Supplementary figures



# 2 Figure S1

- 5 Figure S1: "Al-normalized" chemical profiles of major elements Si, Mg, and Fe in block BM-B-41-1
- 6 (long profile, ~220 mm) and block BM-B-41-2 (short profile, ~40 mm) from section 62. Horizontal lines
- 7 and gray areas represent same data as in Figure 4 (*i.e.* reference and bulk values).

# <u>d</u>

l

# 8 Figure S2



10 Figure S2: Diffractograms of the various colored aggregates isolated from FEBEX raw bentonite and

<sup>11</sup> the bulk raw material.

l

## 12 Figure S3



- 14 Figure S3: Colored corrosion halos observed around various steel components retrieved upon
- 15 dismantling of the FEBEX experiment.

# <u>d</u>

l

#### Figure S4 16



18 19



| <u>u</u> |
|----------|
|----------|

|

# 21 Supplementary tables

## 22 Table S1 and S2

| 24 | Table S1: | Chemical composition of eighteen powdered FEBEX samples from block BM-B-41-1 determined by XRF (and ATG). Relative uncertainty on |
|----|-----------|-----------------------------------------------------------------------------------------------------------------------------------|
|----|-----------|-----------------------------------------------------------------------------------------------------------------------------------|

25 major elements is 5%.

