
 ingenieurwissenschaften

SSttuuddiieennggaanngg SSyysstteemmtteecchhnniikk
VVeerrttiieeffuunnggssrriicchhttuunngg IInnffoottrroonniikk

DDiipplloomm 22000066

GGrruubbeerr AAlleexxaannddeerr

EEvvaalluuaattiioonn ooff SSoollaarriiss aanndd QQNNXX
ffoorr aaeerroonnaauuttiicc rreeaall ttiimmee

ssiimmuullaattiioonn ssooffttwwaarree

Professor Christophe Bianchi
 François Corthay

Expert Jean-Marie Calluaud

Begin 04.09.2006
Hand-in date 16.02.2007

Presentation 21.02.2007

Evaluation of Solaris and QNX for aeronautic real time simulation software

Introduction

My name is Alexander Gruber and I’m currently 23 years old. This report is the result of
my final diploma work, which I was able to absolve with Airbus in Toulouse as a part of my
education as electrical engineer. I visit the University of Applied Sciences HEVs1 in Sion,
Switzerland and follow the course Infotronics.

Airbus is nowadays world leader in producing airplanes and has outsold in 2005 for the
first time in history the biggest concurrent Boeing. With a continuous development of know-
how and technique, Airbus is producing over 14 different airplane types. But not only the
production of these airplanes is important. A long time before such a machine takes off for the
first time, simulations are calculating the behaviour of the airplane. But the simulation is not
only about the airplane itself. Environment, aerodynamics and flight behaviour are being
simulated as well. Therefore, Airbus is using very powerful computers and real-time
operating systems.

But this architecture has one big disadvantage, the price. To be able to operate with very
specific software, very specific hardware is needed as well and that is everything else than
cheap. When the operating systems could be exchanged with other hardware-independent
systems, the costs could be decreased tremendously. Sun Microsystems and QNX Software
systems have both published now a new version of their latest operating system, running on
x86 architectures. This is actually the first Solaris ever, being compatible to x86 instead of
SPARC architecture.

During this diploma work, the two operating systems have to be downloaded, installed and
studied. To test out the performances, Airbus has already developed multiple test programs
called LibTIM and BGenerique. With these tests, the timer performances of a system can be
evaluated and judged. Because portability is very important for Airbus, complex real-time
simulation application, called DSS (Distributed Simulation Software), has to be ported,
compiled and executed.

So far, all the programs and source codes exist already and just need to be changed and
modified. But timers are not the only important component for a successful real-time
operating system. Therefore, a message queue and semaphore test program has to be
implemented and executed. Once all tests are realized, this report should allow the reader to
get an idea of these two operating systems and their performances.

1 Find more information on: www.hevs.ch

Alexander Gruber Page: 2 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Index

Company presentation .. 5

A little bit of history ... 5

Airbus ... 5

The company Airbus France SAS .. 6

Production site Toulouse .. 7

Working environment... 7

Software department EYYW.. 8

Solaris 10 .. 10

A little bit of history ... 10

About Solaris 10 ... 10

Installation .. 15

Handling ... 17

Support ... 18

QNX Neutrino 6.3 .. 19

A little bit of history ... 19

About QNX 6.3 .. 19

Installation .. 24

Handling ... 24

Support ... 26

QNX Momentics .. 26

Tick size.. 32

Test programs ... 33

LibTIM ... 33

Generic created Test (BGenerique) .. 37

Timer Latency (only QNX) .. 38

Shared memory... 38

Alexander Gruber Page: 3 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Fork system call.. 38

Message queues .. 40

Semaphores... 42

Sorting algorithm.. 44

Portability ... 47

Conclusion.. 48

Oneshot, absolute ... 48

Oneshot, relative... 48

Periodic, absolute ... 49

Periodic, relative... 49

Semaphore .. 49

Message Queue... 49

Illustration Index .. 51

Links ... 53

Solaris 10 .. 53

QNX 6.3 ... 53

General information & links... 53

Books.. 53

Appendix .. 54

Information about the thesis ... 54

Bench Generique (BGenerique) results.. 55

Semaphore test results .. 61

Message queue test results.. 68

Installing network card under Solaris 10.. 77

Content of the supported CD-ROM ... 80

Alexander Gruber Page: 4 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Company presentation
A little bit of history

In October 1920, Emile Dewoitine, one of the early flight pioneers, founded his own proper
company: the Dewoitine airplanes construction enterprise. He installed his factory in
Toulouse for producing his first transportation airplane, the Dewoitine 338. From 1921 until
1931, this factory produced fighter aircrafts and sailplanes before being nationalized and
renamed as Société Nationale de Construction Aéronautique du Midi (SNCAM). This group,
which changed it’s name into Sud Aviation after a couple of years, had it’s first huge
technical and commercial success through the realization of 270 airplanes of type
“Caravelles” between 1958 and 1973. Further the story continuous with a rather legendary
airplane: Concorde, which had his first flight on the 2nd march 1969. Realized in a partnership
with British Aircraft Corporation, Concorde is still one of only two ever realized supersonic
airplanes used for civil aviation. Even after it’s grounding in year 2000, caused by a deadly
accident in Paris, it never lost its very special charm and attraction.

January first 1970, the enterprises Sud Aviation, Nord Aviation and SEREB amalgamated
for founding the Société Nationale Industrielle Aérospatiale (renamed Aérospatiale in 1984).
It took part at founding the joint venture group Airbus Industries, which main interest should
be the production of civil aviation aircrafts.

Later on in June 1999, Aérospatiale amalgamated with Matra hautes Technologies (a
Lagardère group) and founded the Aérospatiale Matra with the participation of Dassault
Aviation, becoming the 2nd largest company in Europe and the 5th largest worldwide in
aeronautical defence sector. Next step in logic of fusions Europe wide, EADS (European
Aeronautic Defence and Space Company) was founded in July 2000. EADS is a result of
fusion between Aerospatiale Matra with its European partners DASA and CASA. This newly
founded group places himself as number one in Europe in civil aviation and employs
approximately 103’000 workers placed in 90 production sites spread all over the world.

Airbus
Toward the end of year 2000, the European commission gave its agreement to transform

the consortium GIE Airbus as an integrated single company. EADS and BAE SYSTEMS
created in June 2001 AIRBUS SAS, which is as well divided into four sections: AIRBUS
France, AIRBUS Deutschland, AIRBUS España and AIRBUS UK. Nowadays, Airbus
belongs to 20% BAE Systems and to 80% EADS.

Airbus, with its 55000 employees spread over 15 manufacturing places in all Europe, has put
himself as number one worldwide before its biggest opponent Boeing. With a turnover of 28
billion euros in year 2005, Airbus is in a very comfortable position comparing to Boeing. And
an end is not in sight; there are still approximately 2000 aircrafts to be delivered. Airbus is
situated in a market for aircrafts with more than 100 places. Nowadays, the fleet consists of
single corridor aircrafts (A318-A319-A320-A321) as well as of jumbo jets (A330-A340-
A380). The production of the very successful type A300-A310, which is used for civil cargo
transport, will come to an end with the delivery of number 878 at the end of year 2007. The
latest newly born, A380 (which had its first flight on April 27th 2005) has nearly passed all
the certification flights. The first delivery is planned for the end 2006.

At the moment, there is another project being developed: the A400-M, which is a military
cargo aircraft. First flight is planned for the end of 2007.

Alexander Gruber Page: 5 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Illustration 1: Range/Capacity Diagram for the different Airbus airplane types2

Illustration 2: Airbus Europe with zoom on Toulouse

The company Airbus France SAS
Airbus France SAS is divided into four different production places: Toulouse, Méaulte,

Nantes and Saint Nazaire.

2 1nm is equal to 1852m

Alexander Gruber Page: 6 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Production site Toulouse
With its 15000 employees, Toulouse is the biggest and most important production site of

Airbus. In Toulouse, the underneath listed activities can be found:

 Research office
 Fabrication of iron and titan parts
 Electrical fabrications
 Assembly of the engine pylons
 Production of avionics equipment
 Final assembly line (A380, A340…)
 Commercial furnishings
 In-flight and ground testing
 Administration office

Those 15000 employees are working on sites north west of Toulouse, using a surface of
440 hectares. They can be split up into historical production sites:

 Blagnac
 Saint Martin
 Saint Eloi
 Breguet

And newly built production sites :

 Guynemer
 Clement Ader (A330/A340)
 Lagadère for final assembly line of the A380

Working environment
The Department for Avionics and Simulation Products is a part of the competence centre

for systems and test of integration (EY). Founded in 1964 for the Concorde program, it is
responsible for delivering electronically products and software systems for the avionics
market, which gave him the status of being a company within the company.

It’s main activity can be split up into two categories:

 Avionics: realization of electronically embedded equipment for Airbus and ATR
(flight commands, alarms, communication, braking…)

 Simulation:
o Study: evaluation of research simulators of four different types:

 Prospective (EPOPEE): Prospective study of organization for
ergonomically equipment for future cockpits.

 Conception: Validation of the specifications delivered from the
research office.

 Development, airplane –1: Precise the rules for flight commands, for
autopilot and for the interface man/machine inside the cockpit. Allows
verifying the aspect “quality of flight”.

 Integrations, airplane 0: Global integration of real equipment, first
flight preparations, realization of a maximum of certification tests.

o Training: Simulators for the equipment education as well as for maintenance
teams

Alexander Gruber Page: 7 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Software department EYYW
Within the Department Avionics and Simulation Products, the Software Department is the

pole of skill and expertise in field of the software. The main missions of the department are:

 Supply of skills, methods and tools at the production departments for their realization
of operational objectives.

 Prospective studies on new technologies, architectures, methods and software
workshops.

 Studies aiming at the increase of performance of the systems.
 Implementation, on demand of the Centre of Skill of the company, missions of

expertise in its field of skills

Illustration 3: Organization of EYYW department

The software department is responsible for research, development and maintenance of the
software programs. It’s defining new architectures for the simulation software programs for
the A380 and A400M programs for example. It is as well responsible for the functionality of
the already existing software applications.

The group Communications and Interfaces (EYYWOC) has the task to research, propose
and conceive data-processing architectures for the simulators as well as for developing and
maintaining the software interfacing the different architectural elements. It is within this
service that I worked out my diploma work.

So remains the question: why Airbus has interest in my diploma work? A simulation
system consists of 4 different layers: application, scheduler, OS and hardware.

Existing system

Application

Scheduler and
Tools

Operating System
Unix, Linux

Hardware

These layers are
being ported to

different OS
systems and then
sold to simulator
manufacturers

System on the market

OpalRT or ADi offer
complete systems
based on a QNX
operating system

Application

Scheduler and
Tools

Operating System
QNX

Hardware

Illustration 4: Why interest in QNX and Solaris?

Alexander Gruber Page: 8 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Nowadays, Airbus is using architecture with different operating systems. While the
application and scheduler layer always remains the same, the operating system can change
between the simulators. Unix and Linux are the most common so far but maybe in future
there might be as well Solaris or QNX. Airbus is selling these two layers as well to simulator
manufacturers so that the realism of the simulator is as high as possible. When now a
manufacturer should be interested in having these layers compliant with another operating
system, Airbus has to be flexible and port the applications to the new OS. To simplify this
possible process, the systems are being tested out for their real time performances already in
advance.

To reduce costs and development time, OpalRT and ADi are now offering complete
systems with the three last layers, means: scheduler and tools, operating system and hardware.
Under many different systems, a QNX system is available as well. Therefore, it is interesting
to know, if this new operating system is as real-time friendly as the existing systems today.

 This diploma work will take place over 5 months and will be divided into several different
topics. The first and mandatory task was to gather information about these two operating
systems, to download the source and to install them on their target systems. Solaris is not as
unknown in Airbus as QNX, because some of the architectures are already Solaris SPARC
machines. QNX is completely new for everybody and we were very happy to have the
possibility of a presentation, held by Franck Vancoellié and Sean Meroth. Thank you again
guys for your time and knowledge!

As mentioned before, I had the chance to accomplish my diploma work in the Software
Department. To them, the most important point in a system is the real time performance. To
test these systems under real conditions, a complex real time simulation program was ported.
This software is responsible to communicate between multiple host machines, all running a
simulation software and is called DSS (Distributed Simulation Software). Through the
portage of this application, I was able to test out the development tools on each system as well
as the POSIX compatibility.

To communicate between different target systems, a precious synchronization is mandatory
and therefore, timers cover a very important role in real time programming. By implementing
Airbus software called LibTIM and BGenerique, the POSIX compatibility, thread
performance and real time priorities could be tested out. Even though the current QNX
version was not SMP (Symmetric Multi Processing) compliant, Solaris could be tested out as
well under multi-processor environment. QNX Software System was offering a multi
processor host machine, capable to run QNX but we decided to do without because of the
short amount of time we had left.

All the tasks so far have been more research than active development. To get a better
overview on the real time performances concerning time consumption, several test programs
were written. Especially semaphores and message queues are an often used tool for process
synchronization. The fact, that the programs are not very complicated and on every system
exactly identical, makes it very interesting for a final judgement concerning the over all
performance of these systems.

Alexander Gruber Page: 9 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Solaris 10
A little bit of history

Solaris is developed and distributed by the Sun Microsystems company with its headquarter
in Santa Clara, California, USA. Solaris is a derived version of the BSD (Berkeley Software
Distribution) introduced in the early 1990s under the name SunOS 5.0 or Solaris 2. In Solaris
is always incorporated the SunOS and is considered as an operating system plus a graphical
Environment. In its version name is the version of SunOS included, although the major
version has been dropped. For example the new Solaris 10 operating system is based on
SunOS 5.10. The picture below shows the historical tree of Solaris 10:

UNIX PD-7

UNIX Time Sharing System 1 to 4

UNIX Time Sharing System 5 & 6PWB / UNIX

UNIX Time Sharing System 7 1 & 2 BSD

3 BSD

UNIX 32V

4.1 BSD

SunOS 1.0

SunOS 3.2

UNIX System III

UNIX System V

UNIX System V
Release 4

Solaris 2

Solaris 10

Illustration 5: Historical tree of Solaris 103

About Solaris 10
Solaris 10 is currently freeware, including a 30-day trial licence for its IDE (Integrated

Development Environment). But even after the expiration of this trial licence, the operating
system itself remains completely functional. As the former operating system versions have
only been compatible with SPARC processors, Solaris 10 can now as well be installed on x86

3 Source: http://upload.wikimedia.org/wikipedia/commons/5/50/Unix_history-simple.png

Alexander Gruber Page: 10 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

processor architectures. This makes it very interesting, because the x86 systems are much
cheaper as the specific SPARC systems.

Solaris 10 comes along with some features no other operating system can claim so far. This
is how Sun describes the new features:

System Analysis Tools
 Powerful thread analysis and monitoring tools, including lockstat, truss, and pstack
 Memory management and debugging tools, including libumem, a high-performance

multithreaded memory allocation library with built-in monitoring functions
 Support for Intelligent Platform Monitoring Interface (IPMI), an industry standard for

“lights out” management of x64/x86-based servers
 Modular Debugger (mdb) and Kernel Modular Debugger (kmdb), powerful and

extensible tools for monitoring and analyzing applications and kernel routines
 System and application core administration and debugging tools
 Sun Validation Test Suite for hardware testing and analysis

Process Accounting and Statistics
The Solaris 10 project and task facilities allow to label and separate workloads, as well as

monitor resource consumption by each workload. The extended accounting subsystem
captures a detailed set of resource consumption statistics on both processes and tasks. In
conjunction with the Internet Protocol Quality of Service (IPQoS) flow accounting module,
this subsystem can also capture network flow information on a system.

