
Storage of medical documents 2009

1

Intentionally left blank

Storage of medical documents 2009

2

Summary
1 Introduction .. 12

1.1 The MediCoordination Architecture ... 12

1.1.1 Architecture overview ... 13

1.2 Buts of the current diploma work ... 13

2 The Storage Manager ... 14

2.1 Description .. 14

2.2 Architecture overview ... 14

2.3 Requirements .. 15

3 Security analyze .. 16

3.1 The security problems ... 16

3.1.1 The protection of files on physical supports.. 16

3.1.2 Use of file encryption ... 16

3.1.2.1 Benefits .. 16

3.1.2.2 Inconvenient .. 17

3.1.3 Credentials hacking .. 19

3.1.4 The double identification ... 19

3.1.4.1 Benefits .. 20

3.1.4.2 Inconvenient .. 20

3.2 Technologies ... 20

3.2.1 Encryption problem ... 20

3.2.1.1 Technology description ... 20

3.2.1.2 Impact in performances .. 21

3.2.1.3 Impact in costs ... 21

3.2.2 Credentials hacking .. 21

3.2.2.1 Technology description ... 21

3.2.2.2 Impact in performances .. 22

Storage of medical documents 2009

3

3.2.2.3 Impact in costs ... 22

3.3 Conclusion ... 22

4 Storage technologies analyze ... 23

4.1 Requirements .. 23

4.2 Proposed solutions .. 24

4.2.1 Jackrabbit repository embedded in a Web Service ... 24

4.2.1.1 Solution schema .. 25

4.2.1.2 Description .. 25

4.2.1.3 The Apache Jackrabbit API .. 26

4.2.1.4 Apache Jackrabbit architecture ... 27

4.2.1.4.1 Workspace .. 28

4.2.1.4.2 Session .. 28

4.2.1.4.3 Node ... 28

4.2.1.4.4 Performances and limitations .. 29

4.2.1.4.5 Security ... 30

4.2.1.5 Encryption/Decryption APIs .. 31

4.2.1.6 Encryption of medical data on a grid... 31

4.2.1.6.1 Benefits ... 32

4.2.1.6.2 Disadvantages ... 32

4.2.1.7 Access to the web service methods .. 32

4.2.1.8 Conclusion ... 32

4.2.2. Web service with standard file system ... 32

4.2.2.1 Schema .. 33

4.2.2.2 Description .. 33

4.2.2.3 Benefits .. 33

4.2.2.4 Disadvantages .. 34

4.2.2.5 Conclusion ... 35

4.2.3 Web service with external data base connection.. 35

4.2.3.1 Schema .. 35

4.2.3.2 Description .. 35

Storage of medical documents 2009

4

4.2.3.3 Benefits .. 36

4.2.3.4 Disadvantages .. 36

4.2.3.5 Conclusion ... 36

4.3 The chosen solution .. 36

4.3.1 Points to take care ... 37

4.3.1.1 Limitations of the solution... 37

4.4 Conclusion ... 37

5 The Storage implementation .. 38

5.1 Tools .. 38

5.1.1 NetBeans .. 38

5.1.2 Sun GlassFish version 2.1 ... 38

5.1.3 Apache Jackrabbit 1.5.6 ... 39

5.1.4 MySQL version 5.1 ... 39

5.2 Installation and setup .. 39

5.2.1 Requirements... 39

5.2.2 NetBeans 6.7 .. 40

5.2.3 Sun GlassFish Enterprise Server 2.1 ... 40

5.2.3.1 Install all Jackrabbit libraries ... 40

5.2.3.2 Installation of the MySQL driver .. 40

5.2.3.3 Install the java Cryptography Extension 1.2.2 (JCE) Unlimited Strength 41

5.2.3.4 First GlassFish server start ... 41

5.2.3.5 GlassFish configuration ... 41

5.2.3.5.1 Login into the GlassFish administration interface 42

5.2.3.5.2 Creation of the GlassFish user .. 43

5.2.3.5.3 Command line “Add new user” .. 45

5.2.4 MySQL 5.1 Community Server ... 46

5.2.4.1 Installation ... 46

5.2.4.2 Setup .. 46

Storage of medical documents 2009

5

5.2.4.3 StorageManager configuration changes ... 46

5.3 The solution implemented .. 47

5.3.1 Schema ... 47

5.3.1.1 The final architecture vs. projected architecture .. 48

5.3.1.2 Description .. 48

5.3.2 The security implementation end to end data protection 49

5.3.2.1 SSL secured connections ... 49

5.3.2.1.1 Step 1 – Define a secure Service .. 50

5.3.2.1.2 Step 2 - Define what resources may use SSL connection 51

5.3.2.1.3 Step 3 - Project deployment ... 52

5.3.2.2 File encryption ... 52

5.3.2.2.1 UML schemas of the cryptography packages ... 53

5.3.2.2.2 The cryptography package classes description .. 54

5.3.2.3 Web Methods access restrictions ... 55

5.3.2.3.1 The Java™ Security Manager class ... 56

5.3.2.3.2 The adopted solution ... 56

5.3.2.3.3 Conclusion .. 58

5.3.3 The storage interface implementation .. 58

5.3.3.1 Definition ... 58

5.3.3.2 Schematic view .. 59

5.3.3.2 StorageManager Project UML Schema (collapsed version) 59

5.3.3.2.1 org.medicoordination.db package ... 60

5.3.3.2.2 org.medicoordination.repository package ... 60

5.3.3.2.3 org.medicoordination.managers package .. 61

5.4 Project components .. 64

5.4.1 Commons library .. 64

5.4.1.1 The UML schema ... 64

5.4.1.2 SHA1Digest class .. 64

5.4.1.3 DocumentFormat enumeration .. 65

5.4.1.3.1 Possible solution to solve the DocumentFormat problem 65

Storage of medical documents 2009

6

5.4.1.4 XmlClassSerializer class ... 65

5.4.1.5 FileStructure class .. 65

5.4.1.6 DynamicClassLoader class ... 66

5.4.1.7 DebugMode class .. 66

5.4.1.8 ErrorMessageBean .. 66

5.4.2 SecurityManager Web Service ... 66

5.4.2.1 UML schema .. 66

5.4.2.2 The org.medicoordination.service package .. 67

5.4.2.2.1 The Authentication Web Service .. 67

5.4.2.2.2 The ResourcesAuthorization Web Service ... 67

5.4.2.3 The org.medicoordination.authorization package .. 68

5.4.2.3.1 The IAuthorization interface .. 68

5.4.2.3.2 The DefaultAuthorization class .. 69

5.4.2.4 The org.medicoordination.authentication package .. 69

5.4.2.4.1 Strategy pattern applied to the Authentication Web Service (diagram) . 69

5.4.2.4.2 The TestAuthentication class.. 70

5.4.2.5 The org.medicoordination.security and db packages 70

5.4.2.5.1 The DefaultSecurityToken class .. 70

5.4.3 TranslationManager Web Service.. 70

5.4.3.1 UML schema .. 71

5.4.4 StorageManager Web Service ... 71

5.4.4.1 Description of the functionalities .. 72

5.4.4.2 MySQLRepository .. 72

5.4.4.2.1 UML Diagram .. 73

5.4.5 MediCoordination front-end web application ... 74

5.4.5.1 Sitemap Diagram ... 74

5.4.5.2 Description of the functionalities .. 75

5.5 Implementation problems and solutions .. 75

5.5.1 Web Services .. 75

5.5.1.1 Security and authentication .. 75

Storage of medical documents 2009

7

5.5.1.1.1 Context ... 75

5.5.1.1.2 Problem encountered... 75

5.5.1.1.3 Solution ... 75

5.5.1.2 SSL Implementation ... 79

5.5.1.2.1 Context ... 80

5.5.1.2.2 Problem encountered... 80

5.5.1.2.3 Causes and solutions .. 81

5.5.2 Apache Jackrabbit .. 82

5.5.2.1 Configuration ... 82

5.5.2.1.1 Solution ... 83

5.5.2.2 Sessions and Locks (Concurrent accesses to the repository) 83

5.5.2.2.1 Solution ... 83

5.5.2.3 Node Versioning & Locking ... 84

5.6.2.3.1 Configuration of the repository .. 84

5.5.2.3.2 How to make a node versionable mix:versionable 85

5.5.2.3.3 mix:lockable .. 85

5.6 Improvements ... 85

5.6.1 Dynamic loading integration .. 85

5.6.2 Jackrabbit session management .. 86

6 Storage Manager Compatibility with IHE recommendations ... 87

6. 1 Storage compatibility ... 87

6. 2 File exchange (XDS) compatibility .. 87

6.3 Service security compatibility ... 87

6.3.1 User authentication (EUA) compatibility ... 87

7 Conclusion .. 88

8 Bibliography .. 89

Storage of medical documents 2009

8

List of figures
Figure 1 Architecture overview ... 13

Figure 2 The Storage Manager architecture overview .. 14

Figure 3 Graphical version of the table 1 data .. 18

Figure 4 Storage Management Schema using Apache Jackrabbit as a standard repository ... 25

Figure 5 Apache Jackrabbit architecture model .. 27

Figure 6 Default repository storage structure ... 30

Figure 7 Proposed repository storage structure Default .. 30

Figure 8 Access procedure when shares of the decryption keys are stored on different key

servers ... 31

Figure 9 Storage Management using standard file system ... 33

Figure 10 Storage Management using Apache Jackrabbit piloting an external database 35

Figure 11 GlassFish administration console .. 42

Figure 12 Realms and users ... 43

Figure 13 Users in GlassFish .. 44

Figure 14 New file realm user ... 45

Figure 15 Project final architecture ... 48

Figure 16 Projected solution architecture ... 48

Figure 17 SSL connection and visible signs .. 49

Figure 18 StorageManager Web Service attributes .. 50

Figure 19 StorageManager Security Mechanism definition .. 51

Figure 20 Add new Security Constraint ... 52

Figure 21 the UML diagram of the cryptography package in StorageManager Web Service . 53

Figure 22 the UML diagram of cryptography package in Commons 54

Figure 23 the security token UML schema .. 56

Figure 24 Web Methods access restriction system ... 57

Figure 25 a Web Method protection sample code ... 58

Figure 26 StorageManager internal representation ... 59

Figure 27 StorageManager UML diagram ... 60

Figure 28 the MySQLRepository class (UML diagram) .. 61

Figure 29 the strategy pattern UML diagram .. 62

Figure 30 the dynamic loading of the storage manager class ... 62

Figure 31 the core of the StorageManager Web Service (Strategy pattern diagram) 63

Figure 32 the commons library UML diagram ... 64

Figure 33 SecurityManager UML class .. 66

Figure 34 the methods provided by the ResourcesAuthorisation Web Service 68

Figure 35 The ResourcesAuthorisation strategy pattern refactoring UML diagram 69

Figure 36 Strategy pattern refactoring of the Authentication Web Service (UML diagram) .. 69

Figure 37 The TranslationManager project (UML diagram) .. 71

Figure 38 The functionalities provided by the StorageManager Web Service 72

Figure 39 UML diagram of the dependencies of the MySQLRepository class 73

Storage of medical documents 2009

9

Figure 40 Sitemap of the MediCoordination front-end .. 74

Figure 41 Server authentication mechanism setup .. 76

Figure 42 Servlet login configuration .. 77

Figure 43 web.xml Servlets authentication configuration .. 78

Figure 44 Security Role Mappings ... 79

Figure 45 Sample code to display the connected principal ... 79

Figure 46 Web Service client creation ... 80

Figure 47 Exception thrown by NetBeans ... 80

Figure 48 Error report from NetBeans .. 81

Figure 49 Web Site Certificate viewer window ... 81

Figure 50 Logging in to Jackrabbit ... 82

Figure 51 Versioning entry in the repository.xml configuration file 84

 List of tables
Table 1 between the most popular encrypting algorithms ... 17

Table 2 common file system limitations .. 34

Storage of medical documents 2009

10

Intentionally left blank

Storage of medical documents 2009

11

Intentionally left blank

Storage of medical documents 2009

12

1 Introduction
Nowadays, medical content exchange between medical actors is done primarily by

paper. But the paper content exchange may generate extra costs and sometimes can

have important consequences on patient health. 5

The digitalization of medical content is seen as a priority for public authorities and by

the same a chance to improve the quality of the Swiss health system.

In Switzerland, because of the particular political system, each State may have its own

standards to electronic medical content storage and exchange. This diversity is more a

problem than a solution. Indeed, most of these systems are totally or partially 10

incompatible with each other.

“The goal of the MediCoordination project is to propose concrete solutions to the

interoperability of electronic records of patients between hospitals and the health

business actors”1

The MediCoordination project is a priority of the recent eHealth strategy of the Swiss 15

Confederation and by same a chance to the HES-SO to be present in a multidisciplinary,

very interesting and important field of action.

 1.1 The MediCoordination Architecture
As seen in the Figure 1, the MediCoordination is totally service oriented. This strategy is

totally wanted by the working group. Indeed, the MediCoordination project does not 20

want to replace existing electronic health document exchange standards in Swiss states,

but rather, wants to be a federative layer that will allow all existing systems to

communicate together and exchange electronic health documents together.

Because of the existence of 26 States in Switzerland and probably as many health

systems, data will not be centralized but rather distributed over many data repositories 25

and Meta information servers.

The particularity of Swiss health system needs a particular architecture. Therefore, the

MediCoordination project is a scalable and distributed system without a centralized

service collecting patient personal data.

This architecture is also a consequence of the Swiss laws protecting citizens’ personal 30

data and private life. Indeed, Swiss Confederation is very protective in matters that

concern the personal data confidentiality and puts real efforts to avoid it diffusion to

non authorized persons.

1
 http://www.medicoordination.ch/

Storage of medical documents 2009

13

1.1.1 Architecture overview

MEDICOORDINATION SERVICES

STORAGE SERVICES

<DOCUMENT REPOSITORY>

METADATA SERVICES

<DOCUMENT REGISTRY>

NTFS

Partition

QUERY

PROCESSOR

METADATA REPOSITORY

STORAGE MANAGER
TRANSFORMATION

ENGINE

SECURITY SERVICES

STORAGE MANAGEMENT

Patient Identity Source

Care Professional Identity Source

Role Server

Access Verification

User Identification

Storage

Request

Query, Submit, Retrieve

Retrieve

Transformation

Request

Return

Manage

METADATA

MANAGEMENT

PLATFORM MANAGEMENT

Metadata

InterrogationQuery

Construction &

Propagation

 35

Figure 1 Architecture overview

The present project consists in a set of Web Services working together in a distributed

manner. Succinctly the project consists in three parts:

1. The storage services, a set of services that are responsible to store and retrieve

in a reliable manner the health documents. 40

2. The security services, a set of services that are responsible to authenticate and

authorize all the actors and users of the system to interact with it.