| Sample            | R1    | R2    | R3    | R4    | R5    | R6    | 07    | 08         | 09          | OB10       | OB11  | B12   | B13   | B14   | B15   | B16   | B17   | B18   |
|-------------------|-------|-------|-------|-------|-------|-------|-------|------------|-------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|
| <i>d</i> (mm)     | 2.5   | 8.2   | 13.9  | 19.6  | 25.3  | 31.0  | 36.6  | 42.3       | 48.0        | 53.7       | 59.4  | 65.1  | 70.8  | 76.5  | 82.2  | 87.9  | 93.5  | 99.2  |
| %H <sub>2</sub> O | 5.1   | 4.2   | 4     | 3.1   | 3.7   | 4.7   | 3.7   | 4.7        | 4.1         | 4.9        | 4.1   | 3.9   | 3.8   | 4.4   | 4.1   | 4.8   | 3.2   | 5.3   |
| LOI               | 8.1   | 7.9   | 8.1   | 8.1   | 8.1   | 8.1   | 8.2   | 8          | 8           | 8.1        | 8.1   | 8     | 8.2   | 8.3   | 8.3   | 8.2   | 8.2   | 8.2   |
| Σ                 | 99.17 | 99.37 | 98.60 | 99.06 | 99.26 | 99.35 | 99.09 | 99.02      | 98.66       | 98.76      | 99.07 | 99.68 | 99.04 | 99.03 | 99.19 | 99.06 | 98.16 | 98.46 |
|                   |       |       |       |       |       |       |       | majors ele | ments (in   | oxide wt%) |       |       |       |       |       |       |       |       |
| SiO <sub>2</sub>  | 62.52 | 62.11 | 63.64 | 63.73 | 64.43 | 64.47 | 64.58 | 64.22      | 64.23       | 64.55      | 64.64 | 65.16 | 64.62 | 64.50 | 64.77 | 64.57 | 63.85 | 64.11 |
| TiO <sub>2</sub>  | 19.41 | 19.35 | 19.47 | 19.95 | 19.70 | 20.02 | 20.11 | 20.16      | 19.75       | 20.14      | 20.21 | 20.35 | 20.13 | 20.19 | 20.12 | 20.15 | 19.91 | 19.90 |
| $Al_2O_3$         | 7.71  | 8.55  | 6.36  | 5.90  | 5.70  | 5.35  | 5.15  | 4.93       | 5.38        | 4.27       | 4.27  | 4.36  | 4.38  | 4.51  | 4.31  | 4.32  | 4.40  | 4.31  |
| $Fe_2O_3$         | 4.51  | 4.52  | 4.57  | 4.66  | 4.57  | 4.67  | 4.69  | 4.69       | 4.70        | 4.75       | 4.90  | 4.89  | 4.85  | 4.85  | 4.87  | 4.89  | 4.84  | 4.83  |
| MnO               | 1.67  | 1.67  | 1.68  | 1.69  | 1.66  | 1.72  | 1.69  | 1.72       | 1.72        | 1.96       | 2.01  | 1.92  | 1.95  | 2.01  | 2.03  | 2.06  | 2.09  | 2.09  |
| MgO               | 1.73  | 1.60  | 1.35  | 1.58  | 1.61  | 1.52  | 1.29  | 1.56       | 1.27        | 1.46       | 1.47  | 1.38  | 1.43  | 1.35  | 1.45  | 1.44  | 1.43  | 1.57  |
| CaO               | 1.19  | 1.16  | 1.09  | 1.13  | 1.17  | 1.17  | 1.16  | 1.29       | 1.18        | 1.20       | 1.14  | 1.18  | 1.22  | 1.17  | 1.20  | 1.17  | 1.19  | 1.20  |
| $Na_2O$           | 0.27  | 0.25  | 0.27  | 0.26  | 0.26  | 0.26  | 0.26  | 0.28       | 0.25        | 0.26       | 0.26  | 0.26  | 0.28  | 0.27  | 0.26  | 0.26  | 0.27  | 0.27  |
| TiO <sub>2</sub>  | 0.05  | 0.04  | 0.05  | 0.04  | 0.05  | 0.05  | 0.05  | 0.05       | 0.05        | 0.05       | 0.05  | 0.04  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  | 0.05  |
