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Abstract

The vision of Machine Reading is to automatically understand written text and transform
the contained information into machine-readable representations. This thesis approaches this
challenge in particular in the context of commercial organizations. Here, an abundance of
domain-specific knowledge is frequently stored in unstructured text resources. Existing meth-
ods often fail in this scenario, because they cannot handle heterogeneous document structure,
idiosyncratic language, spelling variations and noise. Specialized methods can hardly over-
come these issues and often suffer from recall loss. Moreover, they are expensive to develop
and often require large amounts of task-specific labeled training examples.

Our goal is to support the human information-seeking process with generalized language
understanding methods. These methods need to eliminate expensive adaptation steps and
must provide high error tolerance. Our central research question focuses on capturing domain-
specific information from multiple levels of abstraction, such as named entities, latent topics,
long-range discourse trajectory and document structure. We address this problem in three
central information-seeking tasks: Named Entity Linking, Topic Modeling and Answer Pas-
sage Retrieval. We propose a collection of Neural Machine Reading models for these tasks.
Our models are based on the paradigm of artificial neural networks and utilize deep recurrent
architectures and end-to-end sequence learning methods.

We show that automatic language understanding requires a contextualized document rep-
resentation that embeds the semantics and skeletal structure of a text. We further identify key
components that allow for robust word representations and efficient learning from sparse data.
We conduct large-scale experiments in English and German language to show that Neural Ma-
chine Reading can adapt with high accuracy to various vertical domains, such as geopolitics,
automotive, clinical healthcare and biomedicine. This thesis is the first comprehensive research
approach to extend distributed language models with complementary structure information
from long-range document discourse. It closes the gap between symbolic Information Extrac-
tion and Information Retrieval by transforming both problems into continuous vector space
representations and solving them jointly using probabilistic methods. Our models can fulfill
task-specific information needs on large domain-specific text resources with low latency. This
opens up possibilities for interactive applications to further evolve Machine Reading with hu-
man feedback.
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Zusammenfassung

Machine Reading ist die Vision, Text automatisiert zu verstehen und in maschinenlesbare Form
zu überführen. Die vorliegende Dissertation nimmt sich dieses Problems an und legt dabei be-
sonderes Augenmerk auf die Anwendung in Unternehmen. Hier wird häufig eine große Fül-
le domänenspezifischen Wissens in Form von unstrukturierten Textdaten vorgehalten. Exis-
tierende Methoden der Informationsextraktion weisen in diesem Szenario erhebliche Mängel
auf. Häufige Fehlerquellen sind heterogene Dokumente, eigentümliche Sprache, abweichende
Schreibweisen und verrauschte Daten. Selbst spezialisierte Methoden können diese Heraus-
forderungen nur mit eingeschränkter Trefferquote bewältigen. Zusätzlich sind sie kostspielig
in der Entwicklung und benötigen oft große Mengen an annotierten Trainingsdaten.

Unser Ziel ist es, den Anwender im Prozess der Informationssuche mit maschinellen Sprach-
verständismethoden zu unterstützen. Diese Methoden sollen kostenintensive Anpassungs-
schritte vermeiden und müssen eine hohe Fehlertoleranz aufweisen. Unsere zentrale Forschungs-
frage richtet sich darauf, domänenspezifische Information auf mehreren Abstraktionsebenen
zu erfassen. Dies umfasst u.a. die Identifikation von Objekten, latenten Themenverteilungen,
Diskursverläufen und Dokumentenstruktur. Im Fokus stehen dabei drei zentrale Prozessschrit-
te der Informationssuche: Named Entity Linking, Topic Modeling und Answer Passage Re-
trieval. Die vorliegende Arbeit stellt für diese Zwecke eine Sammlung neuronaler Machine
Reading Modelle vor. Auf der Grundlage von künstlichen neuronalen Netzen werden hierfür
insbesondere Verfahren des tiefen und sequenzbasierten Lernens genutzt.

Das zentrale Ergebnis dieser Arbeit ist eine kontextualisierte Dokumentenrepräsentation
für automatisiertes Sprachverständnis, welche in verdichteter Form die Semantik und Grund-
struktur eines Textes umfasst. Darüber hinaus werden grundlegende Komponenten vorge-
stellt, die robuste Wortrepräsentation und effizientes Lernen aus spärlichen Daten ermögli-
chen. Umfassende Experimente in englischer und deutscher Sprache belegen, dass neurona-
les Machine Reading mit hoher Präzision auf eine Vielzahl vertikaler Domänen anwendbar
ist, wie z.B. Geopolitik, Autoindustrie, Gesundheitswesen und Biomedizin. Diese Dissertati-
on ist der erste umfassende Forschungsansatz, neuronale Sprachmodelle mit komplementären
Strukturelementen auf Dokumentenebene anzureichern. Dieser Ansatz schließt die Lücke zwi-
schen symbolischer Informationsextraktion und Informationssuche, indem beide Probleme in
kontinuierliche Vektorraumrepräsentationen übersetzt und durchgängig probabilistisch gelöst
werden. So können unternehmensspezifische Informationsbedürfnisse mit schnellen Antwort-
zeiten erfüllt werden. Dies ermöglicht interaktive Anwendungen, die Machine Reading zu-
künftig mit Hilfe von menschlichem Feedback verbessern können.
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Chapter 1

Introduction

This thesis discusses the challenges and methods for Machine Reading. The vision of Machine
Reading is to automatically understand unstructured text and represent the contained infor-
mation in a machine-readable format. This knowledge is then presented to a user to fulfill one
or more information-seeking tasks. Automatic language understanding is a challenge in par-
ticular for the application in commercial organizations. Here, information resources consist of
heterogeneous document types with domain-specific language. In this scenario, off-the-shelf
models will likely fail to produce appropriate results. This arises the need for specialized meth-
ods, which are expensive to develop and often require large amounts of annotated training
data. Therefore this thesis focuses on the investigation of robust and general methods which
can be built efficiently from available data. Our goal is to develop and evaluate these methods
over a broad range of document types, vertical domains and information-seeking tasks.

1.1 The Vision of Machine Reading

In corporate information systems, the majority of resources consist of unstructured data, in-
cluding images, audio, video and text documents [Inmon et al., 2019]. The data produced by
consumers and industry is continuously growing, but most of it is not transformed into struc-
tured records, which would provide the highest business value. As of 2012, only 3.5% of un-
structured data worldwide is analyzed or tagged with meta-data, while 23% of the data could
potentially contain valuable information [Gantz and Reinsel, 2012]. This data lake is rapidly
growing, and a recent IDC study predicts that by 2025, 80% of worldwide data will be unstruc-
tured [Reinsel et al., 2018]. Two of the fastest-growing industries are healthcare with projected
36% growth in data production between 2018–2025 and manufacturing with 30% respectively.
Interestingly, in a recent MAPI survey 58% of organizations reported a lack of data resources as
the most significant barrier to deploy AI solutions [Atkinson and Ezell, 2019]. Moreover, 52%
of organizations reported their uncertainty in implementing specific data-based tasks. Hence,
there is a strong need by organizations to transform the information contained in unstructured
text resources into universal machine-readable representations of knowledge.
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The need for unsupervised language understanding. Traditionally, the goal of Information
Extraction (IE) is to automatically transform unstructured sources into structured or semi-
structured data formats and process them in a business logic pipeline [Sarawagi, 2008]. A
classic architecture for this process is called extract–transform–load (ETL) and is often used
to populate the entity-relationship model in data warehousing [Vassiliadis, 2009]. The most
common IE techniques for this pipeline originate from research on Natural Language Process-
ing (NLP). These methods focus on the recognition of topics, named entities, e.g. persons or
organizations, and their relationships [Sarawagi, 2008]. This is achieved by understanding the
syntax of a document as discrete low-level features, such as part-of-speech tags, dependency
parse trees or semantic role labels. One inherent problem of this symbolic approach is that the
extracted information is represented as isolated ‘nuggets’ [Etzioni et al., 2006]. These need to
be discretely processed for downstream tasks such as Named Entity Linking (NEL), Question
Answering (QA) or Information Retrieval (IR). Furthermore, the majority of these models are
restricted to a specific task on a specific type of language. They are often based on hardcoded
rule sets or automatically learned parameters from hand-labeled training examples [Etzioni
et al., 2006]. Thus, expensive human labor is required to transfer them to different languages
or more specific domains.

Machine Reading (MR) is the vision to overcome these discrepancies by the “automatic,
unsupervised understanding of text” [Etzioni et al., 2006]. Independently of the methodical ap-
proach, the envisioned properties of a MR system comprise the coherent formation of beliefs,
inclusion of background knowledge, the ability for implicit inference and scalability towards
an arbitrary number of relations [Etzioni et al., 2006]. Ideally, this should be achieved without
the need for hand-labeled training examples. Up to today, such a generalized form of lan-
guage understanding has not yet been solved entirely. However, important ingredients have
appeared in the mid 2010s, when deep neural networks (DNNs) have re-emerged as powerful
ML models for image processing [Krizhevsky et al., 2012] and core NLP techniques [Goldberg,
2016]. DNNs encode information as dense representations spanning multiple stacked layers
of continuous weights. Layers are connected using nonlinear activations. Therefore, these
models are able to express complex functions with a large number of dependencies and pro-
duce probabilistic outputs rather than discrete decisions. Stochastic gradient descent (SGD)
allows DNNs to be optimized with supervised end-to-end training data, eliminating the need
for discrete intermediate representations of linguistic syntax.

The DNN paradigm has changed the construction process of IE models drastically—from
a symbolic language-oriented perspective into an empirical data-driven discipline. DNNs are
highly dependent on large training data sets. But pre-trained representation layers for back-
ground knowledge, such as word embeddings or language models, can drastically reduce
the iteration times required to build tailor-made models. A large fraction of these represen-
tations can be trained using self-supervision. This process generates labels from the text itself
without human supervision. Eventually, Machine Reading constitutes the transformation of
information-seeking systems from symbolic IE towards distributed semantic representations.
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FIGURE 1.1: The process of supporting human information seeking with Ma-
chine Reading from domain-specific text resources.

Supporting human information seeking with Neural Machine Reading. The information
search process is a cyclic activity by a user aiming “to extend his or her state of knowledge on
a particular problem” [Kuhlthau, 1991]. Figure 1.1 shows this simplified process in an orga-
nization. (1) An expert with an analytical task searches for answers over a large collection of
unstructured domain-specific text resources. (2) The MR system formulates its beliefs based
on the task, background knowledge and the information contained in the texts. (3) The system
presents a coherent result to the user and reasons about its decisions by highlighting the origi-
nal source context. (4) Finally, the user enters a feedback loop by exploring results, iteratively
refining the query, and eventually evaluating the success of the task.

There have been several approaches to describe the complexity of this process. Marchion-
ini [2006] classifies information-seeking activities into three categories: Lookup tasks aim to
retrieve discrete well-structured objects with high precision (e.g. known item search, naviga-
tion, factoid QA). Learn tasks require cognitive processing to return aggregated results (e.g.
comprehension, comparison, interpretation). Finally, investigative tasks are the most complex
and require substantial knowledge and integration abilities. These mainly focus on high recall
for open-ended search intentions (e.g. discovery, analysis, synthesis, evaluation). With respect
to domain-specific applications in the industry, Castro and New [2016] discuss the fundamen-
tal functionalities of an artificial intelligence (AI) system as learning, understanding, reasoning
and interaction. In this thesis, we focus on three central tasks which cover all complexity levels:

• Named Entity Linking (NEL) aims to recognize mentions of named entities, such as
product, organization or disease names and link them to a structured knowledge base
[Bunescu and Pasca, 2006; Hachey et al., 2013; Shen et al., 2015]. Some challenging entity-
centric search intentions arise from the scenario. For example: “Which recent news articles

mention my product X?”, “Is any of our suppliers mentioned in current risk reports?” or “Show

me historical patient records of a cohort suffering from disease Y”. While NEL is a ‘classic’
IE task in the first place, there is a large gap between its current definition as word-
level classification task and its application in a real-world information-seeking activity.
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For example, mentions might be implicit (e.g. “the former CEO of Apple”), expressed as
coreferences (e.g. “our flagship product in 2020”) or can be discussed over a long-range
context [Ratinov and Roth, 2009]. Furthermore, many entity types are often overlapping
or hierarchically structured [Ling et al., 2015] and it is not clear if a query needs to focus
on precise subtypes or more generic supertypes. We will discuss NEL with its challenges
and opportunities for a Neural Machine Reading system in Chapter 3.

• Topic Modeling aims to discover main themes in a document in order to help orga-
nizing a collection [Blei, 2012]. In contrast to named entities, topics are often not ex-
plicitly mentioned in the text. Instead, topics are distributions of typical words used to
describe a common aspect, e.g. “product features” or “genetics”. Some examples for topi-
cal information-seeking tasks are: “Which recent news articles contain technical product re-

views?”, “Which risk reports focus on transportation issues?”, “Show me clinical studies that focus

on research related to kidneys.” However, Topic Modeling often focuses on capturing entire
documents and neglects an opportunity arising from deeper language understanding:
Topics might emerge and disappear over the course of long documents, such as research
papers that focus on individual aspects in different passages. We will discuss this idea of
topic segmentation and classification in Chapter 4.

• Answer Passage Retrieval is the task of identifying an answer passage for a given query
from a large number of long documents [O’Connor, 1980; Salton et al., 1993]. In contrast
to ‘classic’ QA, this task does not focus on factoid questions with short answers. In-
stead, questions are typically open-ended and answers consist of one or more passages
spanning multiple sentences. Example questions are: “Are there any product recalls from

company X?”, “Is supplier Y affected by the transportation issues mentioned in the news?”, “What

treatment options are currently being researched for IgA nephropathy?”. Answer Passage Re-
trieval requires the ability to identify named entities and topics in queries and answers,
and extract and aggregate passages from long documents that contain coherent answers.
We will approach this task in Chapter 5.

There are other potential variations of these tasks, such as Relation Extraction [Sarawagi,
2008], Question Answering [Rajpurkar et al., 2016] or Machine Reading Comprehension [Her-
mann et al., 2015]. We do not specifically address these tasks in this thesis. In general, all dis-
cussed information-seeking tasks can utilize Neural MR as a central component, as depicted
in step 2 of Figure 1.1. We will focus on this part of the process throughout this thesis. In the
next section, we discuss the requirements and properties of such a MR model.

1.2 Domain-Specific Language Understanding

In the information-seeking process, complex problems have to be solved in each of the steps.
Especially when applying the tasks to domain-specific text, such as Web blogs, financial risk
reports or clinical notes, symbolic IE models will likely fail to produce satisfactory results.
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The main reason for this is that language is often ambiguous, and supervised models highly
depend on the data they were trained on. Based on prior work on symbolic IE [Löser et al.,
2012; Arnold et al., 2014; Maqsud et al., 2014; Arnold et al., 2015], we identify six central
challenges, which we describe below. We will revisit these challenges in Section 7.1.

• Domain-specific language. Vocabulary and sentence structure strongly varies between
different domains. This is not only the case across different languages (e.g. English or
German), but also between different application domains, e.g. geopolitics, manufactur-
ing or healthcare. For example, Wikipedia articles mostly contain generally understand-
able language. In contrast, financial risk reports or clinical notes might contain a large
number of domain-specific abbreviations, idiosyncratic terms and even sentences that do
not follow the syntactical rules of language. We require a MR model to be adaptive to
domain-specific language. A model trained for one task must be transferable to perform
the same task on a different domain without having to rebuild it from scratch.

• Variations and noise. Texts may contain spelling errors, morphological variations, in-
complete sentences or noise introduced from technical processing, e.g. optical character
recognition (OCR) or Web scraping. We require a MR model to be robust towards these
variations. The model should prioritize recall over precision and local errors should not
affect the model’s performance in the surrounding context.

• Heterogeneous document structure. Text resources have a high variance in terms of
structure. Documents might be very long (e.g. research articles), medium (e.g. news
articles) or short (tweets), strongly structured (e.g. case studies), diverse (e.g. blog arti-
cles) or flat (e.g. transcriptions). It is not always possible to identify coherent structural
blocks or topics without understanding the text itself. We require a MR model to perform
well on this variety of documents without prior training for a specific type. In principle,
the model should be able to grasp the overall idea of a text but be sensitive for local
information at the same time.

• High task variance. Information-seeking tasks span a broad range in specificy and com-
plexity. For example, risk analysts expect high recall for detecting a broad range of pos-
sible events. Medical specialists may pose very precise queries that align with a pre-
defined taxonomy and focus on rare diseases. Because in many cases we do not know
the specificity of a task a priori, it is not feasible to train personalized MR models for
specific intentions only. Instead, a well-generalized MR model must support multiple
tasks at the same time with zero-shot or only few adaptation steps.

• Insufficient training data. In many cases, there exist unlabeled corpora of domain-
specific text (e.g. in corporate ‘data silos’), but we do not have access to large amounts
of task-specific labeled training data. Labeling data requires expensive human labor and
it is not feasible to create large training sets for each specific combination of tasks and
domains. Therefore, we aim to focus on efficient models that can be trained with small
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amounts of task-specific training data and leverage background knowledge, unsuper-
vised or self-supervised training procedures wherever possible.

• Error propagation. Traditional information processing pipelines are sensitive to recall
loss, because discrete decisions in early stages of a pipeline (e.g. part-of-speech tagging)
propagate into downstream tasks. Typical errors in these stages arise from the ambiguity
of language or irregularities in the text. Often, errors are not recoverable in a later stage.
Therefore, a MR system should maintain a consistent differentiable model from end to
end. This allows probabilistic beliefs to be pushed up to the final decisions at task level.
Furthermore, end-to-end approaches may provide important features for error analysis
and enable system-wide correction of errors using backpropagation.

Approach and scope of this thesis. We approach these challenges by proposing a collection
of Neural Machine Reading models to address the three central tasks discussed above: Named
Entity Linking, Topic Modeling and Answer Passage Retrieval. Our work is built upon the
paradigm of deep neural networks. This enables us to design probabilistic models invariant
to all languages expressed in Western Latin characters. Furthermore, DNNs allow us to reuse
pre-trained components in different architectures. We focus on supervised and self-supervised
techniques to train these architectures with end-to-end textual examples, independent of their
language or domain. In addition, we address the challenges of robustness and training ef-
ficiency throughout this thesis. Consequently, we will show that all of our approaches are
applicable to various domain-specific text resources, even with limited training data.

This thesis does not cover the human information-seeking process as shown in Figure 1.1
in its entirety. In particular, we leave out a detailed discussion of the subprocesses (1) intent
detection (human expresses information need to the machine) and (4) interactive feedback loop
(human communicates degree of task completion). Instead, we focus on the MR component
(2) and its ability to produce accurate results (3). Although studying user interaction is beyond
the scope of this thesis, domain-specific information seeking requires real-world information
needs and user interfaces. Therefore, we demonstrate the applicability of our MR components
at the end of this thesis with a description of four prototypical implementations.

1.3 Research Objectives

This thesis addresses the problem of automatic understanding of unstructured text from domain-
specific resources. The main hypothesis of this thesis is the following:

Hypothesis. Deep neural networks enable the efficient creation of general Neural
Machine Reading models by capturing the distributional properties of text using self-
supervision. MR models are able to process domain-specific text resources without ex-
pensive adaptation and with high error tolerance. MR enables end-to-end models
to fulfill task-specific information needs with high accuracy by incorporating back-
ground knowledge, contextual information and task-specific training objectives.
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We divide this general problem statement that we refer to as Neural Machine Reading into four
subordinate research questions (RQ):

RQ 1. What are general solutions to identify named entities in domain-specific text? Named
entities are the smallest information units in classical IE and must be identified with high recall to
facilitate effective downstream tasks. In domain-specific text, generic concepts, such as event and disease
names, rare and emerging entities, such as new product and brand names must be recognized precisely.
Recognition must not fail because of spelling errors, morphological variations or transliterations in the
source text. A general model architecture must be efficiently applicable to a broad range of languages and
domains, even with limited or zero training data. Furthermore, it is important to leverage contextual
information from sentence, document, corpus and knowledge base to improve disambiguation compared
to approaches based on local features.

RQ 2. How can Machine Reading models detect topics and structure in long documents? Long
documents are often thoughtfully designed and structured by their authors to guide readers through
the text. Established Information Extraction models, which operate on document or sentence level, are
not taking this structure into account. To bridge the gap between IE and MR, a model must gain an
understanding of global and local topics and handle topical shifts in long documents. A MR model must
be able to identify coherent passages in the text and assign topic labels or section headings to each of the
passages. MR models should be able to capture the context of entire documents, but operate coherently
with word or sentence granularity.

RQ 3. How can we embed discourse structure into document representations? Neural mod-
els are often built upon distributed representations, which encode contextual information learned from
large corpora of text. We aim to extend these representations with rich information about the discourse
structure of a document. Specifically, we investigate if neural MR models benefit from contextualized
document representations that embed information about entities and topical aspects. We raise the ques-
tion if these representations can complement pre-trained word and sentence embeddings with missing
information from long-range distance, such as introduction passages, coreferences, entity mentions, doc-
ument titles and section headings. We expect from a document representation a complete and coherent
semantic interpretation, comparable to a human reader who aims to understand the meaning of a text.

RQ 4. How effective are document representations for retrieving answer passages? Machine
Reading models are designed to support human information-seeking tasks, e.g. retrieving answers from
long documents, with high recall. We expect from a MR model that it does not rely on task-specific train-
ing data, but instead is able to form its beliefs based on unsupervised training data from generic sources,
e.g. Wikipedia text, and distributional background knowledge. Specifically, we aim to understand how
we can effectively apply the internal representations of a neural MR model, such as contextualized doc-
ument embeddings, for nearest-neighbor search tasks. The representations must be utilizable in a wide
range of tasks from similar domains, and should perform equally well as supervised ML models that are
trained with explicit examples.

In this thesis, we develop methods to meet all four RQs focused on three central tasks: Named
Entity Linking, Topic Modeling and Answer Passage Retrieval.
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1.4 Contributions

The main contribution of this thesis is the application of Neural Machine Reading to the prob-
lem of human information seeking across domain-specific text resources. We investigate this
problem with respect to the research objectives posed in Section 1.3. The outcomes of our in-
vestigation are condensed into three main systems, which provide the following theoretical,
practical and empirical contributions:

TASTY Named Entity Recognition and Linking [Arnold et al., 2016b] (Chapter 3)

• We analyze design challenges and common errors for Named Entity Recognition (NER)
and Disambiguation (NED) when applied to domain-specific text resources (Section 3.1).

• We compare distributed word embeddings and character-trigram based word encodings
and show that trigrams are a robust and efficient representation for domain-specific text
(Sections 3.2.1 and 3.1.3).

• We present the TASTY NER model based on trigram word encodings and Bidirectional
Long Short-Term Memory (BLSTM) networks with state-of-the art NER performance on
CoNLL2003 and five other English and German news datasets (Sections 3.2.2 and 3.3).

• We show that TASTY exceeds performance of other pretrained baselines in scenarios with
small available training data, such as German car forum discussions and English biomed-
ical text (Section 3.3).

• We present the TASTY NED model based on k-nearest neighbor search over entity embed-
dings and show that this neural model consistently scores high on four standard English
datasets (Sections 3.2.3 and 3.3).

• We present the TASTY editor, an interactive application for Entity Linking as-you-type
(Section 6.1).

• We present TraiNER, a process for bootstrapping domain-specific Named Entity Recog-
nition using seed lists and active learning (Section 6.2).

SECTOR Topic Segmentation and Classification [Arnold et al., 2019] (Chapter 4)

• We analyze challenges for Machine Reading and in particular show that structural topic
information in long documents is not represented by current document representation
models (Section 4.1).

• We introduce WIKISECTION, a dataset for the task of topic segmentation and classifica-
tion in German and English for two specific domains: healthcare (diseases) and geopoli-
tics (cities) (Section 4.1.2).
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• We compare word-based and distributed sentence encodings and show that Bloom filters
are an efficient sentence representation in a topic classification task (Section 4.3.1).

• We present SECTOR, a Neural Machine Reading architecture based on BLSTMs, which
encodes structure and topic information much better than existing document embed-
dings (Sections 4.3.2 and 4.4).

• We propose to measure the deviation of SECTOR embeddings to identify topic shifts (Sec-
tion 4.3.3).

• We show that SECTOR embeddings can be used to segment and classify passages into
25–30 domain-specific topics with high accuracy (Section 4.4).

• We present SMART-MD, an interface for clinical decision support based on the SECTOR

Machine Reading architecture (Section 6.3).

CDV Contextual Discourse Vectors for Answer Retrieval [Arnold et al., 2020] (Chapter 5)

• We analyze challenges for MR-based Information Retrieval and identify task coverage,
domain adaptability, contextual coherence and retrieval efficiency as important require-
ments (Section 5.1).

• We present CDV, a contextual discourse vector representation based on pre-trained lan-
guage models and BLSTMs, which fulfills these requirements (Section 5.3).

• We propose to apply a multi-task CDV architecture for Answer Passage Retrieval based
on entity and aspect embeddings (Section 5.2).

• We show that CDV can be trained with self-supervised data available from Wikipedia
(Section 5.3.4).

• We adapt CDV for the healthcare domain and show that it is the most effective model
when applied to three answer retrieval tasks without retraining (Section 5.4).

• We empirically analyze errors of the CDV model and propose how to address them in
future work (Section 4.5).

• We present CDV Healthcare Answer Retrieval, a search interface for medical research
papers based on the CDV Machine Reading architecture (Section 6.4).

To integrate our practical contributions, we open source all code of TASTY, SECTOR and CDV
in a common Java framework TeXoo1 released under Apache V2 license.

1https://github.com/sebastianarnold/TeXoo

https://github.com/sebastianarnold/TeXoo
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1.5 Thesis Outline

This thesis is structured around the vision of Machine Reading and three main systems that
approach specific tasks for MR over domain-specific text resources. Here, we give an overview
of each chapter:

Chapter 1: Introduction. We motivate the necessity for natural language understanding in
the context of the human information-seeking process. We introduce the vision of Machine
Reading to approach the challenges arising from high variance between specific languages,
domains and tasks, and missing training data for domain-specific tasks. We divide this prob-
lem into five research questions, which we answer in the course of this thesis.

Chapter 2: Background. We discuss existing work from the literature that forms the ground-
work for our automatic language understanding objective. We summarize the idea of dis-
tributed language representations, which are the fundamental background for our Neural Ma-
chine Reading approach. We further introduce specific methodical approaches for language-
related sequence learning using deep neural networks.

Chapter 3: A Robust Model for Efficient Entity Linking. We identify design challenges and
common errors specific to the task of Named Entity Recognition and Linking for domain-
specific text. The main requirements of this task are robustness against spelling variations,
effective consideration of contextual long-range information and efficient model creation from
limited amounts of training examples. We introduce TASTY, an efficient sequence learning
model for NER and NEL based on letter-trigram word encoding, Long Short-Term Memory
and entity embeddings.

Chapter 4: Coherent Topic Segmentation and Classification. We broaden our view towards
understanding document structure. We observe that documents often contain coherent pas-
sages that locally focus on a specific topic. We address the problem of identifying section
boundaries in long documents and classifying each section into one of up to 30 domain-specific
topics. We present SECTOR, a Neural Machine Reading architecture that learns a sentence-level
latent topic embedding from training documents using Bidirectional Long Short-Term Mem-
ory and Bloom filter sentence encoding. We show that this embedding embodies all necessary
information for the task of topic segmentation and classification.

Chapter 5: Contextualized Document Representations for Answer Retrieval. We build upon
the SECTOR Neural Machine Reading model and extend it to cover named entities and entity-
specific aspects. Our contextual discourse representation (CDV) can be trained with self-
supervised data from Wikipedia and background knowledge from distributed entity and as-
pect embeddings. We apply the CDV model to human information-seeking tasks in the health-
care domain over nine different English text resources without additional training data.
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Chapter 6: Systems. Our models TASTY, SECTOR and CDV are based on a common code base
TeXoo, which we release under an open source license. The models have been applied to vari-
ous research prototypes and systems in industry. In this chapter, we present four applications
which comprise the human information-seeking process as a whole.

Chapter 7: Conclusion and Future Work. We conclude this thesis with a summary and dis-
cussion of our contributions, and a reflection on our research objectives and limitations. Ad-
ditionally, we present potential business applications and perspectives for Neural Machine
Reading in future research.
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Chapter 2

Background

In this chapter, we provide background information on the fundamental techniques relevant
for this thesis. We begin in Section 2.1 by introducing the traditional approaches for Infor-
mation Extraction based on discrete syntactic processing of text. In Section 2.2 we discuss
the underlying idea of distributed language representations, such as the Vector Space Model,
topic models, neural word embeddings and contextualized language models. In Section 2.3,
we provide details on methods for sequential Machine Reading, such as finite-state machines,
Recurrent Neural Networks, Long Short-Term Memory and Transformer architectures.

2.1 Information Extraction

Knowledge is often expressed by humans in form of written text, which is technically an un-
structured representation that varies in style and format across different use cases. Typical text
resources are news stories, chat messages, citations, technical documents or encyclopedia ar-
ticles. Information Extraction (IE) describes the automatic transformation of these sources into
structured or semi-structured representations, such as tuples, tables, lists, graphs or hierar-
chies. The main goal of this data integration step is to enable Information Retrieval (IR) using
structured queries [Sarawagi, 2008].

Typically, IE is applied to short records with known boundaries e.g. citations, tweets or
individual sentences. Additionally, many extraction tasks require to consider the context of
associated paragraphs (e.g. headings, abstracts, snippets) or entire documents (e.g. news arti-
cles, discussion threads). To allow IE models to identify and process these elements, they often
depend on Natural Language Processing (NLP) pipelines, which enrich plain text with linguistic
or layout information using rule-based or statistical methods [Sarawagi, 2008]. In this section,
we briefly describe classic approaches to IE which are based on this pipeline paradigm.

There exist a large variety of NLP pipeline implementations that come with pre-trained
models for English language, such as Natural Language Toolkit (NLTK) [Loper and Bird, 2002],
UIMA [Ferrucci and Lally, 2004], GATE [Cunningham et al., 2002], Stanford CoreNLP [Man-
ning et al., 2014], Apache OpenNLP1 or spaCy2. These pipelines have in common that they
often rely on multiple independent models which are applied sequentially. This makes them

1https://opennlp.apache.org
2https://spacy.io

https://opennlp.apache.org
https://spacy.io
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sensitive to variations and noise, and it is often not possible to adapt an entire pipeline to a
different task or domain. The outcome is that most of these models do not meet our require-
ments to a Machine Reading model posed in Section 1.2. Next, we discuss the basic stages in
the NLP pipeline in order to learn about their strengths and shortcomings.

2.1.1 Text Preprocessing

NLP models typically require a token-based input representation. The following three tasks
are commonly applied in a preprocessing pipeline. Their aim is to transform the text given
as one long character string into smaller normalized chunks that are later used for processing
[Jurafsky and Martin, 2019]:

• Tokenization is the task of segmenting running text into words or word-piece tokens.
Commonly used standards are the Penn Treebank standard released by the Linguistic
Data Consortium [Marcus et al., 1993], or the word-piece tokens used in more recent
Transformer models [Devlin et al., 2019]. A tokenizer needs to execute very fast and han-
dle the ambiguity of words or special characters such as dots, apostrophes or hyphens.
Therefore, the standard methods for tokenization use carefully-designed deterministic
algorithms based on regular expressions and finite state automata. Tokenization is more
complex in languages such as Chinese, where word boundaries are not usually expressed
by spaces [Jurafsky and Martin, 2019].

• Word normalization is the task of transforming word tokens into a standard normal
form. While feature-based models may improve from this reduction of information, re-
cent neural models are often able to handle larger variances or even generalize better
with non-normalized input. Typical practices for word normalization are case folding
(mapping input to lower case) and lemmatization/stemming (normalizing words to their
base form) [Jurafsky and Martin, 2019]. Furthermore, traditional NLP methods often ap-
ply stopword removal, which deletes the most common function words, such as articles
and possessives before processing.

• Sentence splitting is the task of segmenting text into individual sentences. This step
is often important, because many IE models are based on tokenized sentences as input.
The most important cues for this task are punctuation (e.g. periods or question marks)
and newline characters. Most models address sentence splitting and word tokenization
jointly by deciding whether a period is part of a word or it is used as a sentence boundary
marker. These methods are often based on deterministic models that include dictionaries
of common abbreviations [Jurafsky and Martin, 2019].

The principle of word or word-piece tokenization and sentence splitting is not only used in
NLP pipelines, but also in more powerful machine learning (ML) frameworks, such as PyTorch
Transformers3. We will discuss token sequence based ML methods in Section 2.3.

3https://github.com/huggingface/transformers

https://github.com/huggingface/transformers
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FIGURE 2.1: Part-of-speech and dependency parse result for the example sen-
tence “Preliminary findings were reported in today’s New England Journal of Medicine.”

generated by the Stanford CoreNLP framework.

2.1.2 Shallow Syntactic Parsing

A second stage in the NLP pipeline is often required to enrich the normalized tokens with
linguistic information. For this task, a shallow parse can efficiently generate the necessary in-
formation from surface form features. Shallow models are based on syntax information and
do not require full semantic understanding of language. The most important tasks are the
following:

• Part-of-speech tagging (POS) is the task to assign each word a grammatical category
from a fixed set for a specific language [Jurafsky and Martin, 2019]. The set of tags in-
cludes closed class types that contain function words with relatively fixed word mem-
berships, such as determiners (DT), conjunctions (CC), prepositions (IN), pronouns and
special character classes, such as parentheses or quotes. Open class types contain words
which may continually be created or borrowed, such as proper nouns and names (NNP),
common nouns (NN), verbs (VB), adjectives (JJ) or adverbs (RB). Typically, tags are fur-
ther divided for plural nouns (NNS, NNPS) and verb inflections (VB*). An important set
of tags for English is contained in the 45-class Penn Treebank [Marcus et al., 1993]. POS
taggers are often implemented using sequence learning algorithms (see Section 2.3).

• Constituency parsing is the task of grouping the words in a sentence into abstract phrase
types, such as noun phrases, verb phrases or prepositional phrases [Sarawagi, 2008]. This
operation is typically based on a parse tree that is generated by a context-free grammar over
the POS tags of a sentence. The grammar rules can be learned from annotated treebanks.
Often, constituency parse trees provide useful information for tasks such as entity or
relation extraction.

