
Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

1

Student : Nghi Tran

Professor : Adrien Depeursinge

WEB-BASED PLATFORM FOR
MANAGING IMAGE BIOMARKERS

August 2020

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

2

ABSTRACT
The aim of this paper is to describe the process of implementing a web-based platform to manage

image biomarkers, with a focus on managing and sorting datasets for machine learning.

The paper will first discuss about the emerging field of radiomics, the need for a comprehensive way

to manage large datasets of image biomarkers, and the current solutions in the field. This part will

be the foundation for the development of this platform. During the first part, the paper will also

explain this project’s approach to the problem of biomarkers management in contrast to existing

solutions, along with a justification of technologies used.

This thesis project aim to develop a web platform to manage sets of quantitative image biomarkers.

While solutions to extract these biomarkers have been developed, efficiently storing and managing

the extracted data is a challenge.

The project will implement a full stack solution from database, to server to front end application. It

transforms extracted image biomarker sets into an interactive web interface for data viewing,

exporting, and management.

The deliverables of this project are a relational data model, a back end application with ETL and API

functionalities, and a web application.

The result of this project demonstrates that managing quantitative image biomarkers using

relational entity model is feasible, but there is still room for improvement.

Keywords: Healthcare, Radiomics, Data management, Data modelling, ETL, Web

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

3

FOREWORD
This thesis was completed as the final project of the bachelor’s degree program in Business

Information Technology at HES-SO Valais-Wallis. The thesis was given by professor Adrien

Depeursinge and guided by him along with Roger Schaer and Orfeas Aidonopoulos.

The context of this topic is from Swiss Personalized Health Network (SPHN)’s project “IMAGINE”, a

project with the goal of developing infrastructure for national image-based personalized medicine.

Development of the thesis project spanned from February 2020 to July 2020 in Sierre, Switzerland

and later in Helsinki, Finland. The project aims to deliver a working demonstration of the goals

provided.

I would like to thank Adrien Depeursinge, Roger Schaer, and Orfeas Aidonopoulos for their guidance

in the making of this thesis, and Catherine Tacchini and Isabelle Fournier for helping me coordinate

remote work when I moved back to Helsinki.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

4

TABLE OF CONTENTS
ABSTRACT ... 2

FOREWORD ... 3

TABLE OF CONTENTS .. 4

TABLE OF FIGURES .. 7

ABBREVIATIONS ... 9

1. INTRODUCTION AND STATE OF THE ART .. 10

1.1 The field of radiomics ... 10

1.1.1 Biomarkers and features .. 10

1.2 State of the art ... 10

1.2.1 General workflow of radiomics research ... 10

1.2.2 Existing radiomics solutions ... 11

1.2.2.1 I2b2 ... 11

1.2.2.2 Radiomics Enabler ... 13

1.2.3 Breaking down the workflow ... 13

1.2.4 Existing specialized products/libraries ... 14

1.2.4.1 Kheops ... 14

1.2.4.2 Pyradiomics ... 14

1.2.4.3 Scikit-learn .. 15

1.3 Role and aim of this project ... 15

2. METHODOLOGY .. 16

2.1 Designing the feature manager ... 16

2.1.1 Introduction to terminologies used ... 16

2.1.2 Use cases .. 16

2.1.3 Solution overview .. 17

2.2 Technologies chosen .. 18

2.2.1 Database .. 18

2.2.1.1 MySQL ... 18

2.2.2 Back-end + API ... 19

2.2.2.1 Flask .. 19

2.2.2.2 Pandas ... 19

2.2.2.3 SQLAlchemy .. 19

2.2.3 Front-end ... 20

2.2.3.1 React ... 20

2.2.3 Architecture of project ... 20

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

5

2.2.5 Technologies comparison .. 21

2.3 Tools used ... 21

2.3.1 Amazon Relational Database Service ... 21

2.3.2 Local MySQL server .. 23

2.3.3 DBeaver .. 23

2.3.4 Visual Studio Code ... 24

2.3.5 GitHub .. 25

3. RESULTS .. 26

3.1 Database ... 26

3.1.1 Data model ... 26

3.1.2 Transforming a CSV file into database entities .. 27

3.1.2.1 CSV file input ... 27

3.1.2.2 Steps of loading data into the database: .. 28

3.1.3 Order of insertion... 28

3.2 Back-end ... 29

3.2.1 Defining the database schema with SQLAlchemy ... 29

3.2.2 ETL process ... 30

3.2.2.1 Loading raw feature sets ... 30

3.2.2.2 Loading custom QIB .. 33

3.2.3 REST API endpoints .. 34

3.2.3.1 Editing patient information (*) ... 35

3.2.3.2 Converting list of QIBFeatures into a table (**).. 35

3.2.3.3 Converting list of QIBFeatures into a scatterplot (***) .. 36

3.3 Front-end .. 37

3.3.1 Dark mode .. 37

3.3.2 Grid View .. 38

3.3.2.1 Sorting QIBS .. 38

3.3.2.2 Managing QIBs .. 38

3.3.2.3 QIB Table view .. 39

Sorting ... 39

Filtering ... 39

Pagination ... 40

Editing ... 40

Column tagging ... 40

Exporting ... 40

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

6

3.3.2.4 Uploading QIBs .. 41

3.3.3 Plot View .. 42

3.3.3.1 Statistics .. 42

3.3.3.2 Generating a bivariate scatterplot .. 42

3.3.4 Database View ... 43

3.3.4.1 Album .. 43

3.3.4.2 Patient ... 43

3.3.4.3 Modality & Region .. 44

3.3.4.4 Feature & Feature Family ... 45

4. DISCUSSION .. 46

4.1 Goal evaluation .. 46

4.1.1 Storing extracted feature sets ... 46

4.1.2 Providing interface to query and interactively compile feature sets in real time 46

4.1.3 Editing metadata of feature sets without compromising data integrity 46

4.1.4 Visualization of feature sets ... 47

4.2 Advantages of a modular radiomics solution .. 47

4.3 Values added .. 48

4.4 Points of improvement .. 48

4.4.1 Data model ... 48

4.4.2 Back-end... 49

4.4.3 Front-end ... 49

4.4.4 Visualization ... 49

4.4.5 Security .. 49

5. CONCLUSION .. 50

REFERENCES .. 51

APPENDIX I PRODUCT BACKLOG .. 52

APPENDIX II TECHNICAL GUIDE ... 54

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

7

TABLE OF FIGURES
Figure 1-1 Example of a star schema model ... 11

Figure 1-2 A sample request ... 12

Figure 1-3 i2b2 web client interface ... 12

Figure 1-4. Radiomics Enabler interface ... 13

Figure 1-5 Radiomics workflow by stage and technologies .. 13

Figure 1-6 Kheops web UI and image viewer ... 14

Figure 2-1 Use case diagram ... 17

Figure 2-2 General architecture of the feature manager ... 18

Figure 2-3 Online AWS RDS dashboard ... 19

Figure 2-4 Detailed project architecture ... 21

Figure 2-5 Comparison table of i2b2 and this application technologies .. 21

Figure 2-6 db.t2.micro specifications compared to other general instances 22

Figure 2-7 Write/Read IOP (input/output operations per second) from 27th June to 1st July 22

Figure 2-8 A table list of the application’s database from the command line client 23

Figure 2-9 DBeaver GUI, with ER Diagram view and Dashboard enabled .. 24

Figure 2-10 List of extensions used over the course of this project's development 24