| $P_2O_5$          | 0.04  | 0.04  | 0.03  | 0.03  | 0.04  | 0.03  | 0.03  | 0.04       | 0.04        | 0.04       | 0.04  | 0.04  | 0.04  | 0.04  | 0.04  | 0.05  | 0.04  | 0.04  |
| MnO               | 62.52 | 62.11 | 63.64 | 63.73 | 64.43 | 64.47 | 64.58 | 64.22      | 64.23       | 64.55      | 64.64 | 65.16 | 64.62 | 64.50 | 64.77 | 64.57 | 63.85 | 64.11 |
|                   |       |       |       |       |       |       |       | Trace      | elements (i | n ppm)     |       |       |       |       |       |       |       |       |
| Ва                | 130   | 182   | 188   | 146   | 117   | 178   | 123   | 309        | 113         | 172        | 133   | 244   | 145   | 167   | 178   | 228   | 177   | 130   |
| Cr                | 10    | 18    | 17    | 15    | 14    | 8     | 14    | 17         | 12          | 20         | 13    | 9     | 17    | 10    | 10    | 10    | 13    | 14    |
| Cu                | 6     | 6     | 8     | 7     | 6     | 8     | 7     | 7          | 8           | 8          | 9     | 12    | 9     | 10    | 11    | 10    | 9     | 9     |
| Nb                | 12    | 15    | 12    | 15    | 13    | 13    | 13    | 13         | 14          | 14         | 13    | 14    | 14    | 14    | 13    | 15    | 15    | 14    |
| Ni                | 19    | 25    | 22    | 21    | 22    | 22    | 20    | 21         | 23          | 22         | 33    | 49    | 36    | 34    | 35    | 32    | 25    | 28    |
| Pb                | 30    | 30    | 26    | 28    | 30    | 31    | 32    | 33         | 36          | 36         | 38    | 40    | 40    | 39    | 39    | 38    | 36    | 39    |
| Rb                | 47    | 47    | 45    | 46    | 49    | 47    | 46    | 50         | 50          | 49         | 48    | 50    | 47    | 48    | 49    | 48    | 47    | 49    |
| Sr                | 180   | 183   | 184   | 188   | 187   | 191   | 189   | 199        | 191         | 202        | 199   | 208   | 199   | 204   | 204   | 211   | 213   | 212   |
| V                 | 23    | 18    | 16    | 13    | 77    | 76    | 71    | 24         | 45          | 11         | 13    | 35    | 12    | 21    | 10    | 28    | 9     | 28    |
| Y                 | 18    | 21    | 18    | 34    | 25    | 26    | 26    | 25         | 28          | 34         | 31    | 35    | 35    | 36    | 36    | 35    | 32    | 32    |
| Zn                | 70    | 70    | 68    | 71    | 70    | 74    | 72    | 73         | 74          | 74         | 77    | 77    | 77    | 77    | 76    | 77    | 75    | 75    |
| Zr                | 215   | 217   | 209   | 226   | 225   | 218   | 209   | 209        | 236         | 210        | 213   | 211   | 218   | 227   | 211   | 218   | 216   | 215   |