• Dependency parsing is the task of identifying words in a sentence that form arguments
of other words in the sentence [Sarawagi, 2008]. In contrast to constituency parsing, this
task is based on a graph that describes the syntactic structure of a sentence in terms of
the binary grammatical relations among its words, e.g. nominal subject, conjunction,
direct or indirect object. Dependency parsers can be learned from large annotated de-
pendency treebanks, such as Penn Treebank [Marcus et al., 1993], OntoNotes [Hovy et
al., 2006] or Universal Dependencies [Nivre et al., 2016], which provides aligned anno-
tations for multiple languages. Dependency trees provide useful information for many
applications, such as coreference resolution, Question Answering or IE in general.
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Figure 2.1 shows an example parse tree with POS and dependency annotations. This shal-
low information is often used as features in traditional symbolic IE models. However, recent
ML approaches have replaced this extraction step by distributed representations which encode
more complex relationships based on empirical linguistic knowledge. Distributed models are
therefore less sensitive to noise and variance than symbolic representations. We will discuss
these approaches in Section 2.2.

2.1.3 Deep Linguistic Processing

In addition to shallow syntactical parsing, many IE downstream tasks require a deeper seman-
tic understanding of the text. This is necessary because propositions can be expressed using
a large variety of words, which themselves are often ambiguous. In traditional NLP, this is
done by further enriching the extractions with semantic annotations. Often, these tasks are
not included in the preprocesing pipeline, but constitute a downstream task on their own. We
briefly highlight the most important tasks:

• Word sense disambiguation (WSD) is the task to determine the sense of a word used in a
particular context [Jurafsky and Martin, 2019]. Word senses are often defined as glosses in
a dictionary, e.g. the word “mouse” can refer to “any small animal of various rodent and mar-

supial families” or “a palm-sized pointing device for a computer system”. The most commonly
used resource for multi-lingual WSD is the WordNet lexical database [Fellbaum, 1998],
which contains a large set of concept lemmas (nouns, verbs, adjectives and adverbs), each
annotated with a set of senses. These senses are further clustered into synsets, which are
sets of near-synonyms for a single concept. The goal of WSD is to assign a sense ID
to each word in a text. WordNet has been further extended in BabelNet [Navigli and
Ponzetto, 2012] with named entities from various sources, such as Wikipedia.

• Semantic role labeling (SRL) aims to capture the semantic relationships between a verb
and noun arguments [Jurafsky and Martin, 2019]. For example, the verbs “sold”, “bought”

or the noun “purchase” may refer to an acquisition event that holds roles like “agent” (the
buyer), “theme” (the item to be bought) or “provider” (the seller). The task of SRL is to
automatically find the semantic role of each predicate’s argument in a sentence. SRL al-
gorithms often depend on features such as the governing predicate, phrase type of each
constituent, headword of each constituent and the path in the parse tree from each con-
stituent to the predicate. Although there is no universally agreed-upon set of roles, there
are important resources, such as PropBank [Kingsbury and Palmer, 2002] and FrameNet
[Baker et al., 1998] that hold large numbers of fine-grained roles that can be used to train
and evaluate SRL models.

• Coreference resolution is the task to determine whether two mentions corefer, which
means that they refer to the same discourse entity [Jurafsky and Martin, 2019]. The fol-
lowing example from Jurafsky and Martin [2019] shows a coreference chain, which is a set
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of expressions that contains the initial entity mention (“Victoria”), pronouns (“she”, “her”)
and other anaphora (“the 38-year-old”):

Example 2.1. [Victoria Chen]1, CFO of Megabucks Banking, saw [her]1 pay jump
to $2.3 million, as [the 38-year-old]1 became the company’s president. It is widely
known that [she]1 came to Megabucks from rival Lotsabucks.

An important property of referring expressions and their referents is that they must agree
in number, person, gender or noun class. Coreference resolution is an important compo-
nent of natural language understanding. It connects the symbolic token representations
of the text with the mental discourse model [Karttunen, 1976] that a human reader builds
incrementally when interpreting it. In some preprocessing pipelines, coreference infor-
mation is resolved by replacing all referents with the initial mention.

Similar to shallow parsing, deep linguistic processing is today often replaced by distribu-
tional language modeling techniques. However, word senses, semantic roles and coreferences
are still important latent features for language understanding. It remains an open challenge to
include this information effectively in end-to-end models.

2.1.4 Named Entity Recognition

A central aspect of word sense disambiguation and coreference resolution tasks is that many
mentions in a discourse refer to real-world instances of named entities, such as persons, compa-
nies or locations. The task of Named Entity Recognition (NER) is to identify the boundaries of
named entity mentions in text and assign each mention a type. This task was originally intro-
duced at MUC-6 [Grishman and Sundheim, 1996] and was later adapted in MUC-7 [Chinchor
and Robinson, 1997] and the CoNLL-2003 shared task [Kim et al., 2004]. The objective is to
classify each word in a document into one of four generic entity types, or none: PER (person
names), LOC (locations), ORG (company and organization names) or MISC (miscellaneous).
There exist similar schemes for domain-specific NER, e.g. gene, proteine, drug and disease
names in the biomedical domain [Kim et al., 2003] or a large number of fine-grained types
[Ling and Weld, 2012]. Ratinov and Roth [2009] have illustrated the main challenges for this
task based on the following example:

Example 2.2. SOCCER - [BLINKER]PER BAN LIFTED.
[LONDON]LOC 1996-12-06 [Dutch]MISC forward had his indefinite suspension lifted by [FIFA]ORG

on Friday and was set to make his [Sheffield Wednesday]ORG comeback against [Liverpool]ORG

on Saturday. [Blinker]PER missed his club’s last two games after [FIFA]ORG slapped a world-
wide ban on him for appearing to sign contracts for both [Wednesday]ORG and [Udinese]ORG

while he was playing for [Feyenoord]ORG.

Challenges for NER. A NER model requires prior knowledge about entity names and type
assignments (e.g. that “Udinese” is a soccer club). It has to make decisions based on non-local
features such as context words (e.g. the overall topic “SOCCER”), linguistic patterns (e.g. “for
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both [X]ORG and [Y]ORG”) or coreferences (e.g. “Wednesday” referring to “Sheffield Wednesday”).
Additionally, noisy data (e.g. “BLINKER” is uppercased to mimic a bold headline) makes it
hard to detect known entities.

NER model evaluation. NER models are evaluated by comparing their output with human
annotations using micro-averaged precision, recall and F1 scores. These scores are calculated
using true positives (TP), false positives (FP) and false negatives (FN) for exact span match
between a set of predicted mentions Pd and a set of relevant annotations Rd mentioned in
each document d of the dataset D [Cornolti et al., 2013]:

TPd = |{p ∈ Pd | ∃r ∈ Rd : match(p, r)}|

FPd = |{p ∈ Pd | @r ∈ Rd : match(p, r)}|

FNd = |{r ∈ Rd | @p ∈ Pd : match(r, p)}|

(2.1)

Prec =

∑
d∈D TPd∑

d∈D (TPd + FPd)

Rec =

∑
d∈D TPd∑

d∈D (TPd + FNd)

F1 =
2 · Prec · Rec

Prec + Rec

(2.2)

Rule-based approaches utilize a set of hand-crafted rules to detect particular entity types.
These rules are often based on lexical or syntactic features, linguistic patterns and domain
knowledge. Some examples are word capitalization, regular expressions or shallow patterns
based on POS tags. Often, these systems include domain-specific gazetteers, which are com-
prehensive lists of entity names that can be looked up. Traditional rule-based NER systems
include FASTUS [Appelt et al., 1995], LaSIE-II [Humphreys et al., 1998], NetOwl [Krupka and
Hausman, 1998], Facile [Black et al., 1998], SRA [Aone et al., 1998] or LTG [Mikheev et al., 1999].
These systems highly depend on precise rule definitions, therefore they are highly specific to a
certain domain and often achieve high precision and low recall.

Unsupervised learning approaches focus on learning a set of rules by clustering unlabeled
examples using a small set of seed rules [Collins and Singer, 1999], extraction patterns [Etzioni
et al., 2005] or gazetteers [Nadeau et al., 2006]. These approaches can generalize well for dif-
ferent domains, but often depend on accurate linguistic preprocessing, which is challenging in
domains with high variance.

Supervised learning approaches regard NER as multi-class classification or sequence label-
ing task. These methods require a large hand-tagged corpus which is used as training set
to optimize the parameters of a ML model. The goal is that the model learns to generalize
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over the training examples and discovers patterns and rules that can be applied to unseen ex-
amples. One critial step in supervised NER models is feature engineering, where text input is
transformed into abstract representations. Typical word-based features are the current word,
surface type (e.g. capitalized, all-capitalized, all-digits, alphanumeric, etc.), prefixes and suf-
fixes, capitalization patterns, context words and previous label predictions [Ratinov and Roth,
2009]. Often, NER systems use additional features from linguistic preprocessing, such as POS
tags, shallow parsing information and gazetteers. The training objective is most often to as-
sign a tag to each word, such as BIOES (Begin, Inside, Outside, End, Singleton) of a named
entity along with its type [Ratinov and Roth, 2009]. There also exist other tagging schemes
with similar semantics, such as BIO2 or BILOU.

A large variety of ML algorithms has been applied to the NER task, such as Hidden Markov
Models (HMM) [Rabiner, 1989; Bikel et al., 1997], Support Vector Machines (SVM) [Hearst
et al., 1998; McNamee and Mayfield, 2002] or Decision Trees [Quinlan, 1986; Szarvas et al.,
2006]. It was shown that sequence-based models such as Maximum Entropy Markov Models
(MEMM) [McCallum et al., 2000] are most suitable to the NER task [Chieu and Ng, 2002;
Bender et al., 2003; Curran and Clark, 2003]. Most prominently, Conditional Random Fields
(CRF) [Lafferty et al., 2001] has become an early benchmark for NER [McCallum and Li, 2003;
Krishnan and Manning, 2006].

Deep-learning based approaches have significantly improved the NER task [Li et al., 2020].
Pre-trained word embeddings such as word2vec [Mikolov et al., 2013a], GloVe [Pennington
et al., 2014] and Fasttext [Bojanowski et al., 2017] improve sequence labeling tasks by en-
riching word representations with external knowledge learned from unlabeled text. Stacked
encoder-decoder architectures of Convolutional Neural Networks (CNN) and Recurrent Neu-
ral Networks (RNN) such as bidirectional Long Short-Term Memory (BLSTM) allow to include
sentence-level and long-range context. For example, Collobert et al. [2011] apply CNN over the
sequence of words in a sentence. Huang et al. [2015] and Lample et al. [2016] use a combina-
tion of BLSTM and CRF, Chiu and Nichols [2016] combine BLSTM and CNN. [Ma and Hovy,
2016] combine character-based word representations with a BLSTM-CNN-CRF model. Akbik
et al. [2018] propose contextual string embeddings, which represent words by their stream of
characters in a sequential context. Peters et al. [2018] introduce the ELMo embedding, which
represent words using character-CNNs in a contextualized language model. Radford et al.
[2018] and Devlin et al. [2019] extend the language model paradigm using pre-trained Trans-
formers (GPT and BERT). These models are becoming a new paradigm of NER by replacing
traditional word embeddings with powerful pre-trained language representations that can fur-
ther be fine-tuned to a wide range of tasks [Li et al., 2020]. We will discuss the distributional
properties leveraged by these models in more detail in Section 2.2 and provide detailed infor-
mation on the individual sequence learning methods in Section 2.3.
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FIGURE 2.2: Example of a mention-entity graph used for NEL. Mentions in the
text (left, highlighted in yellow) are linked to candidates (center). The goal is
to assign the mention to the correct candidate based on the KB entry. The KB

contains entities with relational and contextual information (right).
(Figure taken from Hoffart et al. [2011] CC BY-NC-SA 3.0)

2.1.5 Named Entity Linking

Many IE tasks require to explicitly associate named entity mentions with representations of
objects in an ontology, such as a knowledge base (KB) or product database. The process of
resolving named entities to a knowledge base is called Named Entity Linking (NEL) [Ji and Gr-
ishman, 2011]. This task is similar to the problem of word sense disambiguation, but here a
domain-specific ontology is used instead of a complete lexical resource. A KB is typically fo-
cused on a specific subset of real-world entities (e.g. companies, products, or diseases) and it
is potentially incomplete. Therefore, entity linking often includes the detection of non-linkable
(NIL) entities or NIL clusters. NEL is typically approached in three separate stages: mention
recognition (extraction, NER), candidate generation (search) and candidate ranking (disambigua-
tion, NED) [Hachey et al., 2013]. In this Section, we briefly discuss the candidate generation
and disambiguation processes.

Knowledge Bases. Since most tasks require to cover a large number of real-world entities, the
most common ontology used for NEL is Wikipedia. Wikipedia not only provides unstructured
textual information about over 6 million entities and concepts in many languages, it also con-
tains many useful structured elements such as page titles, redirects, hyperlink anchor texts,
disambiguation pages, infoboxes and categories [Hachey et al., 2013]. Some KBs that contain
structured data derived from Wikipedia are Wikidata [Vrandečić and Krötzsch, 2014], Freebase
[Tanon et al., 2016], YAGO2 [Hoffart et al., 2013] or DBpedia [Lehmann et al., 2015]. A popular
evaluation task for NEL is TAC Knowledge Base Population (KBP) [Ji and Grishman, 2011].

Methods for candidate generation. As a first step, a set of candidates from the KB is gen-
erated for every mention. An ideal candidate generation should balance precision and recall
to capture the correct entity while reducing the amount of computation for disambiguation
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[Hachey et al., 2013]. Typically, this involves matching entity names using dictionary-based
techniques such as exact or partial match [Cucerzan, 2007; Varma et al., 2009; Ratinov et al.,
2011]. It is common practice to build name dictionaries by gathering aliases and synonyms
from Wikipedia pages, hyperlinks and metadata [Bunescu and Pasca, 2006; Mihalcea and Cso-
mai, 2007]. Furthermore, surface form expansion for acronyms [Varma et al., 2009; Zhang et
al., 2011] can be used to generate more synonyms. Spelling correction techniques [Chen et
al., 2010; Zheng et al., 2010; Shen et al., 2012] are often used to normalize candidate queries.
In addition, Web search results [Han and Zhao, 2009; Dredze et al., 2010; Cheng et al., 2011]
and query click logs [Chakrabarti et al., 2012; Taneva et al., 2013] can be utilized to generate
candidates with higher variance.

Features for candidate ranking. In the second step, the candidates are ranked and a decision is
made to assign an entity ID (or NIL) to each mention. Ideally, the method should rank all men-
tions in a document collectively to obtain a coherent assignment. Typical context-independent
ranking features include name string comparison (e.g. using edit or hamming distance), en-
tity type and popularity information [Shen et al., 2015]. However, in most cases it is crucial
to include context-dependent features, which are often extracted from the interaction between
mention context and entity descriptions. Typical examples are bag-of-words, feature vectors,
language and topic modeling and coherence between entity mappings [Shen et al., 2015].

Supervised methods for candidate ranking. A simple supervised approach to the candidate
ranking problem is to apply binary classification to decide if an entity mention refers to a can-
didate entity. To rank a larger number of candidates and handle unbalanced training data,
many NEL systems utilize learning to rank [Herbrich, 2000]. This framework takes the relations
between candidate entities into account instead of considering them as independent. Bunescu
and Pasca [2006] utilize an SVM ranking model over link anchor context and categories from
Wikipedia. Cucerzan [2007] use a similar approach, but rank candidates using the scalar prod-
uct of a document feature vector with all candidate feature vectors. Varma et al. [2009] rank
candidates based on cosine similarity between the mention paragraph and the text of the candi-
date page. Zheng et al. [2010] utilize a ranking perceptron algorithm to learn pairwise ranking.
Zhang et al. [2011] utilize a topic model to generate additional semantic features for ranking.
Ratinov et al. [2011] distinguish between local and global disambiguation techniques. They
propose to use normalized Google distance and pointwise mutual information (PMI) as global
relatedness measures to achieve more coherent disambiguations.

Graph-based approaches make use of relationships that are explicitly modeled in a KB or
can be inferred from Wikipedia page structure. Hoffart et al. [2011] propose a robust and co-
herent method for collective disambiguation by applying a dense subgraph algorithm over
a mention–entity graph (a visualization is shown in Figure 2.2). Shen et al. [2012] propose a
semantic network similarity measure based on Wikipedia concepts and hyperlink structure.
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Moro et al. [2014] approach NEL and WSD tasks jointly by applying densest subgraph heuris-
tics to a semantic interpretation graph. Durrett and Klein [2014] use a factor graph to associate
mentions with coreference, entity type and link variables using CRF and minimum Bayes risk
decoding.

Neural architectures allow to replace labor-intensive feature engineering with learned dense
representations of words, sentences, phrases or documents that can capture a larger amount of
context. Typically, neural models learn a similarity function between a mention and each entity
candidate using labeled examples for supervised training. Mentions are mostly represented
by their characters and surrounding context. Entity candidates are often represented using
descriptions and type information derived from the KB.

He et al. [2013] apply feed-forward networks to learn this similarity function using bag-
of-words context representations. The representations are pre-trained using stacked denoising
autoencoders and then fine-tuned with labeled examples. Sun et al. [2015] and Francis-Landau
et al. [2016] utilize CNNs to learn the similarity function based on semantic representations of
mention and entity contexts. Sil et al. [2018] extend the semantic representation using multi-
lingual word embeddings and CNN sentence encoding. They encode left and right context
using LSTM and Neural Tensor Networks. Pappu et al. [2017] propose an efficient entity dis-
ambiguation by extending the Paragraph Vectors model [Le and Mikolov, 2014]. This model
encodes an entity embedding jointly based on global token context and context from surround-
ing entities.

Gupta et al. [2017] use a modular model which encodes an entity embedding using descrip-
tions, mention contexts and fine-grained types using LSTM and Feed-forward (FF) networks.
Gillick et al. [2019] combine two network structures into a dual encoder model: One network
encodes mentions including their contexts, the other one encodes entities from the KB. A key
property of this model is that it does not require interaction between both encoders, therefore
efficient retrieval without candidate generation is possible. Logeswaran et al. [2019] utilize
pre-trained Transformers for matching candidate and mention contexts. They show that do-
main adaptive pre-training allows the model to be applied in a zero-shot task, where mentions
are linked to unseen entities without in-domain labeled examples.

In summary, we have seen that neural NEL models are increasingly moving towards learn-
ing a universal linking function between unstructured text and structured world knowledge.
This objective refers back to WSD and SRL, as it often includes general concepts, unseen enti-
ties, topics and, ideally, coreferences. At the same time Information Retrieval, which is tradition-
ally considered a downstream task to structured Information Extraction, is now often directly
applied to neural representations [Mitra and Craswell, 2018; Onal et al., 2018]. It remains the
question if the intermediate symbolic representations produced by Entity Linking are still re-
quired for neural MR? In the next section, we will discuss a complementary perspective, which
aims towards understanding language generically based on distributed representations.
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2.2 Distributed Language Representations

Natural language is an inherent representation of human communication and knowledge. It
can be perceived as a sequence of discrete symbols, e.g. words, phonemes or sounds, that
follows rules that both the speaker and the hearer know [Chomsky, 1965]. The idea of dis-
tributional semantics is to transform these linguistic elements into generalized representations
that encode meaning rather than discrete syntax [Turney and Pantel, 2010]. One central prop-
erty of distributed representations is semantic similarity, which describes a measurable relation
of nearness between the meaning of two elements. In general, semantic similarity is closely
related to the phenomena of synonymy (two words have the same meaning), hyponymy (one
word is a generalization or specialization of another word) or antonymy (two words have the
opposite meaning). Symbolic language representations are limited when words or phrases are
ambiguous, as in the case of polysemy (a single word can be used to express different meanings)
and homonymy (two words with same sound or spelling have different meanings). Therefore
distributional models aim to capture the meaning of linguistic elements based on the context
they appear in.

2.2.1 Distributional Hypothesis

Harris [1954] describes how the distributional structure of language is characterized by the
relations between its elements. His hypothesis assumes that “these relations really hold in the
data investigated” [1954, p. 149]. They can be empirically observed by frequency and relative
position between elements and basic classes of co-occurring elements. However, Harris states
that “the distinction between distributional structure and meaning is not yet always clear”
[1954, p. 151]. This means that a morpheme or word has no single or central meaning, or even
”a continuous or coherent range of meanings” [1954, p. 152].

This mismatch between symbols and their semantic interpretation is picked up by Firth
[1957], who manifests that a word is characterized “by the company it keeps” and its sense
can therefore be determined by its context. Sahlgren [2008] solidifies this empirical hypothesis
with a theoretical foundation. Specifically, he points out two relationships of linguistic context
based on structuralist theory [de Saussure, 1916]: Syntagmatic relations concern positioning and
hold elements that co-occur in sequential combinations in a text. Paradigmatic relations concern
substitution and hold elements that occur in the same context but not at the same time (see
Figure 2.3). This differential view on meaning is the foundation of the refined distributional
hypothesis [Sahlgren, 2008, p. 7]:

A distributional model accumulated from co-occurrence information contains syntag-
matic relations between words, while a distributional model accumulated from information
about shared neighbors contains paradigmatic relations between words.

In the following sections, we summarize existing representation models based on this hypoth-
esis. We will show that the distributional hypothesis enables the automatic construction of
neural language models, which constitute the foundation for Neural Machine Reading.
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FIGURE 2.3: Examples for syntagmatic and paradigmatic relations.
(Figure taken from Sahlgren [2008])

2.2.2 Semantic Vector Space Model

The idea of the Vector Space Model (VSM) is to represent linguistic elements—traditionally doc-
uments in a collection—as a point in space [Salton et al., 1975]. In this space, points that are
close together are semantically similar and points that are distant are semantically different.
Following the distributional hypothesis, such a model can automatically be built from a cor-
pus of text using algorithms that utilize the distribution of terms in that corpus. Therefore the
VSM constitutes a suitable foundation for self-supervised Machine Reading systems.

Bag-of-words vector space model. The original bag-of-words vector space model (BOW) is
represented by a term–document matrix X [Salton et al., 1975]. In this matrix, the rows corre-
spond to terms (e.g. words) and the columns to documents. For a corpus of n documents
D = d1...n with m unique terms w1...m, the matrix X will have m rows and n columns. We
assign each element xij the frequency of the i-th term wi in the j-th document dj . Often, a nor-
malized frequency measure such as term frequency – inverse document frequency (TF-IDF) [Jones,
1972] is used to give higher weight to discriminative words:

TFw,d = log
(
1 + |{w′ : w′ = w ∧ w′ ∈ d}|

)
IDFw,D = log

(
1 +

n

|{d ∈ D : w ∈ d}|

)
TF-IDFw,d,D = TFw,d · IDFw,D

(2.3)

As most documents contain only a small fraction of the entire vocabulary, X is a sparse matrix,
i.e. most of its entries are 0. We can now use the j-th column vector as bag-of-words vector
representation of the j-th document:

xbow(dj , D) = xbow(X, j) = x:j =
∑
wi∈dj

ewi (2.4)

where ei ∈ {0, 1}m is a one-hot representation of a word wi by the i-th unit vector in Rm. This
local distributed representation captures (to some degree) the meaning of a document, although
the sequential order of terms is lost [Turney and Pantel, 2010]. Nevertheless, it captures an
important aspect of semantics and is often used in IR to calculate the relevance of a document
to a query [Salton et al., 1975].
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FIGURE 2.4: Syntagmatic (left) and paradigmatic (right) neighborhood examples
of the word “knife”. (Figures taken from Sahlgren [2008])

Probabilistic topic models. One important application of term–document frequency distribu-
tions is probabilistic topic modeling [Blei, 2012]. Topic modeling algorithms aim to discover and
organize latent themes discussed in documents. The most prominent algorithm, latent Dirichlet
allocation (LDA) [Blei et al., 2003] uses a generative process to assign words to topics and topics
to documents. A topic is here defined as a distribution over words of a fixed vocabulary, and
each document holds a distribution over a fixed number of topics. For example the “genetics”

topic assigns high probability to words referring to genes, DNA and heredity in general. A
topic model will therefore assign the “genetics” topic with high probability to documents con-
taining these words. One significant drawback of this model is that it is entirely based on BOW
over the global document context, i.e. it ignores word order and it does not respect local word
contexts. Therefore, an important step towards semantic models of language is to represent
words in their local context.

Vector space models based on syntagmatic associates. When investigating the similarity be-
tween individual words or short phrases, the BOW model is very limited. The reason is that
BOW vectors of two documents without common words are always orthogonal. Therefore,
Deerwester et al. [1990] shift the focus to analyzing single terms by looking at their syntagmatic
associates. These relations are represented by the row vectors in the term–document matrix in-
stead of column vectors. They introduce the Latent Semantic Analysis (LSA) algorithm, which
applies singular-value decomposition (SVD) to decompose X into k ∈ {50, . . . , 1500} orthog-
onal factors [Landauer and Dumais, 1997]. Words can be translated to vectors in the semantic
space spanned by the approximated factor weights. They use truncated SVD, X̂ = UkΣkV

>
k

to transform the i-th row vector of X into the LSA representation of the i-th term [Turney and
Pantel, 2010]:

xlsa(wi, D) = xlsa(X,Σk,Vk, i) = Σ−1
k V>k xi (2.5)

More generally, distributional word meaning can be inferred from word–context matrices,
where context is a text region covering a phrase, sentence, paragraph, chapter or document
[Turney and Pantel, 2010]. The semantic properties of the resulting vector space not only de-
pend on the length of the context, but also on the type of relation used to build the model.
Because the LSA algorithm is based on syntagmatic relations, it encodes word associations
rather than taxonomic similarities [Schütze and Pedersen, 1993]. For example, Figure 2.4 (left)
demonstrates the syntagmatic neighborhood for the word “knife” based on a 10M word corpus
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of English high-school level texts and a section-level context of roughly 150 words [Sahlgren,
2008]. “Noni” and “Nimuk” are person names related to a story where a knife plays a role. These
names are therefore semantically associated to “knife” but not semantically similar [Turney and
Pantel, 2010].

Vector space models based on paradigmatic parallels. A different perspective on distribu-
tional word context is to look at close neighbors of each term. This is achieved by collecting
text data in a words-by-words co-occurrence matrix that holds frequencies of words occurring
together within a context window. In a directional co-occurrence matrix, rows and columns
correspond with left and right context. In symmetric co-occurrence matrices, frequencies are
calculated from the entire window, and therefore rows and columns are equal [Sahlgren, 2008].
The Hyperspace Analogue to Language (HAL) model [Lund and Burgess, 1996] uses a paradig-
matic approach to encode distributional word context. The HAL model uses a directional
matrix over a sliding window of 5 words to the left and right as context [Lund and Burgess,
1996]. For example, Figure 2.4 (right) demonstrates the paradigmatic neighborhood for the
word “knife” with a small 2+2 words context on the same corpus used for the first example.
While “spoon” occurs in both syntagmatic and paradigmatic context, all the words in this fig-
ure intuitively have a higher taxonomical similarity than the words in the previous example
[Turney and Pantel, 2010]: they are singular neuter nouns from the area of household items
and most of them share a common hyponym “tool”.

Similarity measures. The most popular measure for semantic nearness captures the idea that
the angle between two vectors in semantic space a,b ∈ Rn reflects the similarity between them.
We calculate this measure using cosine similarity [Turney and Pantel, 2010]:

cos(a,b) =
a · b

√
a · a ·

√
b · b

=
a

‖ a ‖
· b

‖ b ‖
(2.6)

If a and b are normalized to unit length, cosine similarity equals the dot product. The value
ranges from -1 (vectors are pointing in opposite direction) over 0 (vectors are orthogonal) to 1
(vectors point in the same direction) [Turney and Pantel, 2010]. In practice, cosine similarity is
often applied to positive vectors (e.g. term frequency vectors), where a value of 1 depicts the
highest similarity, while a value of 0 means they are uncorrelated.

Other popular distance measures include the geometric measures Euclidean distance and
Manhattan distance as well as information theory measures Kullback-Leibler, Dice coefficient and
Jaccard coefficient [Bullinaria and Levy, 2007; Manning et al., 2008].

2.2.3 Neural Distributed Language Representations

Statistical language modeling based on global matrix factorization, such as LSA, is problem-
atic when applied to large data sets with high variance. Not only it is computationally ex-
pensive to handle large sparse matrices. More importantly, in order to obtain generalization,
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it is necessary to handle longer context sequences and a large number of infrequent words or
phrases. Therefore, neural models aim to approximate a language model (LM) by observing a
large number of samples in context. They often learn a mathematical embedding from the high-
dimensional word representation to a continuous vector space with much lower dimension.

Neural probabilistic language model. Bengio et al. [2003] propose a neural probabilistic lan-
guage model that utilizes neural networks to learn a distributed representation of words along
with a probability function for word sequences. The main idea is to represent language by the
conditional probability of the next word given all previous words:

p(w1, . . . , wT ) =
T∏
t=1

p(wt | w1, . . . , wt−1) (2.7)

where w1, . . . , wT is a sequence of words. The complexity of this model can be considerably
reduced using the n-gram model, which reduces the context to combinations of the last n − 1

words:
p(wt | w1, . . . , wt−1) ≈ p(wt | wt−1, . . . , wt−n+1) (2.8)

This probability distribution can be computed by a neural network with a softmax output layer
to produce a vector with positive probabilities for a word wt summing to 1:

p(wt | wt−1, . . . , wt−n+1) =
eywt∑
i e

yi
(2.9)

They use a feed-forward neural network with word-feature mapping weights Wx, hidden
layer weights Wh, output layer weights Wy and corresponding bias terms bx,bh:

y = Wxx + bx + Wy tanh(Whx + bh) (2.10)

Input features x are a concatenation of all context words. The network is trained with stochastic
gradient descent (SGD) and a loss function that maximizes the penalized log-likelihood for the
training corpus. The advantage of this neural model over traditional term-frequency models
is a more compact and smoother representation that better preserves linear regularities among
words. In addition, a neural model can be trained with a larger number of conditioning vari-
ables, because it scales linearly, not exponentially with the number of variables [Bengio et al.,
2003].

Word embeddings based on local context windows. Mikolov et al. [2013a] propose two model
architectures to learn accurate distributed word representations with minimized computa-
tional complexity. The Continuous Bag-of-Words model (CBOW) predicts the current word based
on its context, while the Skip-gram model predicts surrounding words for a given word (see Fig-
ure 2.5). By learning word vectors without constructing a full language model, this approach
improves efficiency for training with larger datasets. Especially the Skip-gram model, often
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FIGURE 2.5: Architecture of CBOW (left) and Skip-gram (right) models.
(Figure taken from Mikolov et al. [2013a])

referred to as word2vec4, has proven to be an efficient and accurate model. The objective of this
model is to encode paradigmatic relations for a given word by maximizing the log-likelihood
for all surrounding words Ct in a window of typically 4-10 words [Mikolov et al., 2013b]:

Lskip-gram =
T∑
t=1

∑
c∈Ct

log p(wc | wt) (2.11)

Word2vec uses a similar neural architecture as Bengio et al. [2003] with a single hidden layer.
Instead of softmax, they use negative sampling, a simplified form of Noise Contrastive Estima-
tion [Gutmann and Hyvärinen, 2012], to reduce the training complexity of the model. Here,
the objective is to maximize the negative log-likelihood:

Lword2vec =
T∑
t=1

(∑
c∈Ct

log(1 + e−s(wt,wc)) +
∑
n∈Nt,c

log(1 + e−s(wt,wn))
)

(2.12)

where Nt,c is a set of negative word examples and s(wt, wc) = u>wt
vwc is a scoring function

using the scalar product between word vector uwt and context vector vwc [Pennington et al.,
2014]. Additionally, they observed that subsampling frequent words during training results in
better representations of uncommon words [Mikolov et al., 2013b].

Character-based word embeddings. Word-based embedding models have the disadvantage,
that their one-hot input representation relies on a fixed vocabulary, and it is therefore not pos-
sible to generate word vectors for out-of-vocabulary (OOV) words. Furthermore, such repre-
sentations ignore the morphology of words and will assign distinct vectors to different word

4https://code.google.com/p/word2vec

https://code.google.com/p/word2vec
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FIGURE 2.6: Architecture of the Paragraph Vector framework.
(Figure taken from Le and Mikolov [2014])

forms or writings. Additionally, the accuracy of infrequent words, e.g. in morphologically
rich languages or specialized domains, may suffer from too few training examples. To address
this issue, Bojanowski et al. [2017] propose Fasttext5, a word embedding approach that ex-
tends the Skip-gram model with character-based word representations similar to the approach
of Schütze [1993]. In this model, each word is represented as a bag of character n-grams with
3 ≤ n ≤ 6. For example, the word “where” is represented by a special sequence <where> which
yields the following 3-grams: <wh, whe, her, ere, re>. The model efficiently learns a
representation for each n-gram and represents a word as the sum of n-gram vectors. To achieve
this, Eq. 2.12 is extended with a different scoring function:

s(w, c) =
∑
g∈Gw

z>g vc (2.13)

where Gw is the set of n-grams appearing in w and zg is the vector representation of n-gram g.

Neural word embeddings based on global word co-occurrences. Pennington et al. [2014] pro-
pose the Global Vectors for word representation (GloVe)6 model. In contrast to word2vec, which
utilizes local word context windows, GloVe is based on a global word–word co-occurrence ma-
trix and therefore is able to leverage a larger amount of context from syntagmatic relations. To
increase efficiency, GloVe is trained only on the nonzero elements of the matrix using a specific
weighted least squares model. They use a similar log-bilinear regression objective as Mikolov
et al. [2013a]. This method achieves higher accuracy than word2vec for models based on the
same amount of training data and computation time during training.

Distributed representations of sentences and documents. Most of the previous models focus
on the representation of single words. Aiming at the representation of longer phrases, it was
shown that the Skip-gram model exhibits a linear structure that allows accurate composition
of words [Mikolov et al., 2013b; Mitchell and Lapata, 2010]. This is possible by using simple

5https://fasttext.cc
6https://nlp.stanford.edu/projects/glove/

https://fasttext.cc
https://nlp.stanford.edu/projects/glove/
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vector arithmetics, especially element-wise addition or weighted average of word vectors, to
create fixed-length representations from multiple words. However, similar to the bag-of-words
approach, the main drawback from this method is that word order information is lost during
this process. This is especially problematic for the representation of long documents.

