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I 

FOREWORD 

The photography industry has changed drastically in the last few decades. When we used to 

have film cameras and vacation pictures we wouldn’t see until we returned home and developed 

them, we now have smartphones that allow us to take near unlimited pictures and preview them 

instantly. Back then, family photos were taken with the help of a professional photographer. The 

prints were meticulously saved in albums, labeled, dated, and sorted. Up until the mid 2000s, 

pictures were always printed, and sometimes, more recently, digitized to adapt to the new internet 

world. Today, these tables have completely turned around: we instantly share thousands of pictures 

on social media, and very rarely print them. While some aficionados still romanticize the retro aspect 

of printed pictures, the smell of a photo album, or the grain from old film; the truth is that these 

media are not timeless. Indeed, pictures wear, colors fade, albums get torn, and are subject to the 

elements. Moreover, sharing pictures from an old photo album is impossible to do over large 

distances, albeit sending the entire album by mail, which is not very practical. 

It is with regards to these disadvantages of physical images that many companies start to offer 

digitizing solutions for older media. These companies do not stop at the digitization of images, but 

also provide digitization of old video reels, audio tapes, VHS, etc. to ensure an infinite lifespan to 

these treasures of the past. 

This study is conducted in partnership with the Swiss company Cinetis, specializing in this type 

of digitization, and in the context of a final Bachelor thesis for the HES-SO Valais. The goal is to 

provide a prototype web application which would accelerate the cropping of individual images within 

a photo album scan by automatically detecting the images within scans. 

This study provides several different approaches to solve image-detection issues, and create a 

web-based user interface. In addition, many explanations of computer vision concepts, as well as 

machine learning concepts are explained in depth in this research paper. 
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ABSTRACT 
This paper illustrates the process of image restoration in the sense of detecting images within 

a scanned document such as a photo album or scrapbook. The primary use case of this research is to 

accelerate the cropping process for the employees of Cinetis, a company based in Martigny, 

Switzerland that specializes in the digitalization of old media formats. 

In this paper, we will first summarize the state of the art in this field of research. This will 

include explanations of various techniques and algorithms involved with feature and document 

detection used by various digital companies. We will then introduce our study with an in depth 

explanation of several computer vision algorithms. The next chapter will explain which technologies 

were used in the development of the prototype, and which management approach we used to conduct 

this research. We will then explain four different approaches that were executed to obtain results in 

image detection. This chapter will include detailed methodology and explanations of each step of 

each approach. The four approaches demonstrated in this paper are a Random-Forest based 

approach, a Neural-Network based approach, a Hough-Transform based approach, and a Contour-

Filtering based approach. The first three did not yield good enough results and were not used in the 

final version of the prototype. The Contour-Filtering approach however, proved to be very efficient 

and was used in the final prototype. The next chapter will explain how the retained approach was 

used to implement a user interface for the prototype application. The final results will then be 

measured and explained, and possible optimization options will be discussed. This section will lead 

to the conclusion of this study and future works that could be derived from the prototype. 

 

 

 

 

Keywords: Image detection, Random forest, Neural network, Hough transform, Contour filtering,   
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STATE OF THE ART 
Existing mobile applications already exist to scan photo albums, the most popular one being 

Photomyne (Photomyne, s.d.). This app allows the user to quickly scan photos from a photo album 

by taking a picture with a smartphone. However, no blog, documentation, or paper has been 

published by Photomyne developers explaining the inner-workings of their application.  

While searching for published works on this type of problem, we quickly noticed a distinction 

in nomenclature. Most of the work pertaining to edge-detection or photo detection, most of the work 

pertaining to these search terms were focused on detecting the edges within an image, such as the 

Canny edge detection filter (Canny, 1986). It quickly became clear that the works more adapted to 

our problem were oriented towards document detection rather than edge detection. 

Two published works in particular were at the heart of the inspiration of this study. The first 

was found in the Dropbox tech blog (Xiong, 2016) and the second was explained in a python tutorial 

to build a simple document scanner (Rosenbrock, 2014). 

DROPBOX MACHINE LEARNING APPROACH 

In the first work, Xiong explains the process that Dropbox uses to scan documents in their 

mobile app. The app has a camera that surrounds the document in the image in a blue rectangle in 

real time. Once the user takes the picture, the framed document is then cropped and transformed 

to fit in a rectangle. This image is then converted to PDF format and stored on the user’s Dropbox 

account. A screenshot of the app in action can be seen in Figure 1. 
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Figure 1 - Dropbox document scanner surrounding the detected document with a blue frame. Source : (Xiong, 

2016) 

This technique focused on a process that needed to be simple enough to be calculated on a 

handheld device in real time at 15 images per second. The entire process explained in this article 

can be broken down into four parts: edge-detection, computation of lines from an edge map, 

computation of intersections, and isolation of the best quadrilateral. Xiong defends the use of 

machine-learning as being more efficient than traditional edge detection to detect “where humans 

annotate the most significant edges and object boundaries” (Xiong, 2016).  

In the first step of his process, Xiong explains the drawback of using traditional edge-detection 

algorithms such as the Canny edge detection filter. He explains that “the main problem is that the 

sections of text inside the document are strongly amplified, whereas the document edges—what 

we’re interested in—show up very weakly” (Xiong, 2016).  

To overcome this obstacle, Xiong trained a random-forest model to recognize pixels that were 

on a border based on annotated images with interesting borders highlighted by humans. Mapping the 

probability of each pixel being on an edge provides an “edge map” of the image giving a much clearer 

view of the borders that are interesting to the scanner as seen in Figure 2. 
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Figure 2 - Canny edge detection, left. Edge map of random forest, right. Source: (Xiong, 2016) 

Once the edge map is computed, the app still needs to isolate straight lines. Indeed, we have 

a pixel image that contains the lines visible to the human eye, but the actual equations of those lines 

still need to be computed to be interpreted by a program. To determine lines from this image, Xiong 

uses a Hough Transform. This mathematical transformation converts lines into points, plotting the 

slope and offset coordinates of the line on the x and y axes of the new mathematical space. A more 

detailed view of how this transformation works will be explained in Section 3.2.1. The resulting image 

is a plot of the lines represented as points. In this view, the lighter spots of the plot indicate lines in 

the edge map computed by the random forest model. A visualization of this plot can be seen in Figure 

3. 

  
Figure 3 - Edge map, left. Edge map after Hough Transform with lighter points emphasized, right. Source: 

(Xiong, 2016) 
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The local maxima detected in the Hough Transform plot can now be transcribed as lines. For 

example, a maximum located at (150, 1) on the Hough Transform plot has the equation: 

! = 150& + 1 

From there, it is easy to plot all detected lines onto the original image to obtain Figure 4. 

 
Figure 4 - Detected lines plotted over source image. Source: (Xiong, 2016) 

At this point, all that is left to do is isolate all the four sided polygons from these lines. Each 

polygon is given a score depending on the probability of its edges being actual edges from the edge 

map in Figure 2. Finally, the polygon with the highest score is selected. At this point, the app has 

the coordinates of the document the user is most probably trying to scan, resulting in the preview in 

Figure 1. 

PYTHON EDGE DETECTION APPROACH 

The second work provides a different approach to the problem with no machine-learning. 

