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Abstract

Nowadays embedded systems, available at very low cost, are becoming more and more present in

many fields such as industry, automotive and education. This master thesis presents a prototype

implementation of an embedded systems programming language.

This report focuses on a high-level language, specially developed to build embedded applications,

based on the dataflow paradigm. Using ready-to-use blocks, the user describes the block diagram

of his application, and its corresponding C++ code is generated automatically, for a specific target

embedded system.

With the help of this prototype Domain Specific Language (DSL), implemented using the Scala

programming language, embedded applications can be built with ease. Low-level C/C++ codes are no

more necessary. Real-world applications based on the developed Embedded Systems Programming

Language are presented at the end of this document.
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Chapter 1

Introduction

Embedded systems are becoming more and more present. They are very popular, widely used and

cheap. A multitude of these systems are available on the market. As an example, Arduino boards

have a great success. These development boards are available at very low cost and allow to build

applications using a specific language, similar to C or C++. Other ARM based computers, like the

Raspberry Pi, are more powerful systems. They are used a lot in the educational field, especially to

introduce programming concepts at school (for instance using the Python programming language).

Several Visual Programming Languages (VPL) have been developped for educational purposes. They

help to build applications using a visual editor and avoiding to use a specific programming language.

Some of these visual languages will be presented in the chapter 2. The majority of them are used to

build games or animations on computer. The other part have been developed specially for embedded

systems.

Developing applications for embedded systems is hard because low-level programming languages are

necessary. Some proprietary tools helps to convert an UML model (for instance a class diagram) to a

generated C/C++ or Java code. Rational Rhapsody1 is one of this tool. Unfortunately, the generated

code produced by this tool cannot be executed directly : some methods must be implemented

manually using low-level C/C++ code. Depending on the target, other adaptations are necessary.

Based on theses observations, the goal of this project is to build a new prototype programming

language for embedded systems. Using a specific syntax based on the dataflow paradigm, this

high-level language allows to describe the behavior and the block diagram of an application (not its

concrete implementation). Using ready-to-use components available in the framework, the user can

connect blocks together to build the application. Each block can be seen as a black-box, with inputs

and outputs, used to compute predefined functions. These blocks are used to build the logic of the

application and also to control specific peripherals of the embedded system. Then, the developed

framework generates automatically the C++ code corresponding to the application. The code can be

used out of the box to program the target embedded system.

1 IBM - Software - Rational Rhapsody family - http://www-03.ibm.com/software/products/en/ratirhapfami
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Chapter 1. Introduction

As a proof of concept, the embedded systems programming language is developed using an internal

Domain Specific Language (DSL) in Scala. With the help of this high-level language, embedded

applications can be built with ease, avoiding the use of low level programming languages like C

or C++. This prototype language helps non programmer users to build portable applications for

embedded systems.

Outline

Before presenting the developed framework specification, some existing visual programming lan-

guages and tools will be presented in chapter 2. Instead of writing textual programs, two visual

approaches are introduced : block-based and dataflow programming.

Then, the project architecture overview and the specification of the prototype language are detailed

in chapter 3. Some specific features of the Scala programming languages, especially Domain Specific

Language (DSL) are introduced.

Chapters 4 and 5 focus on the programming language implementation. The features of the language

are presented using simple example applications. The whole transformation process from the

application definition to the code generation, simulation and tests is described in details.

Then, the language is shown "in action" in the chapter 6. Two real-world applications developed

using the embedded system language are presented. To check the behavior of these applications, two

testing approaches have been used.

Finally, the chapter 7 concludes the report, by presenting achieved results and by giving some

recommendations and further directions for the project.

2



Chapter 2

State of the art

Visual programming languages (VPL) are now common, for instance in the educational field to learn

basic programming concepts to children. Several programs also includes a visual programming editor

to develop simulations, games, automated processes or to create sounds and movies. Instead of

writing textual programs using codes, these programs are built graphically in an easy-to-use editor.

The model of the application is described visually. It is an abstraction of the concrete implementation,

and no code is required. A complete snapshot of available visual programming languages can be

found online [Hos14]. Today, VPL are available to describe all kind of programs, in many areas.

Programs can be represented visually in different manners. It can be using blocks, flowcharts or

dataflows for instance. A selection of some existing programming languages will be presented in this

chapter. Some of them have been developed for education purpose, others especially for embedded

systems. Two visual paradigms will be presented in the next two sections.

2.1 Block-based programming

The first type of visual programming language presented here consists of writing applications like

puzzle. An application is composed by blocks, which can be combined together to create a program.

No code is required, the application is built graphically using a drag&drop interface. Some block-

based programming language are presented in the next sections.

2.1.1 The Scratch programming language

Scratch [MIT14] is a free visual programming language developed by the MIT Media Lab. Scratch 1.0

was released in 2007, but it is based on a quite old language called Squeak (created in 1996), which is

a dialect of the Smalltalk language, created in 1972.

Scratch is a programming language and online community, designed specially for young people, to

create interactive stories, games, and animations with ease, using a visual editor. Ready-to-use blocks

are connected to each other, like a puzzle, to create a program (a script). 145 blocks1 can be used to

control active objects, called "sprites" (inspired by EToys programming language). An offline desktop

editor is available, and also a web-based editor, presented in figure 2.1. They are both implemented

using Flash.

1 List of blocks in Scratch 2.0 - http://wiki.scratch.mit.edu/wiki/Blocks#List_of_Blocks

3
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Chapter 2. State of the art

The program is described visually using blocks on the right of figure 2.1. A color corresponds to block

category, like motion, events, control, or sensing. All these blocks, combined together, are used to

control and animate one or more sprites, drawn on the top left on figure 2.1. Each block has a special

slot, to prevent syntax errors. Basic programming concepts, like loops, conditional tests and variables

can be used. Images and sounds can be also added and the user can control a program using mouse

and keyboard events. A nice feature of Scratch is that programs can be updated dynamically, when

running.

Figure 2.1 – Web based development environment of Scratch 2.0

Limitations

Scratch is multimedia and educational oriented. Programs are described using colorful blocks only. It

is not possible to add code (in text format) to write more complex or specific blocks. Scratch supports

only basic types: from Scratch 1.4, floating point numbers and some limited functions on strings are

supported. The last Scratch version, released on May 2013, now supports custom blocks. They can be

used ot create reusable functions with input parameters if needed, but no code can be inserted. An

extended implementation of Scratch, called Snap! [MH14] is another programming language which

allows to build custom blocks.

The scope of the Scratch programming language is limited. The version 2.0 of the language adds

an extension protocol2 available to connect Scratch desktop applications with the physical world.

Javascript or HTTP extensions add specific blocks, available to control external hardware. Some

projects are listed bellow :

• The first project is a simple extension board used to connect desktop Scratch programs to

the physical world. The PicoBoard contains a slider, a button, analogs inputs and a few other

sensors. Connected through USB, custom blocks are available to control the extension board.

• The LEGO WeDo Javascript extension add blocks to control the LEGO WeDo Robotic Kit,

composed by motors and different sensors (light distance, tilt).

2 http://wiki.scratch.mit.edu/wiki/Scratch_Extension_Protocol_(2.0)

4
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• Finally, some other experimental projects allow Scratch programs (running on desktop) to

communicate with Arduino boards. Arduino For Scratch (A4S)3 use the Firmata protocol to

communicate with the Arduino board. A second project, S4A (Scratch For Arduino)4 interact

with Arduino by sending actuators states and receiving sensor states each 75 ms. Both of these

projects are experimental and use the Scratch extension protocol to interact with the editor. All

values are transmitted from/to Arduino using a serial connection over USB, and then sent over

HTTP to the Scratch IDE.

Scratch has been developed for children, for educational and multimedia purpose, but not for

embedded systems. It is widely used by students, schools or teachers to easily create simple games or

simulations and learn how to program using a graphical editor. There is also a big community and a

lot of Scratch program example are shared. Programs are build like puzzle using blocks, which are

great to prevent syntax error.

Some experimental projects presented above can be used to communicate with embedded systems,

like Arduino boards. Scratch programs are always running on the desktop and inputs/outputs values

are transmitted from the embedded device to the PC over USB.

Finally, Stencyl5 is a project which extends the Scratch’s simple block-snapping interface with new

functionality and blocks, to create games for mobile, web and desktop, always without writing code.

2.1.2 Turtle graphics

Turtle graphics is inspired by the Logo programming language [Tho83] in the late 1960s. The

TurtleArt [Sug14] has been developed to draw images, using a relative cursor in a two-dimensional

plan. The cursor used to draw the image, represents the turtle. Here is an example of a turtle graphics

environment :

Figure 2.2 – Drawing a filled shape using TurtleArt (source [Sug14])

The turtle, used to draw images, has 3 main attributes: a position, an orientation and a pen (with a

color, a width, etc.). A program is composed by a sequence of instructions used to control or move

the turtle. In figure 2.2, the program is defined using blocks, in a similar way to the Scratch language.

Using these blocks, it is very easy to draw simple images.

3 https://github.com/damellis/A4S
4 http://s4a.cat/
5 Create games for mobile, web and desktop without code - http://www.stencyl.com/

5
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Extended TurtleArt versions are also available. They offer advanced functions to build complex

images (using geometrical operations for instance) and more than one turtle can be used. Some

advanced applications and results are presented on this website [Sug14].

Many TurtleArt implementations are available. They usually offer a graphical environment to create

programs using blocks, like Scratch (see previous section 2.1.1), but TurtleArt programming languages

are also available. Programs can be built using specific sequential commands. As an example, a Java

implementation is available here6. Another interesting open source application, named Kojo7, can be

used to program turtle graphics. Kojo is a complete learning environment developed in Scala, which

includes many different features, not only turtle graphics.

2.1.3 Modkit

Modkit [Mod15] is a more recent project, born in 2010 from a Kickstarter project. It is again a visual

programming environment, specially developed to program embedded systems. It is heavily inspired

by Scratch. Based on the same blocks concept, this drag&drop programming environment makes

embedded systems programming easy and accessible to everyone. The Modkit desktop application is

presented in figure 2.3.

Figure 2.3 – Modkit micro desktop application

Modkit is compatible with many hardware. All Arduino8 and Arduino like boards are compatible

targets. Specific blocks are available to configure and control input and output pins of the board. The

program is composed by these blocks, like in Scratch or TurtleArt.

With Modkit, in addition to the block interface of figure 2.3, two other views are available. The first

view can be used to configure the pins of the selected target as input or output. Depending on the

target, specific pins can be configured as analog or digital. The second view displays the generated

code, but this code cannot be modified. It is generated automatically from the visual interface (the

opposite way is not available).

6 Turtle Graphics with Java - http://www.java-online.ch/lego/legoEnglish/turtleGrafik.php
7 The Kojo Learning Environment - http://www.kogics.net/kojo
8 Arduino open-source electronics platform - http://www.arduino.cc/

6
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2.1. Block-based programming

The generated code 2.1 corresponds to the LED blinking program of figure 2.3 :

1 void setup() {

2 pinMode(PIN2, OUTPUT);

3 }

4

5 void loop() {

6 digitalWrite(PIN2, HIGH);

7 delay(1000);

8 digitalWrite(PIN2, LOW);

9 delay(1000);

10 }

Listing 2.1 – The generated code for an Arduino board

This code is automatically generated from the blocks and cannot be edited. Each block are translated

to a C code to create a sequential program (imperative paradigm). The generated code can be

used to program the Arduino board, without modification. The board can be linked to the Modkit

environment using an USB cable. This part has not been tested, but once the environment is

configured and the board detected, the play button should program the target and run the application

automatically. The program can only be ran, not debugged, and unfortunately no simulator are

available.

Modkit makes embedded programming easy. It is compatible with many targets and a single applica-

tion is used to develop, compile and run the program with ease. It is great to learn programming in

the educational field and to build simple applications.

Unfortunately, only a few control and operator blocks are available. Furthermore, it is only possible

to control analog and digital I/O. Embedded systems have more and more power and advanced

peripherals. For now, all target features cannot be used. Modkit is still in an alpha version, more

functionalities will be probably added soon.

2.1.4 Related work

Several visual block-based programming languages have been presented in the previous sections.

Open source libraries, like Google Blocky [Goo14], can be used to build such visual editors with ease.

These type of block-based languages are very common today. Other related projects like Bitbloq or

Ardublock, based on the same programming paradigm as Scratch, have been developed specifically

to generate programs for embedded systems (like Arduino).

One advantages of these languages is that the sequential generated code looks like the visual program

description, and using blocks makes syntax errors completely impossible [Goo14] (no unbalanced

parentheses, no missing semicolons, etc.). Visual block-based languages are excellent educative

tools and make the programming accessible to kids (no code is required). Unfortunately, complex

programs are verbose and not easy to develop, and blocks functionalities can be limited (see the

Modkit project in section 2.1.3 for instance).

7
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2.2 Dataflow and flow-based programming

Dataflow and flow-based programming are two other approaches to describe programs visually.

These visual programing paradigms will be covered and explained in this section. Some projects that

use each of theses approaches will be presented later.

First, terms of dataflow and flow-based can be confusing because they both define visual program-

ming paradigms and execution models. In both cases, applications are defined using "black-boxes"

components, connected together to exchange data and information. Applications are represented

using graphs. The nodes of the graph are the components and connections are the arcs between

them. A simple Flow-Based Programming (FBP) diagram is presented in figure 2.4 :

Figure 2.4 – A Flow-Based Programming diagram (source [Mor13])

Before describing how such applications are defined, it is important to distinguish the differences

between these two paradigms. According to this article [Mai13], the two models are explained bellow :

1. Flow-based programming

Flow-Based Programming (FBP) is a particular form of dataflow programming, invented by J.

Paul Morrison in the early 1970s [Mor13]. This paradigm usually mean asynchronous dataflow

programming [Mai13]. In this model, nodes are constantly waiting for messages. Data between

nodes are event-based and asynchronous channels are used. Each node of the graph are

connected with ports, implemented for instance with queues to continually receive messages

from other nodes (like streams). Applications are not defined by a single sequential process,

but by a complex network of asynchronous processes [Mai13].

2. Dataflow programming

Dataflow is the synchronous approach. It corresponds more to conventional synchronous

programming. This time, the graph is executed in a sequential order. A node is executed once

when the data of all its inputs are ready. The node output is computed and the result "flows" to

the input of the next node. The same process is executed again and again, until all nodes have

been executed [Mai13]. In this model. the scheduler is much more simple because nodes are

executed once, in a sequential order.

The "Advances in dataflow programming languages" [JHM04] article reviews many developments

that have taken place within dataflow programming languages in the past decade. Other dataflow

execution models are also presented in details. This other article [WP94] presents the history and

evolution of dataflow languages. Not all of them will be covered in this document, but some projects

and software based on the synchronous and asynchronous dataflow programming model will be

presented in th next two sections.
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2.2. Dataflow and flow-based programming

2.2.1 NoFlo

Different FBP implementations are available. The NoFlo9 project is one of them. It was created in

2013 from a KickStarter campaign and is presented here.

NoFlo is a JavaScript (more precisely CoffeeScript) implementation of Flow-Based Programming. It is

based on NodeJs and runs in a browser. NoFlo components can be used to build software, defined

as graphs. Components are connected together with ports and messages are used to communicate

between the components. For instance, components can react to HTTP requests, to writing data to a

database. NoFlo applications are built using a web-based editor. NoFlo UI is the name of their IDE

for flow-based programming.

NoFlo became popular and similar project have been created or are based on it. One example is

the MicroFlo10 experimental project. It is a flow-based programming runtime for microcontrollers

(like Arduino). It is inspired by and designed for integration with NoFlo. Simple applications can be

developed visually using the NoFlo UI, but according to the documentation project, it is too early to

use it for general tasks.

An other interesting point of NoFlo is that applications can also be developed using a specific Flow-

Based Programming language11. This is a Domain-Specific Language (DSL) for easy graph definition.

The following example presents how to use this DSL to blink a LED. Using MicroFlo, the code 2.2 can

be executed on Arduino for instance.

1 # LED blinking on Arduino

2 # https://github.com/microflo/microflo/blob/master/examples/blink.fbp

3 timer(Timer) OUT -> IN toggle(ToggleBoolean)

4 toggle() OUT -> IN led(DigitalWrite)

5 '300' -> INTERVAL timer()

6 '13' -> PIN led()

Listing 2.2 – Led blinking example in Microflo

The graph application can be created using a visual tool or using the DSL (by writing code). Then, the

program 2.2 is converted to a command stream and embedded into the firmware image, which can

be loaded on the microcontroller. Finally, the network graph is executed on the device (standalone).

At this stage of the project, the execution model and the scheduler implementation are quite simple

and limited (see10, network execution). Components are naively scheduled. Messages are stored in

queues and are delivered to the corresponding components in the main loop of the program. It is

expected that scheduling will grow more complicated over time, to support for instance asynchronous

input events/interrupts, fair division of the processing time, etc.

Systems based on FBP are growing. The flow-based programming introduction article of J. Paul

Morrison [Mor13] presents a lot more projects based on FBP, which implement some or all FBP

concepts.

One more interesting example is the Node-RED project. It is a visual tool for wiring Internet of Things

application, developed by IBM. Node-RED also provides a browser-based flow editor. It works on the

same principle as NoFlo and can be extended with custom blocks (Javascript code).

9 Flow-Based Programming for JavaScript - http://noflojs.org/
10 Flow-based programming runtime for microcontrollers - https://github.com/microflo/microflo
11 FBP flow definition language parser - https://github.com/noflo/fbp
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Finally, Node-RED can be executed on the BeagleBone of the Raspberry Pi, using a NodeJs server.

Custom components are available to use GPIO within the Node-RED Javascript environment. For

this, native libraries must be installed on the hardware.

2.2.2 LabVIEW

The synchronous dataflow approach is presented using the LabVIEW software as an example.

LabVIEW is a scientific software system for laboratory automation and simulation [KMR91]. This

professional software, developed by National Instruments and available since 1986, is widely used in

the industry. It is a very complete software used to describe visually many types of applications with

advanced structures, hierarchical diagrams, etc. It can be also used to develop graphical interfaces.

LabVIEW programs (block diagrams) are described using a dataflow representation. An example is

shown in figure 2.5 :

Figure 2.5 – Dataflow programming example in LabVIEW (source [Ins15])

LabVIEW is a well-known DataFlow Visual Programming Language (DFVPL) [JHM04] developed for

professional users but not programmers. Ready-to-use components are available in the software and

applications can be built using a drag & drop interface. This helps non-programmer users to build

complex applications to control an equipment or an automated process in LabVIEW for instance.

According to the official LabVIEW documentation [Ins15], LabVIEW follows a dataflow model. A block

diagram node is executed when it receives all required inputs. When a node executes, it produces

output data and passes the data to the next node in the dataflow path.

The visual language embedded in LabVIEW is called "G". It is based on the dataflow model, but it

is extended with graphical control flow structures. This allows to extend the pure dataflow model,

because it is too restrictive for the typical applications of LabVIEW [VM99]. Control structures are

available in the "G" language. For instance, a for loop structure allows to run a subgraph for a

predefined number of times. The summary of the "G" language is available in this article from

National Instrument [KMR91].

Finally, many additional toolkits are available to extend the software, for instance to build real time or

embedded (DSP) applications.
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Chapter 3

An embedded programming language

3.1 Specification

Several existing visual programming languages (VPL) have been presented in the previous chapter.

They use different approaches to represent a program visually, instead of describing it with codes,

using blocks (flowcharts) or dataflow diagrams. In this chapter, the overview and the specification of

the prototype embedded system programming language will be presented.

Modkit, Bitbloq or Ardublock are some projects, presented in the last chapter, developed specifically

for embedded systems. All these environments are block-based. The program is described visually,

and a sequential C code is generated. The generated code is very similar to its visualization because

blocks (like loops, if/case statements and math operators) are very close to the language.

In contrast to block-based VPL, the language developed during this project allows to describe the

model and the behavior of a program, and not its concrete implementation. It is an high level

language for embedded systems, used to express in a natural way the block diagram / the behavior

of the application. According to these articles [HCRP91, Qua04, JHM04], dataflow programming

languages are particularly well suited for this purpose.

The embedded system can be seen as a black box (shown in figure 3.1), connected to several external

components like buttons, LEDs, actuators, sensors, etc.