Enhanced Patch Management
Proper system analysis can be critical to system availability and performance. To this end,

the Solaris 10 Operating System includes tools to manually or automatically perform patch
management, including analyzing the system to determine which patches are appropriate for
your configuration.

Of course there are a lot of other new features as well, but these are the most important
features concerning the observation of the operating system. For more information about
Solaris 10 and its features, please visit the Solaris home page.4

System architecture
The file systems architecture is similar to other UNIX systems. It is hierarchical, which

begins with a root directory, and from which the branches of all other directories and file
systems are mounted.

As in every UNIX system, the kernel is the core of the system. It is responsible for
managing the hardware resources and provides an execution environment for user programs.
The Solaris kernel supports an environment in which multiple programs can execute
simultaneously. Its primary functions can be divided into two major categories: managing the

4 Address: http://www.sun.com/software/solaris/index.jsp

Alexander Gruber Page: 11 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

hardware by allocating its resources among the programs running on it, and supplying a set of
system services for those programs to use.

The basic unit that provides a program’s environment is known as a process; it contains a
virtual memory environment that is insulated from other processes on the system. Each
Solaris process can have one or more threads of execution that share the virtual memory
environment of the process, and each thread in effect executes concurrently within the
process’s environment. The Solaris kernel scheduler manages the execution of these threads
by transparently time-slicing them onto one or more processors. Each time a thread is moved
off a processor, its complete execution environment is saved, so when it is later rescheduled
onto a processor, its environment can be restored and execution can resume.

The kernel itself is grouped into several key components and is implemented in a modular
fashion. The key components of the Solaris kernel are described and illustrated below:

System call interface

TS

RT

IA

SHR

Thread
Scheduling and

Process
Management

Virtual File System
Framework

UFS NFS SPEC
FS

 Virtual
 Memory
 System

Hardware Address
Translation (HAT)

Kernel
Services

Clocks & Timers
Callouts

Networking

TCP
IP
Sockets

Bus and Device
Drivers

HARDWARE

SD SSD

Illustration 6: Key elements of the Solaris 10 kernel

System Call Interface – The system call interface allows user processes to access kernel
facilities. The system call layer consists of a common system call handler, which vectors
system calls into the appropriate kernel modules.

Process Execution and Scheduling – Process management provides facilities for process
creation, execution, management and termination. The scheduler implements the functions
that divide the machine’s processor resources among threads on the system. The scheduler
allows different scheduling classes to be loaded for different behaviour and scheduling
requirements.

Memory Management – The virtual memory system manages mapping of physical
memory to user processes and the kernel. The Solaris memory management layer is divided

Alexander Gruber Page: 12 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

into two layers: the common memory management functions and the hardware-specific
components. The hardware-specific components are located in the hardware address
translation (HAT) layer.

File Systems – Solaris implements a virtual file system framework, by which multiple
types of file system can be configured into the Solaris kernel at the same time. Regular disk-
based file systems, network file systems, and pseudo file systems are implemented in the file
system layer.

I/O Bus and Device Management – The Solaris I/O framework implements bus nexus
node drivers (bus-specific architectural dependencies, e.g., a PCI bus) and device drivers (a
specific device on a bus, e.g., an Ethernet card) as a hierarchy of modules, reflecting the
physical layout of the bus/device interconnect.

Kernel Facilities (Clocks, timers, etc.) – Central kernel facilities, including regular clock
interrupts, system timers, synchronization primitives, and loadable module support.

Networking – TCP/IP protocol support and related facilities. The Solaris networking
subsystem is implemented as streams-based device drivers and modules.

Processes, Threads and Scheduling
The Solaris kernel is multithreaded; that means, it is implemented with multiple threads of

execution to allow concurrency across multiple processors. This architecture is a major
departure from the traditional UNIX scheduling model. In Solaris, threads in the kernel are
the fundamental unit that is scheduled and dispatched onto processors. Threads allow multiple
streams of execution within a single virtual memory environment; consequently, switching
execution between threads is inexpensive because no virtual memory context switch is
required.

Threads are used for kernel-related tasks, for process execution, and for interrupt handling.
Within the kernel, multiple threads of execution share the kernel’s environment. Processes
also contain one or more threads, which share the virtual memory environment of the process.

A process is an abstraction that contains the environment for a user program. It consists of a
virtual memory environment, resources for the program such as an open file list, and at least
one thread of execution. The threads within each process share the virtual memory
environment, open file list and other components of the process environment.

Within each process is a lightweight process, a virtual execution environment for each
kernel thread within a process. The lightweight process allows each kernel thread within a
process to make systems calls independently of other kernel threads within the same process.
Without a lightweight process, only one system call could be made at a time. Each time a
system call is made by a thread, its registers are places on a stack within the lightweight
process. Upon return from a system call, the system call return codes are placed in the
lightweight process.

Alexander Gruber Page: 13 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Process

Kernel

CPU CPU CPU CPU

A multithreaded process

LWP
Kernel
thread

LWP
Kernel
thread

LWP
Kernel
thread

Kernel Management
Threas/Daemons
E.g., Memory Mgmt Thread

The kernel dispatcher
manages run queues of
runnable kernel threads onto
available processors
according to priority and
scheduling class

Illustration 7: Kernel threads, processes and lightweight processes

Global Process Priorities and Scheduling
The Solaris kernel implements a global thread priority model for kernel threads. The kernel

scheduler, or dispatcher, uses the model to select which kernel thread of potentially many
runnable kernel threads executes next. The kernel supports the notion of pre-emption,
allowing a better-priority thread to cause the pre-emption of a running thread, such that the
better- (higher) priority thread can execute. The kernel itself is preemptable, an innovation
providing for time-critical scheduling of high-priority threads. There are 170 global priorities;
numerically larger priority values correspond to better thread priorities. The priority name
space is partitioned by different scheduling classes, as illustrated in the picture below:

SYS
59

0

60

99
100

159
160-169 interrupts

Level -1

Level-10

RT

TS

IA

0

59

0

59

0

59

Illustration 8: Scheduling classes of Solaris 10

Alexander Gruber Page: 14 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

The Solaris dispatcher implements multiple scheduling classes, which allow different
scheduling policies to be applied to threads. The three primary scheduling classes – TS (IA is
an enhanced TS), SYS and RT:

TS – The timeshare scheduling class is the default class for processes and all the kernel
threads within the process. It changes process priorities dynamically according to recent
processor usage in an attempt to evenly allocate processor resources among the kernel threads
in the system. Process priorities and time quantums are calculated according to a timeshare-
scheduling table at each clock tick, or during wakeup after sleeping for an I/O. The TS class
uses priority ranges 0 to 59.

IA – The interactive class is an enhanced TS class used by the desktop windowing system
to boost priority of threads within the window under focus. IA shares the priority numeric
range with thee TS class.

SYS – The system class is used by the kernel for kernel threads. Threads in the system class
are bound threads; that is, there is no time quantum – they run until they block. The system
class uses priorities 60 to 99.

RT – The real-time class implements fixed priority, fixed time quantum scheduling. The
real-time class use priorities 100 to 159. Note that threads in the RT class have a higher
priority over kernel threads in the SYS class.

The interrupt priority levels shown in the picture above are not available for use by
anything other than interrupt threads. The intent of their positioning in the priority scheme is
to guarantee that interrupt threads have priority over all other threads in the system.

Installation
Because Solaris used to be compatible with SPARC systems only, the development for

drivers is still on progress for x86 systems. Therefore, only a few devices are supported.
Before the installation can begin, the hardware components of the systems have to be checked
in a hardware compatibility list.5

 Even though not all components of my system were listed up, I was lucky and the system
was working fine. Sun is currently working together with a community called Open Solaris.
This project allows everybody to be a part of the Solaris development by sending in modified
source code. This code is then being observed from some engineers and published on the net
for everybody to use. Sun Microsystems has released the complete source code from Solaris
in hope to receive some creative suggestions to advance the system and reduce the amount of
bugs. Successful modifications will then be bound into the next published official Solaris
version from Sun Microsystems. More information about this community project can be
found under www.opensolaris.com. The latest version of the Solaris operating system can be
found under: www.sun.com.

Once the preparations are finished, the installation of Solaris can begin. This is indeed a
very easy task. After booting from your CD-ROM, the installation screen appears. Choose
Solaris Interactive Installation and follow the instructions. Solaris can be installed in multiple

5 Address: http://www.sun.com/bigadmin/hcl/data/sol/

Alexander Gruber Page: 15 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

different modes. The picture below shows, how Solaris is build up. For a fully supported
system, choose Entire Plus OEM:

Illustration 9: Solaris installation levels

From now on, the installation should not cause any problems. Make sure, you allocate
enough disk space to directory /opt. Because all supplement software packages will be
installed per default in this directory.

To develop new software, the Sun Studio 11 is available for download on the Sun
Microsystems homepage. In this software included is a GCC compiler. To install the software
package, extract the downloaded files into a new folder, enter this folder and execute the
installer by typing:

./installer

Default folder for installation is /opt. Once the installation has been completed, the path
variable needs to be changed. This can either be done temporary by typing:

PATH=$PATH:/opt/SUNWspro/bin; export PATH

or continuously by adding:

PATH=$PATH:/opt/SUNWspro/bin
export PATH

to the file /etc/profile. If the installation of Sun Studio should cause any other problems,
please refer to the Sun Studio Installation guide on the Sun homepage. To get access to the
GNU C Compiler (GCC), the file /etc/profile has to be changed once more by adding:

PATH=$PATH:/usr/sfw/lib/bin:/usr/ccs/bin/make:/usr/ccs/bin/ar:/usr/ccs/bin/ld
export PATH

This allows the shell program to find an executable. When a command is executed on the
shell, the operating systems checks out all the folders included in the PATH variable to find
the corresponding executable.

With this last step, the basic installation of Solaris 10 is finished. To note that Solaris would
usually run with 64bit, but unfortunately for our network card was no 64bit driver available,
so the system is now always running with 32bit.

Alexander Gruber Page: 16 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Handling
The start up time is not really extraordinary and takes approximately 1min and 15 seconds.

Quicker is the shut down, which takes only about 7 seconds.

As soon as Solaris is started up, the login screen appears and we can choose between two
different desktop environments. The first is the Common Desktop Environment and second
one is called Java Desktop System, Release 3 and is based on Java. To choose between these
desktop environments, click on Options => Session and then choose the preferred
environment. The functionality of these environments is exactly the same as well as all the
available applications. The difference is just a question of design.

Common Desktop Environment
The navigation is very easy through the principal menu list in the middle bottom of the

screen. All applications and configuration tools can be accessed through this menu. Another
possibility to show the menu content is the right-click on the desktop.

I find it personally annoying, that a minimized window is not being minimized on the task
list as used from Windows or other operating systems, but a shortcut is being created on the
desktop. As well the navigation between the different windows is not as easy as normal. By
typing alt+tab we can flip between the programs but always in a round-robin function. A
specific application cannot be targeted directly and therefore the navigation with alt+tab is not
useful.

Similar to windows, the mounting of devices is done automatically. This is working very
fine under the Common Desktop Environment but not at all under the Java Desktop System.
The shortcuts to open a floppy or CD-ROM drive can be found under both solutions, but only
the ones under the Common Desktop Environment are working properly. To open a floppy
drive, go through Applications => System_Admin => Open Floppy. Now a new window is
opened and the content of the floppy drive is being represented. But when the floppy is now
being removed, its content modified and inserted again, then the system is not actualizing the
screen as long as we don't open the floppy drive again. This is not very clever and makes
working complicated and time consuming.

Because the design of the Java Desktop System was more comfortable to work with, my
decision was made pretty quickly.

Java Desktop System
In comparison with the Common Desktop Environment, this environment is similar to

Windows. On the bottom of the screen is the task list with the main menu on the left bottom.
To open the menu, click on Launch and choose the preferred application. Flipping between
two applications is very easy and can be effectuated with alt+tab.

The Java Desktop System comes along with a lot of free software tools like the complete
Star Office collection! That makes it very easy and comfortable, because almost everybody is
able to work with office products and can start directly after the installation of the operating
system, without installing additional software.

Finding a file under Solaris is very easy: click on Launch and choose Finding Files... A new
window is opening and the search parameters can be defined. With the option show more

Alexander Gruber Page: 17 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

options, we can as well search for a word or a part of a word inside the files. That is a very
nice and useful tool, for example to search the source file of a method.

Unfortunately, it is not possible to define a general text size for all the menus and task lists.
The result is an almost unreadable representation on the screen. The characters are so small,
that it is almost not possible to read them. Even though I found a general setting of the
operating system, I was still not able to define it for all the applications. Especially programs
to edit source code are really tiring after a short amount of time.

Support
 Solaris is not as popular as Linux, but far more popular as QNX on the other hand. While

QNX is a special operating system for real time specific applications, Solaris is more general
and not absolutely specific for real time. It is not very difficult to find corresponding
information on the Internet about this operating system. Of course the support is not as big as
with Linux, but not so bad.

The most important Internet community is called Open Solaris as mentioned before under
point installation. The idea behind this community is the development of new and the
improvement of existing features. Besides of Open Solaris, other communities and interest
groups can be found on the Internet. Please check out the link list in the appendix for further
addresses of Solaris communities.

Unfortunately, Solaris does not provide the costumers with an included help library. All
information concerning the operating system itself or system methods need to be looked up on
the Internet. But because Solaris is quite famous, it should not be too hard to find some
serious information.

Of course Sun Microsystems is offering for enterprises different support levels:

 Sun Developer Service Plans – A packaged offering for the enterprises that combines
Developer Expert Assistance, Sun Software Service Plans and Training credits, priced
according to an organization's needs. Sun Developer Service Plans are for
development and testing only; plans are product – and version- specific.

 Java Multiplatform Support: Mission/Critical Java Product Escalation.
Mission-critical deployment telephone support for enterprise customers running
applications that use Sun the Java runtime environments (JREs) in environments using
Windows, Linux or Solaris operating systems.

 Sun Solution Support Engineering Services
Direct access to senior support engineers, who will provide proactive and reactive
relationship-based services throughout the lifecycle of your solution, including the
development phase.

A wide variety of third party software can be found on the Internet. Just note that there exist
two versions of Solaris, one for x86 architecture processors and another for SPARC
architecture.

Alexander Gruber Page: 18 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

QNX Neutrino 6.3
A little bit of history

While the two students Gordon Bell and Dan Dodge were writing a little real-time kernel
during their studies in 1980, they were convinced that there was a commercial use for such a
system. So they finished their studies and moved to Kanata, Ontario, Canada where they
founded Quantum Software Systems. In 1982 they published the first QNX version for Intel
8088 CPU’s. While towards the end 80’s POSIX became popular, they decided to rewrite the
kernel to be accessible on a much lower level. The result was QNX 4. This made porting Unix
or BSD packages to QNX much easier.