Interestingly, the results from this technique are much more promising than the first one. This work 

is separated in three steps: edge-detection, contour filtering, and applying a perspective transform. 

The main idea behind this technique is that instead of using machine-learning to isolate the 

“interesting edges” we can isolate only the interesting contours from a Canny edge detection, i.e. 

only the rectangles, as potential candidates of images within a scan. This assumption turned out to 

simplify the problem considerably. 

The first step of this process is to apply a Canny edge detection over the image. This will isolate 

all the edges from the image, and inevitably also isolate the edge the user is actually trying to isolate. 

The result of this edge detection can be seen in Figure 5, 
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Figure 5 - Original image, left. Image after Canny edge detection, right. Source: (Rosenbrock, 2014) 

Once the edge detection is performed, the script iterates over each contour. A contour is 

defined as a series of adjacent pixels, and is easily detectable using the Python computer vision 

library OpenCV2 which will be presented in greater detail in Section 2.2.2. Once the script finds the 

largest contour with four edges, it is assumed that this contour is that of the document the user is 

trying to scan. From there, the coordinates of the angles can easily be isolated, resulting in Figure 

6. 

 
Figure 6 - Source image with detected contour in green. Source: (Rosenbrock, 2014) 

LIMITATIONS OF THESE APPROACHES 

Both of these approaches work very well to detect a single document that the user wishes to 

scan. However, they do not offer the possibility to isolate several images simultaneously within a 

scan. This constraint poses several issues. For example, in the Dropbox approach, the app only selects 
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the single quadrilateral with the highest score. But what if there are several images to be detected? 

Which polygons represent what the user wishes to scan? Similarly, in the Python edge detection 

approach, only the largest polygon is selected. What if several images exist? How do we know which 

of these large rectangles are actually images we are trying to detect or simply artifacts of the images’ 

actual content? These questions form the cornerstone of this study. 

1.!INTRODUCTION 

1.1.! CONTEXT OF THE RESEARCH 

This study was conducted to help the Swiss company Cinetis, specialized in digitizing of older 

media. Currently, when a photo album is scanned, each image is individually cropped using Adobe 

Photoshop. Although this process can be accelerated by an experienced employee, the repetitive 

nature of this task begs for automation.  

Cinetis required an algorithm that could extract the coordinates of the four corners of each 

image within a photo album scan. The user would then be presented with a simple web-based 

interface to select the images, adjust the angles if needed, add new rectangles if some images were 

not correctly detected, and validate the coordinates. Based on these point coordinates, the cropping 

can then be done separately and automatically.  

Making a web-based prototype frees Cinetis from OS restrictions. The process could even be 

done on a tablet or smartphone for an improved user experience. 

1.2.! GOAL OF THE RESEARCH 

The proposed solution would be a PHP web platform where the user starts by selecting the 

scan to work on. A web-service-oriented Python script could take a filename as input, and return a 

JSON object containing the coordinates of the four corners for each of the detected images within 

the scan. The user will be presented with a JavaScript-based editor to view, edit, add, delete, and 

validate the detected rectangles. Once the user validates the cropping points, a form containing the 

coordinates in JSON format can be sent to the Cinetis servers for cropping. 

1.3.! BASIC CONCEPTS OF COMPUTER VISION 

In its broadest sense, image recognition uses a myriad of technologies and algorithms to extract 

information from images. We often talk about deep learning and neural networks being able to 

classify images, extract text from an image (Geitgey, 2016), or track motion (Rosebrock, 2015) when 



Bachelor Thesis 2017 

A Machine Learning Approach for Digital Image Restoration 

 

 
Calixte Mayoraz 
HES-SO Valais, August 2017 
 

13 

we talk about image detection. In the most conclusive approach of this study, we focused on a type 

of detection called feature detection. This process isolates geometrical properties from an image 

and filters the ones that are most “interesting” for the desired result. 

1.3.1.! Deep learning and convolutional networks 

Neural networks, more precisely deep-learning and convolutional networks, are particularly 

good at image classification. Models can be trained to classify objects, people, cars, letters and 

numbers, etc. In the case of convolutional neural networks, the models can even recognize different 

objects within a complex image (Geitgey, 2016). In our case, a neural network can be used to 

recognize the pictures in the scanned album or scrapbook. However, due to the complex nature of 

neural networks, and the time restriction to complete this study, we decided not to use this type of 

method. We did, however, attempt to use neural networks to distinguish the corners of each image 

within a scan. The full development of this approach is explained in section 3.1.2. 

1.3.2.! Feature detection 

Feature detection is widely used in computer vision to extract interesting information from an 

image. For example: edge detection algorithms can help find sudden color changes, connected 

component analysis can find groups of pixels of the same color and can even calculate the shape of 

these groups, and Hough transforms can not only to detect straight lines within an image, but also 

circles. This last algorithm can be used for example to find the vanishing point in the perspective 

lines of a building as seen in Figure 7 (OpenCV, 2017). 

 
Figure 7 - Using the Hough transform to find the vanishing point of an image. Source: (OpenCV, 2017) 

The final result of this study uses these tools rather than machine learning to successfully 

identify images within a scanned photo album.  
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2.!METHODOLOGY AND TECHNOLOGIES 

2.1.! METHODOLOGY USED 

The goal of this study being a prototype for Cinetis to use, we worked very closely with their 

correspondent, Jean-Pierre Gehrig, all along the project. We followed an agile methodology, meeting 

every week for an hour, presenting the progress of the study, and deciding where the study would go 

from there. This turned out to be very effective to bounce off of approaches that were too 

complicated or wouldn’t yield interesting results fast enough.  

2.2.! TECHNOLOGIES USED 

2.2.1.! Machine Learning 

The first approach of this study was machine-learning based. The data-mining software KNIME 

is ideal for the initial prototyping of the machine-learning process, allowing quick turnaround in 

exploration of various ideas before transcribing the workflow in Python. 

Due to its graphical node-based layout, see Figure 8, KNIME allows us to quickly manipulate 

data, train and test various machine-learning models, and analyze the results rapidly. KNIME also 

includes Python nodes. These nodes allowed for an easier manipulation of the data and would also 

ease the transition of rewriting the workflow entirely in Python. Several approaches to the study are 

modeled in KNIME and will be discussed in greater detail in Section 3.1. 

 
Figure 8 - Example of a part of a KNIME workflow 

2.2.2.! Python 

We chose to use JetBrains PyCharm Community Edition for the Python development. The ease 

of use of this IDE, embedded terminal window, along with our previous experience with JetBrains 

IDEs made it the prime choice to develop the Python scripts. 
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Libraries(

Python has many libraries to accomplish various tasks without having to reinvent the wheel for 

every task. The main libraries we used are OpenCV (OpenCV Team, 2017) and NumPy (Numpy 

developers, 2017).  

NumPy is a python library providing efficient implementations of a wide range of complex 

mathematical functions. The library includes functions for basic statistics, linear algebra, and basic 

arithmetic over large arrays and matrices.  

