

Student : Calixte Mayoraz
Professor : Dominique Genoud

BUSINESS INFORMATION TECHNOLOGY

A MACHINE LEARNING
APPROACH FOR DIGITAL
IMAGE RESTORATION
August 2017

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

I

FOREWORD

The photography industry has changed drastically in the last few decades. When we used to

have film cameras and vacation pictures we wouldn’t see until we returned home and developed

them, we now have smartphones that allow us to take near unlimited pictures and preview them

instantly. Back then, family photos were taken with the help of a professional photographer. The

prints were meticulously saved in albums, labeled, dated, and sorted. Up until the mid 2000s,

pictures were always printed, and sometimes, more recently, digitized to adapt to the new internet

world. Today, these tables have completely turned around: we instantly share thousands of pictures

on social media, and very rarely print them. While some aficionados still romanticize the retro aspect

of printed pictures, the smell of a photo album, or the grain from old film; the truth is that these

media are not timeless. Indeed, pictures wear, colors fade, albums get torn, and are subject to the

elements. Moreover, sharing pictures from an old photo album is impossible to do over large

distances, albeit sending the entire album by mail, which is not very practical.

It is with regards to these disadvantages of physical images that many companies start to offer

digitizing solutions for older media. These companies do not stop at the digitization of images, but

also provide digitization of old video reels, audio tapes, VHS, etc. to ensure an infinite lifespan to

these treasures of the past.

This study is conducted in partnership with the Swiss company Cinetis, specializing in this type

of digitization, and in the context of a final Bachelor thesis for the HES-SO Valais. The goal is to

provide a prototype web application which would accelerate the cropping of individual images within

a photo album scan by automatically detecting the images within scans.

This study provides several different approaches to solve image-detection issues, and create a

web-based user interface. In addition, many explanations of computer vision concepts, as well as

machine learning concepts are explained in depth in this research paper.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

II

ACKNOWLEDGEMENTS

I wish to thank the following people that supported me throughout this Bachelor thesis and

helped make this paper what it is today:

Mr. Dominique Genoud, who proposed the topic and supported me throughout this thesis as well as

throughout my entire Bachelor education at the HES-SO Valais.

Mr. Jérôme Treboux, who gave me precious advice as to how to advance the research during

frustrating times, and helped greatly with the writing of this paper. His advice and friendship were

of great value during my years at HES-SO.

Mr. Jean-Pierre Gehrig, the project owner from Cinetis, who also provided great advice and feedback

during our weekly sessions. His enthusiasm in this research and positive reactions to the results were

a great motivation.

My father, Nicolas Mayoraz, for his everlasting support, his insight in the field of machine-learning,

and help with the writing of this paper in English.

All of my fellow classmates with whom I shared these three years. Our late nights, hard work, and

mutual support finally paid off, we did it!

Ms. Milène Fauquex, whose warm company and support made these three years at the HES-SO some

of the best in my life.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

III

TABLE OF CONTENTS

FOREWORD'...'I!

ACKNOWLEDGEMENTS'...'II!

TABLE'OF'CONTENTS'...'III!

ABSTRACT'..'6!

STATE'OF'THE'ART'..'7!

DROPBOX'MACHINE'LEARNING'APPROACH'..'7!

PYTHON'EDGE'DETECTION'APPROACH'..'10!
LIMITATIONS'OF'THESE'APPROACHES'...'11!

1.! INTRODUCTION'...'12!

1.1.! CONTEXT'OF'THE'RESEARCH'...'12!

1.2.! GOAL'OF'THE'RESEARCH'...'12!

1.3.! BASIC'CONCEPTS'OF'COMPUTER'VISION'...'12!

1.3.1.! DEEP!LEARNING!AND!CONVOLUTIONAL!NETWORKS!..!13!

1.3.2.! FEATURE!DETECTION!...!13!

2.! METHODOLOGY'AND'TECHNOLOGIES'..'14!

2.1.! METHODOLOGY'USED'..'14!

2.2.! TECHNOLOGIES'USED'...'14!

2.2.1.! MACHINE!LEARNING!...!14!

2.2.2.! PYTHON!...!14!
LIBRARIES!..!15!

2.2.3.! PHP!/!JAVASCRIPT!..!15!
LIBRARIES!AND!FRAMEWORK!...!15!

3.! CHOICE'OF'APPROACH'...'15!

3.1.! MACHINEBLEARNING'BASED'...'16!

3.1.1.! RANDOM!FOREST!..!16!

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

IV

IMAGE!PROCESSING!CONCEPTS!..!16!
PREAPROCESSING!AND!GROUND!TRUTH!...!17!
TRAINING!AND!TESTING!..!19!
LIMITATIONS!OF!THIS!METHOD!..!21!

3.1.2.! NEURAL!NETWORK!..!21!
PREAPROCESSING!..!22!
GROUND!TRUTH!..!24!
MODELING!..!25!

3.2.! FEATUREBDETECTION'BASED'...'26!

3.2.1.! HOUGH!TRANSFORM!...!26!
PREAPROCESSING!..!26!
HOUGH!TRANSFORM!EXPLANATION!..!28!
ISOLATING!RECTANGLES!...!29!
LIMITATIONS!OF!THIS!METHOD!..!30!

3.2.2.! CONTOUR!FILTERING!...!31!
PREAPROCESSING!..!31!
MORPHOLOGICAL!TRANSFORMATIONS!...!33!
CONNECTED!COMPONENT!ANALYSIS!...!35!
SIMPLIFYING!SIMILAR!RECTANGLES!..!37!

4.! IMPLEMENTING'THE'USER'INTERFACE'...'39!

4.1.! WEB'SERVICE'..'40!

4.1.1.! CONSIDERED!APPROACHES!...!40!

4.1.2.! REST!WEB!SERVICE!..!41!

4.2.! WEB'PLATFORM'...'41!

4.3.! JAVASCRIPT'EDITOR'...'42!

4.3.1.! CREATING!DIFFERENT!TOOLS!..!42!

4.3.2.! RESIZING!RECTANGLES!USING!LINEAR!ALGEBRA!..!44!

5.! RESULTS'...'45!

5.1.! COMPARING'THE'METHODS'...'46!

5.2.! ROOM'FOR'OPTIMISATION'...'46!

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

V

5.2.1.! OPTIMIZING!THE!FEATURE!DETECTION!APPROACH!..!46!

5.2.2.! OPTIMIZING!THE!UI!...!47!

5.2.3.! OPTIMIZING!THE!RANDOM!FOREST!APPROACH!...!47!
5.2.4.! OPTIMIZING!THE!NEURAL!NETWORK!APPROACH!...!48!

5.2.5.! OPTIMIZING!THE!HOUGH!TRANSFORM!APPROACH!..!48!

6.! CONCLUSION'...'49'

6.1.! FUTURE'WORKS'..'49!

SWORN'STATEMENT'...'50!

LIST'OF'FIGURES'...'51!

WORKS'CITED'...'53!

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

6

ABSTRACT
This paper illustrates the process of image restoration in the sense of detecting images within

a scanned document such as a photo album or scrapbook. The primary use case of this research is to

accelerate the cropping process for the employees of Cinetis, a company based in Martigny,

Switzerland that specializes in the digitalization of old media formats.

In this paper, we will first summarize the state of the art in this field of research. This will

include explanations of various techniques and algorithms involved with feature and document

detection used by various digital companies. We will then introduce our study with an in depth

explanation of several computer vision algorithms. The next chapter will explain which technologies

were used in the development of the prototype, and which management approach we used to conduct

this research. We will then explain four different approaches that were executed to obtain results in

image detection. This chapter will include detailed methodology and explanations of each step of

each approach. The four approaches demonstrated in this paper are a Random-Forest based

approach, a Neural-Network based approach, a Hough-Transform based approach, and a Contour-

Filtering based approach. The first three did not yield good enough results and were not used in the

final version of the prototype. The Contour-Filtering approach however, proved to be very efficient

and was used in the final prototype. The next chapter will explain how the retained approach was

used to implement a user interface for the prototype application. The final results will then be

measured and explained, and possible optimization options will be discussed. This section will lead

to the conclusion of this study and future works that could be derived from the prototype.

Keywords: Image detection, Random forest, Neural network, Hough transform, Contour filtering,

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

7

STATE OF THE ART
Existing mobile applications already exist to scan photo albums, the most popular one being

Photomyne (Photomyne, s.d.). This app allows the user to quickly scan photos from a photo album

by taking a picture with a smartphone. However, no blog, documentation, or paper has been

published by Photomyne developers explaining the inner-workings of their application.