A

Y

X

User application
Data�ow based

Figure 3.1 – Embedded dataflow programming language
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Figure 3.2 shows a typical (simple) application which can be expressed using the developed dataflow

language (it will be presented later). The pseudo-code on the left defines the application specification.

Its dataflow representation is available on the right : instead of using a textual representation (a code),

the application specification is described visually.

if (!A)
  X = false;
else
  X = true;

Y = true;

MUX

sel
A

‘0’

‘1’ 1

0
X

Y

Figure 3.2 – Pseudo-code translated to a dataflow representation (adapted from [VBCG04])

In this simple example, The output Y is always ON. X is ON only when the input A is low.

The dataflow representation (see section 2.2 on page 8) is composed of "black-box" components.

Each box is a single function : the application above is composed by a multiplexer bloc, constants

values and an inverter gate. Inputs and outputs of these blocs are connected together to form a

DataFlow Graph (DFG). The DFG of the application 3.2 is the following :

in Not [1]
NOT gate out

in1
in2
sel

Mux2 [3]
Mux2 out

uint8

Constant [4]
constant generator

(true)
out

bool

bool

bool

bool

Constant [7]
constant generator

(false)
out bool

A

Y

X

Figure 3.3 – DataFlow Graph (DFG) of the application 3.2

The graph contains the four blocks that compose the application. Inputs are on the left, outputs on

the right. Components output ports are connected to input ports in a directed graph. Dependencies

between the components (nodes), and the type of the data that "flows" between them are also

represented in such a graph. Primitive types of data are exchanged between the components, like

bool, integer or floating point values. Each component has a generic number of input and output

ports. By convention, they are named out or out1, out2, etc. if many are available (the same for

inputs). Ports with a specific function are named with a custom name, like the selection (sel) input

port of the multiplexer.

The developed language is a high-level language used to describe any DAG (the block diagram of

the application) in a natural and concise way, using a specific "dataflow" syntax. The code 3.1 is the

textual representation of the application graph 3.3.
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1 val mux = Mux2() // Components decalartion

2 val not = Not()

3

4 mux.out --> X.in // Connecting ports

5 A.out --> not.in

6 not.out --> mux.sel

7 Constant(true).out --> mux.in1

8 Constant(false).out --> mux.in2

9 Constant(true).out --> Y.in

Listing 3.1 – Dataflow Domain Specific Language of the application 3.2

This program is a Scala Domain Specific Language (DSL), similar to the flow-based programming

language available in NoFlo (see section 2.2.1 on page 9). Severals components are available in the

developed framework. Using a specific Scala syntax, components ports are connected together using

the "-->" operator (an output port to an input port).

Unlike imperative programming, a dataflow program is not represented by a linear instruction

sequence, but by its DFG [Fin95, Chapter 6]. This graph give the execution order of the code. The

instruction order of the code 3.1 is not important. It must only be a valid Scala code. Components

must be declared before being used, but the ports connections order is not important. Output can be

connected before inputs for instance. The execution model will be presented later in this chapter.

3.2 Architecture

The code architecture overview of the project is presented in figure 3.4.

The traditional way used to program embedded systems is shown on the left. The user application

is developed in C or C++, and libraries are used to control the microcontroller peripherals, I/O, etc.

Depending on the target, proprietary tools and toolchain are necessary to program/debug the target.

Another approach used in this project is presented on the right of figure 3.4. This other approach is

now composed by two parts. The main difference is that an automated tool converts the model of the

application, described in a dataflow graph, to the native C/C++ application for the embedded system.

The frontend part, written in Scala, transform the dataflow model (its graph) to a C/C++ code.

This generated code is generic and based on a Hardware Abstraction Layer (HAL) to control the

microcontroller peripherals. This allow to support multiple targets, without modifying the high-level

application. The backend must be developed once for each target, and then no more low-level

C/C++ is required. As a proof of concept, two targets will be supported for this project : a generic

ARM development kit and a simulator based on QEMU which emulates the real target. They will be

presented in the next chapters.

The application model is specified using a custom dataflow DSL, like the program 3.1. The Scala

programming language and more specifically Domain Specific Language (DSL) are presented in the

next section.
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ESPecIaL

Timers
PWM

GPIO
Interrupts

UART

SPI / I2C

USB
CAN

A/D

HAL + libraries

User application C/C++

Shared drivers / API

Target
Cortex M3

HAL

QEMU drivers

Simulator

Generated application (C/C++)

Code generator

Components library ...

User application
High-level language (DSL)

Backend

Frontend

Auto.

Figure 3.4 – Project architecture overview

3.3 The Scala programming language

The SCALA programming language1, has been developed since 2001 in the programming methods

laboratory at EPFL (Switzerland).

According to [Typ14a], Scala is a general purpose programming language designed to express common

patterns in a concise, elegant, and type-safe way. The Scala syntax is lightweight and its primitives

expressive [OSV08]. It integrates features of object-oriented and functional languages. Scala programs

run on the Java Virtual Machine (JVM) and are compiled directly to regular Java bytecode. Therefore,

Scala is interoperable with Java: a Java code can be accessed from and to Scala programs.

In addition to these advantages, Scala also supports Domain Specific Language (DSL). DSL are

languages developed to express a custom problem (for a specific need). One well-known example is

Matlab. It integrates a DSL to do numerical computing, using a specific syntax. Another example is

the NoFlo DSL, presented in section 2.2.1 on page 9.

In this project, the user application will be described using a custom high-level language, based on

Scala. The next two sections are focused on two Scala DSL types. They will be presented and also

compared to other languages, like DSL build in Java or with other libraries.

3.3.1 Internal DSL

The first type of DSL are called internal DSL. Internal DSL are great to extend the Scala language itself.

Features can be added to language to meet specific needs. Internal DSL are built using the Scala

compiler, this implies that its syntax must be valid in Scala (the host language).

DSL are a powerful Scala feature [Bag09]. To extend the language, natural looking DSL can be written

using features directly available in the Scala language itself. Possibilities are somewhat limited, but

the Scala syntax [Ode14, p. 159] is flexible enough to built great internal DSL.

1 The Scala Programming Language - http://www.scala-lang.org/
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Some key advantages, described in this book [Gho10] and these articles [Oa04] [Ber11] are summa-

rized bellow :

• First, semicolons, dots and parenthesis, are optional in Scala (but still necessary in some cases).

Compared to Java where these characters are mandatory, they are now considered as "noise" in

Scala. For instance, Scala has a special syntax for invoking methods of arity-1 (one argument)

without using dot and parenthesis. The Scala syntax [Ode14, p. 159] is flexible (more than

Java for instance), so it possible to create less verbose, more user-friendly and more natural

languages without much effort.

• The Scala syntax also allow to use any ASCII character for method names and Unicode symbols

for operators. This can greatly improve the readability of the code.

• Implicit conversions are widely used to automatically convert built-in type to custom objects to

extend the language. Combined with operator overloading, they allow to write concise codes,

once again.

• Finally, Higher-order Functions (HOF), currying and curly braces (to make code blocks) can be

used to makes user-friendly DSL.

DSL are widely used in Scala to extend the language. To illustrate some of the features enumerated

above, the code 3.2 presents a DSL available within the Scala library. The Duration class and the

Future trait (both available in the scala.concurrent package2) extend the language to write and

use asynchronous computations with ease, in a more natural way.

1 import scala.concurrent._

2 import scala.concurrent.duration._

3 import scala.concurrent.ExecutionContext.Implicits._

4

5 object DemoFuture extends App {

6

7 val f: Future[Long] = future {

8 val t = (Math.random() * 3000).toLong // Simulate an HTTP request

9 Thread.sleep(t)

10 t // Return the computation time

11 }

12

13 f onSuccess {

14 case r => println(s"Future done in $r ms.")

15 }

16

17 // Waits 2 seconds for the Future result, or throws a TimeoutException

18 Await.ready(f, 2 seconds)

19 // Same as : "Await.ready(f, Duration(2, SECONDS))" (without DSL)

20 }

Listing 3.2 – A Scala internal DSL example using a Future

2 Scala Standard Library - http://www.scala-lang.org/api/current/index.html#scala.concurrent.package
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In the example 3.2, an HTTP request is simulated with random time. On line 21, we wait on the

Future result (a success or a failure) for 2 seconds at most. If this maximum time is reached, a

TimeoutException is thrown and the program terminates. If not, future result is printed.

On lines 7, 13 and 18, some of Scala features enumerated above make the code more readable and

concise (with a minimum of "noise"). For instance, using implicit conversions, timeouts, which are

often used with futures, can be simply written as "2 seconds", like a human readable text.

Internal DSL built using Java for instance are more verbose because characters must be added to

be conform to the Java syntax. Factory or Builder patterns [Gho10] can be used to create fluent

interfaces [FE05]. This help to build more natural Java internal DSL, but the Java syntax is more strict

and more rigid. As a result, internal Java DSL are less attractive because they will always be more

verbose (with noise) and less flexible than one built in Scala.

3.3.2 External DSL

Another type of DSL are called external DSL. In this case, the language is parsed using an external tool

or a built-in library, and the DSL syntax is totally independent of the host language. Unlike internal

DSL, all syntaxes can be supported.

Parser combinators3 are a way to build parsers using the Scala programming language. As of Scala 2.11,

parser combinators are available in an external library, but they are part of the language specification.

The grammar of the parser can be described using a particular syntax, directly in Scala using an

internal DSL.

Other Scala parser libraries are available. One alternative to the Scala parser combinators is Parboiled4,

which can also be used to build external Java DSL. Finally, ANTLR (ANother Tool for Language

Recognition) [Par13] is another parser generator that can be used to built external DSL in Java. In this

case, the grammar of the parser is described in an external file using an EBNF syntax, and not directly

within Java.

External DSL can be built either in Scala or Java with one of these tools. Using Scala parser combina-

tors, the grammar of the parser is written using an internal DSL, in a very consice form, directly in the

Scala language. No external files are needed, so the program is less verbose.

3.4 Dataflow model

In a previous introductory project, I had the opportunity to work with internal and external DSL,

using Java and Scala parser combinator and the aforementioned libraries.

For this prototype language, the dataflow program will be described using an internal Scala DSL.

According to the section 3.3.1, Scala is great to build internal DSL. Its syntax is flexible enough to

write a dataflow program (like the code 3.1 on page 13) in a natural and concise way. Furthermore,

the Scala compiler helps a lot to check the validity of the user-application at the compilation time.

Finally, the user can extend the DSL with ease, which is not possible with an external DSL.

3 Scala Standard Parser Combinator Library - https://github.com/scala/scala-parser-combinators
4 Parsing library for PEGs grammars - http://parboiled.org/
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3.5. Execution model

Projects like LabVIEW, NoFlo or Node-RED (presented in section 2.2) have a graphical interface to

build applications. In this project, as a proof of concept, dataflow applications will be described

textually and not graphically.

In a next version, a web-based editor, similar to Node-RED or NoFlo, could be implemented. Once the

programming language is implemented, the development of the graphical interface is straightforward,

because the program view can be translated one-to-one to the corresponding code.

3.5 Execution model

The block diagram of the application, stored in a dataflow-graph is transformed to a embedded C++

application. The goal of the project is not to develop a compiler (which could generates an assembly

code or an LLVM bytecode for instance), but to generate a ready-to-use C/C++ application.

The C/C++ code is generated specially for embedded systems. A quite simple execution model has

been chosen, so the application can be ran on most all embedded systems (also those with limited

resources). The skeleton of the generated C++ application is presented below :

1 int main() {

2 init(); // Components, target and peripherals initialization

3

4 while(1) {

5 // 1) I: Read Input

6 // 2) P: Process logic (execute the graph)

7 // 3) O: Update outputs

8 }

9 }

Listing 3.3 – Skeleton of the generated C++ application

The target system is used as "bare machine". This means that the application runs in a single and

monolithic "thread", without any operating system or complex execution frameworks. When the

application starts, the main function is called, followed by initializations functions and finally the

infinite main loop, as presented in the code 3.3. Using the developed HAL library, the application can

be compiled for the target using a standard toolchain.

The dataflow graph is transformed to a sequential application and executed in the main loop, accord-

ing to the Input-Process-Output (IPO) model. It consists in periodically reading the program inputs,

then computing the dataflow graph, and finally writing the program output values.

The generated sequential application corresponds to the Grafcet execution in a Programmable Logic

Controller (PLC) [GF13]. In this execution model, all inputs of the program are read at the same time,

and then all outputs are updated, also at the same time.

The dataflow graph is executed in a periodic or non periodic cycle. A program cycle corresponds to

one iteration of the while loop. The C/C++ code of each node/component of the dataflow graph is

executed in the main loop, in a particular order, to take into account the dependencies between the

nodes.
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Input
updated

Input
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time

Figure 3.5 – Periodic I/O scanning, IPO model (adapted from [GF13, p. 10])

3.5.1 Synchronous dataflow

To be able to transform any dataflow graph into an efficient sequential program, the dataflow must

be restricted to a synchronous dataflow [HCRP91]. A synchronous dataflow is a particular type of

dataflow which allows a static scheduling (known at compilation time) [HCRP91]. From a dataflow

graph perspective, this means that the graph must be restricted to a Direct Acyclic Graph (DAG). The

topological sort of the DAG gives the order in which nodes must be executed.

DAG are a specific type of graphs. Nodes are connected together with directed edges (arcs), such that

no directed cycles can be created. The following figure shows a DAG :

Cmp6
Cmp1

Cmp3Cmp2

Cmp4

Cmp5

Figure 3.6 – An example of a Directed Acyclic Graph (DAG)

The graph of the figure 3.6 is a valid DAG because no directed cycles are formed by the arcs. The

dataflow representation allows isolated nodes (like Cmp3). We can also identify source (input) nodes,

like Cmp1 and Cmp2, because they have 0 incoming edges (indegree zero). As opposite, the node Cmp6

is a sink (outdegree zero) connected with 2 incoming edges.

The order of the nodes execution in the while loop is given by computing the topological order of the

DAG. The graph sorting is done by the frontend part, before generating the application. This allows

to run an efficient sequential program on the embedded system, avoiding the overhead of a run-time

scheduling [TMPL95], which can be a performance issue for embedded systems.

The topological ordering of a DAG is not unique and must corresponds to the IPO model. It will be

explained in details in the chapter 5, in the frontend implementation description.
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3.6 Components library

We have developed several components that can be used by the user to build the dataflow applications.

The figure 3.7 shows the main components (dataflow blocks), classified by types.

Target specific
Generic I/O
Fixed I/O

CoreMath

Logic BoardOr

Not
Digital 
input

And

Analog 
input

Pulse 
counter

PWM 
output

Digital 
output

Mux

Constant

Tick 
toggle

PID 
regulator

Add

Mul

Sub

Div

ComponentsTrigger

Figure 3.7 – Available components classed by type

A first category of component, called "target specific" allows to control the hardware and the periph-

erals of the target, to read or write digital/analog values for instance. To do this, specific libraries and

low-level code is necessary, for each supported target. The model of these components is described

in the Scala frontend, and their concrete C/C++ implementation in the backend. The implementation

of these target specific components is based on a generic interface, an Hardware Abstraction Layer,

presented in the next chapter.

The other components allows to describe the logic of the program. The majority of the developed

components can be used with a generic number of input, like multiplexer, all logic gates and math

blocks. These components are implemented in the frontend, using a generic C/C++ implementation.

Currently, not so many components are available, but thanks to the Scala internal DSL, new compo-

nents can be added with ease, depending on the user needs. In the chapter 6, real-world applications,

based on these components will be presented.
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Chapter 4

Backend

The first technical part of the project consists in developing a low level C/C++ code for the chosen

embedded system (the target). First of all, a development board has been selected for the project.

The hardware and its toolchain are presented below.

Then, an Hardware Abstraction Layer (HAL) has been developed. Its specifications and implemen-

tation are detailed in the second part of the chapter. The role of this software layer is to provide a

generic way to access to the microntroller inputs, outputs and peripherals. All (developed or gen-

erated) applications running on the target will use this abstraction layer to control the hardware.

Target specific components presented in figure 3.7 on page 19, like digital I/O, PWM output, etc. are

implemented in C/C++ for the chosen target.

In the last part of the chapter, a sample C++ application based on the developed HAL presents how

the hardware and its peripherals can be accessed and controlled with ease. The HAL provides a high

abstraction level and helps to add new compatible targets in the future.

4.1 Target selection

The embedded system programming language developed during this project can be compatible with

several hardware, as long as a backend is available (has been developed) for the target.

For this project prototype and as a proof of concept, one hardware as been selected among many

possible choices. The goal of the project is not to develop a specific hardware, so a development

board available in the market has been chosen.

Two constraints have been considered for the selection. First, it is important to have a low-level access

to the hardware and its peripherals, and the possibility to develop on the hardware without operating

system (bare machine). This is why Raspberry Pi and alternatives boards have not been selected.

Secondly, the target should be sufficiently powerful to not be limited during the developments (PIC,

AVR or MSP processors can be too limited).
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4.2 Development kit

The selected target for the project is based on a 32-bit ARM Cortex-M3 processor. These processors

are very common, they offer rich connectivity, good performance and are available at low-cost. Many

manufacturers propose this type of processor, like Atmel, NXP Semiconductors, Texas Instruments

and STMicroelectronics.

Several development kits based on these processors are available at low-cost. As a result, I chose

a development kit available on the market I had experience with. It is based on the STM32F103

Performance Line MCU [STM14a]. This microcontroller combines a powerful ARM Cortex-M3 CPU

with an extensive range of peripheral functions and enhanced I/O capabilities :

• STM32F103RBT6 ARM 32-bit Cortex-M3 CPU Core (128KB flash, 20KB SRAM)

• 72 MHz maximum frequency

• LQFP64 package (10x10mm), 51 fast I/O ports

• Main peripherals : USB, CAN, I2C/SPI, ADC, UART, timers

The chosen development kit, presented in figure 4.1, is manufactured by Olimex [Oli14] and is

available for less than 50$. Its features are summarized bellow. Not all theses peripherals will be used

during the project.

• One user buttons, a joystick and a status LED

• LCD NOKIA 3310 black/white, 3-axis accelerometer, SD-MMC connector, 2.4 Ghz wireless

transceiver, audio in/out, USB mini connector

• Two extension connectors

• Standard JTAG connector for programming and debugging

Figure 4.1 – Olimex ARM Cortex-M3 STM32-103STK starter-kit board (90x65mm)

One user button, a joystick and a LED are available directly on the board (an Analog to Digital

Converter is necessary to get the joystick direction). The kit is flexible and has been designed for

many applications purposes. External peripherals can be added using the two 14-pin connectors to
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4.2. Development kit

extend the board capabilities. For the needs of the project, and extension board has been developed.

It will be presented later in this chapter, in section 4.5 on page 28.

All technical specifications and the development kit schematics are available on the manufacturer

website [Oli14]. I/O types and pins numbers are detailed in appendix A on page 78.

4.2.1 Development environment and toolchain

The backend has been developed and tested on the STM32-103STK starter kit. The figure 4.2 is an

overview of the tools and the hardware used to developed on the ARM Cortex M3 target.

.mk

User application
source files

Builder
(make)

GNU ARM 
Toolchain

(gcc, g++, ld)

Library
stm32f10x_lib

Programmer & 
Debugger

(GDB, OpenOCD)

ARM
executable file

Eclipse CDT
GNU ARM

.elf.c
.cpp

Generated
Makefile

JTAG
adapter

Hardware
Software

Target
STM32‐103STK

Generated files
Source files

Figure 4.2 – Software tools and hardware overview (adapted from [HES14])

The development environment is free of charge. It is based on the Eclipse CDT (C/C++ support) IDE

and the GNU ARM toolchain1(arm-none-eabi), which compiles all C/C++ source files into an ARM

executable file. The project makefile is generated automatically by Eclipse.

When the elf file is generated, GDB and OpenOCD are used to program and debug the code on the

target. A standard ARM JTAG 20-pin connector is available on the target. An home-made JTAG is

used, but any generic JTAG should be fine (an OpenOCD configuration file is required). Detailed tools

versions and hardware references are available in appendix B on page 79.

This environment has been tested on Linux, but it is cross-platform. Eclipse settings and tools setup

are described on the Wiki of the school [HES14]. All developments, later described in this chapter,

are included in the developed stm32f10x_lib C++ library (see figure 4.2). It is shared and used by

different projects and demo applications.