Figure 3-1 Example of a feature set extraction file ... 27

Figure 3-2 Outcome CSV file ... 28

Figure 3-3 Order of inserting QIBFeature ... 28

Figure 3-4 Defining Feature table ... 29

Figure 3-5 Defining Outcome table ... 29

Figure 3-6 Defining QIBFeature relationships ... 30

Figure 3-7 Steps of loading raw QIBs .. 30

Figure 3-8 A feature set with valid columns ... 30

Figure 3-9 Adding modalities .. 31

Figure 3-10 Red: hardcoded, Green: used as patient id in Outcome table, Blue: extraction date, not

used ... 31

Figure 3-11 Random selection using offset .. 32

Figure 3-12 Linking Series, Studies, and Region .. 32

Figure 3-13 Appended DataFrame with new columns ... 33

Figure 3-14 Loading custom QIBs ... 33

Figure 3-15 Schema of Album ... 34

Figure 3-16 GET request of all albums .. 34

Figure 3-17 Nested Patient schema inside Study ... 34

Figure 3-18 Table of API's endpoints .. 35

Figure 3-19 Converting list of QIBFeatures to Table ... 35

Figure 3-20 Tree view of a table JSON .. 36

Figure 3-21 Converting QIBFeatures into scatterplot data ... 36

Figure 3-22 Sample result of scatterplot data returned ... 37

Figure 3-23 Light/Dark mode of Grid, Plot and Database views respectively 38

Figure 3-24 Sorting QIB by Albums/Date .. 38

Figure 3-25A QIB card menu ... 38

Figure 3-26 Edit form .. 39

Figure 3-27 A loaded table .. 39

Figure 3-28 Sorting arrow ... 39

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

8

Figure 3-29 Filtering for patient name .. 40

Figure 3-30 Pagination control at the bottom of table view .. 40

Figure 3-31 Edit, delete, add rows .. 40

Figure 3-32 Column tagging form ... 40

Figure 3-33 Toggling columns ... 41

Figure 3-34 Toggling rows ... 41

Figure 3-35 Upload form ... 41

Figure 3-36 Valid new QIB file ... 42

Figure 3-37 Valid custom QIB file .. 42

Figure 3-38 Valid outcome list file .. 42

Figure 3-39 Plot view .. 42

Figure 3-40 Generated scatterplot ... 43

Figure 3-41 Album tab and List of selected album's studies .. 43

Figure 3-42 Patient tab ... 43

Figure 3-43 Patient edit form (Last name is noneditable) .. 44

Figure 3-44 Modality & region tab .. 44

Figure 3-45 Modality CT's change into 'Computed tomography' is reflected in the table 44

Figure 3-46 Feature & Feature Family tab .. 45

Figure 4-1 CRUD Availability Table .. 47

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

9

ABBREVIATIONS
ACID - Atomicity, Consistency, Isolation, Durability

AGPL - Affero General Public License

API - Application programming interface

CRUD - Create, read, update and delete

CT - Computed tomography

DB - Database

DICOM - Digital Imaging and Communications in Medicine

GTV - Gross tumour volume

IOP - Input/output operations per second

JSON - JavaScript Object Notation

JSX - JavaScriptXML

PT - Short for PET, positron emission tomography

QIB - Quantitative Image Biomarkers

RDS - Relational Database Service

REST - Representational State Transfer

ROI - Region of Interest

RSNA - Radiological Society of North America

SPHN - Swiss Personalized Health Network

SQL - Structured Query Language

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

10

1. INTRODUCTION AND STATE OF THE ART

1.1 The field of radiomics
Advances in computing have led to changes in the field of medical imaging, particularly in cancer

care. Once largely a qualitative diagnostic tool (Sara Ranjbar, 2017, p. 223), that is, a tool to provide

on-hand information to aid in decision-making, a new branch of imaging research has emerged

thanks to leaps in computational performance ,which has enabled the large-scale extraction and

management of medical images.

Radiomics, as it is called, is the field of medical research where high-throughput data is extracted

from large numbers of imaging data that can come from multiple sources and patient profiles. The

advantage of radiomics lies in number, whereby levying the sheer amount of data available (patients

go through imaging multiple times during their treatment), researchers can glean quantitative

imaging features from the images using computer image detection technologies. Radiomics finds its

role in cancer treatment as a non-invasive enhancement, but not replacement, to more invasive

traditional procedures during the process of diagnosis and assessment.

1.1.1 Biomarkers and features
Biomarkers are indicators of normal or abnormal biologic processes (Sara Ranjbar, 2017). An

example of a well-known biomarker is high body temperature as indication of fever. In the context

of cancer treatment, the main source of biomarkers come from biopsy samples. Features are a

category of measurement in the process of gathering biomarker information. Continuing with the

above example, body temperature in Celsius is a feature.

Data from radiomics research not only can act as potential biomarkers, but due to its quantitative

approach, can also be used to assess feature robustness, determine the error margin of measuring

equipment on a large scale, and perform other meta-purposes (Sara Ranjbar, 2017, p. 229).

Types of features in the scope of this paper: Intensity and Texture features

• Texture features: features that depicts the textural characteristics of tumours.

• Intensity features: features that depicts the intensity of pixels in specific regions

1.2 State of the art

1.2.1 General workflow of radiomics research
The general workflow of radiomics is:

• Image acquisition

• Identification and segmentation of regions of interest

• Quantitative image feature extraction

• Data mining and informatics analysis.

There exist several solutions already on the market that comprehensively covers most of the steps in

this workflow. Section 1.2.2 will discuss these solutions.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

11

1.2.2 Existing radiomics solutions

1.2.2.1 I2b2

I2b21, short for Informatics for Integrating Biology & the Bedside, is an open source medical data

warehouse. Developed by Partners Healthcare and Harvard University and now hosted by the

TranSMART Foundation, i2b2 focuses on analytics of biological data, i.e. biomarkers in genomics and

clinical data. I2b2 is a full package solution with a self-deployable Java server and a PHP web client.

I2b2 uses a star schema model, a relational database model with a central fact table pointing to

multiple dimension tables.

Figure 1-1 Example of a star schema model

The “i2b2 Software” package is made up of 3 components that can be downloaded from the i2b2
website:

• i2b2 Workbench (client)

• i2b2 VMWare (virtual machine Image of a complete i2b2 Server installed on CentOS)

• i2b2 Source (collection of the i2b2 source code for the i2b2 clients and server)

The web client can run on most modern browsers (Chrome, Firefox, Safari) and Microsoft Internet

Explorer. To deploy the server, the following software are needed:

• Java (7.0)

• JBoss (7.1.1) for App Server management,

• Apache Ant (1.8.2), Java library and command-line tool used by the i2b2 to drive
processes defined in the i2b2 build files.

• Apache Axis2 (1.6.2), Web Services / SOAP / WSDL engine used by the i2b2 web services

A configured database that is either an Oracle, PostgreSQL, or SQL Server database set up with a star
schema entity model is also needed.

1 I2b2’s main page can be found here: https://www.i2b2.org

https://www.i2b2.org/

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

12

I2b2 treats all data as multiple Cell units, with different categories: Ontology management cells,

workplace cells, file repository cells, etc. Communication between cells is carried out in xml format.

Figure 1-2 A sample request

Figure 1-3 i2b2 web client interface

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

13

I2b2 has a robust web client system. As indicated in Figure 4, some functionalities of the web client

are:

1. Query Term: each correspond to the ontologies cell (data model) in data warehouse
2. Drag-n-Drop terms to Query tool to build query
3. Query result
4. Previous query can be accessed
5. Queries can be stored/ shared with other users

1.2.2.2 Radiomics Enabler

Radiomics Enabler2 is an opensource (AGPL licensed) web server that can connect to clinical data

warehouses (such as i2b2) using the DICOM protocol and combine with RSNA’s Clinical Trials

Processor to perform ETL for large scale projects. The software is developed by Medexprim, a French

start-up founded in 2015. Together with i2b2, it can form a workflow for radiomics research.

Figure 1-4. Radiomics Enabler interface

1.2.3 Breaking down the workflow

Figure 1-5 Radiomics workflow by stage and technologies

In order to implement the workflow of radiomics part by part, the following steps are needed:

• Loading: raw DICOM image file input is loaded into a database along with relevant metadata

• Extraction: feature values are extracted from those images using their metadata.