While searching for published works on this type of problem, we quickly noticed a distinction

in nomenclature. Most of the work pertaining to edge-detection or photo detection, most of the work

pertaining to these search terms were focused on detecting the edges within an image, such as the

Canny edge detection filter (Canny, 1986). It quickly became clear that the works more adapted to

our problem were oriented towards document detection rather than edge detection.

Two published works in particular were at the heart of the inspiration of this study. The first

was found in the Dropbox tech blog (Xiong, 2016) and the second was explained in a python tutorial

to build a simple document scanner (Rosenbrock, 2014).

DROPBOX MACHINE LEARNING APPROACH

In the first work, Xiong explains the process that Dropbox uses to scan documents in their

mobile app. The app has a camera that surrounds the document in the image in a blue rectangle in

real time. Once the user takes the picture, the framed document is then cropped and transformed

to fit in a rectangle. This image is then converted to PDF format and stored on the user’s Dropbox

account. A screenshot of the app in action can be seen in Figure 1.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

8

Figure 1 - Dropbox document scanner surrounding the detected document with a blue frame. Source : (Xiong,

2016)

This technique focused on a process that needed to be simple enough to be calculated on a

handheld device in real time at 15 images per second. The entire process explained in this article

can be broken down into four parts: edge-detection, computation of lines from an edge map,

computation of intersections, and isolation of the best quadrilateral. Xiong defends the use of

machine-learning as being more efficient than traditional edge detection to detect “where humans

annotate the most significant edges and object boundaries” (Xiong, 2016).

In the first step of his process, Xiong explains the drawback of using traditional edge-detection

algorithms such as the Canny edge detection filter. He explains that “the main problem is that the

sections of text inside the document are strongly amplified, whereas the document edges—what

we’re interested in—show up very weakly” (Xiong, 2016).

To overcome this obstacle, Xiong trained a random-forest model to recognize pixels that were

on a border based on annotated images with interesting borders highlighted by humans. Mapping the

probability of each pixel being on an edge provides an “edge map” of the image giving a much clearer

view of the borders that are interesting to the scanner as seen in Figure 2.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

9

Figure 2 - Canny edge detection, left. Edge map of random forest, right. Source: (Xiong, 2016)

Once the edge map is computed, the app still needs to isolate straight lines. Indeed, we have

a pixel image that contains the lines visible to the human eye, but the actual equations of those lines

still need to be computed to be interpreted by a program. To determine lines from this image, Xiong

uses a Hough Transform. This mathematical transformation converts lines into points, plotting the

slope and offset coordinates of the line on the x and y axes of the new mathematical space. A more

detailed view of how this transformation works will be explained in Section 3.2.1. The resulting image

is a plot of the lines represented as points. In this view, the lighter spots of the plot indicate lines in

the edge map computed by the random forest model. A visualization of this plot can be seen in Figure

3.

Figure 3 - Edge map, left. Edge map after Hough Transform with lighter points emphasized, right. Source:

(Xiong, 2016)

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

10

The local maxima detected in the Hough Transform plot can now be transcribed as lines. For

example, a maximum located at (150, 1) on the Hough Transform plot has the equation:

! = 150& + 1

From there, it is easy to plot all detected lines onto the original image to obtain Figure 4.

Figure 4 - Detected lines plotted over source image. Source: (Xiong, 2016)

At this point, all that is left to do is isolate all the four sided polygons from these lines. Each

polygon is given a score depending on the probability of its edges being actual edges from the edge

map in Figure 2. Finally, the polygon with the highest score is selected. At this point, the app has

the coordinates of the document the user is most probably trying to scan, resulting in the preview in

Figure 1.

PYTHON EDGE DETECTION APPROACH

The second work provides a different approach to the problem with no machine-learning.

Interestingly, the results from this technique are much more promising than the first one. This work

is separated in three steps: edge-detection, contour filtering, and applying a perspective transform.

The main idea behind this technique is that instead of using machine-learning to isolate the

“interesting edges” we can isolate only the interesting contours from a Canny edge detection, i.e.

only the rectangles, as potential candidates of images within a scan. This assumption turned out to

simplify the problem considerably.

The first step of this process is to apply a Canny edge detection over the image. This will isolate

all the edges from the image, and inevitably also isolate the edge the user is actually trying to isolate.

The result of this edge detection can be seen in Figure 5,

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

11

Figure 5 - Original image, left. Image after Canny edge detection, right. Source: (Rosenbrock, 2014)

Once the edge detection is performed, the script iterates over each contour. A contour is

defined as a series of adjacent pixels, and is easily detectable using the Python computer vision

library OpenCV2 which will be presented in greater detail in Section 2.2.2. Once the script finds the

largest contour with four edges, it is assumed that this contour is that of the document the user is

trying to scan. From there, the coordinates of the angles can easily be isolated, resulting in Figure

6.

Figure 6 - Source image with detected contour in green. Source: (Rosenbrock, 2014)

LIMITATIONS OF THESE APPROACHES

Both of these approaches work very well to detect a single document that the user wishes to

scan. However, they do not offer the possibility to isolate several images simultaneously within a

scan. This constraint poses several issues. For example, in the Dropbox approach, the app only selects

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

12

the single quadrilateral with the highest score. But what if there are several images to be detected?

Which polygons represent what the user wishes to scan? Similarly, in the Python edge detection

approach, only the largest polygon is selected. What if several images exist? How do we know which

of these large rectangles are actually images we are trying to detect or simply artifacts of the images’

actual content? These questions form the cornerstone of this study.

1.!INTRODUCTION

1.1.! CONTEXT OF THE RESEARCH

This study was conducted to help the Swiss company Cinetis, specialized in digitizing of older

media. Currently, when a photo album is scanned, each image is individually cropped using Adobe

Photoshop. Although this process can be accelerated by an experienced employee, the repetitive

nature of this task begs for automation.

Cinetis required an algorithm that could extract the coordinates of the four corners of each

image within a photo album scan. The user would then be presented with a simple web-based

interface to select the images, adjust the angles if needed, add new rectangles if some images were

not correctly detected, and validate the coordinates. Based on these point coordinates, the cropping

can then be done separately and automatically.

Making a web-based prototype frees Cinetis from OS restrictions. The process could even be

done on a tablet or smartphone for an improved user experience.

1.2.! GOAL OF THE RESEARCH

The proposed solution would be a PHP web platform where the user starts by selecting the

scan to work on. A web-service-oriented Python script could take a filename as input, and return a

JSON object containing the coordinates of the four corners for each of the detected images within

the scan. The user will be presented with a JavaScript-based editor to view, edit, add, delete, and

validate the detected rectangles. Once the user validates the cropping points, a form containing the

coordinates in JSON format can be sent to the Cinetis servers for cropping.

1.3.! BASIC CONCEPTS OF COMPUTER VISION

In its broadest sense, image recognition uses a myriad of technologies and algorithms to extract

information from images. We often talk about deep learning and neural networks being able to

classify images, extract text from an image (Geitgey, 2016), or track motion (Rosebrock, 2015) when

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

13

we talk about image detection. In the most conclusive approach of this study, we focused on a type

of detection called feature detection. This process isolates geometrical properties from an image

and filters the ones that are most “interesting” for the desired result.

1.3.1.! Deep learning and convolutional networks

Neural networks, more precisely deep-learning and convolutional networks, are particularly

good at image classification. Models can be trained to classify objects, people, cars, letters and

numbers, etc. In the case of convolutional neural networks, the models can even recognize different

objects within a complex image (Geitgey, 2016). In our case, a neural network can be used to

recognize the pictures in the scanned album or scrapbook. However, due to the complex nature of

neural networks, and the time restriction to complete this study, we decided not to use this type of

method. We did, however, attempt to use neural networks to distinguish the corners of each image

within a scan. The full development of this approach is explained in section 3.1.2.

1.3.2.! Feature detection

Feature detection is widely used in computer vision to extract interesting information from an

image. For example: edge detection algorithms can help find sudden color changes, connected

component analysis can find groups of pixels of the same color and can even calculate the shape of

these groups, and Hough transforms can not only to detect straight lines within an image, but also

circles. This last algorithm can be used for example to find the vanishing point in the perspective

lines of a building as seen in Figure 7 (OpenCV, 2017).

Figure 7 - Using the Hough transform to find the vanishing point of an image. Source: (OpenCV, 2017)

The final result of this study uses these tools rather than machine learning to successfully

identify images within a scanned photo album.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

14

2.!METHODOLOGY AND TECHNOLOGIES

2.1.! METHODOLOGY USED

The goal of this study being a prototype for Cinetis to use, we worked very closely with their

correspondent, Jean-Pierre Gehrig, all along the project. We followed an agile methodology, meeting

every week for an hour, presenting the progress of the study, and deciding where the study would go

from there. This turned out to be very effective to bounce off of approaches that were too

complicated or wouldn’t yield interesting results fast enough.