The chosen development board [Oli14] is shipped with demo applications. The kit is widely used and

many example codes are available. Projects like this one2 and the libheivs_stm32 library [HES14]

have been used as a starting point. Some files have been used and adapted for the project needs.

Finally, the source code documentation has been generated with Doxygen.

1 GNU Tools for ARM Embedded Processors - https://launchpad.net/gcc-arm-embedded
2 Demo applications for the STM32-P103 board - https://github.com/beckus/stm32_p103_demos
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4.3 Hardware Abstraction Layer

Many embedded systems are available, with different specifications and peripherals. To hide differ-

ences between hardware, an Hardware Abstraction Layer (HAL) has been developed.

The HAL presented in the center of the figure 4.3, is a software layer used by all applications to uniform

the control and the access of the hardware (the MCU and its peripherals). This layer allows to run the

same user application on different targets, without modifications, because all I/O and peripherals are

accessed through this abstraction layer. For each target, a specific HAL must be implemented.

User application C/C++

HAL / drivers

GPIO
Interrupts

Timers
PWM

A/D
UART

Microcontroller (MCU)

Input/Output abstraction

Peripherals abstraction

Standard Peripheral Library / OS

Figure 4.3 – Hardware Abstraction Layer

To support several targets, the HAL unifies the control and the access to the five following inputs,

outputs and peripherals :

1. General Purpose Input/Output and external interrupts (IRQs)

General Purpose Input/Output (GPIO) are used to read or write digital values from generic

pins of the processor. All GPIO are identified by a unique port and a pin number. They can be

configured either as input or output to read or write boolean values. Input values can be polled

or inputs can be configured as external interrupts to be notified automatically (using a function

callback) when its value change.

2. Analog input

Some specific inputs can be configured as analog inputs. In addition to the GPIO, they are iden-

tified by a unique channel number, connected to one or several Analog-to-Digital Converters.

3. Analog output

The reverse operation consist of converting a digital number to an output voltage, using a

Digital-to-Analog Converter (DAC). DAC are not often available on low-cost embedded systems.

An alternative consist of using Pulse-Width Modulation (PWM) signal to simulate an analog

output. The frequency and duty cycle of the output signal can be configured. If necessary, an

external analog circuit can be used to filter this signal.

24



4.4. Design and implementation

4. Logging and debugging

A serial interface is available to log events and print messages from the microcontroller to an

external console (UART over RS232). This logging interface is useful for debugging purpose.

Events can be sent to trace the code execution.

5. Timer (delay and time measurement)

Finally, delays (busy waiting) are available to wait some time, expressed in milli or microseconds.

An hardware timer can also be used to count the elapsed time without blocking the code

execution.

4.4 Design and implementation

This section describes the HAL implementation developed for the STM32-103STK development kit,

presented in section 4.2 on page 22.

The toolchain (see section 4.2.1) supports C++, and the target is powerful enough (no performance

issue), so it would be too bad to not use object oriented features of the C++ language. The HAL

implementation will be more structured, and OO features makes the code more flexible and highly

portable to support other targets, by using Builder and Factory patterns, interfaces, etc.

The C++ HAL implementation for the STM32-103STK board is summarized in the UML class diagram

of figure 4.4 (it has been simplified, the full documentation is available in Doxygen) :

digital analog

utils

16

Logger

+ send_event(evt: int)
+ println(msg: String)

«Singleton»
IntController

+ registerInt(isr: Interrupt, pin: Pin): boolean
+ unregisterInt(pin: Pin)
+ callIsr(extLine: int): boolean

«Interface»
Interrupt

+ irq()
+ registerInterrupt(): bool
+ unregisterInterrupt()

Pin

+ port: char
+ pin: int

«Abstract»
Gpio

+ Gpio(port: char, pin: int)
+ initialize(): boolean

PulseInput

+ PulseInput(port: char, pin: int)
+ get(): boolean
+ read(): boolean
+ time(): int

«uses»

isrVector

Time

+ init()
+ suspend()
+ resume()
+ elapsed(): int
+ setTimeoutMs(ms: int)

statestate «Enum»
State

+ On
+ Off
+ Invalid

pin

AnalogInput

- channel: int
- lastValue: float

+ AnalogInput(port: char, pin: int, channel: int)
+ get(): float
+ read(): float

DigitalInput

+ DigitalInput(port: char, pin: int)
+ state(): State
+ get(): boolean
+ read(): boolean

DigitalOutput

+ DigitalOutput(port: char, pin: int)
+ setState(state: State)
+ set(state: boolean)
+ toggle()

PwmOutput

+ PwmOutput(port: char, pin: int)
+ setPeriod(period: int)

Delay

+ wait_ms(ms: int)
+ wait_us(us: int)

Figure 4.4 – UML class diagram of the HAL implementation

The HAL contains the low level implementation of all target specific components available in the

framework (see figure 3.7 on page 19), like digital inputs, PWM outputs, A/D converter, etc. Their

implementation is detailed separately later in this section.
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Inputs and outputs are grouped in two main packages : digital and analog. Each I/O is identified

by a port and pin number, which correspond to a physical pin of the MCU. The abstract Gpio class is

the base class used by all I/O. The initialize method is implemented by each subclass to configure

the pin automatically, behind the scene, as required. All pins can be used as general purpose. Some

specific pins can also be configured as alternate function, to be used as analog inputs, timer outputs,

external interrupts, etc.

The HAL uses the StdPeriph library to access to the MCU peripherals. The STM32F10x Standard

Peripherals Library [STM14c] is a vendor specific hardware abstraction layer for Cortex-M3 processors.

The library is provided by STMicroelectronics and contains low level C functions to configure and

access all peripherals of the STM32F10x Cortex-M3 MCU.

All information about the processor implementation and its peripherals are available in the reference

manual [STM14b]. This document contains more than 1000 pages. The main hardware specificities

and implementation details used to develop the STM32 HAL are summarized in the next sections.

4.4.1 General Purpose Input/Output

Each physical pins of the microcontroller are grouped by ports and identified by a unique number.

Up to 51 GPIO are available. Each of these pins can be configured for a general purpose, as input or

output.

The DigitalOutput class configure any pin, specified by a port letter (from A to G) and a pin number

(from 1 to 15) as a digital output. The clock of the corresponding port is enabled and the pin mode

configured as an output in push-pull mode. Once initialized, is it set automatically to off. Operator

overloading are available to set a boolean value to the output (positive logic).

Any pin can also be configured as a digital input using the DigitalInput class. Inputs pins are

configured as floating inputs (without any internal pull-up or pull-down resistor). To read the current

input value, the read function must be used. This allows to read an input pin value by polling.

External interrupts

It is also possible to configure the pin as an external interrupt. The IntController class manages all

external interrupt lines (up to 16). When an input is configured as an external interrupt, an interrupt is

triggered on the rising and falling edges and the input value is automatically saved. The get function

will return the input pin value, automatically saved in the ISR routine. This is faster than polling the

input pin.

To use an input as external interrupt, some hardware limitations [STM14b, p. 208] must be taken

into account. First, only 16 external interrupts lines are available and secondly, they are internally

connected in the specific manner, presented in figure 4.5.

GPIO are multiplexed and grouped by pin number to use all the 16 available lines [STM14b]. This

limitation must be taken into account when external interrupts pins are chosen. For instance, it is not

possible to differentiate the PA0 and the PB0 input because there are connected to the same EXTI0

interrupt line (pin numbers must be different). In the current implementation, digital inputs are

initialized as external interrupts by default. This is more efficient than polling the input value. The

registerInt method of the interrupt controller is called automatically when the input is initialized.
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Figure 4.5 – External interrupt/event GPIO mapping (adapted from [STM14b])

4.4.2 Analog-to-Digital Converter

Two 12-bit A/D converters are available to measure 16 external analog sources (not all GPIO can be

used). The ADC1 converter is used to measure analog inputs using a single conversion mode. An

AnalogInput is a specific pin identified by a unique port, pin and channel number (from 0 to 15).

The read function start and A/D conversion and returns the result when it is completed.

4.4.3 Pulse-width modulation

PWM outputs are generated using 16-bit hardware timers. The frequency and the duty cycle of these

outputs can be configured. Only specific pins can be used as PWM outputs. They must be configured

as alternate function to be internally connected to timer outputs, using the PwmOutput class.

The pin must be configured as a push-pull output. Then, depending on the pin number, the corre-

sponding timer is automatically configured in PWM mode. For now, only the 4 channels of the timer

4 can be used as PWM outputs.

The PWM duty cycle of each output can be configured using the setPeriod function. A 100% duty

cycle corresponds to a period of 0xFFF (12-bit resolution). This implies a maximum PWM frequency

of about 9 kHz. No Ditigal-to-Analog Converter (DAC) are available in the chosen MCU, but PWM

outputs can "simulate" it.

4.4.4 Universal asynchronous transmitter

The Logger class can be used to transmit (Tx) messages from the MCU to an external serial console.

This is useful for debugging and to trace the code execution. The receiver module (Rx) is currently

not available and not used. The USART2 serial output is configured as follow :

• 115200 baud, 8-bit data and 1 stop bit, no parity bit / no hardware flow control

A custom tracer is used to connect the serial output of the development kit to a PC USB port.

4.4.5 Delays and timers

The developed HAL provides utilities functions to deal with the time :

1. Delays functions are available to wait from 1µs to a few seconds, using busy-waiting. wait_us

and wait_ms are both blocking functions.
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2. To count the elapsed time (without blocking the code execution), the timer 2 is used as an

hardware SysTick timer. Each 1 ms, a shared counter variable is incremented to count the

elapsed time in milliseconds (using thetime_get function).

Time and delays implementation has been adapted from the libheivs_stm32 library [HES14] to

work with the STM32F103 processor running at 72 MHz.

4.4.6 Available inputs and outputs

The table 4.1 summarizes all inputs, outputs and peripherals of the STM32F103-STK development kit

that can be accessed using the developed HAL. They are classed by types.

I/O type Available Limitation

General-purpose input 51 -

General-purpose output 51 -

External input interrupt 16 EXTI lines only. Pin numbers must be different

Analog input (12-bit ADC) 16 All analog channels

PWM output 4 Timer4 output channels only

UART (Tx, debug) 1 USART2 Tx only

Table 4.1 – Accessible I/O using the Hardware Abstraction Layer

4.5 Extension board

50 x 80 mm

To the main kit
STM32F103‐STK

LED4

LED3

LED2

LED1

Button1

Button2

Button3

Potentiometer

EXT

Figure 4.6 – The extension board

An extension board has been designed to add inputs

and outputs to the STM32-103STK kit (presented in

section 4.2). With only one button and one LED avail-

able on the main kit, possibilities were too limited to

test real-word and complex applications.

The prototype extension board, presented on the

right in figure 4.6, has been designed on a stripboard,

a rapid prototyping technique.

A 4-pin connector (EXT) can be used to connect ex-

ternal peripherals with ease. LEDs or buttons can be

disconnected using jumpers. To develop this board,

constraints described in the previous section have

been taken into account (see table 4.1). For instance,

buttons are connected to external interrupts lines on

different pin numbers.

The extension board schematic with pin numbers and I/O types is available in appendix A on page 78.

In a next version, the extension board can be miniaturized using SMD components to be connected

directly on the bottom of the main kit.
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The following I/O are available on the developed extension board to extend the main kit :

I/O type Description

Digital input 3 push buttons, connected on interrupts lines (EXTI)

Analog input 1 potentiometer connected to an analog input

Digital output 4 LEDs (2 yellow, 2 red)

PWM output The 2 red LEDs can also be controlled as PWM outputs

Table 4.2 – Available inputs and outputs on the developed extension board

4.6 Testing

The developed HAL, packed into the stm32f10x_lib library, allows to access with ease and a high

abstraction level to the main peripherals of the MCU. The sample C++ application 4.1 demonstrates

how the HAL can be used to control inputs and outputs pins of the extension board and components

presented in the previous sections. For space reasons, some lines have been removed. The full

application code is available in appendix C on page 82.

The demo application 4.1 uses several peripherals of the extension board. When the application

starts, a debug message is printed and the led1 is switched on. The button 2 controls the led2 and

the potentiometer value set the intensity of the led3 using a PWM output. Finally, using the time

utilities functions, the led4 blinks every 0.5 seconds. Thanks to the C++ implementation of the HAL,

methods like set or get can also be replaced by equals operators to make applications less verbose

and more user friendly (see line 20 or 24 of the code 4.1 instance).

The toolchain presented in section 4.2.1 on page 23 is used to compile the application. A sample

Eclipse project is available in the stm32 Git repository to compile and program the application on

the real target. The extension board must be connected to the main kit. The figure 4.7 shows an

oscilloscope screen capture of two PWM signals, generated by two PWM outputs (≈ 9kHz, duty cycle

of 25% and 50%).

The developed HAL uniforms the access and the control to all inputs and outputs, so they are all

created and initialized using the same approach (see lines 1 to 4 of code 4.1). Methods with an

high abstraction level are available to use all target specific components presented in the figure 3.7

on page 19. If the constraints of the table 4.1 on page 28 are satisfied, any component can be

automatically initialized on the desired pin. This was a quite big implementation challenge, because

clocks, peripherals and all registers must be initialized correctly in a generic manner, according to the

port and the pin number of the components.

All C++ applications running on the STM32P103-STK board will access to the peripherals and I/O

through the HAL. This makes user applications highly portable and new targets, like ARM Cortex

development kits, can be added without much effort. Thanks to the HAL, the component model

implementation in the frontend part is much simplified. It is presented in the next chapter.
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1 AnalogInput adc1('B', 0, 8); // Potentiometer

2 PwmOutput pwm3('B', 8); // led3

3 DigitalInput btn2('C', 1);

4 DigitalOutput led4('B', 9), led2('C', 4), led1('C', 3);

5

6 void initIO() {

7 btn2.initialize();

8 // ...

9 }

10

11 int main() {

12 time_init();

13 initIO(); // Init all I/O and set to '0'

14

15 println("HAL sample application"); // Print to USART2

16 led1 = true; // Led1 is on

17

18 timeout_t time = time_get();

19 while (1) {

20 led2 = btn2.get(); // Led2 is controlled by btn2 (use EXT interrupt line)

21 pwm3 = adc1.read(); // Start an A/D conversion to read the potentiometer value

22

23 if(time_diff_ms(time_get(), time) > 500) {

24 time = time_get();

25 led4.toggle(); // Led4 toggles every 1/2 seconds

26 }

27 }

28 return 0;

29 }

Listing 4.1 – Part of the HAL demonstration application

Figure 4.7 – Oscilloscope capture of two generated PWM signals
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Frontend

5.1 Introduction

The second technical part of the project, the frontend, is implemented in Scala. The user writes

its application using severals components available in the framework (presented in section 3.6 on

page 3.6). The concept of the internal dataflow DSL and the implementation of some components

will be introduced.

This chapter is composed in two main parts. The first part presents the compilation pipeline. Severals

steps are necessary to convert the dataflow application to a C++ code for the embedded system.

These steps and transformations will be presented separately in details.

Then, the second part is focused on the code generation and simulation. Two approaches to test the

language and the generated application will be introduced. The first one consist in programming

the target and testing the application manually. The other is a fully automated approach, not widely

used for embedded systems. It allows to simulate and test the generated application without the real

hardware, using an existing ARM emulator.

Based on simple examples and basic applications, concepts of components, ports and dataflow graph

are presented here. The implementation of target-specific components (see figure 3.7 on page 19) is

based on the developed HAL library, presented in the last chapter.

At the end of the chapter, some advanced features to build complex applications, in a concise and

natural way are introduced. These features will be used to build real-world applications.

5.1.1 Development environment

The frontend part of the project is developed in Scala. I chose the free and open-source IDE IntelliJ

(with the Scala plugin) to develop this part of the project. Moreover, I use sbt [Typ14b] as build tool.

The directory structure of the Scala project recommended for sbt (the same as Maven projects)1 is

used. Unit tests and Scala source files are well separated.

1 http://www.scala-sbt.org/0.13/tutorial/Directories.html
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To run the project, Scala and sbt must be installed. The sbt project definition file and tools versions

are listed in appendix B.2 on page 80, with useful sbt commands to compile, test and run the project.

Unit tests are based on the ScalaTest2 library. Some of these tests will be presented later in this chapter.

All used Scala libraries are listed in the sbt project file available in appendix B.2. Finally, ScalaDoc is

used to document the code. The documentation can be generated using sbt. The sbt build definition

makes the project highly portable. It can be imported in severals other IDE, like Eclipse.

5.1.2 Pipeline

From the input, the user program written in Scala, to the compiled ARM elf output file, many stages,

operations and transformations are required. These stages, grouped in a pipeline, will be presented

later in this chapter. First, the concept of pipeline will be introduced with a simple code example.

Int

Output

Int

String

Block 1

Block 2

Block 3

Unit Input

Figure 5.1 – Pipeline blocks

In general, pipelines are used in compilers, to transform the input

language I to another output language O. A pipeline consists of

a chain of blocks, and each of them applies a specific transforma-

tion. These blocks are useful to decompose a problem in smaller

and simpler parts. That is the reason why a pipeline is used and

has been developed for this project.

To demonstrates how the pipeline works, a simple example is pre-

sented. Three blocks are composing the pipeline, like described in

the figure 5.1 on the right. The first block (on the top) is a source.

It produces a random integer number. It is the input of the second

block. The block 2 applies a transformation on this number and

throws an error if the output integer is even. Finally, the last block

prints the final number as a string, if no error occurred (Int to

String transformation).

The Scala implementation of the pipeline application of figure 5.1 is the following :

1 case class Block1() extends Pipeline[Unit, Int] { // Pipeline block 1

2 override def run(ctx: Context)(i: Unit) = {

3 val nbr = new Random().nextInt(100)

4 ctx.log.info(s"Random number is $nbr"); nbr

5 }

6 }

7

8 case class Block2() extends Pipeline[Int, Int] { // Pipeline block 2

9 override def run(ctx: Context)(i: Int) = i % 2 == 0 match {

10 case true => 2 * i

11 case _ => ctx.log.fatal(s"$i is not an even number !")

12 }

13 }

14

15 case class Block3() extends Pipeline[Int, String] { // Pipeline block 3

16 override def run(ctx: Context)(i: Int) = s"The result is $i."

17 }

18

19

2 Scala and Java unit test framework - http://www.scalatest.org/
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20 test("Chain of 3 blocks") {

21 val pipe = Block1() -> Block2() -> Block3() // Build the pipeline

22 val ctx = new Context("Demo")

23 val res = pipe.run(ctx)(Unit) // Run the pipeline

24 ctx.log.info(res) // and print the result using the logger

25 }

Listing 5.1 – Pipeline application of figure 5.1

Pipeline blocks are defined with an input and output type, using the Pipeline template class. If no

input or output are required, the type will be Unit (see Block1). To create a pipeline, blocks can

be chained using the custom "->" operator (on line 20). The run method of each block must be

overridden to implement the block code. A Context must be provided to run a pipeline. It contains

global settings, available for all blocks. Finally, the context also contains a logger, used to report

information or errors.

As an example, on line 11, an error is reported if the number is odd. This will stop the pipeline

execution. The error will be printed and the last block number 3 will not be executed at all. If no error

occurs, the pipeline result is printed using the Logger class. It allows to trace messages, informations

or errors. It is based on the Slf4J logging library.

The custom "->" operator used on line 20 is similar to the andThen Scala method, used to com-

pose functions. It allows to build pipelines with ease. The pipeline implementation has been

adapted from the Scala Leon 3 project. A more exhaustive pipeline test has been developed in

the "test/utils/PipelineTest.scala" test file. It is available in the Git repository of the project.

5.2 Code generation pipeline

The concept of pipeline has been introduced in the previous section. The first concrete pipeline

developed for the project is presented here.

The code generation pipeline consists in transforming the user dataflow application, written in Scala,

to a generated C++ code for the target embedded system. To do this, several transformations are

necessary. They will be presented separately in the next sections. These transformation blocks are

chained together to create the code generation pipeline, shown in figure 5.2.

3 The Leon synthesis and verification system - http://lara.epfl.ch/w/leon and https://github.com/epfl-lara/leon
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Figure 5.2 – Overview of the code generation pipeline

To generate a C++ code from the user application, the following main operations are performed :

1. The user application is written with the help of the developed dataflow internal DSL. Severals

components have been implemented (see section 3.7 on page 19) and are ready-to-use. They

can be used by the user to build the application.