OpenCV is an image manipulation library with many basic functions like crop, threshold, blur, 

sharpen, etc. along with more complex feature detection functions like Hough transform, connected 

component analysis, contour approximation, etc. These features are heavily exploited in this study, 

significantly reducing the complexity of the Python script 

2.2.3.! PHP / JavaScript 

We decided to use JetBrains PHPStorm for the PHP code. From our experience, this IDE was an 

obvious choice, in part for its ability to parse PHP and JavaScript syntax. 

Libraries(and(Framework(

To code the user interface, we used the JavaScript library Paper.js (Lehni & Puckey, 2011). 

This library’s native use of layers, paths, selection, and editing tools greatly accelerated the user-

experience development process. 

The general layout of the web-platform was coded using the Yii2 framework (Yii Software LLC, 

2017). Having already used this framework for previous works, we were already familiar with the 

workflow and were able to quickly setup a prototype once the Python script was ready. 

3.!CHOICE OF APPROACH 
As stated in the state of the art, two main approaches to the problem are tested: a machine-

learning based approach, and a feature-detection based approach. In this chapter we will explain in 

detail how each of these approaches are developed. In the next chapter, we will analyze all the 

results to defend our final choice of approach for this study. 
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3.1.! MACHINE-LEARNING BASED 

3.1.1.! Random Forest 

In his explanation of Dropbox’ document scanner (Xiong, 2016), Xiong argues that using a 

machine-learning model to determine an image’s edge map can be used to find the “interesting” 

edges within an image with more accuracy than traditional edge-detection algorithms. More 

precisely, he uses a random-forest algorithm to determine each pixel’s probability of being on an 

edge. The resulting image is an edge map where lines can easily be seen as in Figure 9. 

 
Figure 9 - Left, the raw image. Right, the edge map after random forest. Source: (Xiong, 2016) 

Having no other information on this algorithm, like which input parameters Xiong uses, we 

decided to test several options for ourselves to see which results were the most promising. 

Image(processing(concepts(

A grayscale image is can be represented as a two-dimensional matrix with values ranging from 0 to 255 (if the 
image is encoded using 8-bit integers). We can represent a simple 5x5 matrix with random integer values 
between 0 and 255 as a 5x5 pixel grayscale image as in Figure 10. For an RGB image, the principle is the 

same, except that we now have to visualize a three-dimensional matrix, with each 8-bit integer encoding one 
of three colors: red, green, and blue, as visualized in a spreadsheet with color encoding in   

Figure 11 thanks to the ThinkMaths online pixel spreadsheet converter. (Steckles, Hover, & 

Taylor, s.d.) 
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Figure 10 - Example of a 5x5 grayscale matrix with random pixel values 

   

Figure 11 - An RGB image of a penguin encoded in a spreadsheet. Source: (Steckles, Hover, & Taylor, s.d.) 

Pre6processing(and(ground(truth(

For our use-case, we work in grayscale in order to reduce calculation time by a factor of three. 

To convert an image from RGB to grayscale, a simple average of the three RGB values gives us the 

overall lightness of the pixel. For the exploration of the solution, we also scale the image down by a 

factor of 100. The calculation time is too important for the full resolution images which are 

6012x9700 pixels large. We are left with a 60x97 matrix with values ranging between 0 and 255 

corresponding to a grayscale and scaled down copy of the original as seen in Figure 12. 

 
Figure 12 – A portion of the grayscale matrix, left. The resulting heat map, right. 

We now need a ground-truth to determine if each pixel is indeed on a border or not. To 

accomplish this, we manually create images of the same dimensions as the source images with white 

frames on the borders’ positions as seen in Figure 13.  
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Figure 13 - Original image, original resolution, left. Ground truth, original resolution, right. 

Each pixel now contains four pieces of information: its X and Y coordinates, pixel value, and 

ground truth. To increase accuracy, we extract more information from each pixel: its neighboring 

values. For a first iteration, we collect each pixel’s 24 neighbors in a 5x5 square around it as shown 

in Figure 14. 

 
Figure 14 – Current pixel’s 24 neighbors 

We independently read each image and its corresponding ground-truth image and merge the 

two tables once the matrices are unraveled, or reshaped as one-dimensional arrays, as seen in Figure 

15. Each row in the table represents one pixel. The first two columns represent the X and Y 

coordinates of the pixel, the third column represents the pixel’s average RGB value, the fourth 

column represents the ground truth which can either be “Border” or “No_Border” and the next 24 

columns represent the pixel’s 24 neighboring values in order.  
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Figure 15 - Unraveled image matrix with ground truth and neighbors 

Training(and(testing(

Our data can now be modeled in a Random-Forest algorithm to determine each pixel’s 

probability of being on a border depending on its position, value, and neighboring values. However, 

at our first attempt, the classifying algorithm simply classified everything as being “No_Border”. This 

is due to the ratio of border to no-border pixels being very small. Indeed, in our 18 train images, only 

4.6% of the pixels are borders. Using this logic, the classifying algorithm classified everything as being 

“No_Border” and boasted a 95.4% success rate. To counter this, we use a technique called “bootstrap 

sampling” to train the model. This technique is used to balance out categories that have very 

different counts to “trick” the classifier into thinking there are more data points in the less frequent 

class than there actually are. Training the model in this way leads to much more accurate results 

with a 98.094% success rate with a standard error of 0.3%. The confusion matrix, ROC curve, and 

standard error for the predictions can be seen in Figure 16. 
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Figure 16 - Confusion matrix of random-forest algorithm, top. The ROC curve of the model, middle. Standard 

error and interval of the ROC curve, bottom 

This random-forest model is trained on a concatenation of 18 unraveled image matrices with 

their 24 neighbors. We can now apply this model to a new image that the predictor had not yet seen. 

To determine the accuracy of this algorithm, we plot the probability of each pixel being on a border 

in an edge map as explained in the Dropbox tech blog (Xiong, 2016). The resulting image can be seen 

compared to the original downscaled image in Figure 17. 

 
Figure 17 - Downscaled image, left. Edge map, right 

We can see the algorithm getting close to the desired result that Xiong obtained in Figure 9. 

To gain precision, we trained another random forest model to predict a pixel’s probability of being 
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on an edge given its 99 neighbors in a 10x10 square surrounding it. Interestingly enough, adding more 

neighboring pixels did no significant increase to the algorithm’s accuracy as seen in Figure 18. If 

anything, the additional data added more uncertainty to the classification.  

 
Figure 18 - Edge map given 99 neighbors around each pixel 

Limitations(of(this(method(

It is very important to note that at this point, we are working with very low resolution images. 

When trying to increase resolution to get more detailed edge maps, the computation time increases 

dramatically. At 10% resolution, the workflow takes several hours to unravel the 18 test images and 

get all the neighboring pixel values in a single matrix. Moreover, the sheer quantity of the data makes 

the KNIME environment run out of heap space when trying to train the model. Indeed, 18 images at 

600x970 pixels makes over 10 million lines to train. To try to bypass this last constraint, the model 

was run on a very powerful calculation server of the HES-SO, but the time to execute was still too 

important. Although the initial results of this process were promising, and further optimization of 

the code could have accelerated it, we decided to try different approaches to this study.  