Another 10 years later, they started to build up a new operation system, fully SMP
(Symmetric multiprocessing) capable and POSIX API’s compatible, QNX 6. QNX Software
Systems is part of the Harman International Company. The picture below shows the historical
tree of QNX 6.3:

QUNIX 1981

QNX beta

QNX 1.0

4.3BSD

QNX 2.0

QNX 4.0

QNX 4.1

4.4BSD

QNX 4.24

QNX/Neutrino
1.0QNX 4.25 QNX/Neutrino

2.0

QNX RTOS 6QNX RTOS
6.3

Illustration 10: Historical tree of QNX 6.36

About QNX 6.3
The big difference between QNX and Solaris is the origin. Solaris has been developed out

of the SunOS and this itself is derived from UNIX PD-7. QNX is different. From the
beginning on, the system was specially built up for one and only purpose: mission-critical
applications. QNX is not a derived version of another operating system but a true microkernel
operating system. This makes it able to be used in a several of different time critical

6 Source: http://www.levenez.com/unix/history.html#08

Alexander Gruber Page: 19 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

situations. Medical instruments, air traffic control systems or even urgency call centres all
trust on the long and very deep experience of QNX to solve such complex and difficult
situations reliable. But what makes the microkernel so special comparing to other operating
systems? It’s the protection of the kernel against any other running process. When a new
process is started, it’s placed in memory-protected user space. This allows the kernel to restart
a crashed process at any time, without affecting either the kernel itself or another running
process. Some of the new QNX features are listed below:

Power Management Framework
Using this comprehensive framework, allows to exercise fine-grained control over the

power states of every peripheral and to create a customized, application-specific power policy
for each system. The framework includes libraries to build power-managed drivers, power-
sensitive applications, and a centralized power manager. This is very useful to realize portable
products where the power consumption is very important (MP3 Player, Navigation System,
etc.).

Instrumented Microkernel
QNX can be started in a normal and an instrumented kernel. The instrumented kernel is

very useful to quickly pinpoint timing conflicts, deadlocks, logic flaws, software faults, and a
variety of other hotspots, in both uniprocessor and multiprocessor systems.

When the instrumented kernel is started, all the events are being filtered to either static
defined or user defined filters. The events are being saved in an event buffer to be read out
later on by the system profiler, which is a program delivered together with the Technology
Development Kit (TDK). All the events can then be visualized on the screen to observe the
exact manner the operating system is working. These activities are being represented in the
following picture:

Illustration 11: Instrumented kernel of QNX 6.37

Processor Support
The QNX Neutrino RTOS offers advanced support for the ARM, MIPS, PowerPC, SH-4,

StrongARM, Intel® XScale™ Microarchitecture, and x86 processor families. It also supports
functions and macros to write processor-independent drivers and applications. This makes it

7 Source: QNX presentation of Franck Vancoeillé

Alexander Gruber Page: 20 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

very interesting and time saving to debug and test the applications before the target processor
is chosen or target different processors.

Of course the QNX system can offer many other features to optimize the system. More
information about these features can be found on the official QNX homepage.8

System architecture
As QNX is a UNIX like system, the file system architecture is similar to Linux. Like

Solaris, the root folder is the origin from where all the different folder branches are mounted.

But now comes the big difference, as mentioned further on, the kernel consists only of the
most fundamental services like signals, timers and scheduling. Everything else is running in
memory-protected user space like the picture below shows:

Software busNeutrino
Microkernel

Process
Manager QNX 4

file
manager

CD-ROM
file

manager
NFS
file

manager

Flash
file

manager

Photon
GUI

manager

TCP/IP
manager Character

manager

Mqueue
manager

Application

DOS file
manager

CIFS file
manager Qnet

network
manager

Illustration 12: Organization of the QNX kernel

The communication between the different services is realized with a message passing
system. This allows connecting or disconnecting any service at any time without causing
problems to the other still running services. Blue screens or total kernel crashes are not
possible with such a system. Further is it possible to connect two hosts running QNX over
Ethernet and then access to each other’s resources over the message-passing bus.

This new and exclusive memory-protection strategy can only be found in QNX and makes
it therefore a lot more stable and secure as the following pictures show in comparison with
other operating systems:

Illustration 13: System architecture of VxWorks

8 Source: http://www.qnx.com/products/rtos/glance.html

Alexander Gruber Page: 21 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Illustration 14: System architecture of NT, Unix or Linux

Illustration 15: System architecture of QNX Neutrino9

Threads and processes
In some applications, it is required to execute two or more commands concurrently.

Therefore, inside the process can be built up several threads. Every thread itself is only
activated for a very short time slice (4 times the clock period), before it gives the processor to
the next thread. Not every process has to have multiple threads, but at least one. The threads
are being executed in the memory space of the parent process and therefore concurrent
underneath each other inside this memory space. A process can be compared with a container
of threads.

On the following picture, the prioritized threads are shown. The higher the priority level,
the sooner a process is being executed in comparison to the other threads with lower priority
levels. In this example, thread C will be executed first, because it’s priority level is the highest
present. The system idle process owns the priority level 0. Non-root users are only allowed to
create processes with priorities between 1 and 63, where root users can use the whole
spectrum of priorities (1 to 255).

9 Source of Illustration 13, Illustration 14 and Illustration 15: QNX presentation of Franck Vancoeillé

Alexander Gruber Page: 22 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Illustration 16: Thread priority and interrupts10

Scheduling algorithms
Should a process consist of more than one thread, it could happen, that both threads are

ready to be executed at the same time. Now the kernel tests the different priority levels and
executes the thread with the highest level. That works fine as long as every thread has a
different priority. When two processes with the same priority are ready at the same time,
scheduling algorithms need to be defined to treat the threads scheduling. QNX has therefore
defined 3 different modes:

1. FIFO: First in first out, the processes are being executed in the same sequence as they
became ready

2. Round-robin: all the processes are being executed one after the other, without any
special selection process

3. Sporadic scheduling: Under sporadic scheduling, a thread’s priority can oscillate
dynamically between a foreground or normal priority and a background or low
priority. Using the following parameters, you can control the conditions of this
sporadic shift:

 Initial budget (C): The amount of time a thread is allowed to execute at its normal
priority (N) before being dropped to its low priority (L).

 Low priority (L): The priority level to which the thread will drop. The thread
executes at this lower priority (L) while in the background, and runs at normal
priority (N) while in the foreground.

 Replenishment period (T): The period of time during which a thread is allowed to
consume its execution budget. To schedule replenishment operations, the POSIX
implementation also uses this value as the offset from the time the thread becomes
ready.

 Max number of pending replenishments: This value limits the number of
replenishment operations that can take place, thereby bounding the amount of
system overhead consumed by the sporadic scheduling policy.

The next picture shows, how the sporadic scheduling algorithm works:

10 Source: www.qnx.com

Alexander Gruber Page: 23 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Priority N

Priority L
May or may not run

40ms 80ms0ms

Replenished at this point;
priority is restored

T

Illustration 17: Priority change of thread while sporadic scheduling

Installation
To test out different operating systems and to obtain at the same time comparable results,

the tests should be executed on the same host machine. But unfortunately, QNX is not
available for multiprocessor systems at the moment. Of course in future, a multiprocessor
version will be distributed. That’s why we had to organize another different host machine for
QNX with a mono processor system.

QNX is as Solaris not a very common operating system for private use. This makes it not
very popular and therefore, the hardware needs to be tested on its compatibility. This can be
done on the QNX11 home page. Of course the compatibility will be increased, the longer
QNX is on the market.

The current version of QNX is 6.3. This version is open source and can be downloaded for
free under www.qnx.com. The installation-package consists of the operating system QNX
Neutrino and a development tool called Momentics TDK. While the development
environment is only freeware for 30 days, the QNX operating system itself remains open
source. Once the installation package is downloaded, it can be burned on a bootable compact
disc and then be installed on the computer. Therefore, just insert the CD-ROM and boot. The
installation program will guide through the installation process. When the installer is now
being started, the license key needs to be entered. A valid license key can be obtained by
registering under qnx.com. Should the given license key be valid, the installation should not
pose any problems and continuous.

Handling
One of the first positive things to notice, is the extreme short amount of time that QNX

needs to start-up and even less to shut-down. A normal start-up routine takes approximately
30s while it takes only 5 seconds to shut down the system. That is extremely quick and maybe
the fastest I have ever seen on an operating system.

To login, the username and password need to be specified. For the first time start up, the
username is root without any password. When the system is fully started up, we can see on
the left hand-side a configurable menu/program list. Here the most important tools like File
Manager, Editor, Terminal and multiple system configurations can be started. Another
possibility to access to all the configurations and programs is to click on the left bottom
corner on Launch. This opens a new menu and the destination application can be chosen.

11 Address: http://www.qnx.com/developers/hardware_support/index.html

Alexander Gruber Page: 24 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

To organize files and documents, the Photon File Manager is a very easy to use program.
Of course an editor is installed as well and it can be opened with the command ped. To open a
file for editing, right-click on the file and then choose open with, now enter the short name of
the target application (ped for editor).

The terminal can either be started over normal menu navigation, or by a right-click on the
desktop with choosing Terminal. For people who prefer a bash shell instead of the normal
standard shell of QNX, can download various different shell programs.

Finding a file is not very clever solved. The name of the file or a fraction of the name is
sufficient to search a file on the system, but then only the directories and names of the files
are listed up. The found files cannot be copied directly to another folder; neither can they be
directly opened to edit. It is not possible to search for a term inside a file. Only the filename
itself is part of the search criteria.

Even though my test system is running under a Pentium IV processor, sometimes the
graphical interface is slowing down a lot! For example, when scrolling down a file in an
editor or when scrolling down the shell screen. This is a typical hardware problem. Somehow,
the system does not support 100% the graphic card. It is working, but not without any
problems. On the official QNX site, there is a list available of supported hardware.
Unfortunately, the graphical controller of my test system was not listed up…

Like in almost every UNIX-based system, all the devices have to be mounted to the system.
Not like under Windows, where the operating system detects automatically all devices. To use
the floppy disk, we need to mount it by typing the following commands:

bash-3.1# mount –t dos /dev/fd0 /mnt/disk

The first parameter /dev/fd0 is the source and the second /mnt/disk is the target directory to
use the floppy drive. Once the mounting is done, we can check the configuration by typing:

bash-3.1# mount
/dev/hd0t79 on / type qnx4
/dev/fd0 on /mnt/disk type dos (fat12)

As it is shown above, the floppy drive is well connected to /mnt/disk. Of course almost all
the floppy drives are supported under QNX. A little bit different it is for USB data storage
devices. For a test of your hardware, check the compatibility list. To install for example a
Kingston memory stick, the following commands need to be typed:

 bash-3.1# io-usb –d uhci –v
bash-3.1# devb-umass cam pnp verbose &
[1] 675876
bash-3.1#

The output above appears, when no USB memory stick is actually attached to the USB
port. But when it is connected, the output looks different:

bash-3.1# io-usb –d uhci –v
bash-3.1# devb-umass cam pnp verbose &
[1] 544802
bash-3.1# Path=0 – QNX USB Storage
 target=0 lun=0 Direct-Access(0) – Kingston DataTraveler 2.0 Rev: 1.00

[1]+ Done devb-umass cam pnp verbose

Alexander Gruber Page: 25 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

When this appears, hit the enter key and the USB memory stick is successfully mounted on
the system. A similar manner is needed to use a CD-ROM. Therefore, type the following
commands:

bash-3.1# mount /dev/cd0 /mnt/cd

Should there be connected more than one CD-ROM. The second drive can be found under
/dev/cd1, the third under /dev/cd2…

Support
Because QNX might not be as popular as Linux or other open source operating systems, the

support on the general Internet is very poor. It is very hard to find specific and detailed
information about QNX. For engineers, it takes sometimes to much time to search and find
reasonable information. Therefore QNX provides their costumers with two different support
levels:

 Standard support
 Priority support

The standard support is free and consists of the following possible solutions:

 Global Help Centre (Email, phone or fax support)
 Automatic Product Updates (Major releases delivered on CD-ROM)
 Private Standard Support Newsgroup (Talk to support engineers 24/24h
 QNX Developers Network (QDN, active community of developers)
 Searchable Knowledgebase (for solutions of known problems)

The Priority support is not for free. Three different levels of priority support can be chosen:

 Bronze: Escalation of critical problems
 Silver: Dedicated support engineer, support for custom hardware, private newsgroup
 Gold: Support for multiple projects, free training and design review, top priority for

resolving issues

The needed help or support level is always depending from the user skills. Another support
solution is a help library, installed automatically with the operating system. This library can
be opened over the Launch => Help navigation. On the left hand-side, there is a gap named
Find, enter here a command or function name to receive more information about it. This help
file is very useful and exactly equal to the online help files on qnx.com.

At the beginning of my project, two engineers from QNX visited us and gave us a quick
introduction into QNX and its possibilities. Sean Meroth and Franck Vancoellié were
supporting me personal as well. Of course I would like to thank them here quickly for their
patience and knowledge!

QNX Momentics
The QNX Technology Development Kit (TDK) is using Eclipse as base application.

Eclipse itself has been developed by IBM and is now running under a not-for-profit
consortium of software industry vendors as QNX. I use the TDK to analyse the timer tests to
find out why the timer takes from time to time 6 instead of 5ms. Before we can start the IDE,
we need to create a different boot image.

Alexander Gruber Page: 26 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

4. First of all, the turning kernel has to be instrumented to get the information into
Eclipse. Therefore, the file qnxbase.build under the folder /x86/boot/build has to be
edited. The expression procnto need to be changed into procnto-instr.

5. The next step is the construction of the file system IFS (Image File System). Open a
shell and execute these commands:

bash-3.1# cd /x86/boot/build
bash-3.1# mkifs qnxbase.build qnxbase.ifs

6. Then the constructed file system has to be copied into the start up folder. The start up
folder is doubled, once for the safe and stable system (/.boot) and once for evaluation
configurations (/.altboot). This has the advantage of always having a working kernel in
the backhand. To copy this file and restart the computer, execute:

bash-3.1# cp qnxbase.ifs /.altboot
bash-3.1# shutdown

7. When the computer is starting up, the screen says: Hit Esc for .altboot. This can be
executed by hitting the Esc key

8. To start the QNX Development Environment, type:
bash-3.1# qconn
bash-3.1# qde &

9. The software starts up and we can choose Window -> Open Perspective -> Other ->
QNX System Information

Illustration 18: Open QNX System Information

10. Then the target system has to be connected to the IDE: File -> New -> QNX Target
System Project

Illustration 19: Create new project

11. Define a name for the target system and activate: Use local QNX connector

Alexander Gruber Page: 27 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

12. The next step is the opening of the QNX System Profiler: Window -> Open
Perspective -> Other… -> QNX System Profiler

Illustration 20: Open the QNX System Profiler

13. Last and final step is the set up for a kernel tracing. Right-click inside the Target
Navigator on the corresponding name and choose Kernel Events Tracing:

Illustration 21: Open kernel event tracing mode

 Choose now for how long the kernel tracing should take place:

Illustration 22: Define how long the system profiler should be running

Before the test is now being started, make sure a shell is opened to start the target program
as well. When everything is set up, the Finish-button of the System Profiler Configuration can
be hit and directly afterwards the target program needs to be started. As soon as the
configuration of the system profiler is finished, the program is tracing the kernel and saving
these results in a file. Double clicking on the log file in your project navigator can now open
this file. The result file’s extension is .kev. Once the file is opened, we can either take a look
at what happened with the diagram above or the Trace Event Log underneath; all the currently

Alexander Gruber Page: 28 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

running processes are listed up and we can check out for every process itself when it has the
processor and when it is blocked. In this diagram can be found the name latency. This is in
fact the output of the test program timer_latency and we can see that the process is being
active every 5ms, because timer_latency is testing the timer on 5ms slices.