2.2.! TECHNOLOGIES USED

2.2.1.! Machine Learning

The first approach of this study was machine-learning based. The data-mining software KNIME

is ideal for the initial prototyping of the machine-learning process, allowing quick turnaround in

exploration of various ideas before transcribing the workflow in Python.

Due to its graphical node-based layout, see Figure 8, KNIME allows us to quickly manipulate

data, train and test various machine-learning models, and analyze the results rapidly. KNIME also

includes Python nodes. These nodes allowed for an easier manipulation of the data and would also

ease the transition of rewriting the workflow entirely in Python. Several approaches to the study are

modeled in KNIME and will be discussed in greater detail in Section 3.1.

Figure 8 - Example of a part of a KNIME workflow

2.2.2.! Python

We chose to use JetBrains PyCharm Community Edition for the Python development. The ease

of use of this IDE, embedded terminal window, along with our previous experience with JetBrains

IDEs made it the prime choice to develop the Python scripts.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

15

Libraries(

Python has many libraries to accomplish various tasks without having to reinvent the wheel for

every task. The main libraries we used are OpenCV (OpenCV Team, 2017) and NumPy (Numpy

developers, 2017).

NumPy is a python library providing efficient implementations of a wide range of complex

mathematical functions. The library includes functions for basic statistics, linear algebra, and basic

arithmetic over large arrays and matrices.

OpenCV is an image manipulation library with many basic functions like crop, threshold, blur,

sharpen, etc. along with more complex feature detection functions like Hough transform, connected

component analysis, contour approximation, etc. These features are heavily exploited in this study,

significantly reducing the complexity of the Python script

2.2.3.! PHP / JavaScript

We decided to use JetBrains PHPStorm for the PHP code. From our experience, this IDE was an

obvious choice, in part for its ability to parse PHP and JavaScript syntax.

Libraries(and(Framework(

To code the user interface, we used the JavaScript library Paper.js (Lehni & Puckey, 2011).

This library’s native use of layers, paths, selection, and editing tools greatly accelerated the user-

experience development process.

The general layout of the web-platform was coded using the Yii2 framework (Yii Software LLC,

2017). Having already used this framework for previous works, we were already familiar with the

workflow and were able to quickly setup a prototype once the Python script was ready.

3.!CHOICE OF APPROACH
As stated in the state of the art, two main approaches to the problem are tested: a machine-

learning based approach, and a feature-detection based approach. In this chapter we will explain in

detail how each of these approaches are developed. In the next chapter, we will analyze all the

results to defend our final choice of approach for this study.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

16

3.1.! MACHINE-LEARNING BASED

3.1.1.! Random Forest

In his explanation of Dropbox’ document scanner (Xiong, 2016), Xiong argues that using a

machine-learning model to determine an image’s edge map can be used to find the “interesting”

edges within an image with more accuracy than traditional edge-detection algorithms. More

precisely, he uses a random-forest algorithm to determine each pixel’s probability of being on an

edge. The resulting image is an edge map where lines can easily be seen as in Figure 9.

Figure 9 - Left, the raw image. Right, the edge map after random forest. Source: (Xiong, 2016)

Having no other information on this algorithm, like which input parameters Xiong uses, we

decided to test several options for ourselves to see which results were the most promising.

Image(processing(concepts(

A grayscale image is can be represented as a two-dimensional matrix with values ranging from 0 to 255 (if the
image is encoded using 8-bit integers). We can represent a simple 5x5 matrix with random integer values
between 0 and 255 as a 5x5 pixel grayscale image as in Figure 10. For an RGB image, the principle is the

same, except that we now have to visualize a three-dimensional matrix, with each 8-bit integer encoding one
of three colors: red, green, and blue, as visualized in a spreadsheet with color encoding in

Figure 11 thanks to the ThinkMaths online pixel spreadsheet converter. (Steckles, Hover, &

Taylor, s.d.)

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

17

Figure 10 - Example of a 5x5 grayscale matrix with random pixel values

Figure 11 - An RGB image of a penguin encoded in a spreadsheet. Source: (Steckles, Hover, & Taylor, s.d.)

Pre6processing(and(ground(truth(

For our use-case, we work in grayscale in order to reduce calculation time by a factor of three.

To convert an image from RGB to grayscale, a simple average of the three RGB values gives us the

overall lightness of the pixel. For the exploration of the solution, we also scale the image down by a

factor of 100. The calculation time is too important for the full resolution images which are

6012x9700 pixels large. We are left with a 60x97 matrix with values ranging between 0 and 255

corresponding to a grayscale and scaled down copy of the original as seen in Figure 12.

Figure 12 – A portion of the grayscale matrix, left. The resulting heat map, right.

We now need a ground-truth to determine if each pixel is indeed on a border or not. To

accomplish this, we manually create images of the same dimensions as the source images with white

frames on the borders’ positions as seen in Figure 13.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

18

Figure 13 - Original image, original resolution, left. Ground truth, original resolution, right.

Each pixel now contains four pieces of information: its X and Y coordinates, pixel value, and

ground truth. To increase accuracy, we extract more information from each pixel: its neighboring

values. For a first iteration, we collect each pixel’s 24 neighbors in a 5x5 square around it as shown

in Figure 14.

Figure 14 – Current pixel’s 24 neighbors

We independently read each image and its corresponding ground-truth image and merge the

two tables once the matrices are unraveled, or reshaped as one-dimensional arrays, as seen in Figure

15. Each row in the table represents one pixel. The first two columns represent the X and Y

coordinates of the pixel, the third column represents the pixel’s average RGB value, the fourth

column represents the ground truth which can either be “Border” or “No_Border” and the next 24

columns represent the pixel’s 24 neighboring values in order.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

19

Figure 15 - Unraveled image matrix with ground truth and neighbors

Training(and(testing(

Our data can now be modeled in a Random-Forest algorithm to determine each pixel’s

probability of being on a border depending on its position, value, and neighboring values. However,

at our first attempt, the classifying algorithm simply classified everything as being “No_Border”. This

is due to the ratio of border to no-border pixels being very small. Indeed, in our 18 train images, only

4.6% of the pixels are borders. Using this logic, the classifying algorithm classified everything as being

“No_Border” and boasted a 95.4% success rate. To counter this, we use a technique called “bootstrap

sampling” to train the model. This technique is used to balance out categories that have very

different counts to “trick” the classifier into thinking there are more data points in the less frequent

class than there actually are. Training the model in this way leads to much more accurate results

with a 98.094% success rate with a standard error of 0.3%. The confusion matrix, ROC curve, and

standard error for the predictions can be seen in Figure 16.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

20

Figure 16 - Confusion matrix of random-forest algorithm, top. The ROC curve of the model, middle. Standard

error and interval of the ROC curve, bottom

This random-forest model is trained on a concatenation of 18 unraveled image matrices with

their 24 neighbors. We can now apply this model to a new image that the predictor had not yet seen.

To determine the accuracy of this algorithm, we plot the probability of each pixel being on a border

in an edge map as explained in the Dropbox tech blog (Xiong, 2016). The resulting image can be seen

compared to the original downscaled image in Figure 17.

Figure 17 - Downscaled image, left. Edge map, right

We can see the algorithm getting close to the desired result that Xiong obtained in Figure 9.

To gain precision, we trained another random forest model to predict a pixel’s probability of being

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

21

on an edge given its 99 neighbors in a 10x10 square surrounding it. Interestingly enough, adding more

neighboring pixels did no significant increase to the algorithm’s accuracy as seen in Figure 18. If

anything, the additional data added more uncertainty to the classification.

Figure 18 - Edge map given 99 neighbors around each pixel

Limitations(of(this(method(

It is very important to note that at this point, we are working with very low resolution images.

When trying to increase resolution to get more detailed edge maps, the computation time increases

dramatically. At 10% resolution, the workflow takes several hours to unravel the 18 test images and

get all the neighboring pixel values in a single matrix. Moreover, the sheer quantity of the data makes

the KNIME environment run out of heap space when trying to train the model. Indeed, 18 images at

600x970 pixels makes over 10 million lines to train. To try to bypass this last constraint, the model

was run on a very powerful calculation server of the HES-SO, but the time to execute was still too

important. Although the initial results of this process were promising, and further optimization of

the code could have accelerated it, we decided to try different approaches to this study.