Therefore, Le and Mikolov [2014] propose an unsupervised algorithm that addresses these
issues for texts of variable length. Their Paragraph Vectors (ParVec) model extends the CBOW
model by optimizing multiple shared word vectors in combination with one unique paragraph
vector per text. This process is visualized in Figure 2.6: words are represented by columns
in matrix W, and paragraphs are mapped to columns in matrix D. At training time, these
matrices are optimized using a neural network:

y = Uh(wt−k, . . . , wt+k; W,D) + b (2.14)

where h is constructed by concatenation or average of word vectors and U,b are parameters
of a hierarchical softmax objective encoded as binary Huffman tree. At prediction time, an
inference step is performed through the word matrix W of the network. Finally, a paragraph
representation is computed by performing SGD through the paragraph matrix D.

2.2.4 Contextualized Language Models

The pre-trained word representation models discussed in the previous section have become
key components for neural language understanding. However, most of them are focused on
paradigmatic relations and ignore how words are used differently in different linguistic con-
texts, such as polysemous words. The goal of contextualized language models is to capture
context-dependent aspects of word meaning while maintaining the effectiveness of unsuper-
vised language representations.

Embeddings from Language Models. To tackle this challenge, Peters et al. [2018] propose
Embeddings from Language Models (ELMo), a deep contextualized word representation using a
recurrent neural network (RNN) with higher complexity. More specifically, they extend the
idea of Bengio et al. [2003] by learning a bidirectional language model with multiple layers of
internal representations. The overall objective of this LM is to maximize the log likelihood of
predicting each word in a document d = (w1, . . . , wT ) given its left and right context:

LELMo =

T∑
t=1

(
log p(wt | w1, . . . , wt−1; ΘCNN, ~ΘLSTM,Θs)

+ log p(wt | wt+1, . . . , wT ; ΘCNN, ~ΘLSTM,Θs)
) (2.15)

Internally, the parameters Θ refer to three different types of network layers, which are jointly
optimized: Input word vectors xt are encoded on character-level using a convolutional neural
network (CNN) [LeCun et al., 1989] with parameters ΘCNN. Internal hidden states ht,k are
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FIGURE 2.7: Model architectures of ELMo (left) and BERT (right).
(Figure adapted from Devlin et al. [2019] CC BY 4.0)

computed by L interconnected layers of Long Short-Term Memory (LSTM) [Hochreiter and
Schmidhuber, 1997] for forward and backward direction ~ΘLSTM, ~ΘLSTM. The output objective
yt is calculated by a softmax layer. The first layer uses the word vectors as input:

ht,0 = xt = CNN(wt,ΘCNN)

~ht,k = LSTM(ht,k−1, ~ht−1,k; ~ΘLSTM)

~ht,k = LSTM(ht,k−1, ~ht+1,k; ~ΘLSTM)

ht,k = ~ht,k ⊕ ~ht,k

yt = softmax(ht,L)

(2.16)

where ⊕ depicts vector concatenation and k ∈ 1, . . . , L is the layer index. Finally, the represen-
tation is calculated by collapsing all layers into a single vector:

xelmo(wt, d) = γ
L∑
k=1

skht,k (2.17)

where γ is a scaling parameter and s are softmax-normalized layer weights learned for a spe-
cific task. It was shown that ELMo representations capture polysemous word meanings from
context and therefore significantly improve many word-based tasks compared to GloVe.

Bidirectional masked language models. One inherent problem of RNN-based LMs is that
the recurrent architecture makes it hard to maintain long-range dependencies. In these net-
works, the sequential information has to travel a long path through the cells, leading to the
vanishing gradient problem [Pascanu et al., 2013]. Although LSTMs can partly solve this issue
using gating mechanisms, their architecture becomes very complex, because every time step
in a sequence depends on all preceding time steps (see Eq. 2.7). This leads to high memory
bandwidth and prevents the parallelization of computations. An additional problem is that
RNN-based LMs handle left and right context of a word as two independent sequences (see
Eq. 2.15 and Figure 2.7). Combining both directions into a true bidirectional model would
exponentially increase the number of dependent weights.
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FIGURE 2.8: Pre-training and fine-tuning procedures for BERT.
(Figure taken from Devlin et al. [2019] CC BY 4.0)

Devlin et al. [2019] tackle these problems using a different neural architecture. They pro-
pose Bidirectional Encoder Representations from Transformers (BERT)7. This model is based on a
multi-layer bidirectional Transformer encoder [Vaswani et al., 2017], which allows to fully in-
terconnect all tokens of a sequence using self-attention and parallelize the computations at the
same time. In BERT, the input sequence is represented using word-piece embeddings [Wu et
al., 2016] combined with positional embeddings [Gehring et al., 2017]. The latter is required
because the Transformer architecture reduces complexity of dependencies by discarding infor-
mation about the ordering of tokens in a sequence.

Training BERT for a task involves a two-step procedure (see Figure 2.8). The first step is pre-
training, where the model is optimized for a self-supervised objective to gain basic language
and domain understanding. Here, a masked language model is used to train bidirectional
sentence representations. This is done by masking input tokens at random and then predict
those masked tokens using softmax. Furthermore, a binarized next sentence prediction task
is used to improve the understanding of relationships between sentences. The second step is
fine-tuning, where task-specific inputs and outputs are used to continue training the model.
Different to feature-based approaches such as ELMo, where fixed language representations
are used as input to downstream tasks, fine-tuning involves the adaptation of all model pa-
rameters end-to-end. This second step is relatively inexpensive and requires less data than
pre-training. Therefore, this procedure makes it possible to enhance task-specific models with
pre-trained weights from domain-specific LMs, such as BioBERT [Lee et al., 2019].

In this thesis, we investigate the applicability of distributed representations, including neu-
ral LMs, to the information-seeking process. We focus on the desired model properties for
Neural MR introduced in Section 1.2 and discuss the limitations of each model. Because a
large amount of related work was published concurrently to this thesis, we subsequently in-
clude appearing work in each of the following chapters.

7https://github.com/google-research/bert

https://github.com/google-research/bert
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2.3 Supervised Sequence Learning

One of our main objectives is to learn generalized Machine Reading models from unlabeled
text. As we have seen in the previous section, distributional language models are often based
on self-supervision, which is a process to apply supervised learning with training examples that
can be obtained automatically using distributional statistics. Furthermore, we have identified
and discussed the sequential properties of natural language. Subsequently, in this section we
will discuss models and requirements for supervised sequence learning [Graves, 2012].

In general, a supervised learning task is based on a training set S and a test set S′ that
both contain input–target pairs (x,y). We assume that both S and S′ are drawn from the same
distribution. The goal of supervised machine learning is to minimize a specific error measure
E defined on the test set by finding the maximum-likelihood parameters Θml for a model :

Θml = arg max
Θ

p(S | Θ) = arg max
Θ

∏
(x,y)∈S

p(y | x,Θ) (2.18)

In neural networks, this objective is approximated by iteratively optimizing the parameters
using a loss function on the training set, which is closely related to E. The standard procedure
is to minimize the loss L(S) defined as negative logarithm of the probability to predict the
training examples:

L(S,Θ) = − log
∏

(x,y)∈S

p(y | x,Θ) = −
∑

(x,y)∈S

log p(y | x,Θ) (2.19)

where the explicit dependence on Θ is often left out in notation. The transfer of learning to
predict S′ from S is known as generalization.

When applying Machine Learning (ML) methods to sequential tasks, such as language
modeling, we assume that the individual data points, such as words or sentences, are not
independent [Graves, 2012]. Instead, both the input features x1...T = (x1, . . . ,xT ) and labels
y1...T = (y1, . . . ,yT ) constitute sequences with high correlation. Although linguistic input is
not explicitly a time series, the individual inputs xt and labels yt, t ∈ {1, . . . , T} are usually
referred to as time steps at position t. Following this approach, we require a ML model to
handle the alignment between individual time steps in the sequence. We will now discuss the
most common sequence learning architectures with a focus on our Neural Machine Reading
task.

2.3.1 Finite State Models

A simple approach to model sequence labeling is the Hidden Markov Model (HMM). This model
assumes that a sequence of labels Y = (y1, . . . ,yT ) is generated by a Markov process with
unobservable (hidden) states [Rabiner, 1989]. It further assumes that the observations X =

(x1, . . . ,xT ) are generated by another process which depends on Y . The goal is then to learn a
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FIGURE 2.9: Dependency graph of simple HMMs (left), MEMMs (center) and
CRF (right). Arrows show dependencies between states. States shown with open

circles are not generated by the model.
(Figure adapted from Lafferty et al. [2001])

generative model for X :
P (X) =

∑
Y

P (X|Y )P (Y ) (2.20)

where the sum runs over all possible sequences of Y . This optimization problem can be solved
by efficient dynamic programming algorithms such as forward-backward, Viterbi [Forney,
1973] or Baum-Welch [Baum et al., 1970]. However, these algorithms are especially not prac-
tical for feature-rich and long sequences. The most significant drawback of this model is that
predictions for the next time step t+ 1 are solely based on the current time step t (see left side
of Figure 2.9). Thus, the model ignores the previous history of the sequence entirely.

Therefore, Maximum Entropy Markov Models (MEMMs) extend this idea using a feature-
based discriminative model. MEMMs describe the probability for reaching a label sequence
Y using an initial state distribution P0(Y ) and a transition function. This function PY ′(Y |X)

describes the probability of reaching Y from a previous state Y ′ and the current observation se-
quenceX (see center of Figure 2.9). It can be fitted per state using maximum entropy classifiers
[McCallum et al., 2000].

MEMMs and other discriminative finite-state models share a label bias problem: Transition
probabilities are calculated per state, and therefore they compete against each other, rather
than against all transitions in the model. As a result, states with fewer outgoing transitions
are preferred during optimization. Conditional Random Fields (CRF) addresses this problem
by modeling the joint probability of the entire label sequence Y in a single exponential model
[Lafferty et al., 2001]. In CRF, Y is represented as an undirected graph where vertices and edges
are constructed using the Markov property. The joint distribution over the label sequence Y
given X is expressed as a random field, which is optimized by maximizing the log-likelihood
objective:

p(Y |X;λ) =
exp

∑T
t=1

∑
j λjfj(X, t, yt−1, yt)∑

y∈Y
∑T

t=1

∑
j λjfj(X, t, y

′
t−1, y

′
t)

(2.21)

where λ is a set of weights and f is a feature function that returns j feature values. The CRF
model is much more expressive than HMM-like models, because it allows arbitrary depen-
dencies on the observed sequence (see right side of Figure 2.9). Furthermore, in CRF, a state
does not need to be specified completely by the features, therefore it can better exploit sparse
training sequences [Lafferty et al., 2001].
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FIGURE 2.10: RNN architecture with input activations x, hidden layer h and
output layer y. Dotted lines depict recurrent connections.

(Figure adapted from Graves [2012])

2.3.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of neural architectures that handle sequential itera-
tions using cyclical connections [Graves, 2012]. These recurrent connections allow the internal
state of a network to act as ‘memory’ for previous inputs. A typical RNN architecture uses
nodes that receive input from the current data point xt and from hidden node outputs ht−1

from the previous time step. Here, nodes use nonlinear sigmoid activations σ. The network’s
output yt is calculated from the hidden node values ht at time step t [Lipton and Berkowitz,
2015]:

ht = σ(Whxxt + Whhht−1 + bh)

yt = softmax(Wyhht + by)
(2.22)

where Whx, Whh and Wyh are weight matrices for input, recurrent and output connections
respectively, and bh, by are bias parameters. This architecture is visualized in Figure 2.10 with
unfolded time steps. In practice, this network can be trained over many time steps using the
backpropagation through time (BPTT) algorithm [Werbos, 1990].

2.3.3 Long Short-Term Memory

Training RNNs over long sequences is challenging, because gradients may vanish or explode
along the large number of recurrent connections. This makes it especially hard to capture
long-range dependencies in the data. Hochreiter and Schmidhuber [1997] introduce the Long
Short-Term Memory (LSTM) model to overcome this problem. In contrast to RNNs, the hidden
node is replaced by a memory cell (see Figure 2.11). Each cell contains five nodes, which are
internally connected [Lipton and Berkowitz, 2015]:

• Input node (g): takes the activations from input layer xt and the previous time step ht−1,
similar to a RNN. Typically, inputs are summed and run through a tanh activation φ.
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FIGURE 2.11: A single LSTM memory cell with input node g, internal state s,
input gate i, forget gate f and output gate o. Dotted lines depict recurrent con-

nections. (Figure adapted from Lipton and Berkowitz [2015])

• Internal state (s): acts like a memory using a self-connected recurrent edge with linear
activation. This ensures that the gradient can pass many time steps without vanishing or
exploding.

• Input gate (i): controls the flow from input node to internal state by multiplication with a
sigmoid σ. If the gate value is zero, activations from other nodes are cut off. If the value
is one, activations are passed through.

• Forget gate (f ): enables the cell to delete its internal memory [Gers et al., 2000]. If the gate
value is zero, the internal state is flushed. If the value is one, the internal state is kept.

• Output gate (o): controls the flow from internal state to the output ht.

The computation algorithm for one LSTM layer is as follows [Lipton and Berkowitz, 2015]:

gt = φ(Wgxxt + Wghht−1 + bg)

it = σ(Wixxt + Wihht−1 + bi)

f t = σ(Wfxxt + Wfhht−1 + bf )

ot = σ(Woxxt + Wohht−1 + bo)

st = φ(gt � it + st−1 � f t)

ht = st � ot

(2.23)

where W, b are weight matrices and bias terms, and � denotes element-wise multiplication.
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FIGURE 2.12: Bidirectional LSTM architecture with input activations x, forward
layer h, backward layer z and output layer y.

(Figure adapted from Graves [2012])

For many tasks it is beneficial to extend this unidirectional LSTM so that it can handle
information from left and right context of the current time step. Therefore, the bidirectional
LSTM (BLSTM) uses a second independent backward layer z (see Figure 2.12). The backward
layer is defined similarly to above, but with recurrent connections zt+1 instead of ht−1. Both
layers are combined to train a common objective y [Lipton and Berkowitz, 2015]:

yt = softmax(Wyhht + Wyzzt + by) (2.24)

where Wyh,Wyz are weight matrices by is a bias term. The BLSTM can be trained the same
way as an RNN using BPTT, or—in case of very long or running sequences—with truncated
backpropagation through time (TBPTT) [Williams and Zipser, 1989].

2.3.4 Transformer

One inherent problem of recurrent models, such as RNN and LSTM, is that they cannot effi-
ciently be parallelized. Recurrent models require O(n) sequential operations to compute an
example of n time steps. Handling long-range dependencies is especially expensive in recur-
rent models, because the maximum path length to compute between two examples is O(n) as
well. Vaswani et al. [2017] introduce the Transformer to overcome this problem. Their model
is entirely based on attention to draw global dependencies between input and output. The
Transformer can efficiently parallelize computations by keeping a maximum path length of
O(1) and therefore reducing sequential operations to O(1).

The Transformer’s architecture is shown in Figure 2.13. It consists of N layers of encoder
and decoder stacks. The input is a sequence of token embeddings concatenated with positional
encodings, which provide ordering information of the tokens. Similar to sequence-to-sequence
models, this architecture allows every position in the decoder to attend over all positions in
the input sequence. An encoder is composed of a self-attention mechanism on the input, and
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FIGURE 2.13: Architecture
of the Transformer model
with encoder (left) and de-

coder stacks (right).
(Figure taken from Vaswani

et al. [2017])

FIGURE 2.14: Architecture
of scaled dot-product atten-
tion (top) and multi-head at-

tention (bottom).
(Figures taken from Vaswani

et al. [2017])

a feed-forward network, with residual connections and layer normalization after each step. A
decoder is composed of masked attention on the output, self-attention over the decoder state
and the encoder output, and a feed-forward network, again with residual connections and
normalization after each step. The masking is necessary to ensure that predictions depend
only on the known outputs from previous time steps. The decoder produces a logit vector
containing the softmax probabilities for the task output. Typically, N = 6 layers are used with
an embeddings dimension of 512.

The Transformer uses a scaled dot-product attention mechanism, which calculates alignment
values V between input keys K of dimension dk and output queries Q [Vaswani et al., 2017]:

attention(Q,K,V) = softmax
(QK>√

dk

)
V (2.25)

In multi-head attention, this function is performed h times in parallel with different learned lin-
ear projections of queries, keys and values. This allows the model to jointly attend to different
positions from the representation subspaces. The attention mechanisms are shown in Figure
2.14. Typically, h = 8 attention heads with 64 dimensions are used.
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A Transformer model with dimension d has a total computational complexity per layer of
O(n2 · d), in contrast to RNN, which has a complexity of O(n · d2) [Vaswani et al., 2017]. Subse-
quently, Transformer models not only provide better parallelization, but are also better scalable
in memory capacity, especially for short sequences where n < d. However, a large drawback
of Transformers is the memory requirement for long sequences, such as entire documents with
thousands of tokens.

2.4 Discussion

In this chapter, we have discussed traditional approaches for Information Extraction, which
are often based on discrete syntactic processing. We have shown that these models improve
from pre-trained distributed language representations, but—most prominently in the case of
Entity Linking—remain inside the symbolic paradigm and generate discrete outcomes. The
vision of Neural Machine Reading, however, is to design the information-seeking process as a
continuous end-to-end task. In this scenario, intermediate representations are distributed and
allow semantic nuances to propagate though multiple layers in the application.

Sequence labeling models and Transformers, on the other hand, are currently too focused
on the distributional hypothesis. Especially in specific domains such as clinical medicine, a
large amount of knowledge is modeled using hierarchical structure, for example in the Uni-
fied Medical Language System (UMLS). A domain-specific Neural Machine Reading model
needs to utilize this structural knowledge in the same way as neural Language Models utilize
distributional information from raw text. Furthermore, in long documents the distributional
hypothesis may fail, because long-range and multi-document dependencies can not effectively
be resolved by these models.

In this thesis, we therefore keep on following the traditional ideas of word-sense disam-
biguation, coreference resolution, Entity Linking and Topic Modeling. However, we do not
primarily regard them as linguistic tasks on their own. Instead, we aim to embed these tasks
into the larger picture of the information-seeking process.
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Chapter 3

A Robust Model for Efficient Entity
Linking

In Information Extraction, named entities are the smallest units of information [Sarawagi,
2008]. Therefore, we expect from a Machine Reading model to be able to detect and repre-
sent entities in a way so they can be linked to an existing knowledge base. In this chapter, we
approach RQ 1: What are general solutions to identify named entities in domain-specific text?

We present TASTY, a robust end-to-end model for Named Entity Recognition (NER) and
Linking (NEL)1. As we aim to create a MR model for domain-specific text resources, we put
a special focus on vertical corpora, such as Reuters news, Frankfurter Rundschau, Medline
biomedical abstracts and car discussion forums. These corpora contain a large amount of
domain-specific entities with potentially idiosyncratic names and context from different lan-
guages. We approach the NER task with contextual sequence learning and combine subword-
level token representations combined with distributed word embeddings. Our NEL approach
utilizes cosine similarity between model’s predictions and entity embeddings. We design
TASTY so that it is efficiently trainable with only few hundred labeled sentences and target
to reach state-of-the-art results at the same time.

This chapter is structured as follows: In Section 3.1, we introduce the tasks of NER and
NEL, their design challenges and common errors. In Section 3.2, we describe our TASTY Entity
Linking model, which uses robust word encoding (Section 3.2.1), a sequence learning based ap-
proach for recognition (Section 3.2.2) and a vector space approach for disambiguation (Section
3.2.3). In Section 3.3, we evaluate both tasks using publicly available datasets from different
domains in English and German. We show that the effectiveness of our TASTY model is on
par with state-of-the-art and highlight its efficiency in scenarios with limited available training
data. In Section 3.4, we analyze errors produced by our model. We summarize this chapter in
Section 3.5 with a review of the research questions posed at the beginning and we highlight
the building blocks that will be important during the following chapters of this thesis.

1The main parts of this chapter were published by S. Arnold, F. A. Gers, T. Kilias, and A. Löser [2016b]. “Robust
Named Entity Recognition in Idiosyncratic Domains”. In: arXiv:1608.06757 [cs.CL]. The chapter contains additional
results published by S. Arnold, R. Dziuba, and A. Löser [2016a]. “TASTY: Interactive Entity Linking As-You-Type”.
In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations,
pp. 111–115.
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3.1 Introduction

Information Extraction tasks have become very important not only in the Web, but also for
in-house enterprise settings. One of the crucial steps towards understanding natural language
is Named Entity Linking (NEL), which aims to extract mentions of entity names in text and
link them to a knowledge base. NEL is necessary for many higher-level tasks such as Relation
Extraction, Knowledge Base Population, Question Answering and Information Retrieval. In
these scenarios recall is critical, because candidates that are not generated by an NEL system
can not be recovered later [Hachey et al., 2013].

We contribute TASTY, a general annotator for robust Named Entity Recognition and Link-
ing that can be trained for vertical domains with low human labeling effort. TASTY does not
depend on domain-specific rules, dictionaries, fine-tuning, syntactic annotation or external
knowledge. Instead, our approach is built as an end-to-end model which is based on low-
level character features of text. We train our model for news and biomedical domains with
raw text data and few hundred labels. With this model, we aim to achieve equal performance
compared to state-of-the-art NER annotators for common tasks, such as CoNLL2003, KORE50,
ACE2004 and MSNBC. We further apply the highly domain-specific biomedical GENIA cor-
pus and a car discussion forum dataset to show how our approach adapts to various idiosyn-
cratic domains. In particular, we observe that letter-trigram word encoding with surface form
features efficiently compensates typing and capitalization errors and Bidirectional Long Short-
Term Memory (BLSTM) networks capture useful distributional context required for effective
NER. With a combination of these techniques, we achieve better context representation than
word2vec models trained with significantly larger corpora.

3.1.1 Task Definition

The Entity Linking task aims to establish links between a dataset of text documents D and
a structured knowledge base containing named entities ej ∈ K [Ji and Grishman, 2011]. This
problem can be divided into two stages [Hachey et al., 2013]. In the mention recognition (NER)
stage, the goal is to detect a set of entity mentions mi ∈ Md for each document d ∈ D, so that
each mention holds a span of tokens that refers to an entity or concept. In the disambiguation
(NED) stage, the goal is to create the entity links Ed by assigning to each of the mentions an
entry of the knowledge base:

Ed = {〈m, e〉 | m ∈Md ∧ ∃e ∈ K : m refers to e} (3.1)

This further implies that mentions which do not refer to an entry in K (often called NIL) are
not contained in Ed. We will focus on these two stages in sections 3.2.2 and 3.2.3.
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3.1.2 Challenges for Entity Linking

Pink et al. [2014] show that NER components can reduce the search space for slot filling tasks
by 99.8% with a recall loss of 15%. However, large effort is required to adapt most annota-
tors to specialized domains, such as biomedical documents. When focusing on recall for these
domains, we face three major problems. First, the language used in the documents is often id-
iosyncratic and cannot be effectively identified by standard NLP tools [Prokofyev et al., 2014].
Second, training these domains is difficult: data is sparse, data may contain a large number
of non-linkable entity mentions (NILs) and large labeled gold standards are hardly available.
Third, applications vary greatly and we cannot standardize annotation guidelines to meet all of
their requirements [Ling et al., 2015]. For example, NER on news texts might focus on proper
named entity annotation (e.g. people, companies and locations), whereas phrase recognition
on medical text might include the annotation of common concepts (e.g. medical terms and
treatments). We therefore focus on building a generalized system with high recall, which can be
efficiently trained with only few labeled examples.

3.1.3 Common Error Analysis

Ling et al. [2015] point out common errors of NER systems, which yield non-recognized men-
tions (false negatives), invalid detections (false positives), wrong boundaries (e.g. multi-word
mentions, missing determiners) and annotation errors from human labelers (e.g., correct an-
swers are not marked as correct, unclear annotation guidelines). Consider the following exam-
ple taken from the biomedical GENIA corpus [Kim et al., 2003], with underlined named entity
mentions:

Example 3.1. Engagement of the Lewis X antigen (CD15) results in monocyte activation.
Nuclear extracts of anti-CD15 cross-linked cells demonstrated enhanced levels of the transcriptional
factor activator protein-1, minimally changed nuclear factor-kappa B, and did not affect
SV40 promoter specific protein-1.

We observe that common errors are caused by a manifold number of frequent factors:

• non-verbatim mentions (e.g. misspellings, alternate writings: monoyctes, Lewis-X)

• part-of-speech (POS) tagging errors (e.g. unidentified NP tags: [monoycte]JJ)

• wrong capitalization (e.g. uppercase headlines, lowercase proper names)

• unseen or novel words (e.g. idiosyncratic language: anti-CD15)

• irregular word context (e.g. collapsed lists, semi-structured data, invalid segmentation)

We therefore focus on building a robust system, which does not rely on linguistic prepro-
cessing, but instead is trained with in-domain end-to-end data and character-based represen-
tations.
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3.2 Entity Linking Model

In this section we describe the three stages of our TASTY Entity Linking model: robust word
encoding, Named Entity Recognition and Named Entity Disambiguation.

3.2.1 Robust Word Encoding

We have shown that the most common errors for recall loss are misspellings, POS errors, capi-
talization, unseen words and irregular context. Therefore we carefully design the input repre-
sentations to our model using three complementary feature spaces: distributed word embed-
dings, letter-trigram representations and surface form features.

Word embeddings. Sahlgren [2008] proposes local word context features for resolving paradig-
matic relations (e.g. cyclosporin A-treated cells / HU treated cells). We apply to this problem the
efficient technique of Mikolov et al. [2013a]. Their approach utilizes the continuous Skip-gram
model to classify a word based on the distribution of other words in the same sentence. Our
implementation is based on word2vec and represents words in dense vector space.

xemb(w) = word2vec(w) (3.2)

Letter-trigram hashing. Dictionary-based word vectorization methods suffer from sparse trai-
ning sets, especially in the case of non-verbatim mentions, rare words, spelling and capitaliza-
tion errors. For example, word2vec generalizes insufficiently for rare words in idiosyncratic
domains or for misspelled words, since for these words no vector representation is learned
at training time. In the biomedical GENIA data set, we notice 27% unseen words (out-of-
vocabulary) in the pretrained model. As training data generation is expensive, we investigate
a general approach for the generation of word vectors. We use letter-trigram word hashing
as introduced by Huang et al. [2013]. This technique splits a word into discriminative three-
letter ‘syllables’ with boundary markers and generates an n-hot vector using this bag, e.g.
“cell” → {#ce,cel,ell,ll#} (see Figure 3.1). With this partitioning, the vector is robust
against misspellings and out-of-vocabulary words and has the advantage to group similar
morphologic words in similar vector spaces:

xtri(w) =
∑

t∈trigram(w)

eidx(t) (3.3)

where idx(t) is a function that returns the index of a trigram and ei is the i-th unit vector.

Surface form features. Words appear in various surface forms, e.g. capitalized at the begin-
ning of sentences, uppercase in headlines, lowercase in social media text or other erroneous
capitalizations. However, the most important features for shallow learners are word shape
properties, such as length, initial capitalization, all-word uppercase, in-word capitalization
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FIGURE 3.1: Architecture of robust letter-trigram word encoding. The charac-
ter stream “family of G-protein coupled chemokine receptors” is tokenized into words

w1...T and encoded into word vectors x1...T using letter-trigram hashing.

and use of numbers or punctuation [Ling and Weld, 2012]. When using mixed-case dictionar-
ies, these features are implicitly included in the encoding. We achieve stronger generalization
and faster learning by encoding words as lowercase and isolating the surface information as
15 boolean values in the feature vector that indicate uppercase (UC), lowercase (LC), numerics
(NUM), punctuation (PUC), document (DOC) and sentence (SNT) features:

xsf(w) =


startUC(w), allUC(w), startLC(w), allLC(w),mixedCase(w),

startNUM(w), someNUM(w), allNUM(w), endNUM(w),

startPUC(w), endPUC(w),

startSNT(w), startDOC(w), endSNT(w), endDOC(w)


>

(3.4)

3.2.2 Named Entity Recognition

We model mention recognition as sequential word labeling problem. We express each sentence
in a document as a sequence of words: s = (w1, . . . , wT ). We define a mention as the longest
possible span of adjacent tokens that refer to a an entity or relevant concept of a real-world
object, such as CD28 surface receptor. We further assume that mentions are non-recursive and
non-overlapping. Figure 3.2 illustrates an example for context-sensitive transformation of a
word sequence s = (w1, . . . , wT ) into word labels y = (y1, . . . , yT ). We use the BIOES tagging
scheme [Ratinov and Roth, 2009] to encode boundaries of a mention span. We assign labels
{B, I,O,E, S} to each token to mark begin (B), inside (I), outside (O), end (E) and single-word
(S) mentions, reading from left to right. Our objective is now to predict the most likely label ŷt
for a word wt regarding its context:

ŷt = arg max
l∈{B,I,O,E,S}

P (yt = l | w1, . . . , wt−1, wt, wt+1, . . . , wT ) (3.5)

We utilize recurrent neural networks to approximate a solution for this objective.
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FIGURE 3.2: Architecture of the BLSTM network used for named entity recogni-
tion. (1) The character stream “the CD28 surface receptor provides” is tokenized into
words and converted into word feature vectors using surface forms (SF), letter-
trigram hashing (TRI) and word embeddings (EMB). (2) We use a deep contex-
tual sequence learner with stacked feed-forward (FF) and recurrent (LSTM) lay-
ers for bidirectional context representation. (3) We correct BIOES word labels

using local context and decode them into mention annotations.

Sequence learning. To efficiently recognize mentions in text, long-range context-sensitive in-
formation is indispensable. Especially in the idiosyncratic domain, we expect noisy input data
with high variance. Thus, we require strong generalization not only for the syntactic repre-
sentation of language, but also for the latent semantic dependencies between the words in
a document. We approach this problem by applying the computational model of recurrent
neural networks, in particular Long Short-Term Memory networks (LSTMs) [Hochreiter and
Schmidhuber, 1997] with forget gates [Gers et al., 2000] to the problem of sequence learning.
Like deep neural feed-forward (FF) networks, LSTMs are able to learn complex parameters us-
ing gradient descent, but include additional recurrent connections between cells to influence
weight updates over adjacent time steps. With their ability to memorize and forget over time,
LSTMs have proven to generalize context-sensitive sequential data well [Graves, 2012; Lipton
and Berkowitz, 2015].

Bidirectional Long Short-Term Memory. We use a combination of all three word feature ap-
proaches as input for a network of five stacked layers (see Figure 3.2). The word-wise sequen-
tial input vectors x1...T are calculated using concatenation (⊕):

x(w) = xemb(w)⊕ xtri(w)⊕ xsf(w) (3.6)
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We squash the input vector using two fully connected FF layers of size 300. We utilize the
efficient rectified linear unit (ReLU) activation, which is more robust against the vanishing
gradient problem [Nair and Hinton, 2010]. The core sequence learner is composed of two
LSTM layers with 100 cells each, one connected to read the sentence from left to right, the
other in reverse direction. The bidirectional layers with forward state ht and backward state
zt are combined into a final FF layer with 5-class softmax activation. The output of this layer
yt is a probability distribution over BIOES labels per time step t:

ht = LSTM(ht−1,xt)

zt = LSTM(ht+1,xt)

yt = softmax(Wyhht + Wyzzt + by)

(3.7)

where Wyh,Wyz are weight matrices and by is a bias term. We iterate over labeled sentences as
training examples in mini-batches to update weights and bias parameters using backpropaga-
tion through time [Werbos, 1990]. The network is then used to predict label probabilities y1...T

for unseen word sequences w1...T . We implement the network using the DL4J2 framework. We
use stochastic gradient descent with RMSProp [Tieleman and Hinton, 2012] and a learning rate
of 0.0025 with L2 regularization. Using the bidirectional LSTM, we achieve deeper contextual
understanding, e.g. over the boundaries of multi-word annotations and at the beginning of
sentences.

Entity mention decoding. To apply the sequential sequence learner to unseen text, we do
a forward pass through the network to predict label probabilities y = (y1, . . . ,yT ) for each
sentence. The output of the BLSTM softmax is a local per-word probability vector yt for BIOES
labels. However, this prediction cannot guarantee a correct order of labels according to the
BIOES scheme, e.gm E is only valid after B or I. We generate a corrected label sequence ŷ for
each sentence ỹ = (O,y1, . . . ,yT ,O) by maximizing the combined probability of all possible
valid sequences:

ŷ = arg max
y

N+1∏
t=2

ψ(ỹt−1, ỹt) (3.8)

where ψ(yi, yj) = 1, if yj is a valid label after yi; 0 otherwise. This step is usually implemented
as CRF classifier [McCallum and Li, 2003]. However, we rely on the more generalized LSTM
sequence learner and use this simple approach for correction. Since ψ only depends on two
adjacent tokens, we implement the optimization of Equation 3.8 using dynamic programming.
Finally, we decode the corrected sequence ŷ into a set of sentence-level mention annotations
Ms and add the instances to the document mentionsMd.

2http://deeplearning4j.org version 0.4.0

http://deeplearning4j.org
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3.2.3 Named Entity Disambiguation

The next step is to disambiguate the set of mentions to the knowledge base K. We break down
this problem into two steps. In the first step, candidate retrieval, we retrieve a set of candidates
Cm for each mention m ∈Md. In the second step, disambiguation we aim to find the most likely
entity assignment 〈m, e〉 by ranking all candidates and picking the first-ranked candidate.

Knowledge Base. The knowledge baseK is constructed as a set of entities, which we represent
as a tuple:

K = {e | e = 〈 id,N , ε, σ 〉} (3.9)

where id is a unique entity identifier,N is a list of names and abbreviations for the entity, ε is an
entity name embedding and σ a context embedding. We populate this information by parsing
page names, page titles and anchor links from a recent English Wikipedia dump3. We store
this information in a Lucene4 to allow lookup and search of entity names with low latency.