Illustration 23: System Profiler output

All the running processes are listed in this diagram. The name of the process is written on
the left hand-side and the timeline is defined on top of it. In this example, the focus is set
between 2.572s and 3.287s. The time in the middle is the actual position of the cursor on the
timeline. The cursor can as well be used to measure the time between two processes activities.
Each process receives the CPU only for a short amount of time. This is shown with the black
vertical lines on the horizontal timeline. With a left-click and hold, the focus can be pulled
between the time slices. The measured time is written now in the top-middle of the diagram.
In the following example it was between 1.516s and 1.521s and equals a time slice of
4.997ms:

Illustration 24: Time measurement with cursor

The diagram can now be modified to increase the visibility of the picture. The following
commands can be used to:

Alexander Gruber Page: 29 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

 Zoom in and zoom out, it is as well possible to select a part of the diagram and
then to zoom this particular zone in

 The log file is being represented once with the diagram and a second time with a
table of the trace log events. Inside this table, or inside the diagram, these arrows
can be used to go to the next or the previous event

 With this command, it is possible to show the inter process communication
between the different running processes (IPC)

 The diagram type can be changed as well between: CPU Usage, CPU Activity,
Element activity and Timeline, the mode shown above

Two possible other modes can be seen on the pictures underneath:

Illustration 25: Diagram of CPU activity

Illustration 26: Diagram of CPU usage

Alexander Gruber Page: 30 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Of course the list of processes consists of all the running processes. But in most cases, only
one or some few processes are under observation, therefore, the unwanted processes can be
removed by a right-click:

Illustration 27: Define an Event Owner Filter to remove a process

The general handling of the System Profiler is very easy. Unfortunately, the use of System
Profiler to analyze process behaviour needs a lot of resources. A 5 seconds log file is using
incredible 17MB of space. That is a lot and the work with large log files is getting more and
more difficult, the larger the files get. When observing a process problem or behaviour, the
focused time slice is mostly not bigger than some milliseconds. To find a couple of
milliseconds within a 5 seconds record takes a long time. Once such a behaviour problem is
found, it can be bookmarked. So next time the file is being opened, the critical part is quickly
found again. To bookmark an interesting point on the timeline, click right and choose
Bookmark:

Illustration 28: Add a new bookmark to a log file

When the bookmark is added, it can be read out again from the window underneath the
diagram under the name Bookmarks:

Illustration 29: Choose out of the saved bookmarks

Alexander Gruber Page: 31 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Tick size
QNX Neutrino is polling its processes after a defined time slice. This time slice is normally

1ms but can be changed if needed. To change the tick size, we need to execute a couple of
commands as the following peace of source code shows:

return_value = ClockPeriod(id, //clock ID
 _clockperiod, //contains the period to set the clock to
 _clockperiod, //to store the current period
 reserved); //not used => set to 0

When the return_value is bitter than zero, then the tick size has been changed successfully.
Otherwise, the return_value is equal to –1. The full source code to change the tick size can be
found in the appendix.

Alexander Gruber Page: 32 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Test programs
This evaluation will be held on two different systems, because it was not possible to install

QNX on a multi-processor machine, a mono-processor machine had to be used as well. The
information about the used machines is listed below:

QNX host machine
processor multi processor mono
vendor_id GenuineIntel vendor_id GenuineIntel
model name Intel(R) Xeon(TM) CPU 3.20GHz model name Intel ® Pentium(R) IV 1.70GHz
cpu MHz 3202 cpu MHz 1698
RAM 2048MB RAM 384MB

Solaris & Linux host machine

Each operating system has its advantages and its weaknesses. To get a better overview on
different systems, it is comfortable to implement various test programs to test out the
performances and to finally compare them underneath each other. In this chapter, three
different test routines are being used. Two of them are already implemented for other systems
and have not to be ported. The third routine will be composed of two test programs. One of
them will test out the semaphores and the other one the message queue performances. The
tests are being observed and time measured to get a final comparison between the systems.

In fact, LibTIM is a tool to execute multiple test routines at once. It has been created for
DEC OSF1, IRIX, Linux and other systems. It now has to be ported to QNX and Solaris but
first a little introduction:

LibTIM
Because the simulation software programs need precise timers, this library is used to test

the performance of different timers available on the preferred operating system. Timers can
either be implemented by software (SOFT) or by hardware (HARD). When implemented in
software, the system native timers are being used to perform the test. While implemented by
hardware is using special OS external (PCI) timer cards. On multi processor systems, the
effect of using different CPU’s can be tested as well by binding the application to a CPU. But
the access to such timers is different on each operating system, which makes the portability
more complicated.

This library is now able to communicate with different timers (SOFT and HARD) on
different operating systems. Its basic requirements are listed below:

 Access to all different timer types of the platform (POSIX) and hardware timers on the
PCI bus (RTOM, MPIO, RCIM, ...)

 Simultaneous access on multiple types of timers
 Dynamic detection of all available timers
 Masking principles for the implementation of the different timers

Once installed, the library is able to perform the following tasks:

 to use a timer (periodic or oneshot, including Microsleep)
 to use FreeCounters (access to internal timer)

To evaluate the timer performances of an operating system, two different programs are
used:

Alexander Gruber Page: 33 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

 Timer_stability: calculate relative and absolute precision of the timer
 Timer_glich: calculate the relative timer precision over a longer time

Both programs use the LibTIM library:

main.c
TIM_posix.c
TIM_mpio.c
TIM_murtc.c
...

timer_stability
timer_glich

...

User Library

LibTIM

Illustration 30: Use of the library LibTIM

How the program timer_stability works, is described in the following diagram:

Alexander Gruber Page: 34 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Input: timer_stability <Timer Type> <Periodic> <Time> <Repeat> <file>
timer_stability SOFT 1 5000 100000 test.txt

Test if all
arguments are

present

Print help
description

Valid timer
type

no

yes Save
argumentsyes Valid ext. file yes

Lock
memory

Set high
priority okBlock unused

signals ok

Timer
initialisation

Timer
creation

Start
Freecounterok ok

Memory
allocation

ok

error

Start Timer error

Get Start Timeok ok Wait for
Timer

Get Current
Time errorSave value okTest finished

no

Stop
Freecounter

Stop Timer

yes

ok ok

error

Print error
message

no no

error

Destroy
timer

Release
LibTIMok

Calculate
values

Save into
external file

Print results
on screen Exit

Illustration 31: timer_stability functionality overview

 Valid timer type: check if the specified timer is either HARD or SOFT
 Valid ext. file: check if the file to save the results is a valid file
 Set priority: set process priority to Real Time
 Block unused signals: only allow timer termination signal to be received from process
 Memory allocation: allocate memory depending on how many times the test needs to

be repeated
 Wait for timer: wait until the timer sends the termination signal to the process

Between timer_stability and timer_glich is only one principal difference: the treatment of
the result data. The picture below describes how the time is being measured:

Alexander Gruber Page: 35 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

theoretical time

measured time

measured time

counter 0 1 2 3 4 5

absolute value

relative valuestart time
Illustration 32: Diagram of time measurement

To calculate the absolute value, the difference between the theoretical time and the
measured time is taken. This allows taking a look on the long time behaviour of the timer. If
the diagram shows a continuously increasing line, it means that the delay of the timer in
comparison with the theoretical time is getting bigger and bigger. Is the result a flat line
instead, means the timer is precise and has no delay. Is the result a continuously decreasing
line, it means that the timer is finishing to early (running ahead).

number
of tests

delay

number
of tests

delay

number
of tests

delay

timer to slow timer works fine timer to fast
Illustration 33: Absolute value diagrams

The measured time is calculated with this formula:

start time + (){ }1+⋅ countertimeslice

The relative value (calculated in timer_glich) only considers the time between two timer
signals. This allows visualizing the precision of the timer. On these diagrams can often occur
a kind of a mirror behaviour. The reason for such phenomena is the operating system itself.
When a timer is not precise, lets say time n is 200ns to short, so the operating system will try
to equal this mistake with making the next time 200ns longer. So on the diagram can always
be recognized a similarity between too short and too long times.

Another version of the same test is actually working exactly the same. The only difference
is the treatment of the result data and the amount of executions. A normal test takes
approximately 2min or 24’000 measurements but the long time test takes 6h and executes in
this time 4’320’000 measurements. Of course not all the time information can be saved and
therefore, the results are being classified:

 Timer precision underneath 100 sμ of precision
 Timer precision between 100 sμ and 200 sμ of precision
 Timer precision between 200 sμ and 300 sμ of precision
 Timer precision between 300 sμ and 400 sμ of precision
 Timer precision between 100 sμ and 500 sμ of precision
 Timer precision between 500 sμ and 1100 sμ of precision
 Timer precision over 1100 sμ of precision

Alexander Gruber Page: 36 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

The actual time is not being saved, only the class to get an overview on long-term tests. To
execute these tests on Solaris and QNX, the source code needs to be changed, because these
systems do not support all the commands used on Linux or other operating systems. All the
modified source files can be found on the supported DVD-ROM.

Generic created Test (BGenerique)
To test the performance of an operating system, it is better to perform some long-term tests

than just short ones. Therefore Airbus has designed a test program called BGenerique. It is a
script in fact and executes timer_stability and timer_glich multiple times in a row. So the
system can dynamically be tested over a long time without any human support.

It can be used to perform a simple timer or a more complex test to simulate the simulation
software. But in fact, it is the same as the simple test (timer_stability), just with more than one
process and different timer properties. The applications listed below are being simulated with
its specific properties (Processor bounding when executed on multiprocessor machine):

Application name Periodic / Oneshot Time slice Bound on CPU Repetitions
ASPIC Periodic 5 ms 1 240’000
AFDX Oneshot 16 ms 0 75’000
IONET Oneshot 10 ms 0 120’000

VISUAL Oneshot 40 ms 0 30’000
MOTION Oneshot 20 ms 0 60’000

The standard test takes 20 min. So for every application, it’s necessary to calculate the
number of repetitions with this formula:

Number of repetitions = ⎥⎦
⎤

⎢⎣
⎡ ⋅⋅⋅⋅

ms
mili

Timeslice
secsecmin10006020

So instead of only one timer_stability application, now 5 of them are running at the same
time. The diagram below shows the different parameters and its files to configure the
BGenerique test:

type_test_timer_hostname.ksh

Timer type
Periodic / Oneshot / both
Normal test y/n
Simu test y/n

data_test_timer_2min.ksh

Library path
Time slice
Number of repetitions
CPU to be bound on (if on
multiprocessor machine)

LibTIM

timer_stability

timer_glich

Illustration 34: Parameters and files to configure BGenerique

Library path: path of the LibTIM library
Time slice: value of the timer, mostly 5ms
Number of repetitions: how many times should the timer be executed
Timer type: software bound or hardware bound timer (SOFT or HARD)
Periodic/Oneshot: the timer can either be restarted directly without stopping him
(Periodic) or stop the timer and then restart him from new (Oneshot)
Normal test: is a normal timer test with only one timer running at once
Simu test: more than one timer are running concurrently at once

Once the test has been executed, we obtain an html-file with all the important data and the
diagrams. This makes it very comfortable to test multiple systems on its performance. To

Alexander Gruber Page: 37 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

perform this tests on Solaris and QNX, the code needed to be changed and can be found on
the supported DVD-ROM. The result diagrams can be found in the appendix.

Timer Latency (only QNX)
The results from the timer_glich and timer_stability tests under QNX are not really

satisfying. That was reason enough to implement a new test program but this time, QNX
timers are used instead of POSIX compliant timers. In QNX as well as in Solaris, the timer
granularity can be adjusted: the tick size for polling the processes can be defined.

Besides of timers, we need as well a lot of other real time specific performances as message
queues and semaphores. So the second method is dealing with these services, implemented
specifically for each system. But before we can start, we need to take a closer look to some
other methods, for example to allocate shared memory.

Shared memory
When we want to use semaphores with more than one process (as it usually happens) then

we have to put the semaphore into shared memory, so that it can be accessed by both of the
processes. The implementation of shared memory seems to be a little complicated, but isn’t
really:

fd = shm_open(“/bolts”, O_RDWR|O_CREAT, 0777)

fd: -1: an error occurred; nonzero otherwise
“/bolts”: name of the shared memory
O_CREAT: create a new message queue, if doens’t exist on this name
O_RDWR: send and receive over the same message queue
0777: permission bits for the memory

result = ftruncate(fd, sizeof(sem_t))

result: 0 for success, -1 if an error occurs
fd: file descriptor
sizeof(sem_t): the length that you want the file to be, in bytes

addr = mmap(0, sizeof(*addr), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0)

addr:
0: start address of the shared memory
sizeof(*addr): size of the shared memory
PROT_READ: memory may be read
PROT_WRITE: memory may be written
MAP_SHARED: the calling process shares the mapping
fd: file descriptor
0: offset

Fork system call
The fork system call allows a user to duplicate a running process, and to let run afterwards

both processes together. The new created process is called “child” and the original process
“parent”. When the fork system call is executed, it returns two different values: 0 to the child
process and the child’s process ID to the parent.

pid = fork();
pid: 0 for the child, the child’s process ID for the parent

So now all the needed functions are explained and timer_latency can be discussed. This
program should change the timer granularity and then measure the amount of ticks to
determine afterwards the precision and behaviour of the timer. With the following command
line, the CPU frequency can be read out:

Alexander Gruber Page: 38 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

cpu_freq = SYSPAGE_ENTRY(qtime)->cycles_per_sec;

Because the process should not be disturbed from anything else than interrupts, the highest
possible priority level needs to be found out and then defined in the system configuration:

param.sched_priority = sched_get_priority_max(SCHED__RR);
ret = sched_setscheduler (0, SCHED__RR, ¶m);

If the priority change was not successful, ret is equal to –1, otherwise different. The next
step is the configuration of the timer parameters:

clkper.nsec = 1’000’000 x clock_period;
ClockPeriod(CLOCK_REALTIME, &clkper, NULL, 0);

The nano seconds of the timer obtain the value 1 million. This defines a timer granularity of
1ms (clock_period is equal 1). Then the parameters are being saved in the system
configuration with the function ClockPeriod. Before we can use the timer, we have to create
it:

timer_create(CLOCK_REALTIME, &event, &timer_id);

Should the return value be equal to –1, the timer cannot be created. Otherwise, it is
different from –1. The next step will be the definition of the timer value. In this example, we
would like the timer to take 5ms, therefore, timer_length is equal to 5:

timer.it_value.tv_sec = 0;
timer.it_value.tv_nsec = 1000000 * timer_length; //oneshot
timer.it_interval.tv_sec = 0;
timer.it_interval.tv_nsec = 1000000 * timer_length; //periodic

When finally all parameters are set, the timer needs to be started and returns –1 when the
timer could not be started successfully:

timer_settime(timer_id, 0, &timer, NULL);

Now, the timer is set up and we can wait for the pulse indicating that the timer run out:

pid = MsgReceivePulse (chid, &pulse, sizeof(pulse), NULL);

When the timer sends a pulse, the clock cycles can be read out and therefore it is possible to
calculate the passed time. Unfortunately, the result was the same as with timer_glich or
timer_stability. Once in a while, the timer is not executing it’s 5ms but 6ms. After discussing
this topic with Sean Meroth from QNX, we found out, that this has something to do with the
POSIX implementation of QNX in QNX 6.3. Therefore, it does not matter which test I use,
the result is always the same:

Alexander Gruber Page: 39 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Illustration 35: Result of timer_latency (QNX)

If the timer granularity should be decreased on 0.5ms, the result is similar, but this time, we
have regularly results of 5.5ms instead of 5ms. The timer comes to late for one tick slice:

Illustration 36: Result of timer_latency (QNX) with timer granularity of 0.5ms

Message queues
Message queues are being used to communicate between at least two processes. They can

be seen as a direct connection between the processes to exchange data. In this example, data is
being send from the parent to the child process and back again. As soon as the parent is
receiving the message from the child process, the time is measured and the used time to
exchange two messages is being calculated:

Alexander Gruber Page: 40 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Parent process Child process

Start time
measurement

Finish time
measurement

Parental
Message

Queue

Children
Message

Queue

send

send

receive

receive

Illustration 37: Time measurement for message queue test program

This turn is now being executed multiple times to receive an average value for the time
needed to exchange a message between two processes over message queues. To use a
message queue, we need to open and configure it before:

mq_child = mq_open(“/queue_child”, O_CREAT|O_RDWR, S_IRWXU, NULL);

mq_child: message queue descriptor
“/queue_child”: name of the message queue
O_CREAT: create a new message queue, if doens’t exist on this name
O_RDWR: send and receive over the same message queue
S_IRWXU: read, write, execute/search by owner
NULL: no message queue attributes to use

Once the message queue is opened, we can send or receive messages:

result = mq_send(mq_child, msg_ptr, size, 0);

result: -1: message send failed; 0: otherwise
mq_child: message queue descriptor
msg_ptr: pointer on the outgoing message
size: size of the message (characters)
0: priority of the message

rec_size = mq_receive(mq_father, msg_ptr_receive, msg_len, NULL);

rec_size: -1: message receive failed; 0: otherwise
mq_father: message queue descriptor
msg_ptr_receive: pointer on the incoming message
msg_len: message size of the given queue

When a message queue is built up, the system is responsible for the service to work. Should
the program be finished and we do not close and unlink the message queue, it remains in the
system until the next restart. Therefore we need to execute the following two methods:

result = mq_close(mq_child);

result: -1: close failed; 0: otherwise
mq_child: message queue descriptor

result = mq_unlink(mq_child);

result: -1: unlink failed; 0: otherwise
mq_child: message queue descriptor

Once the test program has finished measuring the time, we can now show the result in a
graphic. The diagrams of these tests can be found in the appendix.