3. The Metadata services, a set of services that are responsible to store

information about patient documents in order to facilitate documents no matter

where they are. 45

1.2 Buts of the current diploma work
The present diploma work is to analyze the context of the MediCoordination project, to

understand the objectives and requirements related with it. This analyze will allow to

better understand the requirements of the global solution in order to implement a

prototype of the Storage Manager that fulfill these requirements. 50

The goal is to develop a prototype that will proof the feasibility of the concept, it means

developing a prototype for electronic medical content storing respecting all the

requirements formulated by the MediCoordination working team.

Storage of medical documents 2009

14

2 The Storage Manager
The Storage Manager is a master piece of the MediCoordination project and belongs to 55

the Storage Services, which belongs itself to the MediCoordination Services layer. Figure

1 gives an overview of the MediCoordination services layer and the place taken by this

manager.

2.1 Description
The Storage Manager consists in a secured Web Service that is connected to other 60

secured services and has to respond to requests made by the storage management

layer, Figure 1 above.

The use of standard technologies during implementation was a keyword, as well as data

security and confidentiality. Then, during the entire project a special care has been

taken in order to fulfill these requirements. 65

The storage manager must store and retrieve electronic medical content from a data

repository ensuring data integrity, security and confidentiality. By the way it must be

totally integrated with the other service layers using, if possible health standards or

recommendations made by the IHE consortium.

2.2 Architecture overview 70

Identity & Roles

Server

Security Manager

WebService

Translation

Manager

WebService

Mysql

Repository

Storage Manager

Webservice

Storage Management

MediCoordination Front End

Figure 2 The Storage Manager architecture overview

Storage of medical documents 2009

15

The above schema represents the final implemented solution. As we can see, some

services from the security services layer have been partially implemented for tests

propose. 75

The implementation of these elements brought extra work, but without them, the

diploma work would limit to the implementation of a simple repository and no tests

could be made.

Indeed, the security in the Storage Manager is intrinsically linked with the security

services layer and therefore both have to be implemented in order to make real tests 80

possible.

2.3 Requirements
The Storage Manager project had to respect a certain number or requirements among

them the most important are:

1. The storage must be totally integrable in the MediCoordination project. 85

2. The security and data protection must be ensured at any moment.

3. The storage reliability must be ensured as well as data integrity, confidentiality

and security.

4. The storage must, if such technologies exist, implement standard technologies.

5. It must be totally hardware independent 90

6. It must keep a track of all changes in a document (versioning)

7. It must be able to store any kind of documents

8. It must integrate access security to the web service methods

9. Be able to keep a very important quantity of data, and backup it efficiently.

A last requirement, but this time not directly related with the Storage Manager itself, all 95

the documentation had to be written in English in order to be readable by all the project

participants.

Storage of medical documents 2009

16

3 Security analyze
In this chapter we will analyze the security in the MediCoordination project. The chapter 100

is intended to bring a new view point to the security problem in the MediCoordination

project and more precisely the security problems related to the storage manager. The

current chapter is based on the deliverable D3.1A: Interoperability Architecture and will

propose security improvements and implementable solutions.

We will not redo the work done in the D3.1A but rather improve it. Therefore, we will 105

only mention, in the chapter, the new security lacks found and how to secure them.

3.1 The security problems
Since the project MediCoordination handles very sensitive data (patient medical

information) a particular care must be taken in order to avoid any interception of those

files by non authorized persons. Starting with this Lemma, all the data transfers between 110

clients and servers must be protected to avoid any kind of data hacking. By clients we

mean any medical personnel with access to patient data

Actually the D3.1A document seems to respond quite well to this requirement, all

transactions are carried by SSL ports2, but some security points must be improved.

3.1.1 The protection of files on physical supports 115

The first improvement that must be performed consists in the encryption of the files

stored on physical supports. In fact, non encrypted files could represent a potential

security breach that would allow anybody having server access to copy, delete or modify

any patient data stored inside the server. Such case is not allowed in such application

and must therefore be corrected. 120

Actually D3.1A : Interoperability Architecture do not take into account the encryption of

patient files.

3.1.2 Use of file encryption

To avoid such security lack, we encourage the use of an encryption technology on the

files. Implementing such functionality will grant to patient that all files will be 125

unreadable, by third person, from the medical practice to the physical storage.

3.1.2.1 Benefits

The main benefit of file encryption resides in the impossibility to see clearly what is

stored inside the file and then consequently the impossibility to someone without

credentials to read, modify, the content of a file. 130

2
 D3.1A : Interoperability Architecture (§2.4.5)

Storage of medical documents 2009

17

File encryption will not solve the sabotage problem. Therefore, this case can be

reasonably avoided by laying the storage system in a well secured and configured

network with regular backups.

3.1.2.2 Inconvenient

File encryption will necessitate more processing time than simple file storage. Therefore 135

the choice of the encryption/decryption algorithm may be critical to avoid server

slowdown.

Because of the time needed to encrypt files, an investment on new hardware may be

necessary. To help to avoid an important slowdown of the server when encrypting files,

a separated thread could be in charge of the encryption and storage of the files. Those 140

files would be temporarily stored in a queue and would only be encrypted and stored

during processor idle phases.

The web page Speed Comparison of Popular Crypto Algorithms3 hosted on cryptopp.com

can give an overview about the time needed by a computer to encrypt and decrypt a

content. This table is particularly interresting because all tests have been made in same 145

conditions and therefore it gives a very accurate comparison between algorithms.

Table 1 between the most popular encrypting algorithms
4

Operation (over a small block of random data) Milliseconds/Operation Megacycles/Operation

RSA 1024 Encryption 0.08 0.14

RSA 1024 Decryption 1.46 2.68

LUC 1024 Encryption 0.08 0.14

LUC 1024 Decryption 2.49 4.55

DLIES 1024 Encryption 0.85 1.56

DLIES 1024 Encryption with precomputation 1.49 2.72

DLIES 1024 Decryption 1.18 2.17

LUCELG 512 Encryption 0.58 1.05

LUCELG 512 Encryption with precomputation 0.58 1.05

LUCELG 512 Decryption 0.65 1.18

RSA 2048 Encryption 0.16 0.29

3
 http://www.cryptopp.com/benchmarks.html

4
 http://www.cryptopp.com/benchmarks.html

Storage of medical documents 2009

18

RSA 2048 Decryption 6.08 11.12

LUC 2048 Encryption 0.18 0.33

LUC 2048 Decryption 9.89 18.1

DLIES 2048 Encryption 4.11 7.52

DLIES 2048 Encryption with precomputation 4.54 8.3

DLIES 2048 Decryption 3.86 7.07

LUCELG 1024 Encryption 1.89 3.45

LUCELG 1024 Encryption with precomputation 1.88 3.45

LUCELG 1024 Decryption 1.73 3.17

The results are however too high. This fact is due because of the length of the

encryption key. For our purpose à 128 bits key will be enough. With such key length the 150

operation time need will decrease.

Figure 3 Graphical version of the table 1 data

0

2

4

6

8

10

12

14

16

18

20

Milliseconds/Operation

Megacycles/Operation

Storage of medical documents 2009

19

If we look at the table above, for an encryption with a RSA 1024 bits, the operation will

take 0.08 milliseconds and for the same data chunk with RSA 2048 (key twice bigger) the 155

time to perform the same operation will be twice bigger. It suggeres that the time to

encrypt the message is linearly dependant to the length of the encrypting key, thus, for

a 128 bits key, the operation will take only of the needed to encrypt the same data

chunk with a 1024 bits key. Contrariwise the decryption didn’t follow the same rule.

3.1.3 Credentials hacking 160

The second security improvement will allow a better control over the patient files

access. Actually, as described in the D3.1A : Interoperability Architecture document5, the

only “firewall” that protects patients data from unwanted accesses are the file rights

stored in the roles server. Those accesses are granted by the patient, but once those

rights are granted a medical worker will be able to consult, copy or modify those files 165

every time he wants.

The visible problem is that, if someone inside the role is malicious, he will be able to

copy and sell information to third parties. The other problem more plausible is that

someone can hack the authentication data of a health worker, thus acquiring all

credentials to access patient files followed by this health worker. What happens if 170

someone can hack the authentication of a hospital? All the patients that gave their

consent to this hospital role will risk having their confidential data exposed to non

authorized third party.

3.1.4 The double identification

A double identification can solve the problem exposed above. It consists in the use of 175

both doctor identification and patient identification to access patient data. This solution

denies the possibility that third persons, belonging to the same role, can access, copy

and transmit the patient data to other persons or insurance companies. Every time a

health worker needs to consult the patient data he will need to provide the patient

identification and his own identification to access data. 180

This identification is mostly given by the patient through his patient card read by a card

reader or through his card number (the new thirteen digits AVS number) and a pin

number that acts as a password.

In the case of the patient didn’t have the card or pin it will be possible to ask to

documents access to a global supervisor, but every request will be verified carefully and 185

the pin have to be changed as soon as the .

5
 D3.1A : Interoperability Architecture (§3.4)

Storage of medical documents 2009

20

3.1.4.1 Benefits

Because the presence of the patient is required in order to read documents from the

repository, confidential data will, normally, remain private to the medical worker after

the departure of the patient, except the files loaded by the health worker. 190

3.1.4.2 Inconvenient

The biggest inconvenient is the costs that such a solution will generate. Every doctor will

need to buy at least one card reader in order to access patient data. But as discussed in

a previous chapter, this solution can work as well with only the AVS number that acts as

a username plus a pin that acts as the password. 195

3.2 Technologies
We have discussed above about two security breaches and found solutions that solve

the problem. This chapter will bring more detailed information about the existing

solutions and if more than one solution exists, we will compare them.

3.2.1 Encryption problem 200

We saw above that the simple use of an encryption algorithm before storing the files will

solve the problem. But we noted that encryption had a price in terms of server

performance. We will propose some encryption solutions and try to propose solutions

that will reduce the impact of files encryption on existing systems.

3.2.1.1 Technology description 205

Because the entire project turns around Java technologies, it will be possible to use the

standard java cryptographic library, JCA and JCE, to encrypt / decrypt the files6,7. This

framework contains all classes needed to encrypt files using RSA, DES, DAS, etc. The

package contains also all the classes needed to sign and verify a signature.

The second solution, easier to the programmers, consist using Operating System file 210

encryption. By example Microsoft® Windows® Server 2003 provides an encryption

service that wills encrypt all the files for the opened session. The Service is called EFS

and uses, by default, a proprietary encrypting algorithm the DESX. But a stronger

encryption algorithm can be used instead. One can change de DESX algorithm by the

more secure algorithm 3DES8,9. 215

6
 http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html

7
 http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html

8
 http://www.windowsecurity.com/articles/Implementing-EFS-Windows-Server-2003-

Domain.html

9
 http://technet.microsoft.com/fr-fr/library/cc700811(en-us).aspx

Storage of medical documents 2009

21

The problem with this solution is that the files remain visible and readable for someone

who can access physically the server. EFS encrypts files, but for the windows session

owner, all its files are visible as if they aren’t encrypted.

A third solution consists using Apache Jackrabbit10 to store files. Jackrabbit is the

complete implementation of the Java™ Content Repository well known as JCR. 220

Jackrabbit provides a complete API to create a repository to store files. The repository is

totally operating system independent and data can be stored in a wide range of storage

supports such in a WebDAV directory, in a database or to a local directory on the hard

disk. Jackrabbit allows data versioning.

3.2.1.2 Impact in performances 225

As already discussed above, encryption is an operation that needs much processor time

than simple storage. But using SSL communication channels for data exchange without

protecting it at the other end seems to be a totally non-sense. Encryption is needed in

order to ensure a high degree of data confidentiality.

To avoid a too high overload of the system it will be possible to encrypt the files only 230

when the processor is in the idle state or under a certain threshold, 30% by example.

That solution avoids hard investments in new servers.

3.2.1.3 Impact in costs

There are no special extra costs implementing the encryption file system.

3.2.2 Credentials hacking 235

We will try to propose and discuss, in this chapter, solutions that will solve the

credentials security breach.

3.2.2.1 Technology description

The first technology described that can be employed to solve this problem consists in

the use of a card reader coupled with the health insurance cards. The system will only 240

respond to queries if the medical worker and the patient are correctly authenticated

with their respective health cards.

To perform that task, the medical practice or hospital, will need a computer with the

card reader connected to it. To recover the patient medical files, both cards need to be

presented to the system. To better understand how the system works, we can compare 245

our system to a nuclear weapon system. To be able to launch a nuclear head, two keys

are necessary. Without both keys the system will not respond to the requests. In our

system the keys are replaced by the health insurance card and the launch of a nuclear

head correspond to the read request sent by the medical worker.

10

 http://jackrabbit.apache.org/

Storage of medical documents 2009

22

The second solution that we propose to solve the credentials problem is pretty similar to 250

the one discussed in the previous paragraph excepted that we only need the thirteen

digits AVS number that is written on the card and the pin of the card. The use of a pin

instead of the card will reduce costs without reducing the security of the mechanism.

The patient has to provide his patient id (the thirteen digits AVS number), or any other

information that will allow identifying him and the pin code in order to authenticate him 255

as a user of the system. We can image that new authentication methods will access a

Web Service that will provide the classic credentials as output. With that output the

actual system don't need to be changed. Both methods can be applied to solve the

problem; the last has the advantage to be cost free and easier to setup in hospitals or

medical practices because there is no need to install hardware. 260

3.2.2.2 Impact in performances

There is no special impact in performances.

3.2.2.3 Impact in costs

The extra costs depend on the solution chosen. The solution that consists in using the

card reader will generated some hardware extra costs. At least a reader is needed per 265

medical practice. Actually the price of a smart card reader turns between 7$11 and 100$.

3.3 Conclusion
The MediCoordination project handles very sensitive data. To avoid those data to be

hacked, some changes must be performed.

The most critical security breach, and at the same time the one that is really interesting 270

to the implementation of the data manager module, is the encryption of the patient

files. Without this patch, data could be accessed by hackers or by anyone that have an

access to the storage server.

The second improvement proposition is less critical but will bring a plus to the final

system rending it less vulnerable to data steel and giving a feeling of security to the end 275

users.

11 http://www.teobyxiring.com/index.php?gclid=CLCjwMyS1poCFUgTzAodAVgOsg

Storage of medical documents 2009

23

4 Storage technologies analyze
This document is intended to present some storage technologies or products from

commercial or open source domains compatible with IHE12 (Integrate the Healthcare

Enterprise) recommendations. The goal is to have, at the end, a better overview of those 280

technologies and then to be able to choose the best one to implement the Storage

Module of the MediCoordination project.