Entity embeddings. For each entity e in the knowledge base, we create two distributed entity
embeddings εe and σe. The purpose of these vectors is to encode contextual information for
disambiguation. The entity name embedding encodes all known names for an entity using the
trigram representation:

εe =
∑
w∈Ne

∑
t∈trigram(w)

eidx(t) (3.10)

The entity context embedding encodes typical entity context ce as distributed vector representa-
tion. We utilize the Paragraph Vectors model [Le and Mikolov, 2014]:

σe = ParVec(ce) (3.11)

We train this model using Wikipedia articles and generate the entity context embeddings using
the abstract of each entity.

Candidate retrieval. In the first step, we generate entity candidates by matching the mention
string to the set of names contained in the alias list:

Cm = {e | e ∈ K ∧m ∈ Ne} (3.12)

We use the implementation of BM25 in Lucene with additional fuzzy matching parameters to
allow higher recall.

3https://dumps.wikimedia.org/enwiki/
4https://lucene.apache.org

https://dumps.wikimedia.org/enwiki/
https://lucene.apache.org
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Disambiguation. In the second step, we aim to find the most likely entity assignment 〈m, e〉
by ranking all candidates and picking the first-ranked candidate:

Ed = {〈m, e〉 | m ∈Md ∧ e = arg max
c∈Cm

sim(c,m, d)} (3.13)

The similarity function sim(c,m, d) uses cosine similarity between the pre-calculated entity
embeddings of each candidate εc, σc, the mention name εm and document context σd:

sim(c,m, d) = cosine(εc ⊕ σc, εm ⊕ σd) (3.14)

While picking the first-ranked candidate could be replaced by collective re-ranking over a doc-
ument, we observe that the integration of document context in the similarity function provides
enough contextual information to achieve coherent disambiguation.

3.3 Evaluation

We evaluate two configurations of our TASTY model on eleven gold standard evaluation data
sets. We perform Named Entity Recognition and Named Entity Disambiguation tasks. We
show that the combination of letter-trigram word hashing and word embeddings with bidirec-
tional LSTM yields the best results and outperforms sequence learners based on dictionaries
or word2vec. To highlight the generalization of our model to specialized domains, we run
tests on common-typed English data sets as well as on German and English datasets from
the biomedical and car industry domains. We compare our system on these data sets with
state-of-the-art entity linkers and annotators from NLP pipelines.

3.3.1 Evaluation Set-up

We train two models with identical parameterization, each with labeled sentences from the cor-
responding training data set. The first model, TASTY, is solely based on letter-trigram features
from the training data. The second model, TASTY+emb, utilizes additional word embeddings
to include distributional context information from pre-training a larger dataset5. For prepro-
cessing (sentence splitting and word tokenization), we use Stanford CoreNLP 3.6.0 [Manning
et al., 2014]. The prediction model was trained using Deeplearning4j with nd4j-x86 backend.
Training TASTY on a 4-core Intel i7 CPU at 2.8GHz takes approximately 50 minutes.

Evaluation datasets. We use a variety of standard and domain-specific data sets for training
and evaluation. CoNLL2003 [Kim et al., 2004] is a standard NER dataset based on the Reuters
RCV-1 news corpus. It covers named entities of type person, location, organization and miscel-
laneous in English and German languages. KORE50 [Hoffart et al., 2012] use a similar annota-
tion scheme on the same corpus. The TIGER treebank [Brants et al., 2002] is based on German

5we utilize the pretrained GoogleNews-vectors-negative300 embeddings model
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Dataset CoNLL03-en KORE50 MSNBC ACE2004

domain English news English news English news English news
task named entities named entities wikification concepts

Model Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Babelfy 44.2 62.7 51.8 69.2 68.8 69.0 36.9 66.2 47.4 8.2 48.0 14.1
DBpedia Spotlight 66.6 58.6 62.4 – – – 48.6 45.2 46.8 11.1 64.4 18.9
Entityclassifier 68.2 69.8 69.0 87.6 88.2 87.9 61.7 76.0 68.1 11.5 77.8 20.0
Stanford NER 96.4 73.6 83.5 91.4 73.6 81.5 87.9 77.6 82.4 17.1 85.6 28.6
LingPipe 69.0 50.3 58.2 78.0 71.5 74.6 53.1 57.0 55.0 12.7 69.6 21.5
FOX 94.7 71.3 81.3 90.4 71.5 79.8 3.2 2.7 2.9 – – –
NERD-ML 51.7 62.1 56.4 67.5 79.2 72.8 59.8 47.7 53.1 19.6 34.3 25.0

TASTY 87.9 90.1 89.0 96.6 92.2 94.3 68.5 83.1 75.2 11.7 86.0 20.5
TASTY+emb 90.3 92.0 91.1 95.3 92.2 93.7 72.4 82.7 77.2 – – –

TABLE 3.1: Experimental results for English Named Entity Recognition for four
standard data sets compared to seven state-of-the-art annotators. The table
shows micro-averaged Precision, Recall, F1 scores for exact annotation span
match. All annotators use the same domain- and task-independent model across

all experiments.

Dataset CoNLL03-de TIGER GENIA CAR-Model CAR-Part

domain German news German news English biomedical German web German web
task named entities noun phrases biomedical terms car models car parts
Model Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

TagMe – – – – – – – – – 2.2 29.8 4.0 1.3 21.4 2.5
Stanford NER 89.4 63.9 74.5 68.9 31.7 43.4 31.7 7.6 12.3 – – – – – –
LingPipe – – – – – – 71.8 68.3 70.0 – – – – – –

TASTY 88.1 87.6 87.8 81.6 71.3 76.1 75.7 80.3 77.9 74.6 72.8 73.7 69.6 66.9 68.2
TASTY+emb 87.3 88.6 87.9 82.7 83.9 83.3 77.5 79.5 78.5 82.5 79.9 81.2 79.3 70.8 74.8

TABLE 3.2: Experimental results for domain-specific Named Entity Recognition
on five data sets compared to standard entity annotators (micro-averaged Preci-
sion, Recall, F1 scores). The datasets vary in language, source domain and an-
notation task definition. Therefore, all TASTY annotators are specifically trained

using labeled in-domain data.

news from Frankfurter Rundschau and contains annotated noun phrases. MSNBC [Cucerzan,
2007] contains NEL annotations for linking English news texts to Wikipedia articles. ACE2004
[Mitchell et al., 2005] contains NEL annotations covering named entities and general concepts
on English news text. AQUAINT [Milne and Witten, 2008] contains NEL annotations on long
English news documents, covering only the first mention of an entity. The DBpedia Spotlight
corpus [Mendes et al., 2011] contains NEL annotations on English news articles. The GENIA
Corpus [Kim et al., 2003] contains biomedical abstracts from PubMed and covers biomedical
entities such as proteins, genes and cells. The CAR corpus was created by crawling German
discussion forums on cars and annotating car models and parts [Mehlitz, 2019].
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CoNLL03-en GENIA

Configuration Prec Rec F1 Prec Rec F1

TASTY+emb 90.3 92.0 91.1 77.5 79.5 78.5

no LSTM -21.3 -20.1 -20.6 -15.1 -14.3 -14.8
unidirectional LSTM -5.1 -2.0 -3.5 -2.6 -3.8 -3.3
1-hot encoding -14.2 -16.4 -15.3 -6.4 +0.4 -3.2
no EMB encoding -2.4 -1.9 -2.1 -1.8 +0.8 -0.6
no TRI encoding -0.6 -5.8 -3.3 -14.1 -4.4 -9.5

TABLE 3.3: Ablation study for Named Entity Recognition (difference in micro-
averaged F1 score) for different model configurations.

Named entity annotators. We distinguish between three broad categories of named entity
annotators: Babelfy [Moro et al., 2014], DBpedia Spotlight [Mendes et al., 2011], Entityclassifier
[Dojchinovski and Kliegr, 2013] and TagMe [Ferragina and Scaiella, 2010] spot noun chunks
and filter them with dictionaries, often derived from Wikipedia. Stanford NER [Manning et
al., 2014] and LingPipe6 utilize discriminative tagging approaches. FOX [Speck and Ngomo,
2014] and NERD-ML [Van Erp et al., 2013] combine several approaches in an ensemble learner
for enhancing precision. AIDA [Hoffart et al., 2011] uses a graph-based approach for entity
disambiguation.

Quality measures. We measure overall performance of all annotators using micro-averaged
precision, recall and NER-style F1 score for exact span match, as defined by Cornolti et al.
[2013]. We evaluate these systems in comparison with our TASTY model and utilize the GER-
BIL evaluation framework [Usbeck et al., 2015] to run the experiments.

3.3.2 Experimental Results

Next, we discuss the evaluation of our TASTY system on NER and NED tasks.

Named Entity Recognition performance on common English news. Table 3.1 shows the com-
parison of TASTY with seven state-of-the-art annotators on common news data sets in English
language. We observe that TASTY achieves the highest recall scores of all tested annotators,
with 86%–92% on all measured data sets. Most notably, it achieves a state-of-the art 91.1%
F1 on the CoNLL03-en task. Overall, we achieve high micro-F1 scores of 91%–94% on news
entity recognition. We notice that systems specialized on word sense disambiguation (Babelfy,
DBpedia Spotlight) don’t perform well on untyped concept recognition and wikification tasks.
Stanford NER reaches high precision, but especially lacks recall. Ensemble methods, such as
FOX and NERD-ML can help to improve precision drastically, but do not affect recall. We
also notice an overall low precision of all annotators on the ACE2004 dataset, which can be
explained with differing annotation standards between training and inference time.

6http://alias-i.com/lingpipe/

http://alias-i.com/lingpipe/
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FIGURE 3.3: Effect of the training data size on NER performance (F1 score) for
five different configurations on CoNLL2003-en and GENIA datasets.

Entity recognition on specific domains. Table 3.2 shows the application of TASTY to five spe-
cialized domains. Across all domains investigated, our system performs equally compared
to the English news domain, with micro-F1 scores between 75–88%. Off-the-shelf annotators
such as Stanford NER or TagMe do not generalize that well, and even the specialized GENIA
model in LingPipe falls short 8.5 percentage points on the corresponding data set. Further-
more, TASTY’s NER performance on German newswire is directly comparable to the results on
English text. We achieve 87.9% F1 on German CoNLL2003 data and 83.3% F1 on the TIGER
dataset. Other annotators do not support German language at all. TASTY’s end-to-end se-
quence learner is able to adapt to different languages without any hyperparameter changes.

Ablation study. Table 3.3 shows the results of experiments on both CoNLL2003 and GENIA
data sets with different model configurations. It is clearly visible that the LSTM sequence learn-
ing model increases performance significantly compared to feed-forward neural networks (no
LSTM). Furthermore, bidirectional LSTM layers contribute another 3.3–3.5 percentage points
F1. We notice that dictionary-based word encoding (1-hot) works suprisingly well for the
medical domain, whereas it suffers from high word ambiguity in the news texts. Using only
letter-trigram hashing for word encodings (no EMB) is generally robust, and even improves
recall in the medical domain. This domain contains a large number of compound words, so the
encoding based on subword-‘syllables’ can provide important information about word mean-
ing. Using only pretrained word2vec embeddings (no TRI) performs well on news data, but
cannot adapt to the medical domain without retraining, mainly because of the large number of
unseen words. We follow that trigram word encodings are an important factor for robustness
and lead to higher precision in special domains and high recall in general.

Effect of training data size. Because it is often expensive to obtain labeled data, it is crucial to
design effective models that require less training data. As we have shown in the ablation study,
TASTY’s architecture supports this scenario with strong generalization and high robustness.
Figure 3.3 shows the progress of TASTY’s sequence learner with varying training data sizes.
We observe that the TASTY model reaches its peak performance already after training on 4,000–
5,000 randomly sampled sentences. For TASTY+emb, the curve is even steeper and further
increases with more than 7,000 examples.
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Model MSNBC ACE2004 AQUAINT DBpedia Spotlight

Babelfy 70.3 56.5 68.2 51.6
DBpedia Spotlight 38.4 45.6 47.5 60.6
Entityclassifier – – – 25.5
FOX – – 42.9 15.3
NERD-ML – 57.8 59.6 55.6
AIDA 68.4 70.3 55.0 24.9

TASTY+emb 60.8 65.3 61.9 65.4

TABLE 3.4: Experimental results (micro-averaged F1 score) for Named Entity
Disambiguation to English Wikipedia on four standard data sets.

Disambiguation performance to English Wikipedia. Table 3.4 shows a comparison of TASTY’s
entity disambiguation with six state-of-the-art Entity Linking systems. TASTY achieves highest
F1 scores on the DBpedia data set and is the only NEL system that consistently achieves high
scores across all data sets in the range of 61–65% F1.

3.4 Discussion and Error Analysis

We investigate different aspects of the TASTY components by manual inspection of classifica-
tion errors in the context of the document. For the error classes (false negative detections, false
positives and invalid boundaries), we observe the following causes:

Unseen words and misspellings. In dictionary-based configurations (e.g. 1-hot encoding),
we observe false negative predictions caused by out-of-vocabulary for words that do not exist
in the training data. The cause can be rare, unseen or novel words (e.g. T-prolymphocytic cells)
or misspellings (e.g. strengthnend). These words yield a null vector result from the encoder and
can therefore not be distinguished by the LSTM. The error increases when using word2vec, be-
cause these models are often trained with stop words filtered out, which are very frequent and
provide important context. This also implicates that e.g. mentions surrounded by or contain-
ing a determiner (e.g. The Sunday Telegraph quoted Majorie Orr) are highly error prone towards
the detection of their boundaries. We resolve this error using the letter-trigram approach. Very
rare trigrams (e.g. thh) may be missing in the encoding, but this only affect single dimensions
as opposed to the vector as a whole.

Misleading surface form features. Surface forms encode important features for NER (e.g.
capitalization of “new” in Alan Shearer was named as the new England captain and as New York

beat the Angels). However, case-sensitive word vectorization methods yield a large amount of
false positive predictions caused by incorrect capitalization in the input data. An uppercase
headline (e.g. TENNIS - U.S. TEAM ON THE ROAD FOR 1997 FED CUP) is encoded completely
different than a lowercase one (e.g. U.S. team on the road for Fed Cup). Because of that, we
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achieve best results with lowercase trigram vectors and additional surface form feature flags,
as described in Section 3.2.1.

Syntagmatic and paradigmatic word relations. We observe mentions that are composed of
co-occurring words with high ambiguity (e.g. degradation of IkB alpha in T cell lines). These
groups encode strong syntagmatic word relations [Sahlgren, 2008] that can be leveraged to
resolve word sense and homonyms from sentence context. Therefore, correct boundaries in
these groups can effectively be identified only with contextual models such as LSTMs. Or-
thogonal to the previous problem, different words in a paradigmatic relation can occur in the
same context (e.g. cyclosporin A-treated cells and HU treated cells). These groups are efficiently
represented in word2vec. However, letter-trigram vectors cannot encode paradigmatic groups
and therefore require a larger training sample to capture these relations.

Context boundaries. Often, resolving synonyms requires a larger context than the sentence-
level LSTM used in TASTY. In these cases, word sense is often defined by a topic model local
to the paragraph (e.g. sports: Tiger was lost in the woods after divorce.). This problem does not
heavily affect NER recall, but is crucial for NED performance and coreference resolution.

3.5 Conclusions

In this chapter, we have approached RQ 1, the identification of named entities in domain-
specific text. We presented TASTY, a robust end-to-end model for Named Entity Recognition
and Linking. We have shown that TASTY is able to identify named entities with high recall in
domain-specific text and with small available training data. Our end-to-end architecture pro-
vides a first step towards general Machine Reading by pushing the costs for creating a new IE
model down to labeling a set of training examples. We showed that TASTY is able to recognize
generic entity names such as persons, organizations and locations, as well as domain-specific
concepts such as disease names, biomedical concepts and car parts. Our model requires la-
beled training data in the range of 4,000–5,000 sentences to reach an F1 score above 90%. TASTY

leverages contextual information from sentence level using a bidirectional LSTM. It is robust
to spelling errors and morphological variations by using a subword-level encoding based on
letter trigrams and surface form features7. The same features were used to disambiguate the
entity names to a knowledge base without additional model training. We further included
corpus-level background knowledge by including distributed word embeddings. This helped
to further speed up the training process and solved generalization errors emerging from lack
of available training data. Finally, one aspect of RQ 1 still remains open: can contextual in-
formation on document level, especially structure and topic information, further improve the
identification of named entities? We will come back to this question in Chapter 5.

7After this chapter was published, related research proposed a combination of letter n-gram based and dis-
tributional approaches for word encoding [Bojanowski et al., 2017]. The Fasttext model comprises most of the
advantages for robust word encoding presented in this chapter and we will use it in the following chapters.
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Chapter 4

Coherent Topic Segmentation and
Classification

When searching for information, a human reader first glances over a document, spots relevant
sections and then focuses on a few sentences for resolving her intention. To reproduce this
process, a Machine Reading system requires to identify the structure of a document and high-
light the salient topics for each section. In this chapter, we approach RQ 2: How can Machine
Reading models detect topics and structure in long documents? We propose the task of segmenting
long documents into coherent sections and assigning topic labels to each section.

We present SECTOR, a Neural Machine Reading model which learns a latent topic embed-
ding over the course of a document1. Our model utilizes bidirectional LSTMs with Bloom filter
embeddings on sentence level. We apply SECTOR to the task of coherent topic segmentation
and classification into up to 30 topics. We introduce the WIKISECTION dataset, which con-
tains long documents in English and German labeled for this task from two distinct domains:
medicine and geopolitics. Additionally, we evaluate SECTOR’s performance on four English
datasets from clinical medicine, biomedicine, geopolitics and general encyclopedia. We show
that SECTOR performs classification with high accuracy across all domains and can adapt to
various datasets to predict boundaries of coherent passages.

This chapter is structured as follows: In Section 4.1, we define the task of topic segmenta-
tion and classification. In Section 4.2, we introduce our WIKISECTION dataset for this task. In
Section 4.3, we present the architecture for our SECTOR model. We formulate three different
sentence representations as input features (Section 4.3.1). We describe SECTOR’s central topic
embedding which is trained for single and multi-label multi-class topic classification classifi-
cation (Section 4.3.2). We introduce our embedding deviation method for segmenting topics
(Section 4.3.3). In Section 4.4, we evaluate different configurations of our SECTOR model in
comparison to 12 architectures from related work. In Section 4.5, we discuss the results and
give insights into the internal representations of SECTOR. In Section 4.6, we discuss related
work. We summarize this chapter in Section 4.7 and point out important building blocks for
our vision of Neural Machine Reading.

1This chapter was published by S. Arnold, R. Schneider, P. Cudré-Mauroux, F. A. Gers, and A. Löser [2019].
“SECTOR: A Neural Model for Coherent Topic Segmentation and Classification”. In: Transactions of the Association
for Computational Linguistics 7, pp. 169–184 with oral presentation at ACL’2019.
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4.1 Introduction

Today’s systems for natural language understanding are comprised of building blocks that ex-
tract semantic information from the text, such as named entities, relations, topics or discourse
structure. In traditional Natural Language Processing (NLP), these extractors are typically
applied to bags of words or full sentences [Hirschberg and Manning, 2015]. Recent neural
architectures build upon pre-trained word or sentence embeddings [Mikolov et al., 2013a; Le
and Mikolov, 2014], which focus on semantic relations that can be learned from large sets of
paradigmatic examples, even from long ranges [Dieng et al., 2017].

From a human perspective, however, it is mostly the authors themselves who help best to
understand a text. Especially in long documents, an author thoughtfully designs a readable
structure and guides the reader through the text by arranging topics into coherent passages
[Glavaš et al., 2016]. In many cases, this structure is not formally expressed as section headings
(e.g. in news articles, reviews, discussion forums) or it is structured according to domain-
specific aspects (e.g. health reports, research papers, insurance documents).

4.1.1 Challenges for Topic Representation

Ideally, systems for text analytics, such as Topic Detection and Tracking (TDT) [Allan, 2002],
text summarization [Huang et al., 2003], Information Retrieval (IR) [Dias et al., 2007] or Ques-
tion Answering (QA) [Cohen et al., 2018] could access a document representation that is aware
of both topical (i.e. latent semantic content) and structural information (i.e. segmentation) in
the text [MacAvaney et al., 2018]. The challenge in building such a representation is to com-
bine these two dimensions which are strongly interwoven in the author’s mind. It is therefore
important to understand topic segmentation and classification as a mutual task that requires
to encode both topic information and document structure coherently.

In this chapter, we present SECTOR2, an end-to-end model which learns an embedding of
latent topics from potentially ambiguous headings and can be applied to entire documents to
predict local topics on sentence level. Our model encodes topical information on a vertical
dimension and structural information on a horizontal dimension. We show that the resulting
embedding can be leveraged in a downstream pipeline to segment a document into coherent
sections and classify the sections into one of up to 30 topic categories reaching 71.6% F1 – or
alternatively attach up to 603 topic labels with 71.1% MAP. We further show that segmentation
performance of our bidirectional LSTM architecture is comparable to specialized state-of-the-
art segmentation methods on various real-world datasets.

To the best of our knowledge, the combined task of segmentation and classification has not
been approached on full document level before. There exist a large number of datasets for text
segmentation, but most of them do not reflect real-world topic drifts [Choi, 2000; Sehikh et al.,
2017], do not include topic labels [Eisenstein and Barzilay, 2008; Jeong and Titov, 2010; Glavaš

2Our source code is available under the Apache License 2.0 at https://github.com/sebastianarnold/
SECTOR

https://github.com/sebastianarnold/SECTOR
https://github.com/sebastianarnold/SECTOR
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FIGURE 4.1: Overview of the WIKISECTION task: (1) The input is a plain text
document D without structure information. (2) We assume the sentences s1...N
contain a coherent sequence of local topics e1...N . (3) The task is to segment the
document into coherent sections S1...M and (4) to classify each section with a

topic label y1...M .

et al., 2016] or are heavily normalized and too small to be used for training neural networks
[Chen et al., 2009]. We can utilize a generic segmentation dataset derived from Wikipedia that
includes headings [Koshorek et al., 2018], but there is also a need in IR and QA for supervised
structural topic labels [Agarwal and Yu, 2009; MacAvaney et al., 2018], different languages and
more specific domains, such as clinical or biomedical research [Tepper et al., 2012; Tsatsaronis
et al., 2012] and news-based TDT [Kumaran and Allan, 2004; Leetaru and Schrodt, 2013].

Therefore we introduce WIKISECTION3, a large novel dataset of 38K articles from the En-
glish and German Wikipedia labeled with 242K sections, original headings and normalized
topic labels for up to 30 topics from two domains: diseases and cities. We chose these subsets to
cover both clinical/biomedical aspects (e.g. symptoms, treatments, complications) and news-
based topics (e.g. history, politics, economy, climate). Both article types are reasonably well-
structured according to Wikipedia guidelines [Piccardi et al., 2018], but we show that they are
also complementary: diseases is a typical scientific domain with low entropy, i.e. very narrow
topics, precise language and low word ambiguity. In contrast, cities resembles a diversified
domain, with high entropy, i.e. broader topics, common language and higher word ambiguity,
and will be more applicable to e.g. news, risk reports or travel reviews.

We compare SECTOR to existing segmentation and classification methods based on latent
dirichlet allocation (LDA), paragraph embeddings, convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). We show that SECTOR significantly improves these
methods in a combined task by up to 29.5 points F1 when applied to plain text with no given
segmentation.

3The dataset is available under the CC BY-SA 3.0 license at https://github.com/sebastianarnold/
WikiSection

https://github.com/sebastianarnold/WikiSection
https://github.com/sebastianarnold/WikiSection
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Dataset disease city
language en de en de

total docs 3.6K 2.3K 19.5K 12.5K
avg sents per doc 58.5 45.7 56.5 39.9
avg sects per doc 7.5 7.2 8.3 7.6
headings 8.5K 6.1K 23.0K 12.2K
topics 27 25 30 27
coverage 94.6% 89.5% 96.6% 96.1%

TABLE 4.1: Dataset characteristics for disease (German: Krankheit) and city (Ger-
man: Stadt). Headings denotes the number of distinct section and subsection
headings among the documents. Topics stands for the number of topic labels af-
ter synset clustering. Coverage denotes the proportion of headings covered by

topics; the remaining headings are labeled as other.

4.1.2 Task Definition

We start with a definition of the WIKISECTION Machine Reading task shown in Figure 4.1. We
take a documentD = 〈S, T 〉 consisting ofN consecutive sentences S = (s1, . . . , sN ) and empty
segmentation T = ∅ as input. In our example, this is the plain text of a Wikipedia article (e.g.
about Trichomoniasis4) without any section information. For each sentence sk, we assume a
distribution of local topics ek that gradually changes over the course of the document.

The task is to split D into a sequence of distinct topic sections T = (T1, . . . , TM ), so that
each predicted section Tj = 〈Sj , yj〉 contains a sequence of coherent sentences Sj ⊆ S and a
topic label yj that describes the common topic in these sentences. For the document Trichomo-

niasis, the sequence of topic labels is y1...M = (symptom, cause, diagnosis, prevention, treatment,
complication, epidemiology).

4.2 WikiSection Dataset

For the evaluation of this task, we created WIKISECTION, a novel dataset containing a gold
standard of 38K full-text documents from English and German Wikipedia comprehensively
annotated with sections and topic labels (see Table 4.1).

The documents originate from recent dumps in English5 and German6. We filtered the
collection using SPARQL queries against Wikidata [Tanon et al., 2016]. We retrieved instances
of Wikidata categories disease (Q12136) and their subcategories, e.g. Trichomoniasis or Pertussis,
or city (Q515), e.g. London or Madrid.

Our dataset contains the article abstracts, plain text of the body, positions of all sections
given by the Wikipedia editors with their original headings (e.g. “Causes | Genetic sequence”)
and a normalized topic label (e.g. disease.cause). We randomized the order of documents and
split them into 70% training, 10% validation, 20% test sets.

4https://en.wikipedia.org/w/index.php?title=Trichomoniasis&oldid=814235024
5https://dumps.wikimedia.org/enwiki/20180101
6https://dumps.wikimedia.org/dewiki/20180101

https://en.wikipedia.org/w/index.php?title=Trichomoniasis&oldid=814235024
https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/dewiki/


4.2. WikiSection Dataset 59

rank heading h label y H freq

0 Diagnosis diagnosis 0.68 3,854
1 Treatment treatment 0.69 3,501
2 Signs and

Symptoms
symptom 0.68 2,452

. . .
21 Differential

Diagnosis
diagnosis 0.23 236

22 Pathogenesis mechanism 0.16 205
23 Medications medication 0.14 186

. . .
8,494 Usher Syndrome

Type IV
classification 0.00 1

8,495 False Melanose
Lesions

other 0.00 1

8,496 Cognitive
Therapy

treatment 0.00 1

TABLE 4.2: Frequency and entropy (H) of top-3 head and randomly selected
torso and tail headings for category diseases in the English Wikipedia.

4.2.1 Preprocessing

To obtain plain document text, we used Wikiextractor7, split the abstract sections and stripped
all section headings and other structure tags except newline characters and lists.

Vocabulary mismatch in section headings. Table 4.2 shows examples of section headings
from disease articles separated into head (most common), torso (frequently used) and tail
(rare). Initially, we expected articles to share congruent structure in naming and order. In-
stead, we observe a high variance with 8.5K distinct headings in the diseases domain and over
23K for English cities. A closer inspection reveals that Wikipedia authors utilize headings at
different granularity levels, frequently copy and paste from other articles, but also introduce
synonyms or hyponyms, which leads to a vocabulary mismatch problem [Furnas et al., 1987]. As
a result, the distribution of headings is heavy-tailed across all articles. Roughly 1% of headings
appear more than 25 times while the vast majority (88%) appear 1 or 2 times only.

4.2.2 Synset Clustering

In order to use Wikipedia headlines as a source for topic labels, we contribute a normalization
method to reduce the high variance of headings to few representative labels based on the
clustering of BabelNet synsets [Navigli and Ponzetto, 2012].

We create a set H that contains all headings in the dataset and use the BabelNet API to
match8 each heading h ∈ H to its corresponding synsets Sh ⊂ S. For example, “Cognitive

behavioral therapy” is assigned to synset bn:03387773n. Next, we insert all matched synsets into

7http://attardi.github.io/wikiextractor/
8We match lemmas of main senses and compounds to synsets of type NOUN CONCEPT.

http://attardi.github.io/wikiextractor/
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en_disease (27) de_disease (25) en_city (30) de_city (27)

cause definition architecture architektur
classification diagnose climate bildung
complication epidemiologie crime demografie
culture fauna culture erholung
diagnosis forschung demography etymologie
epidemiology genetik district gemeinde
etymology geographie economics gemeindepartnerschaft
fauna geschichte education geographie
genetics infektion environment geschichte
geography kategorisierung etymology infrastruktur
history klinik facility kirche
infection komplikation faith klima
management mensch geography kriminalität
mechanism organe health kultur
medication pathologie history menschen
pathology prävalenz infrastructure politik
pathophysiology prognose international_affairs presse
prevention risiko law regierung
prognosis symptom media religion
research terminologie overview sport
risk therapie people stadtlandschaft
screening ursache politics stadtviertel
surgery verlauf recreation tourismus
symptom vorbeugung science überblick
tomography sonstiges sights verkehr
treatment society wirtschaft
other sport sonstiges

tourism
transport
other

TABLE 4.3: List of topics contained in the four WIKISECTION datasets (represen-
tative cluster labels in alphabetical order).

an undirected graph G with nodes s ∈ S and edges e. We create edges between all synsets
that match among each other with a lemma h′ ∈ H. Finally, we apply a community detection
algorithm [Newman, 2006] on G to find dense clusters of synsets. We use these clusters as
normalized topics and assign the sense with most outgoing edges as representative label, in
our example e.g. therapy.

From this normalization step we obtain 598 synsets which we prune using the head/tail
division rule count(s) < 1

|S|
∑

si∈S count(si) [Jiang, 2012]. This method covers over 94% of all
headings and yields 26 normalized labels and one other class in the English disease dataset. Ta-
ble 4.1 shows the corresponding numbers for the other datasets, a full list of topics is shown in
Table 4.3. We verify our normalization process by manual inspection of 400 randomly chosen
heading–label assignments by two independent judges and report an accuracy of 97.2% with
an average observed inter-annotator agreement of 96.0%.
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4.3 Model Architecture

We introduce SECTOR, a neural embedding model that predicts a latent topic distribution for
every position in a document. Based on the task described the previous section, we aim to
detect M sections T1...M in a document D and assign topic labels yj = topic(Sj), where j =

1, . . . ,M . Because we do not know the expected number of sections, we formulate the objective
of our model on sentence level and later segment based on the predictions. Therefore, we
assign each sentence sk a sentence topic label ȳk = topic(sk), where k = 1, . . . , N . Thus, we
aim to predict coherent sections with respect to document context:

p(ȳ1, . . . , ȳN | D) =

N∏
k=1

p(ȳk | s1, . . . , sN ) (4.1)

We approach two variations of this task: for WIKISECTION-topics, we choose a single topic
label yj ∈ Y out of a small number of normalized topic labels. However, from this simplified
classification task arises an entailment problem, because topics might be hierarchically struc-
tured. For example, a section with heading “Treatment | Gene Therapy” might describe genetics as
a subtopic of treatment. Therefore, we also approach an extended task WIKISECTION-headings
to capture ambiguity in a heading, We follow the CBOW approach [Mikolov et al., 2013a] and
assign all words in the heading zj ⊂ Z as multi-label bag over the original heading vocabu-
lary. This turns our problem into a ranked retrieval task with a large number of ambiguous
labels, similar to Prabhu and Varma [2014]. It further eliminates the need for normalized topic
labels. Because this ‘noisy’ task is much larger and more ambiguous, our approach is similar
to extreme multi-label text classification [Prabhu and Varma, 2014]. For both tasks, we aim to
maximize the log likelihood of model parameters Θ per section and sentence:

L(Θ)sect =

M∑
j=1

log p(yj | s1, . . . , sN ; Θ)

L̄(Θ)sent =
N∑
k=1

log p(ȳk | s1, . . . , sN ; Θ)

(4.2)

Our SECTOR architecture consists of four stages shown in Figure 4.2: sentence encoding,
topic embedding, topic classification and topic segmentation. We discuss each stage in the
following sections.

4.3.1 Sentence Representation

The first stage of our SECTOR model transforms each sentence sk from plain text into a fixed-
size sentence vector xk which serves as input into the neural network layers. Following Hill
et al. [2016], word order is not critical for document-centric evaluation settings. Therefore, we
mainly focus on unsupervised compositional sentence representations.
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FIGURE 4.2: Training and inference phases of segmentation and topic classifica-
tion (SECTOR). For training (A), we preprocess Wikipedia documents to supply
a ground truth for segmentation T, headings Z and topic labels Y . During infer-
ence (B), we invoke SECTOR with unseen plain text to predict topic embeddings
ek on sentence level. The embeddings are used to segment the document and

classify headings ẑj and normalized topic labels ŷj .

Bag-of-words baseline. As a baseline, we compose sentence vectors using a weighted bag-of-
words scheme. Let ew ∈ {0, 1}|V| be the indicator vector, such that e

(i)
w = 1 iff w is the i-th

word in the fixed vocabulary V , and let TF-IDF(w) be the TF-IDF weight of w in the corpus.
We define the sparse bag-of-words encoding xbow ∈ R|V| as follows:

xbow(s) =
∑
w∈s

(
TF-IDF(w) · ew

)
(4.3)

Bloom filter encoding. For large V and long documents, input matrices grow too large to
fit into GPU memory, especially with larger batch sizes. Therefore we apply a compression
technique for sparse sentence vectors based on Bloom filters [Serrà and Karatzoglou, 2017]. A
Bloom filter projects every item of a set onto a bit array A(i) ∈ {0, 1}m using k independent
hash functions. We use the sum of bit arrays per word as compressed Bloom embedding
xbloom ∈ Nm:

xbloom(s) =
∑
w∈s

k∑
i=1

A
(
hashi(w)

)
(4.4)

We set parameters to m = 4096 and k = 5 to achieve a compression factor of 0.2, which
showed good performance in the original paper.