2. The dataflow application is compiled using the Scala compiler and its dataflow graph is saved

in memory. All transformations are applied on this graph.

3. Severals optimizations and checks are applied on the graph. Then, it is sorted to be transformed

to a sequential application. The last step consists in generating the output application by adding

the code of each component. The generated C++ application file can be compiled and ran on

the target embedded system.

4. Each pipeline block generates several debug information during the code generation pro-

cess. The visual representation of dataflow graph is also generated automatically by the

DotGenerator block.

Each block of the pipeline are detailed separately in the next sections, with the help of code samples

and simple application examples. Complete applications are presented in a next chapter.

For each application, the generated files are available in the output folder. Finally, the pipeline blocks

can be configured using the shared Setting class.

5.2.1 Component manager

The user application is written using an internal domain-specific language, this means that it is

compiled by the Scala compiler. It checks the validity and the correctnesses of the application.

Once the user application is successfully compiled, the component manager is used to create the

dataflow graph of the application. Using this first pipeline block, graph nodes and edges can be
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added. This block contains the Directed Acyclic Graph (DAG) representation of the application and

implements all methods to query the graph, to find specific type of nodes, to connect components

ports, etc.

A graph library

To store the application DAG in memory, I have choose to use a generic and open source Scala library,

called Graph for Scala [Emp15b], because this particular data structure is not available within the

Scala programming language.

The Graph for Scala library provides basic graph functionalities. It is part of the EPFL Scala incubator

space since 2011. It seamlessly fits into the Scala standard collections library. Like members of

scala.collection, graph instances are in-memory containers that expose a rich, user-friendly

interface.

Using this existing library speeds up the development of the project. The main reasons [Emp15a] are

discussed here. First, different type of graph can be created, manipulated, queried and customized

intuitively, like other regular Scala collections, in a concise and functional style. Mutable and im-

mutable graph collection implementations are available. The graph consistency is maintained by

the library. For instance, it prevents nodes or edges duplicates. Finally, the Scala-graph library is

composed of several modules, which help to add constraint or to export the graph for instance. Some

of these features will be presented later in this chapter. The library is well documented and a user

guide is available for each module on the official website [Emp15a].

Graph structure

The dataflow DAG is saved in memory using the Scala graph library. Graph nodes represent compo-

nents of the program, presented in section 3.6 on page 19. The low-level implementation of each

target-specific component is implemented in the backend. In the frontend, components are defined

by a name, a unique identifier, and a list of input and output ports (inbound and outbound ports) :

outputs inputs

n

n

T <: CType

OutputPort

+ connect(): bool
+ -->(p: InputPort): bool
+ getValue(): String

T <: CType

InputPort

+ connect(): bool

T <:CType

«Abstract»
Port

+ id: Int
+ name: String
+ description: String
+ connections: Int

+ isConnected(): bool

«Abstract»
Component

+ id: Int
+ name: String
+ description: String

+ isConnected(): bool

owner
1

Figure 5.3 – UML class diagram of components and ports
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The following graph structure allows to save the DAG in memory in an efficient way. The internal

graph representation is presented below :

1 import scalax.collection.constrained.mutable.Graph

2 // ...

3

4 implicit val config: Config = Acyclic // DAG constraint (unconnected nodes are allowed)

5

6 // Mutable graph representation (DAG) with components as nodes and dirceted edges with a label

7 val cpGraph = Graph.empty[Component, LDiEdge]

Listing 5.2 – Mutable graph strucutre declaration

In the graph, components (nodes) are connected together through their ports. A directed edge

connects and output port to an input port. To create this connection in the graph, a directed edge

(arc) with a label is necessary (LDiEdge), because a component can have multiple input and output

ports. The label attached to the graph arc corresponds to a Wire (basically a tuple), which identify

the output and input ports (source and destination) of the connection. The figure 5.4b shows the

internal graph representation for the application 3.2 presented on page 12.

in Not [1]
NOT gate out

in1
in2
sel

Mux2 [3]
Mux2 out

uint8

Constant [4]
constant generator

(true)
out

bool

bool

bool

bool

Constant [7]
constant generator

(false)
out bool

(a) Generated DAG

out->in1

out->in2

out->sel

Cmp7 Cmp3

Cmp1

out->in1
Cmp4

(b) In-memory graph structure

Figure 5.4 – Two corresponding DAG representations

The figure 5.4a has been generated automatically using a pipeline block. It will be presented in the

next section. Two main steps are necessary to populate the DAG :

1. First, all components of the user application are added as isolated nodes in the graph. They are

all identified by a unique ID, required by the library to store them.

2. Then, wires / connections between component’s ports are added. The "-->" operator in the

Scala DSL corresponds to a unique arc in the graph. Each port of a component is also identified

by a unique ID.

To meet the sequential execution model of the generated application (see section 3.5 on page 17),

the graph must be a acyclic. This means that arcs can be added to the graph only if no cycle are

created. The constrained module of the scala graph library has been used to constraint the graph to

be Acyclic (see code 5.2). This is an automatic way to ensure that the graph will always be acyclic :

the custom CycleException is thrown is cycles are created.
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5.2.2 Components ports

Dataflow components exchange data through their ports. A port is characterized by a direction (input

or output) and by a data type which "flows" through the components ports (see figure 5.3 on page 35).

The getValue method returns a specific C code to read the output value of a port. The returned code

can be a constant value or the name of a local variable which contains the port value.

A component can have multiple I/O ports. In the DSL, components ports are accessible by name. By

convention, port names of generic components (like logic gates) are named in or in1, in2, etc. if

more than one input exist. Output ports are named out or out1, out2, etc. The IOtraits.scala file

implements predefined traits for components from 1 to 4 input or output.

The Scala implementation of components ports is shown in the following code :

1 abstract class Port[+T <: CType : TypeTag](owner: Component) {

2 val id = owner.nextPortId // Unique ID of the component

3 val tpe = typeOf[T] // Data type of the port

4 var connections = 0 // Number of connections (only 1 for inputs)

5

6 def connect(): Unit // Override by input and output ports

7 }

8

9 abstract class InputPort[+T <: CType : TypeTag](owner: Component) extends Port[T](owner) {

10

11 final override def connect(): Unit = (connections > 0) match {

12 case true => throw PortInputShortCircuit(this) // Input already connected

13 case _ => connections = 1

14 }

15 }

16

17 abstract class OutputPort[+T <: CType : TypeTag](owner: Component) extends Port[T](owner) {

18

19 final override def connect(): Unit = connections += 1 // Multiple connections allowed

20

21 def -->[A <: CType : TypeTag](that: InputPort[A]): Boolean = {

22 checkType(that) // PortTypeMismatch exception can be thrown

23

24 that.connect() // PortInputShortCircuit exception can be thrown

25 this.connect()

26

27 ComponentManager.addWire(this, that) // Add the directed edge in the graph

28 }

29

30 def getValue: String // C code to read the output value

31 }

Listing 5.3 – Components ports implementation

Ports are template classes. Predefined data types can be "transported" with ports, like integer

(uint8,16,32 and int8,16,32) and floating point values (float and double). These types are

all defined as subclasses of CType, so it is used as a upper type bound. In this case, templates

have been used to build generic components. For instance, the Constant component has only one

implementation an can be used with any type of data. Moreover, to help developing components
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with a generic number of I/O (of different types), like logic gates or multiplexers, ports are covariant4

in its parameter T. This allows to store ports with different types in a Seq[Port[CType]] (see the

GenericCmp.scala file as an example).

The "-->" method in the Scala DSL code is used to connect an output port to an input port. According

to the code 5.3, severals checks must be performed before adding an arc in the dataflow graph (before

connecting two ports) :

1. First of all, the "-->" method is only available for output ports, so outputs can only be connected

to inputs (see line 19). The user cannot do it wrong.

2. To connect two ports together, they must have the same type T. This test is performed using

reflection and TypeTags. If types are not valid, the custom PortTypeMismatch exception is

thrown at runtime :

Constant(uint8(128)).out --> DigitalOutput(Pin('A', 1)).in // uint8 to bool not allowed

> [ERROR] Ports types mismatch. Connection error !

> Cannot connect the output `out` (type `uint8`) of Cmp[1] 'Constant'

> to the input `in` (type `bool`) of Cmp[3] 'DigitalOutput'.

3. Data between nodes are not event based, this implies that an input can be connected only once

because only one data can be on each arc. Each time a port is connected, the connections

counter is incremented. If an input is connected more than once, the PortInputShortCircuit

exception is thrown at runtime (see line 10 in listing 5.3) :

val cst = Constant(bool(true))

val led = DigitalOutput(Pin('A', 1))

cst.out --> led.in // Connection valid

cst.out --> led.in // Short circuit here

> [ERROR] Short circuit !

> The input 'in' of Cmp[2] 'DigitalOutput' is already connected.

There are no restrictions for output ports. They can be connected more than once with several

inputs.

4. Finally, if these conditions are satisfied and if no cycle are created, the edge between the two

components (with its corresponding label) can be added safely into the graph (line 25).

Custom exceptions presented above are implemented in the Exceptions.scala file. More specific

exceptions will be presented later in this chapter, in section 5.4.

4 http://docs.scala-lang.org/glossary/#covariant
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5.2.3 Dot generator

The user application is stored in memory in a complex graph structure. The DotGenerator block

allows to represent the dataflow graph of the application in an elegant and graphical view. All

graph diagrams available in this report have been generated automatically using the developed

DotGenerator pipeline block. This block does not contribute directly to the code generation, but it

helps to visualize the user application, to display informations or warnings and finally it is useful for

documentation purposes.

The chosen Scala graph library (see section 5.2.1 on page 35) contains two additional modules, which

help to export the in-memory graph to different output types :

• The Json module can be used to import/export graph instances from/to Json text. It is useful

to save a graph to the disk for instance, but not really to produce its visual representation.

• The second module of the Scala graph library has been developed specially to visualizing graphs.

The DOT module contains helper functions to convert each nodes and edges to a structured dot

file (Graphviz). This solution has been choose and will be presented below.

Graphviz [Gra14] is an open source and cross-platform graph visualization software that can be used

to draw diagrams, graphs, networks, interfaces, etc. It has been designed to draw many different

diagrams types, shapes, and output drawings are highly customizable. Some examples are available

in the official gallery [Gra14]. An interesting point of Graphviz is that diagram elements (nodes, edges,

labels) are positioned automatically on the output figure and the orientation can be set (left to right,

top-down, etc.). This is great because any graph can be converted to a nice vector image or pdf file

(no worry about objects placement).

Many shapes types are available within Graphviz. It was not easy to find a good way to represent any

DAG to a nice formated figure, with an automatic placement. Different layout engine, diagrams and

shapes types have been tested. After several attempts, the following result has been adopted :

Visualisation of the 'DotSch' program.
DotSch.dot

DigitalInput [1]
digital input

on C#01
out

in1

in2

And2 [2]
And2 gate out

bool
in

DigitalOutput [3]
digital output

on C#03

bool

DigitalInput [0]
digital input

on C#00
out bool

Figure 5.5 – A simple dot graph representation generated automatically

The figure 5.5 is generated using the dot layout engine and represent the dataflow graph of a simple

application, composed by 4 components (2 digital inputs/buttons, an And logic gate with two inputs,

and a digital output/LED). A digraph diagram is used to represents this directed graph. Nodes are

placed automatically, using a left to right placement. Each components (graph nodes) are represented

using Mrecord shapes. I chose this type of shapes to clearly display input and output ports of each
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component, with connections (wires). Edges are drawn between these ports to represent an accurate

view of the DAG stored in memory. The type of the value transported through a wire is also displayed

on the graph. The following dot file corresponds to the figure 5.5 :

1 // File generated automatically. Visualisation of the 'DotSch' program.

2 digraph G {

3 // Diagram settings

4 graph [rankdir=LR labelloc=b, fontname=Arial, fontsize=14];

5 node [fontname=serif, fontsize=11, shape=Mrecord];

6 edge [fontname=Courier, color=dimgrey fontsize=12];

7

8 // Exported nodes from the components graph (with I/O ports)

9 cmp000 [label = "{{}|DigitalInput [0]\ndigital input\non C#00|{<p00> out}}"]

10 cmp001 [label = "{{}|DigitalInput [1]\ndigital input\non C#01|{<p00> out}}"]

11 cmp002 [label = "{{<p00> in1|<p01> in2}|And2 [2]\nAnd2 gate|{<p02> out}}"]

12 cmp003 [label = "{{<p00> in}|DigitalOutput [3]\ndigital output\non C#03|{}}"]

13

14 cmp000:p00 -> cmp002:p00 [label = bool] // Wires between component's ports

15 cmp001:p00 -> cmp002:p01 [label = bool]

16 cmp002:p02 -> cmp003:p00 [label = bool]

17

18 label = "\n\nVisualisation of the 'DotSch' program.\nDotSch.dot" // Figure label

19 }

Listing 5.4 – Generated dot file. It corresponds to the figure 5.5

This file contains general settings (orientation, shapes, font, etc.), the list of nodes and the list of edges

(wires) between components ports. The DotGenerator block generates this dot text file. It can also

be automatically converted to a vector pdf or image, using the dot engine. To do it, an external process

is called withing the Scala code, so the graph representation (see figure 5.5) is directly available in the

output folder as a pdf file (Graphviz must be installed and available in the path, see appendix B.2).

The dot module helps a lot to generate a valid dot file. Unfortunately, in a previous version of the

scala-graph library, record-based shapes where not supported. I had the chance to contribute5 to this

open-source library and now the last dot module version officially supports these types of shapes.

As an alternative, the PGF [Tan14] graphic TEX package has also been tested to generate graph

diagrams, but this library does not handle automatic object placement, that is why it is not used.

Graphviz is well adapted for the project needs and is also used by other projects, for instance to

visualize NoFlo graphs6.

5.2.4 Code optimizer

The code optimizer block is the first operation performed on the component graph. To keep a clean

output code, the CodeOptimizer block is able to remove unconnected/isolated nodes and also

unconnected components path (several unused nodes connected together). The dot diagram shown

in figure 5.6 presents an unoptimized graph :

5 Bad export format for record shapes - https://github.com/scala-graph/scala-graph/issues/23
Scala-graph 1.10 release notes - http://www.scala-graph.org/download/#1.10

6 NoFlo visualization tools for Graphviz - https://github.com/noflo/noflo-graphviz
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Constant [3]
constant generator

(true)
out

in1
in2

Add2 [1]
Add2 out (NC)

bool

in
DigitalOutput [6]

digital output
on C#03

in1
in2 (NC)

sel

Mux2 [5]
Mux2 out bool

Constant [2]
constant generator

(1)
out

uint8

DigitalInput [4]
digital input

on C#00
out

bool

bool

in (NC)
PwmOutput [7]

PWM output
on B#09

 

Stm32stk [0]
STM32-103STK board

Figure 5.6 – An unoptimized graph

This diagram is generated automatically using the dot generator block (see section 5.2.3) from an

unoptimized graph. In the figure 5.6, isolated and partially unconnected nodes are displayed in

orange to indicates warnings (more details in the next section 5.2.5). To optimize the graph, some of

them will be removed, but only if one of these two conditions is satisfied :

• If a nodes is isolated (all input and outputs are disconnected), then it can be simply removed

because it is not connected at all. The only exception is for nodes without input or output.

These nodes cannot be removed because they are used to modify the generated output code.

With zero I/O, they are not considered as unconnected.

• Secondly, a node can be removed if all its input or output are disconnected (both conditions

are satisfied for isolated nodes).

According to this second condition, several passes can be necessary to optimize a graph. Once a

component is removed, the graph is updated and its state change. All components must be evaluate

again to test if new ones can be removed. To optimize the graph of the figure 5.6, 2 passes are

necessary. Optimization steps for the figure 5.6 are available below. Output informations of the

optimizer block are printed to the console using the logger.

Optimizer started for 'DemoOptimizer'.

Pass [001]

> Remove Cmp[1] 'Add2': all outputs are unconnected.

> Remove Cmp[7] 'PwmOutput' (B.09): all inputs are unconnected.

> 2 components removed in pass 1.

Pass [002]

> Remove Cmp[3] 'Constant': all outputs are unconnected.

> 1 component removed in pass 2.

Optimizer ended successfully after 2 passes. 3 components removed.

The final graph has 5 nodes and 3 edges.

Listing 5.5 – Code optimizer output log for the graph of the figure 5.6

As excepted, the three unused components have been removed. By removing the nodes 1 and 7, the

node 3 has also been subsequently removed because its output was not connected any more. The

visualization of the optimized graph is shown in figure 5.7. A node is still in orange, because it has an

unconnected input. This component is used in the program and cannot be removed.
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Visualisation of the 'DemoOptimizer' program.
DemoOptimizer_opt.dot

in
DigitalOutput [6]

digital output
on C#03

in1

in2 (NC)

sel

Mux2 [5]
Mux2 out bool

Constant [2]
constant generator

(1)
out

uint8

DigitalInput [4]
digital input

on C#00
out bool

Stm32stk [0]
STM32-103STK board

Figure 5.7 – The optimized graph, generated after the code optimizer

This code optimizer block is not absolutely necessary to generate the output code. If some compo-

nents are not used, the C/C++ compiler will do some optimizations on the code, but this block is

useful to keep the output code clean and not "polluted" with unnecessary code. Moreover, when

components are removed, warnings are printed and the user is able to correct his program.

If necessary, this block can be disabled by setting the PIPELINE_RUN_CODE_OPTIMIZER flag to false,

in the pipeline setting file. It is activated by default, and the optimized graph diagram is generated to

the output folder, with the "_opt" suffix in the filename, like the figure 5.7.

5.2.5 Code checker

The dataflow graph stored in memory is valid : ports types mismatch and short circuits have been

tested during the graph construction (see section 5.2.1 on page 5.2.1), but the graph can still contains

warnings, like in the figure 5.6.

The code checker block will not modify the graph. It only analyses it and prints warning messages if

unconnected components or ports are found :

• A warning is printed for each unconnected input or output ports.

• If the code optimizer block is disabled, isolated nodes can be available in the graph. A warning

is printed when a node is not connected at all (with degree zero). This check is done with the

following code. Thanks to the Scala graph library [Emp15b], the graph can be queried with an

elegant functional programming style :

1 def findUnconnectedComponents: Set[Component] = {

2 val nc = cpGraph.nodes filter { c =>

3 val cp = c.value.asInstanceOf[Component]

4 val io = cp.getInputs.getOrElse(Nil) ++ cp.getOutputs.getOrElse(Nil) // All I/O ports

5 c.degree == 0 && io.length != 0 // Connected if 0 I/O, isolated if degree 0

6 }

7 nc.map(x => x.value.asInstanceOf[Component]).toSet

8 }

Listing 5.6 – Find unconnected components in the graph
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With the help of these warnings, the user can correct his program. As excepted, isolated nodes and

unconnected ports of figure 5.7 are detected in listing 5.7. Moreover, if warnings are found, the

corresponding component is drawn in orange in the graph visualization.

[INFO] Code checker started for 'DemoOptimizer'

[WARN] Warnings found:

[WARN] 1 component declared but not connected at all:

- Cmp[7] 'PwmOutput' (B.09)

[WARN] 3 unconnected ports found (input value set to '0'):

- InputPort[1] 'in2' of Cmp[05] 'Mux2' (NC)

- OutputPort[2] 'out' of Cmp[02] 'Add2' (NC)

- InputPort[0] 'in' of Cmp[07] 'PwmOutput' (NC)

Listing 5.7 – Code checker result for the graph 5.6

Unconnected nodes (like the PwmOutput[7] in figure 5.6) are simply removed from the graph and

will not appears in the generate code.

Unconnected input ports

According to the execution model presented in section 3.5 on page 17, a node can be "fired" (executed)

only when all its inputs are ready. To generate a valid sequential code, a default value must be set

to all unconnected input ports. For instance, if we look at the application 5.7, the multiplexer input

in2 will be automatically read as "0". A constant block is added and connected before generating the

graph code. In this example, the output LED will be off. Depending on the port type, the unconnected

input is set to "0" or false.

5.2.6 Resolver

The final stage before the code generation consist in resolving the DAG stored in memory, before

converting it into a sequential C++ program. The demo application, first presented in figure 3.2 on

page 12, is used again to explain how the resolver block works and why it is needed. The application

can be programmed with ease in a few lines, using the developed Scala DSL and components available

in the framework. The full application code can be found in appendix D.1 on page 84. The application

block diagram is shown in figure 5.8.