The different solutions need to fulfil a certain number of criteria that have been fixed in

the D3.1A: Interoperability Architecture and have to respect the IHE recommendations

about Cross-Enterprise Document Sharing (XDS). 285

4.1 Requirements
The storage module has to respect a certain number of requirements edited by the IHE

workgroup in order to be compatible with other healthcare sharing interfaces

implementing those requirements.

The MediCoordination requirements for the storage module are the following: 290

 Be totally hardware independent

 Keep a track of all changes in a document (versioning)

 Be able to store any kind of documents

 Be able to store document fragments in a consistent manner

 Integrate encryption over the files 295

 Integrate access security to the repository

 Integrate access security to the web service methods

 Consume low resources

 Be sufficiently easy to setup in a medical office and sufficiently robust to support

a consequent number of accesses (store/request) in a bigger medical structure, 300

like a hospital.

 Be able to keep a very important quantity of data, and backup it efficiently.

The mandatory functionalities of the module as described in the IHE recommendations

are:

 Retrieve request13, 305

o A file must be read from the repository/db and send back to whom

requested it

o The module needs to ensure that the requester have the authorization

of the patient to consult the document

 Submission request14 310

12

 www.ihe.net

13
 ihe_iti_tf_5-0_vol1_ft_2008_12_12 (§ 10.1.2.5 page 69)

Storage of medical documents 2009

24

o A medical worker can submit a new file to the patient folder

o The file must be stored in a reliable manner

 Update request (replacement, addendum, transformation, transformation-

replacement)15

o A medical worker can submit a new version of a file 315

o Old files must be maintained, a version number must be setup

o Old files can be accessed if needed

o The last version of a file is the one that is proposed, except if the

requester asks a precise version, to a retrieve request

The storage module must be developed as a web service. This choice has been deeply 320

discussed in the Deliverable D3.1A: Interoperability Architecture. It responds to the need

of interoperability between storage module and other modules composing the

MediCoordination solution and the need to create a scalable and totally distributed

solution.

4.2 Proposed solutions 325

In this chapter we will discuss about three solutions, all based on Apache Jackrabbit API.

We have chosen the Apache Jackrabbit solution for many reasons:

1. Apache Jackrabbit allows storing data on a large number of different supports.

2. Apache Jackrabbit is regularly updated and maintained.

3. It’s relatively easy to integrate into a web service and to setup. 330

4. Apache Jackrabbit is totally operating system independent.

5. Apache Jackrabbit allows file versioning in a transparent manner.

6. Apache Jackrabbit allows clustering to setup very large repositories.

7. Apache Jackrabbit is open source and easily modifiable.

8. Apache Jackrabbit implements a Java™ standard the Java™ content repository 335

known as JCR

Apache Jackrabbit is a good compromise between commercial solutions that don’t fit

most of requirements and are very expensive and a built from scratch solution that will

take too long to implement. With Apache Jackrabbit we can create a solution that will

fit all the requirements without having to care about the manner the files will be stored 340

and managed.

4.2.1 Jackrabbit repository embedded in a Web Service

The schema below shows the possible architecture of the storage manager service and

dependencies services useful to it to make document translation by example. The first

proposed solution uses Jackrabbit as a standard content repository. Files are stored 345

14

 ihe_iti_tf_5-0_vol1_ft_2008_12_12 (§ 10.4.3 page 79)

15
 ihe_iti_tf_5-0_vol1_ft_2008_12_12 (§ 10.4.10.2 page 87)

Storage of medical documents 2009

25

inside nodes. The resultant repository file structure looks like, if you are used to

subversion, as a SVN repository.

4.2.1.1 Solution schema

Storage Manager Web Service

Repository /

Global Mapping Identifier

Jackrabbit
Put

Update

Get Format selector

Storage Management Web Service

Transformation Engine Web Service

Put

Update

Get

1Care Professional ID &

Patient ID source

2

3

Role Server

56

7

8

9

4

Figure 4 Storage Management Schema using Apache Jackrabbit as a standard repository 350

4.2.1.2 Description

The first solution consists in a web service that will be installed locally in every medical

office, health care centre or hospital that embeds a repository managed by the

repository API Apache Jackrabbit.

We will explain the main steps during a client request. 355

(1) The storage Management Web Service receives put/update/get request from a

client

(2) The Web Service controls that the session token provided by the user

corresponds to a valid session

(3) If the session is invalid then the Web Service throws an AccessDeniedException 360

(4) The request is relayed to the StorageManager Web Service

(5) The service call the role server to know if the user can read/write/update the file

Storage of medical documents 2009

26

(6) If the user is not authorized to do the action the service throws an

OperationNotAllowedException

(7) If the user requested a file then it is transmitted to the TranslationManager Web 365

Service to be translated.

(8) The translated file is sent to the StorageManagement Web Service

(9) The client receives the requested file translated into the selected document

format.

This solution is particularly adapted to the actual problem, respects all the requirements 370

and the main advantage is that it is built around an existing Repository API described by

the Java™ Specification Request 170 and 283 (JSR 170, JSR 283) called Apache

Jackrabbit. This API allows creating a repository that is operating system independent

and multi support.

The fact that the API already exists implies a gain of time and money for the current 375

project.

4.2.1.3 The Apache Jackrabbit API

The Apache Jackrabbit API implements the JSR 170 and JSR 283 that defines the

recommendations to the creation of a Repository API system. Apache Jackrabbit can

create a repository on a wide range of operating systems and storage devices like hard 380

disks, USB sticks, WebDav servers, data bases or network disks16.

The Apache Jackrabbit API allows versioning, backups and migration and allows storing

any kind of content inside the repository.17

Nowadays it is used by a certain number of important companies creating content

management systems (CMS) or related products. One of the most famous is Alfresco18. 385

Alfresco is an open source CMS, a Web content management (WCM), a Collaborative

content management (CCM) at the same time using Jackrabbit as repository manager.

16

 http://jackrabbit.apache.org/frequently-asked-questions.html (What is a Jackrabbit file system)

17
 http://wiki.apache.org/jackrabbit/BackupAndMigration

18
 http://www.alfresco.com/

Storage of medical documents 2009

27

4.2.1.4 Apache Jackrabbit architecture

Figure 5 Apache Jackrabbit architecture model
19

 390

The above model represents the Jackrabbit content repository implementation. Apache

Jackrabbit works in terms of workspaces, sessions and nodes. The next chapters will

bring more details about common objects of the Jackrabbit API.

19

 http://jackrabbit.apache.org/jackrabbit-architecture.html

Storage of medical documents 2009

28

4.2.1.4.1 Workspace

The JCR workspace object represents a “view” of a repository workspace as seen 395

through the authorization settings of its associated Session. A workspace belongs to a

Session, and this session belongs to only one workspace. It is a one-to-one relation.

4.2.1.4.2 Session

The JCR session object provides authentication methods and read/write accesses to the

content of a particular workspace. A repository can support concurrent sessions but a 400

session is not thread safe. The Jackrabbit team advices to create a session for each

thread trying to access the repository and to use the Node locks already implemented.

4.2.1.4.3 Node

A JCR node is an object that represents a node of the repository tree. A node is

connected to a parent and can have zero to many children nodes and have zero or many 405

properties attached to it. A JCR node can be of type primary or mixin. By default each

newly created node has the primary node type. The second type is the mixin type. The

mixin type can be set later and allows setting some special properties to a node. By

example the creation date or to set a node versionable.

The primary node type is often used to define node structure while mixin usually 410

specifies additional properties, mix:versionable to make the node versionable or

mix:lockable to make possible to lock the node, or other child nodes.

Inside a node we have properties. Those properties contain the information we want to

read or can act as data containers.

A property definition (within a node type definition) contains the the following 415

information:

A property contains the information below:

 Name The name of the property

 Required Type The required type of the property. Must be one of

o STRING 420

o BINARY

o LONG

o DOUBLE

o BOOLEAN

o DATE 425

o PATH

o NAME

o REFERENCE

o UNDEFINED (the property can be of any type)

 Value Constraints This field defines the value range that can be assigned to the 430

property.

Storage of medical documents 2009

29

 Default Value The default value of the property in case it is auto-created.

 Auto-create Status Indicates that the property must be auto-created when its

parent node is created. Only properties with a default value can be auto-

created. 435

 Mandatory Status A mandatory property is one that must exist. If a node of a

type that specifies a mandatory property is created then any attempt to save

that node without adding the mandatory property will fail. It looks like the

required field when creating an SQL Table with fields.

 On-Parent-Version Status The onParentVersion status of specifies what happens 440

to this property if a new version of its parent node is created (i.e. a checked-in is

done on it).

 Protected Status Indicates that the property cannot be modified. It means that

we cannot add or remove children or properties and we cannot remove it from

parent node through the JCR API. 445

 Multiple Values Status Whether this property can have multiple values,

meaning that it stores an array of values, not just one. Note that this "multiple

values" flag is special in that a given node type may have two property

definitions that are identical in every respect except for their "multiple values"

status. For example, a node type can specify two string properties both called X, 450

one of which is multi-valued and the other that is not. An example of such a

node type is nt:unstructured.20

4.2.1.4.4 Performances and limitations

Apache Jackrabbit is optimized for small to medium sized child nodes set21. This means

that the performances are still guaranteed up to ten thousand nodes per node. In our 455

case it is not a problem for small medical offices, because in a whole career such number

of patients is quite impossible to reach. But this observation is no longer true for big

structures like the CHUV or even the Hôpital Regional de Sion and they quickly can reach

such number of patients. To avoid that limitation, instead of storing the patient health

records (PHR) inside a node directly attached to the root node (Figure 6), we can create 460

a different structure by inserting an additional node between the root node and the

patient node (Figure 7). In the below example we chose the year of file insertion, but we

can imagine many other manners to store the files. That solution has a great advantage.

In order to avoid having huge repositories we can transfer data from the main repository

accessed often to a less visited server that will serve as archive server. The node export 465

from one repository to another one is very easy and using such solution we avoid visiting

all nodes in order to transfer them from the main server to the archive server. We only

have to export one node with all the child nodes.

20

 http://jackrabbit.apache.org/node-types.html

21
 http://wiki.apache.org/jackrabbit/Performance

Storage of medical documents 2009

30

Root

Patient X

Patient Y

doc_001_10_01_2008.docx

hospitalisation_sion_rapport_sortie.pdf

...

left_arm_radiography.jpg

x-doc-01.pdf

Figure 6 Default repository storage structure 470

Root

2009

Patient X

left_arm_radiography.jpg

Patient Y

2008

Patient X

Patient Y

x-doc-01.pdf

...
doc_001_10_01_2008.docx

hospitalisation_sion_rapport_sortie.pdf

...

Figure 7 Proposed repository storage structure Default

4.2.1.4.5 Security

The security in Apache Jackrabbit is very basic when creating a transcient repository. The

accesses to the repository can be password protected but otherwise nothing more have 475

been defined to render the solution more secure. To have a better security we have to

define in configuration file of the repository other authentication and authorization

modules.

Apache Jackrabbit uses JAAS (JavaTM Authentication and Authorization Service) to

authenticate users accessing it. JAAS is the standard way in java to authenticate 480

someone through Kerberos, certificates, LDAP, or plain text login. Other authentication

methods can be developed and used within it.

The second major problem with Apache Jackrabbit repository is that there is no

encryption system that will protect files from being read by unauthorized persons.

To solve this problem, one solution consists in encrypting the files that we will store into 485

the repository. The main problems raised are where to store the encryption key used.

We might use a single key to encrypt all the files or, for a better security, we could use a

different key for each file.

Storage of medical documents 2009

31

If we choose the first proposition, a single private key, we can use the data provided to

log into the repository to create the encryption private key and then encrypt and 490

decrypt the data stored. It is very important to keep in mind that if files are encrypted

with a key, changing that key will make impossible to decrypt files that are already

encrypted with another key.

If we choose the second proposition, we need then to find a solution that will grant a

very high level of security to the encryption key storage and grant an access to those 495

keys to everyone who has credentials to read the file content.

4.2.1.5 Encryption/Decryption APIs

For files encryption we shall use the Java™ Cryptography Architecture (JCA)22 and Java™

Cryptography Extension (JCE)23 libraries that provide all the classes needed to encrypt

and decrypt the files. This API provides a large number of encryption algorithms and key 500

generators.

4.2.1.6 Encryption of medical data on a grid

A solution to grant a secure storage of the encryption keys is described in (Seitz, Pierson,

& Brunie, Encrypted Storage of Medical Data on a Grid, 2005). They use a certain

number of key servers where keys are partially stored using a secret sharing algorithm. 505

Figure 8 Access procedure when shares of the decryption keys are stored on different key servers
24

22

 http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html

23
 http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html

24
 (Seitz, Pierson, & Brunie, Encrypted Storage of Medical Data on a Grid, 2005)

Storage of medical documents 2009

32

Secret sharing algorithms can split a key over n key servers but only m servers with m <

n are needed to reconstruct the key.

4.2.1.6.1 Benefits 510

This approach has several positive points. The first one is that the key don’t resides on a

single server and then if someone wants to decrypt a file he will need to hack m servers,

which is more difficult than to hack only one. As we do not need to query all n servers to

recover the key, we can balance all the requests over the online servers, and a loading

balance can be done over the key servers preventing them to be totally flooded by a 515

very important number of requests.

4.2.1.6.2 Disadvantages

The problem with this solution is that we need a new hardware structure composed by a

certain number of key servers. This means more costs for the confederation or for

states. The second problem is that accesses to those servers take time. This solution 520

risks to slow down considerably application performances and responsiveness during

the get, put and update operations, this is clearly not the goal we want to reach.

4.2.1.7 Access to the web service methods

To avoid access to the public web service methods, we need very restrictive access

policies. 525

We can by example allow only calls from a particular class and/or ask for credentials to

verify that the user can access the web service method. Just like resources in a

Windows™ domain. Normally when trying to get a resource we need to get a ticket that

ensures we are correctly authenticated and then a ticket that ensures that we are

allowed to access to the resource. We only can access the resource after presenting 530

both tickets.

Restricting access to the web methods will grant a higher level of security impeaching a

hacker to call directly the method of the web service and trying to access directly the

files without having to provide credentials or other login information.

4.2.1.8 Conclusion 535

The present solution responds to all requirements and has a great advantage, it is quite

simple to implement and don’t need complex systems to work fine. A simple desktop

computer with a GlassFish server installed and the web service can run on it.

4.2.2. Web service with standard file system
The schema below shows the possible architecture of the storage manager service and 540

dependencies services useful to it to make document translation by example. This

solution uses Jackrabbit to manage files in standard file system. Files are stored into

directories. Each node corresponds to a directory and each property corresponds to a

file.