Sentence embeddings. We use the strategy of Arora et al. [2017] to generate a distributed sen-
tence representation based on pre-trained word2vec embeddings [Mikolov et al., 2013a]. This
method composes a sentence vector vemb ∈ Rd for all sentences using a probability-weighted
sum of word embeddings vw ∈ Rd with α = 10−4 and subtracts the first principal component
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FIGURE 4.3: Neural network architecture SECTOR. The recurrent model consists
of stacked LSTM, embedding and output layers that are optimized on document

level and later accessed during inference in stages 1–4.

u of the embedding matrix [ vs : s ∈ S ]:

vs =
1

|S|
∑
w∈S

( α

α+ p(w)
vw
)

xemb(s) = vs − uu>vs

(4.5)

4.3.2 Topic Classification

We model the second stage in our architecture to produce a dense distributed representation
of latent topics for each sentence in the document.

Sequential topic embedding. We use two layers of LSTM [Hochreiter and Schmidhuber, 1997]
with forget gates [Gers et al., 2000] connected to read the document in forward and backward
direction [Graves, 2012]. We feed the LSTM outputs to a ‘bottleneck’ layer with tanh activation
as topic embedding. Figure 4.3 shows these layers in context of the complete architecture. We
can see that context from left (k − 1) and right (k + 1) affects forward and backward layers
independently. It is therefore important to separate these weights in the embedding layer to
precisely capture the difference between sentences at section boundaries. We modify our ob-
jective given in Eq. 4.2 accordingly with long-range dependencies from forward and backward
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layers of the LSTM:

L(Θ) =
N∑
k=1

(
log p(ȳk | x1...k−1; ~Θ,Θ′)

+ log p(ȳk | xk+1...N ; ~Θ,Θ′)
) (4.6)

Note that we separate network parameters ~Θ and ~Θ for forward and backward directions
of the LSTM, and tie the remaining parameters Θ′ for the embedding and output layers. This
strategy couples the optimization of both directions into the same vector space without the
need for an additional loss function. The embeddings e1...N are calculated from the context-
adjusted hidden states h′k of the LSTM cells (here simplified as fLSTM) through the bottleneck
layer:

~hk = fLSTM(xk, ~h′k−1, ~Θ)

~hk = fLSTM(xk,
~h′k+1, ~Θ)

~ek = tanh(Weh
~hk + be)

~ek = tanh(Weh
~hk + be)

(4.7)

Now, a simple concatenation of the embeddings ek = ~ek ⊕ ~ek can be used as topic vector
by downstream applications.

Single-class topic classification. The third stage in our architecture is the output layer that
decodes the class labels. To learn model parameters Θ required by the embedding, we need
to optimize the full model for a training target. For the WIKISECTION-topics task, we use
a simple one-hot encoding ȳ ∈ {0, 1}|Y| of the topic labels constructed in Section 4.1.2 with a
softmax activation output layer. For the WIKISECTION-headings task, we encode each heading
as lowercase bag-of-words vector z̄ ∈ {0, 1}|Z|, such that z̄(i) = 1 iff the i-th word in Z is
contained in the heading, e.g. z̄k=̂{gene, therapy, treatment}. We then use a sigmoid activation
function:

ˆ̄yk = softmax(Wye~ek + Wye ~ek + by)

ˆ̄zk = sigmoid(Wze~ek + Wze ~ek + bz)
(4.8)

Multi-class topic classification. The multi-label objective is to maximize the likelihood of ev-
ery word that appears in a heading:

L(Θ) =
N∑
k=1

|Z|∑
i=1

log p(z̄
(i)
k | x1...N ; Θ) (4.9)

Ranking loss. For training this model, we use a variation of the logistic pairwise ranking loss
function proposed by Santos et al. [2015]. It learns to maximize the distance between positive
and negative labels:

Lrank = log
(
1 + exp(γ(m+ − score+(x)))

)
+ log

(
1 + exp(γ(m− + score−(x)))

) (4.10)
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We calculate the positive term of the loss by taking all scores of correct labels y+ into ac-
count. We average over all correct scores to avoid a too strong positive push on the energy
surface of the loss function [LeCun et al., 2006]. For the negative term, we only take the most
offending example y− among all incorrect class labels.

score+(x) =
1

|y+|
∑
y∈y+

sθ(x)(y)

score−(x) = arg max
y∈y−

sθ(x)(y)
(4.11)

Here, sθ(x)(y) denotes the score of label y for input x. We follow the authors and set scaling
factor γ = 2, margins m+ = 2.5 and m− = 0.5.

4.3.3 Topic Segmentation

In the final stage, we leverage the information encoded in the topic embedding and output
layers to segment the document and classify each section.

Baseline segmentation methods. As a simple baseline method, we use prior information from
the text and split sections at newline characters (NL). Additionally, we merge two adjacent
sections if they are assigned the same topic label after classification. If there is no newline
information available in the text, we use a maximum label (max) approach: We first split sections
at every sentence break, i.e. Sj = sk; j = k = 1, . . . , N and then merge all sections which share
at least one label in the top-2 predictions.

Embedding deviation. All information required to classify each sentence in a document is
contained in our dense topic embedding matrix E = [e1, . . . , eN ]. We are now interested in
the vector space movement of this embedding over the sequence of sentences. Therefore, we
apply a number of transformations adapted from Laplacian-of-Gaussian edge detection on
images [Ziou and Tabbone, 1998] to obtain the magnitude of embedding deviation (emd) per
sentence. First, we reduce the dimensionality of E to D dimensions using PCA, i.e. we solve
E = UΣW> using singular value decomposition and then project E on the D principal com-
ponents ED = EWD. Next, we apply Gaussian smoothing to obtain a smoothed matrix E′D

by convolution with a Gaussian kernel with variance σ2. From the reduced and smoothed em-
bedding vectors e′1...N we construct a sequence of deviations d1...N by calculating the stepwise
difference using cosine distance:

dk = cos(e′k−1, e
′
k) =

e′k−1 · e′k
‖ e′k−1 ‖‖ e′k ‖

(4.12)

Finally we apply the sequence d1...N with parameters D = 16 and σ = 2.5 to locate the
spots of fastest movement (see Figure 4.4), i.e. all k where dk−1 < dk > dk+1; k = 1 . . . N in
our discrete case. We use these positions to start a new section.
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FIGURE 4.4: Embedding deviations emdk and bemdk of the smoothed SECTOR
topic embeddings for example document Trichomoniasis. The plot shows the first
derivative of vector movement over sentences k = 1, . . . N from left to right.
Predicted segmentation is shown as black lines, the axis labels indicate ground

truth segmentation.

Bidirectional embedding deviation. We adopt the approach of Sehikh et al. [2017], who ex-
amine the difference between forward and backward layer of an LSTM for segmentation.
However, our approach focuses on the difference of left and right topic context over time steps
k, which allows for a sharper distinction between sections. Here, we obtain two smoothed em-
beddings ~e′ and ~e′ and define the bidirectional embedding deviation (bemd) as geometric mean of
the forward and backward difference:

d′k =

√
cos(~e′k−1, ~e′k) · cos( ~e′k,

~e′k+1) (4.13)

Finally, we assign each segment the mean class distribution of all contained sentences:

ŷj =
1

| Sj |
∑
si∈Sj

ˆ̄yi (4.14)

We show in the evaluation that our SECTOR model which was optimized for sentences ȳk
can be applied to the WIKISECTION task to predict coherently labeled sections Tj = 〈Sj , ŷj〉.

4.4 Evaluation

We conduct three experiments to evaluate the segmentation and classification task introduced
in Section 4.1.2. The WIKISECTION-topics experiment comprises segmentation and classifi-
cation of each section with a single topic label out of a small number of clean labels (25–30
topics). The WIKISECTION-headings experiment extends the classification task to multi-label
per section with a larger target vocabulary (115–601 words9). This is important, because often
there are no clean topic labels available for training or evaluation. Finally, we conduct a third
experiment to see how SECTOR performs across existing segmentation datasets.

9The original vocabulary of 1.0K–2.8K words reported in the paper was pruned during preprocessing
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4.4.1 Evaluation Set-up

Evaluation datasets. For the first two experiments we use the WIKISECTION datasets intro-
duced in Section 4.2, which contain documents about diseases and cities in both English and
German. The subsections are retained with full granularity. For the third experiment, text seg-
mentation results are often reported on artificial datasets [Choi, 2000]. It was shown that this
scenario is hardly applicable to topic-based segmentation [Koshorek et al., 2018], so we restrict
our evaluation to real-world datasets that are publicly available. The Wiki-727k dataset by
Koshorek et al. [2018] contains Wikipedia articles with a broad range topics and their top-level
sections. However, it is too large to compare exhaustively, so we use the smaller Wiki-50 subset.
We further use Cities and Elements datasets introduced by Chen et al. [2009], which also pro-
vide headings. These sets are typically used for word-level segmentation, so they don’t contain
any punctuation and are lowercased. Finally, we use the Clinical Textbook chapters introduced
by Eisenstein and Barzilay [2008], which do not supply headings.

Text segmentation models. We compare SECTOR to baseline text segmentation methods, C99
[Choi, 2000] and TopicTiling [Riedl and Biemann, 2012] and the state-of-the-art TextSeg [Koshorek
et al., 2018]. In the third experiment we report numbers for BayesSeg [Eisenstein and Barzilay,
2008] (without given number of segments) and GraphSeg [Glavaš et al., 2016].

Classification models. We compare SECTOR to existing models for single and multi-label sen-
tence classification. Because we are not aware of any existing method for combined segmen-
tation and classification, we first use given prior segmentation from newlines in the text (NL)
and then additionally apply our own segmentation strategies for plain text input: maximum
label (max), embedding deviation (emd) and bidirectional embedding deviation (bemd).

For the experiments, we train a Paragraph Vectors (PV) model [Le and Mikolov, 2014] using
all sections of the training sets. We utilize this model for single-label topic classification (de-
picted as PV>T) by assigning the given topic labels as paragraph IDs. Multi-label classification
is not possible with this model. We use the paragraph embedding for our own segmentation
strategies. We set the layer size to 256, window size to 7 and trained for 10 epochs using a batch
size of 512 sentences and a learning rate of 0.025. We further use an implementation of CNN
[Kim, 2014] with our pre-trained word vectors as input for single-label topics (CNN>T) and
multi-label headings (CNN>H). We configured the models using the hyperparameters given
in the paper and trained the model using a batch size of 256 sentences for 20 epochs with
learning rate 0.01.

SECTOR configurations. We evaluate the various configurations of our model discussed in
prior sections. SEC>T depicts the single-label topic classification model which uses a soft-
max activation output layer, SEC>H is the multi-label variant with a larger output and sig-
moid activations. Other options are: bag-of-words sentence encoding (+bow), Bloom filter
encoding (+bloom) and sentence embeddings (+emb); multi-class cross-entropy loss (as default)
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WikiSection-topics
single-label classification

en_disease
27 topics

de_disease
25 topics

en_city
30 topics

de_city
27 topics

model configuration segm. Pk F1 MAP Pk F1 MAP Pk F1 MAP Pk F1 MAP

Classification with newline prior segmentation
PV>T* NL 35.6 31.7 47.2 36.0 29.6 44.5 22.5 52.9 63.9 27.2 42.9 55.5
CNN>T* NL 31.5 40.4 55.6 31.6 38.1 53.7 13.2 66.3 76.1 13.7 63.4 75.0
SEC>T+bow NL 25.8 54.7 68.4 25.0 52.7 66.9 21.0 43.7 55.3 20.2 40.5 52.2
SEC>T+bloom NL 22.7 59.3 71.9 27.9 50.2 65.5 9.8 74.9 82.6 11.7 73.1 81.5
SEC>T+emb* NL 22.5 58.7 71.4 23.6 50.9 66.8 10.7 74.1 82.2 10.7 74.0 83.0

Classification and segmentation on plain text
C99 37.4 n/a n/a 42.7 n/a n/a 36.8 n/a n/a 38.3 n/a n/a
TopicTiling 43.4 n/a n/a 45.4 n/a n/a 30.5 n/a n/a 41.3 n/a n/a
TextSeg 24.3 n/a n/a 35.7 n/a n/a 19.3 n/a n/a 27.5 n/a n/a
PV>T* max 43.6 20.4 36.5 44.3 19.3 34.6 31.1 28.1 43.1 36.4 20.2 35.5
PV>T* emd 39.2 32.9 49.3 37.4 32.9 48.7 24.9 53.1 65.1 32.9 40.6 55.0
CNN>T* max 40.1 26.9 45.0 40.7 25.2 43.8 21.9 42.1 58.7 21.4 42.1 59.5
SEC>T+bow max 30.1 40.9 58.5 32.1 38.9 56.8 24.5 28.4 43.5 28.0 26.8 42.6
SEC>T+bloom max 27.9 49.6 64.7 35.3 39.5 57.3 12.7 63.3 74.3 26.2 58.9 71.6
SEC>T+bloom emd 29.7 52.8 67.5 35.3 44.8 61.6 16.4 65.8 77.3 26.0 65.5 76.7
SEC>T+bloom bemd 26.8 56.6 70.1 31.7 47.8 63.7 14.4 71.6 80.9 16.8 70.8 80.1
SEC>T+bloom+rank* bemd 26.8 56.7 68.8 33.1 44.0 58.5 15.7 71.1 79.1 18.0 66.8 76.1
SEC>T+emb* bemd 26.3 55.8 69.4 27.5 48.9 65.1 15.5 71.6 81.0 16.2 71.0 81.1

TABLE 4.4: Experimental results for topic segmentation and single-label classi-
fication on four WIKISECTION datasets. n = 718 / 464 / 3, 907 / 2, 507 doc-
uments. Numbers are given as Pk on sentence level, micro-averaged F1 and
MAP at segment-level. For methods without segmentation, we used newlines as
segment boundaries (NL) and merged sections of same classes after prediction.

Models marked with * are based on pre-trained distributed embeddings.

WikiSection-headings
multi-label classification

en_disease
179 topics

de_disease
115 topics

en_city
603 topics

de_city
318 topics

model configuration segm. Pk P@1 MAP Pk P@1 MAP Pk P@1 MAP Pk P@1 MAP

CNN>H* max 40.9 36.7 31.5 41.3 14.1 21.1 36.9 43.3 46.7 42.2 40.9 46.5
SEC>H+bloom bemd 35.4 35.8 38.2 36.9 31.7 37.8 20.0 65.2 62.0 23.4 49.8 53.4
SEC>H+bloom+rank bemd 40.2 47.8 49.0 42.8 28.4 33.2 41.9 66.8 59.0 34.9 59.6 54.6
SEC>H+emb* bemd 30.7 50.5 57.3 32.9 26.6 36.7 17.9 72.3 71.1 19.3 68.4 70.2
SEC>H+emb+rank* bemd 30.5 47.6 48.9 42.9 32.0 36.4 16.1 65.8 59.0 18.3 69.2 58.9
SEC>H+emb@fullwiki* bemd 42.4 9.7 17.9 42.7 (0.0) (0.0) 20.3 59.4 50.4 38.5 (0.0) (0.1)

TABLE 4.5: Experimental results for segmentation and multi-label classification
trained with raw Wikipedia headings. Here, the task is to segment the document

and predict multi-word topics from a large ambiguous target vocabulary.

and ranking loss (+rank). We have chosen network hyperparameters using grid search on the
en_disease validation set and keep them fixed over all evaluation runs. For all configurations,
we set BLSTM layer size to 256, topic embeddings dimension to 128. Models are trained on the
complete train splits with a batch size of 16 documents (reduced to 8 for bag-of-words), 0.01
learning rate, 0.5 dropout and ADAM optimization. We used early stopping after 10 epochs
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without MAP improvement on the validation data sets. We pre-trained word embeddings
with 256 dimensions for the specific tasks using word2vec on lowercase English and German
Wikipedia documents using a window size of 7. All tests are implemented in Deeplearning4j
and run on a Tesla P100 GPU with 16GB memory. Training a SEC+bloom model on en_city
takes roughly 5 hours, inference on CPU takes on average 0.36 seconds per document. In
addition, we trained a SEC>H@fullwiki model with raw headings from a complete English
Wikipedia dump10, and use this model for cross-dataset evaluation.

Quality metrics. We measure text segmentation at sentence level using the probabilistic Pk error
score [Beeferman et al., 1999] which calculates the probability of a false boundary in a window
of size k, lower numbers mean better segmentation. As relevant section boundaries we con-
sider all section breaks where the topic label changes. We set k to half of the average segment
length. We measure classification performance on section level by comparing the topic labels of
all ground truth sections with predicted sections. We select the pairs by matching their po-
sitions with maximum boundary overlap. We report micro-averaged F1 score for single-label
or Precision@1 for multi-label classification. We further report Mean Average Precision (MAP),
which measures the average fraction of true labels ranked above a particular label [Tsoumakas
et al., 2009].

4.4.2 Experimental Results

Table 4.4 shows the evaluation results of the WIKISECTION-topics single-label classification
task, Table 4.5 contains the corresponding numbers for multi-label classification. Table 4.6
shows results for topic segmentation across different datasets.

SECTOR outperforms existing classifiers. With our given segmentation baseline (NL), the
best sentence classification model CNN achieves 52.1% F1 averaged over all datasets. SEC-
TOR improves this score significantly by 12.4 points. Furthermore, in the setting with plain
text input, SECTOR improves the CNN score by 18.8 points using identical baseline segmenta-
tion. Our model finally reaches an average of 61.8% F1 on the classification task using sentence
embeddings and bidirectional segmentation. This is a total improvement of 27.8 points over
the CNN model.

Topic embeddings improve segmentation. SECTOR outperforms C99 and TopicTiling signifi-
cantly by 16.4 respectively 18.8 points Pk on average. Compared to the maximum label base-
line, our model gains 3.1 points by using the bidirectional embedding deviation and 1.0 points
using sentence embeddings. Overall, SECTOR misses only 4.2 points Pk and 2.6 points F1 com-
pared to the experiments with prior newline segmentation. The third experiments reveals that
our segmentation method in isolation almost reaches state-of-the-art on existing datasets and
beats the unsupervised baselines, but lacks performance on cross-dataset evaluation.

10excluding all documents contained in the test sets
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Segmentation Wiki-50 Cities Elements Clinical

and multi-label classification Pk MAP Pk MAP Pk MAP Pk

GraphSeg 63.6 n/a 40.0 n/a 49.1 n/a –
BayesSeg 49.2 n/a 36.2 n/a 35.6 n/a 57.8
TextSeg 18.2* n/a 19.7* n/a 41.6 n/a 30.8
SEC>H+emb@en_disease – – – – 43.3 9.5 36.5
SEC>C+emb@en_disease – – – – 45.1 n/a 35.6
SEC>H+emb@en_city 30.0 31.4 28.2 56.5 41.0 7.9 –
SEC>C+emb@en_city 31.3 n/a 22.9 n/a 48.8 n/a –
SEC>H+emb@cities 33.3 15.3 21.4* 52.3* 39.2 12.1 37.7
SEC>H+emb@fullwiki 28.6* 32.6* 33.4 40.5 42.8 14.4 36.9

TABLE 4.6: Experimental results for cross-dataset topic segmentation. Numbers
marked with * are generated by models trained specifically for this dataset. A

value of ‘n/a’ indicates that a model is not applicable to this problem.

Bloom filters on par with word embeddings. Bloom filter encoding achieves high scores
among all datasets and outperforms our bag-of-words baseline, possibly because of larger
training batch sizes and reduced model parameters. Surprisingly, word embeddings did not
improve the model significantly. On average, German models gained 0.7 points F1 while En-
glish models declined by 0.4 points compared to Bloom filters. However, model training and
inference using pre-trained embeddings is faster by an average factor of 3.2.

Topic embeddings perform well on noisy data. In the multi-label setting with unprocessed
Wikipedia headings, classification precision of SECTOR reaches up to 72.3% P@1 for 603 labels.
This score is in average 9.5 points lower compared to the models trained on the small number
of 25–30 normalized labels. Furthermore, segmentation performance is only missing 3.8 points
Pk compared to the topics task. Ranking loss could not improve our models significantly, but
achieved better segmentation scores on the headings task. Finally, the cross-domain English
fullwiki model performs only on baseline level for segmentation, but still achieves better clas-
sification performance than CNN on the English cities dataset.

4.5 Discussion and Insights

Figure 4.5 shows classification and segmentation of SECTOR compared to the PV baseline.

SECTOR captures latent topics from context. We clearly see from NL predictions (left side
of Figure 4.5) that SECTOR produces coherent results with sentence granularity, with topics
emerging and disappearing over the course of a document. In contrast, PV predictions are
scattered across the document. Both models successfully classify first (symptoms) and last sec-
tions (epidemiology). However, only SECTOR can capture diagnosis, prevention and treatment.
Furthermore, we observe additional screening predictions in the center of the document. This
section is actually labeled “Prevention | Screening” in the source document, which explains this
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FIGURE 4.5: Heatmaps of predicted topic labels ŷk for document Trichomonia-
sis from PV and SECTOR models with newline and embedding segmentation.
Shading denotes probability for 10 out of 27 selected topic classes on Y axis,
with sentences from left to right. Segmentation is shown as black lines, X axis
shows expected gold labels. Note that segments with same class assignments

are merged in both predictions and gold standard (‘. . . ’).

overlap. Furthermore, we observe low confidence in the second section labeled cause. Our
multi-class model predicts for this section {diagnosis, cause, genetics}. The ground truth head-
ing for this section is “Causes | Genetic sequence”, but even for a human reader this assignment
is not clear. This shows that the multi-label approach fills an important gap and can even serve
as an indicator for low-quality article structure.

Finally, both models fail to segment the complication section near the end, because it con-
sists of an enumeration. The embedding deviation segmentation strategy (right side of Figure
4.5) completely solves this issue for both models. Our SECTOR model is giving nearly perfect
segmentation using the bidirectional strategy, it only misses the discussed part of cause and
is off by one sentence for the start of prevention. Furthermore, averaging over sentence-level
predictions reveals clearly distinguishable section class labels.

SECTOR represents topics coherently in vector space. Figure 4.6 reveals an insight into the
topic embedding of our SECTOR multi-class model. It is clearly visible that the model is able
to separate the classes in vector space. Furthermore, the sequential classification of sentences
from a single document (here depicted as line) is continuously moving through the space of
sections. This makes SECTOR embeddings an ideal source for semantic language understand-
ing tasks, because they can provide a topical discourse vector that is generated from the se-
quential context of an entire long document.

4.6 Related Work

The analysis of emerging topics over the course of a document is related to a large number of
research areas. In particular, topic modeling [Blei et al., 2003] and topic detection and tracking
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FIGURE 4.6: TSNE vector space of the headings in our SECTOR topic embedding.
The path illustrates the sequence of section labels abstract, symptom, diagnosis for
the document Dyslexia. Every dot is the projection of a randomly chosen sentence
from the en_disease validation set. Shape and color of the dots relate to the

mentioned section labels, others are left out for readability.

(TDT) [Jin et al., 1999] focus on representing and extracting the semantic topical content of text.
Text segmentation [Beeferman et al., 1999] is used to split documents into smaller coherent
chunks. Finally, text classification [Joachims, 1998] is often applied to detect topics on text
chunks. Our method unifies those strongly interwoven tasks and is the first to evaluate a
combined topic segmentation and classification task using a dataset with long documents.

Topic modeling is commonly applied to entire documents using probabilistic models, such
as latent Dirichlet allocation (LDA) [Blei et al., 2003]. AlSumait et al. [2008] introduced an
online topic model that captures emerging topics when new documents appear. Gabrilovich
and Markovitch [2007] proposed the Explicit Semantic Analysis method in which concepts
from Wikipedia articles are indexed and assigned to documents. Later, and to overcome the
vocabulary mismatch problem, Cimiano et al. [2009] introduced a method for assigning latent
concepts to documents. More recently, Liu et al. [2016] represented documents with vectors
of closely related domain keyphrases. Yeh et al. [2016] proposed a conceptual dynamic LDA
model for tracking topics in conversations. Bhatia et al. [2016] utilized Wikipedia document
titles to learn neural topic embeddings and assign document labels. Dieng et al. [2017] focused
on the issue of long-range dependencies and proposed a latent topic model based on recurrent
neural networks (RNNs). However, the authors did not apply the RNN to predict local topics.

Text segmentation has been approached with a wide variety of methods. Early unsupervised
methods utilized lexical overlap statistics [Hearst, 1997; Choi, 2000], dynamic programming
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[Utiyama and Isahara, 2001], Bayesian models [Eisenstein and Barzilay, 2008] or point-wise
boundary sampling [Du et al., 2013] on raw terms. Later, supervised methods included topic
models [Riedl and Biemann, 2012] by calculating a coherence score using dense topic vectors
obtained by LDA. Bayomi et al. [2015] exploited ontologies to measure semantic similarity
between text blocks. Alemi and Ginsparg [2015] and Naili et al. [2017] studied how word em-
beddings can improve classical segmentation approaches. Glavaš et al. [2016] utilized semantic
relatedness of word embeddings by identifying cliques in a graph.

More recently, Sehikh et al. [2017] utilized Long Short-Term Memory (LSTM) networks and
showed that cohesion between bidirectional layers can be leveraged to predict topic changes.
In contrast to our method, the authors focused on segmenting speech recognition transcripts
on word level without explicit topic labels. The network was trained with supervised pairs
of contrary examples and was mainly evaluated on artificially-segmented documents. Our
approach extends this idea so it can be applied to dense topic embeddings which are learned
from raw section headings. Wang et al. [2017a] tackled segmentation by training a CNN to
learn coherence scores for text pairs. Similar to Sehikh et al. [2017], the network was trained
with short contrary examples and no topic objective. The authors showed that their point-wise
ranking model performs well on datasets by Jeong and Titov [2010]. In contrast to our method,
the ranking algorithm strictly requires a given ground truth number of segments and no topic
labels are predicted.

Koshorek et al. [2018] presented a large new dataset for text segmentation based on Wiki-
pedia that includes section headings. The authors introduced a neural architecture for segmen-
tation which is based on sentence embeddings and four layers of BLSTM. Similar to Sehikh et
al. [2017], the authors used a binary segmentation objective on sentence level, but trained on
entire documents. Our work takes up this idea of end-to-end training and enriches the neural
model with a layer of latent topic embeddings that can be utilized for topic classification.

Text classification is mostly applied at paragraph or sentence level using machine learning
methods such as Support Vector Machines [Joachims, 1998] or, more recently, shallow and
deep neural networks [Hoa T. Le et al., 2018; Conneau et al., 2017]. Notably, Paragraph Vec-
tors [Le and Mikolov, 2014] is an extension of word2vec for learning fixed-length distributed
representations from texts of arbitrary length. The resulting model can be utilized for classi-
fication by providing paragraph labels during training. Furthermore, Kim [2014] has shown
that convolutional neural networks (CNNs) combined with pre-trained task-specific word em-
beddings achieve highest scores for various text classification tasks.

Combined approaches of topic segmentation and classification are rare to find. Agarwal and
Yu [2009] approached to classify sections of BioMed Central articles into four structural classes
(introduction, methods, results and discussion). However, their manually-labeled dataset only
contains a sample of sentences from the documents, so they evaluated sentence classification as
an isolated task. Chen et al. [2009] introduced two Wikipedia-based datasets for segmentation,
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one about large cities, the second about chemical elements. While these datasets have been
used to evaluate word-level and sentence-level segmentation [Koshorek et al., 2018], we are
not aware of any topic classification approach on this dataset.

Tepper et al. [2012] approached segmentation and classification in a clinical domain as su-
pervised sequence labeling problem. The documents were segmented using a Maximum En-
tropy model and then classified into 11 or 33 categories. A similar approach by Ajjour et al.
[2017] used sequence labeling with a small number of 3–6 classes. Their model is extractive,
so it does not produce a continuous segmentation over the entire document. Finally, Piccardi
et al. [2018] did not approach segmentation, but recommended an ordered set of section labels
based on Wikipedia articles.

Eventually, we are inspired by passage retrieval [Liu and Croft, 2002] as an important down-
stream task for topic segmentation and classification. For example, Hewlett et al. [2016] pro-
posed WikiReading, a QA task to retrieve values from sections of long documents. The ob-
jective of TREC Complex Answer Retrieval is to retrieve a ranking of relevant passages for
a given outline of hierarchical sections [Nanni et al., 2017]. Both tasks highly depend on a
building block for local topic embeddings such as our proposed model.

4.7 Conclusions

In this chapter, we have approached RQ 2, the detection of topics and structure in long docu-
ments. We presented SECTOR, a novel neural model for coherent text segmentation and classi-
fication based on latent topics. This model supports our vision of Neural Machine Reading by
extending the scope of language understanding towards higher-level abstractions on passage
and document level. We further contributed WIKISECTION, a collection of four large datasets
from clinical and geopolitical domains in English and German for this task. Our end-to-end
method builds upon a neural topic embedding which is trained using Wikipedia headings to
optimize a bidirectional LSTM classifier. We showed that our best performing model is based
on sparse word features with Bloom filter encoding and significantly improves classification
precision for 25–30 topics on comprehensive documents by up to 29.5 points F1 compared to
state-of-the-art sentence classifiers. We used the bidirectional deviation in our topic embed-
ding to segment a document into coherent sections without additional training. Finally, our
experiments showed that extending the task to multi-label classification of over 600 ambiguous
topic words still produces coherent results with 71.1% average precision. In the next chapter,
we will extend this idea towards general Machine Reading by encoding named entities and
aspects alongside the document structure.
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Chapter 5

Contextualized Document
Representations for Answer Retrieval

In the preceding chapters we have approached the detection of named entities (RQ 1) and
topical structure (RQ 2) in domain-specific text. In this chapter, we aim to combine these two
approaches towards a general document representation for Machine Reading. As a central
idea, we approach RQ 3: How can we embed discourse structure into document representations? To
examine the impact of discourse-aware representations, we will further investigate RQ 4: How
effective are document representations for retrieving answer passages?

We present Contextual Discourse Vectors (CDV), a distributed document representation
for efficient answer retrieval from long documents1. Our approach is based on structured
query tuples of entities and aspects from free text and domain-specific taxonomies. Our model
leverages a dual encoder architecture with hierarchical LSTM layers and multi-task training
to encode the position of entities and aspects alongside the document discourse. We use our
continuous representations to resolve queries with short latency using approximate nearest
neighbor search on sentence level. We apply the CDV model for retrieving coherent answer
passages from nine English public healthcare resources from the Web, addressing both patients
and medical professionals. Because there is no end-to-end training data available for such
an application scenario, we train our model with self-supervised data from Wikipedia. We
compare our general model with several state-of-the-art baselines for passage ranking and
discuss the adaptation to heterogeneous domains without additional fine-tuning.

This chapter is structured as follows: In Section 5.1, we introduce our idea of discourse-
aware representations for Answer Passage Retrieval. In Section 5.2, we model a structured
query for information-seeking tasks based on vector space representations of entities and as-
pects. In Section 5.3, we present the architecture of our CDV model and the process for self-
supervised training. In Section 5.4, we evaluate our model in an answer retrieval task over nine
English healthcare text resources. In Section 5.5, we discuss the results and provide an analysis
of the model’s false predictions. In Section 5.6, we summarize related work. We conclude in
Section 5.7 with a reflection on our research questions for Neural Machine Reading.

1This chapter was published and presented by S. Arnold, B. van Aken, P. Grundmann, F. A. Gers, and A. Löser
[2020]. “Learning Contextualized Document Representations for Healthcare Answer Retrieval”. In: Proceedings of
The Web Conference 2020. ACM, pp. 1332–1343
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5.1 Introduction

In a clinical decision support system (CDSS), doctors and healthcare professionals require ac-
cess to information from heterogeneous sources, such as research papers [Gorman et al., 1994;
Schardt et al., 2007], electronic health records [Hanauer et al., 2015], clinical case reports [Fu-
jiwara et al., 2018], reference works and knowledge base articles. Differential diagnosis is an
important task where a doctor seeks to retrieve answers for non-factoid queries about diseases,
such as “symptoms of IgA nephropathy” (see Figure 5.1). A relevant answer typically spans multi-
ple sentences and is most likely embedded into the discourse of a long document [Yang et al.,
2016b; Cohan et al., 2018].

FIGURE 5.1: Example of a structured entity/aspect query Q and a highlighted
answer passage from Wikipedia. Note that the answer is part of a longer docu-
ment and there is almost no word overlap between query and answer passage.

Evidence-based medicine (EBM) has made efforts to structure physicians’ information needs
into short structured question representations, such as PICO (patient, intervention, compari-
son, outcome) [Richardson et al., 1995] and—more general—well-formed background–fore-
ground questions [Cheng, 2004]. We support this important query intention and define a query
as structured tuple of entity (e.g. a disease or health problem) and aspect. Our model is focused
on clinical aspects such as therapy, diagnosis, etiology, prognosis, and others, which have been
described in the literature previously by manual clustering of semantic question types [Huang
et al., 2006] or crawling medical Wikipedia section headings [Arnold et al., 2019]. In a CDSS,
a doctor can express these query terms with identifiers from a knowledge base or medical tax-
onomy, e.g. UMLS, ICD-10 or Wikidata. The system will support the user in assigning these
links by search and auto-completion operators [Schneider et al., 2018; Fujiwara et al., 2018],
which allows us to use these representations as input for the answer retrieval task.
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5.1.1 Challenges for Answer Passage Retrieval

Several methods have been proposed to apply deep neural networks for effective information
retrieval [Guo et al., 2016; Mitra et al., 2017; Dai et al., 2018] and question answering [Seo et
al., 2017; Wang et al., 2017b], also with focus on healthcare [Zhu et al., 2019; Jin et al., 2019].
However, our scenario poses a unique combination of open challenges to a retrieval system:

1. Task coverage: Query intentions span a broad range in specificy and complexity [Huang
et al., 2006; Nanni et al., 2017]. For example, medical specialists may pose very precise
queries that align with a pre-defined taxonomy and focus on rare diseases. On the other
hand, nursing staff might have broader and more heterogeneous questions. However, in
most cases we do not have access to task-specific training data, so training the model for
a single intention is not feasible. We therefore require a generalized query representation
that covers a broad range of intents and taxonomies, even with limited training data.

2. Domain adaptability: In many cases we do not even have textual data readily available at
training time from all resources in a CDSS. However, we observe linguistic and semantic
shifts between the heterogeneous types of text, e.g. different use of terms and abbrevia-
tions among groups of doctors. Therefore we face a zero-shot retrieval task that requires
robust domain transfer abilities across diverse biomedical, clinical and healthcare text
resources [Logeswaran et al., 2019].