26

Sample identity: letters corresponds to the color of the bentonite sampled area (R = red, O = orange, B = blue G = green, OB = transition from orange to blue, BG =

transition from blue to green, out = outer layer of the block), and number to the order of sampling, (starting from the from the interface) 27

28 *d*: approximate distance between the sampled layer and the interface

29 LOI: Loss On Ignition 30 %H<sub>2</sub>O: water content measured at 105°C

 $\Sigma$ : sum of elements (excludes LOI and %H<sub>2</sub>O)

### 32 Table S2: Chemical composition of fourteen powdered FEBEX samples determined by XRF (and ATG), including the raw material. Relative uncertainty on

33 major elements is 5%.

| Sample           | B19   | B20   | B21   | B22   | BG23  | BG24       | BG25         | BG26       | BG27  | G28   | G29   | G30    | out   | raw   |
|------------------|-------|-------|-------|-------|-------|------------|--------------|------------|-------|-------|-------|--------|-------|-------|
| <i>d</i> (mm)    | 104.9 | 110.6 | 116.3 | 122.0 | 127.7 | 133.4      | 139.1        | 144.8      | 150.4 | 156.1 | 161.8 | 167.5  | 217.5 | -     |
| $%H_2O$          | 4.8   | 3.2   | 4     | 3.1   | 3.2   | 4.2        | 4.7          | 4.4        | 4.3   | 7.6   | 5.3   | 3      | 3.3   | 11    |
| LOI              | 8.4   | 8.1   | 8.2   | 8.6   | 8.2   | 8.5        | 8.4          | 8.5        | 8.2   | 8.5   | 8.4   | 8.3    | 8.5   | 8.8   |
| Σ                | 98.67 | 98.75 | 99.35 | 98.49 | 99.28 | 98.61      | 98.74        | 99.15      | 99.25 | 99.20 | 99.82 | 101.29 | 98.93 | 98.67 |
|                  |       |       |       |       |       | majors ele | ments (in c  | oxide wt%) |       |       |       |        |       |       |
| SiO <sub>2</sub> | 64.38 | 64.47 | 64.78 | 63.64 | 64.42 | 64.24      | 64.62        | 64.81      | 64.89 | 64.99 | 65.42 | 66.06  | 64.61 | 64.38 |
| TiO <sub>2</sub> | 20.04 | 20.04 | 20.13 | 19.66 | 19.73 | 19.71      | 19.85        | 20.15      | 20.17 | 20.01 | 20.17 | 20.80  | 20.04 | 20.04 |
| $AI_2O_3$        | 4.23  | 4.22  | 4.19  | 4.13  | 4.09  | 3.97       | 3.98         | 3.82       | 3.87  | 3.86  | 3.87  | 3.93   | 3.91  | 4.23  |
| $Fe_2O_3$        | 4.85  | 4.84  | 4.87  | 4.80  | 4.84  | 4.77       | 4.84         | 4.93       | 4.94  | 4.87  | 5.00  | 5.01   | 4.98  | 4.85  |
| MnO              | 2.13  | 2.12  | 2.17  | 3.18  | 2.22  | 2.71       | 2.42         | 2.47       | 2.32  | 2.33  | 2.35  | 2.38   | 2.32  | 2.13  |
| MgO              | 1.40  | 1.35  | 1.51  | 1.40  | 2.34  | 1.54       | 1.36         | 1.34       | 1.44  | 1.48  | 1.37  | 1.42   | 1.39  | 1.40  |
| CaO              | 1.21  | 1.25  | 1.24  | 1.21  | 1.18  | 1.21       | 1.22         | 1.18       | 1.16  | 1.21  | 1.18  | 1.24   | 1.22  | 1.21  |
| $Na_2O$          | 0.26  | 0.27  | 0.27  | 0.26  | 0.27  | 0.26       | 0.26         | 0.27       | 0.27  | 0.26  | 0.26  | 0.27   | 0.26  | 0.26  |
| TiO <sub>2</sub> | 0.05  | 0.05  | 0.05  | 0.07  | 0.05  | 0.04       | 0.05         | 0.05       | 0.05  | 0.05  | 0.05  | 0.05   | 0.05  | 0.05  |
| $P_2O_5$         | 0.04  | 0.04  | 0.04  | 0.06  | 0.05  | 0.05       | 0.05         | 0.05       | 0.05  | 0.05  | 0.05  | 0.06   | 0.05  | 0.04  |
| MnO              | 64.38 | 64.47 | 64.78 | 63.64 | 64.42 | 64.24      | 64.62        | 64.81      | 64.89 | 64.99 | 65.42 | 66.06  | 64.61 | 64.38 |
|                  |       |       |       |       |       | Trace e    | elements (ii | n ppm)     |       |       |       |        |       |       |
| Ва               | 179   | 195   | 217   | 188   | 179   | 188        | 190          | 193        | 141   | 174   | 254   | 155    | 179   | 195   |
| Cr               | 15    | 16    | 13    | 18    | 15    | 12         | 16           | 14         | 10    | 19    | 18    | 6      | 15    | 16    |
| Cu               | 7     | 9     | 8     | 8     | 10    | 9          | 11           | 11         | 9     | 9     | 10    | 11     | 7     | 9     |
| Nb               | 13    | 14    | 12    | 13    | 13    | 12         | 14           | 15         | 13    | 13    | 13    | 14     | 13    | 14    |
| Ni               | 25    | 25    | 24    | 22    | 24    | 21         | 22           | 21         | 23    | 21    | 22    | 22     | 25    | 25    |
| Pb               | 34    | 32    | 37    | 35    | 38    | 34         | 35           | 39         | 33    | 35    | 37    | 36     | 34    | 32    |
| Rb               | 50    | 51    | 50    | 50    | 48    | 49         | 48           | 47         | 48    | 48    | 48    | 47     | 50    | 51    |
| Sr               | 218   | 223   | 228   | 237   | 229   | 235        | 238          | 236        | 239   | 239   | 238   | 239    | 218   | 223   |
| V                | 26    | 34    | 29    | 16    | 16    | 16         | 19           | 29         | 25    | 32    | 28    | 31     | 26    | 34    |
| Y                | 32    | 31    | 30    | 33    | 31    | 35         | 31           | 31         | 28    | 32    | 32    | 29     | 32    | 31    |
| Zn               | 75    | 73    | 74    | 74    | 75    | 73         | 75           | 74         | 75    | 76    | 75    | 75     | 75    | 73    |
| Zr               | 212   | 209   | 216   | 213   | 221   | 212        | 213          | 214        | 221   | 211   | 220   | 215    | 212   | 209   |