3.1.2.! Neural Network  

Instead of calculating each pixel’s probability of being on an edge, we tried a different 

approach which involved training a neural network to recognize image corners. The idea is to detect 

all the potential corners in the image and use the neural network to classify these potential corners 

into two classes: “Corner” and “No_Corner”. When all true corners are identified, we can then 

determine which four corners define the desired image based on where the user clicked. An 

illustration of this process can be seen in Figure 19. 
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Figure 19 - Illustration of the process detecting lines and corners, and determining the image based on user 

click position 

Pre6processing(

The first part of this method consists in isolating all potential corners of the image. Our 

approach is based on the assumption that a vertical or horizontal line can be detected with sudden 

changes in the sums of pixel rows or columns. To illustrate this assumption in an example, we can 

imagine the scan having mostly a light-colored paper, the sum of a column of pixels entirely on the 

paper would yield a very large value due to all the white pixels having a value close to 255. As soon 

as we examine a column of pixels that contain an image, the sum of the column diminishes, as the 

image in the scan is inevitably darker than the background paper.  

To accomplish this edge detection, we make two copies of the scan, and transform them both 

into one-dimensional arrays containing the sum of rows and columns respectively. For a 6012x9700 

image, this gives us two arrays: a 6012 long array containing the sum of each pixel row, and a 9700 

long array containing the sum of each pixel column. We now look at groups of 10 neighboring rows 

or columns and perform a “sliding window” over all rows and columns and examine the difference 

between the minimum and maximum of each group of 10 and record this value. Plotting all the pixel-

differences for each group shows us clearly the drastic color changes in the scan, and therefore where 
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the edges of images are. A graphical representation of the lag columns’ min-max difference layered 

on the original image can be seen in Figure 20. 

 
Figure 20 - Displaying row and column pixel differences 

We notice that some color strips in Figure 20 are wider than others. This is due to the fact that 

some of the images aren’t perfectly aligned and therefore causing the difference of overall color 

change to be wider than if it were perfectly aligned to the scan. To overcome this issue, we simplify 

the color band’s coordinate to it’s central value. Therefore, a 25px wide color band spanning from 

columns 1500 to 1525 would equate to a color change at the X position 1512.5. 

We now have a list of X and Y coordinates where image borders occur. Of course, there is some 

noise in this data due to the nature of the images. For example, in Figure 20, we see a blue vertical 

band being detected in the middle of the bottom image. This is due to the subjects in the image 

having very contrasting clothes and standing close to each other in a near-vertical fashion. When we 

combine all possible combinations of X and Y, we are left with all potential corners of the image as 

depicted by green dots in Figure 21. All that remains to do is crop a 100x100px image around each 

potential corner to be sent to the neural network. 
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Figure 21 -All possible corners detected in the image 

Ground(truth(

To obtain the ground truth for all these potential corners, we manually create corresponding 

images of each scan with white dots on each corner as seen in Figure 22. 

  
Figure 22 - Raw image, left. Ground truth, right 

From this ground truth image, we perform a connected-component analysis to determine the 

coordinates of each point. A more in-depth view of connected-component analysis is explained in 

Section 3.2.2. We now know the coordinates of each dot in our ground truth. To apply this ground 

truth to the potential corners detected in the previous step, we iterate each potential corner and 

search our ground truth coordinates to find a close match. If the ground truth coordinates are within 

the 100x100px window of each potential corner, the corner is marked as a corner. If no ground truth 

coordinates match the potential corner, it is marked as a non-corner. 
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Once this process is complete, the data is ready to be fed in a neural network for classification. 

A look of this data can be seen in Figure 23. 

 
Figure 23 - Example of images with class labels ready to be sent to the neural network 

Modeling(

We now have data that is ready to be fed in a neural network to classify the images as corners 

or no-corners. Having done all the pre-processing steps within the KNIME environment, we decided 

to continue with KNIME to avoid having to learn to use another unfamiliar software such as TensorFlow 

(Google, 2017). Luckily, the KNIME platform offers a variety of neural network nodes and example 

workflows to get started. Within these examples, we found a workflow that classifies various 

celebrity faces based on AlexNet proposed by Krizhevsky in his paper “ImageNet Classification with 

Deep Convolutional Neural Networks” (Krizhevsky, 2012). We assumed that this neural network, able 

to be trained to recognize several celebrities, could easily be trained to classify just two types of 

images. However, the calculation time was unexpectedly long. The network took two hours to train 

and two hours to test, and it simply classified everything as not a corner. This disappointing result 

and important calculation time made it impossible to test the algorithm via a trial and error 

approach. Having limited knowledge about the inner workings of the deep network, and limited time 

to finish this study, we decided not to pursue this approach any further. It is important to note 

however that this approach can be very promising given more research. The pre-processing being 

relatively fast, clocking in at only a few seconds to detect the potential corners for each image, a 

trained network could detect the true corners in a very rapid manner, and the end-user would be 

presented the user interface all in a short amount of time. The corner classification could even be 
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done asynchronously on the Cinetis servers, storing the coordinates of the true corners in JSON files 

until they are called for use by the user loading the editor page. 

3.2.! FEATURE-DETECTION BASED 

3.2.1.! Hough Transform  

Pre6processing(

At this point in the research, we started exploring other possible solutions to the problem. We 

also tried to diverge from KNIME workflows as we noticed much delay in the Python nodes within the 

workflows. The next two approaches are developed entirely in Python. While experimenting with 

different image manipulation techniques and edge detection algorithms, we found an edge-detection 

filter that could be of use for the project: the Sobel filter (OpenCV dev Team, 2014). This filter is a 

type of edge-detection filter that can be oriented vertically or horizontally. More precisely, the filter 

scans for intense color changes given a certain kernel. A kernel is a small matrix, usually 3x3 or 5x5 

that defines which pixels the filter will examine when determining if a pixel is on a border. This 

means that given the right type of kernel, the Sobel filter is well suited for finding vertical and 

horizontal lines in an image, as seen in Figure 24. 

 
Figure 24 - Example of the applied vertical and horizontal Sobel filters. Source: (OpenCV dev Team, 2014) 

For our problem, this filter could be particularly well suited to find the edges of the images 

within the photo album scan.  
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Figure 25 - Demonstration of the Sobel filter on a photo album scan. 

Left, original image. Center, Sobel-X. Right, Sobel-Y. 

As we can see in Figure 25, the Sobel filter applied to the scan clearly shows the vertical and 

horizontal lines displayed in the filtered images. At this point, we want to return to the method that 

Xiong uses in his Dropbox tech blog (Xiong, 2016): use a Hough transform to find the lines in the 

image and determine possible quadrilaterals from those lines. The Hough Transform requires the 

image to be in binary form, meaning only pixels with a value of 0 or 1. This is done by applying a 

threshold to the filtered image. The thresholding process is straightforward: examine each pixel in 

the image, and compare its value to a given threshold value. If the pixel’s value is equal to or above 

the threshold value, it is set to 1. If the pixel’s value is below the threshold value, it is set to 0. We 

are left with a binary image composed of only black and white pixels. The result of applying a 

threshold to our Sobel-filtered images can be seen in Figure 26. 