Figure 5.8 – Resolver demonstration application
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Any applications which can be described in a DAG can be translated to sequential C/C++ program

automatically. The generated code is build using the input-process-output (IPO) pattern. After I/O

initializations, all inputs are read, then values are computed and finally output values are updated.

The order of these operations is important and must be respected. If not, the program will not

compile, or will produce wrong results. To avoid this problem, the resolver block will generate the

code of each component is the appropriate order.

Resolving a directed acyclic graph consist of computing its topological sort. The DAG of the applica-

tion presented in figure 5.8 has been generated automatically and is available in the figure 5.9. With

the help of this graph, it is easy to find all inputs (nodes without predecessor) and all outputs (nodes

without successor).

in Not [1]
NOT gate out

in1
in2
sel

Mux2 [3]
Mux2 out

uint8

Constant [4]
constant generator

(true)
out

bool

in
DigitalOutput [6]

digital output
on C#04

bool

in
DigitalOutput [5]

digital output
on C#03

bool

DigitalInput [2]
digital input

on C#00
out bool

Stm32stk [0]
STM32-103STK board

Constant [7]
constant generator

(false)
out bool

Figure 5.9 – Generated DAG for the application 5.8

Nodes of the DAG can be seen as tasks or jobs, with dependencies between them. In the figure 5.9,

the component with ID 3 cannot be executed before components 1,2,4 and 7 for instance. Moreover,

the code of a component can be executed (fire) as soon as all its inputs are available. The topological

sort will determine the code generation oder for each components of the graph. Most of the time, a

topological sort is not unique (if the graph contains more than one path). Different DAG scheduling

are available, two of them are explained in this article [Qua04] and presented in the figure 5.10 to

resolve the graph 5.9.

#0

#1

#2

#3

t=0 

t=1 

Cmp0 Cmp7Cmp2 Cmp4

Cmp6Cmp1

Cmp5

t=2 

t=3 

t=4

ASAP ALAP

Cmp2

Cmp4 Cmp7Cmp1

Cmp3

Cmp5 Cmp6Cmp0

Input Logic Output

Cmp3

Figure 5.10 – DAG scheduling for the application 5.8
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This generated graph (and application) is interesting because its contains different paths with various

length, so the results of these two scheduling methods are different. They work as follow [Qua04] :

1. The as-soon-as-possible (ASAP) method puts every operation as early in time as possible. The

graph is resolved from input to output and nodes are fired whenever the input data are available

(as soon as all node inputs are ready).

2. In contrast, the as-late-as-possible (ALAP) schedule puts every operation as late in schedule as

possible. Nodes fire when absolutely necessary, like Cmp0 and Cmp6 in the above diagram.

None of these two scheduling methods are satisfactory because they do not correspond to the IPO

model and the chosen execution model (see section 3.5 on page 17), this is way a custom topological

sort has been implemented. It forces to read inputs as-soon-as possible, then compute the program

logic, and finally update outputs.

The developed resolver takes the program graph as input and returns a Map[Int, Set[Component]].

The map index corresponds to a pass number, and the value to the set of components that must be

generated. The resolver output for the eight nodes of the application 5.8 is the following :

[INFO] Resolver ended successfully after 4 passes for 8 connected components. Result:

Pass 001: Cmp[0] 'Stm32stk', Cmp[2] 'DigitalInput' (C.00), Cmp[4] 'Cst', Cmp[7] 'Cst'

Pass 002: Cmp[1] 'Not'

Pass 003: Cmp[3] 'Mux2'

Pass 004: Cmp[5] 'DigitalOutput' (C.03), Cmp[6] 'DigitalOutput' (C.04)

Listing 5.8 – Resolver result for the application of the figure 5.8 (IPO model)

This result is a mix of the presented ASAP and ALAP scheduling methods. This time, it fully matches

with the IPO specification : all inputs are read during the first pass and all outputs are updated during

the last one, like expected (see I/O scanning model presented in figure 3.5 on page 18). This order

must be respected to generate the sequential C++ application. Note that components grouped in the

same pass do not need to be generated in a particular order (a Set of component is returned). Only

the components groups for each pass are important.

5.2.7 Code generator

One of the final operation consist of translating the component graph into a sequential and valid

C++ program. At this stage, all information are available to generate the code that corresponds to the

defined application (without compilation error or wrong computation results).

All generated programs have the same structure, based on the IPO model (see section 3.5 on page 17).

Each program is composed by initializations functions, custom functions if needed, and finally by the

main function with an infinite while loop. Furthermore, generated programs are dived into seven

sections, like presented below :

1 // Section 00: <includes>

2

3 // Section 01: <global definitions>

4

5 // Section 02: <functions definitions>
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6

7 // Section 03: <I/O initialization>

8 void initOutputs() { /* ... */ }

9 void init() { /* ... */ }

10

11 int main() {

12 initOutputs(); init();

13

14 // Section 04: <before while loop>

15 while(1) {

16 // Section 05: <while loop, IPO model>

17 // 1) Read inputs

18 // 2) Loop logic

19 // 3) Update outputs

20 }

21 // Section 06: <end of program>

22 }

Listing 5.9 – Skeleton of a generated program, divided into seven sections

All sections of the generated application file are "filled" individually with the code of each component,

using the order given by the resolver block. Each component is mixed with the HwImplemented trait,

which defines the seven sections below. Each component is responsible to generate its own C/C++

code using these seven available sections. The component code must be valid because it is paste

"as-is" in the generate file (no checks can be performed).

Section 0 First, all necessary header files are included, by calling the getIncludeCode method of

each components. Each component can include several files (if needed), so duplicates

are automatically removed before being added using the #include directive.

Section 1 The section 1 is used to declare all global variables. The getGlobalCode methods is

called for each components. It can be a global variable definition or a class declaration.

Section 2 If needed, a component can implement custom functions. They are pasted "as-is" on

the top of the file, in section 2, using the getFunctionsDefinitions method.

Section 3 The section 3 is used to initialize all components when the program starts. First, output

components (nodes without successor in the graph) are initialized in the initOutputs

function. All other components are initialized afterward in the general init function.

Section 4 The section 4 can be used by any component to declare a local variable or call a specific

function once, after the program initialization, using the getBeginOfMainAfterInit

function.

Section 5 The while loop of the program correspond to the section 5. It is divided in three parts,

according to the IPO model. The getLoopableCode method of each component is

called, in a very specific order. This order is given by the code resolver.

Section 6 Finally, a last code can be added at the end of the loop, to indicate if an error has

occurred or if the program has been stopped, using the getExitCode method of the

HwImplemented trait.
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To summarize the code generation process, we use again the application example defined in the

figure 5.8 on page 43. The component generation order is given by the resolver block and is shown in

the figure 5.11 :

main
start

Cmp5
Cmp6

Outputs
initialization

Cmp2

Cmp0
Cmp2
Cmp4
Cmp7

Components
initialization

Cmp1
Cmp3

Cmp5
Cmp6

while loop iterations
(IPO model)

P    -I    - O

end

Figure 5.11 – Code generation sequence for the application 5.8

A part of the generated code (the while loop only) for the application 5.8 is available below. The

resolver order of the figure above has been used to generate the file.

1 while(1) {

2 // 1) Read inputs ------------

3 bool in_C0 = in_cmp02.get(); // [I]: Cmp2

4

5 // 2) Loop logic ------------

6 uint8_t out_cmp01 = !in_C0; // [P]: Cmp1

7

8 uint8_t sel_cmp03 = out_cmp01; // [P]: Cmp3

9 bool out_cmp03;

10 if(sel_cmp03 == 0) out_cmp03 = true;

11 else out_cmp03 = false;

12

13 // 3) Update outputs ------------

14 out_cmp05.set(out_cmp03); // [O]: Cmp5

15 out_cmp06.set(true); // [O]: Cmp6

16 }

Listing 5.10 – Part of the generated code for the application 5.8

The code of each component, defined using the HwImplemented trait, has been simply added in

each sections to compose the final application. The full generated application code is available in

appendix D on page 84. As an example, the implementation of the Not component (cmp1 in the

previous code) is also available in appendix D. The Not component can be used to invert any type

of data. Depending on the input type, the generated code can change. For boolean values, the "!"

operator is used, otherwise and if/else statement is necessary.

By default, the generated file contains comments and debug informations. The GEN_VERBOSE_CODE

flag can be disabled in the Settings class to remove them automatically.
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5.2.8 Code formatter

The last code transformation applied is a code formatting operation. Like explained in the previous

section, each component generates its own C/C++ code. This implies that the style and the format of

the generated code can looks a bit different from a component to another (space/tab indentation,

spaces, curly braces, etc.).

To keep the generated code clean, readable and uniform, the AStyle [Pat14] tool is used to re-indent

and re-format the generated code. Artistic Style is a free and fast formatter for C/C++ and other

languages. It is a small, automatic and cross-platform tool, highly customizable. All its configuration

parameters are given from a command line, within the Scala code by creating a Process.

The developed formatter block is fully automated. It uses AStyle to make the code more readable for

the user. The original generated code is available in the output folder with a ".org" extension. AStyle

executables (for Linux and Windows) are available in the "third_party" folder. It is not necessary to

install the tool.

The generate code of the application 5.11 presented in appendix D has been formatted using Astyle.
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5.3 Compilation & simulation pipeline

At this stage, different files have been automatically generated, from the user Scala program (see

figure 5.2 on page 34). The previous section explained how the user application, written using a Scala

DSL, is transformed to a sequential C/C++ code. Now it is time to use this generated code. These two

approaches will be discussed in this section.

1. Testing using the real target

The first option consists in compiling the code using a standard ARM toolchain (presented in

section 4.2.1 on page 4.2.1) and then programing manually the STM32-103STK target board,

like any other embedded system.

2. Code simulation

In the second approach, an ARM emulator has been modified to simulate the generated

application, without using a real target. This allows to automatize test procedures to validate

the behavior of the generated code.

5.3.1 Real target

The user Scala application has been converted to a standard ".cpp" file. The normal approach

discussed here consists in using the toolchain presented on page 23 to program the real target and

test the application manually.

To do this, the stm32 repository contains a ready-to-use Eclipse project, with all necessary dependen-

cies, files, running and debugging Eclipse configurations. The application uses the stm32f10x_lib

library and can be compiled using the provided Makefile directlly in the Eclipse IDE (see figure 4.2

on page 23). Once the application is compiled, the board can be programmed using a generic JTAG

interface, and finally the code can be executed.

The generated code is clean and can be modified with ease if necessary. A compilation block has also

been developed. This block generates the ARM executable file (ELF format) automatically, within the

Scala code. It is presented below.

This standard approach is necessary to test if the generated code really works on the target, but

its major drawback is that the testing process cannot be automatized (and programming the ARM

board takes quite a long time). To test the generated applications with ease using automated tests, a

simulated environment has been setup, in addition to this standard approach.

5.3.2 ARM emulator

A significant portion of the project consisted in setup a simulated environment to execute and test

the generated application, without the real hardware. Automated tests have been developed to check

if the generated application corresponds or not to its specification. This was a challenging part,

because the hardware is emulated in software, and its implementation must exactly match with the

real hardware.

QEMU [Bel14] is a generic and open source machine emulator and virtualizer. This existing project

has been used to emulate the ARM Cortex-M3 board, presented in section 4.2 on page 22. QEMU

runs programs made for one machine on a different machine, with very good performance. Many

architectures are supported : X86_64, ARM (iMX, Cortex-M3, OMAP), etc.
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The official QMEU version does not support the STM32 microcontroller, so a modified version of

QEMU has been used. The qemu_stm32 project [Bec14] is a fork of the official QEMU version. It adds

the STM32 microcontroller implementation with some peripherals in QEMU, and its also implements

the STM32-P103 Olimex development board. With the help of this project, the STM32F103 Cortex-M3

processor can be emulated in software. This allows to simulate the development kit with some MCU

peripherals on a PC, without the real hardware. The generated program is compiled into an ARM

binary file, and this same file can be run either on the real target or in the simulated environment in

QEMU.

Simulation environments (like ModelSim) are widely used to simulate hardware description lan-

guages, but this approach is not often used for embedded systems. Emulating a processor in QEMU

adds a very high overhead. Thanks to the qemu_stm32 project, the implementation is already done.

With some developments, simulating the generated code in QEMU rather than on the real target

allows to run automated tests, by controlling the code execution and input and output pins of the

processor. Automated tests are presented in section 5.3.3.

The compilation and simulation pipeline is the second pipeline developed in this project. It is

presented in the figure 5.12 :
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Figure 5.12 – The compilation and simulation pipeline

The code compiler block compiles the C++ application to an ARM executable file with the help of a

generated Makefile and the backend library, which contains the low level components implemen-

tation (details in section 4.2.1 on page 23). The make command is called within the Scala code by

creating a Process. The ARM toolchain must be correctly installed and available in the path. To run

the application in QEMU, a modified linker script is used (to modify the offset address of the flash

memory), but all other files are exactly the same as the files used for the real target.

The generated application has been compiled and must be now tested in the simulated environment.

QEMU is launched from the Scala code in an external process, using the stm32-p103 machine and

the generated elf file as kernel. The command 5.11 is used to launch the QEMU emulator, without

graphical interface and in a separated process, so the Scala test-case execution can continue in

parallel.
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1 info("Start QEMU in a new process.")

2 val cmd= s"./${Settings.PATH_QEMU_STM32}/arm-softmmu/qemu-system-arm -M stm32-p103 -kernel" +

3 " csrc/target-qemu/csrc.elf -serial null -monitor null -nographic"

4 val qemuProcess = OSUtils.runInBackground(cmd) // Run QEMU in a new process

5

6 // Application test code...

7

8 qemuProcess.destroy() // Kill QEMU

Listing 5.11 – Launch QEMU in an external process from the Scala code

5.3.3 Automated tests

The main purpose of the simulated environment in QEMU is to automatically test the generated

application. As for hardware description languages, a Scala test case controls and monitors the

application execution in QEMU. The simulated environment allows to :

1. Control the code execution is QEMU. The microcontroller code executed in QEMU may be

paused or stopped by the Scala test case.

2. Set input pin values of the microcontroller, to simulate when a button is pressed for instance.

3. Monitor the output pins values of the MCU at any time, to check if the simulated program

correspond to its specification.

To do this, the qemu_stm32 has been extended. A TCP/IP gateway allows to communicate from the

QEMU simulator to the Scala frontend. Messages and events can be sent/received from/to the Scala

side using the TCP monitor block (see figure 5.12).

On the Scala side (the frontend), two TCP/IP server are created by the Monitor block. One connection

is used to send messages to QEMU, the other to read events from the simulator. Exchanged messages

are formatted in JSON. A concrete sequence diagram is presented in the next chapter.

On the backend part, the QEMU source files have been modified and two new TCP client threads

have been implemented to communicate with the Scala side. Messages and events produced by the

main QEMU thread (the MCU code execution) are stored in queues to be sent to the frontend by

another specific thread.

Developments in QEMU were challenging because QEMU is implemented in C. Low-level functions

have been used to implement queues, to send Json messages over TCP/IP, etc. Moreover, debugging

codes in QEMU is hard and time consuming because I was not very familiar with it. I had the

opportunity to take an introductory course on QEMU during my master studies. Some code developed

and used during this course7 has been adapted for the project.

QEMU developments are very specific and will not be detailed here. Information about the QEMU

compilation procedure are available in appendix B.3 on page 81.

7 Systèmes d’exploitation et environnements d’exécution embarqués (SEEE) - http://reds.heig-vd.ch/formations/master/
SEEE
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Value change dump export

When a program is running in QEMU, digital output pin values are monitored by the frontend. When

an output pin value changes, its new state is forwarded to the Scala side through TCP/IP (in a Json

message). This message identifies the port, the pin number and its new boolean value. At the end

of the test, saved output values can be compared to the expected values to check if the program

corresponds to its specification. Output pin values can be displayed textually, but also graphically in

a digital timing diagram. This visual representation helps to check if the program, executed in the

simulated environment, works correctly.

The Value Change Dump (VCD) format [IEE01, pp. 348-339] has been choose to save and export

digital output values. VCD is ASCII based and is used since 1995 by EDA logic simulation tools. This

file format is quite old, but still used and supported by man tools. Its format is simple and can be

generated with ease. Basically, output values are simply dumped in the file, with a corresponding

timestamp. The VcdGenerator pipeline block has been developed to generate VCD files.

The code 5.12 is a simple Scala test case used to generate a VCD file with predefined output values.

The VCD file is generated automatically to the output folder.

1 // Output boolean values of several pins.

2 val pinValues: Map[Pin, Seq[Int]] = Map(

3 Pin('A', 1) -> Seq(0, 1, 0, 1),

4 Pin('B', 2) -> Seq(1, 0, 1, 0),

5 Pin('C', 3) -> Seq(0, 1, 1, 0),

6 Pin('D', 4) -> Seq(0, 1, 0)

7 )

8 val ctx = new Context(this.getClass.getSimpleName, true)

9 new VcdGenerator().run(ctx)(pinValues) // Generate the VCD file to the output folder

Listing 5.12 – VCD generation test case in Scala (VcdGeneratorTest.scala)

Figure 5.13 – Digital timing diagram of the test case 5.12 in Impulse (Eclipse plugin)

In this simple VCD generation example, outputs have predefined values. In reality, real output pin

values, collected from the QEMU execution, are used. For space reason, the VCD file generated from

the code 5.12 is only available in appendix E on page 88. Its graphical representation is shown in

figure 5.13.
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VCD is a generic text format. To be displayed graphically in a digital timing diagram, it must be

imported in an external tool. Several EDA softwares supports this file format (like Modelsim for

instance, using the vcd2wlf command). The digital timing diagram shown in figure 5.13 has been

generated using Impulse, a free Eclipse plugin8. It is light, includes a lot of features to draw advances

waveforms, and it is fully customizable. I recommend it, but many other visualization tools exist.

In the next chapter, automated tests will be used to check the behavior of a concrete application. The

Scala test-case and its corresponding digital timing diagram will be presented in section 6.1.1 on

page 63.

5.4 DSL improvements

A first version of the Scala internal DSL has been developed with basic functionalities. It can be

improved in order to write dataflow applications with less code, in a user-friendly and more natural

way. Based on Scala features described in the beginning of the document (see section 3.3.1 on

page 14), some improvements are presented below.

5.4.1 Components and pins definitions

Input/outputs pins and components available on the STM23F103-STK extension board are widely

use in the DSL to build applications. With this in mind, the Stm32stk and the Stm32stkIO objects

allows to access to predefined pins and components with ease :

1 // Components and pins definitions of the extension board

2 object Stm32stkIO {

3 val led4_pin = Pin('B', 9)

4 lazy val led4 = DigitalOutput(led4_pin) // Red LED on `PB.9`

5

6 val adc1_pin = Pin('B', 0)

7 lazy val adc1 = AnalogInput(adc1_pin, 8) // Potentiometer on `PB.0` (ADC channel 8)

8

9 val pwm4_pin = led4_pin

10 lazy val pwm4 = PwmOutput(pwm4_pin) // PWM for led4 on `PB.9` (Timer4 channel 4)

11 // etc.

12 }

Listing 5.13 – Useful pins and components definitions (Stm32stk.scala)

All available components (and their pins) are defined in these objects. Components are declared as

lazy so if they are imported but not used, they will not be instantiated and added to the graph. These

components and pins definitions are used in the rest of the document. All ports and pin numbers of

the development kit and its extension board are available in appendix A on page 78.

5.4.2 Anonymous components

The following code uses the previous components definitions. It simply connect a button to two

LEDs. They should be both powered on when the btn1 is pressed.

8 Impulse is a waveform viewer integrated into Eclipse - http://toem.de/index.php/projects/impulse
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import hevs.especial.dsl.components.target.stm32stk.Stm32stkIO

Stm32stkIO.btn1.out --> Stm32stkIO.led1.in // same as DigitalInput(Pin('C', 0)).out --> ...

Stm32stkIO.btn1.out --> Stm32stkIO.led2.in

Listing 5.14 – Use of anonymous components (Sch1Code.scala)

In this example, if nothing is done, two buttons will be instantiated and added to the graph. In reality,

only one button must be added. This problem does not appear if temporary variable is used, it only

appears with anonymous variables.