Storage of medical documents 2009

33

4.2.2.1 Schema 545

Storage Manager Web Service

Jackrabbit File

System

Put

Update

Get Format selector

Storage Management Web Service

Transformation Engine Web Service

Put

Update

Get

1Care Professional ID &

Patient ID source

2

3

Role Server

56

7

8

9

4

Dossiers publics

Figure 9 Storage Management using standard file system

4.2.2.2 Description

This version is considerably the same as the solution proposed above except that we do 550

not use Apache Jackrabbit to manage the files but a solution programmed from scratch.

In terms of security the same rules are applied. This means set up of policies that define

who can access the web service methods, file encryption, credentials to access the file

system, and SSL connections to and from the web service.

The major difference stands in the manner we will store the files. Instead storing them 555

inside a repository with indexes and all the mechanisms proper to a repository we will

store them in a special folder on the disk.

4.2.2.3 Benefits

The biggest benefit using a standard file system to store files is related to the backup

that will be easier to undertake. The second benefit is more psychological. With a 560

standard file system the files are not splitted or hided. Then if there is a problem we can

recover files easily, by copying them into another storage media, he have the feeling

Storage of medical documents 2009

34

that the files exists whom is not the case with a repository where files are splitted and

hided inside à complex data structure.

4.2.2.4 Disadvantages 565

But with such solution the disadvantages are greater.

1. We lose storage space; an operation system like windows will reserve disk space

for file storage by clusters. The size of clusters depends on configuration but

normally it is 4 Kb. If the file size is exactly 4 Kb then no space is wasted but if it

is only 100 bytes then we lost 3 Kb and 924 bytes of storage space. 570

2. It is very slow. The Jackrabbit team does not recommend using such file system

into production projects.

3. We lose the availability to have versioning information, except if we decide to

create programmatically such mechanism.

4. We need to take into account the several file systems available with all 575

specifications and limitations as described in Table 2 and finally.

5. We lose the possibility to attach complementary information to a given file.

Below we have just an overview of the most common file systems and their limitations.

We can imagine the complexity to create a File manager that will allow our Web service

to store securely the files over so many different configurations. 580

Table 2 common file system limitations

Storage of medical documents 2009

35

4.2.2.5 Conclusion

Even if this method seems to be easier to implement we need to take into account the 585

complexity of creating a solution that will work with all the different file systems

available at this time, we need to take into account the file systems limitations in terms

of maximum directories and files per directory and pathname lengths. Creating a

repository on a ext3 partition will imply that we will not be able to have more than ten

thousand files per disk who is clearly not enough for a Hospital. 590

4.2.3 Web service with external data base connection

The last proposition shows a Jackrabbit repository using an external database to store

files.

4.2.3.1 Schema

Storage Manager Web Service

Put

Update

Get Format selector

Storage Management Web Service

Transformation Engine Web Service

Put

Update

Get

1Care Professional ID &

Patient ID source

2

3

Role Server

56

7

8

9

4

Data base Server

Jackrabbit

595

Figure 10 Storage Management using Apache Jackrabbit piloting an external database

4.2.3.2 Description

The next and last proposed solution is basically the same as the two others except that

we don’t store the files and mapping identifiers into hard disk but directly into a 600

database.

Storage of medical documents 2009

36

As we can see the global architecture remains unchanged. The only change is that the

database server is a standalone server and the Storage Manager Web Service acts as a

relay between the Storage Management Web Service and the server itself through

Apache Jackrabbit. This configuration is particularly interesting because we can change 605

the kind of database we want to use only changing some configuration lines in the main

configuration file of Apache Jackrabbit.

4.2.3.3 Benefits

The advantages using an external database instead of a repository or a standard file

system are mainly the performances, backup facilities, data export facilities and the 610

security that is already implemented in most current databases.

4.2.3.4 Disadvantages

The use of a database needs technical computer skills that most medical workers don’t

have. It means that such solution will only be setup in a working environment were exist

an IT service able to lead with databases and having good knowledge about databases 615

and databases security.

Furthermore, we will have to setup a secured connection between Jackrabbit and the

Database server. Most databases support SSL connections but we do not know if

Jackrabbit does.

4.2.3.5 Conclusion 620

The current solution seems to be perfectly adapted to big medical structures like

Hospitals. In fact managing the content through a database will allow very huge amount

of data to be stored searched and queried. Using Apache Jackrabbit to be the interface

between database and client requests will allows us to be discharged from all the

database implementation. The main inconvenient is that such solution could hardly be 625

setup in a small clinic because unlike the first proposition that is very automated and

easy to setup, using a database will need an IT service to setup the database server and

the secure it.

4.3 The chosen solution
For the Storage Management web service we choose to implement the third solution, 630

Apache Jackrabbit piloting an external database.

This choice does not exclude the two others. In fact it will be very easy to define a field

in the service configuration file that will define the kind of storage needed without

having to change any line of code inside the web service or using a programming pattern

that would allow loading dynamically the wanted jackrabbit solution. 635

This total separation between the intelligence embedded inside the service and the

manner the files are stored have been fundamental in the final choice of the

technologies to be used inside it. Using Apache Jackrabbit allows creating a solution that

will fits requirements from small health care center to very big hospitals in a more or

Storage of medical documents 2009

37

less automated manner. Using the repository will allows the creation of a totally 640

automated solution for small clinics and using databases will allows the creation of a

robust solution to hospitals like the CHUV of Lausanne.

4.3.1 Points to take care

Once more we put the accent on global solution security. Because we deal with very

sensitive data we cannot be approximate in terms of data security. 645

We will summarize the security points that must be respected:

 Secure SSL communication ports between services

 Access limited to web service functions

 File encryption

 Secure communication port between web service and database 650

 Authentication of patients and medical workers (ex: Kerberos)

 Accesses to files limited by file access roles

 Backup facilities and versioning

Most of databases allow creating a secured data connection. Because database server

can be distant from the web service, this solution must be used in order to keep intact 655

the security chain and data protection from the very beginning of the transaction until

the end of it.

4.3.1.1 Limitations of the solution

The limitations of the solution are deeply linked to the limitations of the database used

(Oracle, MySQL) and the internet connection. Because Apache Jackrabbit acts only as 660

proxy the limitations of nodes that have been spotlighted in the first solution

proposition are no more a problem.

4.4 Conclusion
This chapter gives a first overview of the solution that will be implemented and the

technologies used during implementation phase. The selected solution responds to all 665

requirements defined at the very beginning of the document and the use of Apache

Jackrabbit brings new possibilities such the use of a different support to the repository

depending on the size of the health care center.

This last option brings a plus to the software. The application will adapt to the needs of

the health care center in terms of hardware and knowledge of the workers, because 670

some data manager employed by Apache Jackrabbit did not need human configuration

or maintenance and are therefore particularly adapted to small surgeries.

Storage of medical documents 2009

38

5 The Storage implementation
In this chapter we will about the implementation of the Storage Manager. We will firstly

explain how to setup correctly the workspace environment, in terms of software and 675

configuration. It will be particularly useful if you intend to continue with the

development of the current project.

In the next chapter we will enlighten deeply the software implementation explaining

more in details some technical aspects of the development. We will, by example, explain

the class MySQLRepository. The last is the key class of the Storage Manager Web 680

Service.

Then we will examine the project components and the technologies employed and

finally the implementation problems and improvements.

The tools explained in the “5.1 Tools” chapter are not critical to the good deployment of

the project and can be changed to others that you are used to. 685

5.1 Tools
This section will describe succinctly the tools used during the development phase of the

current project. If you are used with this tools you just can jump to the GlassFish “5.2

Installation and setup” chapter.

5.1.1 NetBeans25 690

Because this project is programmed in Java™ for portability problems, we choose to

develop the Storage Manager using the well known IDE NetBeans 6.7 from NetBeans

Community.

NetBeans is one of the most important java IDE’s actually. It supports the web services

and web application creation and deployment and has a very intuitive interface. 695

We selected this particular IDE because it supports very well GlassFish web application

server and connections with MySQL server too and because Web Services creation is a

very simple task using it.

The choice of the programming IDE is not capital, but for development comfort it is

advised that the used IDE supports the Web Services development and automatic 700

deployment on the server.

5.1.2 Sun GlassFish version 2.126

GlassFish is an open source web application project developed by Sun Microsystems that

supports mostly all java web technologies.

25

 http://www.netbeans.org/

26
 https://glassfish.dev.java.net/

Storage of medical documents 2009

39

For the present project we used the GlassFish web application server to run the Web 705

Services and the front-end web application. This choice was done by other

MediCoordination project participants and for compatibility purposes we decided to

continue using it. The main advantage using GlassFish is that NetBeans supports it very

well and allows a certain number of operations that are not available or hardly

configurable within other IDE but it is only merely a question of comfort. 710

If you continue developing this application we recommend continuing using GlassFish

because actually no tests have been made using other Java™ application servers and

therefore we cannot ensure that this project will work correctly on it.

5.1.3 Apache Jackrabbit 1.5.627

Apache Jackrabbit is a java implementation of the Java™ content repository API (JCR). 715

For more information please read the “4.2.1.3 The Apache Jackrabbit API” and “4.2.1.4

Apache Jackrabbit architecture” chapters.

5.1.4 MySQL version 5.128

The Storage Manager server uses Apache Jackrabbit to control the way data is stored in

a repository. We described in chapter 4, 4 Storage technologies analyze, the need to 720

have all the files stored in a database instead of in a standard file system for

performance reasons and security. Because this project is more a feasibility test rather

than a really application for production purposes, we decided to use MySQL instead of a

more powerful database system because we are used to MySQL server.

Again, the choice of this software rather than another one is only a matter of comfort. 725

The use of another database server will, normally, not be an insurmountable problem.

5.2 Installation and setup
We will explain succinctly, in this section, where to get the software pieces used during

development and how to install and configure them in order to run correctly the project.

5.2.1 Requirements 730

Before installing NetBeans and GlassFish you will need to install the last Java JDK

(actually the JDK 6.0) if it is not done yet. It is possible to download a bundle with the

JDK and NetBeans29 or the JDK only30. To install the JDK just follow the installation

wizard.

27

 http://jackrabbit.apache.org/

28
 http://dev.mysql.com/downloads/mysql/5.1.html

29
 http://java.sun.com/javase/downloads/netbeans.html

30
 http://java.sun.com/javase/downloads/index.jsp

Storage of medical documents 2009

40

5.2.2 NetBeans 6.7 735

NetBeans IDE is downloadable from the NetBeans website31. Download a version

supporting the Java™ SE, Java™ Web and EE technologies. A bundle containing the

GlassFish Enterprise Server v2.1 can be downloaded instead.

After download, just execute the binary downloaded and follow the installation steps. If

you decided to install the bundle with Sun GlassFish server you will be prompt to give a 740

GlassFish admin username and password that will be used to administrate the GlassFish

server.

5.2.3 Sun GlassFish Enterprise Server 2.1

The GlassFish Enterprise Server 2.1 standalone executable is downloadable from the

GlassFish 32 website. The installation instructions are available on the download 745

webpage. Once the installation has finished, and before starting for the first time the

server, a certain number of steps are necessary to setup the server to run correctly the

Web Services of the project.

5.2.3.1 Install all Jackrabbit libraries

Because we will run Jackrabbit on the server it will be preferable to install the libraries 750

necessary to run correctly Apache Jackrabbit directly on the server instead having to

deploy them with the Web Application or with the Web Service.

At the time this report is written the last available Jackrabbit version is the 1.5.6. You

will need to download it from the Apache website33 and extracts all the libraries into the

./lib folder of your GlassFish installation. 755

5.2.3.2 Installation of the MySQL driver

To allow web applications or Web Services to access MySQL databases we need to install

the MySQL driver downloadable at the MySQL website34.

After the download has finished, unzip the file and copy the jar library to the ./lib folder

of your GlassFish installation. 760

If the GlassFish server is started you will need to restart it again. The library will be

loaded at the next server startup. This is valid to the Jackrabbit libraries too.

To restart the server type in the ./bin folder of your GlassFish installation:

31

 http://www.netbeans.org/downloads/index.html

32
 https://glassfish.dev.java.net/downloads/v2.1-b60e.html

33
 http://apache.mirror.testserver.li/jackrabbit/1.5.6/binaries/jackrabbit-jca-1.5.6.rar

34
 http://dev.mysql.com/downloads/connector/j/5.1.html

Storage of medical documents 2009

41

asadmin stop-domain domain1 and after server shutdown asadmin start-domain

domain1 to start the domain again. 765

5.2.3.3 Install the java Cryptography Extension 1.2.2 (JCE) Unlimited Strength

The third step to accomplish before starting the GlassFish server is to update the policies

that rule the JCA (Java Cryptography Architecture).

First it will be necessary to download the new policies from the Sun website35. Then

unzip the file and follow the instruction of the README.TXT file. You will need to replace 770

the existing policies in your <java-home>\lib\security with the new files local_policy.jar

and us_export_policy.jar.

The replacement of those files will allow using bigger encryption keys and then to have a

better encryption protection.

5.2.3.4 First GlassFish server start 775

Starts a system console, goes to the GlassFish installation directory then to the bin

folder and type asadmin start-domain domain1 to start the server.

To change server configuration launch your internet browser and type

http://127.0.0.1:4848 to display the administration console. You will be prompted for a

username and password. If you provided that information during the installation (bundle 780

installation described in “5.2.2 NetBeans 6.7” chapter) please use them to log in

otherwise use the default username admin and password adminadmin if you have not

been prompted to provide a new username and password during the installation phase.

5.2.3.5 GlassFish configuration

Before deploying the Web Services and web applications of this project we will need to 785

configure the GlassFish server. The configuration will be explained using the web

interface provided by GlassFish but a command line configuration is also possible for

advanced users.

To run the project we will need to create a new user and assign to him a password.

 790

35

 https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_Developer-Site/en_US/-

/USD/ViewProductDetail-Start?ProductRef=jce_policy-1.5.0-oth-JPR@CDS-CDS_Developer

http://127.0.0.1:4848/

Storage of medical documents 2009

42

5.2.3.5.1 Login into the GlassFish administration interface

Type in your browser http://127.0.0.1:4848, the address of the administration portal,

and then type the username and password. For more information about username and

password to provide read the “5.2.3 Sun GlassFish Enterprise Server 2.1” section.

 795

Figure 11 GlassFish administration console

http://127.0.0.1:4848/

Storage of medical documents 2009

43

5.2.3.5.2 Creation of the GlassFish user

Once connected click on Configuration > Security > Realms > File. Finally click on the

button Manage users. 800

Figure 12 Realms and users

On click, a new window will be displayed listing all the users that can authenticate on

the server using username password credentials (file realm). We just want to add the

user storage_manager_admin. 805

This user represents the administrator account of the Web Services. The administrator

will be able to display some component parts that normal users will not. By example, in

the StorageManager Web Service, to access the ./Configuration page the administrator

will need to authenticate providing the above username and password.