The only difference between the source code for Solaris and for QNX is the time
measurement. The rest of the code is identical and can be found on the DVD-ROM. QNX is
using an own function to find out how many CPU ticks elapsed since the system was started

Alexander Gruber Page: 41 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

up. By knowing the CPU frequency, the elapsed time can be calculated out of two tick
amounts. This is implemented as it follows:

stamp[0] = ClockCycles()
…
stamp[1] = ClockCycles()
addToFile(stamp[0], stamp[1], i, pFile)
…
void addToFile(uint64_t val1, uint64_t val2, int turns, FILE * pFile)
{
 //variable declaration
 float res;
 uint64_t diff, clocks;

 //calcualte difference between time stamps
 diff = val2 - val1;
 //get clock granularity from system
 clocks = SYSPAGE_ENTRY(qtime)->cycles_per_sec;
 res=(float)diff/clocks; //corresponds to one full cycle
 fprintf(pFile,"%d %f\n", turns+1, res); //write data into file
}

Under Solaris, it is a little bit different. Here we use the POSIX function gettimeofday to
find out how many seconds elapsed since the start-up of the system. This allows us easy to
calculate the time used to transmit data over message queues on Solaris:

gettimeofday(&old,0); //get the actual time
…
gettimeofday(&new,0); //get the actual time
…

void addToFile(struct timeval old, struct timeval new, int turns, FILE * pFile)
{
 //variable declaration
 float result;
 //calculate how many useconds one cycle took:
 result = ((int)new.tv_usec - (int)old.tv_usec) * 0.000001;
 fprintf(pFile,"%d %f\n", turns+1, result); //save value into file
}

Semaphores
Another very common tool in real time programming are semaphores. But semaphores are

not used to exchange data between two or more processes, but to control access of multiple
processes on one resource or memory space. By defining the start value of the semaphore, we
can decide how many processes have permission to use the resource. For example, when we
have the typical producer-consumer situation, where the producer is writing data into memory
space and the consumer is reading the data out to continue its treatment. But as soon as they
both try to read out or respectively write data in the memory, we do have an access violation
problem and the data can be lost. Therefore, we can limit the amount of processes and
guarantee like this, that only one consumer or producer is using the memory at once. In this
test program, we have 2 processes and the start value of the semaphore is set to 1 (single
access). Because we want to use the semaphore with two processes, we need to create a
shared memory space and place the semaphore into this memory space. So both processes
have the permission to access the semaphore. Under QNX, there exist two possibilities of
using semaphores: named and unnamed semaphores. Named semaphores are much easier to
initialize and use afterwards but unnamed semaphores are being treated much faster. That’s
why I decided to use the unnamed semaphores. The test program can be described with the
graphic underneath:

Alexander Gruber Page: 42 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

sem
_postse

m
_w

ai
t

Parent process

Semaphore

time measure

Illustration 38: Time measurement for the semaphore test program

Because it takes very less time to get or post a semaphore, the time measured corresponds
to a full access (get and post).

sem = (sem_t *) addr;

sem: semaphore descriptor
(sem_t*): typecast on semaphore type
addr: name of the shared memory

Once the semaphore is placed in the shared memory, we can initialize it:

result = sem_init(sem, 1, 1)

result: 0: semaphore initialized successful, nonzero otherwise
sem: semaphore descriptor
1: use a shared semaphore
1: start value of the semaphore

If the value of the semaphore is bigger than zero, the process will receive the permission to
access and decrement the value. But when the value is already smaller than zero, the
demanding process will be blocked as long as another process is releasing (putting) the
semaphore. In this case, the value is being incremented.

result = sem_wait(sem)

result: -1: an error occurred; 0: semaphore decremented
sem: semaphore descriptor

result = sem_post(sem)

result: -1: an error occurred; 0: semaphore incremented
sem: semaphore descriptor

Before we can leave the program, we need to destroy the semaphore and to unlink the
shared memory. When QNX is started up, prcnto is being executed. This is actually the kernel
of QNX and is therefore responsible to manage the semaphores. Unfortunately, once the
semaphore is set up, it is absolutely mandatory to unlink the semaphore. When this is not
done, we will not be able to initialize another semaphore afterwards by using the same
semaphore descriptor. So if the program should crash during its execution, the computer has
to be started up from new to unleash the semaphore. The proper release of the semaphore and
the shared memory can be done like this:

sem_destroy(sem)
sem: semaphore descriptor

shm_unlink(„/bolts“)
“/bolts”: name of the shared memory

Alexander Gruber Page: 43 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Sorting algorithm
Once the time measurement tests have been executed successfully, the result files content

all the times measured before. To process this information, these result files need to be
reorganized. Therefore, all the time measures are read in and then being sorted in increasing
manner. At the same time, it can be found out, how many times the same value was measured.
Here shown on a simple example:

Program input: Program output:

1 0.000048 0.000002 6
2 0.000003 0.000003 1
3 0.000002 0.000005 2
4 0.000002 0.000048 1
5 0.000005
6 0.000002
7 0.000005
8 0.000002
9 0.000002
10 0.000002

The sorting algorithm itself is very simple. It has to be repeated for each value in the result
file and can be described as the picture below shows:

Start of program Read out value
from result file

Create first
element and save

value

List empty? yesno

Value equal

Increment value
counter

yesno

Smaller than
first element?

Create new
element before
actual element

Create new first
element

yesno

Value smaller yes

Is it the last
element?

Move on and take
the next element

Create new
element after

actual element

no

yes

no

Compare actual
value with element

of list

All values from result
file prcessed?

no

End of program yesSave sorting result
in external file

Illustration 39: Sorting algorithm to sort the linked list

The detailed program code can be found in the appendix. The linked list is composed of
elements. These elements are defined as structures and consist of the following variables:

struct list_item {
 struct list_item * previous, * next; //save navigation
 float value; //measured time value

Alexander Gruber Page: 44 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

 int amount; //count amount of equal values
 };

Should occur a value that cannot be found in the list, a new element has to be added. This
happens by calling the subroutine with the according information about the time measure
result:

//prototype
item * add(float result);

//subroutine
item * add(float result) //subroutine to add a new element
{ //to the linked list
 item * temp; //temporary item
 temp = (item *) malloc(sizeof(item)); //allocate memory space for item
 if(temp == NULL) //test if memory allocation
 //failed
 {
 printf("\nmalloc problem!");
 }
 else
 { //memory allocation successfull!
 if(print) printf("...created!\n");
 temp->value = result; //write result value in structure
 temp->amount = 1; //save amount of equal values
 temp->next = NULL; //ground the navigation pointer
 }
 return temp; //return the new created item
} //subroutine call

l_item = add(result); //add new element

Once the element has been created, it has to be place at the right place in the linked list.
Therefore, the result saved inside the element is proved and judged according to five different
rules:

 The actual value is equal to the value of the list element
 The actual value is smaller than the first elements value => is the smallest value
 The actual value is smaller then the value of the list element
 The actual value is bigger than the value of the list element
 The actual value is bigger than the last elements value => is the biggest value

The new element pointers properties have to be set according to the above-defined rules.
The different situations can be seen on the images below:

next

previous

value

amount

Start pointer next

previous

value

amount
Illustration 40: Existing linked list consisting of two elements

next

previous

value

amount

Start pointer next

previous

value

amount

next

previous

value

amount
Illustration 41: Insert a new element in front of the list

Alexander Gruber Page: 45 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

next

previous

value

amount

Start pointer next

previous

value

amount

next

previous

value

amount
Illustration 42: Insert new element in the middle of the list

next

previous

value

amount

Start pointer next

previous

value

amount

next

previous

value

amount
Illustration 43: Insert new element at the end of the list

As you can see in the code earlier on, every element is placed in its own memory space,
allocated by malloc(). Once the file is processed, the memory has to be released. The
algorithm to delete a linked list like this can be seen in the diagram below:

Start of program

Read out (next)
element of linked

list

Last element
of list?

no

yes

Free the last
element

Free the first
element as well

Set pointer to
previous element

no

yes

End of program

Last element
of list?

Illustration 44: Algorithm to delete a linked list

Alexander Gruber Page: 46 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Portability
What does portability mean? Portability is the ability of recompiling source code from

another operating system without having to make to many efforts. The higher the portability
is, the easier it is to compile a program from another operating system. This ability is very
important for the simulation software department, because they are not focused on only one
operating system.

The portability will be tested in three different stages: LibTIM, BGenerique and finally
DSS. Inside the LibTIM are hidden two different programs: timer_stability and timer_glich.
The exact manner of functionality of these two programs can be read under the point Test
programs. Of course it was not easy in the beginning to understand how these programs work,
because they are completely designed to be portable. In reality this means a lot of make files
and scripting. But after a couple of days, porting timer_stability and timer_glich was possible
without a really big effort.

The second stage is the BGenerique, which is in fact nothing else than a specific use of the
LibTIM library. The only difference is it, that the programs are being executed multiple times
to receive different results. Are the results similar and stable, the system is working fine as it
should.

That was the simple part of the portability, but it’s getting more complex when recompiling
a complex application. The DSS (Distributed Simulation Software) is used to realize a
distribution of the needed CPU power over the Ethernet. Once the system is set up, data are
being exchanged between the machines. This happens with ACE & TAO, a version of real
time CORBA. Unfortunately, it was not possible to find an already compiled binary source
file for this application and the compilation of the source code failed. I was working close
together with the responsible engineer at Artal, the subcontractor, which realized the software.
After we discussed this topic together with my tutor, we decided to leave the DSS away. The
main point of my final diploma work is not to compile a program, but to evaluate the
operating system.

 Even though QNX and Solaris should be 100% POSIX compliant, a lot of problems
occurred during the compilation of DSS. When the applications are simple and easy to
understand, it should be no problem to port them in a short amount of time, but it gets
extremely complicated and time consuming with complex, big programs. With a lot of help
from Franck Vancoellieé and Sean Meroth, two engineers from QNX, I arrived to port ACE
& TAO, but to run DSS, we need as well a third tool called DiSCo. This is an application
developed by Artal and the compilation unfortunately failed. Within my diploma work, it is
not possible to port such a large application to a new operating system. After discussing this
topic with Jean-Marie Calluaud and the responsible engineer of the subcontractor, we decided
to skip the DSS. Note that this decision wasn’t made because it isn’t possible to port the
application, but too time consuming!

Alexander Gruber Page: 47 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Conclusion
Before a new operating system can be installed, the hardware has to be checked on

compatibility. Because most of the computer systems are currently running on Windows or
Linux, other systems like QNX or Solaris are not as famous and therefore not as popular on
the market as their concurrence. A logical consequence is the low availability of drivers and
support applications for such systems. It is therefore recommended to buy the hardware to fit
the software and not as mostly usual the other way around. Once the system is checked, the
installation should not represent any problems.

The following table represents an overview on the performance of the observed and
evaluated systems:

Solaris 10 QNX 6.3 Linux 2.6.9
Information density on Internet good bad excellent
Technical support good excellent good
Available ported applications bad good excellent
Driver support bad bad good

POSIX good good good
Threads good good good
Timer good excellent good
Message Queues good excellent excellent
Semaphores excellent good good

O
S

S
im

u.

S
of

tw
ar

e

The first executed test was the BGenerique. This application is used to test the system

native timer performances. An existing Linux system is used as a reference between the result
diagrams. To make a final comparison easier, each test is being judged with points between 1
(worst) and 3 (best). So let’s compare the different diagrams:

Oneshot, absolute
This test is executed in one-shot mode, means the timer is started, executed, stopped and

then started again. Linux and QNX show both a similar behaviour of a timer leaking behind
the theoretical value (Illustration 45,Illustration 49 and Illustration 53). While the delay on
Linux is always between 0 and 1ms, QNX is between 1 and 2ms. This behaviour is not so
important, because the relative value counts more. Solaris is different, as you can see on
Illustration 49, the delay remains stable around 1.39ms. This value is composed of the time
the operating systems needs to wake up the timer and to initialize it. Linux 3pt, Solaris 2pt,
QNX 1pt.

Oneshot, relative
The relative value is the actual measured duration of the timer to test out its precision. In

these diagrams, often a kind of a mirror-effect can be observed. Should timer n be 2ms to
short, then the operating systems is setting the timer n+1 2ms longer than the usual value. In
this test, Linux is terminating on the last place, because its timer is often not precise. The
result spectrum goes from 2ms to early until 1ms to late (Illustration 46)!! Better is Solaris,
where the precision is better and the maximal delay moves between 1ms to late and 1ms to
early (Illustration 50). But the best result achieved without doubt QNX (Illustration 54). The
timer is incredibly precise on 5ms but has from time to time a malfunction of 1ms in its
results. This comes from the POSIX implementation of QNX. Even though I tried to find a
reason for this effect with the System Profiler, I could not find any difference between a

Alexander Gruber Page: 48 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

perfect timer call and the wrong ones. But it has to be said, that this irregularity occurred only
about 20 times on 24’000 executions. QNX 3pt, Solaris 2pt, Linux 1pt.

Periodic, absolute
Test number three was the periodic restarting of the timer. This means, that the timer is not

stopped after it’s termination but restarted directly. The initialization of the timer is not
necessary any more, because it is not stopped since the last run. On every executed timing
cycle, Linux is increasing its delay with approximately one microsecond. On 24’000 executes,
the timer is leaping 24ms behind (Illustration 47). The Solaris timer is still behind the optimal
theoretical time (Illustration 51). The time amount in one-shot mode was almost 1.4ms and
now in periodic mode 700μ s. The timer needs those 700μ s to wake up and start then the
execution. On the bottom of the diagram are some compensation results in sight. These are
modified timers to reach a constant level of delay. QNX shows a very similar result to the
one-shot absolute value (Illustration 55). The timer is again always behind the theoretical
value, between 1 and 2ms. Contrarily to the Linux result, the maximal value is always smaller
than 2ms. Solaris 3pt, QNX 2pt, Linux 1pt.