All components are identified by a port and pin number (the Pin Scala class). So to solve this bug,

before inserting a component in the graph, we must first check if it already exists in the graph. If

the answer is yes, the existing component is returned, otherwise the new one is added. To check if a

components is already in the graph a generic solution has been implemented. It consists of using the

Java equals and hashCode methods. Here is a sample code which prevents to add more than one

DigitalInput in the graph for each port and pin :

1 class Pin { // ...

2 override def equals(other: Any) = other match {

3 case that: Pin =>

4 // Compare two pins. Check if the port and the pin number are the same.

5 that.pinNumber == this.pinNumber && that.port == this.port

6 case _ => false

7 }

8 }

9

10 class DigitalInput private(private val pin: Pin) { // ...

11 override def equals(other: Any) = other match {

12 case that: DigitalInput => that.pin == this.pin // Pin must be unique

13 case _ => false

14 }

15 }

16

17 object DigitalInput {

18 def apply(pin: Pin): DigitalInput = {

19 val tmpCmp = new DigitalInput(pin)

20 // Check if the component already exists in the graph (return `Some`).

21 val isAdded: Option[DigitalInput] = ComponentManager.addComponent(tmpCmp)

22 isAdded.getOrElse(tmpCmp) // Return the existing component, otherwise the new one.

23 }

24 }

Listing 5.15 – Prevent components duplicates in the graph (simplified code)

Thanks to this code, now all digital inputs created on the same port and pin number will appear only

once in the graph. To prove it, the graph of the program 5.14 has been generated in figure 5.14. It

contains three nodes (and not four), as expected.

The constructor of the DigitalInput class is private to force to use the companion object for its

instantiation (see code 5.15). The same pattern is used by all inputs and outputs components,

identified by a Pin. Any other component that should appear only once in the graph must implement

the same pattern.
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Figure 5.14 – Generated graph of the application 5.14

5.4.3 Pins functions

Another problem appears if the same input or output pin is used with two different configurations.

The code 5.16 presents the problem. It will generate an exception at runtime.

1 val pin = Pin('A', 1) // Sahred component pin

2

3 val out1 = DigitalOutput(pin) // Same output pin used as `DigitalOutput` AND `PwmOutput`

4 val out2 = PwmOutput(pin) // -> Error !

Listing 5.16 – Output pin used with two different configurations

In this particular example the output pin A#1 is configured as a digital and a PWM output. This does

not make much sense, furthermore this is not supported because all components are initialized once

when the program starts : reconfiguring a pin or a controller on the fly would cause performance

issues.

Before adding the component in the graph, a new case must be tested. If the component already

exists in the graph and if it do not correspond to the current component type, an IoTypeMismatch

exception must be thrown. The following message is printed for the code 5.16 :

[ERROR] I/O already used !

The component Cmp[3] is already used as 'DigitalOutput'. It cannot be used as 'PwmOutput'.

This runtime exception is thrown due to the line 4 of the code 5.16. The application is not valid and

no code will be generated.

5.4.4 Variadic constructors

The DSL has been improved by using variadic constructors to instantiate and connect components

inputs in one line. Up to now, the "-->" operator has always been used to connected components

ports, but this can sometimes create verbose codes. The idea is to write less code in a more natural

way. Here is an example on how variadic constructors can be used in a simple application composed

by an And logic gate with two inputs :

1 object And {

2 def apply(inputs: OutputPort[bool]*) = inputs.size match {

3 case 0 | 1 | 2 => And2(inputs: _*) // 2 inputs are necessary

4 case 3 => And3(inputs: _*) // 3 inputs are necessary

5 case 4 => And4(inputs: _*) // 4 inputs are necessary

6 }

7 }
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8

9 case class And2(inputs: OutputPort[bool]*) extends MathOps(2, "&", inputs: _*) with In2 {

10 override val description = s"And$nbrIn gate"

11 override val in1 = in(0)

12 override val in2 = in(1)

13 } // Same for And3, And4, Or2, etc.

1 val and = And(Stm32stkIO.btn1.out, Stm32stkIO.btn2.out) // -> And2 (from 0 to 4 inputs)

2 // Same as: val and = And2()

3 // Stm32stkIO.btn1.out --> and.in1

4 // Stm32stkIO.btn2.out --> and.in2

5 and.out --> Stm32stkIO.led1.in // And2 logic gate to a LED

Listing 5.17 – User friendly DSL code using variadic constructors

As an example, variadic constructors have been added to logic gates. This includes And, Or and Not

gates with 1 to 4 inputs. Several case classes are available in the framework to connect manually all

components inputs, but this can be a bit bothering and verbose.

In the code 5.17, the generic component And is instantiated with a variadic constructor. The two

inputs (btn1 and btn2) will be automatically connected to a And inputs. It is no more necessary to

specify if a And2, And3 or And4 gate must be used. Moreover, all component’s inputs are connected

automatically. This make the DSL code shorter.

The component inputs connections are "hidden" in a generic implementation. As always, the "-->"

is used to connect outputs to inputs (see line 7 of the code 5.18). If less parameters as the input

number are given, some inputs will be not connected. In contrast, if more parameters are given, they

will be ignored.

1 abstract class MathOps[T <: CType : TypeTag](val nbrIn: Int, operator: String) /* ... */ {

2

3 def this(nbrIn: Int, operator: String, inputs: OutputPort[T]*) = {

4 this(nbrIn, operator)

5 for (i <- 0 until nbrIn) {

6 if (inputs.indices.contains(i)) // Ignore if too much or too less parameters are given

7 inputs(i) --> in(i) // Automatically connect component's inputs

8 }

9 }

10 }

Listing 5.18 – Connection of a generic number of inputs

Variadic constructors are available for all logic gates and multiplexers. They help to write a more

concise and understandable code for component with a generic number of inputs. Of course, if it is

necessary, inputs can still be connected manually.

5.4.5 Boolean operators

Variadic constructors help to connect logical gates with multiple inputs, but it can be even more

simple to use it. The following code demonstrates how implicit conversions can improve the internal

DSL. As an example, logic gates can now be instantiated and connected in a very elegant way, using

only one line of code (improvement of the code 5.17) :
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1 import hevs.especial.dsl.components.core.logic._ // Use impl. conv. from the logic package

2

3 val A = Stm32stkIO.btn1.out

4 val B = Stm32stkIO.btn2.out

5

6 (A & B) --> Stm32stkIO.led1.in // Same as: And2(A, B).out --> Stm32stkIO.led1.in

Listing 5.19 – Logic gates and boolean operators

Implicit conversions (see section 3.3.1 on page 14) have been added to the logic package. New

operators are now available for Boolean ports. These new operators are syntactic sugar to help

making the code sorter and easier to understand. In line 6 of code 5.19, the & methods allow to create

a logic And gate with two inputs in a very natural way.

To do this, the implicit conversion for output boolean ports (OutputPort[bool]) is defined as follow.

Boolean operators are implemented using existing components (And, Or and Not gates). Some

examples are presented below :

1 package object logic {

2 implicit def toBooleanOutputPort(out: OutputPort[bool]): BooleanOutputPort =

3 new BooleanOutputPort(out) // Converts an OutputPort to a rich BooleanOutputPort

4 }

5

6 class BooleanOutputPort(port: OutputPort[bool]) {

7 private type T = OutputPort[bool]

8

9 def &(out: T): T = And2(port, out).out // And operator

10 def |(out: T): T = Or2(port, out).out // Or operator

11 def unary_!(): T = Not(port).out // Unary Not operator

12 }

Listing 5.20 – Implicit convertion for boolean ports

The toBooleanOutputPort implicit method converts an output port of boolean type to a rich

BooleanOutputPort class. This rich class implements additional operators, only available for

boolean types (and, or, not). The component output port is returned so boolean operators can

be chained if more than two inputs are used.

As a proof of concept, implicit conversions have been added for logic gates. The same pattern can be

applied to all other components, for instance for math blocks to do additions, subtraction, etc. with

one single operator. Thanks to the Scala internal DSL, implicit conversions can be added with ease to

extend the language, depending on the user needs. A more complete example using boolean implicit

conversions will be presented in the chapter 6.

5.4.6 Custom components

The dataflow internal DSL can be extended with ease by the user. To help him creating new (custom)

components, the CFct helper class has been developed. It allows to create a custom component with

one input and one output of any type. The component logic is defined using a small piece of native

C/C++ code directly.
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A simple threshold component has been implemented using this helper class. It converts an analog

value (uint16) to a boolean value (bool). Its Scala implementation is the following :

1 case class Threshold(threshold: Int = 512) extends CFct[uint16, bool]() {

2 private val outVal = valName("threshold")

3 override val globalVars: Map[String, CType] = Map.empty // No global variables used

4 override def getOutputValue: String = s"$outVal"

5

6 override def loopCode: String = { // C code implementation inserted in the while loop

7 val in = getInputValue // Read the input value of the block (stored in a variable)

8 val outType = getTypeString[bool]

9 s"""$outType $outVal = false;

10 |if($in > $threshold)

11 | $outVal = true;""".stripMargin // Must return a valid C/C++ code

12 }

13 }

Listing 5.21 – Custom threshold component (CustomThreshold.scala)

This component is used in the demo application 5.22. Its input and output are accessible as always

with the in and out attributes. The figure 5.15 is the generate graph of the application.

1 val adc1 = Stm32stkIO.adc1.out

2 adc1 --> Stm32stkIO.pwm3.in

3

4 val threshold = Threshold(512) // Custom component declaration

5 adc1 --> threshold.in // and connection

6 threshold.out --> Stm32stkIO.led1.in

Listing 5.22 – Threshold demo application (CustomThreshold.scala)

In the application 5.22, a potentiometer (connected on an analog input pin) controls a PWM output.

It is also connected on the custom threshold component. When the potentiometer value (uint16)

is higher than the threshold value, the led1 switch on, otherwise it is off (a very basic trigger). The

threshold value is a parameter of the block. In this example, it is fixed at the compilation time and

cannot be modified during the code execution (a constant component could be added on a second

input to update the threshold value on the fly).

Visualisation of the 'CustomThreshold' program.
CustomThreshold.dot

in Threshold [3]
value 512 out in

DigitalOutput [4]
digital output

on C#03
 bool

 
AnalogInput [1]

analog input
on B#00

out

uint16

in
PwmOutput [2]

PWM output
on B#08

 
uint16

Figure 5.15 – Generated graph of the application 5.22

The logic of the component is written in C or C++. The returned code of the loopCode method is

pasted "as-is", without any check or verification, into the generate while loop code (see lines 7 to 11

below).
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A part of the generated code of the program 5.22 is available here :

1 while(1) {

2 // 1) Read inputs

3 uint16_t in_B0 = getlAnalogInputB0();

4

5 // 2) Loop logic

6

7 // ---- User input code of the custom component `Threshold (512)` ----

8 bool threshold_cmp03 = false;

9 if(in_B0 > 512)

10 threshold_cmp03 = true;

11 // ----

12

13 // 3) Update outputs

14 out_cmp02.setPeriod(in_B0);

15 out_cmp04.set(threshold_cmp03);

16 }

Listing 5.23 – Part of the generated code for the application 5.22

Custom components are great to create new components with a few line of codes, but they can be

dangerous because their C/C++ implementation cannot be verified. It must be a valid C/C++ code or

the program will not compile.

Moreover, the implementation code must be conform to the IPO model : it must not be blocking

or taking a long execution time, all the component inputs must be read and all its outputs must be

updated, or the dataflow graph will not be executed correctly and the execution model (see section 3.5

on page 17) will be broken.

If the look at the threshold component implementation (see code 5.21), the input port value is read

on line 7 (from a local C variable). Then, the logic of the component, implemented in C, checks this

value and store the boolean result in the outVal local variable. The getOutputValue method is used

by the successor component (the digital output) to read the boolean result of the threshold block.

Custom components have been implemented to create simple blocks with ease, in a few lines of codes

(see listing 5.21). They are useful and powerful but they must be used carefully : if the component

implementation is not valid, the code compiler block will report a compilation error, or worse, the

program results can be wrong.

Another custom block implementation will be presented in a concrete application in the next chapter.
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Chapter 6

Real-world applications

In this last technical chapter, two real-word applications built using the developed dataflow DSL

will be presented. These concrete applications show what type of programs can be build using the

high-level dataflow representation and present some results of the project.

Two application types have been selected. The first application is a combinatory logic circuit. It

presents some specific features of the dataflow internal DSL. The application is tested on the real

target and in the simulation environment. Its behavior is fully checked using automated tests written

in Scala and QEMU.

The second application will be tested on the real target only. It uses the extension board and several

peripherals of the microcontroller (not implemented yet in the simulator) to create a full regulation

application using a fan. Scala codes and generated files of each application will be presented bellow.

6.1 Majority function

As a first demonstration application, a majority circuit has been developed. The program computes

the majority off three inputs, which are the three buttons available on the extension board (see

section 4.5 on page 28). When two buttons or more are pressed, the led1 of the extension board is

switched on, otherwise, the LED is off (see table 6.1).

A B C
Majority

(A∧B)∨ (B ∧C )∨ (A∧C )
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 1

Table 6.1 – Truth table of a three-input majority circuit (all other cases are 0)

The truth table 6.1 can be implemented using the DSL with three And and two Or logic gates. Rather

than connect all logic components manually without any help, some features presented in the sec-

tion 5.4 are used to write less code in a more natural way : a) input ports are connected automatically

using variadic constructors; b) implicit conversions are used as syntactic sugar to write less code in a

more elegant way.
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A first implementation of the majority circuit is available below. It presents three ways to instantiate

and connect the application components :

1 import hevs.especial.dsl.components.core.logic._ // Necessary to use impl. conv.

2

3 val A = Stm32stkIO.btn1.out // Input buttons

4 val B = Stm32stkIO.btn2.out

5 val C = Stm32stkIO.btn3.out

6 val O = Stm32stkIO.led1.in // Output LED

7

8 val and1 = And2() // 1) Manual connection

9 A --> andA1.in1

10 C --> andA1.in2

11

12 val and2 = And2(B, C).out // 2) Variadic constructor

13

14 val and3 = (A & C) // 3) Implicit convertions

15 (and1.out | and2.out | and3.out) --> O

Listing 6.1 – Three-input majority circuit (verbose)

Using implicit conversions, the equation of the majority circuit (available in table 6.1) can be trans-

lated in no more than one line (see line 6 below). The following code give the same result as the

application 6.1.

1 val A = Stm32stkIO.btn1.out // Input buttons

2 val B = Stm32stkIO.btn2.out

3 val C = Stm32stkIO.btn3.out

4 val O = Stm32stkIO.led1.in // Output LED

5

6 (A & B | B & C | A & C) --> O // Majority function

Listing 6.2 – Three-input majority circuit

Implicit conversions make the code pretty clear, and any logic operation can be written in natural

way. The following diagram helps to understand how the line 8 of the code 6.2 is translated to a graph.

Infix operations precedence rules [Ode14, pp. 84-85] are used :

fsm.fromInitial("IDLE").to("S1").when("input=1")

ScalaFSM
(invokes)

SourceState("IDLE",true)

(returns) (invokes)

FromToState(...)

(returns)

(invokes)

Transition(...)

fsm.fromInitial("IDLE").to("S1").when("input=1")

(returns)

Can be finally added in the transition
list using the Java FSM API

(((A & B) | (B & C)) | (A & C)) ‐‐> O

(((A & B) | (B & C)) | (A & C)) ‐‐> O

(((A & B) | (B & C)) | (A & C)) ‐‐> O

1

2

3

Or2(Or2(And2(A, B).out, And2(B, C).out).out, And2(A, C).out).out ‐‐> O

(Or2(And2(A, B).out, And2(B, C).out).out | And2(A, C).out) ‐‐> O

((And2(A, B).out | And2(B, C).out) | And2(A, C).out) ‐‐> O4

5

6

Implicit 
conversions

Figure 6.1 – Infix operations precedence rules and implicit conversions for logic operators
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6.1. Majority function

The first line in figure 6.1 corresponds to the majority circuit equation available in the DSL code.

According to the precedence rules in Scala, letters have the lowest precedence, followed by "|", then

"&" and finally the "-->" operator. All lines of the figure 6.1 are equivalent, only implicit parenthesis

have been removed. Note that parenthesis around the equation are necessary because the "-->"

operator (with the highest priority) not only applies to "C" but to the whole equation. In the three last

lines of the figure 6.1, implicit conversions are replaced with logic gates (see code 5.20 on page 57).

The 3-input Or gate is transformed to two Or gates with 2 inputs, which is an equivalent circuit (the

Or operation is associative and commutative). The generated graph 6.2 can be inferred from the line

6 of the figure 6.1. The tree input buttons are on the left and the output is on the right.

in1
in2

And2 [6]
And2 gate out

in1
in2

Or2 [7]
Or2 gate outbool

in1
in2

Or2 [9]
Or2 gate out

bool

DigitalInput [1]
digital input

on C#00
out

in1
in2

And2 [8]
And2 gate out

bool
in1
in2

And2 [5]
And2 gate out

bool

bool

in
DigitalOutput [4]

digital output
on C#03

bool

bool

DigitalInput [3]
digital input

on C#02
out

bool

bool

DigitalInput [2]
digital input

on C#01
out bool

bool

Figure 6.2 – Generated graph for the majority circuit (code 6.2)

The generated code for the 3-input majority application is available in appendix F on page 89.

6.1.1 Simulation

As a first step, the generated code has been compiled and loaded into the STM32F103-STK develop-

ment kit, to be tested on the real hardware (details in section 5.3.1 on page 49). The application works

as expected, using the three buttons and the LED of the extension board. The list of hardware and

software necessary to run this demonstration application is available in appendix B.

The other approach, consisting of simulating the application, is presented in this section. The

majority circuit is simulated in QEMU (details in section 5.3.2). This simulation allows to test the

application without using the real hardware. An exhaustive test of the application is performed : the

eight possible input values are tested. The test case, written in Scala, controls the code execution

running in QEMU. On the beginning of each while iterations, it also set input values to simulate

when a button is pressed.
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A part of the generated code for the majority application (program 6.2) is shown below. The full

generated code is available on page 89.

1 while(true) {

2 // While Loop iteration event (ACK is needed from the Scala side to continue the execution)

3 QemuLogger::send_event(SECTION_LOOP_TICK, true);

4

5 // 1) Read inputs

6 bool in_C2 = in_cmp03.get();

7 bool in_C0 = in_cmp01.get();

8 bool in_C1 = in_cmp02.get();

9

10 // 2) Loop logic

11 bool out_cmp05 = in_C0 & in_C1;

12 bool out_cmp06 = in_C1 & in_C2;

13 bool out_cmp08 = in_C0 & in_C2;

14 bool out_cmp07 = out_cmp05 | out_cmp06;

15 bool out_cmp09 = out_cmp07 | out_cmp08;

16

17 // 3) Update output

18 out_cmp04.set(out_cmp09);

19 }

Listing 6.3 – Generated code for the majority application (only the main loop)

To simulate an application in QEMU, specific pieces of code must be added to the generated program

(see line 3 in code 6.3). These codes allow to control and monitor the code execution from the Scala

side. When the code on line 2 is executed in QEMU, an event is automatically sent to the Scala side

over TCP/IP. These events are identified by a name and are placed at specific places in the generated

code, at the beginning or at the end of code sections (available sections are presented on page 45).

The second parameter of the send_event method can be used to wait for a confirmation from the

Scala test case. Until no acknowledge is received, the code execution in QEMU is paused. This is

useful to update the microcontroller input pins at a specific time, for instance at the beginning on

each loop iterations.

The majority circuit is tested using this principle. The exhaustive Scala test case of the majority circuit

is summarized in the sequence diagram 6.3. It shows the TCP/IP messages exchanged between the

Scala test case and QEMU.

All 23 (8) inputs values are sent over TCP/IP to QEMU. This means that after 8 loop iterations, the

application has been fully tested. At the end of the test the QEMU output values are compared to the

expected results, to check if the program works correctly or not. Output values are exported to a VCD

file to be analyzed with ease. The full Scala test case of the majority application, which corresponds

to the sequence diagram 6.3, is available in appendix F.
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generateVCD

while loop iteration #1

Test ends after
8 loop iterations

Resume QEMU
execution

Update buttons
values

Wait for the first
loop iteration
execution in
QEMU

MajorityTestScalaMonitor

ReadThreadWriteThread

QEMU

getOutputValues

Save new
output
values

sendJsonMessage
new output value

pushEvent
outputUpdated

closeTcp
stop

newEvent
LoopTick

sendTcpEvent
LoopTick

Loop 2
Loop 3

...