• Storage: Extracted feature sets are stored, to be used for machine learning

2 Medexprim’s product page can be found here: https://www.medexprim.com/radiomics-enabler/

https://www.medexprim.com/radiomics-enabler/

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

14

• Machine learning: using machine learning to create models from feature sets.

Section 1.2.4 will discuss the existing solutions on the market that handles each of these individual

steps.

1.2.4 Existing specialized products/libraries

1.2.4.1 Kheops

Kheops3 is an open-source solution for storing and viewing DICOM compliant medical images,

developed at Campus Biotech in Geneva, Switzerland.

It is a well-equipped system for managing medical imaging studies, albums, and users, but it is not

focused on managing extracted feature sets, which leads to the issue this project aims to address.

Figure 1-6 Kheops web UI and image viewer

1.2.4.2 Pyradiomics

Radiomics.io is a Boston-based online platform aimed at developing a open-source, standardized

benchmark for radiomics projects and a community resource for researchers. One of its most

popular project is pyradiomics4, an (also open source) Python package for radiomics features

extraction.

In the current context, pyradiomics is used to extract feature sets using metadata from Kheops and

actual DICOM images. The resulting feature sets are exported in CSV format.

3 Kheops’s main page can be found here: https://kheops.online
4 Pyradiomics’s main page can be found here: https://www.radiomics.io/pyradiomics.html

https://kheops.online/
https://www.radiomics.io/pyradiomics.html

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

15

1.2.4.3 Scikit-learn

Scikit-learn5 is also an open source Python machine learning package for predictive data analysis. It is

built on NumPy, SciPy, and matplotlib.

In the current context, training sets are loaded into scikit-learn in CSV formats.

1.3 Role and aim of this project
Currently, extracted feature sets are in CSV format and locally stored until they are needed for

machine learning. There is no solution to efficiently store and retrieve these files. To get feature sets

that are extracted from a particular album, users would have to manually find that album’s

metadata in Kheops, then check that with metadata values in the CSV files. To edit a patient’s

information in the feature set, or a modality name, users would have to manually change them in

each CSV file.

This project aims to bridge that gap and create a feature manager to:

• Store extracted feature sets

• Provide an interface to query and interactively compile feature sets in real time.

• Edit metadata of feature sets without compromising data integrity

• Implement simple visualization of data

 This will help users efficiently view, store, edit, query and compile feature sets for machine learning.

5 Scikit-learn’s main page can be found here: https://scikit-learn.org/stable/

https://scikit-learn.org/stable/

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

16

2. METHODOLOGY

2.1 Designing the feature manager

2.1.1 Introduction to terminologies used
This section explains the terminologies used throughout this application. These terms come from

various radiomics concepts.

• QIB: abbreviation for Quantitative Image Biomarkers. In this model, a QIB represent one

feature set (a CSV feature extraction file)

• Feature: categories of value measurement/classification. Further explanation can be found

in section 1.1.2.

• Family: categories of a feature.

• Modality: medical imaging procedure used to obtain a biomedical image set

• ROI: region of interest.

• Series: a series is a set of related DICOM images. Each series is defined by its modality and

may contain one or more regions of interest.

• Study: a study is a set of series from the same patient.

• Album: an album is a collection of studies.

• Patient: each patient can be referenced by many studies, but in the scope of this project,

each will only have one Outcome.

• Outcome: each outcome refers to one patient. In the scope of this project, only plc_status

(Pulmonary Lymphangitic Carcinomatosis status: status of tumours in the lung’s lymphatic

vessels, whether if they are spreading or not) (Naim Qaqish, n.d.) is used as a binary

outcome variable.

2.1.2 Use cases
From the frontend application, users will be able to interact with data in the database in the

following use cases:

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

17

Figure 2-1 Use case diagram

• Upload CSV: Users can upload the feature sets extracted from Kheops into the database.

Requires users to input the name of the album the set is extracted from, as well as provide a

name and description for the uploaded file.

• View the feature sets by criteria: Users can filter the sets by album and by date, as well as

manipulate the actual feature set table to filter data by each column (Region of interest,

Modality, etc.).

• Download feature sets: Users can download feature sets (filtered/unfiltered) as CSV.

• Saved custom filtered feature set: Users can save their selection for future viewing by

uploading the filtered CSV. feature set back to the application.

• CRUD operation on metadata: Users can perform some limited operations to edit albums,

feature family’s name and description, etc. As a note, CRUD operations on metadata are

limited to some entities to preserve the integrity of data.

• Visualize feature sets: Users can visualize a chosen feature set by comparing any two

features in that set. The values will be mapped onto a bivariate scatterplot.

2.1.3 Solution overview
It was decided from the start of the project that a relational database model would be used to store

the CSV files. By mapping metadata in the extracted features set into relation entities, this will allow

for querying for data by entities, instead of manually sorting the CSV files.

The feature manager consists of 3 components:

1. Database: stores data from the CSV files

2. Backend application + API: handles ETL process and provides a RESTful API

3. Frontend application: displays data using the API above, provides an interface for users

to upload CSV and filter/download feature sets

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

18

Figure 2-2 General architecture of the feature manager

2.2 Technologies chosen
This section explains the technologies used to implement the feature manager, and makes a

comparison with i2b2 (discussed in section 1.2.2.1), since i2b2 also implements some similar

features with this project.

2.2.1 Database

2.2.1.1 MySQL

MySQL6 is a popular relational database management system. The reasons for choosing MySQL for

the database in this project are:

• Open source: it is open source and mature. MySQL is extensively documented and well

supported by many libraries.

• ACID: MySQL transactions are ACID compliant (atomicity, consistency, isolation, durability)

• Server-based: MySQL is multithreaded and can handle requests from multiple processes, as

opposed to the serverless SQLite that does not support multiple clients.

• Scalability: MySQL databases can be relatively easy to scale up and migrate. Over the course

of this project, data has been hosted both online and locally (an Amazon AWS RDS

db.micro.t2 instance in Frankfurt, and a local MySQL server). There is no noticeable

difference switching between the two except for speed (since the online instance is a Free

tier instance, speed is limited).

6 MySQL’s main page can be found here: https://www.mysql.com

https://www.mysql.com/

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

19

Figure 2-3 Online AWS RDS dashboard

2.2.2 Back-end + API

2.2.2.1 Flask

Flask7 is one of the two most popular Python-based web-development framework: Flask and Django.

Both are open source and well documented frameworks, though Flask is chosen over Django in this

particular project: Flask is considered a “micro-framework” compared to Django: Flask has no built-

in admin interface, no built-in lightweight CRUD operation supports, no ORM (Object Relational

Mapping) out of the box, unlike Django which has all of these features and many others pre-

packaged. To add extra functionalities into Flask, additional plugins must be manually installed.

This makes Flask very simple to setup and considering that this backend only needs two main extra

plugins (pandas and SQLAlchemy), Flask is preferable to the more cumbersome Django in this case.

In this project, Flask is used in the backend application to setup a REST API and provide endpoints for

the frontend application to hook into.

2.2.2.2 Pandas

Pandas8 is an open source Python library for data analysis and manipulation. Pandas works by
organizing data into DataFrames: 2 dimensional “table” structure that is not unlike a CSV table.
Pandas is good for reading incoming CSV files and using them to build DataFrames, as well as
exporting compiled DataFrames to other formats, in our case JSON for the API.

In this application, pandas is used mainly for loading the raw CSV files into the application as
DataFrames, performing ETL operations on those DataFrames to load data into the database, and
transforming DataFrames into JSON responses for GET requests.