3.1.2.! Neural Network

Instead of calculating each pixel’s probability of being on an edge, we tried a different

approach which involved training a neural network to recognize image corners. The idea is to detect

all the potential corners in the image and use the neural network to classify these potential corners

into two classes: “Corner” and “No_Corner”. When all true corners are identified, we can then

determine which four corners define the desired image based on where the user clicked. An

illustration of this process can be seen in Figure 19.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

22

Figure 19 - Illustration of the process detecting lines and corners, and determining the image based on user

click position

Pre6processing(

The first part of this method consists in isolating all potential corners of the image. Our

approach is based on the assumption that a vertical or horizontal line can be detected with sudden

changes in the sums of pixel rows or columns. To illustrate this assumption in an example, we can

imagine the scan having mostly a light-colored paper, the sum of a column of pixels entirely on the

paper would yield a very large value due to all the white pixels having a value close to 255. As soon

as we examine a column of pixels that contain an image, the sum of the column diminishes, as the

image in the scan is inevitably darker than the background paper.

To accomplish this edge detection, we make two copies of the scan, and transform them both

into one-dimensional arrays containing the sum of rows and columns respectively. For a 6012x9700

image, this gives us two arrays: a 6012 long array containing the sum of each pixel row, and a 9700

long array containing the sum of each pixel column. We now look at groups of 10 neighboring rows

or columns and perform a “sliding window” over all rows and columns and examine the difference

between the minimum and maximum of each group of 10 and record this value. Plotting all the pixel-

differences for each group shows us clearly the drastic color changes in the scan, and therefore where

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

23

the edges of images are. A graphical representation of the lag columns’ min-max difference layered

on the original image can be seen in Figure 20.

Figure 20 - Displaying row and column pixel differences

We notice that some color strips in Figure 20 are wider than others. This is due to the fact that

some of the images aren’t perfectly aligned and therefore causing the difference of overall color

change to be wider than if it were perfectly aligned to the scan. To overcome this issue, we simplify

the color band’s coordinate to it’s central value. Therefore, a 25px wide color band spanning from

columns 1500 to 1525 would equate to a color change at the X position 1512.5.

We now have a list of X and Y coordinates where image borders occur. Of course, there is some

noise in this data due to the nature of the images. For example, in Figure 20, we see a blue vertical

band being detected in the middle of the bottom image. This is due to the subjects in the image

having very contrasting clothes and standing close to each other in a near-vertical fashion. When we

combine all possible combinations of X and Y, we are left with all potential corners of the image as

depicted by green dots in Figure 21. All that remains to do is crop a 100x100px image around each

potential corner to be sent to the neural network.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

24

Figure 21 -All possible corners detected in the image

Ground(truth(

To obtain the ground truth for all these potential corners, we manually create corresponding

images of each scan with white dots on each corner as seen in Figure 22.

Figure 22 - Raw image, left. Ground truth, right

From this ground truth image, we perform a connected-component analysis to determine the

coordinates of each point. A more in-depth view of connected-component analysis is explained in

Section 3.2.2. We now know the coordinates of each dot in our ground truth. To apply this ground

truth to the potential corners detected in the previous step, we iterate each potential corner and

search our ground truth coordinates to find a close match. If the ground truth coordinates are within

the 100x100px window of each potential corner, the corner is marked as a corner. If no ground truth

coordinates match the potential corner, it is marked as a non-corner.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

25

Once this process is complete, the data is ready to be fed in a neural network for classification.

A look of this data can be seen in Figure 23.

Figure 23 - Example of images with class labels ready to be sent to the neural network

Modeling(

We now have data that is ready to be fed in a neural network to classify the images as corners

or no-corners. Having done all the pre-processing steps within the KNIME environment, we decided

to continue with KNIME to avoid having to learn to use another unfamiliar software such as TensorFlow

(Google, 2017). Luckily, the KNIME platform offers a variety of neural network nodes and example

workflows to get started. Within these examples, we found a workflow that classifies various

celebrity faces based on AlexNet proposed by Krizhevsky in his paper “ImageNet Classification with

Deep Convolutional Neural Networks” (Krizhevsky, 2012). We assumed that this neural network, able

to be trained to recognize several celebrities, could easily be trained to classify just two types of

images. However, the calculation time was unexpectedly long. The network took two hours to train

and two hours to test, and it simply classified everything as not a corner. This disappointing result

and important calculation time made it impossible to test the algorithm via a trial and error

approach. Having limited knowledge about the inner workings of the deep network, and limited time

to finish this study, we decided not to pursue this approach any further. It is important to note

however that this approach can be very promising given more research. The pre-processing being

relatively fast, clocking in at only a few seconds to detect the potential corners for each image, a

trained network could detect the true corners in a very rapid manner, and the end-user would be

presented the user interface all in a short amount of time. The corner classification could even be

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

26

done asynchronously on the Cinetis servers, storing the coordinates of the true corners in JSON files

until they are called for use by the user loading the editor page.

3.2.! FEATURE-DETECTION BASED

3.2.1.! Hough Transform

Pre6processing(

At this point in the research, we started exploring other possible solutions to the problem. We

also tried to diverge from KNIME workflows as we noticed much delay in the Python nodes within the

workflows. The next two approaches are developed entirely in Python. While experimenting with

different image manipulation techniques and edge detection algorithms, we found an edge-detection

filter that could be of use for the project: the Sobel filter (OpenCV dev Team, 2014). This filter is a

type of edge-detection filter that can be oriented vertically or horizontally. More precisely, the filter

scans for intense color changes given a certain kernel. A kernel is a small matrix, usually 3x3 or 5x5

that defines which pixels the filter will examine when determining if a pixel is on a border. This

means that given the right type of kernel, the Sobel filter is well suited for finding vertical and

horizontal lines in an image, as seen in Figure 24.

Figure 24 - Example of the applied vertical and horizontal Sobel filters. Source: (OpenCV dev Team, 2014)

For our problem, this filter could be particularly well suited to find the edges of the images

within the photo album scan.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

27

Figure 25 - Demonstration of the Sobel filter on a photo album scan.

Left, original image. Center, Sobel-X. Right, Sobel-Y.

As we can see in Figure 25, the Sobel filter applied to the scan clearly shows the vertical and

horizontal lines displayed in the filtered images. At this point, we want to return to the method that

Xiong uses in his Dropbox tech blog (Xiong, 2016): use a Hough transform to find the lines in the

image and determine possible quadrilaterals from those lines. The Hough Transform requires the

image to be in binary form, meaning only pixels with a value of 0 or 1. This is done by applying a

threshold to the filtered image. The thresholding process is straightforward: examine each pixel in

the image, and compare its value to a given threshold value. If the pixel’s value is equal to or above

the threshold value, it is set to 1. If the pixel’s value is below the threshold value, it is set to 0. We

are left with a binary image composed of only black and white pixels. The result of applying a

threshold to our Sobel-filtered images can be seen in Figure 26.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

28

Figure 26 - Thresholding of Sobel-filtered images

Hough(transform(explanation(

With a binary image, we can now apply a Hough transform. As mentioned in Section 1.3.2, the

Hough transform is a mathematical transformation capable of detecting straight lines within a binary

image (OpenCV, 2017). It works as follows:

1.! Pick a white pixel in the image.

2.! Draw a line going through that pixel.

3.! Count how many white pixels intersect that line, this corresponds to the line’s score.

4.! Calculate scores for every possible line through that pixel.

5.! Repeat for each white pixel in the image.

Once this process is done, we have a collection of lines with scores. The higher the score, the

higher the number of white pixels going through the line, therefore, the higher the chance that it is

actually a line within the image. The built-in Hough transform function in OpenCV allows us to put a

threshold on the score of the lines, so only lines with at least a certain amount of white pixels going

through them are kept. Moreover, we know the polar coordinates of each of the retained lines, which

means that we know the angle at which they are drawn, allowing us to isolate near-verticals and

near-horizontals. When we apply this process to our thresholded image, we get the result seen in

Figure 27

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

29

Figure 27 - Hough transform applied to the thresholded images.

As we can see, many lines are detected as a result of the Hough transform. This is due to the

fact that the lines we wish to detect in our thresholded image are thicker than 1px. The thicker the

line, the more possible mathematical lines can correspond to it. An example of this is shown in Figure

28. As we can see, the thick line segment allows many red lines to be drawn within it and have a high

enough score to be considered actual lines.

Figure 28 - Many lines passing through a thick line segment

At a first glance, the fact that there are so many lines should not be a problem since it

reinforces the assumption that the correct line is indeed there somewhere. However, we will see in

the next section that this factor greatly increases calculation time.

Isolating(rectangles(

The next step in this process is to isolate all the potential rectangles that could correspond to

the actual images. After identifying all potential candidates, we can use machine learning to

determine which of these rectangles are the ones we are looking for. To do this, we first recapitulate

the data we currently have and what we are looking for:

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

30

•! We have a collection of vertical and horizontal lines

•! The images must be of a minimal width and length

•! The images can’t be too large

•! The images can’t be too close to the edges of the scan

•! We assume the images have a maximal aspect ratio of 2:1

Based on these assumptions, we then couple vertical and horizontal lines in potential couples.