Periodic, relative
And the last and final test of the BGenerique is measuring the precision of each timer in

periodic mode. These values represent the delay of each timing cycle. Somehow the Linux
results of this test are not satisfying at all (Illustration 48)! The majority of results have a
delay of 1ms and the rest of them are trying to compensate the frequently made mistakes. The
values are located between a delay of 200μ s and 1.8ms. Much better is the Solaris result
(Illustration 52). Almost all results are precise around the theoretical time and only a few
results occur outside this range. The maximal delay is around 1ms, while the minimum is –
1.5ms. But clearly the best result shows again QNX (Illustration 56). Only a couple of values
are on a delay of 1ms. Again are occurring from time to time some 1ms delays. The reason of
this delay is to be searched in the implementation of POSIX. QNX 3pt, Solaris 2pt, Linux 1pt.

The following test should show the performance of QNX and Solaris on real-time
components like message queues and semaphores. To get a better overview on the
performances, the tests are being executed multiple times in a row. These test have only been
executed on QNX and on Solaris, so the maximum points to get are two.

Semaphore
This program is using a shared semaphore between two processes. The time measured is

the time that a process needs to get and to put a semaphore. Let’s start with Solaris and take a
look at the Illustration 61 to Illustration 64. The dominant value is 2μ s but as well a lot of
5μ s values. The highest occurring value is around 8ms!! QNX on the other hand is very
stable and absolutely fast (Illustration 65 to Illustration 68)! The dominant value is as well
2μ s but the result field is much less spread out. The maximal value reaches 234μ s out of
10’000 cycles! Linux is very close to the other two test results as well (Illustration 57 to
Illustration 60) and is only a little bit slower than the concurrence. The highest consumed time
reaches 60ms, which is a very high value! QNX 3pt, Solaris 2pt, Linux 1pt.

Message Queue
The final and last program is a program to test out, how long the operating system needs to

send and receive a message through a message queue. To start with Solaris again, one

Alexander Gruber Page: 49 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

complete cycle takes in most of the cases a value around 33ms. The biggest result is 2.944ms
and the fastest message exchange has taken 24μ s (Illustration 73 to Illustration 76). The
majority of the values on QNX are 13ms, while none of them is smaller and the biggest has an
amount of 17ms (Illustration 77 to Illustration 80). QNX is almost twice as quick as Solaris!
Better is only Linux and that for such a short amount of time. Most of the values are between
2 and 3ms! Just a glimpse faster than QNX. Linux 3pt, QNX 2pt, Solaris 1pt.

All the obtained points have to be counted together now:

Linux: 3+1+1+1+1+3 = 10 points in total
Solaris: 2+2+3+2+2+1 = 12 points in total
QNX: 1+3+2+3+3+2 = 14 points in total

The over all result speaks for QNX in this technical evaluation. The real-time components
are working much faster and even more importantly more stable and precise. Solaris was only
able to exceed QNX on the BGenerique tests, where the absolute value is just not precise
enough. Otherwise, QNX is clearly ahead and offers a reliable and precise real-time operating
system. Besides technical innovations, both operating systems come along with a gorgeous
design and a clever surface. Even though the systems are based on Unix, it is very easy for a
beginner to find what he is looking for. Both designs are well structured and allow a fast and
effective working environment.

I’m very grateful to have the possibility to absolve my final diploma work abroad. It was
always a great dream for me, to work for Airbus and to see how these wonderful aircrafts
learn to fly. Through my diploma work, I could get a glimpse into Airbus and its daily efforts
to develop modern and secure aircrafts. I would specially thank to Jean-Marie Calluaud, my
tutor, for his support and confidence he gave me through this time. A great thank you as well
to the other members of EYYWOC, Gilles Denat, Fabien Depailler and François Trebosc.
During the compilation of ACE & TAO, I was working as well together with Francis
Versavel from Artal Technologies as well as with Sean Meroth and Franck Vancoellié from
QNX Software Systems.

Toulouse, 15.02.2007

Alexander Gruber
Trainee

Alexander Gruber Page: 50 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Illustration Index
Illustration 1: Range/Capacity Diagram for the different Airbus airplane types 6
Illustration 2: Airbus Europe with zoom on Toulouse... 6
Illustration 3: Organization of EYYW department .. 8
Illustration 4: Why interest in QNX and Solaris? .. 8
Illustration 5: Historical tree of Solaris 10 ... 10
Illustration 6: Key elements of the Solaris 10 kernel ... 12
Illustration 7: Kernel threads, processes and lightweight processes .. 14
Illustration 8: Scheduling classes of Solaris 10.. 14
Illustration 9: Solaris installation levels ... 16
Illustration 10: Historical tree of QNX 6.3 .. 19
Illustration 11: Instrumented kernel of QNX 6.3 ... 20
Illustration 12: Organization of the QNX kernel ... 21
Illustration 13: System architecture of VxWorks... 21
Illustration 14: System architecture of NT, Unix or Linux .. 22
Illustration 15: System architecture of QNX Neutrino .. 22
Illustration 16: Thread priority and interrupts.. 23
Illustration 17: Priority change of thread while sporadic scheduling....................................... 24
Illustration 18: Open QNX System Information .. 27
Illustration 19: Create new project ... 27
Illustration 20: Open the QNX System Profiler ... 28
Illustration 21: Open kernel event tracing mode.. 28
Illustration 22: Define how long the system profiler should be running 28
Illustration 23: System Profiler output ... 29
Illustration 24: Time measurement with cursor ... 29
Illustration 25: Diagram of CPU activity ... 30
Illustration 26: Diagram of CPU usage .. 30
Illustration 27: Define an Event Owner Filter to remove a process... 31
Illustration 28: Add a new bookmark to a log file ... 31
Illustration 29: Choose out of the saved bookmarks .. 31
Illustration 30: Use of the library LibTIM ... 34
Illustration 31: timer_stability functionality overview... 35
Illustration 32: Diagram of time measurement .. 36
Illustration 33: Absolute value diagrams ... 36
Illustration 34: Parameters and files to configure BGenerique .. 37
Illustration 35: Result of timer_latency (QNX) ... 40
Illustration 36: Result of timer_latency (QNX) with timer granularity of 0.5ms 40
Illustration 37: Time measurement for message queue test program....................................... 41
Illustration 38: Time measurement for the semaphore test program 43
Illustration 39: Sorting algorithm to sort the linked list ... 44
Illustration 40: Existing linked list consisting of two elements ... 45
Illustration 41: Insert a new element in front of the list ... 45
Illustration 42: Insert new element in the middle of the list... 46
Illustration 43: Insert new element at the end of the list .. 46
Illustration 44: Algorithm to delete a linked list .. 46
Illustration 45: BGenerique result Linux, oneshot, absolute result.. 55
Illustration 46: BGenerique result Linux, oneshot, relative result ... 56
Illustration 47: BGenerique result Linux, periodic, absolute result ... 56
Illustration 48: BGenerique result Linux, periodic, relative result .. 57

Alexander Gruber Page: 51 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Illustration 49: BGenerique result Solaris, oneshot, absolute result .. 57
Illustration 50: BGenerique result Solaris, oneshot, relative result.. 58
Illustration 51: BGenerique result Solaris, periodic, absolute result.. 58
Illustration 52: BGenerique result Solaris, periodic, relative result ... 59
Illustration 53: BGenerique result QNX, oneshot, absolute result... 59
Illustration 54: BGenerique result QNX, oneshot, relative result .. 60
Illustration 55: BGenerique result QNX, periodic, absolute result .. 60
Illustration 56: BGenerique result QNX, periodic, relative result ... 61
Illustration 57: Linux – Semaphore – 100 cycles... 61
Illustration 58: Linux - Semaphore – 1’000 cycles .. 62
Illustration 59: Linux - Semaphore - 10'000 cycles ... 63
Illustration 60: Linux - Semaphore - 100'000 cycles ... 63
Illustration 61: Solaris - Semaphore – 100 cycles.. 64
Illustration 62: Solaris - Semaphore – 1’000 cycles .. 64
Illustration 63: Solaris - Semaphore - 10'000 cycles.. 65
Illustration 64: Solaris - Semaphore - 100'000 cycles.. 66
Illustration 65: QNX - Semaphore - 100 cycles... 66
Illustration 66: QNX - Semaphore - 1'000 cycles .. 67
Illustration 67: QNX - Semaphore - 10'000 cycles .. 67
Illustration 68: QNX - Semaphore - 100'000 cycles .. 68
Illustration 69: Linux - Message Queue - 100 cycles... 69
Illustration 70: Linux - Message Queue - 1'000 cycles.. 69
Illustration 71: Linux - Message Queue - 10'000 cycles.. 70
Illustration 72: Linux - Message Queue - 100'000 cycles.. 71
Illustration 73: Solaris - Message Queue - 100 cycles ... 72
Illustration 74: Solaris - Message Queue - 1'000 cycles .. 72
Illustration 75: Solaris - Message Queue - 10'000 cycles .. 73
Illustration 76: Solaris - Message Queue - 100'000 cycles .. 74
Illustration 77: QNX - Message Queue - 100 cycles ... 74
Illustration 78: QNX - Message Queue – 1’000 cycles ... 75
Illustration 79: QNX - Message Queue - 10'000 cycles... 77
Illustration 80: QNX - Message Queue - 100'000 cycles... 77

Alexander Gruber Page: 52 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Links
Solaris 10
Everything about Solaris: http://everythingsolaris.org/
Solaris applications: http://fr.solaris-x86.org/applications.html
Solaris documentation: http://solaris-x86.org/documents/guides/
Solaris compatibility list: http://www.sun.com/bigadmin/hcl/data/sol/
Download for sun packages: http://www.sunfreeware.com/indexintel10.html
Tips and tricks about Solaris: http://www.captain.at/programming/solaris-tricks/
LAN card driver: http://www.skd.de/e_en/support/driver.html?navid=14
Compiler documentation: http://developers.sun.com/prodtech/cc/compilers_index.html

QNX 6.3
QNX France: http://www.qnx.com/popups/index.html?topic=665
All about Eclipse: http://en.wikipedia.org/wiki/Eclipse_%28software%29

QNX documentation:
http://www.openqnx.com
http://www.levenez.com/unix/history.html#08
http://www.cmdl.noaa.gov/hats/insitu/cats/stations/qnxman/
http://www.operating-system.org/betriebssystem/_english/bs-qnx.htm

Official QNX Homepage:
http://www.qnx.com/products/eval/index.html

What is QNX?
http://www.osnews.com/printer.php?news_id=15272
http://www.osnews.com/story.php/15272/What-Is-QNX/
http://www.operating-system.org/betriebssystem/_english/bs-qnx.htm
http://homes.dsi.unimi.it/~pedersin/AD/qnx.pdf#search=%22qnx%20what%20is%22

General information & links
http://www.wikipedia.org

TAO & ACE:
http://www.cs.wustl.edu/~schmidt/ACE.html
http://www.cs.wustl.edu/%7Eschmidt/TAO.html

C++ Forums & Programming:
http://www.cplusplus.com/
http://cslibrary.stanford.edu
http://cboard.cprogramming.com/index.php
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/index.htm
http://mia.ece.uic.edu/~papers/WWW/books/posix4/TOC.HTM

GNU C Compiler & Debugger
http://gcc.gnu.org/
http://sources.redhat.com/gdb/download/onlinedocs/

Books
Solaris 9: the complete reference, Watters Paul, ISBN: 0072223057
Solaris internals: Core kernel components, Richard McDougall, James Mauro, ISBN: 0130224960

Solaris system administrator's guide, Janice Winsor, ISBN: 3893628177
QNX Neutrino RTOS v6.3, System Architecture, QNX Software Systems International Corporation

Alexander Gruber Page: 53 / 80 Final Diploma Work 06/07

http://www.amazon.de/exec/obidos/search-handle-url/303-2615542-8251463?%5Fencoding=UTF8&search-type=ss&index=books-de&field-author=Janice%20Winsor

Evaluation of Solaris and QNX for aeronautic real time simulation software

Appendix
Information about the thesis
w.gFilière / Studiengang : SS yy ss tt ee mm tt ee cc hh nn ii kk

Etudiant / Student
Alexander Gruber
0041 79 642 68 21

Année scolaire / Schuljahr
2005/06

No TD / Nr. DA SI/2006/6

Lieu d’exécution / Ausführungsort
Toulouse

Proposé par / vorgeschlagen von
Jean-Marie Calluaud
jean-marie.calluaud@airbus.com
+33 561930737
 Expert / Experte Jean-Marie

Calluaud

Titre / Titel:

Stage Evaluation of Solaris and QNX for aeronautic real time simulation software

Description / Beschreibung:

At the moment, most of the aeronautic real time simulation software is running on Linux/Unix
systems. Sun Microsystems has now published a free Solaris version for x86 computer systems,
which makes it interesting to evaluate the performance of this system. Although QNX is not
available as freeware, it is as well interesting to compare this operating system with those already
used.
Therefore, these operating systems have to be studied and installed. Once the systems are
working well, C/C++ code has to be compiled and debugged on those systems. When finally all
this is established, original Airbus test benches have to be implemented and adapted for those
systems.

Objectifs / Ziele:

 Installation and study of Solaris and QNX with its development tools for C/C++
 Study of timer performances on those systems
 Study of SMP technology
 Implementation of original Airbus Flight Simulation Real Time Software

Alexander Gruber Page: 54 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Bench Generique (BGenerique) results
BGenerique is a program to test out an operation system with the two timer test programs

timer_stability and timer_glich. More information about the content of these programs can be
found earlier on in this report under the point Test programs. On the following pages are
shown the results of these tests.

BGenerique on Linux
Host name: Felagund
Date: 18/10/2006
Operating system: Linux 2.6.9-22.EL
Architecture: i386

Illustration 45: BGenerique result Linux, oneshot, absolute result

The timer is leaking behind but tries then to minimize the delay. In most of the cases, the
delay is smaller than 1ms.

Alexander Gruber Page: 55 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Illustration 46: BGenerique result Linux, oneshot, relative result

The timer is relatively stable and precious. The timer takes for 5ms values between 3.5ms
and 6ms.

Illustration 47: BGenerique result Linux, periodic, absolute result

This timer has under periodic execution always a little delay. That’s the reason why the line
is increasing.

Alexander Gruber Page: 56 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Illustration 48: BGenerique result Linux, periodic, relative result

The look on the relative diagram shows typical corrected timer behaviour. Not only that the
timer is very often 1ms to late, but unstable at the same moment.

BGenerique on Solaris
Host name: Felagund
Date: 03/10/2006
Operating system: SunOS 5.10
Architecture: i386

Illustration 49: BGenerique result Solaris, oneshot, absolute result

In the diagram above, the timer has a stable delay of approximately 1.38ms. The timer has
to be created and initialized and that takes a certain amount of time.

Alexander Gruber Page: 57 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Illustration 50: BGenerique result Solaris, oneshot, relative result

The general timing is not to bad. Most of the values are around 0ms. Typically, the
corrections of the operating system can be seen again.

Illustration 51: BGenerique result Solaris, periodic, absolute result

We can see, that between oneshot and periodic, there is a difference of almost 600ms. The
difference comes from the initialization. To call and start the timer, the system is using around
700ms.

Alexander Gruber Page: 58 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Illustration 52: BGenerique result Solaris, periodic, relative result

The time measurements itself are again pretty stable. On 25’000 measurements are only a
few results above or underneath the perfect result.