2.2.2.3 SQLAlchemy

7 Flask’s documentation can be found here: https://flask.palletsprojects.com/en/1.1.x/
8 pandas’s documentation can be found here: https://pandas.pydata.org/docs/

https://flask.palletsprojects.com/en/1.1.x/
https://pandas.pydata.org/docs/

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

20

SQLAlchemy9 is also an open source Python library that provides SQL/ORM features. It
supports SQLite, PostgreSQL, MySQL, Oracle, MS-SQL, Firebird, Sybase and others.

SQLAlchemy interacts with the database using SQL standards, but the backend application, data
entities are mapped to objects, and no actual hard coded SQL queries were needed.

In this application, SQLAlchemy is used to define the database schema, and perform read-write
operations on the MySQL database. This application uses Flask-SQLAlchemy10, a specific version of
SQLAlchemy which is packed as a Flask extension.

2.2.3 Front-end

2.2.3.1 React

React11 is a popular JavaScript library for building front-end applications. It works by wrapping GUI
elements in Components using JSX syntax and exposing their state and props (custom components
can also be defined). Variables are loaded into these components by manipulating their state and
props. React applications are made by assembling these Components together.

The library comes with a set of premade components, but extra ones can be added via installing
third-party packages.

The 3 main packages used in this application are:

• React Bootstrap12: A library of premade components that are styled using Bootstrap.

• Material-table13: a flexible Table component that was based on MaterialUI (another styling
library). The table supports column sorting, cell search, CSV exports, and exposes hooks for
custom functions.

• React-google-charts14: for visualizing features into scatterplots. React-google-charts is easy
to setup and use, with the caveat that the application must be online, since the chart is
rendered from Google’s server.

2.2.3 Architecture of project
Based on the solution overview from section 2.1.3, the chosen technologies are organized as below:

9 SQLAlchemy’s documentation can be found here: https://docs.sqlalchemy.org/en/13/
10 Flask-SQLAlchemy’s documentation can be found here: https://flask-sqlalchemy.palletsprojects.com/en/2.x/
11 React’s main page can found here: https://reactjs.org
12 React Bootstrap’s documentation can be found here: https://react-bootstrap.github.io
13 Material-table’s documentation can be found here: https://material-table.com/#/
14 React-google-chart’s documentation can be found here: https://react-google-charts.com

https://docs.sqlalchemy.org/en/13/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://reactjs.org/
https://react-bootstrap.github.io/
https://material-table.com/%23/
https://react-google-charts.com/

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

21

Figure 2-4 Detailed project architecture

2.2.5 Technologies comparison
Compared to i2b2, which is a popular solution for managing biomedical data, this project is
specifically built for managing radiomics feature sets, as opposed to general patient information.
Moreover, since i2b2 comes as a package, it is quite rigid in implementation: a mobile client would
be hard to implement, for example.

Comparison table i2b2 Flask + Pandas + SQLAlchemy + React

Definition Data model + server + interface
package for medical analytics

Data model + server + interface to
manage feature sets

Opensource yes All dependent libraries are
opensource

Focus Biomedical data, clinical patient
info

Quantitative Image Biomarkers

Technology stack
needed

Backend: Java, JBoss, Apache, xml
Frontend: IIS, PHP

Backend: Python, Flask
Frontend: React, JavaScript

Data model Based on star schema Generic relational data schema

GUI yes yes

DB Support Oracle, PostgreSQL, SQL Server (SQLAlchemy) SQLite, PostgreSQL,
MySQL, Oracle, MS-SQL, Firebird,
Sybase and others

Figure 2-5 Comparison table of i2b2 and this application technologies

2.3 Tools used

2.3.1 Amazon Relational Database Service
Amazon Web Services is a subsidiary of Amazon that provides a range of cloud storage solutions,

including hosting databases. The service is called Amazon Relational Database Service (Amazon RDS).

For its free-tier15, Amazon RDS offers 750 hours of burstable db.t2.micro instances.

15 Information about Amazon RDS’s free tier can be found here: https://aws.amazon.com/rds/free/

https://aws.amazon.com/rds/free/

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

22

Figure 2-6 db.t2.micro specifications compared to other general instances

Figure 2-7 Write/Read IOP (input/output operations per second) from 27th June to 1st July

While having an always online database was convenient, in practice the reading speed of this

instance is noticeably slow when querying for QIBFeatures and loading them into table form.

Furthermore, the database instance is designed in a way that is inconvenient to turn on and off the

database server at will. The instance will autostart if left stopped for more than 7 days16, and thus

will deplete the 750 hours limit and incur charges if left unattended. Nevertheless, this

demonstrates the capacity for this application to scale up if a paid tier is used.

16 Amazon’s announcement can be found here: https://aws.amazon.com/about-aws/whats-
new/2017/06/amazon-rds-supports-stopping-and-starting-of-database-instances/

https://aws.amazon.com/about-aws/whats-new/2017/06/amazon-rds-supports-stopping-and-starting-of-database-instances/
https://aws.amazon.com/about-aws/whats-new/2017/06/amazon-rds-supports-stopping-and-starting-of-database-instances/

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

23

2.3.2 Local MySQL server
Slow read/write speed of AWS RDS eventually led to the implementation of a more local solution.

Setting up a local MySQL Community server on Windows is easy: simply download the installer for

Windows on their official webpage and run the installer. Linux users can install from their respective

distribution's repository or download and run the .deb package if installing from a computer with no

connection.

For this application, MySQL Workbench is unnecessary, so only the server is needed.

The server can technically be managed through the command line client, but for convenience,

DBeaver will be used as the database manager.

Figure 2-8 A table list of the application’s database from the command line client

2.3.3 DBeaver
DBeaver17 is a free open source universal database manager. This tool supports a very wide range of

databases, which of course also includes MySQL. It provides the ability to connect to databases to

design and view ER diagrams, monitor traffic with the dashboard, drill-down selecting/ filtering for

data, among other features. For our application we will be using the Community version.

In the beginning of this project’s development, this tool was used to design to database schema as

well, but this process has since been moved to the backend application’s models.py.

17 DBeaver’s main page can be found here: https://dbeaver.io

https://dbeaver.io/

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

24

Figure 2-9 DBeaver GUI, with ER Diagram view and Dashboard enabled

2.3.4 Visual Studio Code
Visual Studio Code18 is a cross platform code IDE with robust features. For this application’s use, it

supports linting for Python and JavaScript.

 VSCode’s source code repository is open source, but the software itself is not (Dias, 2015), since it

ships with some extra telemetry and branding features from Microsoft. Those who prefer a more

open source IDE could opt for VSCodium19 which is built directly from the open source codebase and

thus contains no telemetry.

Both versions can be further extended by installing extensions, which provide extra functionalities

such as code formatting, opinionated linting (identify ‘dirty’ code), version control, and so on.

Figure 2-10 List of extensions used over the course of this project's development

18 VSCode’s main page can be found here: https://code.visualstudio.com
19 VSCodium’s main page can be found here: https://vscodium.com

https://code.visualstudio.com/
https://vscodium.com/

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

25

2.3.5 GitHub
GitHub is a Git-based online service for hosting project. Code for both the back-end and front-end

application are hosted on GitHub:

• Back-end: https://github.com/genttunn/python-rest-api.git

• Front-end: https://github.com/genttunn/feature-manager

https://github.com/genttunn/python-rest-api.git
https://github.com/genttunn/feature-manager

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

26

3. RESULTS
This chapter will present the result of the project. The explanation is structured by application layer:

database, back-end, front-end.

3.1 Database
This section and the next will explain how data is broken down into entities in the database.

3.1.1 Data model
This section explains the result relational data model used to store metadata. Some entities come

directly from the terminologies mentioned in section 2.1.1, some others are for enforcing many-to-

many relationships between the entities.

From left to right:

• modality: Refers to the imaging modality used in a particular series.