These couples should not be too close nor too far away from each other. Once we have a collection

of vertical and horizontal couples, we couple each of those couples together to get potential

rectangles while keeping in mind the maximal aspect ratio. However, due to the important number

of lines detected by the Hough transform, the number of couples grows, and the number of

quadruples grows even more, resulting in a very important calculation time. In Figure 29 we can see

the terminal output of the calculation of rectangles within the image in Figure 27. We can see a very

large amount of potential rectangles found, and an impressive 6-minute calculation time.

Figure 29 - Terminal output of the Python script finding potential rectangles

Limitations(of(this(method(

We can already see that to find all the potential rectangles in an image, the calculation hikes

up to 6 minutes per image. This important duration spanning only at the pre-processing step, we can

only imagine what the total time to find the true rectangles using machine learning would be. In

hindsight, using the edge detection algorithm used in Section 3.1.2 would have greatly accelerated

this pre-processing step. We could have isolated all potential rectangles much faster, and used

machine learning to identify the true rectangles within the image, although the parameters of this

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

31

machine-learning process would be subject to further research. Fortunately, the next method was

both fast and accurate.

3.2.2.! Contour Filtering

All previous attempts requiring more time and experience than we had to complete this study,

we decided to try an approach without involving any machine learning. Indeed, the problem seems

simple enough at a first glance: the background paper is light enough to be able to isolate the images,

the images are all rectangles that need to be cut out, there must be a simple answer to detect

rectangles within an image. It is with this mindset that we started out on the fourth and final variant

to solve this problem.

Pre6processing(

Up to now, the main drawback in our approaches is that the information within the images

themselves keeps throwing off our algorithms. To reduce the amount of noise in the image while

conserving the most important color changes, we use a median filter. This filter is different than a

simple Gaussian blur in the sense that it preserves the edges while smoothing color in an image

(Fisher R. , Perkins, Walker, & Wolfart, 2004). We then simplify the scans’ data by using simple

brightness and contrast adjustments. After testing on Adobe Photoshop, we found the ideal brightness

contrast adjustments to bring out the images as much as possible against the background paper as

we can see in Figure 30.

Figure 30 - album scan after median filter and brightness contrast adjust

The scan (still in grayscale mode) can be resumed to a plot to find patterns in its brightness.

If we plot the pixel value between 0 and 255 on the x-axis, and the count of pixels having that value

in the image on the y-axis, we obtain a histogram of the image. This can be very useful to determine

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

32

where to put a threshold to isolate the elements of the image we want. In our case, we plotted

histograms for the image before and after color correction. The resulting plots can be seen in Figure

31. When observing the histograms, it is important to note the logarithmic y-scale to get a better

sense of the pixel density for each value.

Figure 31 - Images and corresponding histograms before and after color correction

In the histogram of the uncorrected image, we see a few local maxima, but no discernable

pattern or visible point at which a global threshold could isolate all the images within the scan

without getting noise from the background paper. In the color-corrected histogram however, we

observe a very large number of near-black pixels. This is useful because we know that the images in

the color-corrected scan are very dark, and we can hypothesize that most of the images will fall

within these values. We can also observe the local maxima being more distinctly pronounced at

approximately 45, 115, 170, and 240.

We ran an extensive amount of tests to determine the ideal threshold point. The conclusion of

these tests is that an optimal threshold for one scan may not be the best for other scans. To make

up for this difficulty, we simply sweep the threshold value between 0 and 255 to be certain to catch

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

33

all of the images no matter the scan. More precisely, we execute a loop with a counter value that

increments 25 times by a factor of 10. Several iterations of thresholding can be seen in Figure 32.

Figure 32 - Thresholding the scan at a value of 1,left. Thresholding at a value of 131, middle. Thresholding at

a value of 191, right

At each iteration, we apply the threshold, and perform morphological transformations to close

holes and open points. The detail of how these operations work are explained in the next section.

Morphological(transformations(

Morphological transformations are operated on binary images and require two inputs: the

original image, and a kernel, which defines the nature of the operation. The kernel is generally a

matrix of certain dimensions filled with ones. A more in depth description of these morphological

transformations can be found in the OpenCV documentation website (OpenCV dev team, 2014).

Erosion(

Erosion is much like its name implies: it erodes the edges off of contours. This makes all of the

contours thinner and removes altogether very small contours. This is useful to reduce noise. However,

any holes that occur within contours are accentuated. An illustration of erosion can be seen in Figure

33.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

34

Figure 33 - Original image, left. Eroded image, right. Source: (OpenCV dev team, 2014)

Dilation(

Dilation is the inverse of erosion: it inflates all the contours in the image. Potential holes in

contours can be filled using dilation. Inversely to erosion, where holes are accentuated, potential

noise on the outside of the contour is accentuated using dilation. An illustration of dilation can be

seen in Figure 34.

Figure 34 - Original image, left. Dilated image, right. Source: (OpenCV dev team, 2014)

Opening(

We can notice a pattern occurring. Erosion and dilation both have caveats: they accentuate

holes or noise in an image. To counter this, we can use a combination of the two. If we erode the

image, noise is reduced and holes are accentuated. However, if we dilate the image after eroding it,

the noise is still gone and cannot reappear, but the holes return to their original size. This process is

known as opening the image. An example of this process can be seen in Figure 35.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

35

Figure 35 - Original image, left. Opened image, right. Source: (OpenCV dev team, 2014)

Closing(

Inversely to opening, closing allows us to close holes within contours by dilation, and revert

any external noise to its original size by erosion afterwards. Holes closed due to dilation cannot be

recovered by the following erosion, and information outside the contour is recovered. An illustration

of this process can be seen in Figure 36.

Figure 36 - Original image, left. Closed image, right. Source: (OpenCV dev team, 2014)

Of course, due to the geometrical nature of square pixels, information is inevitably lost in each

morphological transformation. However, this poses no important problem in our case, since the

images we are looking for are very large, and we are not interested in the detailed contours, only

the approximate region.

Connected(component(analysis((

Connected component analysis is based on connected component labeling, which will be

simplified to CCL in future references. CCL, is a method to detect groups of adjacent pixels of the

same color within a binary image. This process works by following a few simple steps:

•! Iterate over each pixel with a value of 1

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

36

•! If all four neighbors (or eight depending on the type of CCL you wish to use) are 0,

assign a new label to the pixel

•! If one or more neighbors have a value of 1 and no label, assign them and the current

pixel a new label

•! If one or more neighbors already have a label, set the label for all of these pixels to

the same value.

Once this process is complete, the image will contain an array of connected components and

their labels, often displayed in different colors as seen in Figure 37. A complete look at CCL can be

found on the Image Processing Learning Resources website (Fisher R. , Perkins, Walker, & Wolfart,

2003).

Figure 37 - Original binary image, left. Image with labeled connected components, right. Source: (Fisher R. ,

Perkins, Walker, & Wolfart, 2003)

Once we have isolated all connected components in our image, we can perform connected

component analysis, simplified to CCA for future reference. CCA will examine each component and

determine its centroid, area, perimeter, and various other geometrical properties. OpenCV has many

built-in functions to perform useful computations, but the most useful one in our case is the contour

approximation function.

Looking at Figure 32, we see that the images isolated by the threshold aren’t perfect

rectangles. Their corners are rounded, some edges are rough, and some have holes in them. OpenCV

has a function to calculate each component’s contour and, using this function, we could have just

isolated all the contours with exactly four edges. However, we would miss most of the isolated images

for the very simple reason that they do not appear as perfect rectangles. To solve this, we use the

contour approximation function. This function is based on the Douglas-Peucker algorithm (Douglas &

Peucker, 1973) and approximates a contour by fitting a contour that is no further than a given value,

named epsilon, and get the smallest number of corners possible. This allows us to obtain rectangles

from near-rectangles and correctly identify the images in the thresholded binary image.

From here, we perform the same logical operations we did in Section 3.2.1 to further filter out

unwanted rectangles. We assume the images are at least of a certain width and height, no taller than

¾ of the scan size (an assumption validated by Cinetis), and that the aspect ratio is no more than 2:1

and no less than 1:2. If all of these conditions are met, we can assume that the contour is that of an

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

37

image we are trying to detect. To avoid having rectangles with angles other than 90° (a constraint

given to us by Cinetis) we then compute the minimal area rectangle for the contour. This function,

also built in OpenCV, finds the smallest possible rectangle containing the contour. The rectangle can

be rotated, but all of the angles remain at 90°. Once this entire process is done, we save the

rectangle’s coordinates in an array for further filtering.