This protection will deny access to this critical part of the Web Service to non authorized 810

users.

Storage of medical documents 2009

44

 815

Figure 13 Users in GlassFish

Click on the “New” button to create a new user. The Figure 14 “New file realm user”

shows the form to fill in. In the User ID field type storage_manager_admin, in the Group

list field type medicoordination, and type tb2009 for the Password. Then click the OK

button. The new user is created. 820

Storage of medical documents 2009

45

Figure 14 New file realm user

5.2.3.5.3 Command line “Add new user” 825

The command line to add the storage_manager_admin user must be typed in a System

console and the server must be already started.

Type in the GlassFish bin directory:

asadmin create-file-user –groups <group_name> <user_name>36

where <group_name> represents the group name to wish the user is attached and 830

<user_name> represents the user name we want to add. In this case the username is

storage_manager_admin and the group name is medicoordination.

The user is created and the server is ready to receive the project.

36

 http://docs.sun.com/app/docs/doc/820-1072/6ncp48v4e?a=view

Storage of medical documents 2009

46

5.2.4 MySQL 5.1 Community Server 835

The StorageManager Web Service uses a database to store the repository and meta-data

describing it. The MySQL database system has been selected because it is free, easily

installable and setup.

Even if it is not the best database system to a production environment, the MySQL

database system is perfectly adapted to development environments. Because the 840

database system acts mainly as a data container we may use any other database system.

However some changes may be necessary in the MySQLRepositoryConfiguration class in

order to run Jackrabbit with a different database system.

The MySQL database system can be downloaded from the MySQL website37. We

installed the community server in non exclusive mode it means that the computer 845

where we install it will not only act as a MySQL database server but can at the same time

act a web server. This mode prevents the MySQL server to run threads in high priority

allowing other processes to run on the same computer.

5.2.4.1 Installation

To install MySQL Community Server just follow the installation wizard. After the 850

installation the configuration wizard will startup. Follow the wizard.

At the end of the setup wizard, you will be prompted for the root password and if the

root user can accept remote connections. Defines a root password and allow distant

connections or, after installation, create a new user that can receive remote

connections. 855

5.2.4.2 Setup

After installation, connect to the database system with the root user or with the new

user you created, and create a new schema for the repository. In future versions of the

StorageManager Web Service the creation of the schema will be automated, but for

time this step needs to be done manually. 860

After the schema creation and after granting all the rights to the schema creator the

setup is finished.

5.2.4.3 StorageManager configuration changes

After the StorageManager Web Service deployment on GlassFish server, type

https://myserver:8181/StorageManager/Configuration to configure the repository. 865

You have to authenticate with the username storage_manager_admin and password

tb2009 as defined in the section 5.2.3.5.3 Command line “Add new user”.

37

 http://dev.mysql.com/downloads/mysql/5.0.html

https://myserver:8181/StorageManager/Configuration

Storage of medical documents 2009

47

Change the MySQL username and password to match the username and password of

the administrator of the repository schema in the database. Do not forget to change the

schema name too in the configuration page. 870

The installation of the database is finished and we can run the MediCoordination web

application front-end.

Just load projects into NetBeans and start deploying them. Follow this deployment

order:

1. SecurityManager 875

2. TranslationManager

3. StorageManager

4. MediCoordination

You can run the application typing this url : https://localhost:8181/MediCoordination.

5.3 The solution implemented 880

In the chapter “4.3 The chosen solution” we fixed the solution to implement. The

current chapter will show what was done in order to realize our choice. We will explain

the final architecture and the objects that linked together form the Storage

Management system. The next chapter will explain deeply the different components of

the solution. 885

5.3.1 Schema

Figure 15, Project final architecture, shows the schema of the Storage Management as

developed and Figure 16, Projected solution architecture, represents the architecture as

imagined during the analyze phase.

Storage of medical documents 2009

48

5.3.1.1 The final architecture vs. projected architecture 890

Final architecture Projected architecture

Storage Manager Web Service

Put

Update

Get Format selector

Storage Management Web Service

Transformation Engine Web Service

Put

Update

Get

1Care Professional ID &

Patient ID source

2

3

Role Server

56

7

8

9

4

Data base Server

Jackrabbit

Figure 15 Project final architecture Figure 16 Projected solution architecture

5.3.1.2 Description

Some changes have been made in order to simplify the software architecture. We

eliminated the StorageManagement Web Service because it was totally redundant in the

design and we created the SecurityManager Web Service that handles with all

authentication and authorizations questions. 895

To simplify the development, spare bandwidth, and avoid complex logic, the files will no

more transit between three Web Services but only between the StorageManager and

TranslationManager Web Services.

With the old architecture, we had to create complex callbacks mechanisms. The

StorageManagement would not receive the translated file directly from the 900

StorageManager Web Service but from the Translation Web Service after translation had

finished.

This solution had some disadvantages:

1. The implementation complexity described above.

2. The bandwidth/time waist. In fact, if no document format translation is needed, 905

the files will be sent anyway to the TranslationManager Web Service and sent to

StorageManagement Service without changes. With the new design if files do

not need to be translated they will be sent directly to the client.

To avoid more bandwidth waste we can imagine running the TranslationManager and

the StorageManager Web Service in the same intranet. The final user will enjoy the 910

comfortable data rates transfer and a better web application responsiveness.

Storage of medical documents 2009

49

5.3.2 The security implementation end to end data protection

During the analyze phase, data security and privacy was the leitmotiv. We were aware

that this project would lead with very sensitive data and therefore special care had been

taken to ensure it protection and privacy. 915

The most important security question, discussed in chapter “3 Security analyze”, was

how to be sure that data will be protected from the client web browser to the MySQL

repository. To respond to that question we implemented a certain number of security

mechanisms on each Web Service that participates to the global system.

We will discuss more deeply about those mechanisms in the next four points. 920

5.3.2.1 SSL secured connections

When browsing on the web, sometimes we are required to provide private data. At this

time a little lock (Figure 17) is displayed by the browser with a little message telling that

we entered in a secure zone. To avoid data to be read by other people, data is encrypted

and could only be decrypted by the server and vice-versa. The protocol used to secure 925

data is called SSL for Secured Socket Layer. SSL ensure authentication, confidentiality

and integrity of the data sent over the internet38.

Figure 17 SSL connection and visible signs

38

 http://www.verisign.com/ssl/ssl-information-center/how-ssl-security-works/index.html

Storage of medical documents 2009

50

The lock signifies only that data will not be readable by third party persons, but SSL 930

cannot ensure that data will not be sniffed by a hacker. Even if SSL is not THE solution it

is an excellent compromise between security and easy to setup. Furthermore, nowadays

it is the most used solution when talking about secured data connections.

To setup SSL connection in a Web Service, using NetBeans, there are some steps to

respect. We will now explain, step-by-step, how to configure it. To illustrate it, we will 935

use as example the StorageManager Web Service.

5.3.2.1.1 Step 1 – Define a secure Service

The first step in order to set working the SSL security is to change the security

mechanism of the Web Service. By default a Web Service has no security mechanism

attached to it. 940

To attach the security to the Web Service go to the Project tab in NetBeans and right

click on your Web Service and click Edit Web Service Attributes. The Web Service

attributes window will be displayed (Figure 18, StorageManager Web Service attributes).

Figure 18 StorageManager Web Service attributes 945

Select Secure Service checkbox and in the Security Mechanism drop list select Transport

Security (SSL) and click on the OK button.

Storage of medical documents 2009

51

Figure 19 StorageManager Security Mechanism definition 950

The first step is done. Now, we have to change the web.xml, it is the main Web Service

configuration file, to define what resources inside the .war file have to be SSL protected.

5.3.2.1.2 Step 2 - Define what resources may use SSL connection

The first step only defines what kind of security mechanism must be used. Now we have

to define what resources need a secure connection. 955

Find the web.xml file and double click on it. Select the Security pane. Under Security

Constraints section click on Add Security Constraint button to create a new constraint.

The constraint will define what URL needs to be accessed using SSL.

In the Web Resource Collection click on the Add button to define a new security

constraint to the Web Service. Fill the form and set the URL Pattern field pointing to the 960

root of protected area of the Web Service.

The HTTP Method field defines for what http commands a SSL connection is required. By

default protect all the HTTP Methods and use /* as URL pattern to require, for the Web

Service, an SSL connection all the time.

Storage of medical documents 2009

52

 965

Figure 20 Add new Security Constraint

At this level the SSL is not yet totally configured. To have it working you will need to

check the Enable User Data Constraint checkbox and to set the Transport Guarantee.

Select CONFIDENTIAL to enable SSL encrypted connections.

5.3.2.1.3 Step 3 - Project deployment 970

To finish, save your project and deploy on the server. When asking for a page in the

StorageManager Web Service, the SSL security will be started and you will see the little

lock in your browser.

Because the certificate used by the server is auto signed, some web browsers will ask if

you want to trust the web site. Accept, creating a security exception. The web page will 975

be finally displayed.

5.3.2.2 File encryption

Apparently Apache Jackrabbit already encrypts files when storing them into the MySQL

database (nothing is told about this in the official documentation and searches over the

internet gave no results), the StorageManager Web Service implements a class that will 980

do encryption/decryption over byte arrays or streams.

The file encryption will ensure that even if the database is hacked no one will read the

files stored inside. This feature is particularly interesting if a future programmer decides

Storage of medical documents 2009

53

to store the files outside the database, by changing the StorageManager configuration

file, doing so data risks to be no more encrypted and then will be readable by anyone 985

who has access to the file storage server.

To prevent such case, files are automatically encrypted no matter if they are stored in

database in a directory. Doing so implies supplementary processor costs but it is a small

price to pay to have high data protection and security.

The choice of encrypting files again has been made because we have no information 990

about the kind of encryption algorithm and key size used by Jackrabbit. If the algorithm

is considered as strong then we can deactivate, in StorageManager configuration page,

the encryption engine (default value) letting Jackrabbit doing the task.

5.3.2.2.1 UML schemas of the cryptography packages

 995

Figure 21 the UML diagram of the cryptography package in StorageManager Web Service

Storage of medical documents 2009

54

Figure 22 the UML diagram of cryptography package in Commons

There are two cryptography packages in the whole project. The first, Figure 21 the UML

diagram of the cryptography package in StorageManager Web Service, is part of 1000

StorageManager Web Service packages while the other, Figure 22 the UML diagram of

cryptography package in Commons, is a common package available in the Commons

project. The last only contains a class that calc the SHA1 digest of a file.

5.3.2.2.2 The cryptography package classes description

All classes inside the project that touch the cryptography domain are stored in the 1005

org.medicoordination.cryptography package.

5.3.2.2.2.1 SHA1Digest class

At the beginning of the implementation phase, the class that calc file digests has been

created to control that files transferred from client to the repository were not

corrupted. This class parses a byte array and returns a 16/20 bytes length string 1010

representing the digest of the file. If a byte is changed in file, a new run over the data

will produce a different digest. If the digests are not equal we can then assume that file

has been corrupted.

After a better understanding of the SSL mechanisms we realized that SSL already mark

data packets with a digest to ensure no one changed data inside. That SSL mechanism 1015

make the first obsolete and then totally unused in the project.

We decided to keep that class inside the project to further developments. In fact data

integrity is ensured from the web browser until the reception of it by the server, but no

controls are made between the moment data is stored and retrieved from database and

resent back. Files can be corrupted by viruses or by human hand and there are no 1020

security methods to control and prevent it.

Storage of medical documents 2009

55

5.3.2.2.2.3 StandardCipherProvider class

This class represents the encryption engine embedded in FileEncryption class. We use

the Cipher class provided in the Java cryptography Extension API (JCE) to create an

encryption/decryption engine. 1025

This class implements the ICipherProvider interface. The last defines two methods. The

first returns an initialized cipher for encryption and the second an initialized cipher for

decryption. The Cipher class in package javax.crypto «forms the core of the Java

Cryptographic Extension (JCE) framework”39. These two ciphers are used to encrypt or

decrypt data in the FileEncryption class. 1030

5.3.2.2.2.4 EncryptionType enumeration

This enumeration provides all the cryptographic algorithms and key sizes supported by

the application. The JCE defines some more algorithms but some of them present

security issues and therefore are not defined in the present enumeration.

5.3.2.2.2.5 ICipherProvider interface 1035

This interface must be implemented by all the objects that have to act as cipher

providers.

5.3.2.2.2.2 FileEncryption class

The FileEncryption class is the final class that we must use if files have to be encrypted.

This class provides methods to encrypt and decrypt data, in byte arrays or streams form, 1040

with symmetric encryption algorithms.

When instantiating it, you will need to supply a cipher provider object that implements

the ICipherProvider interface. That object initializes the encryption/decryption engine

with one of the algorithms available in the EncryptionType enumeration. That

enumeration provides the algorithm name and key size used by the algorithm. 1045

The use of the ICipherProvider interface as object type in the FileEncryption class will

allow, in future developments, to create a new provider that will use the private key of a

certificate to generate the encryption/decryption engine.

5.3.2.3 Web Methods access restrictions

Another security issue we detected during software analyze phase and described in the 1050

deliverable D3.1A: Interoperability Architecture is related with Web Method accesses.

 A Web Method, it means a public method tagged as accessible in a Web Service, is a

public object that can be accessed by any external actors without control.

The principal problem resides in the fact that some methods may not be accessed by

anyone but only by authenticated users, or by certain Web Services calling the method. 1055

39

 http://java.sun.com/j2se/1.4.2/docs/api/javax/crypto/Cipher.html

Storage of medical documents 2009

56

5.3.2.3.1 The Java™ Security Manager class

The Java™ API provides a very advanced security manager that can handle the security

denying access to call from non authorized classes. The security is managed by the

Security Manager. Permissions have to be setup in the Security Manager to deny or

allow access to certain functionalities or resources. 1060

The biggest problem resides in complexity of the system. The other problem is that a

Web Service is running in a server having already a set of permissions. If one of them

denies new permissions to be added from the Web Service then the Web Service have

to stop executing, because no permissions can be added to the security manager or

continue working without them. The last represents a security issue that cannot be 1065

accepted.

5.3.2.3.2 The adopted solution

To avoid the security issue described above we decided to build a system that would be

simple, easy to setup, and that would be coupled with the authentication Web Service

and able to work every time. 1070

We notice that every user working on the system needs to authenticate. If the

authentication succeeds, a token is sent to him. The token contains certain information

about the current session, and about the user logged. The security token UML

description can be found below.

 1075

Figure 23 the security token UML schema

To protect access in Web Methods from non authenticated users, we just need to check,

that the user calling the method is already authenticated. If true then the execution

continues normally otherwise an AccessDeniedException exception is thrown.