• series: Each series contains a reference to its modality and region(s) of interest. One series

can have multiple regions of interest, and a region of interest can be referenced by multiple

series.

• series_region: Table to represent Series and Region of Interest’s many-to-many relationship.

• region: Region of Interest. Contains region name and description.

• study: A study can contain many series. However, a study can only refer to one patient. A

study can be included in multiple albums, so the relationship between Album and Study is

many-to-many.

• album: Features from one album can be extracted multiple times, depending on the criteria,

so one Album can be referenced by many QIBs. Each QIB can only reference one album.

• study_album: Represents Study and Album’s many-to-many relationship.

• patient: Each Patient entry contains name, description, birthdate and gender.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

27

• outcome: Each outcome refers to a patient, and plc_status of the outcome is binary (0/1).

• qib: Short for Quantitative Image Biomarkers. Deleting a QIB will cascade delete all related

qibFeatures. A QIB will be represented as a table in the front-end application.

• qib_feature: Represents the value cells in each CSV feature extraction. Each QIBFeature

contains a reference to the QIB it belongs to, the Feature it represents, and a reference to

the Series_Region table, which will give it access to the Series, Study, and related

information of those entities. In the front-end application, each qib_feature entry makes up

a cell in the data table.

• feature: Each feature belongs to one feature Family.

• family: Categories of feature. For this application, we use 2 types: ‘texture’ and ‘intensity’.

3.1.2 Transforming a CSV file into database entities
To note, some of the metadata are not currently present in the extraction file (Patient

birthdate/gender, Study, Family of features, etc..) because they are not necessary for the ML

process.

However, they are needed in this application to fill a complete data model for filtering, so the

aforementioned missing metadata will be filled with mock data/ filled out by user upon uploading

the file. They can also be edited later directly from the front-end application.

3.1.2.1 CSV file input

The following figures show what an extracted feature set looks like.

• PatientID: contains a number for Outcome CSV to refer to.

• Modality: modality of the feature set.

• ROI: region of interest in the feature set.

• And the rest are feature columns.

Study, series, and family of features is not given in these files, so they will be filled with

generated mock data in the ETL process.

Figure 3-1 Example of a feature set extraction file

For the outcome CSV, we have:

• Patient_id : refers to the number part in the main feature set.

• Plc_status: the outcome chosen as outcome column in this project.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

28

Figure 3-2 Outcome CSV file

3.1.2.2 Steps of loading data into the database:

1. Album name is taken from user input in the front-end application.

2. Modality and ROI are loaded using the Modality/ROI columns. Only new values that do not

exist in the database are inserted.

3. Patient data is taken from the PatientID column. Currently, the number after “PatientLC_” is

used as the patient number for loading outcomes into the database.

4. Along with each created Patient, 3 mock Studies will also be created for them. Series, in the

ETL process, will be randomly assigned to either of these 3 mock Studies. Each newly created

series will also have a new Series_Region referencing the ROI of the same row assigned to it.

5. Feature: feature names are created from the columns of the extraction file. The Family of a

created Feature is randomly assigned to either ‘texture’ or ‘family’.

6. QIBFeature (cell) entry: from each cell, the appropriate Patient (from PatientID), Study,

Series, and Series_Region created from the above steps will be used to create a new

QIBFeature.

3.1.3 Order of insertion

Figure 3-3 Order of inserting QIBFeature

The order of looping over the cells is: column by column, from left to right, top to bottom. For

example, in figure 3-3, the order would be 1 -> 2 -> 3 -> 4. The reason for the looping order to be

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

29

column-based is because each column represents the complete data of one feature in the set. Going

by column allows for a batch insertion of that feature’s QIBFeatures (cells) in one loop. A row-based

looping order would mean switching feature every cell, and thus is less efficient.

The order of inserting QIBFeature and query for them is the same, so upon reloading data from the

database back into table form, the rows are accurate.

3.2 Back-end

3.2.1 Defining the database schema with SQLAlchemy
The process of defining models for the database can be done entirely with SQLAlchemy by defining

classes that correspond to database entities.

Naming convention: Class names in the backend application are named using PascalCase, but

without explicitly stating table names, PascalCase classes will be converted to snake_case table

names in the database.

To set up SQLAlchemy: db = SQLAlchemy(app). SQLAlchemy variables and functions are then

accessible through db.

• To define a class (entity) and set foreign keys:

Figure 3-4 Defining Feature table

Since SQLAlchemy supports ORM, a Feature’s Family can be accessed with the Feature.family

property.

• For one-to-one relationships:

Figure 3-5 Defining Outcome table

Each Patient has only one Outcome, and vice versa (in this project scope, only plc_status is used as

Outcome). To denote that relationship, simply add “uselist = False” when defining the foreign key.

• Cascading:

Default cascading behaviour is only enabled for save-update and merge (so generally UPDATE

queries). To enable them for delete there are 2 ways:

• Through SQLAlchemy ‘delete’ properties:

parent = relationship('Parent', backref=backref('children', cascade='all,delete'))

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

30

• Or through the database ON DELETE, which is ‘vastly more efficient’ (Documentation, n.d.)

than the former. This method is used in the application. To set this up from the child class, in

this case QIBFeature which will cascade delete if its QIB is deleted:

Figure 3-6 Defining QIBFeature relationships

3.2.2 ETL process
As discussed in section 3.1.2, some metadata from Kheops were not carried over to the extracted

feature set .CSV, and mock data/ default values will be used to fill the database. Those metadata are:

• Study: for each Patient, 3 random studies will be created. They then are chosen at random

for each patient to fill in the Study table.

• Series: series.name property will be from PatientID column, and each will be given a random

series_uid number.

• Family: two families will be created (‘texture’ and ‘intensity’). New features are

automatically assigned to ‘texture’. Family of feature can be edited manually later from the

GUI.

• Patient: patient.last_name will be used as a number field for inserting Outcomes (explained

more in section 3.2.2.1). Gender is by default Female (F), and birthdate as ‘2000-01-01’.

There are 2 main kinds of ETL process needed: one to load raw feature sets into the database, and

for saving custom QIB selections back into the database, due to them having different column

structure. Another ETL sub-process is also needed for loading outcomes of patients into the

database, because the outcome list is a separate CSV file.

3.2.2.1 Loading raw feature sets

Figure 3-7 Steps of loading raw QIBs

To load a QIB into the database, the user will need to provide:

• The CSV file with appropriate columns: PatientID, Modality, ROI, and feature columns.

PatientID must contain a number after PatientLC_ for the outcome list to refer to.

• Name of the album this QIB belongs to: if the name is new then a new album will be created.

• QIB name and description.

Figure 3-8 A feature set with valid columns

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

31

The main steps in adding a raw feature set are:

• Loading the CSV file into our back-end application as a DataFrame.

• Creating a new QIB entry.

• Loading metadata (Album, Modality, Region of Interest, Patient) relevant to the created QIB.

• Generating Studies/Series/Series_region data and append the newly generated

Series_region as a column into the DataFrame.

• With the Series_region appended, add the DataFrame’s cell data into our database as

QIBFeature. Thanks to Series_region, from each QIBFeature its relevant Region, Series and

by extent, Series.study, Study.patient can be accessed.

• After this the sub-process of loading the outcome list can be started, to load outcome for

each patient into the database’s Outcome table.

Detailed steps of the ETL process to clean and load a feature set into the database:

1. Find the user’s defined album by input name, or create one with that name.

2. Create a new QIB entry and set it to reference that album.

3. Loop through Modality and ROI columns to and add any new entry into the database (existing

ones are ignored).

Figure 3-9 Adding modalities

4. Add patient: With the current batch of extracted feature sets, the format of PatientID column is

like this:

Figure 3-10 Red: hardcoded, Green: used as patient id in Outcome table, Blue: extraction date, not used

The red part will be used as the patient first name, green part as last name (a temporary

solution to load outcome tables). A quirk of this project’s dataset is that the green part is used

as reference for Outcome data. Blue part is not relevant to the data and is ignored. Once the

outcomes are loaded into the table and linked to their respective patients, the patient name

can be changed.