3. Contextual coherence: Answers are often expressed as passages in context of a long doc-
ument. Therefore the model needs to respect long-range dependencies such as the se-
quence of micro-topics that establish a coherent ‘train of thought’ in a document [Arora
et al., 2016; Arnold et al., 2019]. At the same time, the model is required to operate on
a fine granularity (e.g., on sentence level) rather than on entire documents to be able to
capture the boundaries of answers [Keikha et al., 2014].

4. Efficient neural information retrieval: All documents in the CDSS need to be accessible with
fast ad-hoc queries by the users. Many question answering models are based on pairwise
similarity, which is computationally too intensive when applied to large-scale retrieval
tasks [Gillick et al., 2018]. Instead, we require a continuous retrieval model that allows
for offline indexing and approximate nearest neighbor search with high recall [Gillick
et al., 2018], even for rare queries and with low latency in the order of milliseconds.

5.1.2 Contextual Discourse Vectors

We approach these challenges and present Contextual Discourse Vectors (CDV)2, a neural docu-
ment representation which is based on discourse modeling and fulfills the above requirements.
Our method is the first to address answer retrieval with structured queries on long heteroge-
neous documents from the healthcare domain.

2Code and evaluation data is available at https://github.com/sebastianarnold/cdv

https://github.com/sebastianarnold/cdv
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CDV is based on hierarchical layers to encode word, sentence and document context with
bidirectional Long Short-Term Memory (BLSTM). The model uses multi-task learning [Caru-
ana, 1997] to align the sequence of sentences in a long document to the clinical knowledge
encoded in pre-trained entity and aspect vector spaces. We use a dual encoder architecture
[Gillick et al., 2018], which allows us to precompute discourse vectors for all documents and
later answer ad-hoc queries over that corpus with short latency [Gillick et al., 2019]. Conse-
quently, the model predicts similarity scores with sentence granularity and does not require an
extra inference step after the initial document indexing.

We apply our CDV model for retrieving passages from various public health resources on
the Web, including NIH documents and Patient articles, with structured clinical query inten-
tions of the form 〈entity, aspect〉. Because there is no training data available from most sources,
we use a self-supervised approach to train a generalized model from medical Wikipedia texts.
We apply this model to the texts in our evaluation in a zero-shot approach [Palatucci et al.,
2009] without additional fine tuning. In summary, our major contributions include:

• We propose a structured entity/aspect healthcare query model to support the essential
query intentions of medical professionals. Our task is focused on the efficient retrieval of
answer passages from long documents of heterogeneous health resources.

• We introduce CDV, a contextualized document representation for passage retrieval. Our
model leverages a dual encoder architecture with BLSTM layers and multi-task training
to encode the position of discourse topics alongside the document. We use the represen-
tations to answer queries using nearest neighbor search on sentence level.

• Our model utilizes generalized language models and aligns them with clinical knowl-
edge from medical taxonomies, e.g. pre-trained entity and aspect embeddings. There-
fore, it can be trained with sparse self-supervised training data, e.g. from Wikipedia
texts, and is applicable to a broad range of texts.

• We prove the applicability of our CDV model with extensive experiments and a quali-
tative error analysis on nine heterogeneous healthcare resources. We provide additional
entity/aspect labels for all datasets. Our model significantly outperforms existing doc-
ument matching methods in the retrieval task and can adapt to different healthcare do-
mains without fine-tuning.

5.2 Discourse Model

Our first challenge is to design a query model which can adapt to a broad number of healthcare
answer retrieval tasks and utilizes the information sources available in a CDSS. In this section,
we introduce a vector-space representation for this purpose.
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We define a query as a structured tuple Q = 〈entity, aspect〉. This approach of using
two complementary query arguments originates from the idea of structured background–fore-
ground questions in EBM [Cheng, 2004] and has been used before in many triple-based re-
trieval systems [Adolphs et al., 2011]. In our healthcare scenario, we restrict entities to be of
type disease, e.g. IgA nephropathy, and aspects from the clinical domain, e.g. symptoms, treatment,
or prognosis. We discuss these two spaces and their combination in this section. In general, our
model is not limited to the query spaces used in this paper and further extendable to a larger
number of arguments.

5.2.1 Entity Representation

The first part of our problem is to represent the entity in focus of a query. In contrast to
interaction-based models, which are applied to query–document pairs, our approach is to
decouple entity encoding and document encoding. Therefore we follow recent work in rep-
resentation-based Entity Linking [Gillick et al., 2019] and embed textual knowledge from the
clinical domain into this representation. Our goal is to generalize entity representations, so the
model will be able to align to existing taxonomies without retraining. Therefore, our entity
space must be as complete as possible: it needs to cover each of the entities that appear in the
discourse training data, but also rare entities that we expect at query time, e.g. in the appli-
cation. We must further provide a robust method for predicting unseen entities [Logeswaran
et al., 2019]. In contrast to highly specialized entity embeddings constructed from knowledge
graphs or multimodal data [Beam et al., 2018], our general approach is based on textual data
and allows us to apply the model to different knowledge bases and domains.

Entity Embeddings. Our goal is to create a mapping of each entity in the knowledge base
E ∈ K identified by its ID into a low-dimensional entity vector space E ⊂ Rd3. We train an
embedding by minimizing the loss for predicting the entity from sentences s ∈ DE in the entity
descriptions:

Lentity(Θ) = −log
∏
E∈K

∏
s∈DE

pΘ

(
E.id | s

)
(5.1)

where Θ denotes the parameters required to approximate the probability p. We optimize Θ

using a bidirectional Long Short-Term Memory (BLSTM) [Hochreiter and Schmidhuber, 1997]
to predict the entity ID E.id from the words wi ∈ s. We encode wi using Fasttext embeddings
[Bojanowski et al., 2017] and use Bloom filters [Serrà and Karatzoglou, 2017] to compress E.id
into a hashed bit encoding, allowing for less model parameters and faster training.

pΘ

(
E.id | s

)
= pΘ

(
E.id | w1, . . . , wN

)
≈ p
(
bloom(E.id) | BLSTMΘ(w1, . . . , wN )

) (5.2)

3we use d as a placeholder for all embedding vector sizes, even if they are not equal
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Subsequently, we extend the approach of Palangi et al. [2016] and define the embedding
function ε as the average output of the hidden word states ~gk and ~gk at the first respectively
last time step:

~gk = LSTMΘ(~gk−1, wk)

~gk = LSTMΘ( ~gk+1, wk)
(5.3)

ε(s) =
~gT + ~g1

2
(5.4)

Finally, we generate entity embeddings εE ∈ E by applying the embedding function to all
descriptions available. In case of unseen entities, the embedding can be generated on-the-fly:

εE =

 1
|DE |

∑
s∈DE

ε(s) ifE ∈ K

ε(E.mention) ifE /∈ K
(5.5)

Training data for clinical named entities. We train the entity representation for diseases,
syndromes and health problems using textual descriptions from various sources: Wikidata4,
UMLS5, GARD6, Wikipedia abstracts, and the Diseases Database7. In total, the knowledge
base contains over 27,000 entities identified by their Wikidata ID. We trained roughly 9,700
common entities with text from Wikipedia abstracts, while we used for rare entities only their
name and short description texts.

5.2.2 Aspect Representation

The second part of our problem is to represent the aspect in the query tuple. Here, we ex-
pect a wide range of clinical facets and we do not want to limit the users of our system to a
specific terminology. Instead, we train a low-dimensional aspect vector space A ⊂ Rd using
the Fasttext skip-gram model [Bojanowski et al., 2017] on medical Wikipedia articles. This ap-
proach places words with similar semantics nearby in vector space and allows queries with
morphologic variations using subword representations.

Aspect embeddings. To find all possible aspects, we adopt prior work [Arnold et al., 2019]
and collect all section headings from the medical Wikipedia articles. These headings typically
consist of 1–3 words and describe the main topic of a section. We apply moderate preprocess-
ing (lowercase, remove punctuation, split at “and|&”) to generate aspect embeddings αA ∈ A
using a BLSTM encoder α(s) with the same architecture as discussed above:

αA =
1

|DA|
∑
s∈DA

α(s) (5.6)

4https://www.wikidata.org/wiki/Q12136
5https://uts.nlm.nih.gov
6https://rarediseases.info.nih.gov
7http://www.diseasesdatabase.com

https://www.wikidata.org/wiki/Q12136
https://uts.nlm.nih.gov
https://rarediseases.info.nih.gov
http://www.diseasesdatabase.com
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Heading cusum Heading cusum

information (abstract) 9.6% mechanism 54.1%
treatment 16.0% culture 54.7%
diagnosis 22.3% society 55.3%
symptoms 28.2% research 55.9%
signs 33.0% risk factors 56.4%
causes 37.1% presentation 56.9%
history 39.3% differential diagnosis 57.3%
pathophysiology 41.4% surgery 57.7%
management 43.4% treatments 58.1%
epidemiology 45.4% pathogenesis 58.4%
cause 47.3% medications 58.7%
classification 48.9% complications 59.0%
prognosis 50.4% characteristics 59.3%
prevention 51.7% medication 59.5%
types 52.5% other animals 59.7%
genetics 53.3% pathology 60.0%

TABLE 5.1: Distribution of the top 32 headings (60% of 577K total occurrences)
contained in our training set. Numbers are given as cumulative sum. We observe
that these headings cover the most important aspects for differential diagnosis.

Training data for clinical aspects. We train the embedding with over 577K sentences from
Wikipedia (see Table 5.1). We observe that there is a vocabulary mismatch in the headings so
that potentially synonymous aspects are frequently labeled with different headings, e.g. types

/ classification or signs / symptoms / presentation / characteristics. However, it is also possible
that in some contexts these aspects are hierarchically structured, e.g. presentation refers to the
visible forms of a symptom. Our vector-space representation reflects these similarities, so it is
possible to distinguish between these nuances at query time.

5.2.3 Query Representation

Finally, we represent the query as a tuple of entity and aspect embeddings using vector con-
catenation (⊕):

Q(E,A) = 〈εQ ∈ E, αQ ∈ A〉 = εQ ⊕ αQ (5.7)

This query encoder constitutes the upper part of our dual encoder architecture shown in
Figure 5.2. Our next goal is to find the positions in all documents where the local discourse
matches the query Q. In the next section, we introduce our contextualized document repre-
sentation that allows similarity matching between Q and each document at sentence level.

5.3 Contextualized Document Representation

In this section, we introduce Contextual Discourse Vectors (CDV), a distributed document
representation that focuses on coherent encoding of local discourse in the context of the entire
document. The architecture of our model is shown in Figure 5.2. We approach the challenges
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introduced in Section 5.1 by reading a document at word and sentence level (Section 5.3.1)
and encoding sentence-wise representations using recurrent layers at document level (Section
5.3.2). We use the representations to measure similarity between every position in the docu-
ment and the query (Section 5.3.3). Our model is trained to match the entity/aspect vector
spaces introduced in Section 5.2 using self-supervision (Section 5.3.4).

5.3.1 Sentence Encoder

The first group of layers in our architecture encodes the plain text of an entire document into
a sequence of vector representations. As we expect long documents—the average document
length in our test sets is over 1,200 words—we chose to reduce the computational complexity
by encoding the document discourse at sentence-level. It is important to avoid losing doc-
ument context and word–discourse interactions (e.g. entity names or certain aspect-specific
terms) during this step. Furthermore, our challenge of domain adaptability requires the sen-
tence encoder to be robust to linguistic and semantic shifts from text sources that differ from
the training data.

Therefore we start at the input layer by encoding all words in a document D into fixed
low-dimensional word vectors w1...N ∈ Rd using pre-trained word embeddings with subword
information (see below). Next, we encode all sentences s1...T ∈ D into sentence representations
σt ∈ Rd based on the words wk ∈ st in the sentence. This will reduce the number of compu-
tational time steps from N words in a document to T sentences. We compare two approaches
for this sentence encoding step:

Compositional sentence embeddings. As the simplest approach we use an average vector
composition of the word embeddings wk from GloVe [Pennington et al., 2014] or Fasttext [Bo-
janowski et al., 2017], which is more robust against out-of-vocabulary errors:

σavg(s) =
1

len(s)

∑
wk∈s

wk (5.8)

Pooling-based sentence embeddings. Since we want the model to be able to focus on indi-
vidual words, we apply a language model encoder. We use the recent BioBERT [Lee et al.,
2019], a transformer model which is pre-trained with a large amount of biomedical context on
sub-word level. To generate sentence vectors from the input sequence, we use pooling of the
attention layers per sentence:

σpool(s) = BioBERT(ws.begin, . . . , ws.end) (5.9)

Finally, we concatenate a positional encoding to the sentence embeddings, which encodes
some rule-based structural flags such as begin/end-of-document, begin/end-of-paragraph,
is-list-item. This encoding helps to guide the document encoder through the structure of a
document.
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FIGURE 5.2: Neural network architecture for our contextualized document rep-
resentation. The contextual discourse vectors (CDV) are generated by a hierar-
chical stack of layers: sentence encoder (GloVe/Fasttext/BioBERT) and docu-
ment encoder (BLSTM). The query encoder (entity/aspect embeddings) is used

for scoring on sentence level.
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5.3.2 Document Encoder

The second group of layers in our architecture encodes the sequence of sentences over the
document. The objective of these layers is to transform the word/sentence input space into
discourse vector space—which will later match with query entity and aspect spaces—in the
context of the document. To achieve contextual coherence, we use the entire document as in-
put for a recurrent neural network with parameters Θ, which we optimize at training time to
minimize the loss over the sequence:

Ldoc(Θ) = −log
T∏
t=1

pΘ

(
ε(st), α(st) | σ(s1), . . . , σ(sT )

)
(5.10)

We adopt the architecture of SECTOR [Arnold et al., 2019] and use bidirectional LSTMs to
read the document sentence-by-sentence. We use a final dense layer (matrix Whe and bias be)
to produce the local discourse vectors δ1...T for every sentence in D.

~ht = LSTMΘ

(
~ht−1, σ(st)

)
~ht = LSTMΘ

(
~ht+1, σ(st)

)
δt = tanh

(
Whe(~ht ⊕ ~ht) + be

) (5.11)

The CDV matrix CD = [δ1, . . . , δT ] is our discourse-aware document representation which
embeds all features necessary to decode contextualized entity and aspect information for D.

5.3.3 Passage Scoring

The center layer in our architecture addresses our main task objective: find the passages with
highest similarity to the query. In Section 5.3, we described generalized vector spaces for en-
tities ε ∈ E and aspects α ∈ A that we use as query representation Q for high task coverage.
We train our discourse vectors CD to share the same vector spaces E and A. This enables us
to run efficient neural information retrieval of multiple ad-hoc queries Q over the pre-computed
CDV vectors CD later without having to re-run inference on the document encoder for each
query. We store all vectors δt in an in-memory vector index that allows us to efficiently retrieve
approximate nearest neighbors using cosine distance. Figure 5.3 shows the overall process
of training, indexing and ad-hoc answer retrieval. Because we reuse entity and aspect em-
beddings for training, our document model ‘inherits’ the properties from these spaces, e.g.
robustness for unseen and rare entities or aspects.

Discourse decoder. To decode the individual entity and aspect predictions ε̂t, α̂t from δt ∈ CD,
we utilize two learned decoder matrices Wδε,Wδα with bias terms bε,bα. We optimize these
parameters by using a multi-task objective with shared weights [Caruana, 1997] to minimize
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FIGURE 5.3: The entire Answer Passage Retrieval process with three stages.
(1) We train the discourse-aware document representation model using self-
supervision on Wikipedia articles. (2) At indexing time, the model is applied
once to the entire test corpus of unseen documents. The discourse vectors are
saved into a vector index. (3) A query is retrieved by ranking similarity scores
between the query representation and all sentence-level vectors in the candidate

passages.

the distance to the training labels εt, αt:

ε̂t = tanh(Wδεδt + bε)

α̂t = tanh(Wδαδt + bα)

Lcdv(Θ) =
1

T

T∑
t=1

(
‖ε̂t − εt‖+ ‖α̂t − αt‖

) (5.12)

Sentence scoring. To compute similarity scores at query time, we pick up our query represen-
tation (Eq. 5.7) and compute the semantic similarity between Q and each contextual discourse
vector δt in the vector index. To achieve low latency, we use cosine similarity between the
decoded entity and aspect representations:

scoret
(
Q(E,A),CD

)
= cosine

(
εQ ⊕ αQ, ε̂t ⊕ α̂t

)
=

(εQ ⊕ αQ)>(ε̂t ⊕ α̂t)
‖εQ ⊕ αQ‖‖ε̂t ⊕ α̂t‖

(5.13)

Answer passage retrieval. The scoring operation score1...T (Q,CD) ∈ [0, 1] yields a sentence-
level histogram which describes the similarity between query and every sentence in a docu-
ment. At this point, we have the opportunity to select a coherent set of sentences as answers
similar to Arnold et al. [2019]. However, because all healthcare datasets that we use for evalu-
ation already provide passage boundaries, we leave this step for future work. Instead, we use
the average sentence score per passage for answer retrieval:

score(Q,P ) =
1

len(P )

∑
st∈P

scoret(Q,CD) (5.14)
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FIGURE 5.4: CDV model predictions for query “symptoms of IgA nephropathy” on
the example document. The histogram shows the similarity score of the dis-

course vector with the query over sentences t = 1 . . . T from left to right.

Figure 5.4 shows the scoring curves divided into entity Q(E), aspect Q(A) and an average
score

(
Q(E,A), P

)
. It is clearly visible that the model coherently predicts long-range depen-

dencies for the entity IgA nephropathy over the entire document. The aspect similarity with
symptoms is much more focused on single sentences.

5.3.4 Self-supervised Training

We train a generalized CDV model by jointly optimizing all model parameters from sentence
encoder, document encoder and passage scoring layers on a training set.

Generating entity and aspect labels from Wikipedia. For this task, we use the textual data
about diseases and health problems available from Wikipedia. This process is self-supervised,
because there exist no labeled query-answer pairs for these documents. Instead, we assign for
each sentence st ∈ D a set of related entities E and aspects A using simple heuristics:

E(st, D) = {E | title(D) = E ∨ contains_link(st, E)}

A(st, D) = {A | heading(st) = A}
(5.15)

We collected over 8,600 articles for training and removed all instances contained in any of
the test sets. The collection covers over 8K entities and 15K aspects (see Table 5.2).

Discourse decoder objective. We create the target objectives for training using the average
of the label embeddings contained in the training entities E(st, D) and aspects A(st, D). We
formulate the objectives on sentence level:

εt =

∑
E∈E(st,D) εE

|E(st, D)|

αt =

∑
A∈A(st,D) αA

|A(st, D)|

(5.16)
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Optimized loss function. We observe a strong imbalance of entity and aspect labels over the
course of a single document, for example when passages contain lists (very short sentences),
rare entities or have uncommon headlines. To give the network the ability to capture these
anomalies, especially with larger batch sizes, we use a robust loss function [Barron, 2019]
which resembles a smoothed form of Huber Loss [Huber, 1992]:

Lcdv+(Θ) =
1

T

T∑
t=1

√1 +

(
‖ε̂t − εt‖+ ‖α̂t − αt‖

4

)2

− 1

 (5.17)

In the next section, we apply our CDV model to a healthcare answer retrieval task.

5.4 Evaluation

We evaluate our CDV model and 14 baseline methods in an Answer Passage Retrieval task.
All models are trained using self-supervision on Wikipedia texts and applied as zero-shot task
[Palatucci et al., 2009] (i.e. without further fine-tuning) to three diverse English healthcare
datasets WikiSection, MedQuAD and HealthQA.

5.4.1 Evaluation Set-up

As queries, we use tuples of the form 〈entity, aspect〉. Because our task requires to retrieve the
answers from over 4,000 passages and the interaction-based models in our comparison require
computationally expensive pairwise inference, we evaluate all numbers on a re-ranking task
[Gillick et al., 2018]. We follow the setup of Logeswaran et al. [2019] and use BM25 [Robertson
et al., 1995] to provide each model with a pre-filtered set of 64 potentially relevant passage
candidates8. To facilitate full recall in this model comparison, we add missing true answers
to the candidates if necessary by overwriting the lowest-ranked false answers in the list and
shuffle afterwards. We rank the candidate answers using exhaustive nearest neighbor search
and leave the evaluation of indexing efficiency for future work. Next, we describe the datasets,
metrics and methods used in our experiments.

Evaluation datasets. We conduct experiments on three English datasets from the clinical and
healthcare domain. From the documents provided, we use the plain text of the entire document
body during model inference and the segmentation information for generating the passage
candidates. From all queries provided, we use the entity labels (mention text, Wikidata ID)
and aspect labels (UMLS canonical name). If entity and aspect identifiers were not provided
by the dataset, we added them manually by asking three annotators from clinical healthcare
to label them. Table 5.2 shows an overview of the datasets.

8This choice covers 80-91% of all true answers (depending on the dataset) as trade-off between task complexity
and real-world applicability. The numbers reported for HealthQA in the original paper were evaluated by re-
ranking ten candidates (one relevant, 3 partially relevant and 6 irrelevant) and are therefore not comparable.
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Dataset Wikipedia ⇒ WS MQ HQ
Split train test test test

# documents 8,605 716 1,111 178
# passages 53,477 4,373 3,762 1,109
# entities 8,605 716 1,100 221
# aspects 15,028 27 15 21
# queries N/A 4,178 3,294 1,045

avg words/doc 977.6 1,396.7 811.1 1,449.4
avg sents/doc 43.5 63.7 48.0 82.5
avg passages/doc 6.2 6.1 3.4 6.2
avg words/passage 221.8 228.6 237.9 232.6
avg sents/passage 9.8 10.4 14.1 13.2
avg words/sent 22.7 21.9 16.9 17.6

TABLE 5.2: Statistics of our training and evaluation data sets. The training splits
on the healthcare datasets are only used for model evaluation. For the final

model, we only used Wikipedia for training.

WikiSectionQA [Arnold et al., 2019] (WS) is a large subset of full-text Wikipedia articles
about diseases, labeled with entity identifiers, section headlines and 27 normalized aspect
classes. We extended this dataset for answer retrieval by constructing query tuples from every
section containing the given entity ID and normalized aspect label. We included abstracts as
information, but skipped sections labeled as other. We use the en_disease-test split for evaluation
and made sure that none of the documents are contained in our training data.

MedQuAD [Abacha and Demner-Fushman, 2019] (MQ) is a collection of medical question-
answer pairs from multiple trusted sources of the National Institutes of Health (NIH): Na-
tional Cancer Institute (NCI)9, Genetic and Rare Diseases (GARD) 10, Genetics Home Refer-
ence (GHR)11, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) 12,
National Institute of Neurological Disorders and Stroke (NINDS) 13, NIH Senior Health 14 and
National Heart, Lung and Blood Institute (NHLBI)15. We left out documents from Medline
Plus due to property rights. Questions are annotated with structured identifiers for entities
(UMLS CUI), aspect (semantic question type) and contain a long passage as answer. To make
this dataset applicable to our method, we reconstructed the entire documents from the answer
passages and kept only questions about diseases for evaluation. We filtered out documents
with only one passage (these were always labeled “information”) and separated a random 25%
test split from the remaining documents.

HealthQA [Zhu et al., 2019] (HQ) is a collection of consumer health question-answer pairs
crawled from the website Patient16. The answer passages were generated from sections in

9https://www.cancer.gov
10https://rarediseases.info.nih.gov
11https://ghr.nlm.nih.gov
12http://www.niddk.nih.gov/health-information/health-topics/
13http://www.ninds.nih.gov/disorders/
14http://nihseniorhealth.gov/
15http://www.nhlbi.nih.gov/health/
16https://patient.info

https://www.cancer.gov
https://rarediseases.info.nih.gov
https://ghr.nlm.nih.gov
http://www.niddk.nih.gov/health-information/health-topics/
http://www.ninds.nih.gov/disorders/
http://nihseniorhealth.gov/
http://www.nhlbi.nih.gov/health/
https://patient.info


5.4. Evaluation 89

the documents and annotated by human labelers with natural language questions. We recon-
structed the full documents from these sections. Additionally, our annotators added structured
entity and aspect labels to all questions in the test split. Although some questions are not about
diseases, we kept all of them to remain comparable with related work.

Baseline methods. We evaluate two term-based matching functions as baseline: TF-IDF [Jones,
1972] and BM25 [Robertson et al., 1995]. We used the implementation in Apache Lucene 8.2.017

to retrieve passages containing entity and aspect of a query, e.g. “IgA nephropathy symptoms”

from the index of all passages in the test dataset.
Additionally, we evaluate the following document matching methods from the literature:

ARC-I and ARC-II [Hu et al., 2014], DSSM [Huang et al., 2013], C-DSSM [Shen et al., 2014],
DRMM [Guo et al., 2016], MatchPyramid [Pang et al., 2016], aNMM [Yang et al., 2016a], Duet
[Mitra et al., 2017], MVLSTM [Wan et al., 2016], KNRM [Xiong et al., 2017], CONV-KNRM
[Dai et al., 2018] and HAR [Zhu et al., 2019]. For implementing these models, we followed
Zhu et al. [2019] and used the open source implementation MatchZoo [Guo et al., 2019] with
pre-trained glove.840B.300d vectors [Pennington et al., 2014]. All models were trained with
our self-supervised Wikipedia training set using queries containing the entity and lowercase
heading, e.g. “IgA nephropathy ; symptoms” and applied to the test sets using queries of the same
structure, instead of natural language questions.

Quality metrics. For all ranking experiments, we use Recall at top K (R@K) and Mean Average
Precision (MAP) metrics. While R@1 measures if the top-1 answer is correct or not (similar to a
question answering task), we also report R@10, which corresponds with the ability to retrieve
all correct answers in a top-10 results list, and MAP, which considers the entire result list.

Implementation details. We implement our models with the following configurations. Where
applicable, we chose the hyperparameters using grid search on the WikiSection validation set:

For the sentence encoding, we use either glove.6B.300d pre-trained GloVe vectors (+avg-
glove), 128d fine-tuned Fasttext embeddings (+avg-fasttext) or the 768d pre-trained BioBERT
[Lee et al., 2019] language model (+pool-biobert). For the document encoding, we use two
LSTM layers (one forward, one backward) with 512 dimensions each, a discourse vector dense
layer with 256 dimensions, L2 batch normalization and tanh activation. The discourse decoder
is a 128-dimensional output layer with tanh activation and Huber loss. The network is trained
with stochastic gradient descent over 50 epochs using the ADAM optimizer [Kingma and Ba,
2015] with a batch size of 16 documents, a learning rate of 10−3, 0.975 exponential decay per
epoch, 0.0 dropout and 10−4 weight decay regularization [Loshchilov and Hutter, 2017]. We
chose these parameters using hyperparameter search on the WikiSection validation set. During
training, we restrict the maximum document length to 396 sentences and maximum sentence
length to 96 tokens, due to memory constraints on the GPU.

17https://lucene.apache.org

https://lucene.apache.org
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Model WikiSectionQA MedQuAD HealthQA
all trained on Wikipedia R@1 R@10 MAP R@1 R@10 MAP R@1 R@10 MAP

Term-based models
TF-IDF 17.10 64.99 31.77 23.83 82.84 42.66 17.46 71.54 34.47
BM25 23.87 71.26 38.89 29.48 86.11 48.89 22.55 73.27 38.45
Representation-based models
ARC-I 1.61 13.69 6.90 1.98 19.22 8.47 1.38 13.87 6.87
DSSM 22.82 74.31 39.02 13.11 55.92 27.38 10.50 46.44 22.04
C-DSSM 9.59 53.12 22.82 9.67 47.54 22.12 10.56 58.30 25.37
Interaction-based models
ARC-II 10.38 53.62 23.61 9.19 47.58 21.66 11.26 58.85 26.09
DRMM 24.96 67.56 39.24 34.52 82.35 51.51 21.80 80.24 40.03
MatchPyramid 18.53 64.21 33.12 25.14 72.33 41.37 19.24 73.79 37.22
aNMM 4.77 32.17 14.03 7.15 37.18 17.08 3.74 27.20 12.07
KNRM 16.96 61.03 31.04 16.86 61.35 31.35 22.94 67.92 37.65
CONV-KNRM 34.36 77.25 48.72 42.70 84.54 57.57 33.13 85.41 50.55
HAR 45.31 84.15 58.38 55.65 93.17 69.10 43.20 88.34 58.80
Combined models
Duet 18.34 59.13 31.74 20.50 65.91 35.28 17.27 64.81 32.13
MVLSTM 30.74 76.10 45.58 36.86 86.29 53.18 26.78 84.42 45.37

CDV+avg-glove 59.60 95.67 72.72 34.00 80.87 50.45 37.17 84.47 53.30
CDV+avg-fasttext 60.34 97.49 74.01 45.26 92.29 62.56 40.08 89.80 58.35
CDV+pool-biobert 65.21 97.84 77.60 39.96 91.32 58.91 43.60 88.12 59.40

TABLE 5.3: Experimental results for the Answer Passage Retrieval task on
three Healthcare datasets. All models were trained using the self-supervised
Wikipedia training set and applied without fine-tuning. Queries were evaluated
by ranking 64 given candidates from the respective test sets. As queries we used
〈entity, aspect〉 tuples in a representation suitable for the individual model.

The entity and aspect embeddings are trained with 128d Fasttext embeddings, followed
by 128d BLSTM and dense embedding layers with tanh activations. The 1024d output layer
is configured with sigmoid activation and BPMLL loss [Zhang and Zhou, 2006] to predict the
Bloom hash (k = 5) of the entity or aspect. The network is trained similarly to the CDV model,
but we use 5 epochs with a batch size of 128 sentences, a learning rate of 10−3 and 0.5 dropout.

5.4.2 Experimental Results

Table 5.3 shows the results on the Answer Passage Retrieval task using CDV and document
matching models on three healthcare datasets. We observe that CDV consistently achieves
significantly better results than all term-based, representation-based and combined models
across all datasets. In comparison with pairwise interaction-based models, our representation-
based retrieval model outperforms all tested models on average, scores best on WikiSection
and HealthQA and second best on the MedQuAD dataset. Retrieval time per query is 247ms
(±43ms) on average. Figure 5.5 further shows that we correctly match between 67.5% and
91.4% of entities in the datasets and resolve 49.4% to 66.3% of all aspects.
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Comparison of model architectures. Our query model is able to match most of the questions
in the entity/aspect scheme (see Section 5.5 for exceptions). The results show that term-based
TF-IDF and BM25 models can solve the healthcare retrieval task sufficiently with R@10> 70%.
In contrast, none of the representation-based re-ranking models can achieve similar perfor-
mance, except DSSM on WikiSectionQA. Most of the recent interaction-based and combined
models outperform BM25 and have significant advantages on the MedQuAD dataset, which
contains a large amount of generated information that can be matched exactly. We follow that
simple word-level interactions are important for this task and representation-based models
trade off this property for fast retrieval times.

Background knowledge. Our CDV model performs well on all data sets, but shows a sig-
nificant advantage on the Wikipedia-based WikiSectionQA dataset. Although all models are
trained on the same data, the only model with similar behavior is DSSM. One possible reason
is that entity embeddings are an important source for background information, and these are
mainly based on Wikipedia descriptions. 99.9% of the WikiSectionQA entities are covered in
our embedding, 97.1% on MedQuAD and only 69.29% on HealthQA, because it does not only
contain diseases. Sentence embeddings provide different levels of background knowledge and
language understanding. The pre-trained GloVe embedding can handle the task well, but is
outperformed by our fine-tuned Fasttext embedding and the large BioBERT language model.

Domain adaptability and task coverage. Figure 5.6 shows the performance of our CDV+avg-
fasttext model across all data sources, most of them contained in MedQuAD. This distribu-
tion reveals that our model top-1 accuracy is stable in the adaptation to most sources except
National Cancer Institute (CancerGov). However, we notice that R@10 performance is high
among all sources except SeniorHealth. Figure 5.7 shows that R@10 performance across the
most frequent aspects is over 93% in most cases, but with varying top-1 recall. We will address
these errors in Section 5.5.

Impact of contextual dependencies. Score predictions in CDV are calculated on sentence level
with respect to long-range context across the entire document. In Figure 5.4, we observe that
the model is able to predict the entity (top curve) consistently over the document, although
there are many coreferences in Wikipedia text. The aspect curve (center) clearly shows the
beginning of the expected section Symptoms and the model is uncertain for the following sen-
tences. Finally, the average score (bottom curve) shows a coherent prediction.

5.5 Discussion and Error Analysis

We perform an error analysis on the predictions of the CDV+avg-fasttext model to identify
main reasons for answer misranking. For this purpose we analyse samples in which the model
ranks a wrong passage at the top-1 position. We look at 50 random mismatched samples per
dataset to understand the individual challenges per source. We now discuss the main findings.
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FIGURE 5.5: Entity/aspect matching (values in percent) observed on all exam-
ples in the three evaluation datasets.

FIGURE 5.6: R@1 and R@10 performance of the CDV-EA+pool-biobert model
across all data sources. All sources except Wikipedia and Patient are contained

in MedQuAD dataset.
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FIGURE 5.7: R@1 and R@10 prediction performance of the 17 most frequent as-
pects in all test sets (of 34 total). Aspects are sorted from left to right by frequency.

Related entities. Figure 5.8 shows that a main source of entity errors comes from selecting pas-
sages that belong to related entities. This includes entities that are superclasses or subclasses
of the gold truth, e.g. selecting a passage covering “Diarrhea” when “Chronic Diarrhea in Children”

is the query entity. These errors are most significant in WikiSectionQA and MedQuAD, be-
cause HealthQA covers mostly common diseases. We especially observe this in samples from
Genetic Home Reference and National Cancer Institute. Figure 5.6 shows that R@1 is low for
samples from these sources, whereas their R@10 is high. That is because genetic conditions
and cancer types inherently contain entities with very similar names and descriptions. For in-
stance, we see “Spastic Paraplegia Type 8” falsely resolved to “Spastic Paraplegia Type 11”. As the
representations are close to each other in vector space, the correct samples are almost always
found within the top-10 ranked candidates, corresponding with the high R@10.
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FIGURE 5.8: Error classes for entity and aspect mismatch (values in %) from
manual analysis of 150 mismatched queries.