 



Bachelor Thesis 2017 

A Machine Learning Approach for Digital Image Restoration 

 

 
Calixte Mayoraz 
HES-SO Valais, August 2017 
 

28 

 
Figure 26 - Thresholding of Sobel-filtered images 

Hough(transform(explanation(

With a binary image, we can now apply a Hough transform. As mentioned in Section 1.3.2, the 

Hough transform is a mathematical transformation capable of detecting straight lines within a binary 

image (OpenCV, 2017). It works as follows: 

 

1.! Pick a white pixel in the image. 

2.! Draw a line going through that pixel. 

3.! Count how many white pixels intersect that line, this corresponds to the line’s score. 

4.! Calculate scores for every possible line through that pixel. 

5.! Repeat for each white pixel in the image. 

 

Once this process is done, we have a collection of lines with scores. The higher the score, the 

higher the number of white pixels going through the line, therefore, the higher the chance that it is 

actually a line within the image. The built-in Hough transform function in OpenCV allows us to put a 

threshold on the score of the lines, so only lines with at least a certain amount of white pixels going 

through them are kept. Moreover, we know the polar coordinates of each of the retained lines, which 

means that we know the angle at which they are drawn, allowing us to isolate near-verticals and 

near-horizontals. When we apply this process to our thresholded image, we get the result seen in 

Figure 27 
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Figure 27 - Hough transform applied to the thresholded images. 

As we can see, many lines are detected as a result of the Hough transform. This is due to the 

fact that the lines we wish to detect in our thresholded image are thicker than 1px. The thicker the 

line, the more possible mathematical lines can correspond to it. An example of this is shown in Figure 

28. As we can see, the thick line segment allows many red lines to be drawn within it and have a high 

enough score to be considered actual lines. 

 
Figure 28 - Many lines passing through a thick line segment 

At a first glance, the fact that there are so many lines should not be a problem since it 

reinforces the assumption that the correct line is indeed there somewhere. However, we will see in 

the next section that this factor greatly increases calculation time. 

Isolating(rectangles(

The next step in this process is to isolate all the potential rectangles that could correspond to 

the actual images. After identifying all potential candidates, we can use machine learning to 

determine which of these rectangles are the ones we are looking for. To do this, we first recapitulate 

the data we currently have and what we are looking for: 
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•! We have a collection of vertical and horizontal lines 

•! The images must be of a minimal width and length 

•! The images can’t be too large 

•! The images can’t be too close to the edges of the scan 

•! We assume the images have a maximal aspect ratio of 2:1  

 

Based on these assumptions, we then couple vertical and horizontal lines in potential couples. 

These couples should not be too close nor too far away from each other. Once we have a collection 

of vertical and horizontal couples, we couple each of those couples together to get potential 

rectangles while keeping in mind the maximal aspect ratio. However, due to the important number 

of lines detected by the Hough transform, the number of couples grows, and the number of 

quadruples grows even more, resulting in a very important calculation time. In Figure 29 we can see 

the terminal output of the calculation of rectangles within the image in Figure 27. We can see a very 

large amount of potential rectangles found, and an impressive 6-minute calculation time. 

 
Figure 29 - Terminal output of the Python script finding potential rectangles 

Limitations(of(this(method(

We can already see that to find all the potential rectangles in an image, the calculation hikes 

up to 6 minutes per image. This important duration spanning only at the pre-processing step, we can 

only imagine what the total time to find the true rectangles using machine learning would be. In 

hindsight, using the edge detection algorithm used in Section 3.1.2 would have greatly accelerated 

this pre-processing step. We could have isolated all potential rectangles much faster, and used 

machine learning to identify the true rectangles within the image, although the parameters of this 
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machine-learning process would be subject to further research. Fortunately, the next method was 

both fast and accurate. 

3.2.2.! Contour Filtering 

All previous attempts requiring more time and experience than we had to complete this study, 

we decided to try an approach without involving any machine learning. Indeed, the problem seems 

simple enough at a first glance: the background paper is light enough to be able to isolate the images, 

the images are all rectangles that need to be cut out, there must be a simple answer to detect 

rectangles within an image. It is with this mindset that we started out on the fourth and final variant 

to solve this problem. 

Pre6processing(

Up to now, the main drawback in our approaches is that the information within the images 

themselves keeps throwing off our algorithms. To reduce the amount of noise in the image while 

conserving the most important color changes, we use a median filter. This filter is different than a 

simple Gaussian blur in the sense that it preserves the edges while smoothing color in an image 

(Fisher R. , Perkins, Walker, & Wolfart, 2004). We then simplify the scans’ data by using simple 

brightness and contrast adjustments. After testing on Adobe Photoshop, we found the ideal brightness 

contrast adjustments to bring out the images as much as possible against the background paper as 

we can see in Figure 30. 

 
Figure 30 - album scan after median filter and brightness contrast adjust 

The scan (still in grayscale mode) can be resumed to a plot to find patterns in its brightness. 

If we plot the pixel value between 0 and 255 on the x-axis, and the count of pixels having that value 

in the image on the y-axis, we obtain a histogram of the image. This can be very useful to determine 



Bachelor Thesis 2017 

A Machine Learning Approach for Digital Image Restoration 

 

 
Calixte Mayoraz 
HES-SO Valais, August 2017 
 

32 

where to put a threshold to isolate the elements of the image we want. In our case, we plotted 

histograms for the image before and after color correction. The resulting plots can be seen in Figure 

31. When observing the histograms, it is important to note the logarithmic y-scale to get a better 

sense of the pixel density for each value. 

 
Figure 31 - Images and corresponding histograms before and after color correction 

In the histogram of the uncorrected image, we see a few local maxima, but no discernable 

pattern or visible point at which a global threshold could isolate all the images within the scan 

without getting noise from the background paper. In the color-corrected histogram however, we 

observe a very large number of near-black pixels. This is useful because we know that the images in 

the color-corrected scan are very dark, and we can hypothesize that most of the images will fall 

within these values. We can also observe the local maxima being more distinctly pronounced at 

approximately 45, 115, 170, and 240. 

We ran an extensive amount of tests to determine the ideal threshold point. The conclusion of 

these tests is that an optimal threshold for one scan may not be the best for other scans. To make 

up for this difficulty, we simply sweep the threshold value between 0 and 255 to be certain to catch 
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all of the images no matter the scan. More precisely, we execute a loop with a counter value that 

increments 25 times by a factor of 10. Several iterations of thresholding can be seen in Figure 32. 

 
Figure 32 - Thresholding the scan at a value of 1,left. Thresholding at a value of 131, middle. Thresholding at 

a value of 191, right 

At each iteration, we apply the threshold, and perform morphological transformations to close 

holes and open points. The detail of how these operations work are explained in the next section. 

Morphological(transformations(

Morphological transformations are operated on binary images and require two inputs: the 

original image, and a kernel, which defines the nature of the operation. The kernel is generally a 

matrix of certain dimensions filled with ones. A more in depth description of these morphological 

transformations can be found in the OpenCV documentation website (OpenCV dev team, 2014). 

Erosion(

Erosion is much like its name implies: it erodes the edges off of contours. This makes all of the 

contours thinner and removes altogether very small contours. This is useful to reduce noise. However, 

any holes that occur within contours are accentuated. An illustration of erosion can be seen in Figure 

33. 
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Figure 33 - Original image, left. Eroded image, right. Source: (OpenCV dev team, 2014) 

Dilation(

Dilation is the inverse of erosion: it inflates all the contours in the image. Potential holes in 

contours can be filled using dilation. Inversely to erosion, where holes are accentuated, potential 

noise on the outside of the contour is accentuated using dilation. An illustration of dilation can be 

seen in Figure 34. 