34

Sample identity: letters corresponds to the color of the bentonite sampled area (R = red, O = orange, B = blue G = green, OB = transition from orange to blue, BG =

35 transition from blue to green, out = outer layer of the block), and number to the order of sampling, (starting from the from the interface)

36 *d*: average distance between the sampled layer and the interface

37 LOI: Loss On Ignition

38 %H<sub>2</sub>O: water content measured at 105°C

### $\Sigma$ : sum of elements (excludes LOI and %H<sub>2</sub>O)

#### 40 **Table S3 and S4**

41 Table S3: refined values of Mössbauer parameters and doublet structural attributions for the raw FEBEX

42 material and fives samples collected in block BM-B-41-1 (spectra shown in Figure 9 and S4). Uncertainties

43 are 0.02 mm·s<sup>-1</sup> for I.S., Q.S.,  $2\varepsilon$ , and F.W.H.M.; 0.5 T for  $B_{hf}$ , and 2% for the area.

|              |        |          | 300K   |      |              |         |        |          | 77K    |      |              |
|--------------|--------|----------|--------|------|--------------|---------|--------|----------|--------|------|--------------|
|              | Hyperf | ine para | meters |      |              |         | Hyperf | ine para | meters |      |              |
| LS           | F.W.   | Q.S.     | Bhf    | Area | Attribution  | LS      | F.W.   | Q.S.     | Bhe    | Area | Attribution  |
|              | H.M.   | /2ε      | 211    | (%)  |              |         |        | /2ε      | 2      | (%)  |              |
|              |        |          |        |      | ra           | w       |        |          |        |      |              |
| 1.20         | 0.50   | 2.35     |        | 4    | para-Fe(II)  | 1.35    | 0.50   | 2.54     |        | 5    | para-Fe(II)  |
| 0.35         | 0.67   | 0.54     |        | 83   | para-Fe(III) | 0.46    | 0.71   | 0.56     |        | 75   | para-Fe(III) |
| 0.45         | 0.90   | -0.20    | 28.8   | 13   | goethite     | 0.47    | 1.07   | -0.25    | 48.6   | 11   | goethite     |
|              |        |          |        |      |              | 0.53    | 0.69   | 0.06     | 55.0   | 9    | hematite     |
| out (220 mm) |        |          |        |      |              |         |        |          |        |      |              |
| 1.26         | 0.56   | 2.37     |        | 3    | para-Fe(II)  | 1.26    | 0.5    | 2.76     |        | 5    | para-Fe(II)  |
| 0.34         | 2.00   | 0.55     |        | 46   | para-Fe(III) | 0.46    | 1.50   | 0.21     |        | 33   | para-Fe(III) |
| 0.34         | 0.62   | 0.58     |        | 51   | para-Fe(III) | 0.46    | 0.56   | 0.59     |        | 51   | para-Fe(III) |
|              |        |          |        |      |              | 0.49    | 0.44   | -0.23    | 48.9   | 7    | goethite     |
|              |        |          |        |      |              | 0.45    | 0.44   | 0.12     | 54.5   | 4    | hematite     |
| G30 (168 mm) |        |          |        |      |              |         |        |          |        |      |              |
| 1.26         | 0.56   | 2.37     |        | 8    | para-Fe(II)  | 1.29    | 0.72   | 2.71     |        | 9    | para-Fe(II)  |
| 0.34         | 0.67   | 0.55     |        | 80   | para-Fe(III) | 0.46    | 0.73   | 0.57     |        | 81   | para-Fe(III) |
| 0.32         | 0.70   | -0.20    | 34.2   | 7    | goethite     | 0.47    | 0.46   | -0.20    | 48.9   | 4    | goethite     |
| 0.34         | 0.56   | -0.20    | 47.7   | 5    | hematite     | 0.44    | 0.46   | 0.00     | 53.7   | 6    | hematite     |
|              |        |          |        |      | BG25 (1      | .39 mm) |        |          |        |      |              |
|              |        |          |        |      |              | 1.27    | 0.4    | 2.85     |        | 4    | para-Fe(II)  |
|              |        |          |        |      |              | 0.55    | 0.72   | 0.00     |        | 20   | para-Fe(III) |
|              |        |          |        |      |              | 0.47    | 0.62   | 0.58     |        | 62   | para-Fe(III) |
|              |        |          |        |      |              | 0.55    | 0.67   | -0.4     | 48.6   | 4    | goethite     |
|              |        |          |        |      |              | 0.55    | 1.10   | 0.06     | 55.2   | 10   | hematite     |
|              |        |          |        |      | B20 (1       | 11 mm)  |        |          |        |      |              |
| 1.32         | 0.50   | 2.27     |        | 14   | para-Fe(II)  | 1.26    | 0.60   | 2.92     |        | 15   | para-Fe(II)  |
| 0.32         | 0.62   | 0.59     |        | 86   | para-Fe(III) | 0.46    | 0.64   | 0.56     |        | 75   | para-Fe(III) |
|              |        |          |        |      | ,            | 0.47    | 0.46   | -0.23    | 49.8   | 6    | goethite     |
|              |        |          |        |      |              | 0.57    | 0.46   | 0.25     | 55.6   | 4    | hematite     |
|              |        |          |        |      | B15 (8       | 2 mm)   |        |          |        |      |              |
| 1.17         | 0.67   | 2.57     |        | 16   | para-Fe(II)  | 1.28    | 0.66   | 2.88     |        | 16   | para-Fe(II)  |
| 0.34         | 0.62   | 0.53     |        | 84   | para-Fe(III) | 0.47    | 0.66   | 0.56     |        | 74   | para-Fe(III) |
|              |        |          |        |      | . ,          | 0.53    | 0.70   | -0.20    | 48.0   | 4    | goethite     |
|              |        |          |        |      |              | 0.41    | 0.56   | 0.22     | 53.5   | 6    | hematite     |