Simplifying(similar(rectangles(

So far, our process detects the images very well. However, as seen in Figure 38, the program

detects most images several times, creating overlapping rectangles. This is due to the fact that we

loop the threshold process and save detected images without checking that the image has already

been found.

Figure 38 - Output of the program detecting all the images, and some multiple times.

To simplify the similar rectangles into a single one, we start by taking the first rectangle from

the array of detected rectangles and copying it to another array of “confirmed” rectangles. As we

iterate over the array of all detected rectangles, we compare each of them to each “confirmed”

rectangle. If the center of the detected rectangle does not come within 25 pixels of each confirmed

rectangle, is is confirmed and copied to the confirmed array. In this fashion, we are left with

rectangles that do not share a common center as seen in Figure 39.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

38

Figure 39 - Confirmed rectangles over original image

Some rectangles still remain inside others, however this poses no great issue to the final result,

as these rectangles correspond to an image label. On the contrary, it gives the end-user more

flexibility on whether he/she wants to include the label in the crop or not.

Looking at the console output in Figure 40, we can see that the process takes under 5 seconds

to complete. Furthermore, the majority of this time is spent reading and resizing of the large image

file. After a 1/10 resize, the image detection algorithm takes less than a second to detect the images,

proving this method’s incredible advantage over the previous ones.

Figure 40 - Console output of the python script

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

39

4.!IMPLEMENTING THE USER INTERFACE
We are now ready to implement the user interface of the project. To recapitulate, we now

have a Python script that detects the images within a photo album scan and returns the coordinates

of these rectangles. Some rectangles are detected twice if they have a frame with a label, and some

images still remain undetected. For example, some portraits with very light backgrounds do not

generate rectangles in the threshold sweep, and are therefore not detected as images, as seen in

Figure 41.

Figure 41 - Portrait on the left not being detected due to the lack of contrast between picture background

and the paper

 All that remains is to create the user interface for the user to select the correct rectangles,

adjust them if needed, and validate the coordinates to crop the images appropriately. Several actors

play a part in this process, namely: the user, the web client, the web server, and our Python script.

A sequence diagram of the typical user interaction can be seen in Figure 42.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

40

Figure 42 - Web sequence diagram of the user interacting with the system, and the various components of the

system interacting with each other.

The user requests a scan to work on, which he/she selects through the web client. The web

client sends the requested scan’s filename to the server, which requests the JSON-formatted

coordinates of the images within that scan to our Python script. Once the script is executed, the scan

and coordinates are sent to the client which displays it to the user in the form of a simple JavaScript

editor. The user can then modify the frames using simple tools (select, resize, rotate, add, delete,

zoom, pan) and validate the coordinates when satisfied. At this point, we hand over the coordinates

to Cinetis for them to crop; our job is done!

4.1.! WEB SERVICE

4.1.1.! Considered approaches

To provide the user with a web-based graphical interface, we first need a way to get the

coordinates of the rectangles to the browser when the user requests it. One option, glossed over in

Section 3.1.2, was to have a script continually run to detect the edges of the scans in the background

and store JSON files on the server to be instantly ready when the user requests them. This could have

been an adaptable solution for our more complex attempts using machine learning which took longer

to detect edges, since the user cannot be expected to wait even more than a few seconds for the

graphical interface to load. However, thanks to our very fast feature-detection algorithm, we can

compute the borders in real time as the user requests them, and return the JSON coordinates less

than five seconds later.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

41

4.1.2.! REST Web Service

Our solution consists of making a very rudimentary REST Web service. Essentially, when the

user calls certain functions through a web browser, such as when he/she clicks a link, we can run

applications and return the results in various formats. There are five REST function calls, also called

verbs: GET, POST, PUT, PATCH, and DELETE. In our case, we simply use the GET verb, essentially

saying: “GET me the coordinates of the images within this scan”. Only the filename needs to be sent

to the web service, and not the image itself, since the images being already stored on the server.

This feature doesn’t slow down the loading of the page.

Making such a rudimentary web service in Python is basic thanks to the web.py library which

includes tools to make web services in very few lines of code (Schwartz, s.d.). Our REST function

simply takes the filename as input, sends it to the Python script calculating the edges we explained

in Section 3.2.2, converts the returned array of rectangles to JSON format, and sends them to the

web client. An example output of the web service can be seen in Figure 43.

Figure 43 - Example output of the web service detecting borders of an image

The JSON is formatted as follows: an object named “rectangles” contains an array of objects.

Each of these subsequent objects contains four arrays named p1, p2, p3, and p4. Each of these arrays

contains two integer values with the x and y coordinates of the point with respect to the resized

image. This data can now be easily interpreted in JavaScript to provide a graphical interface for the

user to edit the rectangles.

4.2.! WEB PLATFORM

As mentioned in Section 2.2, the web platform was coded using the PHP Framework Yii2 (Yii

Software LLC, 2017). This framework allowed fast development of a functional prototype to present

to Cinetis. The platform consists of just two pages: the selector page and editor page. The user is

first shown the selector page, which contains the filenames of the scans he/she can work on. Once

the user clicks one of those links, the browser redirects to the editor page. The editor page contains

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

42

a canvas where the JavaScript editor draws the graphical interface to manipulate the rectangles, and

then submit the coordinates once he/she is satisfied, see Figure 44.

Figure 44 - The selector page, top, and editor page, bottom.

4.3.! JAVASCRIPT EDITOR

The editor was coded using the Paper.js JavaScript library (Lehni & Puckey, 2011). This library

makes use of layers, paths, points, shapes, curves, and event listeners and greatly accelerated the

development process of the editor. However, amidst all the features offered within this library, one

crucial feature is missing and has to be implemented by hand, resizing rotated rectangles. We explain

this feature in greater detail in Section 4.3.2.

4.3.1.! Creating different tools

First off, the user has to be able to perform several actions on the canvas. Most importantly,

he/she has to be able to see the rectangles detected by the Python script, and select those that

correspond to actual images within the scan. The first tool is the selection tool, which allows the

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

43

user to click on a “guessed” frame, shown as red dotted lines, and “confirm” the rectangle, making

it solid green as seen in Figure 45.

Figure 45 - Sections of a guessed image, bottom-left, and confirmed image, top-right.

Using the selection tool, the user can also move the confirmed rectangles, and resize them.

Complications in this last step will be discussed in Section 4.3.2. The user can also rotate the

rectangles, delete them, add new ones if they aren’t detected as in Figure 41, zoom in and out of

the canvas, and pan the canvas to be more precise in the definition of the rectangles. The selection

of each tool is done using a simple HTML button interface as seen in Figure 46 which also provides

the name of the tool, and simple instructions on how to use it.

Figure 46 - Tool selector on the editor page with tool hints

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

44

4.3.2.! Resizing rectangles using Linear Algebra

A particularly interesting challenge in the development of this editor is the resizing of the

rectangles. Although simple at first glance, the main problem in this feature comes to light with the

three following constraints:

•! The angles must always remain 90°

•! The rectangles themselves are not always straight

•! Paper.js considers the rectangles as paths, or groups of points, and not rectangles with

width, height, and rotation.

This means that to resize a rectangle by dragging a corner, the two adjacent corners need to

be moved as well to conserve all the right angles, and there is no built-in function to simply scale

the rectangle like in traditional vector editing software such as Adobe Illustrator. Referring to Figure

47, if the user drags corner C to a new position C’, we know the ∆x and ∆y of that movement.

However, we need to calculate the ∆(x’,y’) and ∆(x”, y”) to correctly move the corners B and D and

thus conserve all the right angles of the rectangle.

Figure 47 - Representation of the different calculations required to keep all right angles in a scaled rotated

rectangle.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

45

The simplest approach to overcome this obstacle is to use orthogonal vector projections. As a

reminder, an orthogonal projection is a projection of a source vector onto a destination vector,

following the perpendicular of the destination vector. We can imagine the orthogonal projection as

the “shadow” of a vector onto another by a flashlight pointed straight down on the destination vector.

An illustration of an orthogonal projection is shown in Figure 48.

Figure 48 - Illustration of an orthogonal projection of two vectors v1 and v2 onto the vector w. Source:

(Rowland, s.d.)