5. Upon inserting a new patient, 3 mock studies will be created referencing that patient. This is a

temporary solution to address the lack of studies metadata from the CSV.

6. Features are now added in the same way as Modality and ROI, but instead of looping over their

respective columns (vertical loop through rows), all column headers except for metadata ones

are looped through (horizontal loop through columns). The family of the feature is left on

default as ‘texture’.

7. Adding series into studies: This is one of the more difficult part of the ETL process as it relies on

mock data (Studies). The goal here is to loop through each row and append a new column

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

32

Series_Region into the DataFrame, which would give the QIBFeature a reference to its study

and its region. To do this, we need to append an empty Series_Region column to the

DataFrame.

The first step in this part is to get the Patient of the row, this SELECT query should never turn up

empty since the Patient is already inserted into the database. After which, a random study

among the 3 belonging to that Patient is selected.

Figure 3-11 Random selection using offset

With our Study in hand, either a new Series or an existing one with the same name, modality,

and study will be created (or selected). With this Series, we simply need to find that row’s ROI,

create a Series_Region entry with that Series and Region, and append the newly created

SeriesRegion id into our Series_region column.

The result of this step is returned in DataFrame format to be used in the next step.

Figure 3-12 Linking Series, Studies, and Region

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

33

Figure 3-13 Appended DataFrame with new columns

8. Adding QIBFeature: we now have enough metadata to actually load individual cell values into

the database. With the appended DataFrame from the previous step, we loop over the table

from left to right, top to bottom and insert cell values as QIBFeature if the column is a Feature

column. Each QIBFeature will have a value, the QIB it belongs to, the Feature it belongs to, and

a reference to a SeriesRegion which gives it access to its Study and ROI.

9. The outcome list is presented as a separate CSV file that contain outcome variables, and patient

id, which is not the same as our database’s generated id. The id number is found in the

PatientID column of the main CSV, right after “PatientLC_”. Loading them into the database is a

straightforward task of filtering for the relevant patient and assigning that outcome to them.

For our application, we will now only take the plc_status column.

3.2.2.2 Loading custom QIB

The frontend application provides a dynamic table that can be filtered, sorted, and selectively

exported. To save that custom QIB back into the database the user will need to provide:

• The custom exported CSV with appropriate column names (that are automatically set with

the export): PatientName, plc_status, Modality, ROI, Series_region, and features columns.

• Album name: users can save the custom QIB to any album, but is preferable to save them in

one custom_qibs album

Figure 3-14 Loading custom QIBs

The process is very much similar to loading a raw feature set, with one difference being no extra

series or studies is needed, and the table already comes with an appended Series_region column.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

34

3.2.3 REST API endpoints
One more python library was installed to make the API work: flask-marshmallow20. Flask-

marshmallow is a object serialization/deserialization tool: it is used to deserialize objects so we

could return it as JSON format. To use flask-marshmallow, we first need to define Schemas, with

field names similar to the model’s properties:

Figure 3-15 Schema of Album

Then we can use it to dump Album into AlbumSchema and return it as JSON:

Figure 3-16 GET request of all albums

flask-marshmallow also supports nested schemas. The schema being nested needs to be defined

beforehand.

Figure 3-17 Nested Patient schema inside Study

The API exposes the following endpoints:

Method Endpoint Description

GET /albums Return list of all albums

POST /albums Add new album

PUT /albums/<album_id> Edit name and description of album

DELETE /albums/<album_id> Delete album (only albums with no qibs referred)

GET /patients Return list of all patients

PUT /patients/<patient_id> Edit patient information (*)

GET /modalities Return list of all modalities

PUT /modalities/<modality_id> Edit name and description of modality

GET /regions Return list of all regions

PUT /regions/<region_id> Edit name and description of region

GET /families_features Return list of all feature families. Each family has a
nested list of its features.

PUT /features/<feature_id> Edit name and description of feature

20 flask-marshmallow ‘s documentation: https://flask-marshmallow.readthedocs.io/en/latest/

https://flask-marshmallow.readthedocs.io/en/latest/

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

35

POST /families Add new family

DELETE /families/<family_name> Delete family (only those with no features)

GET /features/<qib_id> Return list of features in a particular QIB

GET /qibs Return all QIBs

GET /qibs?album=<album_id> Return list of QIBs of a particular album

GET /qibs?date=<date_string> Return list of QIBs created after input date

PUT /qib/tag/outcome/<qib_id> Edit outcome_column of a QIB, return updated QIB

PUT /qib/<qib_id> Edit a QIB’s name and description

DELETE /qib/<qib_id> Delete a QIB

GET /qib_features /<qib_id> Return all QIBFeatures of a QIB (**)

GET /statistics Return current count of current series, studies,
patients, QIBs in database

GET /chart/scatterplot/<qib_id>
/<feature_1>/<feature_2

Return a list of QIBFeature values of 2 features of a
QIB, and their outcome status (***)

Figure 3-18 Table of API's endpoints

3.2.3.1 Editing patient information (*)

Users can edit patient’s first name, birthdate, gender, and plc_status. Last name is read-only, since

new Outcome CSV files rely on the last_name number as a reference (section 3.2.2.1)

3.2.3.2 Converting list of QIBFeatures into a table (**)

By order of insertion (right-to-left, top-to-bottom of table), QIBFeatures in the database are always

sorted by the same order, and we can leverage that order to turn the list of QIBFeatures back into

table form, and also add extra columns. First, the list of QIBFeatures belonging to a QIB is queried,

then it is put through a converter to turn it back into a DataFrame:

Figure 3-19 Converting list of QIBFeatures to Table

Explanation: first we create an empty dictionary and define the metadata/outcome keys. Then the

list of QIBFeature is looped through, and every time QIBFeature.feature changes (including the first

time), a new key is made. If QIBFeature.feature is the same, then QIBFeature.feature_value is

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

36

appended to that key. For the first iteration only, metadata and outcome column values will also be

appended to their respective keys, to prevent duplicates of these columns leading to uneven column

lengths. Finally, the dictionary is converted into a DataFrame (column lengths must be the same) and

returned in JSON with ‘records’ orientation.

Sample JSON result: Array of 91 objects, each object has 98 key-value pairs -> Table of 91 rows and

98 columns.

Figure 3-20 Tree view of a table JSON

3.2.3.3 Converting list of QIBFeatures into a scatterplot (***)

The goal is to create a bivariate scatterplot of 2 features, based on their outcome value. For this

application, plc_status is used as the default outcome value. First, a list of QIBFeatures from 2

selected features are queried from the database. Due to the order of insertion (left-to-right, top-to-

bottom), this list will be in the same order as though we select 2 columns from the CSV table.

Figure 3-21 Converting QIBFeatures into scatterplot data

With the QIBFeatures selected, an array of arrays is created containing the feature values, as well as

their patient’s plc_status (that we could access from a QIBFeature.series_region).

Sample JSON result: Array of 92 arrays, with 1 being the column names, and 91 data points.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

37

Figure 3-22 Sample result of scatterplot data returned

3.3 Front-end
The front-end application is divided into 3 main parts:

• Grid view: users can query for QIBs and load them into an editable Table, as well as upload

new CSV files. This is the default part.

• Plot view: users can generate bivariate scatter plots of any two features from a QIB. General

statistics of the database are also displayed here.

• Database view: users can perform CRUD (add, edit, delete) operations on various metadata

entities.