44 I.S. = Isomer shift value relative to that of the  $\alpha$ -Fe at 300 K. (mm·s<sup>-1</sup>)

45 F.W.H.M. = Full width of line at half of its maximum intensity.  $(mm \cdot s^{-1})$ 

46 Q.S./2ε = Quadrupolar splitting/quadrupolar shift

47  $B_{hf}$  = Magnetic hyperfine field (T)

48 Table S4: refined values of Mössbauer parameters and doublet structural attributions for six samples

49 collected in block BM-B-41-1 (spectra shown in Figures 9 and S4). Uncertainties are 0.02 mm·s<sup>-1</sup> for I.S., Q.S.,

50  $2\epsilon$ , and F.W.H.M.; 0.5 T for  $B_{hf}$ , and 2% for the area.

| Hyperfine parameters Hyperfine parameters                                                            | tion   |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|--------|--|--|--|--|--|--|--|--|--|
| Attribution Attribution                                                                              | tion   |  |  |  |  |  |  |  |  |  |
| I.S. H.M. /2 $\epsilon$ (%) I.S. H.M. /2 $\epsilon$ (%) Area Attribution I.S. H.M. /2 $\epsilon$ (%) | tion   |  |  |  |  |  |  |  |  |  |
| OB11 (59 mm)                                                                                         |        |  |  |  |  |  |  |  |  |  |
| 1.10 0.44 2.89 6 para-Fe(II) 1.20 0.50 3.05 6 para-F                                                 | e(II)  |  |  |  |  |  |  |  |  |  |
| 0.36 0.73 0.57 94 para-Fe(III) 0.45 0.65 0.58 81 para-Fe                                             | e(III) |  |  |  |  |  |  |  |  |  |
| 0.40 0.50 -0.21 42.7 3 goeth                                                                         | ite    |  |  |  |  |  |  |  |  |  |
| 0.44 0.50 -0.26 49.3 4 goeth                                                                         | ite    |  |  |  |  |  |  |  |  |  |
| 0.34 0.50 -0.05 54.0 6 hema                                                                          | tite   |  |  |  |  |  |  |  |  |  |
| O9 (48 mm)                                                                                           |        |  |  |  |  |  |  |  |  |  |
| 0.37 2.00 0.00 33 para-Fe(III) 1.26 0.36 2.80 4 para-F                                               | e(II)  |  |  |  |  |  |  |  |  |  |
| 0.35 0.52 0.52 57 para-Fe(III) 0.46 0.32 0.57 71 para-Fe                                             | e(III) |  |  |  |  |  |  |  |  |  |
| 1.16 0.36 2.51 3 para-Fe(II) 0.50 0.71 -0.23 45.0 4 goeth                                            | ite    |  |  |  |  |  |  |  |  |  |
| 0.54 0.44 -0.21 47.6 4 goethite 0.50 0.51 -0.23 49.5 17 goeth                                        | ite    |  |  |  |  |  |  |  |  |  |
| 0.51 0.44 -0.20 50.8 3 hematite 0.46 0.50 -0.04 55.0 4 hema                                          | tite   |  |  |  |  |  |  |  |  |  |
| O7 (37 mm)                                                                                           |        |  |  |  |  |  |  |  |  |  |
| 1.26 0.40 2.81 3 para-F                                                                              | e(II)  |  |  |  |  |  |  |  |  |  |
| 0.31 3.00 0.00 19 para-Fe(III) 0.47 0.64 0.58 69 para-Fe                                             | e(III) |  |  |  |  |  |  |  |  |  |
| 0.31 1.20 0.00 81 para-Fe(III)                                                                       |        |  |  |  |  |  |  |  |  |  |
| 0.49 0.47 -0.22 49.2 12 goeth                                                                        | ite    |  |  |  |  |  |  |  |  |  |
| 0.49 0.47 -0.22 46.0 4 goeth                                                                         | ite    |  |  |  |  |  |  |  |  |  |
| 0.47 0.49 -0.15 52.8 12 hema                                                                         | tite   |  |  |  |  |  |  |  |  |  |
| R4 (20 mm)                                                                                           |        |  |  |  |  |  |  |  |  |  |
| 1.25 0.50 2.32 2 para-Fe(II) 1.32 0.50 2.76 4 para-F                                                 | e(II)  |  |  |  |  |  |  |  |  |  |
| 0.34 0.66 0.56 53 para-Fe(III) 0.47 0.70 0.54 55 para-Fe                                             | e(III) |  |  |  |  |  |  |  |  |  |
| <0.43> <-0.25> <31.6> 31 goethite 0.48 0.65 -0.23 49.1 29 goeth                                      | ite    |  |  |  |  |  |  |  |  |  |
| 0.38 0.59 -0.20 49.3 14 hematite 0.51 0.49 -0.11 52.9 12 hema                                        | tite   |  |  |  |  |  |  |  |  |  |
| R1 (3 mm)                                                                                            |        |  |  |  |  |  |  |  |  |  |
| 1.45 0.40 2.55 2 para-F                                                                              | e(II)  |  |  |  |  |  |  |  |  |  |
| 0.47 0.71 0.59 43 para-Fe                                                                            | e(III) |  |  |  |  |  |  |  |  |  |
| 0.49 0.52 -0.24 49.3 48 goeth                                                                        | ite    |  |  |  |  |  |  |  |  |  |
| 0.47 0.37 -0.11 53.0 7 hema                                                                          | tite   |  |  |  |  |  |  |  |  |  |
| crust (first few hundreds of μm)                                                                     |        |  |  |  |  |  |  |  |  |  |
| 1.17 0.50 2.57 5 para-Fe(II) 1.24 0.71 2.74 8 para-F                                                 | e(II)  |  |  |  |  |  |  |  |  |  |
| 0.36 0.58 0.63 41 para-Fe(III) 0.46 0.56 0.63 37 para-Fe                                             | e(III) |  |  |  |  |  |  |  |  |  |
| 0.44 0.89 -0.20 49.1 9 goethite 0.50 0.42 -0.22 49.8 37 goeth                                        | ite    |  |  |  |  |  |  |  |  |  |
| <0.46> <-0.30> <30.2> 45 goethite 0.50 0.64 -0.23 48.1 18 goeth                                      | ite    |  |  |  |  |  |  |  |  |  |