 
Figure 34 - Original image, left. Dilated image, right. Source: (OpenCV dev team, 2014) 

Opening(

We can notice a pattern occurring. Erosion and dilation both have caveats: they accentuate 

holes or noise in an image. To counter this, we can use a combination of the two. If we erode the 

image, noise is reduced and holes are accentuated. However, if we dilate the image after eroding it, 

the noise is still gone and cannot reappear, but the holes return to their original size. This process is 

known as opening the image. An example of this process can be seen in Figure 35. 
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Figure 35 - Original image, left. Opened image, right. Source: (OpenCV dev team, 2014) 

Closing(

Inversely to opening, closing allows us to close holes within contours by dilation, and revert 

any external noise to its original size by erosion afterwards. Holes closed due to dilation cannot be 

recovered by the following erosion, and information outside the contour is recovered. An illustration 

of this process can be seen in Figure 36. 

 
Figure 36 - Original image, left. Closed image, right. Source: (OpenCV dev team, 2014) 

Of course, due to the geometrical nature of square pixels, information is inevitably lost in each 

morphological transformation. However, this poses no important problem in our case, since the 

images we are looking for are very large, and we are not interested in the detailed contours, only 

the approximate region. 

Connected(component(analysis((

Connected component analysis is based on connected component labeling, which will be 

simplified to CCL in future references. CCL, is a method to detect groups of adjacent pixels of the 

same color within a binary image. This process works by following a few simple steps: 

•! Iterate over each pixel with a value of 1 



Bachelor Thesis 2017 

A Machine Learning Approach for Digital Image Restoration 

 

 
Calixte Mayoraz 
HES-SO Valais, August 2017 
 

36 

•! If all four neighbors (or eight depending on the type of CCL you wish to use) are 0, 

assign a new label to the pixel 

•! If one or more neighbors have a value of 1 and no label, assign them and the current 

pixel a new label 

•! If one or more neighbors already have a label, set the label for all of these pixels to 

the same value. 

Once this process is complete, the image will contain an array of connected components and 

their labels, often displayed in different colors as seen in Figure 37. A complete look at CCL can be 

found on the Image Processing Learning Resources website (Fisher R. , Perkins, Walker, & Wolfart, 

2003). 

  
Figure 37 - Original binary image, left. Image with labeled connected components, right. Source: (Fisher R. , 

Perkins, Walker, & Wolfart, 2003) 

Once we have isolated all connected components in our image, we can perform connected 

component analysis, simplified to CCA for future reference. CCA will examine each component and 

determine its centroid, area, perimeter, and various other geometrical properties. OpenCV has many 

built-in functions to perform useful computations, but the most useful one in our case is the contour 

approximation function. 

Looking at Figure 32, we see that the images isolated by the threshold aren’t perfect 

rectangles. Their corners are rounded, some edges are rough, and some have holes in them. OpenCV 

has a function to calculate each component’s contour and, using this function, we could have just 

isolated all the contours with exactly four edges. However, we would miss most of the isolated images 

for the very simple reason that they do not appear as perfect rectangles. To solve this, we use the 

contour approximation function. This function is based on the Douglas-Peucker algorithm (Douglas & 

Peucker, 1973) and approximates a contour by fitting a contour that is no further than a given value, 

named epsilon, and get the smallest number of corners possible. This allows us to obtain rectangles 

from near-rectangles and correctly identify the images in the thresholded binary image. 

From here, we perform the same logical operations we did in Section 3.2.1 to further filter out 

unwanted rectangles. We assume the images are at least of a certain width and height, no taller than 

¾ of the scan size (an assumption validated by Cinetis), and that the aspect ratio is no more than 2:1 

and no less than 1:2. If all of these conditions are met, we can assume that the contour is that of an 
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image we are trying to detect. To avoid having rectangles with angles other than 90° (a constraint 

given to us by Cinetis) we then compute the minimal area rectangle for the contour. This function, 

also built in OpenCV, finds the smallest possible rectangle containing the contour. The rectangle can 

be rotated, but all of the angles remain at 90°. Once this entire process is done, we save the 

rectangle’s coordinates in an array for further filtering. 

Simplifying(similar(rectangles(

So far, our process detects the images very well. However, as seen in Figure 38, the program 

detects most images several times, creating overlapping rectangles. This is due to the fact that we 

loop the threshold process and save detected images without checking that the image has already 

been found. 

  
Figure 38 - Output of the program detecting all the images, and some multiple times. 

To simplify the similar rectangles into a single one, we start by taking the first rectangle from 

the array of detected rectangles and copying it to another array of “confirmed” rectangles. As we 

iterate over the array of all detected rectangles, we compare each of them to each “confirmed” 

rectangle. If the center of the detected rectangle does not come within 25 pixels of each confirmed 

rectangle, is is confirmed and copied to the confirmed array. In this fashion, we are left with 

rectangles that do not share a common center as seen in Figure 39. 
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Figure 39 - Confirmed rectangles over original image 

Some rectangles still remain inside others, however this poses no great issue to the final result, 

as these rectangles correspond to an image label. On the contrary, it gives the end-user more 

flexibility on whether he/she wants to include the label in the crop or not. 

Looking at the console output in Figure 40, we can see that the process takes under 5 seconds 

to complete. Furthermore, the majority of this time is spent reading and resizing of the large image 

file. After a 1/10 resize, the image detection algorithm takes less than a second to detect the images, 

proving this method’s incredible advantage over the previous ones. 

 
Figure 40 - Console output of the python script 
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4.!IMPLEMENTING THE USER INTERFACE 
We are now ready to implement the user interface of the project. To recapitulate, we now 

have a Python script that detects the images within a photo album scan and returns the coordinates 

of these rectangles. Some rectangles are detected twice if they have a frame with a label, and some 

images still remain undetected. For example, some portraits with very light backgrounds do not 

generate rectangles in the threshold sweep, and are therefore not detected as images, as seen in 

Figure 41. 

 
Figure 41 - Portrait on the left not being detected due to the lack of contrast between picture background 

and the paper 

  All that remains is to create the user interface for the user to select the correct rectangles, 

adjust them if needed, and validate the coordinates to crop the images appropriately. Several actors 

play a part in this process, namely: the user, the web client, the web server, and our Python script. 

A sequence diagram of the typical user interaction can be seen in Figure 42.  
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Figure 42 - Web sequence diagram of the user interacting with the system, and the various components of the 

system interacting with each other. 

The user requests a scan to work on, which he/she selects through the web client. The web 

client sends the requested scan’s filename to the server, which requests the JSON-formatted 

coordinates of the images within that scan to our Python script. Once the script is executed, the scan 

and coordinates are sent to the client which displays it to the user in the form of a simple JavaScript 

editor. The user can then modify the frames using simple tools (select, resize, rotate, add, delete, 

zoom, pan) and validate the coordinates when satisfied. At this point, we hand over the coordinates 

to Cinetis for them to crop; our job is done!  

