color saturating
Pi then j ∈ �i−1 ∩ �i ∩ �i+1 1 < i < p.

Moreover, if one endpoint of Pi (1 ≤ i ≤ p) is already
colored, any color remaining in �i is compatible with it and
can be used to color the other endpoint; if Pi has a saturating
color it is the one already assigned.

The problem has a solution which can be obtained in two
more steps:

(A) First we assign a color to all uncolored intersection Pi ∩
Pi+1(i < p), in the following way: Let Pi ∩ Pi+1 be the first
uncolored intersection in G; color Pi ∩ Pi+1 with any color
j ∈ �i ∩�i+1. If i = 1, color the first endpoint of Pi with any
allowed color. If Pi+1∩Pi+2 is uncolored (i+1 < p) then there
is at least one color different from j in �i+1 ∩ �i+2; if there
is a saturating color l in Pi+1 and if l 
= j then assign color l
to Pi+1 ∩ Pi+2 (we are sure that l ∈ �i+1 ∩ �i+2) otherwise
choose any color in �i+1 ∩ �i+2. Propagate the implications
of each coloring until we reach a vertex already colored. Then
search for the following uncolored intersection and continue
the process until the end of G.

(B) Clearly the partial coloring obtained so far is such that for
every chain the saturating colors are assigned to endpoints in
such a way that according to Lemmas 4.1 and 4.2, the coloring
can be extended to all yet uncolored vertices.

■

Remark 4.3. One should mention that Theorem 4.1 can be
extended to trees where P is such that in every Pi only the
“first” and “last” vertices may belong to another Pj.

Remark 4.4. �∗(G, k, P , H) can be solved in polynomial
time if |Pi| = 2 for all i = 1, . . . , p. Since |Pi| = 2 for each i,
each edge is a Pi and there are exactly two possible colorings
for each Pi. We take the first coloring of P1; we propagate
this coloring and if we obtain a proper coloring of G, we are
done. Else we have a conflict; we then reverse the coloring
of P1 and propagate this coloring as before and we will find
a coloring of G or a conflict. In the last case, there is no
solution.

4.2. Difficult Cases of Proper Colorings

Theorem 4.2. �∗(G, 3, P , H) is NP-complete in trees with
maximum degree 3.

Proof. We use the construction in the proof of Theorem
3.4 and introduce a new vertex on each edge of the tree; we
force these new vertices to have color 3. ■

Theorem 4.3. �∗(G, 3, P , H) is NP-complete even if G is
planar bipartite, |Pi ∩ Pf | ≤ 1 (i, f ≤ p, i 
= f ), |Pi| ≤ 3

(i ≤ p) and hj
i ≤ 1, i = 1, . . . , p, j = 1, 2, 3.

Proof. We use a transformation from the NP-complete
problem PrExt which is defined as follows:

INSTANCE: A positive integer q and a graph G in which
some vertices are precolored using at most q colors.

QUESTION: Can the precoloring of G be extended to a
proper coloring of G using at most q colors?

This problem is proven to be NP-complete even if q = 3
and G is planar bipartite (see [11]).

Consider a planar bipartite graph G = (X, Y , E). Suppose
that some of its vertices are precolored using colors 1, 2,
and 3. For each precolored vertex x, we set Px = {x} and
h(Px) = (1, 0, 0) if x has color 1, h(Px) = (0, 1, 0) if x has
color 2, and h(Px) = (0, 0, 1) if x has color 3. For each edge
e = [x, y] in G, we add a new vertex ze and a new edge [x, ze].
We set Pe = {x, y, ze} and h(Pe) = (1, 1, 1).

Clearly our new graph G′ is still planar bipartite. Further-
more |Pi ∩ Pf | ≤ 1 (i, f ≤ p, i 
= f ), |Pi| ≤ 3 (i ≤ p), and

hj
i ≤ 1, i = 1, . . . , p, j = 1, 2, 3.

It is easy to see that PrExt has a solution in G if and only
if �∗(G′, 3, P , H) has a solution in G′. ■

5. EDGE COLORINGS

We now consider edge colorings instead of vertex color-
ings; we may in a similar way define problem 
(G, k, P , H)

where P is a collection of p subsets Pi of edges of G and we
want to find a k-partition E1, E2, . . . , Ek of E such that

∣∣∣Pi

⋂
Ej

∣∣∣ = hj
i for all i ≤ p and all j ≤ k. (2)

If we want to find a proper edge k-coloring then the problem
will be denoted by 
∗(G, k, P , H).

In general, the subsets Pi of edges will be chains (open or
closed). |Pi| will be the number of edges in chain Pi.

Clearly problems 
 and 
∗ in a graph G are equivalent
to problems � and �∗ in L(G) where L(G) is the line graph
of G (edges of G become vertices of L(G)).

It follows that when G itself is a chain, then L(G) is also
a chain and the results for � and �∗ also apply to the edge
coloring case.