3.3.1 Dark mode
Users can switch between light and dark mode by clicking the moon/sun icon at top right corner.

Theme reference will be saved as local storage and persists the next time the frontend application

launches.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

38

Figure 3-23 Light/Dark mode of Grid, Plot and Database views respectively

3.3.2 Grid View

3.3.2.1 Sorting QIBS

Figure 3-24 Sorting QIB by Albums/Date

QIBs can be sorted by Album or by Date (QIB created since the selected Date). The date selector

comes with a calendar for easy selection.

3.3.2.2 Managing QIBs

Figure 3-25A QIB card menu

For each QIB, users have the option to either load it into table view, edit name and description, or

delete the QIB. Loaded QIB card will have a different colour then the others in list.

Clicking the edit button brings up a form for users to type in a name and description of the QIB. Both

fields are required. The QIB list will reload after submitting.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

39

Figure 3-26 Edit form

3.3.2.3 QIB Table view

Figure 3-27 A loaded table

Sorting

Rows can be ordered by a specific column’s value by clicking on the black arrow beside each

column’s name. Hover mouse over column’s name to make the sorting arrow appear.

Figure 3-28 Sorting arrow

Filtering

Rows can be filtered by typing in the filter input for column search, or the search bar for a wider

search.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

40

Figure 3-29 Filtering for patient name

Pagination

Users can select the number of rows appear in each page (5-10-20 rows), and navigate pages using

the arrows.

Figure 3-30 Pagination control at the bottom of table view

Editing

Users can edit, delete and add rows by clicking on the following buttons, but changes are only static,

and can be exported to CSV. They are not persisted in the database.

Figure 3-31 Edit, delete, add rows

Column tagging

Users can tag columns as outcome or as metadata column by clicking on . Tagged

columns shows up as red for outcome and blue for metadata in the table. Column tags will be also

set as file’s name on export.

Figure 3-32 Column tagging form

Exporting

To export the table into CSV, users can click on button.

Users can either export only the current page or all rows by toggling between

and .

To select columns for export, users can click on the and toggle columns they want to export.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

41

Figure 3-33 Toggling columns

To select rows for export, check the checkboxes next to rows for export, and click .

To undo rows selection, reload the QIB.

Figure 3-34 Toggling rows

3.3.2.4 Uploading QIBs

To open the upload menu, click on

Figure 3-35 Upload form

All fields are required. However depending on the QIB type, the CSV file will look different. Only the

feature columns can be added or removed, but others are required.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

42

Figure 3-36 Valid new QIB file

Figure 3-37 Valid custom QIB file

Figure 3-38 Valid outcome list file

3.3.3 Plot View

Figure 3-39 Plot view

3.3.3.1 Statistics

The bar with 4 circles depicts current number series, studies, patients, and QIBs in the database.

3.3.3.2 Generating a bivariate scatterplot

To start, users need to click on , and choose the QIB they want to visualize. After

selection, the list of features present in that QIB will be loaded, and two features can be picked.

To make the plot, users can then click on .

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

43

Figure 3-40 Generated scatterplot

Data point information is displayed on mouse hover.

3.3.4 Database View
Database View is divided into 4 tabs on the left sidebar: album, patient, modality/region, and

feature/feature family.

3.3.4.1 Album

Figure 3-41 Album tab and List of selected album's studies

From the album tab users can edit name and description of albums, add new albums, and delete

albums. Only albums that have no referenced QIBs can be deleted.

Users can also view the list of studies of each album by clicking .

3.3.4.2 Patient

Figure 3-42 Patient tab

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

44

From the patient tab users can view and edit patient information. Editable information includes

first_name, birthdate, gender, and plc_status. Last_name is a read-only field and not editable due to

the reason mentioned in section 3.2.2.1.

Figure 3-43 Patient edit form (Last name is noneditable)

3.3.4.3 Modality & Region

Figure 3-44 Modality & region tab

To preserve data integrity of the database, deleting Modalities/ Regions is restricted, however, they

are fully editable, and any changes made here will show up in the loaded Table in Grid View.

Figure 3-45 Modality CT's change into 'Computed tomography' is reflected in the table

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

45

3.3.4.4 Feature & Feature Family

Figure 3-46 Feature & Feature Family tab

From this tab users can

• Add/edit/delete feature families

• Change feature’s name and switch features from one family to another

Only families with no features can be deleted. The small blue badge next to each family’s name

represents how many features there are in that family.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

46

4. DISCUSSION

4.1 Goal evaluation
From section 1.3, this section will discuss how the implemented solution performs compared to the

original goals:

• Store extracted feature sets

• Provide an interface to query and interactively compile feature sets in real time.

• Edit metadata of feature sets without compromising data integrity

• Implement simple visualization of data

4.1.1 Storing extracted feature sets
As long as the raw CSV file is in the correct format, then this application will be able to store it into

the database. By essentially querying for data according to the initial insertion order explained in

section 3.1.3, stored feature sets can be correctly loaded back into table form, while still maintaining

advantages of a relational data model.

In addition to raw feature sets, this application can also be used to store custom feature sets (only

feature sets filtered using the provided Table in the application) by exporting and reuploading them

as a Custom QIB. This allows for saving custom filtered feature sets in the database, since having to

save them locally would somewhat defeat the point of the project.

4.1.2 Providing interface to query and interactively compile feature sets in real time
The Grid View (section 3.3.2) part covers this goal. QIBs can be filtered by album and upload date.

The QIB Table is full-featured and provides functionalities for columns and rows

search/filter/sort/select, as well as CSV export. Users can directly search for a QIB, load it, customize

it and export it into CSV from the web interface without looking at any raw CSV feature sets.

4.1.3 Editing metadata of feature sets without compromising data integrity
CRUD operations can be performed on some of the entities from the web application interface. The

symbol * means the operation is limited to an extent. The completeness of CRUD operations

implemented will be measured by CRUD Availability rate.

While not all entities should be weighted the same (Series and Studies have nearly no impact on the

application’s performance, for example), this will give an approximation of how much the database

is available for use from the web application interface.

Method of calculation:

For each entity:

• An available CRUD operation counts as 25%

• An available CRUD operation with limitations (* symbol) counts as 12.5%

• Maximum rate is 100% for all four available CRUD operations with no limitations.

Total Availability rate is the average rate of all entities.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

47

A.Rate
(%)

Entity CRUD operations
available

Reason for limitations

87.5 Album Create, Read,
Update, Delete*

Deleting albums with children QIBs with set those QIB’s
album to null, which makes them unsearchable unless all
albums are displayed.

25 Study Read Studies info are filled with mock data, they currently do
not affect the app’s functionalities

0 Series None Series info are filled with mock data, they currently do
not affect the app’s functionalities

50 Modality Read, Update Deleting modalities will irreversibly affect all related
entities (series, series_region, qib_feature)

50 Region Read, Update Deleting regions will irreversibly affect all related entities
(series_region, qib_feature)

87.5 QIB Read, Create*,
Update, Delete

Uploading works if the input CSV has correct columns.

25 QIBFeature Read Entity is too granular and connected for CUD operations.
Can be edited in QIB Table, but changes will not be saved
to database.

50 Feature Read, Update Deleting feature will irreversibly affect related QIBs.

100 Family Read, Create,
Update, Delete

Can only delete feature families with no feature. Switch
all children features to another family before deletion.

37.5 Patient Read, Update* Cannot update last_name (section 3.2.2.1)

50 Outcome Read, Update No point in creating orphan outcomes with no patient.

51.1% Average CRUD availability rate

Figure 4-1 CRUD Availability Table

4.1.4 Visualization of feature sets
The application provides some visualization functionalities, but it was not the main focus of this

project. The current front-end application implements a visualization in the form of bivariate scatter

plots, and the relational data model is capable of supporting other types of visualization. An example

of another type visualization would be outcome distribution by patient’s gender.

4.2 Advantages of a modular radiomics solution
“Modular solution”, in this context, means solutions that are not full-package and support all four

steps in the radiomics workflow (Load, Extract, Storage, Machine Learning) (section 1.2.3).