4.1.! WEB SERVICE 

4.1.1.! Considered approaches 

To provide the user with a web-based graphical interface, we first need a way to get the 

coordinates of the rectangles to the browser when the user requests it. One option, glossed over in 

Section 3.1.2, was to have a script continually run to detect the edges of the scans in the background 

and store JSON files on the server to be instantly ready when the user requests them. This could have 

been an adaptable solution for our more complex attempts using machine learning which took longer 

to detect edges, since the user cannot be expected to wait even more than a few seconds for the 

graphical interface to load. However, thanks to our very fast feature-detection algorithm, we can 

compute the borders in real time as the user requests them, and return the JSON coordinates less 

than five seconds later. 
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4.1.2.! REST Web Service 

Our solution consists of making a very rudimentary REST Web service. Essentially, when the 

user calls certain functions through a web browser, such as when he/she clicks a link, we can run 

applications and return the results in various formats. There are five REST function calls, also called 

verbs: GET, POST, PUT, PATCH, and DELETE. In our case, we simply use the GET verb, essentially 

saying: “GET me the coordinates of the images within this scan”. Only the filename needs to be sent 

to the web service, and not the image itself, since the images being already stored on the server. 

This feature doesn’t slow down the loading of the page. 

Making such a rudimentary web service in Python is basic thanks to the web.py library which 

includes tools to make web services in very few lines of code (Schwartz, s.d.). Our REST function 

simply takes the filename as input, sends it to the Python script calculating the edges we explained 

in Section 3.2.2, converts the returned array of rectangles to JSON format, and sends them to the 

web client. An example output of the web service can be seen in Figure 43. 

 
Figure 43 - Example output of the web service detecting borders of an image 

The JSON is formatted as follows: an object named “rectangles” contains an array of objects. 

Each of these subsequent objects contains four arrays named p1, p2, p3, and p4. Each of these arrays 

contains two integer values with the x and y coordinates of the point with respect to the resized 

image. This data can now be easily interpreted in JavaScript to provide a graphical interface for the 

user to edit the rectangles. 

4.2.! WEB PLATFORM 

As mentioned in Section 2.2, the web platform was coded using the PHP Framework Yii2 (Yii 

Software LLC, 2017). This framework allowed fast development of a functional prototype to present 

to Cinetis. The platform consists of just two pages: the selector page and editor page. The user is 

first shown the selector page, which contains the filenames of the scans he/she can work on. Once 

the user clicks one of those links, the browser redirects to the editor page. The editor page contains 
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a canvas where the JavaScript editor draws the graphical interface to manipulate the rectangles, and 

then submit the coordinates once he/she is satisfied, see Figure 44. 

 
Figure 44 - The selector page, top, and editor page, bottom. 

4.3.! JAVASCRIPT EDITOR 

The editor was coded using the Paper.js JavaScript library (Lehni & Puckey, 2011). This library 

makes use of layers, paths, points, shapes, curves, and event listeners and greatly accelerated the 

development process of the editor. However, amidst all the features offered within this library, one 

crucial feature is missing and has to be implemented by hand, resizing rotated rectangles. We explain 

this feature in greater detail in Section 4.3.2. 

4.3.1.! Creating different tools 

First off, the user has to be able to perform several actions on the canvas. Most importantly, 

he/she has to be able to see the rectangles detected by the Python script, and select those that 

correspond to actual images within the scan. The first tool is the selection tool, which allows the 
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user to click on a “guessed” frame, shown as red dotted lines, and “confirm” the rectangle, making 

it solid green as seen in Figure 45. 

 
Figure 45 - Sections of a guessed image, bottom-left, and confirmed image, top-right. 

Using the selection tool, the user can also move the confirmed rectangles, and resize them. 

Complications in this last step will be discussed in Section 4.3.2. The user can also rotate the 

rectangles, delete them, add new ones if they aren’t detected as in Figure 41, zoom in and out of 

the canvas, and pan the canvas to be more precise in the definition of the rectangles. The selection 

of each tool is done using a simple HTML button interface as seen in Figure 46 which also provides 

the name of the tool, and simple instructions on how to use it. 

 
Figure 46 - Tool selector on the editor page with tool hints 
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4.3.2.! Resizing rectangles using Linear Algebra 

A particularly interesting challenge in the development of this editor is the resizing of the 

rectangles. Although simple at first glance, the main problem in this feature comes to light with the 

three following constraints: 

•! The angles must always remain 90° 

•! The rectangles themselves are not always straight 

•! Paper.js considers the rectangles as paths, or groups of points, and not rectangles with 

width, height, and rotation. 

This means that to resize a rectangle by dragging a corner, the two adjacent corners need to 

be moved as well to conserve all the right angles, and there is no built-in function to simply scale 

the rectangle like in traditional vector editing software such as Adobe Illustrator. Referring to Figure 

47, if the user drags corner C to a new position C’, we know the ∆x and ∆y of that movement. 

However, we need to calculate the ∆(x’,y’) and ∆(x”, y”) to correctly move the corners B and D and 

thus conserve all the right angles of the rectangle. 

 
Figure 47 - Representation of the different calculations required to keep all right angles in a scaled rotated 

rectangle. 
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The simplest approach to overcome this obstacle is to use orthogonal vector projections. As a 

reminder, an orthogonal projection is a projection of a source vector onto a destination vector, 

following the perpendicular of the destination vector. We can imagine the orthogonal projection as 

the “shadow” of a vector onto another by a flashlight pointed straight down on the destination vector. 

An illustration of an orthogonal projection is shown in Figure 48. 

 
Figure 48 - Illustration of an orthogonal projection of two vectors v1 and v2 onto the vector w. Source: 

(Rowland, s.d.) 

Indeed, looking at Figure 47, if we apply an orthogonal projection of the vector ((′ onto the 

vector *+ we obtain the vector ++′. This resulting vector can also be expressed as multiplying a 

scalar “n” of *+. The orthogonal projection can be rewritten as follows: 

,-./012 ((3 = 2++′ = 24*+ = ((′ ∙ *+
*+ ∙ *+

2×*+ 

Using this equation, and the fact that we know the coordinates of the points A,D,C, and C’, 

we can construct all of our vectors and determine ++′, which is the vector by which we need to shift 

the point D to obtain D’. The same can be applied using the coordinates of A,B, C, and C’ to obtain 

77′. Once these vectors are calculated, and the points shifted accordingly, the resizing of the 

rectangle successfully conserves the right angles of the rectangle regardless of its rotation. 

5.!RESULTS 
We now have a fully operating web-application that allows users to quickly select images within 

a scan thanks to a Python script web service. The user can select a scan, have the images within the 

scan detected in under five seconds, edit them, and validate all within a web browser. Once 

validated, the coordinates can be sent to any destination in the form of a HTTP POST request. The 

prototype is now complete and ready to be sent to Cinetis. 
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5.1.! COMPARING THE METHODS 

Looking back on each section of Chapter 3, we demonstrated four different methods to obtain 

the desired result. Three of them were unsuccessful mainly due to important calculation time and 

large amounts of data. If more time were given, each of these methods could flourish into their own 

elegant solutions to this problem, although it is too early to define which of them would be the 

fastest and most efficient.  