5.1. Arbitrary Colorings

In this situation every edge e which is not included in some
Pi may clearly be removed from G. So we can assume wlog
that every e is in some Pi of P .

Theorem 5.1. 
(G, k, P , H) can be solved in polynomial
time if |Pi| ≤ 2 for each chain Pi ∈ P .

Proof. This follows directly from the proof of Theorem
3.10. After reduction we transform the graph as follows: each
edge becomes a vertex and we link two vertices if there is a
Pi containing the corresponding edges. The problem has a
solution if and only if there is no odd cycle in this graph. ■

Theorem 5.2. 
(G, 2, P , H) is NP-complete even if G is
a tree T with maximum degree 3 and the Pi’s are chains or
bundles.



FIG. 4. Transformation of bundle constraints for a tree into chain con-
straints in a cactus.

Proof. We use the same reduction from ONE-IN-
THREE 3SAT as in Theorem 3.4.

We have to color edges instead of vertices; the leaf vari-
ables now correspond to leaf edges and for each clause ch

we now have for the sets P′
h bundles of edges y, z and x (see

Fig. 4a) if the clause is given by ch = xi ∨ xj ∨ xk . We set
h(P′

h) = (2, 1). The set P′′
h is now the bundle y, u, t with

h(P′′
h) = (1, 2) and the set Ph = {x} with h(Ph) = (1, 0). The

other chains Pr
i are defined similarly. ■

If we require all Pi’s to be exclusively chains in G (but
not bundles) we can derive the following for a special cactus
in which no two cycles have a common vertex [see Le cac-
tus (G. Bitton and M. Munz, Private communication, Paris,
December 14, 2006) for additional properties of cacti].

Theorem 5.3. 
(G, 2, P , H) is NP-complete even if G is
a triangulated cactus with maximum degree 3 and where all
the Pi’s are chains.

Proof. We just have to show how the bundle require-
ments can be transformed into constraints related to chains.

We transform the clause gadget ch as shown in Figure 4b.
The cactus obtained in this way is triangulated (its cycles are
triangles).

The bundle P′ = {x, y, z} with h(P′) = (2, 1) becomes
chains P′∗ = {x, y, z2, z1}, P′∗∗ = {z2} with h(P′∗) = (2, 2),
h(P′∗∗) = (0, 1).

The bundle P′′ = {y, u, t} with h(P′′) = (1, 2) becomes
chains P′′∗ = {y, w, u, t2, t1}, P′′∗∗ = {w, t1} with h(P′′∗) =
(1, 4) and h(P′′∗∗) = (0, 2).

Finally, the Pi’s using chains between v and edges u and
t can also be replaced by chains in the new gadget c′

h with
appropriate modifications of the values h j

i . ■

5.2. Proper Colorings

Theorem 5.4. 
∗(G, 3, P , H) is NP-complete when G is
3-regular, P is a collection of vertex disjoint triangles Pi

considered as sets of edges (i.e. |Pi| = 3, ∀i = 1, . . . , p,

Pi ∩Pf = ∅ for all i, f , i 
= f ) and hj
i = 1, ∀i = 1, . . . , p, ∀j =

1, 2, 3.

Proof. We use a transformation from edge three-
coloring of a three-regular graph G′. This problem is known
to be NP-complete [10].

For each vertex i adjacent to vertices f , l, p, we introduce
in G the vertices vif , vil, vip. These three vertices are pairwise
linked forming a triangle which will correspond to Pi. Thus G
will have 3|V | vertices. For each edge [i, f ] in G′ we introduce
an edge [vif , vfi] in G.

We take p = |V(G′)| and P = (P1, . . . , Pp) with hj
i = 1

for i = 1, . . . , p and j = 1, 2, 3. Notice that the Pi’s form
closed chains.

There is an edge three-coloring of G′ if and only if there is
an edge three-coloring of G. The edges of E(G) are colored
as follows:

1. for each edge [i, f ] of G′ with color k, the corresponding
edge [vif , vfi] in G has color k;

2. the three edges forming a triangle Pi can be colored with
three colors by extending the coloring obtained after the
previous stage.

Finally, note that any edge three-coloring of G will satisfy
the requirements on the sets Pi. ■

Theorem 5.5. 
∗(G, 3, P , H) is NP-complete when G is a
bipartite three-regular graph and P is a family of chains Pi

of length two which are pairwise nonadjacent.

Proof. Let us call SIM (for simultaneity requirements)
the following problem: we are given a three-regular bipartite
simple graph G with two subsets S1, S2 of edges such that
S1 ∩S2 = ∅ and the edges of Si are pairwise nonadjacent for
i = 1, 2.

Does there exist an edge three-coloring (M1, M2, M3) of
G such that M1 ⊇ S1, M2 ⊇ S2?