Loop 8

pushEvent
LoopTick

Loop 1

QEMU
execution
is paused.
Wait on the
Scala test

resume
sendTcpEvent
AckLoopTick

ackEvent
LoopTick

setInput(btn3, false)
setInput(btn2, false)
setInput(btn1, true)

newInputs

newEvent
LoopTick

sendTcpEvent
LoopTick

sendTcpEvent
LoopStart

pushEvent
LoopTick

pushEvent
LoopStart

waitForEvent
LoopTick

«launch»

«create»

Figure 6.3 – Test case sequence diagram of the majority application

6.1.2 Digital timing diagram

On each while loop iterations, the majority output is updated. In QEMU, outputs values are monitored

and automatically sent to the Scala side. They are first saved in a queue and sent later by a specific

thread in QEMU. This is necessary to be sure that output values are sent in the correct order.

Output values sent from QEMU are compared to the expected results to check if the program output

(the majority function) is correct or not. At the end of the test, the digital timing diagram of the input

and output pins is generated :

Input A

Input B

Input C

Majority

Figure 6.4 – Exhaustive test of the majority circuit represented in a digital timing diagram
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One time unit in the diagram 6.4 corresponds to one while loop iteration. This generated timing

diagram fully corresponds to the majority truth table 6.1. It proves that the generated application

works as expected in the simulated environment, like on the real hardware.

All generated files of the majority application are available in appendix F on page 89.

6.2 Regulation application

A second developed application has been selected and will be presented in this section. This time,

this concrete application allows to regulate the speed of a PC fan.

The application is running on the real hardware. The connector of the extension board (see section 4.5)

is used to connect the PC fan. Using the potentiometer, the user adjusts the desired speed of the fan

(from stop to full speed). In addition, the real speed of the fan is measured (feedback), and is adjusted

to correspond to the desired speed, using a PID regulator.

This application is not only a control application. The potentiometer controls the speed of the fan, but

a feedback is used to measure its real speed. The command of the fan is more than just proportional

to the potentiometer value. The block diagram of this regulation application is presented in figure 6.5 :

Scala DSL dataflow program

Target specific
Generic

uint16

uint16

kp ki kd maxmin

uint16

uint8bool

uint16

uint32

uint16

PWM 
output

Digital 
input

Not

Gain
PID

regulator

Pulse 
counter

Analog 
input

Constant (50) 0

1
sel

Fan PWM
command

Fan speed
measure

ON/OFF
button

Speed
setpoint

Speed
feedback

setpoint

measure

regulated
output

Figure 6.5 – Block diagram of the fan speed regulation application

The chosen PC fan [Swi15] (80x80mm) has a 4-pin socket. It is a 12VDC fan (nominal), but in this

application it is connected to a 5V power supply (its maximum speed will be reduced). A PWM signal

controls the speed of the fan. From a PWM duty cycle of 20 to 100%, its speed is approximately

proportional to the duty cycle [Swi15]. The 4th pin of the fan is the speed measure of the fan. This pin

is used as a feedback to control its real speed (input measure of the PID regulator).

The on/off button (btn1 on the extension board) controls directly the PWM output signal. When

it is pressed, a fixed PWM duty cycle (≈ 2%) stops the fan. When released, it is controlled by the

potentiometer. This logic is implemented using an inverter (not gate), a constant value and a

multiplexer (see figure 6.5). The speed characteristic of the fan is available online [Swi15]. Note that

the fan will run at full speed if the PWM duty cycle is 0% (to protect the hardware in a PC for instance).
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6.2. Regulation application

The real speed of the fan is indicated by a rectangular pulse signal. Two pulses correspond to one

turn. A target specific pulse counter component has been developed in the backend. The pulse signal

of the fan is connected to an external interrupt line, so rising and falling edges can be automatically

detected by the hardware to be counted. The speed fan is estimated using the technique presented in

figure 6.6 :

Fan pulse 
feedback

Internal pulse 
counter

2 turns

elapsed time
after 6 pulses

Time

Figure 6.6 – Pulse feedback from the fan

When the fan turns at full speed, the time between two pulses is the shortest. When it is stopped, no

pulse are generated. With a 5V power supply, the speed of the fan is not very high (≈ 900RPM), this

implies that the time between two pulses has a very little variation. To get a more accurate measure,

the time between 6 edges is measured, like indicated in figure 6.6. This time, measured in millisecond,

is directly proportional to the RPM of the fan.

The pulse counter result (an uint32 value) is multiplied by a fixed gain and connected to the PID

input measure. The gain of this block has been estimated after different measures of the fan pulse

signal. The PID regulator can be tunned with different factors : only the kp and ki factors are used.

These values were chosen empirically and tuned for the application purpose. These factors are not

updated when the application runs. Finally, the minimum and maximum values of the regulator

corresponds respectively to a duty cycle of 5% and 100% to control the whole speed range of the fan.
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The Scala code of the application is presented below. The full code is available in appendix G.

1 val speedGain = SpeedGain(50) // Logic components

2 val mux = Mux2[uint16]()

3 val not = Not()

4

5 val pwm = Stm32stkIO.pwm3 // Output

6

7 val pulse = PulseInputCounter(Pin('B', 9)).out // Inputs

8 val measure = Stm32stkIO.adc1.out

9 Stm32stkIO.btn1.out --> not.in

10

11 val pid = PID(1.2, 0.9, 0, 205, 4095) // PID factors

12 pulse --> speedGain.in // Pulse counter gain

13 speedGain.out --> pid.measure // PID measure

14 measure --> pid.setpoint // PID target speed (potentiometer)

15

16

17 Constant(uint16(50)).out --> mux.in1 // Stop the fan

18 pid.out --> mux.in2

19 not.out --> mux.sel

20

21 mux.out --> pwm.in // Fan PWM command

Listing 6.4 – Fan speed regulation appplication

Components like the pulse counter, analog/digital inputs and the PWM output are all target specific

components (see figure 6.5). The Gain block has been developed specially for this application. The

code of this custom component (see section 5.4.6 on page 57) is presented here :

1 case class SpeedGain(gain: Int = 50) extends CFct[uint32, uint16]() {

2 private val outVal = outValName() // Local variable name

3 override val description = "Custom gain"

4

5 override def loopCode = { // While loop code

6 val outType = getTypeString[uint16]

7 val in = getInputValue

8 s"$outType $outVal = 4096 - (($in - 110) * $gain); // Speed gain"

9 }

10 override def getOutputValue = outVal // Compuation result stored in a variable

11 }

Listing 6.5 – Custom SpeedGain block

The speed gain is computed in the formula on line 9, using a simple C code. The result of the block is

saved in a local variable to be used by the PID regulator. Using a custom component is the shortest

way to compute these mathematical operations. Another solution consist of using available math

blocks. More code is necessary to connect the components, but the result is the same, and no C/C++

code is necessary, which is great. The graph corresponding to the SpeedGain block, implemented

with math components, has been generated and is shown in figure 6.7.
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Pulse
counter

PID
measure

Figure 6.7 – Gain block using several math operations

To implement the SpeedGain block using math components, several lines of code are necessary. To

write it with more ease and in a shorter way, implicit conversion for math blocks could be added.

Thereby, it would be possible to automatically transform the equation on line 8 to math components.

This regulation application has been tested on the development board. The list of the used hardware

is available in appendix B.4. PID constants and its gain have been fixed empirically, but actual values

give satisfactory results. We can clearly see the speed regulation process, especially when the fan

turns at low speed, or by making perturbations. The fan PWM command is also connected to a LED,

which helps to see the signal command variations. The generated code of the application is available

in appendix G on page 95.

This concludes the technical part of the report. These two real-world applications demonstrates the

type and the complexity of programs that can be implemented using the developed framework.
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Chapter 7

Conclusion

To conclude this report, developments and achieved results are summarized in the first part of this

chapter. Then, recommendations for future work are briefly discussed.

7.1 Summary

The main objective of this project was to specify and implement a prototype language for embedded

systems. This task was achieved by developing an internal dataflow DSL in Scala. The dataflow

paradigm helps the user to describe the block diagram / the model of its application using an high-

level description language. No specific or low-level code is required. The application is automatically

converted from the Scala DSL to a C++ program (its concrete implementation). The developed back-

end provides an abstraction for inputs, outputs and main peripherals of the target microcontroller.

To test the language and the generated code, two methods have been presented. The first one consists

in compiling and running the generated application, without modifications, on the target embedded

system. Using a standard toolchain, the set up environment and the developed HAL library, the user

can run and test his application, like any other embedded software.

The second testing approach allows to simulate the generated code using an existing (modified) ARM

emulator. This solution has a great advantage : the generated application can be tested automatically,

using a Scala test case corresponding to the application. The modified ARM emulator allows to modify

input pin values of the microcontroller and to monitor output values. At the end of the test, a digital

timing diagram can be generated , to automatically check the behavior of the program, without using

the real hardware. Testing the application require less time because the toolchain is simplified and

only one tool is necessary. Furthermore, the test case is also written in Scala and the same compiled

application can be simulated or executed on the target.

All applications presented in this document have been built using the developed dataflow DSL. They

are all working as expected. All presented applications have been tested on the target development

board, without modifying the generated code. Output codes are working "out of the box" on the real

target or on the ARM emulator.

The last version of the source code is available online (see appendix B). Today, all opened issues have

been fixed for both backend and frontend parts.
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7.2 Limitations

The developed dataflow DSL is flexible and allows to build (complex) real-world applications. Some

of them have been presented in the chapter 6. All applications that can be expressed in an directed

acyclic dataflow graph can be converted to a sequential execution model.

This model can be too restrictive because some applications types cannot be built yet. If we look

again at the regulation application (see section 6.2 on page 66), it would be great to build the regulator

manually, using cycles and math components, instead of a ready-to-use component. To do this, the

execution model must be upgraded to an event-driven asynchronous dataflow. A more complex

scheduler must be implemented on the embedded system to execute the graph in a network of

processes and no more in a single infinite loop.

The code simulation in QEMU was a challenging part and a very time consuming job because I

had quite no previous experience with it. Thanks to the qemu_stm32 project [Bec14], the chosen

development kit and processor were already implemented in QEMU, but I had to extend the emulator

to control it from the Scala side. Dealing with network, events and queues in a low-level C implemen-

tation was not easy (especially when debugging). Unfortunately, bugs are life. During a long period, I

was not able to simulate correctly external interrupt lines (EXTI) in QEMU. This was due to a bug in

the GPIO peripheral implementation. With the help of the project developer, it is fixed today.

Basic applications which use external interrupts and digital outputs can be simulated in the current

emulator version. Scala test cases are great to automatically test the generated applications. Simulat-

ing embedded systems is not very common, but this approach give very good results. In my opinion,

it would be interesting to do future work on the emulator, to add new MCU peripherals, like analog

input values, PWM outputs, etc., even if the emulator is not a central part of the embedded language.

7.3 Future work

The project objectives are fulfilled. In the previous chapter, two applications have been presented.

They demonstrate the type and the complexity of programs that can be implemented with this

prototype language. In this section, some future work and nice to have features are presented.

As a proof of concept, only a few component are currently available in the framework. Thanks to the

Scala internal DSL, the framework can be extended with ease, but severals components are missing.

Components like SPI/I2C controllers (for sensors), LCD controllers or Ethernet/Bluetooth interfaces

could be added. The developed extension board is minimalist, it could be miniaturized and extended.

Creating a visual editor was not an objective of the project, but it would be great to build one. It could

really help non-programmer users to build applications, for instance in a web-based editor using

drag & drop components, etc. Furthermore, it would be great to be able to define sub-components

in a program. A component hierarchy could be used in the regulation application to build the gain

block for instance. This helps to better decompose complex programs.
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For this prototype project, only one target is supported, but the developed architecture has been

designed to support new ones. Other ARM development boards can be added without much effort,

like the ARMEBS4 board of HES-SO Valais [HES14].

Finally, some optimizations on the dataflow graph could be nice to have. Unconnected nodes and

path are automatically removed before generating the application code. Optimizations like constant

propagation or boolean circuits minimizations could be added. They are minor improvements

because the compiler already do these optimizations.

In conclusion, this project allows to describe applications using a high-level language. Several

components are ready-to-use. The model / the block diagram of the application is written using a

custom dataflow DSL and the generated code can be used out of the box (without modification) to

program the embedded target. This work allows non-programmer users to build portable applications

without using low-level code.

Through this project, I had the opportunity to use a lot of tools, libraries and programming languages.

It was interesting to deal with low-level C programming (in QEMU for instance) and also to write high-

level functional programming using the Scala programming language. Developments were various

and challenging. Thanks to this project, I have improved my Scala programming skills and learn a lot

about the QEMU emulator. Furthermore, I had the opportunity to contribute to open-source libraries

used during the project, like Graph for Scala and QEMU for Stm32.

Lausanne, 6th February 2015

Christopher Métrailler
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A | Extension board

Components pinning  1 / 1 

 
 
Digital input name Description Pin Board 
btn3  Button 3 PC02  Extension board 
btn2  Button 2 PC01  Extension board 
btn1  Button 1 PC00  Extension board 
btn0  Joystick center PC06  Main board 
 
Analog input name Description Pin Board 
adc1  Potentiometer PB00 / CH08  Extension board 
adc0  Joystick directions PC05 / CH15  Main board 
 
Digital output name Description Pin Board 
led4 / pwm4  Led 4 Red or PWM 4 PB09 / TIM4_CH4  Extension board 
led3 / pwm3  Led 3 Red or PWM 3 PB08 / TIM4_CH3  Extension board 
led2  Led 2 Yellow PC04  Extension board 
led1  Led 1 Yellow PC03  Extension board 
led0  Led 0 Red (active low) PC12  Main board 
 
Buttons and LEDs on the extension board are active-high. 
Numbers goes from the bottom to the top (potentiometer). 78



B | Development environment
A CD is attached to this report. It contains the full source code of the project, as well as a copy of the

report. The project source code is also available online in the two following private Git repositories.

The access to these repositories is available upon request.

• Frontend Scala code

https://github.com/metc/especial-frontend

• Backend C/C++ code : QEMU for STM32 and HAL for the STM32-103STK board

https://github.com/metc/especial-backend

B.1 Backend (C/C++)

The following tools are required to build the backend. The code compilation has only been tested on

Linux (Ubuntu 14.04.1 LTS) :

Tool name Version Website

Eclipse IDE for C/C++ Luna 4.4.1 https://eclipse.org/cdt/downloads.php

Eclipse cross compiler plugin 1.11.1 http://sourceforge.net/projects/gnuarmeclipse/

GNU ARM toolchain
gcc-arm-none-eabi

4_8-2014q3 https://launchpad.net/gcc-arm-embedded

GNU Make (Linux) 3.81 http://www.gnu.org/software/make/

Open On-Chip Debugger 0.7.0 http://openocd.sourceforge.net/

Impulse VCD viewer 1.0.2 http://toem.de/index.php/projects/impulse

Doxygen 1.8.9 http://www.stack.nl/~dimitri/doxygen/manual/

Table B.1 – Backend tools and versions

Once these tools are installed, the backend project can be imported in Eclipse directly. Run and

debug configurations are available in the project directory, with several demo applications.
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B.2 Frontend (Scala)

The Scala development environment has been tested on Linux, using the following tools and versions :

Tool name Version Online installation guide

Java Development Kit (JDK) 1.8.0_25 http://www.oracle.com/technetwork/java/

Scala Programming Language 2.11.4 http://www.scala-lang.org/download/install.html

Simple-Build-Tool (sbt) 0.13.7 http://www.scala-sbt.org/0.13/tutorial/Setup.html

IntelliJ IDEA 14.0.2 https://www.jetbrains.com/idea/download/

IntelliJ Scala plugin 1.2 https://plugins.jetbrains.com/plugin/?id=1347

Graph Visualization Software 2.38.0 http://www.graphviz.org/Download.php

Artistic Style 2.0.4 http://astyle.sourceforge.net/install.html

Table B.2 – Frontend tools and versions

Frontend settings can be modified using the Settings.scala file. More information about library

dependences are available in the third_party folder. The sbt project definition file is available in

the listing B.1. All used Scala libraries are detailed in this file :

1 name := "especial"

2 version := "1.0"

3

4 scalaVersion := "2.11.4"

5

6 // Graph for Scala - http://www.scala-graph.org/

7 libraryDependencies ++= Seq(

8 "com.assembla.scala-incubator" %% "graph-core" % "1.9.1",

9 "com.assembla.scala-incubator" %% "graph-dot" % "1.10.0",

10 "com.assembla.scala-incubator" %% "graph-constrained" % "1.9.0"

11 )

12

13 // Grizzled-SLF4J, a Scala-friendly SLF4J Wrapper

14 libraryDependencies ++= Seq(

15 "org.slf4j" % "slf4j-api" % "1.7.5",

16 "org.slf4j" % "slf4j-simple" % "1.7.5",

17 "org.clapper" %% "grizzled-slf4j" % "1.0.2"

18 )

19

20 // Lift-json - http://liftweb.net/download

21 libraryDependencies += "net.liftweb" %% "lift-json" % "2.6-M4"

22

23 // Scala tests - http://www.scalatest.org/

24 libraryDependencies += "org.scalatest" % "scalatest_2.11" % "2.2.1" % "test"

25

26 // Scala compiler options

27 scalacOptions ++= Seq("-unchecked", "-deprecation", "-feature")

28

29
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30 // Disable parallel execution of tests (shared instance of the ComponentManager)

31 parallelExecution in ThisBuild := false

32

33 // Remove some tests which must be ran manually, one after one.

34 testOptions in Test := Seq(Tests.Filter(s => !(s.contains("generator."))))

35

36 // Generate ScalaDoc diagrams using dot

37 scalacOptions in(Compile, doc) ++= Seq("-diagrams")

38

39 // Custom clean task

40 // Delete all generated files from the output directory

41 clean ~= {x => println("Remove generated output files...")}

42 cleanFiles <++= baseDirectory { base => (base / "output/" * "*").get }

Listing B.1 – Project build file definition (build.sbt)

The sbt Scala project can be opened into IntelliJ using the sbt import wizard. The sbteclipse plugin

can be used to convert the project to an Eclipse project. Finally, to compile and launch the project

unit tests, simply run "sbt compile" and "sbt test" in a console, from the project root directory.

B.3 ARM emulator (QEMU)

The STM32f103-STK board can be simulated in a specific QEMU version with an STM32 microcon-

troller implementation [Bec14]. This project is based on the official QEMU version 2.2.1.

The stm32 repository contains the modified QEMU version for this project, with the TCP/IP emulation

to communicates with the Scala frontend. The installation and compilation procedure is available

online : https://github.com/beckus/qemu_stm32/blob/stm32/README.

B.4 Hardware

The list of the hardware used for the project and real world applications :

Hardware name Reference

Starterkit board for STM32F103RBT6
Cortex-M3 microcontroller
STM32-103STK rev. B

https://www.olimex.com/Products/
ARM/ST/STM32-103STK/

HES-SO Valais//Wallis
Universal Tracer (JTAG & UART)

http://wiki.hevs.ch/uit/index.php5/
Inventory/CPU/DevKits#Universal_
Tracer_STM32F103_Dev_Kit

4-Pin PWM fan with standard case
F8 PWM PST

http://www.arctic.ac/ch_en/
arctic-f8-pwm-pst.html

Table B.3 – Hardware references

81

https://github.com/beckus/qemu_stm32/blob/stm32/README
https://www.olimex.com/Products/ARM/ST/STM32-103STK/
https://www.olimex.com/Products/ARM/ST/STM32-103STK/
http://wiki.hevs.ch/uit/index.php5/Inventory/CPU/DevKits#Universal_Tracer_STM32F103_Dev_Kit
http://wiki.hevs.ch/uit/index.php5/Inventory/CPU/DevKits#Universal_Tracer_STM32F103_Dev_Kit
http://wiki.hevs.ch/uit/index.php5/Inventory/CPU/DevKits#Universal_Tracer_STM32F103_Dev_Kit
http://www.arctic.ac/ch_en/arctic-f8-pwm-pst.html
http://www.arctic.ac/ch_en/arctic-f8-pwm-pst.html


C | Hardware Abstraction Layer (HAL)
test application

1 /**

2 * Test application for the I/O extension board. Use the developped HAL.