Storage of medical documents 2009

57

5.3.2.3.2.1 Schema 1080

Identity server

username / password

security token

Authentication

Token login(...)

WebService

Object WebMethod(…)

bool isAuthenticated(…)

1 2

34

5

6

7

8

Figure 24 Web Methods access restriction system

5.3.2.3.2.2 Step-by-step description

To explain the restriction mechanisms that we implemented in Web Methods, we will

simulate the access to a Web Method from a user. Steps from 1 to 4 are only realized 1085

the first time the user log into the system.

(1) A user asks the AuthenticationManager Web Service to log into the system.

(2) The AuthenticationManager queries the identity server to check that the user

can login or not

(3) The AuthenticationManager receives the response from the identity server. 1090

(4) The user receives a non null security token if authentication succeeds or a null

token if the user cannot login.

(5) The user connects to the Web Service that requires the token UUID (universal

unique identifier).

(6) The Web Service connects to the Authentication Web Service and asks if the 1095

token UUID provided by the user refers to a valid and authenticated session.

(7) The Web Service answers to the request.

(8) The Web Method only executes and returns a result, if the token UUID belongs

to a valid session.

The Figure 25 shows how we implement the security inside a Web Method. We 1100

tested to access directly a Web Method without a valid security token and the

response from the service was clear. The system returned an AccessDeniedException

exception.

Storage of medical documents 2009

58

5.3.2.3.2.3 An example by the code

 1105

Figure 25 a Web Method protection sample code

5.3.2.3.2.4 Description

The method receives the token UUID and asks the authentication service if the token

refers to an authenticated session. If true, the software continues running otherwise an 1110

exception is thrown.

5.3.2.3.3 Conclusion

The solution implemented allows to protect the access to the Web Service methods

while remaining easy to setup. The only requirement is that the authentication service

must be online otherwise all Web Services using that pattern to protect Web Methods 1115

risk to thrown an AccessDeniedException and all operations will be aborted.

We will discuss and present more deeply the architecture of the AuthenticationManager

and all the security classes attached to that service in the chapter 5.4.2 SecurityManager

Web Service.

5.3.3 The storage interface implementation 1120

We touch finally to be most important and exciting part of this project, the Storage

Manager and all its dependencies.

5.3.3.1 Definition

The storage manager represents the core of the actual system. The StorageManager

Web Service is responsible for: 1125

1. Reception of files transmitted by medical workers.

2. Transmission of files, by version, to medical workers or patients.

a. The transmission is governed by roles.

b. A file could only be transmitted if the actor requesting it has the rights

to download/upload it. 1130

c. Rights over files are defined by the owner of those files, the patient.

d. All accesses to the Web Service have to be authenticated to ensure

transaction security and authentication of the sender/receiver.

3. Versioning of files.

4. Store data ensuring data integrity and confidentiality. 1135

5. Store data independently of the file storage support.

6. Store data independently of the operating system running the StorageManager.

Storage of medical documents 2009

59

The StorageManager Web Service acts only as an interface between external requests

and the internal repository engine. When a get/put request is received, it is responsible

to deliver or not the document requested, depending on the rights over the file that the 1140

client has. It is also responsible for the file translation into other document format.

The internal repository engine, Apache Jackrabbit, is piloted by the MySQLRepository

class. The last will initialize setup and manage all activities related with it.

5.3.3.2 Schematic view

The Figure 26, StorageManager internal representation, gives a better understanding of 1145

the internal imbrications of the repository driver. We see that the Web Service drives

the MySQLRepository that drives itself the Apache Jackrabbit repository.

MySQL Repository

StorageManager

MySQLRepository

Apache Jackrabbit

1.5.6

Figure 26 StorageManager internal representation

Such architecture allows interchanging the repository engine, in this case 1150

MySQLRepository. Because MySQLRepository implement the interface IRepository, if we

want to change the way how data is stored then we just have to create a new class

implementing the interface and driving the repository the way we want. Finally we just

need to change, in StorageManager constructor, the object implementing IRepository

with the one we want to use. 1155

We can imagine in a future version to have an xml configuration file with the fully

qualified class name of the storage manager and the IRepository implementing driver

we want to use with the Web Service. The constructor loads those classes dynamically

through the dynamic class loader class

org.medicoordination.reflection.DynamicClassLoader in Commons library and at startup 1160

we have a whole new StorageManager Web Service storing files in a WebDAV server

instead of in a MySQL database repository, by example.

5.3.3.2 StorageManager Project UML Schema (collapsed version)

The UML schema below represents all the packages and classes available in the

StorageManager project. 1165

Storage of medical documents 2009

60

Figure 27 StorageManager UML diagram

5.3.3.2.1 org.medicoordination.db package

In this package we will find all the classes that are related with database. There we find

the MySQLConfiguration class. That class is a serializable configuration class. This class is 1170

used by MySQLRepositoryConfiguration class. Together, these classes contain all the

initialization configuration of the StorageManager Web Service.

5.3.3.2.2 org.medicoordination.repository package

This package contains all classes that drive the Jackrabbit repository. It includes the

repository configuration class that contains repository authentication information and 1175

the Jackrabbit configuration class, the apache.jackrabbit.core.config.RepositoryConfig

class.

The package also contains the class, the MySQLRepository class, which drives the

Jackrabbit content manager. That class could be considered as the most important class

of the project and will have a complete chapter, the 5.4.4.2 MySQLRepository, to better 1180

understand its architecture. This class only exposes the methods of the Jackrabbit

repository which are interesting for sending and receiving files and for session

management.

Below stands the UML diagram of the MySQLRepository class. As told before, we will

take more time to better understand that class and its architecture in a latter chapter. 1185

Storage of medical documents 2009

61

Figure 28 the MySQLRepository class (UML diagram)

5.3.3.2.3 org.medicoordination.managers package

This package contains the classes and interfaces used to drive repositories. The 1190

repositories must implement the IRepository interface.

Before refactoring, that package did not exist. In fact all the code that can be found in

the MySQLStorageManager was a part of the StorageManager Web Service itself. To

allow future improvements or changes in the way the Web Service drives the repository,

we decided that all control code had to move into another class, the 1195

MySQLStorageManager class, which may be changeable with another one better

engineered. We applied the strategy pattern to allow such flexibility.

In the StorageManager Web Service we only have an object, storageService of type

IStorageManager, which is dynamically instantiated when the Web Service connection is

created. It’s easy to understand that, soon as the class we want to act as manager 1200

implements IStorageManager, we can modify radically the way the Web Service

manages the repository by changing in the StorageManager Web Service the class that

will manage the IRepository object.

5.3.3.2.3.1 The strategy pattern

The strategy pattern (also known as the policy pattern) is a software design pattern 1205

whereby algorithms can be selected at runtime. (Gamma, Helm, Johnson, & Vlissides,

2005)

The Figure 29, the strategy pattern UML diagram, shows the pattern UML diagram. For

more precisions about the strategy pattern we invite the reader to examine the

document cited above from pages 315 to 323. 1210

Storage of medical documents 2009

62

40

Figure 29 the strategy pattern UML diagram

The algorithm selection in the StorageManager Web Service is done by dynamically

loading the class that will play the role of the manager.

Actually the name of the class is fixed in a variable, the variable className, but the goal 1215

is to put that class name in a configuration file.

When a new instance of the StorageManager will be created, then the class name will be

read from the configuration file and an instance of the manager object will be created at

runtime without fixing it in code. But actually, the name of the class we want to

dynamically load still stays hardcoded in the java file. (C.f. below) 1220

Figure 30 the dynamic loading of the storage manager class

40

http://upload.wikimedia.org/wikipedia/en/thumb/4/4c/Strategy_Pattern_Diagram_ZP.svg/500p

x-Strategy_Pattern_Diagram_ZP.svg.png

Storage of medical documents 2009

63

The next schema shows only classes that contribute directly to the driver structure. It

means that we do not take into account all configuration classes or cryptography classes

but we only concentrate on links and relations between classes that compound the core 1225

of the StorageManager Web Service.

Figure 31 the core of the StorageManager Web Service (Strategy pattern diagram)

To conclude, the StorageManager Web Service is compound of:

1. The StorageManager service class, the only class visible by web clients. 1230

2. The MySQLStorageManager class that implements the IStorageManager

interface and is used as interchangeable algorithm class by the StorageManager

service class (strategy pattern)

3. The MySQLRepository class that implements the IRepository class and acts as an

Apache Jackrabbit driver. If in future we decide to change the storage support 1235

and we choose a normal repository on hard disk then we just need to create a

new class, NormalDiskRepository, by example, which implements IRepository,

and set that class name in the StorageManager configuration file. At startup the

class will be dynamically loaded and instantiated and files will be stored into the

hard disk repository instead of in a MySQL database repository. 1240

Storage of medical documents 2009

64

5.4 Project components
In this chapter we will explain each subprojects of the Storage project and try to explain

how they interact together. Every time it is necessary, we will present the architecture

of certain key classes more deeply. 1245

5.4.1 Commons library

The commons library is charged to supply certain classes that are potentially used by all

the subprojects. Instead of having the same class in every subproject we code once and

reuse it by including the library in the project.

5.4.1.1 The UML schema 1250

Figure 32 the commons library UML diagram

The above diagram gives an overview of the tools available to all classes compounding

the Storage project. In the next chapters we will give a description of each one.

5.4.1.2 SHA1Digest class 1255

As described in a previous chapter, this class calculates a digest from a byte array that

can represents a file.

This class is particularly useful if we want to ensure that during a put/get phase the data

is not altered. In fact a byte array will always return the same digest. If only a bit

changes in the byte array then the digest will change too. 1260

Storage of medical documents 2009

65

To ensure that a file has not changed, we just have to create the digest of a file and then

compare to the digest produced after an operation that can corrupt the data with the

first one.

5.4.1.3 DocumentFormat enumeration

This enumeration is only for test purpose. The enumeration contains document formats 1265

codes. Those codes are used by the TranslationManager Web Service to define the type

of the output file.

This kind of solution is not very elegant and not very flexible. Indeed, adding new

formats to the enumeration will imply the recompilation and redeployment of at least

the TranslationManager service. It is not acceptable in production conditions but for 1270

tests purpose we can accept such solution.

5.4.1.3.1 Possible solution to solve the DocumentFormat problem

A best solution would be to replace the actual numeric codes with full qualified class

names. For each document format defined in the enumeration, a class that manages the

translation must be accessible by the TranslationManager. When the last receives a 1275

translation request, it only has to try to dynamically load the class from its fully qualified

name provided by the element in the enumeration and use it to translate the document.

If no class is available, then the service returns an empty FileStructure or throws a

ClassNotFoundException, which means that the service failed to find the class used to do

the translation. 1280

5.4.1.4 XmlClassSerializer class

This generic class allows serializing any class into its xml representation and deserializing

it into an instantiated object.

It is a very useful class as soon as we need to deal with configuration files or we want to

save the class content into a file and restore it later. 1285

5.4.1.5 FileStructure class

This serializable class is intended to be sent by the StorageManager service to the client

as a response to the getFragment request. The structure contains the file data and some

information about de file such as:

1. The file name 1290

2. The file type

3. The document type

4. The file size

5. The file URI

This class acts only as a data container. 1295

Storage of medical documents 2009

66

5.4.1.6 DynamicClassLoader class

This class loads and instantiates a class from its fully qualified class name and the class

file path. If the class file cannot be found then it throws a ClassNotFoundException.

This class is very useful as soon as we need to dynamically change the behavior of an

object. 1300

5.4.1.7 DebugMode class

This class defines a constant that is used to indicate that the software must work in

debug mode. By example, many classes use that constant to exhibit some information

that can only be displayed when debugging the software. As soon as the software runs

correctly, and we do not need to debug anymore, then we set the constant to false and 1305

lots of debug messages will not be displayed anymore.

5.4.1.8 ErrorMessageBean

This class is used by the JSP pages of the front-end to carry information to the error.jsp

page. The class provides three fields, the error number, the error message and the link

to bring the user back to a defined state, by example to bring him back to the login page 1310

after a session timeout.

5.4.2 SecurityManager Web Service

The SecurityManager Web Service is in charge with all the authentication and

authorization questions within the storage project.

This project has two Web Services, the Authentication and the ResourcesAuthorisation 1315

Web Service. The other classes of the SecurityManager are satellite classes for the two

services.

5.4.2.1 UML schema

Figure 33 SecurityManager UML class 1320

Storage of medical documents 2009

67

5.4.2.2 The org.medicoordination.service package

This package contains the Web Services java files. We will explain the role of each class

in the project during the next two chapters.

5.4.2.2.1 The Authentication Web Service

This service acts as a middleware between the MediCoordination project and an 1325

authentication system as Kerberos, by example. It is an authentication abstraction.

The conception of this Web Service follows the strategy pattern that was already

discussed in the chapter 5.3.3.2.3.1 The strategy pattern. This methodology is

particularly interesting in Web Services because it allows, coupled with dynamic class

loading, to provide to clients, without redeploying the service, always the same interface 1330

but allows changing the algorithms used within the methods.

An example of the utility of the strategy pattern in Web Services conception, after

deployment if we find a bug we do not need to redeploy the service. We just have to

compile the class and put it inside the class path of the service. The next time it is

instantiated we will dynamically load the new version of the class without the bug. 1335

5.4.2.2.2 The ResourcesAuthorization Web Service

This service is responsible to notify the caller if the user that requested a write or read

action can perform it.

As for the Authentication Web Service, this service is built using the strategy pattern and

acts as an abstraction allowing the services that need such information to concentrate 1340

only on the essential, it means, to have the response to the question: “Can the user X

read or write the file Y”. All the queries and accesses to the database(s) are delegated to

the ResourcesAuthorisation Web Service.

Below we can see the methods provided by the service. To keep simple, the first

indicates if the authenticated medical worker can read a file from the patient 1345

patientUUID while the other indicates if the he can write a file to the patient personal

electronic health record (pEHR).

Storage of medical documents 2009

68

Figure 34 the methods provided by the ResourcesAuthorisation Web Service

This Web Service implements the smallest set of functions useful to allow the 1350

StorageManager Web Service to control if a medical worker is authorized to get or put

the file.

We let to the MediCoordination team the care to choose the final architecture of the

authentication and authorization Web Services, keeping in mind, that actually, the

storage module is built and running using all the defined functions found in both Web 1355

Services.

5.4.2.3 The org.medicoordination.authorization package

This package contains all the classes needed by the ResourcesAuthorization Web

Service. Most classes are the result of the application of the strategy pattern over the

Web Service. The Figure 35 shows those classes disposed as in the Figure 29, the 1360

strategy pattern UML diagram. The same diagram can be obtained with the

Authentication and StorageManager Web Services classes because the same pattern

was applied to these subprojects.