This thesis project argues for a more modular approach to implementing radiomics research

projects.

Flexibility: Full-package solutions, such as i2b2, can suffer from long term bugs and downsides that

are, due to its scale, hard to address. By keeping components of the solutions modular and

interchangeable, it is easier to isolate a problem in each component, or to change them out

completely.

Case in point, this project’s REST API can be reused with any front-end client. From the backend side,

the data model can be modified without breaking the front-end client as long as then REST

endpoints remain the same.

Scalability: It is not efficient to implement the full-package solution for small scale projects. Modular

solutions can scale to accommodate more types of projects.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

48

Specialization: Modular solutions allow for implementing only components relevant to the goal of

the project, without having to install unnecessary components.

Accessibility and Testing: Modular solutions are easier to set up and carry out unit tests. One of

i2b2’s drawbacks is its difficulty in installation and testing (Wagholikar KB, 2018). This project

application was developed with Python and JavaScript, which are popular programming languages

with well-developed testing frameworks.

4.3 Values added
This project shows that storing feature sets using relational entity model is feasible and desirable.

There are still points of improvement with the data model (to be discussed in section 4.4), but in

general, it can be implemented well.

The project also shows benefits of managing feature sets using the relational entity model.

Compared to manually sorting through CSV files, querying and editing metadata entities in the

feature manager is far more efficient. It is possible to both view feature sets in their original table

format and enjoy the perks of a relational data model (e.g. metadata query and visualization).

Additionally, utilization of Object-Relational mapping (SQLAlchemy) in the back-end application has

been very successful and is highly recommended for future projects. However, in some cases there

can be performance differences between ORM calls and regular SQL calls, so the documentation

should be checked carefully.

4.4 Points of improvement
This section will discuss the current drawbacks of the application and room for future improvement.

4.4.1 Data model
The data model is rigid and heavily dependent on the column structure and quirks of input CSV files.

This has been a major hurdle in the course of developing this project. Changes in the CSV file

metadata structure can result in total change in the data model. For example, the Outcome table

relies entirely on the CSV file having the PatientID field in correct format (section 3.2.2.1).

As such, it is not possible to upload any random feature set into the application without checking if

the columns and data format are correct.

A possible solution would be to implement a live csv editor in the application front end before

submitting the file. However, this would only be of use if the user does not have access to an existing

CSV editor (Excel for example). In any case, a stable and unchanging CSV file standard is needed in

order to make this data model work.

Some of the entities in the data model are very interconnected with each other and it is not possible

to delete or modify them without significantly affecting the others and the overall integrity of the

database.

With the current project’s scope, only plc_status is used as the outcome for patients, and thus the

application can only support feature sets relevant to plc_status. A point of improvement would be to

add more outcome properties in the data model’s Outcome table, to accommodate different types

of dataset. This will also make the Column tagging feature in the front-end web interface much more

useful.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

49

4.4.2 Back-end
In a similar fashion, the ETL is also dependent on the format of input CSV files. The ETL process can

be slow, especially if connected to a remote database and internet connection is weak.

Another point of improvement was the fact that this project has not managed to combine querying

and loading multiple QIBs at once. The current function to convert QIBFeatures into Table dictionary

requires the resulting dictionary to have no empty rows and columns, which would be the case if the

QIBs contain different feature columns/ different number of rows. A possible solution would be to

comb the selected QIB beforehand and taking only intersecting columns before conversion.

4.4.3 Front-end
The QIB table provides cell and column CRUD, but changes are not saved to the database due to

integrity issues. Exporting a CSV and immediately reuploading them works, but if the user makes any

edit to the local file before reupload, especially to the Series_region column, the saved file might not

be stored correctly in the database.

As discussed in section 4.4.1, with an Outcome table with multiple outcome properties, the web

interface could implement dynamic outcome column loading, and user can choose which outcome

to display in table view or in visualization.

4.4.4 Visualization
Current visualization capability is simple and limited, but there is room for improvement in this area.

The current visualization library used is react-google-charts, but there are many other more

extensive libraries available. One suggestion is Plotly, a JavaScript open source graphing library

based on d3.js and stack.gl.

4.4.5 Security
One area this project has not implemented was security. It would be good to implement user login

to the application and enable user roles. For example, guests and regular users can only add and

manage QIBs and Albums, while superusers can edit/delete other metadata like Modality and

Region of Interest.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

50

5. CONCLUSION
This thesis project aims to create a fully usable tool to manage feature sets and enable user to store,

filter, customize and export them without opening any CSV file. To that end, the project has mostly

achieved the original goal, albeit with some limitations.

One of the more challenging part of developing this application was the design of the relational data

model to transform a CSV table into relational model, and still be able to query and reformat them

back into table form. This problem has been solved at the cost of enforcing a very rigid data model

that might not adapt well to changes in CSV input.

The dataset used for populating this project’s database was limited (less than 10 CSV files). As such,

this project application has only been confirmed to work in testing, and much further improvement

and testing need to be done before it can be used in production.

To start on improving this application, it is recommended to pull this project from GitHub and try it

out first, as the data model and data sets can be populated with a few commands. The focus point

for improvement of this project is on the database model to make it more flexible and forgiving to

new changes, along various other possible improvements.

Overall, this thesis project has been a good challenge in data modelling and Python/JavaScript

programming and an invaluable learning experience. Despite various drawbacks, the project is fairly

successful and hopefully it will be of help to future radiomics project.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

51

REFERENCES
Dias, C., 2015. VSCode Program Manager's comment on VSCode licenses situation. [Online]

Available at: https://github.com/Microsoft/vscode/issues/60#issuecomment-161792005

[Accessed 29 6 2020].

Documentation, S., n.d. SQLAlchemy Documentation. [Online]

Available at: https://docs.sqlalchemy.org/en/13/orm/cascades.html#cascade-merge

[Accessed 30 6 2020].

Naim Qaqish, F. G., n.d. Lymphangitic carcinomatosis. [Online]

Available at: https://radiopaedia.org/articles/lymphangitic-carcinomatosis

[Accessed 23 7 2020].

Sara Ranjbar, J. R. M., 2017. An Introduction to Radiomics: An Evolving Cornerstone of Precision

Medicine. In: Biomedical Texture Analysis: Fundamentals, Tools and Challenges. London: Elsevier

Ltd., p. 223.

Wagholikar KB, M. M. D. P. e. a., 2018. Automating Installation of the Integrating Biology and the

Bedside (i2b2) Platform. Biomed Inform Insights, pp. 1-2.

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

52

APPENDIX I PRODUCT BACKLOG

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

53

Bachelor Thesis
Web-based platform for managing quantitative image biomarkers

54

APPENDIX II TECHNICAL GUIDE
GitHub repositories link:

• Back-end: https://github.com/genttunn/python-rest-api.git

• Front-end: https://github.com/genttunn/feature-manager

To set up the project:

• Setup a MySQL server, either online or local. Create a database called ‘features-db’

• Install node.js

• Pull this project’s back-end and front-end from Github.

• Open the back-end application (python-rest-api), install the requisite package with pip.

• Make a file in python-rest-api/feature_manager/ called dbparams.py, fill it like picture with

the variables being the created MySQL from above:

• Open a terminal at python-rest-api/ and type python to open a Python console there

• Type the following commands one by one to create the data model in database and insert

some basic metadata:

• Finally, quit Python console and start the back-end application with python app.py

• Open a terminal in the front-end application (feature-manager), type npm install to install

dependencies, then npm start to start the React application. The app is now empty because

there are no QIB uploaded yet.

• From the web app, upload the following given CSV files to the database. These files can be

found in python-rest-api/csv/:

https://github.com/genttunn/python-rest-api.git
https://github.com/genttunn/feature-manager