Indeed, looking at Figure 47, if we apply an orthogonal projection of the vector ((′ onto the

vector *+ we obtain the vector ++′. This resulting vector can also be expressed as multiplying a

scalar “n” of *+. The orthogonal projection can be rewritten as follows:

,-./012 ((3 = 2++′ = 24*+ = ((′ ∙ *+
*+ ∙ *+

2×*+

Using this equation, and the fact that we know the coordinates of the points A,D,C, and C’,

we can construct all of our vectors and determine ++′, which is the vector by which we need to shift

the point D to obtain D’. The same can be applied using the coordinates of A,B, C, and C’ to obtain

77′. Once these vectors are calculated, and the points shifted accordingly, the resizing of the

rectangle successfully conserves the right angles of the rectangle regardless of its rotation.

5.!RESULTS
We now have a fully operating web-application that allows users to quickly select images within

a scan thanks to a Python script web service. The user can select a scan, have the images within the

scan detected in under five seconds, edit them, and validate all within a web browser. Once

validated, the coordinates can be sent to any destination in the form of a HTTP POST request. The

prototype is now complete and ready to be sent to Cinetis.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

46

5.1.! COMPARING THE METHODS

Looking back on each section of Chapter 3, we demonstrated four different methods to obtain

the desired result. Three of them were unsuccessful mainly due to important calculation time and

large amounts of data. If more time were given, each of these methods could flourish into their own

elegant solutions to this problem, although it is too early to define which of them would be the

fastest and most efficient.

For the time being, having only measurable results for the feature detection method, we can

only compare execution times for each method so far as seen in Figure 49.

Method Random Forest Neural Network Hough Transform Feature Detection

Calculation time

(per image)
3 minutes 35 seconds 6 minutes 5 seconds

Figure 49 - Table comparing execution times for the four methods

Clearly, the Feature detection method remains in the lead, ahead of the next fastest by 30

seconds. Although, as stated in previous chapters, further optimization and research could bring all

of these times down at least to under a minute. As a reminder, in his article on the Dropbox Tech

Blog, Xiong manages to run the calculations in real time at 15 images per second using a random

forest algorithm (Xiong, 2016). This clearly proves the possibility to optimize these algorithms and

bring calculation time down to less than one tenth of a second.

It is mainly based on the execution time and time constraint to complete this research that we

decided to keep the Feature Detection method for our prototype and not optimize other methods.

The potential of the other methods will be discussed in greater detail in the next section.

5.2.! ROOM FOR OPTIMISATION

5.2.1.! Optimizing the Feature Detection approach

As stated in Chapter 4 and seen in Figure 41, our algorithm still isn’t at its optimal point.

Moreover, this algorithm works well with albums that have a light colored paper as a background. As

soon as the background becomes colored or patterned, and is therefore gray when converted to

grayscale, the algorithm has a hard time discerning images within the scan. Some images can’t be

detected as they are glued too close together on the photo album, and are therefore seen as one big

image. This image is rejected in the filtering process as it is “too big” or is not a rectangle.

Illustrations of these caveats can be seen in Figure 50.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

47

Figure 50 - Algorithm not detecting image against a speckled background, left. Algorithm not detecting
individual images too close together, right.

Moreover, most of the detected images aren’t straight and crop the images too much. Ideally,

the end user would just have to confirm the rectangles and rarely make minor adjustments. Although

the algorithm detects the majority of images, there is still work to be done to correctly crop them

in a straight manner. This is due to the grouping of similar rectangles selecting the smallest rectangle

in a group which was detected first. This particularity could be optimized to select the straightest

possible rectangle, or the average rectangle for that group, which would yield a more precise frame.

In the web sequence diagram of Figure 42, we could add a final step after the user validates

the frames. Indeed, we now have the “guessed” rectangles generated by the Python script, and

“confirmed” rectangles given by the user. This can be seen as a ground truth that can be used in

machine learning to further optimize the algorithm. This option will be discussed more in depth in

Section 6.1.

5.2.2.! Optimizing the UI

The user interface can also be optimized further. This study was mostly focused on the image

detection algorithm more than the user experience aspect. Therefore, this part of the study was

given lower importance and was developed in the end of the project to provide a prototype to Cinetis

as fast as possible. This interface could be optimized to accelerate the editing process and save

Cinetis more time in their cropping process. User experience research could be conducted to provide

the smoothest possible workflow and a more intuitive editing environment.

5.2.3.! Optimizing the Random Forest approach

As stated in Section 3.1.1, the Random forest algorithm started showing promising results.

Having only tested on 18 test images, the edge maps shown in Figure 17 and Figure 51 clearly show

that the model gets close to identifying most of the borders. Even if the actual classification of

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

48

“Border” and “No_Border” isn’t always correct, mapping the probabilities of these categories gives

us a good idea of where the borders of images lie as seen in Figure 51.

Figure 51 - Downscaled image, left. Mapping categories, middle. Mapping probabilities, right

Using this property, we could perform several iterations of this machine-learning model, even

downscaled further down to isolate “interesting regions” of the scan. This could save time by not

calculating probabilities of pixels being on a border if we are sure there is no border in the vicinity,

and calculate at greater resolution where there is greater probability of being a border.

5.2.4.! Optimizing the Neural Network approach

This approach was cut short mainly due to the lack of time we could devote to researching

how the inner workings of the Convolutional Neural Network actually function. With more time, we

could have understood better why the learner and predictor took so long to run, and why the network

didn’t manage to find any pattern to discern actual corners from other parts of the image. The pre-

processing of this method could have then been greatly accelerated by being scripted entirely in

Python. Indeed, KNIME is not the best suited software for image processing, taking seconds to perform

tasks that Python can crunch in milliseconds. As an example, Python takes 4 seconds to read and

resize an image, KNIME takes 15 seconds to perform that same task.

5.2.5.! Optimizing the Hough transform approach

This approach was also based on Xiong’s approach to the problem: apply a Hough Transform to

a binary image to extract the straight lines, find probable polygons from these lines. As seen in Figure

27, too many lines were detected in our images which greatly increased calculation time, so much

so that it ultimately lead to our search for different approaches. To optimize this process, we could

have used the line-detection algorithm used in our pre-processing for Neural Networks explained in

Section 3.1.2. Using these lines to detect rectangles, and only keep the ones of appropriate aspect

ratio and size could have worked and may have even been faster than the feature-detection based

approach.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

49

6.!CONCLUSION
In this paper, we conducted research to develop a prototype for the Swiss company Cinetis to

crop images within photo-album scans more effectively. We explored several different approaches

to detect the borders of the images within the scan. Three of these, the Random-forest, Neural-

network, and Hough-transform approaches did not yield acceptable enough results to be used in the

prototype. The last approach, based on Contour-filtering provided satisfactory results in a short

calculation time and was selected to be used in the prototype. The script generated in this last

method was implemented as a simple REST web-service to return JSON formatted coordinates if given

the filename of an image to process. The resulting JSON was then incorporated in a JavaScript

graphical interface for the user to select, edit, add, and validate the detected rectangles. Finally,

the web-platform hosting the graphical interface is ready to send these coordinates to wherever

Cinetis needs for them to crop the scans.

The aim of this research was to find, as the title suggests, a machine-learning based approach

to solve this problem. However, considering the results obtained from all four methods, it is worth

pondering whether using machine-learning to detect these images would not be overkill for this type

of problem. This study clearly shows that sometimes a simpler, analytical solution can be just as

effective and as fast as a machine-learning based one.

This study was very much a personal challenge. The initial problem, seeming rather simple at

first turned out to be a real Hydra, spawning more complications with each obstacle overcome. Being

very keen on machine learning and computer vision, it was a real pleasure to work on it

6.1.! FUTURE WORKS

The practical use for this type of application is already demonstrated by the Photomyne mobile

app (Photomyne, s.d.) having over 5’900 reviews across iOS and Android platforms. However, a web-

based product aimed at digital restoration companies such as Cinetis has not yet been

commercialized.

Of course, further research in machine-learning approaches could lead to more precise

detection of the images. As stated in Section 5.2.1, machine-learning could be used to refine the

results obtained by our contour-filtering approach and provide more accurate results. Furthermore,

current technologies in neural-networks than can recognize components within an image (Geitgey,

2016) could also be an interesting future work for this study. Using these types of models, we could

refine and train a convolutional neural network to recognize the images within the scan and even

recognize the corners of these images to get the exact coordinates of these corners.

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

50

SWORN STATEMENT
I declare, by this document, having completed this Bachelor thesis and research alone, without

other help than those declared in the references, and that I used only the sources hereby cited. I will

not give any copy of this report to third parties without explicit permission from the Director of the

Business Informatics Branch of the HES-SO Valais, with the exception of the people who supplied the

principal information required for the writing of this Bachelor thesis and are cited below:

!! Dominique Genoud

!! Jérôme Treboux

!! Jean-Pierre Gehrig

Sierre, August 2nd 2017

Calixte Mayoraz

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

51

LIST OF FIGURES
Figure 1 - Dropbox document scanner surrounding the detected document with a blue frame. Source

: (Xiong, 2016) ... 8"
Figure 2 - Canny edge detection, left. Edge map of random forest, right. Source: (Xiong, 2016) 9"
Figure 3 - Edge map, left. Edge map after Hough Transform with lighter points emphasized, right.