51 I.S. = Isomer shift value relative to that of the  $\alpha$ -Fe at 300 K. (mm·s<sup>-1</sup>) 52 F.W.H.M = Full width of line at half of its maximum intensity. (mm·s<sup>-1</sup>)

52 P.W.H.W = Pull Width of the at half of its maximum inter53 Q.S./2ε = Quadrupolar splitting/quadrupolar shift

54  $B_{\rm hf}$  = Magnetic hyperfine field (T)

a. the shape of this spectra accounts for the presence of very fast relaxation phenomena.

58 lines and grey areas represent same data as in Figure 4 (i.e. reference and bulk values).

- Figure S2: Diffractograms of the various colored aggregates isolated from FEBEX raw bentonite andthe bulk raw material.
- Figure S3: Colored corrosion halos observed around various steel components retrieved upondismantling of the FEBEX experiment.
- 63 Figure S4: 300 K Mössbauer spectra of the raw FEBEX material and of 11 samples from block BM-B-
- 64 41-1. The refined values of the hyperfine parameters are listed in Table S3 and Table S4.

68 Table S2: Chemical composition of fourteen powdered FEBEX samples determined by XRF

69 (and ATG), including the raw material. Relative uncertainty on major elements is 5%.

- 70 Table S3: refined values of Mössbauer parameters and doublet structural attributions for the raw
- 71 FEBEX material and fives samples collected in block BM-B-41-1 (spectra shown in Figure 9 and S4).
- 72 Uncertainties are 0.02 mm·s<sup>-1</sup> for I.S., Q.S.,  $2\varepsilon$ , and F.W.H.M.; 0.5 T for  $B_{hf}$ , and 2% for the area.
- 73 Table S4: refined values of Mössbauer parameters and doublet structural attributions for six samples
- collected in block BM-B-41-1 (spectra shown in Figure 9 and S4). Uncertainties are 0.02 mm·s<sup>-1</sup> for
- 75 I.S., Q.S.,  $2\varepsilon$ , and F.W.H.M.; 0.5 T for  $B_{hf}$ , and 2% for the area.