SIM was shown to be NP-complete in [7]. We use a reduc-
tion from SIM as follows: from G = (V , E) with subsets
S1, S2 we construct a simple graph G∗ by replacing each
edge e = [x, y] in Si by the graph given in Figure 5. We set
Pe = {[x′′

e , y′
e], [y′

e, x′′′
e ]} with h1

e = 0, h2
e = h3

e = 1 for i = 1
or with h1

e = 1, h2
e = 0, h3

e = 1 for i = 2. Note that in any
solution of 
∗(G∗, 3, P , H) the edge [x′

e, y] will get the same
color as [x, y′

e].
G∗ is a three-regular bipartite simple graph; it has an edge

three-coloring satisfying the requirements on each Pe if and

FIG. 5. Transformation of G where edge e = [x, y] is precolored into G∗.



TABLE 1. Summary of the results for �(G, k, P , H).

G k |Pi| hj
i |Pi ∩ Pf | Status Theorem

2 c(P) = 2 P 3.6
2 Nest(P) = 2 P 3.7
2 |Pi ∩ ⋃

Pf | ≤ 2 P 3.8
i 
= f

Dir. tree 2 Pi: oriented P 3.9
path

≤2 P 3.10
Tree ≤1 P 3.12
Cactus ≤1 P Prop. 3.1

2 3 P 3-regular NPC 3.1
2 Nest(P) = 3 NPC 3.2

= c(P)

Bipartite 2 ≤3 ≤1 �(G) ≤ 4 NPC 3.3
Tree 2 �(G) ≤ 3 NPC 3.4
Tree 2 ≤4 ≤3 ≤2 Diameter ≤ 4 NPC 3.5

3 3 1 c(P) = 2 NPC 3.11

only if G has an edge three-coloring where each edge e in Si

has color i for i = 1, 2. ■

Theorem 5.6. 
∗(G, 3, P , H) is NP-complete when G is a
planar bipartite graph with maximum degree �(G) ≤ 3 and
P is a family of chains Pi of length 2.

Proof. We shall use a transformation from the precol-
oring extension problem on edges which is shown to be
NP-complete even for planar, three-regular bipartite graphs
[14].

Let G′ = (X ∪ Y , E) be a planar three-regular bipartite
graph in which some edges are precolored using colors 1, 2,
and 3. For each vertex i ∈ X ∪ Y incident to two precol-
ored edges, color the third edge with the remaining color (if
there is a contradiction, the problem has no solution). For
each vertex i ∈ X ∪ Y incident to one precolored edge [i, f ],
take Pi = {[i, l], [i, p]} where l, p are the endpoints of the two
uncolored edges incident to i. If [i, f ] has color j ∈ {1, 2, 3},
take hj

i = 0, hq
i = 1, q 
= j, q ∈ {1, 2, 3}. Delete the precol-

ored edges. We get a planar bipartite graph G with maximum
degree �(G) ≤ 3 and P is a family of chains Pi of length 2.

It is clear that the precoloring extension problem on the
edges of G′ has a positive answer if and only if 
∗(G, 3, P , H)

has a positive answer. As G can be obtained from G′ in poly-
nomial time, we proved that our problem is NP-complete. ■

TABLE 2. Summary of the results for �∗(G, k, P , H).

G k |Pi| hj
i |Pi ∩ Pf | Status Theorem

2 P Fact 4.1
2 ≤1 P Rem. 4.4

Tree ≤1 ≤1 P Cor. 4.1
Chain ≤1 CS property P 4.1
Tree 3 �(G) ≤ 3 NPC 4.2
Bipartite 3 ≤3 ≤1 ≤1 NPC 4.3
planar

TABLE 3. Summary of the results for 
(G, k, P , H).

G k |Pi| hj
i |Pi ∩ Pf | Status Theorem

≤2 P 5.1
Tree 2 Pi: chain or NPC 5.2

bundle; �(G) ≤ 3
Cactus 2 �(G) = 3; NPC 5.3

G triangulated

TABLE 4. Summary of the results for 
∗(G, k, P , H).

G k |Pi| hj
i |Pi ∩ Pf | Status Theorem

3 3 1 0 G 3-regular; NPC 5.4
Pi: triangle

Bipartite 3 2 0 G 3-regular NPC 5.5
Bipartite 3 ≤2 �(G) ≤ 3 NPC 5.6
planar

6. SUMMARY AND CONCLUSION

We have studied an extension of the basic image recon-
struction problem of discrete tomography. The complex-
ity status of some variations has been determined; the
results are summarized in Table 1 for �(G, k, P , H). Then
Table 2 presents the results for the case of proper colorings
(�∗(G, k, P , H)).

Finally for edge k-colorings, Table 3 (resp. Table 4) shows
the status of some problems for arbitrary edge k-colorings,
i.e. for 
(G, k, P , H) (resp. for proper edge k-colorings, i.e.
for 
∗(G, k, P , H)).

There are more cases to examine and it would in particu-
lar be interesting to consider a family P of chains with less
restrictive hypotheses in some special classes of graphs. But
the results obtained here seem to show that the problems
become difficult even in very simple cases.
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