BGenerique on QNX
Host name: Zaniglas
Date: 24/10/2006
Operating system: QNX 6.3.2
Architecture: i386

Illustration 53: BGenerique result QNX, oneshot, absolute result

This timer is constantly starting to late and therefore, he is ending to late as well. The delay
is always 2ms and then decreasing constantly to 1ms before it flips back to 2ms.

Alexander Gruber Page: 59 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Illustration 54: BGenerique result QNX, oneshot, relative result

Even though the system itself is not stable, the time measured is very stable. Only once in a
couple of thousand times, the measured time is not 5ms, but 6ms. This comes from the
implementation of the POSIX rules on QNX.

Illustration 55: BGenerique result QNX, periodic, absolute result

It doesn’t really matter if the test is being executed in an oneshot or periodic manner. There
has to be a reason in the implementation of the operating system as well. A possible solution
for such a problem would be the use of interrupts. With an interrupt, we can arrange an
electrical interrupt to the core and the kernel is stopped immediately. But with a software
timer, there is always the problem of implementation. Even when the timer calls the kernel,
the kernel has to finish first his running tasks.

Alexander Gruber Page: 60 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

 Illustration 56: BGenerique result QNX, periodic, relative result

The relative result diagram is identical to the one-shot test. The measured time is always
more or less precise. Why the operating system has a problem from time to time remains a
secret.

Semaphore test results
Semaphore test on Linux

Linux - Semaphore - 100
0.000003 91
0.000004 7
0.000005 2

Linux - Semaphore - 1'000
0.000003 873 0.000007 1
0.000004 110 0.000023 1
0.000005 11 0.000025 1
0.000006 3

0
10
20
30
40
50
60
70
80
90

100

Cycles

0.000003 0.000004 0.000005

Time [s]

Time Measurement - Linux - Semaphores

Illustration 57: Linux – Semaphore – 100 cycles

Alexander Gruber Page: 61 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

0

100

200

300

400

500

600

700

800

900

Cycles

0.000003 0.000005 0.000007 0.000025

Time [s]

Time Measurement - Linux - Semaphores

Illustration 58: Linux - Semaphore – 1’000 cycles

Linux - Semaphore - 10'000
0.000002 31 0.000007 1 0.000024 6 0.000030 1
0.000003 8923 0.000009 1 0.000025 8 0.000031 1
0.000004 936 0.000016 1 0.000026 3
0.000005 60 0.000022 1 0.000027 3
0.000006 16 0.000023 6 0.000028 2
Linux - Semaphore - 100'000
0.000002 598 0.000019 1 0.000030 1 0.000080 2
0.000003 90215 0.000021 4 0.000031 1 0.000166 1
0.000004 8158 0.000022 28 0.000032 1 0.000244 1
0.000005 535 0.000023 56 0.000039 1 0.000720 1
0.000006 172 0.000024 28 0.000044 1 0.032040 1
0.000007 11 0.000025 83 0.000046 1 0.040024 1
0.000008 1 0.000026 51 0.000066 1 0.060023 1
0.000009 1 0.000027 20 0.000068 1
0.000013 1 0.000028 11 0.000070 1
0.000014 1 0.000029 5 0.000072 2

Alexander Gruber Page: 62 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Cycles

0.000002 0.000005 0.000009 0.000023 0.000026 0.000030

Time [s]

Time Measurement - Linux - Semaphores

Illustration 59: Linux - Semaphore - 10'000 cycles

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Cycles

0.000002 0.000008 0.000022 0.000028 0.000044 0.000080 0.060023

Time [s]

Time Measurement - Linux - Semaphores

Illustration 60: Linux - Semaphore - 100'000 cycles

Semaphore test on Solaris
Solaris - Semaphore - 100
0.000001 13 0.000005 1 0.000015 1 0.000046 1
0.000002 73 0.000006 3 0.000016 1 0.000109 1
0.000003 4 0.000013 1 0.000024 1 0.000109 1
Solaris - Semaphore - 1'000
0.000001 94 0.000007 1 0.000024 6 0.000047 1
0.000002 636 0.000010 1 0.000025 6 0.000050 1
0.000003 13 0.000014 2 0.000030 1 0.000051 1
0.000004 2 0.000015 33 0.000032 2 0.000079 1
0.000005 104 0.000016 32 0.000033 4 0.000084 1
0.000006 55 0.000017 1 0.000040 1 0.000111 1

Alexander Gruber Page: 63 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

0

10

20

30

40

50

60

70

80

Cycles

0.000001 0.000003 0.000006 0.000015 0.000024 0.000109

Time [s]

Time Measurement - Solaris - Semaphores

Illustration 61: Solaris - Semaphore – 100 cycles

0

100

200

300

400

500

600

700

Cycles

0.000001 0.000005 0.000014 0.000024 0.000033 0.000051

Time [s]

Time Measurement - Solaris - Semaphores

Illustration 62: Solaris - Semaphore – 1’000 cycles

Solaris - Semaphore - 10'000
0.000001 1510 0.000020 1 0.000036 8 0.000076 2
0.000002 7629 0.000021 4 0.000037 6 0.000089 1
0.000003 137 0.000022 15 0.000038 2 0.000090 1
0.000004 11 0.000023 33 0.000040 2 0.000100 1
0.000005 262 0.000024 34 0.000042 1 0.000118 1
0.000006 147 0.000025 5 0.000043 1 0.000123 1
0.000007 20 0.000029 1 0.000049 4 0.000130 1
0.000008 5 0.000030 1 0.000050 3 0.000143 1
0.000010 1 0.000031 1 0.000051 1 0.000155 1
0.000014 20 0.000032 5 0.000059 1 0.000168 1
0.000015 86 0.000033 1 0.000063 3 0.000182 1
0.000016 17 0.000034 3 0.000070 1 0.000386 1
0.000017 1 0.000035 2 0.000075 1 0.007985 1

Alexander Gruber Page: 64 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Solaris - Semaphore - 100'000
0.000001 8220 0.000034 65 0.000070 4 0.000123 1
0.000002 65015 0.000035 20 0.000071 2 0.000124 2
0.000003 2121 0.000036 11 0.000072 2 0.000125 2
0.000004 781 0.000037 2 0.000073 1 0.000128 2
0.000005 11251 0.000038 7 0.000075 12 0.000129 1
0.000006 5038 0.000039 2 0.000076 10 0.000133 2
0.000007 124 0.000040 16 0.000077 3 0.000135 3
0.000008 36 0.000041 75 0.000078 2 0.000136 1
0.000009 34 0.000042 68 0.000079 1 0.000142 1
0.000010 11 0.000043 28 0.000081 1 0.000144 1
0.000011 7 0.000044 12 0.000082 1 0.000146 1
0.000012 17 0.000045 1 0.000083 3 0.000151 1
0.000013 18 0.000046 1 0.000084 5 0.000159 1
0.000014 126 0.000047 4 0.000085 3 0.000161 2
0.000015 2183 0.000048 1 0.000086 5 0.000166 1
0.000016 1892 0.000049 17 0.000087 1 0.000167 1
0.000017 679 0.000050 40 0.000088 1 0.000176 1
0.000018 65 0.000051 28 0.000091 2 0.000181 1
0.000019 12 0.000052 16 0.000092 4 0.000182 1
0.000020 6 0.000053 4 0.000093 4 0.000184 1
0.000021 5 0.000054 1 0.000094 1 0.000192 1
0.000022 10 0.000055 4 0.000097 2 0.000201 1
0.000023 53 0.000056 3 0.000099 1 0.000214 1
0.000024 684 0.000057 4 0.000100 3 0.000243 2
0.000025 493 0.000058 24 0.000101 6 0.000289 1
0.000026 246 0.000059 17 0.000103 2 0.000296 1
0.000027 23 0.000060 12 0.000109 1 0.000301 1
0.000028 7 0.000061 6 0.000110 5 0.000315 1
0.000029 1 0.000064 1 0.000111 1 0.000318 1
0.000030 3 0.000066 2 0.000114 2 0.000339 1
0.000031 5 0.000067 11 0.000117 1 0.000577 1
0.000032 55 0.000068 12 0.000118 3 0.000615 1
0.000033 125 0.000069 3 0.000122 1

0

1000

2000

3000

4000

5000

6000

7000

8000

Cycles

0.000001 0.000010 0.000023 0.000034 0.000049 0.000089 0.000168

Time [s]

Time Measurement - Solaris - Semaphores

Illustration 63: Solaris - Semaphore - 10'000 cycles

Alexander Gruber Page: 65 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

0

10000

20000

30000

40000

50000

60000

70000

Cycles

0.000001 0.000021 0.000041 0.000061 0.000086 0.000124 0.000201

Time [s]

Time Measurement - Solaris - Semaphores

Illustration 64: Solaris - Semaphore - 100'000 cycles

Semaphore test on QNX
QNX - Semaphore - 100
0.000002 97
0.000004 1
0.000005 1
0.000006 1

QNX - Semaphore - 1'000
0.000002 989
0.000003 3
0.000004 2
0.000005 2
0.000006 3
0.000007 1

0
10
20
30
40
50
60
70
80
90

100

Cycles

0.000002 0.000004 0.000005 0.000006

Time [s]

Time Measurement - QNX - Semaphores

Illustration 65: QNX - Semaphore - 100 cycles

Alexander Gruber Page: 66 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

0
100
200
300
400
500
600
700
800
900

1000

Cycles

0.000002 0.000003 0.000004 0.000005 0.000006 0.000007

Time [s]

Time Measurement - QNX - Semaphores

Illustration 66: QNX - Semaphore - 1'000 cycles

QNX - Semaphore - 10'000
0.000002 9928 0.000006 9
0.000003 51 0.000007 1
0.000004 4 0.000008 1
0.000005 5 0.000031 1

QNX - Semaphore - 100'000
0.000002 99053 0.000007 41 0.000018 1 0.000049 1
0.000003 583 0.000008 10 0.000020 1 0.000174 1
0.000004 95 0.000009 1 0.000024 1 0.000234 1
0.000005 72 0.000013 1 0.000025 1
0.000006 134 0.000016 2 0.000027 1

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Cycles

0.000002 0.000004 0.000006 0.000008

Time [s]

Time Measurement - QNX - Semaphores

Illustration 67: QNX - Semaphore - 10'000 cycles

Alexander Gruber Page: 67 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Cycles

0.000002 0.000005 0.000008 0.000016 0.000024 0.000049

Time [s]

Time Measurement - QNX - Semaphores

Illustration 68: QNX - Semaphore - 100'000 cycles

Message queue test results
Message queue test on Linux

Linux - Message Queue - 100
0.000012 4 0.000018 1 0.000036 2
0.000013 77 0.000019 1 0.000066 1
0.000014 9 0.000027 1
0.000015 3 0.000029 1

Linux - Message Queue - 1'000
0.000012 448 0.000016 4 0.000033 1 0.000083 1
0.000013 413 0.000019 1 0.000034 3 0.000085 1
0.000014 114 0.000025 2 0.000035 3 0.000097 1
0.000015 5 0.000032 2 0.000036 1

Alexander Gruber Page: 68 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

0

10

20

30

40

50

60

70

80

Cycles

0.000012 0.000014 0.000018 0.000027 0.000036

Time [s]

Time Measurement - Linux - Message Queues

Illustration 69: Linux - Message Queue - 100 cycles

0

50

100

150

200

250

300

350

400

450

Cycles

0.000012 0.000015 0.000025 0.000034 0.000083

Time [s]

Time Measurement - Linux - Message Queues

Illustration 70: Linux - Message Queue - 1'000 cycles

Linux - Message Queue - 10'000
0.000012 4746 0.000025 2 0.000038 4 0.000087 3
0.000013 4014 0.000027 1 0.000070 1 0.000088 1
0.000014 996 0.000031 4 0.000077 1 0.000089 1
0.000015 58 0.000032 28 0.000078 2 0.000090 4
0.000016 20 0.000033 16 0.000080 1 0.000091 4
0.000017 1 0.000034 21 0.000083 1 0.000093 1
0.000018 1 0.000035 32 0.000084 1 0.000096 1
0.000019 1 0.000036 15 0.000085 1 0.002897 1
0.000024 1 0.000037 13 0.000086 2

Alexander Gruber Page: 69 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Linux - Message Queue - 100'000
0.000012 43776 0.000040 7 0.000083 17 0.000114 1
0.000013 43357 0.000041 7 0.000084 7 0.000115 1
0.000014 10323 0.000042 3 0.000085 15 0.000116 1
0.000015 619 0.000043 1 0.000086 10 0.000130 1
0.000016 203 0.000044 1 0.000087 10 0.000136 1
0.000017 16 0.000046 1 0.000088 12 0.000140 1
0.000018 1 0.000047 2 0.000089 10 0.000172 1
0.000019 1 0.000051 1 0.000090 14 0.000179 1
0.000024 2 0.000054 1 0.000091 26 0.000182 1
0.000025 2 0.000055 1 0.000092 22 0.000184 1
0.000026 2 0.000056 1 0.000093 19 0.000189 1
0.000027 1 0.000057 1 0.000094 15 0.000210 1
0.000028 1 0.000058 2 0.000095 8 0.000280 1
0.000029 1 0.000059 2 0.000096 8 0.000452 1
0.000030 1 0.000061 1 0.000097 6 0.000597 1
0.000031 37 0.000066 1 0.000098 3 0.000700 1
0.000032 239 0.000071 1 0.000099 3 0.005012 1
0.000033 228 0.000073 2 0.000100 2 0.005022 1
0.000034 235 0.000076 1 0.000102 2 0.011046 1
0.000035 300 0.000077 4 0.000105 1 0.017468 1
0.000036 192 0.000079 5 0.000106 1 0.018196 1
0.000037 103 0.000080 4 0.000107 1 0.018368 1
0.000038 37 0.000081 6 0.000110 1 0.019156 1
0.000039 14 0.000082 15 0.000113 1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Cycles

0.000012 0.000018 0.000032 0.000038 0.000084 0.000090

Time [s]

Time Measurement - Linux - Message Queues

Illustration 71: Linux - Message Queue - 10'000 cycles

Alexander Gruber Page: 70 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Cycles

0.000012 0.000030 0.000044 0.000076 0.000091 0.000110 0.000280

Time [s]

Time Measurement - Linux - Message Queues

Illustration 72: Linux - Message Queue - 100'000 cycles

Message queue test on Solaris
Solaris - Message Queue - 100
0.000032 4 0.000035 1 0.000040 1 0.000054 1
0.000033 57 0.000036 1 0.000042 1 0.000133 1
0.000034 31 0.000037 1 0.000044 1
Solaris - Message Queue - 1'000
0.000032 20 0.000047 20 0.000059 1 0.000074 1
0.000033 157 0.000048 1 0.000060 1 0.000076 1
0.000034 58 0.000049 4 0.000061 1 0.000086 1
0.000035 1 0.000051 1 0.000062 2 0.000101 1
0.000036 3 0.000053 3 0.000063 2 0.000129 1
0.000040 4 0.000054 13 0.000064 1 0.000160 1
0.000041 1 0.000055 5 0.000065 1 0.002944 1
0.000042 1 0.000056 5 0.000070 1
0.000045 41 0.000057 2 0.000071 1
0.000046 639 0.000058 2 0.000072 1

Alexander Gruber Page: 71 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

0

10

20

30

40

50

60

Cycles

0.000032 0.000034 0.000036 0.000040 0.000044 0.000133

Time [s]

Time Measurement - Solaris - Message Queue

Illustration 73: Solaris - Message Queue - 100 cycles

0

100

200

300

400

500

600

700

Cycles

0.000032 0.000041 0.000049 0.000057 0.000063 0.000074 0.002944

Time [s]