Related aspects. Likewise, we observe that in HealthQA 34% and in WikiSectionQA 16% of
aspects are mismatched to related aspects. Figure 5.7 shows the distribution of aspects and
the model’s ability to resolve them. It is salient that some aspects are especially difficult to
resolve. Aside from the fact that these aspects are in the long tail, a further analysis reveals
that they are often resolved to related aspects. For example, passages covering classification are
often very similar and therefore confused with passages about diagnosis and symptoms. The
same holds true for prognosis and management. Queries asking for prevalence of a disease are
often resolved to information passages, because disease frequency is often mentioned in these
introductory texts. In general, passages about related aspects often share similar tokens and
document context, which makes their distinction more difficult.

Out-of-scope questions. 25% of queries from HealthQA contain entities that are no diseases
but procedures, drugs or other entity types. As our model is trained on textual data covering
diseases only, we do not expect it to fully resolve these entities. However, we observe that the
model is capable of finding the correct passage for 23% of unseen entities. This shows that
while our model is not trained on such entity types, the fallback embedding described in 5.2.1
still allows to generalize even to non-diseases in these cases.

Evaluation vs. real-world application. We further identified a number of errors related to
the structure of the evaluation, that would be less problematic or even beneficial in real-world
application. The model frequently ranks passages to the top which answer the query but have
a differing aspect assigned. We observe this in 24% of analysed samples from WikiSectionQA
and 18% from HealthQA. This often seems to be caused by the non-discrete nature of topical
aspects. In practice a passage can cover more than one aspect, but our evaluation does cur-
rently not capture this ambiguity. Additionally we find some mismatches between passages
and their ground-truth aspects, which can be ascribed to writing errors in WikiSectionQA and
labeling errors in HealthQA. Aspects in MedQuAD are less ambiguous in general and only
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4% fall into this error class. Figure 5.5 shows that the model therefore resolves more aspects
correctly for MedQuAD queries.

Irrelevant text within passage boundaries. Another finding is that 28% of analysed samples
from the MedQuAD dataset contain boilerplate text unrelated to a specific entity. The boiler-
plate includes repeated text such as information about how data was collected. In this case our
model is able to detect relevant parts of a passage (see Figure 5.4), but the remaining irrelevant
sentences lead to a worse ranking of the passage. Evaluating with flexible passage boundaries
would eliminate this issue and be a better match for real-world scenarios, in which the interest
of a medical professional is mainly focused on non-boilerplate parts of a document.

Complex questions. We find that most questions in our evaluation can be represented as tu-
ples of entity and aspect without information loss. However, in 4% of analysed queries in the
HealthQA dataset we see a mismatch between question and query. For instance, the question
“How common is OCD in Children and Young People?” which is more specific than the assigned
query tuple “Obsessive-compulsive disorder” and prevalence. Different solutions are possible for
representing more complex queries, e.g. by composing multiple queries during retrieval. We
leave these questions for future research.

5.6 Related Work

There is a large amount of work on Question Answering (QA) [Seo et al., 2017; Wang et al.,
2017b], also applied to healthcare [Abacha et al., 2019; Jin et al., 2019] which focuses primar-
ily on factoid questions with short answers. Typically, these models are trained with labeled
question-answer pairs. However, it was shown that these models are not suitable for extracting
local aspects from long documents, and especially not for open-ended, long answer passages
[Tellex et al., 2003; Keikha et al., 2014; Nanni et al., 2018; Zhu et al., 2019]. We therefore frame
our task as a passage retrieval problem, where the system’s goal is to extract a concise snippet
(typically 5–20 sentences) out of a large number of long documents. Furthermore, following
studies from EBM [Richardson et al., 1995; Cheng, 2004; Huang et al., 2006], we focus on struc-
tured healthcare queries instead of free-text questions.

Discourse-aware representations. Recently, new approaches have emerged that represent lo-
cal information in the context of long documents. For example, Cohan et al. [2018] approach
the problem as abstractive summarization task. The authors use hierarchical encoders to
model the discourse structure of a document and generate summaries using an attentive dis-
course-aware decoder. In our prior work on SECTOR [Arnold et al., 2019], we apply a segmen-
tation and classification method to long documents to identify coherent passages and classify
them into 27 clinical aspects. The model produces a continuous topic embedding on sen-
tence level using BLSTMs, which has similar properties to the micro-topics described earlier
by Arora et al. [2016] as discourse vector (“what is being talked about”).
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We follow these ideas as the groundwork for our approach. Our proposed model is based
on a hierarchical architecture to encode a continuous discourse representation. To the best
of our knowledge, our model is the first to use discourse-aware representations for answer
retrieval. Additionally, we address the problem of sparse training data and propose a multi-
task approach for training the model with self-supervised data instead of labeled examples.

Passage matching. A baseline approach to the passage retrieval problem is to split longer
documents into individual passages and rank them independently according to their relevance
for the query. Passage matching has been done using term-based methods [Robertson and
Jones, 1976; Salton and Buckley, 1988], most prominently in TF-IDF [Jones, 1972] or Okapi
BM25 [Robertson et al., 1995]. However, these methods usually do not perform well on long
passages or when there is minimal word overlap between passage and query. Therefore, most
neural models tackle vocabulary mismatch using semantic vector-space representations.

Representation-based matching models aim to match the continuous representations of queries
and passages using a similarity function, e.g. cosine distance. This can be done on sentence
level (ARC-I [Hu et al., 2014]), which does not work well if queries are short and passages
are longer than a few sentences. Therefore, most approaches learn distinct query and passage
representations using feed-forward (DSSM [Huang et al., 2013]) or CNN convolutional neural
networks (C-DSSM [Shen et al., 2014]).

Interaction-based matching models focus on the complex interaction between query and pas-
sage. These models use CNNs on sentence level (ARC-II [Hu et al., 2014]), match query terms
and words using word count histograms (DRMM [Guo et al., 2016]), word-level dot product
similarity (MatchPyramid [Pang et al., 2016]), attention-based neural networks (aNMM [Yang
et al., 2016a]), kernel pooling (K-NRM [Xiong et al., 2017]) or convolutional n-gram kernel
pooling (Conv-KNRM [Dai et al., 2018]). Eventually, Zhu et al. [2019] utilize hierarchical atten-
tion on word and sentence level (HAR) to capture interaction of the query with local context
in long passages.

While interaction-based models can capture complex correlations between query and pas-
sage, these models do not include contextualized local information—e.g. long-range document
context that comes before or after a passage—which might contain important information for
the query. To overcome this problem, Mitra et al. [2017] combine document-level representa-
tions with interaction features in a deep CNN model (Duet). Wan et al. [2016] utilize BLSTMs
(MVLSTM) to generate positional sentence representations across the entire document.

We combine the representation approach with interaction. Our proposed model is able to
learn the interaction between the words of the passage and the discourse using a language
model. At the same time, it encodes fixed sentence representations that we use to match query
representations. Consequently, our model does not require pairwise inference between all
query–sentence pairs, which is usually circumvented by re-ranking candidates [Gillick et al.,
2018]. Instead, our model requires only a single pass through all documents at index time.
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Furthermore, by encoding discourse-aware representations, the model is able to access long-
range document context which is normally hidden after the passage split. We compare our
approach to all the discussed matching models in Section 5.4.

5.7 Conclusions

In this chapter, we have approached RQ 3, the embedding of discourse structure into docu-
ment representations. We presented CDV, a contextualized document representation that is
encoded by applying Neural Machine Reading to long documents without external supervi-
sion. The model builds upon our previous results on RQ 1 and 2 by extending sentence repre-
sentations with complementary distributed information from entity and aspect embeddings.
We have proposed to integrate pre-trained embeddings using a multi-task objective function.
This approach retains the properties of the embedding spaces and helps the model to gener-
alize over unseen examples. We further approached RQ 4, the retrieval of answer passages
from domain-specific text resources. We showed the applicability of the CDV model to three
healthcare answer retrieval tasks with best or second best accuracy compared to 14 strong
baseline models. We showed that in comparison to previous approaches, CDV is able to inte-
grate structural document context into its representations, which helps to resolve long-range
dependencies normally not visible to passage re-ranking models. Our CDV representations
can be precomputed and used to retrieve passages for ad-hoc queries with efficient k-nearest
neighbor search. Furthermore, we showed that by integrating a biomedical language model as
lowest layer, accuracy improves significantly. Eventually, our CDV model can be trained with
self-supervised data from medical Wikipedia articles and applied to different domains, such as
biomedicine or consumer healthcare. In summary, we have shown that CDV fulfills all prop-
erties that we introduced for our vision of automatic language understanding in Section 1.2.
This makes it an appropriate model to satisfy our hypothesis of Neural Machine Reading. In
the next chapter, we discuss systems that utilize CDV and other building blocks we introduced
in this thesis for applications of human information seeking.
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Systems

In this chapter, we present four implementations of our Neural Machine Reading architectures
in form of system applications: TASTY is a text editor that utilizes our Entity Linking compo-
nents to interactively support human information-seeking intentions (Section 6.1). TraiNER is
a system to efficiently train Named Entity Recognition models with active learning (Section
6.2). SMART-MD is a clinical decision support system that utilizes TASTY and SECTOR to find
passages in research articles (Section 6.3). CDV Healthcare Retrieval utilizes CDV for finding
answers for clinical questions in large corpora (Section 6.4). All these systems are implemented
in Java using the TeXoo Text Extraction Framework which we release as open-source1.

6.1 TASTY: Interactive Editor for Entity Linking As-You-Type

We introduce TASTY (Tag-as-you-type)2, a novel text editor for interactive Entity Linking as
part of the writing process3. TASTY supports the author of a text with complementary infor-
mation about the mentioned entities shown in a ‘live’ exploration view. The system is au-
tomatically triggered by keystrokes, recognizes mention boundaries and disambiguates the
mentioned entities to Wikipedia articles. The author can use seven operators to interact with
the editor and refine the results according to his specific intention while writing. Our imple-
mentation captures syntactic and semantic context using a robust end-to-end LSTM sequence
learner and word embeddings. We demonstrate the applicability of our system in English
and German language for encyclopedic or medical text. TASTY is currently being tested in in-
teractive applications for text production, such as scientific research, news editorial, medical
anamnesis, help desks and product reviews.

6.1.1 Design Challenges

Entity Linking is the task of identifying mentions of named entities in free text and resolv-
ing them to their corresponding entries in a structured knowledge base [Hachey et al., 2013].

1TeXoo is available at https://github.com/sebastianarnold/TeXoo under Apache V2 license.
2This system was published by S. Arnold, R. Dziuba, and A. Löser [2016a]. “TASTY: Interactive Entity Linking

As-You-Type”. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System
Demonstrations, pp. 111–115.

3A live demo is available at https://tasty.demo.datexis.com

https://github.com/sebastianarnold/TeXoo
https://tasty.demo.datexis.com
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write textwrite text add tagsadd tags remove tagsremove tags

correct tagscorrect tags disambiguate manuallydisambiguate manually

switch languageswitch language

explore articlesexplore articlesdisambiguate entitiesdisambiguate entities

update on keystrokeupdate on keystroke

search candidatessearch candidates

recognize mentionsrecognize mentions

FIGURE 6.1: Example of writing a text in TASTY’s user interface. Named enti-
ties are displayed as tags, articles appear on the right side. White boxes denote

interaction operators, filled boxes show system actions.

These two steps are often executed as batch process after the document has been written by the
author. Contrary, doctors during a medical anamnesis, technicians writing supportive manu-
als or assistants in help desks desire Entity Linking during writing. Ideally, a machine could
highlight relevant information about recognized entities while the author is typing the text and
gradually adapt the results to complement his task.

TASTY is such a novel text editing interface for fine-grained tagging of articles as part of the
writing process. Figure 6.1 shows an example of the editor in use. While the author is typing,
a contextual sequence learner immediately recognizes mention boundaries, tags them in-line,
resolves associated articles and displays them beside the document. When more context is
written, the system reacts and refines boundaries and associations without interrupting the
process. The author can add, remove and disambiguate tags according to his task and knowledge.
TASTY’s extraction model recognizes multi-word mentions and identifies entities that are both
in and outside the knowledge base. It does not require linguistic features, can be applied to
multiple languages without hyperparameter changes and is robust to misspelled or out-of-
vocabulary words. To our knowledge, TASTY is the first system that implements interactive
Entity Linking for manifold scenarios.

TASTY supplies doctors with supplemental materials. As demonstration example we show-
case a medical History and Physical Examination (H&P) write-up, where doctors write text about
a patient’s history and conditions. TASTY can recognize these medical entities and link them to
Wikipedia articles. Other possible targets are e.g. research papers or doctor letters. As a result,
a doctor may learn from these documents additional insights for sharpening her focus.
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FIGURE 6.2: Overview of the interactive Entity Linking process in TASTY. While
the author is writing a text, the system recognizes mentions, searches for entity
candidates and disambiguates the mention to its corresponding Wikipedia arti-

cle. The author is able to interact with every stage of the extraction process.

We showcase the following scenario as an example H&P (see Figure 6.1): The doctor starts
by writing the first sentence about her patient: “Mrs E is a 43-year-old female with a past medical

history significant for a laparoscopic cholecystectomy”. TASTY responds to key strokes, recognizes
mentions, searches for candidates and displays a complementary article for cholecystectomy

next to the document. The doctor might explore the article and incrementally learn about im-
portant aspects of this condition. She might continue writing “she suffered from periodic episodes

of abdominal pain localized in the epigastric region” and manually select a more precise disam-
biguation for the phrase “abdominal pain”. She may correct further tagging errors, e.g. remove
the unwanted tag Mrs E. In case of a missing tag, the doctor can edit a phrase, e.g. “NRS-11 pain

scale” and tag it manually. The system reacts and returns a corresponding disambiguation.

6.1.2 Interactive Entity Linking Process

We implement interactive Entity Linking using mention recognizer, candidate searcher and disam-
biguator stages [Hachey et al., 2013]. We extend the process by an interactive cycle that includes
partial update and user feedback operators, as shown in Figure 6.2. We demonstrate TASTY in En-
glish (EN) and German language (DE) and for a specialized medical scenario (MED).

Step 1: Update while the author is typing. TASTY’s user interface is based on a lightweight
rich text editor4 that we extend to display named entity mentions as in-line tags. TASTY cap-
tures the author’s key strokes and detects word boundaries after space or punctuation charac-
ters. We split a document of length n into a sequence of word tokens d = (w1, . . . , wn) using
a language-independent whitespace tokenizer5. In a partial update step, we analyze only the
changed portion d̃ = (wb, . . . , we), 1 ≤ b < e ≤ n of the document. We expand indexes b and e
to sentence boundaries and omit any further linguistic processing.

4We use Quill v1.0.0-beta.11 http://quilljs.com
5We use PTBTokenizer from Stanford CoreNLP 3.6.0 http://stanfordnlp.github.io/CoreNLP/

http://quilljs.com
http://stanfordnlp.github.io/CoreNLP/
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Step 2: Recognize mention boundaries. We define a mention m as the longest possible span
of adjacent tokens that refers to a an entity or relevant concept of a real-world object, such
as “epigastric region”. In TASTY, we further assume that mentions are non-recursive and non-
overlapping. The objective of this step is to detect all mention spans Md̃ = {mi} in the docu-
ment portion. We model this task as context-sensitive sequential word labeling problem. We
predict for each token wt ∈ d̃ a target label ŷt according to the BIOES tagging scheme [Ratinov
and Roth, 2009] with respect to its surrounding words (Eq. 6.1). From these labels, we populate
Md̃ in a single iteration. For the prediction task, we utilize Long Short-Term Memory (LSTM)
networks [Hochreiter and Schmidhuber, 1997], which are are able to capture long-range se-
quential context information with short answer times. The input is a sequence of word feature
vectors x(wt) with three components: First, we use lowercase letter-trigram word hashing
[Huang et al., 2013] to encode word syntax on character level. This technique splits a word
into discriminative three-letter ‘syllables’ with boundary markers, e.g. cell→ {#ce, cel, ell, ll#}
to make the bag robust against misspellings and out-of-vocabulary words. Second, we utilize
word embeddings [Mikolov et al., 2013a]6 to represent word semantics in dense vector space.
Third, we encode surface form features by generating a vector of flags that indicate e.g. initial
capitalization, uppercase, lower case or mixed case.

ŷt = arg max
l∈{B,I,O,E,S}

p
(
yt = l | x(wb), . . . ,x(wt−1),x(wt),x(wt+1), . . . ,x(we)

)
(6.1)

We pass through d̃ bidirectionally using a stacked BLSTM+LSTM architecture [Arnold et al.,
2016b]7. Our recognition component can be trained ‘end-to-end’ with only few thousand la-
beled sentences. For the demonstration, we provide three different pre-trained models: EN is
trained to recognize named entities (persons, organizations, locations and misc) in English en-
cyclopedic text, DE captures proper nouns (untyped) in German encyclopedic text, and MED
recognizes biomedical terms in scientific text.

Step 3: Search for candidate links. Our next step is to resolve a subset of Wikipedia article
candidates Cm for each of the detected mentions m. We especially aim to capture a large
number of candidates for highly ambiguous terms such as scale or child. For this task, we
create an index of 4.5M English and 1.6M German Wikipedia abstracts8. We use redirects and
anchor phrases to capture alternative writings and synonyms [Hachey et al., 2013]. We apply a
dictionary-based technique described by Ling et al. [2015] and query the index for candidates
Cm = {cj | ∀m ∈ d̃ : c.title ≈ m.span} using phrase queries with BM25 similarity9 for retrieval.
In case of an empty result, we return NIL (non-linkable entity).

6We use a 150-dimensional lowercase word2vec model trained on English and German Wikipedia.
7We implement the network using Deeplearning4j 0.6.0 https://deeplearning4j.org
8We use DBpedia version 2015-10 http://wiki.dbpedia.org/datasets
9We use the implementation in Lucene 6.1.0 http://lucene.apache.org

https://deeplearning4j.org
http://wiki.dbpedia.org/datasets
http://lucene.apache.org
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Step 4: Disambiguate associated articles. From the set of candidates Cm, we want to pick the
most likely entity associations Ed = {(mi, ĉj)}. We do this by picking the candidate ĉ with
maximum score depending on the mention and current document context:

ĉ = arg max
c∈Cm

score(c | m, d) (6.2)

As scoring function, we utilize short text similarity [Kenter and de Rijke, 2015] between men-
tion context m.d and a candidate article c.d. We utilize word embeddings to calculate vectors
xemb(wt) for every token in the document and aggregate them into a normalized mean docu-
ment vector that we use as semantic signature s(d):

s(d) =
1

n

∑
wt∈d

xemb(wt) (6.3)

We finally use cosine similarity between the semantic signatures as scoring function:

score(c | m, d) =
s(m.d) · s(c.d)

‖s(m.d)‖‖s(c.d)‖
(6.4)

Step 5: Feed back user interaction. TASTY offers seven feedback operators that enable an au-
thor to interact with every component in the extraction process. All operators are based on
typing or text selection. Using write, the author emits more context and the system reacts to
word boundaries by triggering a partial update. He might also rephrase single words, trigger-
ing the system to update surrounding annotations. Using the add button, he is able correct
false negative predictions from the recognition component. The system will tag the selected
mention, generate candidates and decide for an associated article. The remove button deletes
selected tags to correct false positive predictions. The author can correct boundaries of an exist-
ing tag, and the system will update the link if necessary. If the boundaries of a tag are correct,
but the link is not, he can disambiguate by assigning a different candidate from the drop-down
menu. Finally, the author benefits from several operators to explore the articles. Corrections are
directly executed in the local session and fed back as training data to our model.

6.1.3 Application Scenarios

We showcased TASTY’s editor with pre-trained models to 21 experienced professionals and
learned about exciting application scenarios which are shown in Table 6.1. A large group of
users applied the results of in-line Entity Linking to subtasks with exploratory search intention
[Marchionini, 2006]: look up facts or definitions for entities in the text, learn from complemen-
tary articles, compare written text against text in archives, verify information, integrate with
existing tagging schemes. For future implementations, users suggested the application of in-
vestigatory subtasks: evaluate text to fit a desired tone or vocabulary, discover alternatives or get
advice from user reviews or experts. We aim to extend TASTY with specialized models for these
scenarios in future work.
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Scenario Example Subtasks

Research report writing pin topics
find sources

lookup
explain

Editorial news authoring annotate paragraphs
identify topics and tags

style suggestion
search engine optimization

Diagnosis anamnesis lexicon search
patient history

side effects
medical compatibility

Help Desk customer support FAQ search
related tickets

manuals
expertise search

Shopping product order price comparison
feature infobox

user reviews
purchase advice

TABLE 6.1: Five example scenarios for TASTY’s application.

6.2 TraiNER: Bootstrapping Named Entity Recognition

Named Entity Recognition (NER) is an important preprocessing step for downstream tasks
such as Named Entity Linking, Relation Extraction or Question Answering. These tasks de-
pend on high NER recall [Pink et al., 2014]. However, often pre-trained NER models are used
in scenarios where they do not exactly fit the underlying task. For example, a system that links
text with a product database, such as cars or car parts, can utilize a fine-grained NER model
for products or technologies [Ling and Weld, 2012]. A more accurate solution requires a NER
model specifically trained for cars, but this step usually requires a large set of annotated text
as training data. In corporate scenarios, this data does not exist, but instead lists of examples,
e.g. car brands and model names, are stored in databases.

We propose TraiNER10, an adaptive entity extractor that can be trained with only a dictio-
nary of seed examples and a collection of unlabeled documents as training data. We bootstrap
a model using the seeds, sample training examples from the data and ask an expert user to
refine the labeling task by manual annotation. We use this feedback to generate additional
training examples and fit a personalized model after few iterations.

6.2.1 Active Learning Process

In our scenario, we train the extractor with the following assets: A corpus of unlabeled text from
the target domain. A seed list of keywords that express possible entity instances. An expert who
knows the task and is able to complete a set of labeling tasks. Optionally, a small labeled set
with evaluation data. We utilize these assets to build a model using an active learning process
[Settles, 2010], which is visualized in Figure 6.3.

1. Bootstrapping training data from dictionaries. We start to bootstrap training data by col-
lecting a seed list S of entity names from a database, e.g. Wikidata. We utilize an efficient
implementation of Backward-Oracle-Matching algorithm [Faro and Lecroq, 2009] to match all

10This system is based on unpublished work by S. Arnold, R. Schneider, C. Kümmel, R. Mehlitz, T. Oberhauser
and A. Löser.
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FIGURE 6.3: TraiNER active learning process.

entries of S to the documents of the unlabeled text corpus. We use lowercase matching of all
terms of length 3 or longer. We discard matches which do not align with token boundaries
entirely and give priority to longest matches. The resulting data set contains sentences with
sparse distant-supervised labels YD = {(s,match(s,S)) | s ∈ Xtrain}. Because the dictionary is
incomplete, the data set may contain a large number of false negatives. The set may also con-
tain false positive mentions and wrong boundaries, resulting from morphological similarity.

2. Training an efficient NER model. We utilize our TASTY sequence labeler with robust en-
codings and contextual embeddings [Arnold et al., 2016b] that can be trained end-to-end. We
call this model Mi at iteration i. For bootstrapping, we optimize ỹ = M0(s) ∀(s, ỹ) ∈ YD for
a random sample from the training data. We empirically observed that this step requires at
least 4,000 training sentences with high variance to produce a well-performing model. As the
process continues, we call this step iteratively to retrain Mi+1 with improved labels.

3. Inference on evaluation data. We applyMi to a labeled test dataset YT = {(s, y) | s ∈ Xtest}
to produce labels for evaluation: ŶT = {(s,Mi(s)) | s ∈ Xtest}. Furthermore, we produce labels
for a random sample of machine-labeled examples ŶM = {(s,Mi(s)) | s ∈ Xtrain}.

4. Evaluation of current iteration. We evaluate predictions ŶT with respect to the ground
truth YT using F1 measure. We stop after this step if the results are above a given threshold or
the annotation budget is reached.
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FIGURE 6.4: Screenshot of the TraiNER user interface for human annotation.

5. Sampling examples for manual annotation. From machine-labeled predictions ŶM, we
pick 100 examples Xsample that require manual examination. We calculate a confidence score
for each prediction using the maximum class probability from the NER softmax. We use this
value for uncertainty sampling [Settles, 2010].

6. Annotation by human expert. The human oracle is asked to annotate the 100 samples
Xsample with expert labels YE = {(s, label(s)) | s ∈ Xsample}. We use a graphical annotation
interface, which we discuss in the next section.

7. Upsampling human annotations to generate training data. The number of examples re-
quired to improve the NER model is often too large for a human task. We therefore utilize an
upsampling method to generate more training samples from the 100 expert labels. We apply
the dictionary bootstrapping method to a random sample of the training data with all new
entity names contained in the expert labels: YD+ = {(s,match(s,S ∪ YE)) | s ∈ Xtrain}.

Iterative loop. We continue with step 2 and optimize the next generation model Mi+1 with
expert and distant labels: ỹ = Mi(s) ∀(s, ỹ) ∈ YE ∪ YD+.

6.2.2 Graphical User Interface

The TraiNER interface is optimized for annotating named entity mentions with very few re-
quired clicks. Figure 6.4 shows the interface with its operators. The system can be used in
two scenarios: An expert can use it in offline mode (1) to exhaustively annotate a complete data
set with named entity mentions. Or she can use it in online mode (2) and iteratively annotate
small batches of sampled sentences, as described in the previous section. Each text snippet is
displayed as an interactive text box (3). Bootstrapped model annotations are shown in blue (4),
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FIGURE 6.5: Comparison of TraiNER sampling strategies.
(Figure adapted from Kümmel [2018])

user corrections are shown in red (5). By selecting the text with the mouse cursor, the user can
efficiently add, delete and correct annotations. An autocompletion operator helps to quickly
annotate entire words with single clicks (6). The user can also display the snippet in the con-
text of the entire document (7). The user needs to accept the annotations for the snippet (8)
or reject all of them (9). After this operation, the snippet is closed. The user can reopen the
snippets later for review or correction (10). After annotation, the user sends the annotations
back to the model to start a training iteration (11). The evaluation scores are displayed after
each iteration (12). To gain an overview on the annotation progress, the number of remaining
samples and annotations are displayed for the user (13). In our experiments with ten expert
annotators using the system for 8 hours each, we observed that an average annotator achieved
to label 305 sentences per hour.

6.2.3 Experimental Results

We simulated the online labeling scenario on the i2b2 clinical concept recognition dataset
[Uzuner et al., 2011]. We used a seed list with 24,125 entity names from Wikidata for boot-
strapping and a 20% test split of the dataset as evaluation set. We conducted several training
runs with 10 iterations each: random sampling and uncertainty sampling of 100 human-labeled
examples, incremental sampling of all examples (10% of the training data per iteration), both
with and without upsampling. The training curves are shown in Figure 6.5. From training the
NER model on the fully labeled training set we observe an upper bound performance of 74.5%
F1. Using only the bootstrapping approach yields a lower bound performance of 27.5% F1. We
further observe that incremental sampling requires 50% of the training data to reach 60% F1,
while upsampling reduces these costs to 25% of the data. With random sampling, the model
does not significantly improve after 10 iterations (7.7% of the training data), even with upsam-
pling. Uncertainty sampling with upsampling can speed up this process, so that the model
performs with 45% F1 or better after 5% of the training data has been labeled.
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6.3 Smart-MD: Clinical Decision Support System

Medical doctors, in particular at emergencies, often need to make fast decisions and without
studying the latest research results from journals thoroughly. In particular less experienced
doctors might overlook alternative treatments or therapies and often fall back to potentially
less effective standard procedures known from their academic studies. Despite the fact that
most queries of doctors are of informational intent [Yoo and Mosa, 2015; White and Horvitz,
2014], standard medical search engines, like PubMed11, still focus on filtering documents using
keyword queries. Ideally, a doctor could use an effective search engine for retrieving diverse
and potentially unknown results from the latest literature about symptoms, therapies, medi-
cations, treatments or other often requested aspects during the anamnesis.

6.3.1 Demonstration Scenario

Consider the case of a doctor searching for treatments of Lyme disease, an infectious disease
caused by bacteria of the Borrelia type which is mainly spread by ticks. She will study essen-
tial articles and will find the transmission of ticks from birds to humans as main cause. While
she knows from her academic studies that antibiotics such as doxycycline will help most pa-
tients, she might oversee that certain patients with cardiac diseases will likely suffer from this
treatment and should rather be treated with ceftriaxone-based antibiotics. Ideally, the system
would retrieve all treatments for Lyme disease and would display an aggregated overview of
different treatments, including some paragraphs of text which explain infrequent edge cases.

We demonstrate SMART-MD12, an IR system that provides such a functionality for medi-
cal professionals13. The system takes as input diseases and a list of optional topical aspects.
Figure 6.6 shows a typical result for the query “lyme treatment” (1). Given the query, the system
retrieves two highly relevant paragraphs about treatments from two articles on Lyme disease
or on Borrelia (4). It recognizes and aggregates important facets in these paragraphs, such as
correlating medical terms or topics and provides the user these facets for query refinement (2).
Furthermore, SMART-MD shows a distribution of treatments (3) and the user can narrow the
query to a particular novel and previously unknown treatments. Finally, the user may click on
an interesting paragraph to inspect the context of the entire document (5). Thereby the system
highlights the topic of each relevant paragraph (6). In particular with long documents, this
fine granularity at paragraph level permits the reader to skip many irrelevant passages.

6.3.2 Passage Retrieval Process

SMART-MD is built upon two neural information extractors which process the dataset at load
time. The topic extractor assigns a distribution of topics to each sentence in the dataset. The

11https://www.ncbi.nlm.nih.gov/pubmed/
12This system was published by R. Schneider, S. Arnold, T. Oberhauser, T. Klatt, T. Steffek, and A. Löser [2018].

“Smart-MD: Neural Paragraph Retrieval of Medical Topics”. In: The Web Conference 2018 Companion. IW3C2,
pp. 203–206.

13A video is available at https://www.youtube.com/watch?v=kcDi7qQxpBo

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.youtube.com/watch?v=kcDi7qQxpBo
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FIGURE 6.6: Screenshot of the SMART-MD user interface.

entity extractor recognizes named entities in these sentences. Both models are trained end-to-
end with data from the medical domain. We store all extractions in an index and retrieve them
at query time to return relevant paragraphs. In this section we describe these steps briefly.

Sequential topic classification. The topic extractor’s goal is to assign a coherent distribution
of topics over all positions in a document. In contrast to traditional probabilistic topic models
such as LDA [Blei et al., 2003], which describe topic distributions on document-level, we ap-
proach to capture topics on sentence level. To achieve a coherent sequence of topics, e.g. to
spot adjacent sentences that express treatments of a disease, we need to respect the sequential
order and long-range dependencies of sentences in the document. We use the SECTOR model
[Arnold et al., 2019] which utilizes bidirectional Long Short-Term Memory (BLSTM) networks
[Hochreiter and Schmidhuber, 1997] to segment and classify passages. The network archi-
tecture is shown in Figure 6.7. We utilize section and subsection headlines from Wikipedia
documents to define possible topics. For example, we observe 6,876 distinct headlines from
3,469 Wikipedia pages on diseases. A closer inspection reveals that this distribution is heav-
ily skewed, e.g. top 20 topics cover more than 90% of all paragraphs. We therefore chose 20
representative topic labels for training and assign label ‘other’ to the remainder.

Medical Named Entity Recognition. The entity extractor’s goal is to recognize medical named
entities, such as diseases or medications in the documents. This task is often difficult, since
only sparse training data exists and recall suffers from missing variance [Pink et al., 2014]. We
utilize the TASTY model [Arnold et al., 2016b], a generic and robust approach for high-recall
NER in many languages and with sparse training data. TASTY offers strong generalization over
domain-specific language, such as in biomedical text (e.g. Medline, PubMed or Wikipedia ar-
ticles) and can be trained with only few hundred labeled sentences to achieve F1 scores in the
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short passages.

range of 84–94% on standard datasets. To achieve a robust classifier, TASTY encodes words as
bag of letter-trigrams as input features. This allows us to train a character embedding that is
able to recognize typical syllables in a word. We extract possible diseases and other medical
entities and store them in the index for query completion and paragraph retrieval.

Query processing and paragraph scoring. SMART-MD executes queries of the form (disease,
topic) as follows: First, the user matches ambiguous disease and topic names using autocom-
pletion. This operator maps a variety of notations from Wikipedia entity names headlines to
well defined entities and topic classes. We then conduct a conjunctive boolean search and
retrieve documents that contain both disease name and topic ID a single document. Finally,
we score the candidate paragraphs. Our scoring approach bases on the assumption that para-
graphs likely contain medical entities that have a mutual relation with the topic of the para-
graph and the requested disease. Moreover, we aim to retrieve low frequency events that are
probably unknown to the doctor. We measure for each paragraph proximity between the re-
quested topic and co-occurring entities with normalized pointwise mutual information (nPMI)
[Bouma, 2009]:

nPMI(entity, topic) =
ln P (entity,topic)
P (entity)P (topic)

−ln P (entity, topic)
(6.5)

P (entity) denotes the probability that retrieved paragraphs contain the entity, P (topic) the
probability that the topic is discussed in the retrieved paragraphs and P (entity, topic) denotes
the probability that an entity appears in any retrieved paragraph that discusses the topic.
Hence we assign to low frequency events relatively high scores and display these results at
the beginning of the page.
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6.4 CDV Healthcare Answer Retrieval

In prior work, we have presented SMART-MD [Schneider et al., 2018], a clinical passage re-
trieval system based on TASTY Named Entity Extraction [Arnold et al., 2016b] and the SECTOR

[Arnold et al., 2019] topic classification method. In this section, extend this task in a system that
utilizes the Contextual Discourse Vectors (CDV) model [Arnold et al., 2020] for retrieving clini-
cal answers in long documents. For this scenario, we apply CDV as a Neural Machine Reading
model on multiple large corpora of domain-specific text)14. The aim of this system is to demon-
strate a variety of use-cases to doctors and healthcare professionals. From this demonstration,
we hope to gain more insights on how we can utilize neural document representations to solve
clinical information-seeking tasks.

6.4.1 Demonstration Scenario

We use the CDV model, which encodes the discourse of a document, e.g. the entities and
aspects discussed in a certain sentence. Our healthcare CDV model is trained with over
27,000 diseases and over 14,000 clinical aspects, such as symptoms, diagnosis, causes, therapy,
prevalence, etc. This enables us to search for passages in clinical articles that potentially con-
tain answers for clinical background–foreground questions. We applied CDV to a variety of
domain-specific text resources: WikiSection [Arnold et al., 2019], CORD-19 [Wang et al., 2020],
Orphanet [INSERM, 1997], MedQuAD [Abacha and Demner-Fushman, 2019] and HealthQA
[Zhu et al., 2019], covering over 33.1K articles in total.