5.4.2.3.1 The IAuthorization interface

This interface defines all the methods visible in the ResourcesAuthorization Web Service. 1365

In the last there is an object of IAuthorization type. This object is only instantiated at

runtime and with a dynamically loaded class. The type of the loaded class is normally

stored in the configuration file as a fully qualified class name. The value is read and used

to create dynamically the new instance.

Storage of medical documents 2009

69

 1370

Figure 35 The ResourcesAuthorisation strategy pattern refactoring UML diagram

5.4.2.3.2 The DefaultAuthorization class

This class is the default implementation of the interface IAuthorization and is loaded if

the dynamic load fails. This class is only instantiated when a ClassNotFoundException

occurs and its role is to avoid the Web Service to crash. The only response sent to clients 1375

is false for read and write requests.

5.4.2.4 The org.medicoordination.authentication package

This package contains all the classes used by the Authentication Web Service. The

classes, as for the ResourcesAuthorization Web Service, are obtained after refactoring

using the strategy pattern. The same schema will appear one interface and two classes, 1380

a default implementation of the interface, the DefaultAuthentication class and the

normal implementation used by the Web Service to respond to the requests.

5.4.2.4.1 Strategy pattern applied to the Authentication Web Service (diagram)

Figure 36 Strategy pattern refactoring of the Authentication Web Service (UML diagram) 1385

As for the previous package, the authentication package has quite the same elements

with the same roles, that is why we will concentrate us only on the new class, the

Storage of medical documents 2009

70

TestAuthentication class. This class is a realistic working implementation of the

IAuthentication interface unlike the DefaultAuthentication who is only intended to avoid

Web Service crashes. 1390

5.4.2.4.2 The TestAuthentication class

As introduced above the TestAuthentication class is a realistic implementation of the

IAuthentication interface. It means that when a user will query the service to login, the

response will not be always false.

To simulate working identity servers without having to setup a complex infrastructure 1395

we created some classes in the org.medicoordination.db package that simulates remote

database servers. Therefore, this class must be used only to test the web methods

within the Web Server. A new implementation of the class, this time communicating

with real servers will allow a true authentication mechanism.

To have more information about methods and classes please consult the javadoc, for 1400

the current project, available in the CD that is distributed with this document.

5.4.2.5 The org.medicoordination.security and db packages

Those packages provide a certain number of classes that have a less important role

inside this subproject.

All the classes present in both packages are used by the Authentication Web Service. 1405

Those from the security package are used when the login occurs while those from db are

used to simulate database servers.

We will nevertheless bring some pieces of information about the DefaultSecurityToken

class.

5.4.2.5.1 The DefaultSecurityToken class 1410

This class represents the base of a security token. The token is sent to the client after a

successful login and keeps a track of certain useful information like token UUID or the

session id or the user UUID among other.

When a user browses from one page to another one and when an authentication check

is needed the only value that is transmitted to the Authentication Web Service is the 1415

token UUID. If the last is unknown by the system then the access to the page is denied

and the user is invited to authenticate through the login form. If the token is recognized

as valid, then the timeout value is updated and the updated token resent. More

information is available in the javadoc of the class.

5.4.3 TranslationManager Web Service 1420

The present service is a non functional prototype, only for test and connection purpose.

Actually it only receives a file and sends it back as is, without any translation.

Storage of medical documents 2009

71

The present subproject wills no more be discussed because it is beyond the scope of the

present diploma work. Indeed, The TranslationManager Web Service only exists because

the StorageManager will be connected to such translation service. This Web Service is a 1425

lightweight proposition to a future Translation Service and has no other pretention.

To conclude, below you find the UML diagram of the project. It is only for intellectual

purposes.

5.4.3.1 UML schema

 1430

Figure 37 The TranslationManager project (UML diagram)

5.4.4 StorageManager Web Service

In the chapter 5.3.3 The storage interface implementation, we spoke in means of

storage implementation. In this chapter we will discuss about the components that

compose the StorageManager Web Service and the links between it and other services. 1435

The UML diagram in Figure 27, StorageManager UML , gives an idea of the internal

complexity of the storage manager, but it is only a part of the problem. In fact the

StorageManager Web Service is also connected to other Web Services. These services

provide functionalities to the StorageManager Web Service and are part of the global

solution and are mandatory in order to make storage service to work properly. 1440

Because the implementation part of the diploma work consists only on the realization of

a repository totally hardware and software independent, the TranslationManager, the

SecurityManager and the MediCoordination front-end can be considered as an extra

work accomplished to give a better overview of a possible final solution.

During the next chapter we will present the most important classes of the project but 1445

we will skip the MySQLRepository class and all classes related to it because we will speak

about in the 5.4.4.2 MySQLRepository chapter.

Storage of medical documents 2009

72

5.4.4.1 Description of the functionalities

The StorageManager provides a very small set of functionalities to the end user. Those

functionalities are listed in Figure 38, The functionalities provided by the 1450

StorageManager Web Service.

Figure 38 The functionalities provided by the StorageManager Web Service

The methods do not need other explanations because their signature are enough

talkative to avoid more comments. We will only explain why the tokenUUID is used by 1455

every method.

In the chapter 5.3.2.3 Web Methods access restrictions in page 55, we discussed about

Web Methods security. To deny Web Methods access to non authorized users, we need

to receive a tokenUUID that corresponds to a valid authenticated session. Otherwise the

function will throw an AccessDeniedException exception. 1460

During the analyze phase we have define the minimal subset of functionalities provided

by the storage service. A supplementary functionality, the updateFragment, was defined

that is not present in the implemented solution.

This lack is not an oversight, but rather the result of the use of a versionable repository.

Indeed, when we add a new file to an existing node, in the repository, the new node is 1465

considered as the current node and the others as versions of the same node. Then, a file

update consists in changing a file and then commits the changes saving it. The old file is

replaced with the new one. The repository will do the same but the old version is not

definitely lost. We can have it back again by choosing the version of the file we want to

get. That is why the getFragment Web Method takes three parameters one of which is 1470

the file version to get.

5.4.4.2 MySQLRepository

The MySQLRepository is a driver that controls a repository using the Jackrabbit API. This

class is in charge to create the repository, if it does not exist, and control the files that

goes into it. 1475

This class implements the IRepository interface. So, we can select in the

MySQLStorageManager class the repository driver we want to use to pilot the

repository. If the driver is loaded dynamically at startup, then, we will not have to

redeploy the Web Service every time a bug is discovered. We just have to update the

driver class and restart the GlassFish server. 1480

Storage of medical documents 2009

73

The next diagram shows the dependencies of the MySQLRepository class. As we can see

the class contains the methods to put and get files as well as a function to get the

versions of a given file. The last is particularly interesting. Medical worker will be able to

get any version of a file stored.

5.4.4.2.1 UML Diagram 1485

Figure 39 UML diagram of the dependencies of the MySQLRepository class

At current moment some changes will be made on this class. Indeed, actually only one

connection can get or put files. If two users try to put files at same time, then the first

will lock the repository and the second will receive an error explaining that the 1490

repository seems to be already locked. This behavior is normal within Jackrabbit.

Indeed, Jackrabbit allows creating multiple sessions, independents from each one but

this is only true if the JCR repository that creates the sessions is the same. As soon as a

new instance of the repository is created, then, an error is thrown to warn the user that

the repository is already locked by another session. 1495

The StorageManager-Test project, it can be found in the CD accompanying this report in

the sources folder, brings the response to both problems. This project brings a solution

to solve the problem of multiple concurrent runs of the same code. This solution allows

multiple concurrent runs of the same code and by the way will make possible concurrent

puts or gets even if multiple JCR repositories are running in parallel. 1500

To allow concurrent accesses to the repository, this class will create only one instance of

the Repository object in the JCR API. We use the singleton pattern to get always the

same instance. While this instance is working, all login tries, inside the same JVM

instance, will get the same repository object. Otherwise, if a repository already exists,

but in another instance of a JVM, then a new instance is created and will wait until the 1505

first removes the locks. As soon as locks are removed then the second instance starts

Storage of medical documents 2009

74

responding to requests. The second instance will find the moment the first release the

locks by pooling regularly if the repository is available or not.

5.4.5 MediCoordination front-end web application

The MediCoordination front-end represents the visible part of the project. It’s the 1510

human interface that allows a health worker to get or put files into the pEHR of a

patient. It allows testing the underlying services, such as the StorageManager and the

SecurityManager.

The front-end consists in a certain number of JSP pages that are linked together via

session beans and with a protected access. The ./Login page is the only entrance to the 1515

system. Without a valid authentication the access to the services is denied. The next

diagram shows the sitemap of the MediCoordination Web Application and the links

between pages. It shows, also, that any try to access any other page without a valid

authentication will results in an AccessDeniedException.

5.4.5.1 Sitemap Diagram 1520

Figure 40 Sitemap of the MediCoordination front-end

Storage of medical documents 2009

75

5.4.5.2 Description of the functionalities

The MediCoordination front-end only provides a login page and a transfer page. This JSP 1525

page allows getting or putting files into the repository.

5.5 Implementation problems and solutions
Just like other projects, this one brought lots of surprises when implementing it. The

major difficulty was to develop an application without having the debugger working.

This little detail made all the difference. 1530

In fact, when implementing a solution, the debugger can accelerate very quickly the

development phase, it helps finding conception errors or unexpected behaviors.

Developing without a debugger is much like trying to find the way in a maze at night

without flashlight. To find and solve a bug we are in darkness, only some very esoteric

messages sent by the JVM can point approximately to the place where the bug stands. 1535

The smallest error can turn into an unsolvable problem. This is only one problem, over

lots of others, encountered during the development phase that we had to surmount.

In the next points we will discuss about other development problems and the solutions

found to solve them.

5.5.1 Web Services 1540

The first big problem encountered was related with the Web Services security. Some

very strange behaviors of the NetBeans IDE, related with SSL secured Web Services, will

be discussed in this section.

5.5.1.1 Security and authentication

One of the biggest challenges during the project was to secure all the accesses to the 1545

Web Services. Things as simple as how to setup a server based authentication to a page

could take very long hours especially when we are not used with Web Services security.

5.5.1.1.1 Context

We have a page that must be protected by a password, by example a configuration

page, but we do not want to use the security system used to protect Web Methods. 1550

5.5.1.1.2 Problem encountered

The problem encountered was how to configure the Web Service to require

authentication from the user that want to access to a particular page.

5.5.1.1.3 Solution

GlassFish proposes some authentication mechanisms to secure accesses to resources. 1555

The authentication starts with configuration of users inside the server.

The screenshot, Figure 41, Server authentication mechanism setup, shows in

Configuration > Security > Realms all kind of authentication mechanisms supported by

GlassFish. Other authentication mechanisms can be added. The user will only need to

Storage of medical documents 2009

76

develop his own realm (C.f. Creating a Custom Realm41) and add it to GlassFish and 1560

finally configure the Realms category to add the new authentication method.

Because, in the real world, very little people hold their own certificate, the simplest way

to setup an authentication is by asking for a username and password. GlassFish allows

such authentication by using the file realm.

5.5.1.1.3.1 Add new user credentials to the GlassFish server 1565

The first step is to add the username and password of the user that will be authorized to

access to the protected page. We invite the reader, if he is not used with user addition

within GlassFish, to examine the chapter 5.2.3.5.2 Creation of the GlassFish user.

Figure 41 Server authentication mechanism setup 1570

Once a user exists, then we need to make some changes in the web.xml and sun-

web.xml, the application server configuration file42, to enable user authentication via the

authentication mechanism of your GlassFish server.

41

 http://docs.sun.com/app/docs/doc/819-3672/beabo?a=view

42
 http://docs.sun.com/app/docs/doc/819-3660/beaqj?a=view

Storage of medical documents 2009

77

5.5.1.1.3.2web.xml configuration

In the Web Service you want to setup authentication, select the web.xml configuration 1575

file and go to the Security tab. Because in the server we created the user in the file

realm, it means that the username, password are stored in a simple text file, we have to

indicate that in the web.xml. Then, in the Login Configuration folder we need to

indication the realm we want to use to the authentication and how the authentication

must happens. The standard way is to request the web browser to display a little box 1580

with two fields, username and password. To do so, we need to select the Basic login

mechanism.

Figure 42 Servlet login configuration

The next step is to create a security role name. A security role corresponds to an 1585

abstract logical grouping of users that will potentially use the application. In our case,

the only user we want to give access to the configuration page is the administrator of

the Web Service. Then, in the Security Roles section we define a new role

storage_manager_admins. This role groups all the administrators of the Web Service,

only them can, after a successful login, access the configuration page of the service. 1590

Still in the web.xml configuration file, we need to specify who can view the

configuration.jsp file. We select, in the Run as listbox, the security role created

previously, the storage_manager_admins security role.

Storage of medical documents 2009

78

Figure 43 web.xml Servlets authentication configuration 1595

5.5.1.1.3.3 sun-web.xml configuration

To finish the configuration of the authentication, we need to map the security role to

the principal we created in the GlassFish file realm. We can map the security role to

some principals or to principals and groups or only to groups.

Only the principals or groups mapped to the security role storage_manager_admins will 1600

be authorized to login into the configuration page. The Figure 44, Security Role

Mappings, shows the configuration that you should have, at the end, to have the

authentication mechanism correctly setup.

Storage of medical documents 2009

79

Figure 44 Security Role Mappings 1605

Now the authentication is correctly setup. You can deploy and test. An input box asking

for the username and password will be displayed. If you have the accreditations to

access the page, it will be displayed.

To know who is connected to the JSP page you can call the getUserPrincipal(). The last

method will return null if no authentication lead to a successful login. 1610

Figure 45 Sample code to display the connected principal

5.5.1.2 SSL Implementation

During development, the implementation of secured communication channels between

Web Services and the client was a very hard problem to solve and took lots of time. The 1615

problem is related with the creation of a Web Service client in the NetBeans IDE.

Storage of medical documents 2009

80

5.5.1.2.1 Context

We have a Web Service secured via SSL. We want to create a client to access that Web

Service within NetBeans.

5.5.1.2.2 Problem encountered 1620

When creating the Web Service client, NetBeans throws an exception.

Figure 46 Web Service client creation

When creating a new Web Service client, the above window will be displayed. There are

three manners to create the client. 1625

1. Picking the Web Service project in the project group. Just click the browse

button and select the Web Service you want to automatically generate the Web

Service Client

2. Getting the local Web Services Description Language (WSDL) of the Web Service.

The WSDL must be previously generated. Right click on the Web Service in the 1630

Solution exploration and then click on menu Generate Local WSDL.

3. Getting the WSDL of the deployed Web Service.

When creating the client with the third proposition we receive the error displayed

below.