Source: (Xiong, 2016) ... 9"
Figure 4 - Detected lines plotted over source image. Source: (Xiong, 2016) 10"
Figure 5 - Original image, left. Image after Canny edge detection, right. Source: (Rosenbrock, 2014)

 ... 11"
Figure 6 - Source image with detected contour in green. Source: (Rosenbrock, 2014) 11"
Figure 7 - Using the Hough transform to find the vanishing point of an image. Source: (OpenCV, 2017)

 ... 13"
Figure 8 - Example of a part of a KNIME workflow .. 14"
Figure 9 - Left, the raw image. Right, the edge map after random forest. Source: (Xiong, 2016) .. 16"
Figure 10 - Example of a 5x5 grayscale matrix with random pixel values 17"
Figure 11 - An RGB image of a penguin encoded in a spreadsheet. Source: (Steckles, Hover, & Taylor,

s.d.) ... 17"
Figure 12 – A portion of the grayscale matrix, left. The resulting heat map, right. 17"
Figure 13 - Original image, original resolution, left. Ground truth, original resolution, right. 18"
Figure 14 – Current pixel’s 24 neighbors .. 18"
Figure 15 - Unraveled image matrix with ground truth and neighbors 19"
Figure 16 - Confusion matrix of random-forest algorithm, top. The ROC curve of the model, middle.

Standard error and interval of the ROC curve, bottom ... 20"
Figure 17 - Downscaled image, left. Edge map, right ... 20"
Figure 18 - Edge map given 99 neighbors around each pixel ... 21"
Figure 19 - Illustration of the process detecting lines and corners, and determining the image based

on user click position ... 22"
Figure 20 - Displaying row and column pixel differences ... 23"
Figure 21 -All possible corners detected in the image .. 24"
Figure 22 - Raw image, left. Ground truth, right .. 24"
Figure 23 - Example of images with class labels ready to be sent to the neural network 25"

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

52

Figure 24 - Example of the applied vertical and horizontal Sobel filters. Source: (OpenCV dev Team,

2014) .. 26"
Figure 25 - Demonstration of the Sobel filter on a photo album scan. 27"
Figure 26 - Thresholding of Sobel-filtered images ... 28"
Figure 27 - Hough transform applied to the thresholded images. ... 29"
Figure 28 - Many lines passing through a thick line segment .. 29"
Figure 29 - Terminal output of the Python script finding potential rectangles 30"
Figure 30 - album scan after median filter and brightness contrast adjust 31"
Figure 31 - Images and corresponding histograms before and after color correction 32"
Figure 32 - Thresholding the scan at a value of 1,left. Thresholding at a value of 131, middle.

Thresholding at a value of 191, right ... 33"
Figure 33 - Original image, left. Eroded image, right. Source: (OpenCV dev team, 2014) 34"
Figure 34 - Original image, left. Dilated image, right. Source: (OpenCV dev team, 2014) 34"
Figure 35 - Original image, left. Opened image, right. Source: (OpenCV dev team, 2014) 35"
Figure 36 - Original image, left. Closed image, right. Source: (OpenCV dev team, 2014) 35"
Figure 37 - Original binary image, left. Image with labeled connected components, right. Source:

(Fisher R. , Perkins, Walker, & Wolfart, 2003) ... 36"
Figure 38 - Output of the program detecting all the images, and some multiple times. 37"
Figure 39 - Confirmed rectangles over original image .. 38"
Figure 40 - Console output of the python script ... 38"
Figure 41 - Portrait on the left not being detected due to the lack of contrast between picture

background and the paper ... 39"
Figure 42 - Web sequence diagram of the user interacting with the system, and the various

components of the system interacting with each other. .. 40"
Figure 43 - Example output of the web service detecting borders of an image 41"
Figure 44 - The selector page, top, and editor page, bottom. .. 42"
Figure 45 - Sections of a guessed image, bottom-left, and confirmed image, top-right. 43"
Figure 46 - Tool selector on the editor page with tool hints ... 43"
Figure 47 - Representation of the different calculations required to keep all right angles in a scaled

rotated rectangle. ... 44"
Figure 48 - Illustration of an orthogonal projection of two vectors v1 and v2 onto the vector w. Source:

(Rowland, s.d.) .. 45"
Figure 49 - Table comparing execution times for the four methods 46"

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

53

Figure 50 - Algorithm not detecting image against a speckled background, left. Algorithm not

detecting individual images too close together, right. .. 47

Figure 51 - Downscaled image, left. Mapping categories, middle. Mapping probabilities, right 48"

WORKS CITED
Canny, J. (1986). A computational approach for edge detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence .
Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the reduction of the number of points required

to represent a digitized line or its caricature. Cartographica: The International Journal for

Geographic Information and Geovisualization, 112-122.

Fisher, R., Perkins, S., Walker, A., & Wolfart, E. (2003). Connected Components Labeling . Retrieved

2017, from Image Processing Learning Resources:

https://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm

Fisher, R., Perkins, S., Walker, A., & Wolfart, E. (2004). Median Filter. Retrieved 2017, from Image

Processing Learning Resources: https://homepages.inf.ed.ac.uk/rbf/HIPR2/median.htm

Geitgey, A. (2016, June 13). Machine Learning is Fun! Part 3: Deep Learning and Convolutional Neural

Networks. Retrieved 2017, from Medium: https://medium.com/@ageitgey/machine-

learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721

Google. (2017). Retrieved from TensorFlow: https://www.tensorflow.org/

Krizhevsky, A. S. (2012). Imagenet classification with deep convolutional neural networks. Advances

in neural information processing systems.

Lehni, J., & Puckey, J. (2011). Paper.js. Retrieved 2017, from Paper.js: http://paperjs.org/

Numpy developers. (2017). Retrieved 2017, from Numpy: http://www.numpy.org/

OpenCV. (2017, July 07). Feature Detection. Retrieved 2017, from OpenCV API Reference:

http://docs.opencv.org/2.4/modules/imgproc/doc/feature_detection.html

OpenCV dev Team. (2014, November 10). Image Gradients. Retrieved 2017, from OpenCV

documentation: http://docs.opencv.org/3.0-

beta/doc/py_tutorials/py_imgproc/py_gradients/py_gradients.html

OpenCV dev team. (2014, November 10). Morphological Transformations. Retrieved 2017, from

OpenCV Documentation: http://docs.opencv.org/3.0-

beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html

Bachelor Thesis 2017

A Machine Learning Approach for Digital Image Restoration

Calixte Mayoraz
HES-SO Valais, August 2017

54

OpenCV Team. (2017). OpenCV Library. Retrieved 2017, from OpenCV: http://opencv.org/

Photomyne. (n.d.). Scan Photos & Photo Albums - Photo Scanner App by Photomyne. Retrieved 2017,

from Scan Photos & Photo Albums - Photo Scanner App by Photomyne:

https://www.photomyne.com/

Rosebrock, A. (2015, May 25). Basic motion detection and tracking with Python and OpenCV .

Retrieved 2017, from PyImageSearch: http://www.pyimagesearch.com/2015/05/25/basic-

motion-detection-and-tracking-with-python-and-opencv/

Rosenbrock, A. (2014, September 1). How to Build a Kick-Ass Mobile Document Scanner in Just 5

Minutes. Retrieved 2017, from PyImageSearch:

http://www.pyimagesearch.com/2014/09/01/build-kick-ass-mobile-document-scanner-

just-5-minutes/

Rowland, T. (n.d.). Vector Space Projection. (E. W. Weisstein, Producer, & Wolfram) Retrieved 2017,

from MathWorld--A Wolfram Web Resource:

http://mathworld.wolfram.com/VectorSpaceProjection.html

Schwartz, A. (n.d.). Web.Py. Retrieved 2017, from http://webpy.org/

Steckles, R., Hover, A., & Taylor, A. (n.d.). Pixel Spreadsheet. Retrieved 2017, from Think Maths:

http://www.think-maths.co.uk/spreadsheet

Xiong, Y. (2016, August 9). Fast and Accurate Document Detection for Scanning . Retrieved 2017,

from Dropbox Tech Blog: https://blogs.dropbox.com/tech/2016/08/fast-and-accurate-

document-detection-for-scanning/

Yii Software LLC. (2017). Yii PHP Framework: Best for Web 2.0 Development. Retrieved 2017, from

Yii Framework: http://www.yiiframework.com/