For the time being, having only measurable results for the feature detection method, we can 

only compare execution times for each method so far as seen in Figure 49. 

Method Random Forest Neural Network Hough Transform Feature Detection 

Calculation time 

(per image) 
3 minutes 35 seconds 6 minutes 5 seconds 

Figure 49 - Table comparing execution times for the four methods 

Clearly, the Feature detection method remains in the lead, ahead of the next fastest by 30 

seconds. Although, as stated in previous chapters, further optimization and research could bring all 

of these times down at least to under a minute. As a reminder, in his article on the Dropbox Tech 

Blog, Xiong manages to run the calculations in real time at 15 images per second using a random 

forest algorithm (Xiong, 2016). This clearly proves the possibility to optimize these algorithms and 

bring calculation time down to less than one tenth of a second. 

It is mainly based on the execution time and time constraint to complete this research that we 

decided to keep the Feature Detection method for our prototype and not optimize other methods. 

The potential of the other methods will be discussed in greater detail in the next section. 

5.2.! ROOM FOR OPTIMISATION 

5.2.1.! Optimizing the Feature Detection approach 

As stated in Chapter 4 and seen in Figure 41, our algorithm still isn’t at its optimal point. 

Moreover, this algorithm works well with albums that have a light colored paper as a background. As 

soon as the background becomes colored or patterned, and is therefore gray when converted to 

grayscale, the algorithm has a hard time discerning images within the scan. Some images can’t be 

detected as they are glued too close together on the photo album, and are therefore seen as one big 

image. This image is rejected in the filtering process as it is “too big” or is not a rectangle. 

Illustrations of these caveats can be seen in Figure 50. 
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Figure 50 - Algorithm not detecting image against a speckled background, left. Algorithm not detecting 
individual images too close together, right. 

Moreover, most of the detected images aren’t straight and crop the images too much. Ideally, 

the end user would just have to confirm the rectangles and rarely make minor adjustments. Although 

the algorithm detects the majority of images, there is still work to be done to correctly crop them 

in a straight manner. This is due to the grouping of similar rectangles selecting the smallest rectangle 

in a group which was detected first. This particularity could be optimized to select the straightest 

possible rectangle, or the average rectangle for that group, which would yield a more precise frame.  

In the web sequence diagram of Figure 42, we could add a final step after the user validates 

the frames. Indeed, we now have the “guessed” rectangles generated by the Python script, and 

“confirmed” rectangles given by the user. This can be seen as a ground truth that can be used in 

machine learning to further optimize the algorithm. This option will be discussed more in depth in 

Section 6.1. 

5.2.2.! Optimizing the UI 

The user interface can also be optimized further. This study was mostly focused on the image 

detection algorithm more than the user experience aspect. Therefore, this part of the study was 

given lower importance and was developed in the end of the project to provide a prototype to Cinetis 

as fast as possible. This interface could be optimized to accelerate the editing process and save 

Cinetis more time in their cropping process. User experience research could be conducted to provide 

the smoothest possible workflow and a more intuitive editing environment. 

5.2.3.! Optimizing the Random Forest approach 

As stated in Section 3.1.1, the Random forest algorithm started showing promising results. 

Having only tested on 18 test images, the edge maps shown in Figure 17 and Figure 51 clearly show 

that the model gets close to identifying most of the borders. Even if the actual classification of 
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“Border” and “No_Border” isn’t always correct, mapping the probabilities of these categories gives 

us a good idea of where the borders of images lie as seen in Figure 51. 

 
Figure 51 - Downscaled image, left. Mapping categories, middle. Mapping probabilities, right 

Using this property, we could perform several iterations of this machine-learning model, even 

downscaled further down to isolate “interesting regions” of the scan. This could save time by not 

calculating probabilities of pixels being on a border if we are sure there is no border in the vicinity, 

and calculate at greater resolution where there is greater probability of being a border.  

5.2.4.! Optimizing the Neural Network approach 

This approach was cut short mainly due to the lack of time we could devote to researching 

how the inner workings of the Convolutional Neural Network actually function. With more time, we 

could have understood better why the learner and predictor took so long to run, and why the network 

didn’t manage to find any pattern to discern actual corners from other parts of the image. The pre-

processing of this method could have then been greatly accelerated by being scripted entirely in 

Python. Indeed, KNIME is not the best suited software for image processing, taking seconds to perform 

tasks that Python can crunch in milliseconds. As an example, Python takes 4 seconds to read and 

resize an image, KNIME takes 15 seconds to perform that same task. 

5.2.5.! Optimizing the Hough transform approach 

This approach was also based on Xiong’s approach to the problem: apply a Hough Transform to 

a binary image to extract the straight lines, find probable polygons from these lines. As seen in Figure 

27, too many lines were detected in our images which greatly increased calculation time, so much 

so that it ultimately lead to our search for different approaches. To optimize this process, we could 

have used the line-detection algorithm used in our pre-processing for Neural Networks explained in 

Section 3.1.2. Using these lines to detect rectangles, and only keep the ones of appropriate aspect 

ratio and size could have worked and may have even been faster than the feature-detection based 

approach. 
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6.!CONCLUSION 
In this paper, we conducted research to develop a prototype for the Swiss company Cinetis to 

crop images within photo-album scans more effectively. We explored several different approaches 

to detect the borders of the images within the scan. Three of these, the Random-forest, Neural-

network, and Hough-transform approaches did not yield acceptable enough results to be used in the 

prototype. The last approach, based on Contour-filtering provided satisfactory results in a short 

calculation time and was selected to be used in the prototype. The script generated in this last 

method was implemented as a simple REST web-service to return JSON formatted coordinates if given 

the filename of an image to process. The resulting JSON was then incorporated in a JavaScript 

graphical interface for the user to select, edit, add, and validate the detected rectangles. Finally, 

the web-platform hosting the graphical interface is ready to send these coordinates to wherever 

Cinetis needs for them to crop the scans. 

The aim of this research was to find, as the title suggests, a machine-learning based approach 

to solve this problem. However, considering the results obtained from all four methods, it is worth 

pondering whether using machine-learning to detect these images would not be overkill for this type 

of problem. This study clearly shows that sometimes a simpler, analytical solution can be just as 

effective and as fast as a machine-learning based one.  

This study was very much a personal challenge. The initial problem, seeming rather simple at 

first turned out to be a real Hydra, spawning more complications with each obstacle overcome. Being 

very keen on machine learning and computer vision, it was a real pleasure to work on it 

6.1.! FUTURE WORKS 

The practical use for this type of application is already demonstrated by the Photomyne mobile 

app (Photomyne, s.d.) having over 5’900 reviews across iOS and Android platforms. However, a web-

based product aimed at digital restoration companies such as Cinetis has not yet been 

commercialized.  

Of course, further research in machine-learning approaches could lead to more precise 

detection of the images. As stated in Section 5.2.1, machine-learning could be used to refine the 

results obtained by our contour-filtering approach and provide more accurate results. Furthermore, 

current technologies in neural-networks than can recognize components within an image (Geitgey, 

2016) could also be an interesting future work for this study. Using these types of models, we could 

refine and train a convolutional neural network to recognize the images within the scan and even 

recognize the corners of these images to get the exact coordinates of these corners. 
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