Figure 6.9 shows the CDV search interface over the CORD-19 open research dataset15. The
user can search using name of a disease, e.g. “COVID-19”, and the aspect of interest, e.g. “med-

ication” (1). The autocomplete supports her to resolve the correct entities and aspects. The
system returns a list of similar entities, e.g. “2019 novel coronavirus respiratory syndrome” and
“SARS-CoV-2” which can be clicked to refine the query (2). The search result contains up to 30
passages from different articles that match the query, shown with its matching score in per-
cent (3). By hovering over a sentence, its individual score is shown. For each article, the best
matching sentence is highlighted in bold, e.g. “potential drugs [...] such as Remdesivir, Atazanavir,

Saquinavir, and Formoterol, and Tocilizumab can be introduced as treatments for COVID-19 [...]”16(4).
The user can read a larger part of the passage by clicking “more” or open the original source
article. By clicking on the headline, the user can access the highlight view (5). Here, the entire
article is shown, and the correspondence score of each sentence with the query is indicated
by the shade of blue. In other words, this view highlights interesting passages that the user
should read. This operator is especially helpful for skimming long and complex documents
for specific questions.

14This system was submitted for review by J.-M. Papaioannou, S. Arnold, F. A. Gers, A. Löser, M. Mayrdorfer,
and K. Budde [2020]. “Aspect-Based Passage Retrieval with Contextualized Discourse Vectors”. In: [IN SUBMIS-
SION] COLING 2020 System Demonstrations.

15A live demo is available at https://cord19.cdv.demo.datexis.com
16Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085862 CC-BY 4.0, 18.04.2020

https://cord19.cdv.demo.datexis.com
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085862
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FIGURE 6.9: Screenshot of the CDV search interface (left), result passages (center)
and one document in highlight view (right).

Example query Top 3 sentences Source

Peanut allergy “Mild reactions can be treated with an antihistamine medicine.” Patient17

treatment “Antihistamines can alleviate some of the milder symptoms of an allergic reac-
tion, but do not treat all symptoms of anaphylaxis.”

Wikipedia18

“The principal treatment for anaphylaxis is epinephrine as an injection.” Wikipedia19

Cystic fibrosis
symptoms

“The main signs and symptoms of cystic fibrosis are salty-tasting skin, poor
growth, and poor weight gain despite normal food intake, accumulation of thick,
sticky mucus, frequent chest infections, and coughing or shortness of breath.”

Wikipedia20

“Signs and symptoms may include salty-tasting skin; persistent coughing; fre-
quent lung infections; wheezing or shortness of breath; poor growth; weight loss;
greasy, bulky stools; difficulty with bowel movements; and in males, infertility”

GARD21

“The most common form of cystic fibrosis is associated with respiratory symp-
toms, digestive problems [...] and staturoponderal growth anomalies.”

Orphanet22

COVID-19
medication

“Also, potential drugs [...] such as Remdesivir, Atazanavir, Saquinavir, and For-
moterol, and Tocilizumab can be introduced as treatments for COVID-19 if they
prove to be effective in animal and clinical studies”

PMC16

“Chloroquine has been used to treat malaria for many years, with a mechanism
that is not well understood against some viral infections.”

PMC23

“The WHO does not oppose the use of non-steroidal anti-inflammatory drugs
(NSAIDs) such as ibuprofen for symptoms, and the FDA says currently there is
no evidence that NSAIDs worsen COVID-19 symptoms”

Wikipedia24

TABLE 6.2: Example results for three CDV healthcare queries. The table shows
for each query the highlighted sentences from the top-3 predicted passages.

17Source: https://patient.info/allergies-blood-immune/food-allergy-and-intolerance/

nut-allergy, 18.04.2020
18Source: https://en.wikipedia.org/wiki/Food_allergy CC-BY-SA 3.0, 18.04.2020
19Source: https://en.wikipedia.org/wiki/Peanut_allergy CC-BY-SA 3.0, 18.04.2020
20Source: https://en.wikipedia.org/wiki/Cystic_fibrosis CC-BY-SA 3.0, 18.04.2020

https://patient.info/allergies-blood-immune/food-allergy-and-intolerance/nut-allergy
https://patient.info/allergies-blood-immune/food-allergy-and-intolerance/nut-allergy
https://en.wikipedia.org/wiki/Food_allergy
https://en.wikipedia.org/wiki/Peanut_allergy
https://en.wikipedia.org/wiki/Cystic_fibrosis
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6.4.2 Discussion of Healthcare Queries

We exemplify the results for three healthcare queries on six different datasets shown in Table
6.2. We chose these queries because they show a variety of exploratory information-seeking
tasks, such as lookup, learn and investigate [Marchionini, 2006].

“Treatments for peanut allergy” is a typical consumer question, which is difficult to answer
with a single fact lookup, because there exists no cure for this allergy up to now. Such queries
require the user to learn more abut a topic, so they are best answered by passages from health
portals like Patient or the Wikipedia encyclopedia. We notice that two articles mention an-

tihistamines for mild reactions, and another article suggests epinephrine (a synthetic form of
adrenaline) as a treatment for anaphylaxis. The information that anaphylaxis is a severe allergic
reaction is mentioned in the context of this passage. We further notice that the information is
contained in specific articles about peanut allergy, but also in more generic ones such as food
allergies. Therefore it is important that the predictions respect the locality of the passages.

“Symptoms of Cystic fibrosis” is a similar lookup question that is focused on a rare disease.
Here, the answers are contained in various specialized sources such as GARD or Orphanet,
which contain only short articles. We observe that the three top answers strongly overlap,
some describe the symptoms more casually (e.g. poor growth), others are more specific (e.g.
staturoponderal growth anomalies). We further notice that for these rare cases, answers are very
precise and there is also string lexical overlap between query and passage.

“Medication for COVID-19” is an investigatory question which focuses on finding potential
medications for the new COVID-19 disease. This is an open-ended question, and we cannot
validate its answers today. Therefore, the goal is to maximize the recall over recent research
articles and point an expert user to the interesting passages. The answers show a high variance
and discuss potential drugs such as Remdesivir, Formoterol or Chloroquine, which are discussed
in individual PMC articles. The model also predicts a more generic Wikipedia passage men-
tioning ibuprofen as a typical anti-inflammatory drug that has been widely discussed in relation
with COVID-19.

21Source: https://rarediseases.info.nih.gov/diseases/6233/index 18.04.2020
22Source: https://www.orpha.net/consor/cgi-bin/Disease_Search_Simple.php?lng=EN&

diseaseGroup=Cystic+fibrosis Copyright INSERM 1997, 18.04.2020
23Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068984 CC-BY 4.0, 18.04.2020
24Source: https://en.wikipedia.org/wiki/Coronavirus_disease_2019 CC-BY-SA 3.0, 18.04.2020

https://rarediseases.info.nih.gov/diseases/6233/index
https://www.orpha.net/consor/cgi-bin/Disease_Search_Simple.php?lng=EN&diseaseGroup=Cystic+fibrosis
https://www.orpha.net/consor/cgi-bin/Disease_Search_Simple.php?lng=EN&diseaseGroup=Cystic+fibrosis
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7068984
https://en.wikipedia.org/wiki/Coronavirus_disease_2019
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6.5 Conclusions

In this chapter, we have introduced four systems that cover a broad range of Machine Reading
applications. TASTY combines classical Information Extraction with an interactive feedback
loop while the user is writing text. TraiNER approaches the efficient creation of domain-
specific Information Extraction models in an active learning setting. SMART-MD models a
clinical information-seeking task with a combination of neural Information Extraction and Ma-
chine Reading methods over long documents. Eventually, CDV Healthcare Retrieval utilizes a
self-supervised Neural Machine Reading model to retrieve answers from a variety of domain-
specific text resources. With these systems, we cover the entire process of supporting human
information seeking as introduced in Section 1.1. Most of these systems are prototypical im-
plementations that have been applied in industry and research projects. These systems benefit
from the contributions in scope of this thesis, which are focused on automatic language pro-
cessing. It remains for future work to evaluate the entire information-seeking process—which
includes the user interfaces and feedback processes of these systems—with methodologies
from human-computer interaction (HCI).
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Chapter 7

Conclusion and Future Work

In this thesis, we have examined the vision of Neural Machine Reading for domain-specific
text resources from a variety of viewpoints. We have contributed the Neural MR architec-
tures TASTY, SECTOR and CDV that support three central tasks in the process of human infor-
mation seeking: Named Entity Linking, Topic Modeling and Answer Passage Retrieval. We
have shown that deep neural networks enable the efficient creation of generalized models us-
ing end-to-end training methods, self-supervision and the integration of contextual and back-
ground knowledge. Our models are able to process domain-specific text resources without
expensive adaptation and with high error tolerance. We have evaluated several information-
seeking tasks and shown that our models achieve high accuracy, while they are often trained
with widely available training data, e.g. from Wikipedia. In this chapter, we review our con-
tributions with respect to the desired properties of a MR model (Section 7.1) and research
questions (Section 7.2). We discuss the limitations (Section 7.3) and perspectives (Section 7.4)
of our vision. Finally, we propose directions for future work (Section 7.5).

7.1 Contributions of Neural Machine Reading

In Section 1.1, we have introduced six central challenges for domain-specific language under-
standing. We have designed our models to meet these requirements and now discuss our
contributions and findings:

Domain-specific language understanding. We have approached three central tasks over mul-
tiple languages or domains. More specifically, we proposed a deep learning architecture for
Named Entity Recognition that can be trained end-to-end and does not require language and
domain-specific feature engineering (Section 3.2.2). We have shown that our NER model can
efficiently adapt to English and German in news, biomedical and industry domains, when su-
pervised training data is available (Section 3.3). We further have introduced the SECTOR and
CDV Topic Classification and Answer Passage Retrieval architectures that share these proper-
ties, even when trained with self-supervision from Wikipedia section headings (Sections 4.3.2
and 5.3). We have shown that SECTOR adapts to English and German for medical, geopoliti-
cal, chemistry and clinical domains with high accuracy (Section 4.4). We further report high
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accuracy of CDV for retrieving answers from medical encyclopedia, consumer healthcare, clin-
ical research and professional biomedicine domains, even without any additional fine-tuning
(Sections 5.4 and 6.4).

Robustness against noise and spelling variations. We have analyzed errors arising from cap-
italization, spelling variations, novel or incomplete words and irregular sentences (Section
3.1.3). All of our Machine Reading approaches abstract from rule-based linguistic prepro-
cessing in order to avoid these errors. Instead, they rely on the distributional hypothesis to
represent language using empirical observations, such as distributed word embeddings and
language models (Section 2.2). Primarily, we have shown that letter-trigram encoding is a
key component for robust word representations (Section 3.2.1). We further have shown that
sentence embeddings based on Bloom filters, weighted average or self-attention over words
improve recall for information-seeking tasks (Sections 4.3.1 and 5.3.1).

Document structure representation. We have shown that our SECTOR and CDV models are
able to encode the structural properties of long documents (Sections 4.3 and 5.3). Our doc-
ument representations improve information-seeking tasks with contextualized local informa-
tion that is not contained in word or sentence based models, such as Word2Vec, ParVec or
BERT (Sections 4.5, 5.3.3 and 6.4).

Broad task coverage. We have covered a broad range of tasks using two approaches. First, our
efficient supervised training techniques for TASTY and TraiNER allow to build personalized IE
models from labeled data without any architecture changes (Sections 3.2.2 and 6.2). We have
shown high accuracy on Named Entity Recognition and Linking to Wikipedia, but also report
high recall from extracting general concepts, noun phrases, more specific biomedical terms,
car models and car parts (Section 3.3). However, these models rely on accurate training data
and are not easily interchangeable between tasks. Therefore our second approach with CDV
focuses on general Machine Reading models that can be reused for different tasks. We have
shown that distributed entity and aspect embeddings are able to handle generic and specific
Answer Passage Retrieval tasks using nearest-neighbor search (Section 5.2). This includes for
example general disease descriptions, precise definitions of rare diseases and also zero-shot
adaptation to previously unknown diseases such as COVID-19 (Section 6.4). We further have
shown that multi-task training with complementary objectives, such as named entities and
topical aspects, improve representations for Answer Retrieval compared to language models
that solely rely on the distributional hypothesis (Section 5.4).

Efficient model training. We have proposed several approaches to deal with insufficient amounts
of training data. Our TASTY model utilizes efficient word representations, sequential context
and background knowledge to train NER models with high accuracy using only 4,000-5,000 la-
beled sentences (Section 3.3). We have proposed the TraiNER framework to reduce the amount
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of human labeling for this task to few hundred examples by automatically matching seed la-
bels and sampling instances for active learning (Section 6.2). We proposed SECTOR and CDV
document representations that can be reused for downstream tasks. These models are effi-
ciently trained with self-supervised data from Wikipedia articles and leverage background
knowledge from large pre-trained language models and complementary entity and aspect em-
beddings (Sections 4.2 and 5.3.4).

Error analysis and feedback propagation. We have conducted error analyses for each of our
models to explain their strengths and weaknesses (Sections 3.4, 4.5 and 5.5). We aimed to cover
the entire process of human information seeking by including the user into the feedback loop
of the TASTY Editor and TraiNER active learning system. The components of our models are
trained end-to-end, so they can be replaced with updated weights and often improve with
more feedback (Sections 6.1 and 6.2).

7.2 Review of Research Questions

In the beginning of this thesis, we posed four central research questions to approach our hy-
pothesis of Neural Machine Reading. We are now going to summarize our findings for each of
these questions.

RQ1. What are general solutions to identify named entities in domain-specific text? Extract-
ing named entities from domain-specific text requires a model that can leverage local, contex-
tual and global features. First, we identified character-based word representations as a key
component for efficient and robust recognition of domain-specific entity names. In particular,
letter-trigram encodings provide our model with important local subword information that en-
ables the model to efficiently learn from sparse data with high recall. Second, we have shown
that Bidirectional Long Short-Term Memory (BLSTM) models effectively encode long-range
dependencies from sentence and document context. The encoder-decoder architecture using
stacked BLSTMs enables us to train language-invariant models for Named Entity Recognition
end-to-end, i.e. using a labeled set of 4,000–5,000 examples or in an active learning scenario.
Third, pre-trained language models, word and sentence embeddings provide important back-
ground information for generalization of the model. We used a combination of these features
to achieve 91.1% F1 on the English CoNLL03 task, and report high scores for domain-specific
NER models in English and German. Furthermore, we used entity embeddings that were
trained with plain entity descriptions to efficiently retrieve and rank candidates for Named
Entity Disambiguation and Answer Passage Retrieval with high accuracy using nearest neigh-
bor search.

RQ2. How can Machine Reading models detect topics and structure in long documents? The
understanding of entire documents is an important ingredient for Machine Reading. To tackle
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this task, we introduced a topic segmentation and classification task which operates with sen-
tence granularity on long documents with 1,500 words on average. We have shown that mod-
els based on the distributional hypothesis, such as Paragraph Vectors or LDA topic models,
can not solve this task adequately. Instead, MR models require complementary structural in-
formation, which we take from section headings of Wikipedia training documents. We have
shown that BLSTMs can effectively capture entire documents using Bloom filters for sentence
encoding. We have introduced a bidirectional embedding deviation method, inspired by edge
detection in images, to segment documents at topic shifts into coherent passages with high
accuracy. We further have shown that the same MR model can be used to classify passages
into 25–30 normalized topic classes with up to 71.6% F1. We provided insights showing that
the model predicts a coherent topical structure, which can further be reused for downstream
tasks such as large multi-class multi-label classification with up to 603 classes.

RQ3. How can we embed discourse structure into document representations? Automatic lan-
guage understanding requires a contextualized document representation that reflects the dis-
course structure of a text, including topical structure, entity mentions, coreferences and general
long-range dependencies. We proposed to extend pre-trained language models that rely on
the distributional hypothesis with complementary information from document structure and
distributed entity and aspect embeddings. We integrated these objectives using multi-task
training over entire documents with sentence granularity. We have introduced a model that
uses BLSTMs stacked on top of distributed sentence representations and Huber loss to align
the sentences of a document with contextual discourse information. This step was possible
without external supervision, because Wikipedia documents provide enough features for the
alignment. Furthermore, we showed that by integrating a pre-trained BERT language model
as lowest layer, accuracy improves significantly. We have discussed that our document rep-
resentation retains the original properties of the semantic entity and aspect spaces, such as
nearness measures, robustness against variations and the coverage of long-tail entities. This
further helped the model to generalize over previously unseen examples and provides seman-
tic interpretability of the representation vector space.

RQ4. How effective are document representations for retrieving answer passages? We exam-
ined the application of our contextual discourse vector representation in an answer retrieval
task. We have shown that searching contextualized document representations on sentence
level using cosine similarity achieves significantly higher recall than term-based methods and
shows equal to superior performance compared with supervised document re-ranking meth-
ods. This is possible because structural document context and long-range dependencies are
normally not captured by document matching models. Furthermore, we highlighted that
representation-based search is more efficient than models based on deep interaction between
query and document. Document representations can be precomputed and cached, so that
the complexity of an ad-hoc query is reduced to encoding the query and retrieving k-nearest
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neighbors from a vector space index. From an in-depth error analysis, we identified the rep-
resentation of hierarchical, related and overlapping information as a potential cause of errors,
because this information is not considered adequately by the cosine similarity measure.

Put together, our answers to these research questions enable us to build general Neural Ma-
chine Reading models that fulfill task-specific information needs across domain-specific text
resources. This thesis covers all necessary stages of this process. We have built our contribution
around the definition of central information-seeking tasks, the principles of unsupervised lan-
guage understanding, distributed language representations and sequence learning methods.
We have contributed algorithms that solve three central tasks with high accuracy and high er-
ror tolerance from self-supervised data or only few hundred labeled examples. Even though
many of the individual problems have been approached by fast-paced concurrent work, no
comprehensive solution to document-level Neural Machine Reading has been presented be-
fore. This thesis is the first research approach to extend distributed language representations
with complementary information about document topics and discourse structure. It closes the
gap between symbolic Information Extraction and Information Retrieval by transforming both
problems into latent distributed vector space representations. Our models can fulfill domain-
specific information needs on large domain-specific text resources with low latency suitable
for interactive applications.

7.3 Limitations

We have presented a general architecture for Neural Machine Reading that is applicable to
a broad range of domain-specific text resources. As every research project, our approach is
subject to a number of limitations, which could be addressed in future work.

Applicability to different writing systems. We could show that end-to-end models work
well when transferred to different languages, such as English and German. However, our
experiments have been restricted to written languages that use a linear segmented mono-
phonemic alphabet, such as Latin script. This is mainly caused by common preprocessing
steps, such as tokenization, sentence splitting and character encoding, which rely on the as-
sumption of space-separated character n-grams. These operations are often rule-based and
language-specific, although recent NLP libraries cover a large variety of languages. We further
cannot make any assumptions that the principles of the distributional hypothesis will also hold
in languages that use morphemic (e.g. Chinese) or partial phonemic (e.g. Arabic) writing sys-
tems. One possible circumvention would be to replace preprocessing steps with compatible
methods, such as Chinese word segmentation algorithms [Peng et al., 2004]. This could enable
us to train each individual component of the MR model with end-to-end training data of the
different writing system.
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Preprocessing required for self-supervision. The approaches for self-supervised training in-
troduced in this thesis are not entirely unsupervised. Generating self-supervised training data
from external sources such as Wikipedia often requires a fair amount of site-specific struc-
tural parsing, e.g. extracting document titles, links, lists and section headings from the HTML
source. This is not always possible on domain-specific text resources, because they might not
expose this structural information. To better understand this limitation, we have investigated
the transfer of models trained from Wikipedia to domain-specific text and demonstrated op-
tions to minimize the annotations required for fine-tuning. One possible circumvention is to
specifically train models that select an ensemble of hand-written heuristics in order to generate
training data from unlabeled corpora with weak supervision [Ratner et al., 2020].

Controlled adjustment of model properties. We could show that our Neural Machine Read-
ing architectures solve three important information-seeking tasks with high accuracy com-
pared to a variety of recent approaches. However, in practice, for example in Web search en-
gines, accuracy measures such as Precision and Recall are not the only objectives. Instead, op-
timization criteria for search engine result pages are domain-specific and dynamically change
between user profiles and from user feedback. Typical objectives include result diversification,
freshness, source trust, popularity, etc. [Toms et al., 2005; Chuklin et al., 2013; Li et al., 2015].
In Information Retrieval, these objectives are often achieved by learning personalized decision
rules between an ensemble of multiple models by relevance feedback. Additionally, often ex-
perts curate hard-coded rules and exceptions to maximize the key performance indicators of
their product. An ideal solution would be to enable these adjustments and feedback inside
the model itself, or by extending the model with controlled ‘plug&play’ layers [Dathathri et
al., 2020]. Although we have shown that our neural MR architecture is highly adaptive to a
broad range of tasks and domains, we have not focused on dynamically changing objectives
and leave a solution up to future work.

7.4 Business Perspectives

Neural Machine Reading opens up a broad range of perspectives for commercial applica-
tions. Most importantly, general and robust MR models accelerate the design of data products
which normally require time-intensive research and development. These products are urgently
needed to conquer the continuously growing data lake from corporate information resources,
social digital communication and the Web in general. It is assumed that by 2025, 80% of world-
wide data will be unstructured, with healthcare, manufacturing, financial services and retail
being the fastest-growing industries [Reinsel et al., 2018]. Currently, only a small fraction of
this data is analyzed, although approximately one quarter could contain valuable information
[Gantz and Reinsel, 2012]. For example, according to a 2019 study, only 11% of manufacturing
companies consider themselves as ‘data mature’ and only 48% have begun the transforma-
tion of the organization towards data-driven processes [Atkinson and Ezell, 2019]. The most
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prominent barriers for this transformation mentioned in this study are lack of data resources
(58%), task-specific implementation challenges (52%), lack of development skill (47%) and in-
teropability and integration problems (47%). A general-purpose MR model addresses these
problems.

Increasing coverage of domain-specific text resources in e-discovery. Electronic discovery
(e-discovery) is a legal process in which a party requests the delivery of electronically stored
information (ESI) as potentially relevant evidence in a civil lawsuit. Typical search queries in-
clude the application of patents, misuse of licensing rights, or collusion. A key challenge to the
e-discovery process is to cover a broad range of resources (e.g. corporate documents, e-mail,
instant messaging communication, audio recordings, databases, Web sites, images, metadata
etc.), to deliver only specific information that is relevant for litigation and, at the same time, to
protect sensitive corporate data.

With growing emergence of new content sources in organizations, rising number of lit-
igations, increasing growth in compliance requirements and data protection regulations, e-
discovery is expected to gain major traction in the next years. According to a recent study,
the global e-discovery market is growing at a compound annual growth rate of 10.0% and is
projected to reach over $17.3 billion by 2023 [MarketsandMarkets, 2019]. Discovery accounts
for 20–50% of all costs in federal civil litigations [Lee and Willging, 2010]. Therefore, organi-
zations need to proactively prepare for delivery requests from potential lawsuits in order to
minimize the cost for manual management. For example, in a past patent dispute of Samsung
against Apple Computers, 11 million documents of over 3.6 terabytes were processed, with a
total processing cost of over $13 million [Sullivan, 2017]. Today, e-discovery is built upon the
Electronic Discovery Reference Model (EDRM), a standard process for information governance,
identification, preservation, collection, processing, review, analysis, production and presenta-
tion of ESI [Holley et al., 2010]. The main contributions of e-discovery software is to reduce
complexity of the process and strip noise from the data. However, text resources are not deeply
processed in these systems, and in particular review and analysis stages still require expensive
human labor. Typical solutions, such as Microsoft Office 365 eDiscovery1, IBM StoredIQ Suite2,
DISCO3 or Logikcull4 are based on term-based keyword search and metadata filters. Some of
these systems apply machine learning approaches for keyword and topic expansion.

Neural Machine Reading supports the e-discovery process fundamentally in the important
stages of identification, collection, review and analysis of textual data. It helps to accelerate
these stages in order to save costs by providing general language representations, which can
be trained end-to-end with self-supervised data and can be queried with low latency. Neural
MR representations provide a higher result coverage by effectively increasing recall over large
corpora of domain-specific resources, in particular from the long tail. Entity and topical aspect

1https://docs.microsoft.com/en-us/microsoft-365/compliance/ediscovery
2https://www.ibm.com/products/storediq-suite
3https://www.csdisco.com/disco-ediscovery
4https://www.logikcull.com/

https://docs.microsoft.com/en-us/microsoft-365/compliance/ediscovery
https://www.ibm.com/products/storediq-suite
https://www.csdisco.com/disco-ediscovery
https://www.logikcull.com/
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representations condense important latent concepts for searching, clustering and visualizing
data. Document representations can be used to retrieve short passages from long documents.
In summary, Neural MR provides the e-discovery process with in-depth semantic coverage of
text resources and guides experts to make review decisions faster and with higher precision.

Detecting trigger events for Supply-Chain Risk Management. Supply-chain risk manage-
ment (SCRM) describes the strategies to identify, assess, control and monitor unforeseen de-
velopments and their effects on a supply chain [Heckmann et al., 2015]. A key process in SCRM
is to identify the occurrence of triggering events for a long list of risk factors, such as geopolitical
and economic instability, environmental risks, weather events, natural disasters, technical fail-
ures, crime, transportation issues, product issues, market uncertainty, corporate transactions,
stock market activity and legal issues. For example, pharmaceutical companies must secure
multiple weeks of supply for critical drugs and emergency equipment. The manufacturing in-
dustry is characterized by just-in-time production and needs to minimize the potential impact
of logistic delays and disruptions. Financial services and insurance companies need to assess
global economic and environmental risk factors and proactively detect stock market and eco-
nomic disruptions with short reaction times. For these organizations, it is viable to identify
public mentions of these events at their first occurrence. This is possible by screening a broad
range of internal and external information resources. The key challenges in event detection are
to deliver results with low latency, to achieve high recall without triggering false alarms, and
to reduce the number of cases that require manual examination.

In a 2019 survey among procurement leaders, managing risk was the second most impor-
tant business strategy (55% strong priority), right after reducing costs (70%) [Umbenhauer et
al., 2019]. Moreover, 81% of companies in the same survey who have fully implemented dig-
ital technologies, report that they are not satisfied with their SCRM implementations. More
specifically, 65% of procurement leaders have reported limited or no transparency in the sup-
ply chain beyond their first-level suppliers [Umbenhauer and Younger, 2018]. Installing au-
tomated information-driven processes for SCRM can reduce costs for procurement, inventory
management and logistics by identifying risks with short reaction times, assessing risks with
high precision and minimizing risks by proactive actions. Today, intelligent analysis systems
with global coverage deliver frequent and recurrent data from news outlets, social media, com-
pany websites, press releases, stock exchange reports, audit reports or financial reports. The
main functions of these systems comprise automatic tagging, de-duplication scoring of risk
trigger events. However, these systems are mainly focused on procurement and logistics sec-
tors and do not deliver sufficient quality of results from more specific domains. Especially
small tech companies and startups operate in highly specialized niches and need to detect rare
events with high recall.

Neural Machine Reading provides the necessary technology to complement SCRM solu-
tions by enriching and annotating text resources with domain-specific entities, aspects, topics
and events. By automatic language understanding, the high complexity of dependencies is
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reduced to semantic representations that can be utilized by a company to define its specific
risk areas with high granularity. Neural MR is specifically important for handling the cases
of zero-shot adaptation to unknown sources with sparse and noisy data. Furthermore, dis-
tributed representations allow to visualize results and accelerate human examination and la-
beling. In summary, Neural Machine Reading improves SCRM with higher coverage of risk
trigger events, lower costs for manual examination and better semantic accessibility for deci-
sion makers and creators of risk assessment reports.

Enriching patient representations in electronic healthcare. Clinical Decision Support Sys-
tems (CDSS) aim to capture a comprehensive picture of a patient in order to assist clinicians
in their choices at the point of care [Berner, 2007]. A key process in CDSS is the integration of
multi-modal electronically stored information, such as laboratory test results, vital signs, radi-
ology images and clinical notes into electronic health records (EHR). However, a large fraction
of EHRs consists of written notes. These are regularly created and updated by medical pro-
fessionals and comprehend the entire trajectory of a patient, including admission (chief com-
plaints, results of physical examination), medical history (surgeries, medications, family and
social history), therapy progress, test results and discharge information (diagnosis, medica-
tions, prognosis). This longitudinal clinical pathway information provides important informa-
tion for differential diagnosis (DDx) and supports doctors to decide diagnostic procedures or
treatments. Electronic healthcare faces the problem to make these notes machine readable and
allow a CDSS to access rich patient representations. Patient representations allow searching,
clustering or even simulating patient trajectories based on similar cohorts from past medical
records. This would enable clinicians to make decisions earlier and with the reduced risk of
overlooking important cases from the large historic record.

Healthcare annual data production is projected to grow by 36% between 2018–2025 [Rein-
sel et al., 2018]. The market for CDSS is growing at a rate of 9.5% and is projected to reach
$2.4 billion by 2027 [Reports and Data, 2020]. Improving patient representations could acceler-
ate the diagnosis of rare diseases, reduce length-of-stay, propose cheaper medication options,
decrease test duplication and provide better informed reasoning to the clinicians. Current
CDSSs resemble clinical guidelines and are mainly focused on capturing structured data and
metadata, such as symptoms and conditions extracted from clinical text, and visualize these
findings to allow exploration of cases. Typically, these expert systems allow term-based and
metadata search to explore literature and studies or identify cohorts from case reports. How-
ever, even large hospitals fail to integrate their own EHRs with these systems. This is partly
caused by technological and data protection boundaries, but also because off-the-shelf text
mining models fail to adapt to doctor’s specific writing styles.

Neural Machine Reading provides an opportunity to deeply integrate clinical notes with
EHRs. Neural patient representations can be inferred from textual data, such as doctor letters
and admission notes and cover a broad range of clinical aspects that are otherwise not con-
tained in structured EHR data and metadata. Vector space representations provide similarity
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measures that enable precise search for cohorts, similar cases from clinical guidelines and case
studies, and research literature. Neural MR models can be trained on public data, fine-tuned
with small amounts of anonymized in-domain data, and applied to sensitive personal data in-
house. Vector space indexing can help to precompute and access passages from thousands of
clinical EHRs with low latency. In summary, Neural Machine Reading improves patient repre-
sentations with deep understanding of domain-specific clinical notes and makes it possible to
search, cluster and explore EHRs directly based on the information provided by doctors and
clinicians.

7.5 Future Work

During our research on Neural Machine Reading for domain-specific text resources, we iden-
tified several meta-problems that we had to leave for further investigation. In this chapter, we
briefly discuss the most important questions as a guideline for future work.

Hierarchical knowledge representations. Generalization and specialization are important con-
cepts in human cognition. Therefore, hierarchical knowledge is often modeled explicitly in in-
formation management [Saxe et al., 2013]. For example, medical reference knowledge bases,
product catalogs or geographical databases are structured intro broad categories and multiple
levels of finer-grained subcategories. Entries in these data structures are often located in all
hierarchy levels, sometimes including associations between multiple overlapping categories.
We have shown that the vector space model applied with cosine similarity is error-prone, es-
pecially when associations between different nested or overlapping hierarchical levels have to
be modeled. Furthermore, vector space queries do not allow basic query composition oper-
ators, such as union, intersection and complement. For example, in our experiments queries
for very specific cancer types often showed high similarity with generic descriptions of can-
cer and tumors, and we needed to sharpen or broaden the range of a query. More precisely,
the distributional hypothesis succeeds at drawing associations between multiple elements in a
nested hierarchy, but it fails to distinguish them and exploit their hierarchical position. One ap-
proach for this problem are hierarchical entity embeddings [Hu et al., 2015]. Another promis-
ing method is to compute embeddings not in Euclidean, but in hyperbolic space, such as the
Paincaré ball model [Nickel and Kiela, 2017].

Understanding real-world data by modeling uncertainty. When applied to real-world prob-
lems, probabilistic models will always produce errors based on the difference of data distri-
butions at training and inference time. However, current DNN architectures are not able to
report their confidence on a prediction. Extending our neural MR model with uncertainty mod-
eling would enable us to sample and counteract weak points of our models more effectively,
for example using active learning. It should be our objective to reduce high-confidence false
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predictions and reinforce low-confidence true predictions of a model. Furthermore, measur-
ing different aspects of uncertainty is an important requirement for safety-critical operations
[Kendall and Gal, 2017]. One promising approach for this problem is Bayesian Deep Learning,
which uses the principles of neural variational inference [Paisley et al., 2012; Ranganath et
al., 2014] and can be estimated using existing DNN architectures with Monte Carlo dropout
sampling [Gal and Ghahramani, 2016].

Continual learning from interactive feedback loops. Whenever new data is produced, pre-
dictions will deviate from the expected results that the model was optimized for at training
time. To counteract this problem, neural MR models need to be retrained from time to time
with fresh in-domain data or new tasks. This is possible by introducing new prior distribu-
tions from self-supervised examples, or by collecting explicit or implicit feedback from users
in an active or passive learning scenario. Sometimes, it is even feasible to make controlled
adjustments to a model in order to reduce or introduce certain biases, e.g. balancing recall
and precision for business-critical classification outputs. This continual learning process intro-
duces a number of challenges [Parisi et al., 2019; Yogatama et al., 2019]: How can we ensure
enough capacity in a network for lifelong learning? What is the optimal curriculum for up-
dating models with new tasks sequentially? How can we prevent catastrophic forgetting of
previously learned tasks? A promising approach for this problem is to extend transfer learn-
ing with episodic memory modules that allow experience replay of previous examples during
training [de Masson d’Autume et al., 2019].

Put together, the research directions of hierarchical knowledge representations, uncertainty
modeling and continual learning aim towards extending Neural Machine Reading with three
important properties: MR models need to acquire a deeper understanding about the domain’s
structural and hierarchical properties. We need to better understand the models’ inner work-
ings, uncertainties and limitations. And we require feedback operators to handle dynamic
changes of the environment where the models are applied. With this perspective, Machine
Reading models will be able to complement domain-specific language understanding with
automatic task understanding based on users’ information-seeking behavior.
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