Time Measurement - Solaris - Message Queue

Illustration 74: Solaris - Message Queue - 1'000 cycles

Alexander Gruber Page: 72 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

Solaris - Message Queue - 10'000
0.000025 1 0.000042 49 0.000058 4 0.000076 2
0.000026 1 0.000043 25 0.000059 2 0.000077 1
0.000027 1 0.000044 17 0.000060 2 0.000078 2
0.000028 1 0.000045 53 0.000061 2 0.000080 1
0.000029 2 0.000046 1061 0.000062 2 0.000093 1
0.000031 1 0.000047 110 0.000063 1 0.000100 2
0.000032 99 0.000048 31 0.000064 3 0.000101 1
0.000033 3379 0.000049 18 0.000065 7 0.000102 1
0.000034 4385 0.000050 8 0.000066 2 0.000105 1
0.000035 502 0.000051 8 0.000067 1 0.000128 1
0.000036 36 0.000052 8 0.000069 1 0.000164 1
0.000037 29 0.000053 5 0.000070 1 0.000165 1
0.000038 19 0.000054 7 0.000072 1 0.000166 1
0.000039 11 0.000055 3 0.000073 1 0.000624 1
0.000040 19 0.000056 4 0.000074 1 0.002821 1
0.000041 52 0.000057 5 0.000075 1
Solaris - Message Queue - 100'000
0.000024 2 0.000041 578 0.000057 9 0.000075 1
0.000025 3 0.000042 262 0.000058 13 0.000076 1
0.000026 7 0.000043 109 0.000059 10 0.000077 1
0.000027 8 0.000044 86 0.000060 3 0.000079 1
0.000028 2 0.000045 86 0.000061 10 0.000080 1
0.000029 3 0.000046 82 0.000062 3 0.000081 1
0.000031 6 0.000047 75 0.000063 8 0.000083 2
0.000032 2769 0.000048 29 0.000064 4 0.000086 2
0.000033 49619 0.000049 34 0.000065 4 0.000103 1
0.000034 41987 0.000050 35 0.000067 3 0.000148 1
0.000035 2634 0.000051 25 0.000068 1 0.000605 1
0.000036 320 0.000052 22 0.000069 2 0.000616 1
0.000037 270 0.000053 17 0.000070 1 0.000622 1
0.000038 135 0.000054 12 0.000071 2 0.000624 1
0.000039 192 0.000055 17 0.000073 2 0.000625 2
0.000040 463 0.000056 15 0.000074 2 0.000629 1

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Cycles

0.000025 0.000036 0.000046 0.000056 0.000066 0.000078 0.000166

Time [s]

Time Measurement - Solaris - Message Queue

Illustration 75: Solaris - Message Queue - 10'000 cycles

Alexander Gruber Page: 73 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Cycles

0.000024 0.000035 0.000045 0.000055 0.000065 0.000077 0.000622

Time [s]

Time Measurement - Solaris - Message Queue

Illustration 76: Solaris - Message Queue - 100'000 cycles

Message queue test on QNX
QNX - Message Queue - 100
0.000013 92 0.000039 1
0.000014 1 0.000043 1
0.000015 2 0.000134 1
0.000018 1 0.072905 1

QNX - Message Queue - 1'000
0.000013 942 0.000027 1 0.000051 1 0.000243 1
0.000014 14 0.000028 1 0.000052 1 0.000296 1
0.000015 18 0.000029 2 0.000072 1 0.000988 1
0.000016 7 0.000035 1 0.000129 1 0.001773 1
0.000017 1 0.000037 1 0.000154 1
0.000020 1 0.000044 1 0.000157 1

0

10

20

30

40

50

60

70

80

90

100

Cycles

0.000013 0.000015 0.000039 0.000134

Time [s]

Time Measurement - QNX - Message Queues

Illustration 77: QNX - Message Queue - 100 cycles

Alexander Gruber Page: 74 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

0

100

200

300

400

500

600

700

800

900

1000

Cycles

0.000013 0.000017 0.000029 0.000051 0.000154 0.000988

Time [s]

Time Measurement - QNX - Message Queues

Illustration 78: QNX - Message Queue – 1’000 cycles

QNX - Message Queue - 10'000
0.000013 9519 0.000025 2 0.000041 1 0.000083 1
0.000014 155 0.000026 1 0.000043 1 0.000092 1
0.000015 220 0.000027 1 0.000044 2 0.000123 1
0.000016 45 0.000028 3 0.000047 1 0.000134 1
0.000017 11 0.000029 3 0.000049 1 0.000156 1
0.000018 2 0.000032 1 0.000050 1 0.000227 1
0.000019 1 0.000033 1 0.000052 1 0.000262 1
0.000020 1 0.000034 1 0.000054 1 0.000278 1
0.000021 1 0.000035 3 0.000073 1 0.000413 1
0.000023 4 0.000037 1 0.000076 1 0.001090 1
0.000024 1 0.000040 1 0.000081 1

Alexander Gruber Page: 75 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

QNX - Message Queue - 100'000
0.000013 86462 0.000062 2 0.000120 1 0.000280 1
0.000014 9958 0.000063 3 0.000121 2 0.000281 2
0.000015 2007 0.000064 7 0.000122 2 0.000284 1
0.000016 824 0.000065 4 0.000123 2 0.000294 1
0.000017 90 0.000066 4 0.000124 1 0.000303 1
0.000018 56 0.000067 2 0.000127 2 0.000304 1
0.000019 11 0.000068 3 0.000129 1 0.000312 1
0.000020 7 0.000069 2 0.000131 2 0.000334 1
0.000021 6 0.000070 3 0.000138 1 0.000348 1
0.000022 13 0.000072 8 0.000139 1 0.000356 1
0.000023 21 0.000073 5 0.000141 1 0.000359 1
0.000024 22 0.000074 4 0.000142 1 0.000363 1
0.000025 26 0.000075 3 0.000145 1 0.000368 1
0.000026 16 0.000076 2 0.000147 1 0.000370 1
0.000027 24 0.000077 2 0.000148 1 0.000382 1
0.000028 24 0.000078 1 0.000150 1 0.000385 1
0.000029 21 0.000079 1 0.000152 1 0.000389 1
0.000030 5 0.000080 2 0.000153 1 0.000394 1
0.000031 7 0.000081 2 0.000155 1 0.000406 1
0.000032 8 0.000082 1 0.000156 1 0.000412 1
0.000033 3 0.000084 4 0.000157 1 0.000428 1
0.000034 9 0.000085 1 0.000158 1 0.000490 1
0.000035 13 0.000086 3 0.000159 1 0.000495 1
0.000036 4 0.000088 2 0.000162 1 0.000496 1
0.000037 7 0.000089 1 0.000167 1 0.000573 1
0.000038 12 0.000090 3 0.000169 1 0.000602 1
0.000039 9 0.000091 3 0.000174 1 0.000770 1
0.000040 4 0.000092 4 0.000177 1 0.000993 1
0.000041 5 0.000093 1 0.000179 1 0.001015 1
0.000042 10 0.000094 1 0.000183 1 0.001121 1
0.000043 7 0.000095 1 0.000184 1 0.001132 1
0.000044 14 0.000096 2 0.000186 1 0.001198 1
0.000045 14 0.000097 2 0.000189 1 0.001366 1
0.000046 8 0.000098 1 0.000190 1 0.001370 1
0.000047 11 0.000100 1 0.000191 1 0.001465 1
0.000048 5 0.000101 1 0.000192 1 0.001561 1
0.000049 11 0.000104 2 0.000208 1 0.001873 1
0.000050 1 0.000106 2 0.000211 1 0.001876 1
0.000051 7 0.000107 1 0.000212 1 0.003338 1
0.000052 7 0.000108 1 0.000220 1 0.006891 1
0.000053 4 0.000109 3 0.000221 1 0.006917 1
0.000054 3 0.000110 1 0.000222 1 0.006996 1
0.000055 2 0.000111 1 0.000224 1 0.007075 1
0.000056 1 0.000112 1 0.000233 1 0.007093 1
0.000057 2 0.000113 2 0.000236 1 0.007256 1
0.000058 1 0.000114 1 0.000237 1 0.011107 1
0.000059 6 0.000115 1 0.000241 1 0.017617 1
0.000060 2 0.000116 1 0.000256 1

Alexander Gruber Page: 76 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Cycles

0.000013 0.000020 0.000028 0.000040 0.000052 0.000123 0.001090

Time [s]

Time Measurement - QNX - Message Queues

Illustration 79: QNX - Message Queue - 10'000 cycles

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Cycles

0.000013 0.000041 0.000070 0.000104 0.000152 0.000236 0.000573

Time [s]

Time Measurement - QNX - Message Queues

Illustration 80: QNX - Message Queue - 100'000 cycles

Installing network card under Solaris 10
Under Solaris, the command ifconfig -a can be used to show the interface configuration of

the system. Before the network card has been installed, this command returns us the following
configuration:

bash-3.00# ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232
index 1
 inet 127.0.0.1 netmask ff000000

The configuration shows, that there is no network card installed. The entries shown above
represent the local loop back.

Alexander Gruber Page: 77 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

To install the network card, a driver package needs to be installed. Therefore, the files of
the driver package need to be extracted into a new folder, enter this folder and finally install
the package. But before we can install this driver package, the Solaris system has to be
configured for running in 32-bit mode. This can be achieved by typing the following
command lines into the shell:

/usr/sbin/eeprom boot-file = “kernel/unix”

After rebooting the system, the running mode can be checked by using typing:

/usr/bin/isainfo –kv

If the system running mode has been changed successfully, this command displays the
following:

32-bit i386 kernel modules

Now the driver package can be installed:

bash-3.00# pkgadd -d /source folder/sk9521
The following packages are available:
 1 SKGEsol SysKonnect Gigabit Ethernet Adapter families 32 bit driver
 (i386) 8.12.1.3

Select package(s) you wish to process (or 'all' to process
all packages). (default: all) [?,??,q]: all

Processing package instance <SKGEsol> from </source folder/sk9521>

SysKonnect Gigabit Ethernet Adapter families 32 bit driver(i386) 8.12.1.3
SysKonnect GmbH

 IP configuration

Do you want to configure the IP interfaces now (y/n)? n

Do you have more SysKonnect Gigabit Ethernet adapters installed (y/n)? n
Using </> as the package base directory.
Processing package information.
Processing system information.
 9 package pathnames are already properly installed.
Verifying disk space requirements.
Checking for conflicts with packages already installed.
Checking for setuid/setgid programs.

This package contains scripts, which will be executed with super-user
permission during the process of
installing this package.

Do you want to continue with the installation of <SKGEsol> [y,n,?] y

Installing SysKonnect Gigabit Ethernet Adapter families 32 bit driver
as <SKGEsol>

Executing preinstall script.
Installing part 1 of 1.
/etc/rcS.d/S50skge
/kernel/drv/skge
/kernel/drv/skge.conf
/usr/sbin/skge_vlan_config
/usr/share/man/man7d/skge.7d

Alexander Gruber Page: 78 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

[verifying class <none>]
[verifying class <master>]
Executing postinstall script.
add_drv skge
starting network interfaces ...
ifconfig: setifflags: SIOCSLIFFLAGS: skge0: Cannot assign requested address
skge0 not started
.

Installation of <SKGEsol> was successful.

*** IMPORTANT NOTICE ***
 This machine must now be rebooted in order to ensure
 sane operation. Execute
 shutdown -y -i6 -g0
 and wait for the "Console Login:" prompt.

After the installation of the network card was successful, the interface configuration has
changed now:

bash-3.00# ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232

index 1
 inet 127.0.0.1 netmask ff000000
skge0: flags=1000862<BROADCAST,NOTRAILERS,RUNNING,MULTICAST,IPv4> mtu 1500

index 3
 inet 0.0.0.0 netmask ff000000 broadcast 127.255.255.255
 ether 0:0:5a:9e:64:e9

The newly installed network card is now shown in the list. But the IP-address and netmask
are not set yet. To configure the network card, a couple of files have to be changed, which are
all placed under /etc/. Add the name of the network card to the file hostname.skge0 (in this
case skge0), add the entry

44.63.25.10 felagund

to the file hosts to configure your preferred IP-address and hostname (felagund) and finally
add your preferred netmask to the file netmasks:

44.63.25.10 255.255.0.0

After rebooting your system, the command ifconfig –a should display the right information:

ifconfig -a
lo0: flags=2001000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4,VIRTUAL> mtu 8232

 index 1
 inet 127.0.0.1 netmask ff000000
skge1: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2
 inet 44.63.25.10 netmask ffff0000 broadcast 44.255.255.255
 ether 0:0:5a:9e:64:e9

The network card can as well be configured manually, but in this case, the information will
be lost as soon as your system is being rebooted:

ifconfig skge0 44.63.25.10 netmask 255.255.0.0 up

To display the actual routing table, type:

netstat –nr

Alexander Gruber Page: 79 / 80 Final Diploma Work 06/07

Evaluation of Solaris and QNX for aeronautic real time simulation software

To reach computers situated outside of the local subnet, a new entry has to be added to the
routing table. Therefore, create a new file named defaultrouter add your default router address
and save it under /etc/. After successfully adding this entry, netstat –nr will display:

netstat -nr
Routing Table: IPv4
 Destination Gateway Flags Ref Use Interface
-------------------- -------------------- ----- ----- ------ ---------
44.0.0.0 44.63.25.10 U 1 0 skge1
default 44.63.25.1 UG 1 0
127.0.0.1 127.0.0.1 UH 23 6998 lo0

Content of the supported CD-ROM
On the supported CD-ROM can be found the following files:

 Documentation about Solaris and QNX
 Drivers
 3rd party software and development tools
 Source Code in Word-format
 Source Code (message queue, semaphore,…)
 Latest report version
 Final Diploma Work presentation

Alexander Gruber Page: 80 / 80 Final Diploma Work 06/07

	Diplom 2006
	Gruber Alexander

	Company presentation
	A little bit of history
	Airbus
	The company Airbus France SAS
	Production site Toulouse
	Working environment
	Software department EYYW

	Solaris 10
	A little bit of history
	About Solaris 10
	System Analysis Tools
	Process Accounting and Statistics
	Enhanced Patch Management
	System architecture
	Processes, Threads and Scheduling
	Global Process Priorities and Scheduling

	Installation
	Handling
	Common Desktop Environment
	Java Desktop System

	Support

	QNX Neutrino 6.3
	A little bit of history
	About QNX 6.3
	Power Management Framework
	Instrumented Microkernel
	Processor Support
	System architecture
	Threads and processes
	Scheduling algorithms

	Installation
	Handling
	Support
	QNX Momentics
	Tick size

	Test programs
	LibTIM
	Generic created Test (BGenerique)
	Timer Latency (only QNX)
	Shared memory
	Fork system call
	Message queues
	Semaphores
	Sorting algorithm

	Portability
	Conclusion
	Oneshot, absolute
	Oneshot, relative
	Periodic, absolute
	Periodic, relative
	Semaphore
	Message Queue

	Illustration Index
	Links
	Solaris 10
	QNX 6.3
	General information & links
	Books

	Appendix
	Information about the thesis
	 Bench Generique (BGenerique) results
	BGenerique on Linux
	BGenerique on Solaris
	BGenerique on QNX

	Semaphore test results
	Semaphore test on Linux
	Semaphore test on Solaris
	Semaphore test on QNX

	Message queue test results
	Message queue test on Linux
	Message queue test on Solaris
	Message queue test on QNX

	Installing network card under Solaris 10
	Content of the supported CD-ROM