 1635

Figure 47 Exception thrown by NetBeans

Storage of medical documents 2009

81

5.5.1.2.3 Causes and solutions

When installing the GlassFish server, the last will create a certificate that will serve to

authenticate it every time a client asks for an SSL connection. On that certificate figures

the Common Name - Figure 49 Web Site Certificate viewer window. When we create a 1640

Web Service client for a Web Service secured with a SSL connection, we have to provide

in the WSDL URL field of the New Web Service Client window, Figure 46 Web Service

client creation, the same Common Name as in the certificate otherwise NetBeans will

raise an error.

 1645

Figure 48 Error report from NetBeans

Even if https://192.168.1.2:8181 is the same server as https://alves-ba48e4597:8181 the

first variant raises the error while the second no.

Then, the right URL to create the StorageManager Web Service client is given below:

 1650

http://alves-ba48e4597:8080/StorageManager/StorageManagerService?wsdl

or

https://alves-ba48e4597:8181/StorageManager/StorageManagerService?wsdl

With one of above URLs and after clicking on finish button of the Figure 46 window, the

window below will be displayed. Just click yes to accept the certificate. After that 1655

NetBeans will parse the wsdl and generate all the classes to communicate with the Web

Service.

Figure 49 Web Site Certificate viewer window

Storage of medical documents 2009

82

To conclude, it is really important, when creating a Web Service client, to provide the 1660

same server name as in the certificate, otherwise NetBeans will refuse to load the wsdl

file, and by the same, it will refuse to generate all the classes needed to invoke the Web

Service.

5.5.2 Apache Jackrabbit

The second most important source of problems involves Apache Jackrabbit and 1665

GlassFish. Even if it is a relatively easy to understand API, some concepts are badly

explained in the documentation and barely discussed on the internet.

Such a lack of documentation resulted in some sleepless nights trying to find a solution

to the given problem.

5.5.2.1 Configuration 1670

In standard working mode, Jackrabbit is very easy to setup and put working. Below we

have the minimal code to setup and startup a valid Jackrabbit repository.

43

Figure 50 Logging in to Jackrabbit 1675

Things seem rather easy, but, as soon as we try to change the standard working mode,

repository in a directory of the hard disk, to set it working with MySQL then things

became more complex.

We have to edit the default jackrabbit configuration file and define the persistence

manager to use with Jackrabbit, the database file system, setup the workspace 1680

configuration, the security configuration, the repository configuration and the versioning

43

 http://jackrabbit.apache.org/first-hops.html

Storage of medical documents 2009

83

manager. A single error on one entry and it is the whole system that would not work

properly. One can find, on Apache Jackrabbit home site, a How to44 that helps to setup

the repository and the default repository.xml file can be found on Jackrabbit home site45.

5.5.2.1.1 Solution 1685

After lots of hours on internet, we found a standard Jackrabbit configuration file. We

incorporated it in the MySQLRepositoryConfiguration class. Configuration fields needed

to connect properly to a database are dynamically replaced with data from

MySQLConfiguration class and with repository login data provided by the

MySQLRepositoryConfiguration class itself. Finally, we only have to call the 1690

getRepositoryConfiguration method inside the class and a RepositoryConfig object

correctly configured is generated and returned. We pass it to the repository constructor

and the repository is correctly instantiated.

5.5.2.2 Sessions and Locks (Concurrent accesses to the repository)

We already discuss, in a previous chapter, about the problem of multiple sessions 1695

running on the same repository. As soon as multiple sessions are created within the

same repository object, everything work perfectly and we can have as much sessions as

we want without errors, except if two session try to access the same node. Adding

mix:lockable mixin type to the node will allow the node to be lockable. Then we can use

lock mechanisms provide by the Node class of the JCR API to avoid concurrent accesses. 1700

But the problem is much complicated. Indeed, creating a static Repository object, in the

StorageManager Web Service, that multiple connections can access would be a solution.

But the scope of a static object is the JVM. If we start twice the web service then the

static field will not be the same in both JVM because JVM’s do not share their memory.

Consequently what will happen is that the first instance of the Repository object created 1705

will lock the repository database and only no other connections from other JVM’s will be

accepted.

5.5.2.2.1 Solution

A solution consists to limit the session existence to the strict minimum. We login just

before saving the file and logout session directly after it finishes. When no more sessions 1710

are open inside the Repository instance locks are released and another Repository

waiting for the locks release will be able to start to respond to requests.

If new requests arrive to the first instance, then they must wait until all locks from the

second instance are released.

44

 http://jackrabbit.apache.org/jackrabbit-configuration.html

45
 http://jackrabbit.apache.org/jackrabbit-configuration.data/repository.xml

Storage of medical documents 2009

84

This solution has been tested with the project StorageManager-Test project. If running 1715

normally 5 Threads are created and concurrent accesses managed without problem. All

files are stored and at the end locks are released.

Now to test that multiple JVM’s running the same application can access concurrently to

the repository, just push some times on F6 within NetBeans IDE to start a new run of the

application. We can see observe that all instance will write files to repository without 1720

errors.

An Instance running in a separate JVM will pool, checking the state of the repository. As

soon as the repository is free then the repository acquires the Lock for the repository

and start working.

5.5.2.3 Node Versioning & Locking 1725

Jackrabbit supports versioning. To setup it, we have to make some changes to the

repository configuration file.

5.6.2.3.1 Configuration of the repository

Firstly we have to add a new section, if not done already. The example below shows the

section to add to the repository.xml file. 1730

Figure 51 Versioning entry in the repository.xml configuration file

The first versioning tag is only to see the main configuration entries of the versioning

configuration. The second tag contains only the file system and persistence manager

tags. The file system tag indicates where to store the different file version while the 1735

persistence manager specifies where to store Meta information about versions.

It is possible to set the file system to one of the three below46:

1. LocalFileSystem, data is stored in hard disk.

2. DatabaseFileSystem, data is stored in a database, to be used with a database

manager as repository and workspace file system. 1740

46

 http://jackrabbit.apache.org/jackrabbit-configuration.html#JackrabbitConfiguration-

Filesystemconfiguration (File System configuration)

Storage of medical documents 2009

85

3. MemoryFileSystem, data is stored in RAM. All data is lost as soon as the

repository is closed. The file system is intended to tests only or small read-only

workspaces.

Once the versioning is set in the configuration file of Jackrabbit, we have very little

operations to do before using it. 1745

5.5.2.3.2 How to make a node versionable mix:versionable

Within Jackrabbit, every node can be versionable. We have to add the node type Mixin

to the node we want to make versionable. The Node.addMixin (“mix:versionable”)

instruction will indicate to the Jackrabbit repository that the node and children and all

properties have to be versioned. 1750

The function Node.checkin () returns the last version of the node while to add a new

version to it will imply to make a Node.checkout () to make it writable, then to write the

data and to do a Node.checkin () to make it read-only.

Jackrabbit provides several classes, in the javax.jcr.version package, to lead with

versioning. It will be possible to restore old versions of a node, to remove versions, to 1755

save space, to get a precise version and much more functionalities.

5.5.2.3.3 mix:lockable

To set a node lockable is sensitively the same as for the versioning. We just have to add

the type mix:lockable to the node with the method Node.addMixin(“mix:lockable”).

Then we just have to use the Lock methods embedded in the Node object to control 1760

who can access the node.

5.6 Improvements
Even if great efforts have been made to create a piece of software that responds to

most of the requirements edited in the chapter 2, some of them could not be

completed, mainly because the time was not enough to do everything we planned to do. 1765

The next chapters will describe the future improvements that could be made on

StorageManager Web Service. We discussed about the strategy pattern and the fact that

storing the full qualified name of classes into the configuration file will allow to

dynamically changes the behavior of the storage service.

5.6.1 Dynamic loading integration 1770

The integration of such mechanism inside the Web Service and in the manager class to

allow dynamic loading of the repositories implementation will be a plus. It will especially

facilitate the development, because one big problem with web services implementation

is that deployment takes too much time.

With this mechanism, no need to redeploy. We just need to update the class and reload 1775

the page.

Storage of medical documents 2009

86

5.6.2 Jackrabbit session management

The second improvement that must be taken is related with the Apache Jackrabbit

repository.

A solution must be found to load only one instance of the repository accessible by the 1780

Storage Service. This instance will have the same life cycle as the server. It would starts

with the domain starts and stops with the domain stops.

If no solution is found, the concurrent accesses to the repository will always represent

an obstacle to create a reliable piece of software.

 1785

Storage of medical documents 2009

87

6 Storage Manager Compatibility with IHE recommendations
For the present project, IHE recommendations are not available or are only partially

applicable.

6. 1 Storage compatibility
IHE don’t advocate the use of a specified technology to implement the storage module. 1790

Therefore we are totally free to choose the implementation that we will judge the

better.

IHE just recommends that the system sustaining the file storage would allow putting,

getting, updating files with a versioning system integrated with it, that’s the case of

Apache Jackrabbit for the three propositions we made above. 1795

6. 2 File exchange (XDS)47 compatibility
IHE recommends XDS (Cross-Enterprise Document Sharing). IHE only recommends that

files must be stored in a repository in a reliable and secure manner. The accesses,

permissions and how patients authorize medical workers to access their files are also

described inside this chapter but are not useful for the storage management service 1800

itself because the Storage Management service will delegate such requests to a third

party web service specialized on such actions.

6.3 Service security compatibility
Concerning web services security, IHE recommendations are more precise and we have

following them to choose and to implement our solution. 1805

The most important recommendation, in terms of service security, concerns the Web

Methods access security. They recommend restricting accesses to Web Services to non

authorized actors. This recommendation has been integrated in the Storage Manager

Web Service through the Security Manager Web Service and Security tokens.

The other concerns communications channels. This second recommendation has been 1810

integrated in the service too. Indeed all communication channels are SSL protected.

6.3.1 User authentication (EUA)48 compatibility

As for XSD the user authentication is not directly linked to this module. Effectively we

will use authentication in order to allow or refuse web service access but the work to

query server, the kind of server to use and all considerations about this precise action is 1815

deported to the web service that will do authentication.

47

 IHE IT Infrastructure Technical Framework, vol. 1 (ITI TF-1) : Integration Profiles (§10 page 64)

48
 IHE IT Infrastructure Technical Framework, vol. 1 (ITI TF-1) : Integration Profiles (§4 page 27)

Storage of medical documents 2009

88

7 Conclusion
The present document describes the implementation of the storage service for

electronic medical content. The current project was intended to be a prototype that

could possibly open research ways to the final Storage Manager in the 1820

MediCoordination project. Most requirements have been fulfilled successfully but some

other need more time in order to solve some problems that impeach the implemented

solution to run efficiently.

The choice of Jackrabbit seemed to be a good idea but in order to confirm that

technologic choice a battery of test must be done. Time becoming less and less, all the 1825

testing part of the project had to be abandoned to concentrate on the most important

task, creating a running prototype.

In addition to the Storage Manager Web Service, two other services have been partially

developed and can, therefore be used as starting point to future implementations.

These services have been developed because they are closely integrated with Storage 1830

Manager Web Service. Without them it would be very tricky to create a real functional

prototype.

Storage of medical documents 2009

89

8 Bibliography
Alves, B., & Schumacher, M. I. (2009). Deliverable D3.1A: Interoperability Architecture.

Sierre: Institut d'informatique de gestion. 1835

Barik, T. (2005, August 23). Introducing the Java content repository API. Retrieved June

05, 2009, from IBM.com: http://www.ibm.com/developerworks/java/library/j-jcr/

Bragg, R. (2009). The Encrypting File System. Retrieved May 26, 2009, from

technet.microsoft.com: http://technet.microsoft.com/fr-fr/library/cc700811(en-us).aspx

Carr, C., & Davis, D. (2008, December 12). Integrating the Healthcare Enterprise. IHE IT 1840

Infrastructure (ITI) Technical Framework Volume 1 : Integration Profiles . IL, USA.

Dai, W. (2009, March 31). Speed Comparison of Popular Crypto Algorithms. Retrieved

May 26, 2009, from Cryptopp.com: http://www.cryptopp.com/benchmarks.html

Day Management AG. (2005). JCR v1.0 Specification HTML version. Retrieved June 1,

2009, from day.com: http://www.day.com/specs/jcr/1.0/ 1845

Day Software. (2005, may). The java Community Process(SM) Program - JSRs : Java

Specification Requests - detail JSR# 170. Retrieved june 10, 2009, from jcp.org:

http://jcp.org/en/jsr/detail?id=170

Day Software. (2009, march). The java Community Process(SM) Program - JSRs : Java

Specification Requests - detail JSR# 283. Retrieved june 10, 2009, from jcp.org: The java 1850

Community Process(SM) Program - JSRs : Java Specification Requests - detail JSR# 170

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (2005). Strategy. In E. Gamma, R. Helm,

R. Johnson, & J. Vlissides, Design Patterns Elements of Reusable Object-Oriented

Software (pp. 315-323). Westford, Massachusetts: Addison-Wesley.

IHE.net. (2008, November 28). Cross-Enterprise Document Sharing (XSD) - IHE Wiki. 1855

Retrieved June 5, 2009, from wiki.ihe.net:

http://wiki.ihe.net/index.php?title=Cross_Enterprise_Document_Sharing

IIG - HES-SO // Valais. (2009, May 04). MediCoordination. Consulté le June 15, 2009, sur

MediCoordination: http://www.medicoordination.ch/

Metro. (2009, April 12). metro: Metro Guide - Configuring SSL and Authorized Users. 1860

Retrieved July 2, 2009, from metro.dev.java.net:

https://metro.dev.java.net/guide/Configuring_SSL_and_Authorized_Users.html#gfxzy

Pospisil, J., Kuchtiak, M., & Wielenga, G. (n.d.). Asynchronous JAX-WS Web Service Client

End-to-End Scenario. Retrieved July 12, 2009, from Netbeans.org:

http://www.netbeans.org/kb/55/websvc-jax-ws-asynch.html 1865

Storage of medical documents 2009

90

Seitz, L., Pierson, J.-M., & Brunie, L. (2005). Encrypted storage of medical data on a grid.

Lyon: January.

Seitz, L., Pierson, J.-M., & Brunie, L. (2005, January). Encrypted Storage of Medical Data

on a Grid. (S. GmbH, Ed.) Methods of Information in Medicine , 2.

Shinder, D. (2006, August 23). Implementing EFS in a windows Server 2003 Domain. 1870

Retrieved May 27, 2009, from WindowsSecurity.com:

http://www.windowsecurity.com/articles/Implementing-EFS-Windows-Server-2003-

Domain.html

Sun Microsystems, Inc. (2002, August 4). Java Cryptography Architecture. Retrieved June

12, 2009, from java.sun.com: 1875

http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html

Sun Microsystems, Inc. (2002, January 10). Java Cryptography Extension. Retrieved June

12, 2009, from java.sun.com:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html

 1880