3 * - led1 is ON when running

4 * - led2 is controlled by btn2

5 * - led3 is controlled by the potentiometer (PWM)

6 * - led4 toggles each 0.5 seconds (use Timer2)

7 *

8 * \author Christopher Metrailler

9 * \version 1.0

10 */

11 #include "digitaloutput.h"

12 #include "digitalinput.h"

13 #include "analoginput.h"

14 #include "pwmoutput.h"

15 #include "utils/time.h"

16 #include "helper.h"

17

18 AnalogInput adc1('B', 0, 8); // Potentiometer

19 DigitalInput btn2('C', 1); // btn2

20

21 PwmOutput pwm3('B', 8); // led3

22 DigitalOutput led4('B', 9); // led4

23 DigitalOutput led2('C', 4); // led2

24 DigitalOutput led1('C', 3); // led1

25

26 void initIO() {

27 btn2.initialize(); // Inputs

28 adc1.initialize();

29

30 pwm3.initialize(); // Outputs

31 led4.initialize();

32 led2.initialize();

33 led1.initialize();

34 }

35

36 int main() {

37 timeout_t time;

38 time_init();

39

40 initIO(); // Init all I/O and set to '0'

41

42 println("Sample application started.");

43

44 led1 = true; // Led1 is on. Same as 'led1.set(true);' or 'led1.setState(On);'

45 time = time_get();

46
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47 while (1) {

48 // Led2 is controlled by btn2

49 // bool val = btn1.get();

50 // led2.set(val);

51 led2 = btn2.get(); // Use EXT interrupt line

52

53 // Potentiometer value on led3 (PWM signal)

54 // uint16_t period = adc1.read();

55 // pwm3.setPeriod(period);

56 pwm3 = adc1.read(); // Start A/D conversion

57

58 // Led4 toggles each 0.5 seconds

59 if(time_diff_ms(time_get(), time) > 500) {

60 time = time_get();

61 led4.toggle(); // Toggle the led4

62 }

63 }

64 return 0;

65 }

Listing C.1 – Test application of the HAL

83



D | Sample code generation
Application block diagram :

Figure D.1 – Sample application

Application implementation in Scala, using the dataflow DSL :

1 package hevs.especial.doc

2

3 import hevs.especial.dsl.components._

4 import hevs.especial.dsl.components.core.{CFct, Constant, Mux2}

5 import hevs.especial.dsl.components.target.stm32stk.Stm32stkIO

6 import hevs.especial.generator.STM32TestSuite

7

8 /**

9 * Application to demonstrate how the resolver and the code genertor block work.

10 *

11 * Read a button, invert its state and convert it value to an [[uint8]] to control the

12 * selection pin of a [[Mux2]]. The `led1` is always ON. When the `btn1` is pressed,

13 * the `led2` switch OFF. Application without warnings.

14 *

15 * @version 1.0

16 * @author Christopher Metrailler (mei@hevs.ch)

17 */

18 class DemoResolver extends STM32TestSuite {

19

20 def isQemuLoggerEnabled = false

21

22 import hevs.especial.dsl.components.CType.Implicits._

23

24 def runDslCode(): Unit = {

25 val not = Not() // Not and `uint8` conversion

26 Stm32stkIO.btn1.out --> not.in // Read input

27

28
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29

30 val mux = Mux2[bool]()

31 val cst1 = Constant[bool](true).out

32 mux.out --> Stm32stkIO.led1.in // Update outputs LEDs

33 cst1 --> Stm32stkIO.led2.in

34

35 not.out --> mux.sel

36 Constant[bool](false).out --> mux.in2

37 cst1 --> mux.in1

38 }

39

40 case class Not() extends CFct[bool, uint8] {

41 override val description = s"NOT gate"

42 private val convValue = outValName()

43

44 /* I/O management */

45 override def getOutputValue: String = convValue

46

47 /* Code generation */

48 override def loopCode = s"${uint8().getType} $convValue = if($getInputValue) ? 0 : 1;"

49 }

50

51 runDotGeneratorTest()

52 runCodeCheckerTest()

53 runCodeOptimizer()

54 runDotGeneratorTest(optimizedVersion = true)

55

56 runCodeGenTest()

57 }

Listing D.1 – Scala generation test for the application 5.11

1 package hevs.especial.dsl.components.core.logic

2

3 import hevs.especial.dsl.components._

4 import scala.reflect.runtime.universe._

5

6 /**

7 * Invert any input type.

8 *

9 * The output value as the same type as the input. For [[bool]] values, the output is simply

10 * inverted. For all other types, in the input "0", it is set to "1" and vice-versa.

11 *

12 * @version 2.0

13 * @author Christopher Metrailler (mei@hevs.ch)

14 *

15 * @tparam T the type of the value to invert

16 */

17 case class Not[T <: CType : TypeTag]() extends Component

18 with In1 with Out1 with HwImplemented {

19

20 override val description = s"NOT gate"

21

22 /* I/O management */

23 val in = new InputPort[T](this) {
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24 override val name = s"in"

25 override val description = "input to invert"

26 }

27

28 val out = new OutputPort[T](this) {

29 override val name = s"out"

30 override val description = "inverted value"

31 override def getValue: String = outValName() // inverted value stored in a local variable

32 }

33

34 override def getOutputs = Some(Seq(out))

35 override def getInputs = Some(Seq(in))

36

37 /* Code generation */

38

39 override def getLoopableCode = {

40 // Read the input

41 val inValue = ComponentManager.findPredecessorOutputPort(in).getValue

42

43 // Invert the value and store the result in a variable

44 val sInvert = getTypeClass[T] match {

45 case _: `Class`[bool] => s"!$inValue"

46 case _ => s"""($inValue == 0) ? 1 : 0"""

47 }

48 Some(s"${getTypeString[T]} ${outValName()} = $sInvert;")

49 }

50 }

51

52 object Not {

53 def apply[T <: CType : TypeTag](input: OutputPort[T]): Not[T] = {

54 // Connect automatically the single input

55 val n = Not[T]()

56 input --> n.in

57 n

58 }

59 }

Listing D.2 – Not (inverter) component implementation

Generated C++ application code :

1 // DemoResolver application

2 // Code generated automatically from the Scala DSL program 'DemoResolver'.

3

4 //*// Section 00

5 #include "digitalinput.h"

6 #include "digitaloutput.h"

7 //*// ----------

8

9 //*// Section 01

10 DigitalInput in_cmp02('C', 0); // OutputPort[0] 'out' of Cmp[02] 'DigitalInput'

11 DigitalOutput out_cmp05('C', 3); // InputPort[0] 'in' of Cmp[05] 'DigitalOutput'

12 DigitalOutput out_cmp06('C', 4); // InputPort[0] 'in' of Cmp[06] 'DigitalOutput'

13 //*// ----------

14
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15 //*// Section 02

16 //*// ----------

17

18 //*// Section 03

19 void initOutputs() {

20 out_cmp05.initialize();

21 out_cmp06.initialize();

22 }

23

24 void init() {

25 in_cmp02.initialize();

26 }

27 //*// ----------

28

29 int main() {

30 initOutputs();

31 init();

32

33 //*// Section 04

34 //*// ----------

35

36 //*// Section 05

37 while(1) {

38 // 1) Read inputs

39 bool in_C0 = in_cmp02.get();

40

41 // 2) Loop logic

42 uint8_t out_cmp01 = !in_C0;

43

44 uint8_t sel_cmp03 = out_cmp01;

45 bool out_cmp03;

46

47 if(sel_cmp03 == 0)

48 out_cmp03 = true;

49 else

50 out_cmp03 = false;

51

52 // 3) Update outputs

53 out_cmp05.set(out_cmp03);

54 out_cmp06.set(true);

55 }

56 //*// ----------

57

58 //*// Section 06

59 //*// ----------

60 }

Listing D.3 – C++ code generated from the Scala DSL program D.1
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E | Generated VCD file

1 $date Tue Jan 20 18:00:32 CET 2015 $end

2 $version ESPecIaL version B2.0 $end

3 $comment

4 VCD file generated automatically for 'VcdGeneratorTest'.

5 $end

6

7 $timescale 1 ms $end

8

9 $scope module VcdGeneratorTest $end

10 $var wire 1 A1 pin_A1 $end

11 $var wire 1 B2 pin_B2 $end

12 $var wire 1 C3 pin_C3 $end

13 $var wire 1 D4 pin_D4 $end

14 $upscope $end

15

16 $enddefinitions $end

17

18 $dumpvars

19 xA1

20 xB2

21 xC3

22 xD4

23 $end

24

25 #0

26 0A1

27 1B2

28 0C3

29 0D4

30

31 #1

32 1A1

33 0B2

34 1C3

35 1D4

36

37 #2

38 0A1

39 1B2

40 1C3

41 0D4

42

43 #3

44 1A1

45 0B2

46 0C3

Listing E.1 – Generated VCD file for the test case 5.12 (VcdGeneratorTest.vcd)
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F | Majority circuit
Application code of the three-input majority circuit :

1 val A = Stm32stkIO.btn1.out // Input buttons

2 val B = Stm32stkIO.btn2.out

3 val C = Stm32stkIO.btn3.out

4 val O = Stm32stkIO.led1.in // Output LED

5

6 (A & B | B & C | A & C) --> O // Majority function

Listing F.1 – Three-input majority circuit

The generated dataflow graph of the application F.1 :
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Figure F.1 – Generated graph for the majority circuit

Generated code of the application F.1. Runs in QEMU :

1 // Majority application.

2 // Code generated automatically from the DSL program 'Majority'.

3

4 //*// Section 00

5 #include "digitalinput.h"

6 #include "digitaloutput.h"

7 //*// ----------

8

9 //*// Section 01

10 DigitalInput in_cmp03('C', 2); // OutputPort[0] 'out' of Cmp[03] 'DigitalInput'

11 DigitalInput in_cmp01('C', 0); // OutputPort[0] 'out' of Cmp[01] 'DigitalInput'

12 DigitalInput in_cmp02('C', 1); // OutputPort[0] 'out' of Cmp[02] 'DigitalInput'

13 DigitalOutput out_cmp04('C', 3); // InputPort[0] 'in' of Cmp[04] 'DigitalOutput'

14 //*// ----------

15

16 //*// Section 02

17 //*// ----------

18

19 //*// Section 03

20 void initOutputs() {

21 out_cmp04.initialize();
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22 }

23

24 void init() {

25 in_cmp03.initialize();

26 in_cmp01.initialize();

27 in_cmp02.initialize();

28 }

29 //*// ----------

30

31 int main() {

32 QemuLogger::send_event(SECTION_START);

33

34 initOutputs();

35 init();

36

37 QemuLogger::send_event(SECTION_INIT_END);

38

39 //*// Section 04

40 //*// ----------

41

42 QemuLogger::send_event(SECTION_LOOP_START);

43

44 //*// Section 05

45 while(1) {

46

47 QemuLogger::send_event(SECTION_LOOP_TICK, true); // Ack event is needed

48

49 // 1) Read inputs

50 bool in_C2 = in_cmp03.get();

51 bool in_C0 = in_cmp01.get();

52 bool in_C1 = in_cmp02.get();

53

54 // 2) Loop logic

55 bool out_cmp05 = in_C0 & in_C1;

56 bool out_cmp06 = in_C1 & in_C2;

57 bool out_cmp08 = in_C0 & in_C2;

58 bool out_cmp07 = out_cmp05 | out_cmp06;

59 bool out_cmp09 = out_cmp07 | out_cmp08;

60

61 // 3) Update outputs

62 out_cmp04.set(out_cmp09);

63 }

64 //*// ----------

65

66 //*// Section 06

67 //*// ----------

68

69 QemuLogger::send_event(SECTION_END);

70 }

71 // END of file 'Majority.cpp'

Listing F.2 – Generated code of the application F.1
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F.1 Simulation

Scala test case of the three-input majority circuit :

1 package hevs.especial.apps

2

3 import hevs.especial.dsl.components.Pin

4 import hevs.especial.dsl.components.target.stm32stk.Stm32stkIO

5 import hevs.especial.generator.STM32TestSuite

6 import hevs.especial.simulation.{MonitorWriter, Events, Monitor, MonitorTest}

7 import hevs.especial.utils.OSUtils

8

9 /**

10 * Test case used to simulate the [[hevs.especial.apps.Majority]] application.

11 *

12 * QEMU events are used to monitor the MCU code execution in QEMU. This Scala test case

13 * controls the execution of the code running in QEMU. When a loop iteration is terminated,

14 * input values are modified and the execution restart for a new loop iteration with new

15 * input values. After a number of iterations, the QEMU program is stopped and the VCD

16 * result file is generated.

17 *

18 * @version 1.0

19 * @author Christopher Metrailler (mei@hevs.ch)

20 */

21 class MajorityInputSimulation extends MonitorTest {

22

23 /** Input buttons values (all possible combinations, see truth table). */

24 private val inValues = Map(

25 3 -> "0,1,0,1,0,1,0,1", // Input C (btn3)

26 2 -> "0,0,1,1,0,0,1,1", // Input B (btn2)

27 1 -> "0,0,0,0,1,1,1,1" // Input A (btn1)

28 )

29

30 /** Expected output values. */

31 private val outValues = Array(

32 1 -> "0,0,0,1,0,1,1,1" // Output O (led1) = majority function

33 )

34

35 private def updateInputValues(w: MonitorWriter, tick: Int): Unit = {

36 inValues.foreach(input => {

37 val btId = input._1

38 val curVal = input._2.split(",")(tick)

39 info(s"Set input '$btId' to '$curVal'.")

40 w.setButtonInputValue(btId, curVal == "1") // Send the input boolean value

41 })

42 }

43

44 /**

45 * Simulate a test program in QEMU.

46 * @param code the test code to simulate

47 */

48 override def simulateCode(code: STM32TestSuite) = {

49 val m = new Monitor()

50

51 info("Start QEMU in a new process...\n\n")
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52 val qemuProcess = OSUtils.runInBackground(runQemu)

53 Thread.sleep(1000)

54 info(" > QEMU started.")

55

56 m.waitForClient() match {

57 case false => fail("Timeout. Test aborted.")

58 case _ =>

59 }

60

61 // *********************************

62 var countTick = 0

63 while (countTick < 8) {

64 m.reader.waitForEvent(Events.LoopTick)

65

66 // Set input value

67 updateInputValues(m.writer, countTick)

68

69 m.writer.ackEvent(Events.LoopTick)

70 info(s"> Loop iteration $countTick ended.")

71 countTick += 1

72 }

73

74 // Wait for the last loop iteration

75 m.reader.waitForEvent(Events.LoopTick)

76 info(s"> Program terminated after $countTick iterations.")

77

78 // Print result values

79 pins = m.reader.getOutputValues

80 printOutputValues(pins)

81

82 // Check output values

83 val expectedValues = outValues.head._2.split(",").map(x => x.toInt)

84 val realValues = pins.get(Stm32stkIO.led4_pin).get

85 val success = expectedValues sameElements realValues

86 if (!success)

87 fail("Error in the majority function !")

88 // *********************************

89

90 // Close QEMU

91 info("Kill QEMU.")

92 disconnect(m)

93 qemuProcess.destroy()

94 }

95

96

97 /** DSL program under test. */

98 runTests(new Majority())

99 }

Listing F.3 – Scala test case of the three-input majority circuit (MajorityInputSimulation.scala)
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Result of the test case F.3 in a digital timing diagram :

Figure F.2 – Exhaustive test of the majority circuit represented in a digital timing diagram (Impulse)

The generated VCD file of the digital timing diagram F.2 :

1 $date

2 Wed Jan 21 12:48:09 CET 2015

3 $end

4 $version

5 ESPecIaL version B3.0

6 $end

7 $comment

8 VCD file generated automatically for 'Majority'.

9 $end

10

11 $timescale 1 ms $end

12

13 $scope module Majority $end

14 $var wire 1 C3 pin_C3 $end

15 $var wire 1 B9 pin_B9 $end

16 $var wire 1 C4 pin_C4 $end

17 $var wire 1 B8 pin_B8 $end

18 $upscope $end

19

20 $enddefinitions $end

21

22 $dumpvars

23 xC3

24 xB9

25 xC4

26 xB8

27 $end

28

29 #0

30 0C3

31 0B9

32 0C4

33 0B8

34

35 #1

36 0C3

37 0B9

38 0C4
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39 1B8

40

41 #2

42 0C3

43 0B9

44 1C4

45 0B8

46

47 #3

48 0C3

49 1B9

50 1C4

51 1B8

52

53 #4

54 1C3

55 0B9

56 0C4

57 0B8

58

59 #5

60 1C3

61 1B9

62 0C4

63 1B8

64

65 #6

66 1C3

67 1B9

68 1C4

69 0B8

70

71 #7

72 1C3

73 1B9

74 1C4

75 1B8

Listing F.4 – Generated VCD file of the tree-input majority circuit
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G | Regulation application
Code of the fan PID regulation application :

1 package hevs.especial.apps

2

3 import hevs.especial.dsl.components._

4 import hevs.especial.dsl.components.core.math.PID

5 import hevs.especial.dsl.components.core.{CFct, Constant, Mux2}

6 import hevs.especial.dsl.components.target.stm32stk.{PulseInputCounter, Stm32stkIO}

7 import hevs.especial.generator.STM32TestSuite

8

9 /**

10 * Complete demo application to regulate a fan speed using a PPID regulator.

11 *

12 * The speed of the fan is measure using a pulse counter. Pulses are captured and counted

13 * using external interrupts. When the button 1 is pressed, the fan is off. By default, the fan

14 * speed is regulated by a PID controller. The seed setpoint can be adjusted using the

15 * potentiometer, from 0 to 100% speed.

16 * A custom math block is used to adapt the number of counted pulses to the desired fan speed.

17 * PID kp, ki and kd constants are fixed when the program starts.

18 *

19 * To run this demo, the fan must be connected correctly

20 * and the jumper must connect the fan output (not the led).

21 *

22 * @version 1.0

23 * @author Christopher Metrailler (mei@hevs.ch)

24 */

25 class FanPid extends STM32TestSuite {

26

27 def isQemuLoggerEnabled = false

28

29 def runDslCode(): Unit = {

30 // Inputs

31 val pid = PID(1, 1, 0, 255, 4095)

32 val pulse = PulseInputCounter(Pin('B', 9)).out

33 val measure = Stm32stkIO.adc1.out

34

35 // Logic

36 val speedGain = SpeedGain(50)

37 val mux = Mux2[uint16]()

38 val not = Not()

39

40 // Output

41 val pwm = Stm32stkIO.pwm3

42

43 // PID input measure from the pulse counter

44 pulse --> speedGain.in

45 speedGain.out --> pid.measure

46

47 // PID input setpoint from the potentiometer
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48 measure --> pid.setpoint

49

50 // Mux logic to stop the fan using the button 1

51 Constant(uint16(50)).out --> mux.in1

52 pid.out --> mux.in2

53 Stm32stkIO.btn1.out --> not.in

54 not.out --> mux.sel

55

56 // Fan PWM command

57 mux.out --> pwm.in

58 }

59

60 /**

61 * Math block used to adapt the speed of the fan.

62 * @param gain speed gain from measure

63 */

64 case class SpeedGain(gain: Int) extends CFct[uint32, int32]() {

65 override val description = "Custom gain"

66 private val outVal = outValName()

67 override def getOutputValue = outVal

68

69 /* Code generation */

70 override def loopCode = {

71 val outType = getTypeString[int32]

72 val in = getInputValue

73 s"""|$outType $outVal = 4096 - (($in - 110) * $gain); // Speed gain

74 |if ($outVal <= 0)

75 | $outVal = 0;""".stripMargin

76 }

77 }

78

79 /** Custom C component to invert a [[bool]] value and return an [[uint8]] value. */

80 case class Not() extends CFct[bool, uint8]() {

81 override val description = "Inverter to uint8"

82 private val outVal = outValName()

83 override def getOutputValue = outVal

84

85 /* Code generation */

86 override def loopCode = {

87 val outType = getTypeString[uint8]

88 val in = getInputValue

89 s"$outType $outVal = ($in == 0) ? 1 : 0;"

90 }

91 }

92

93 runDotGeneratorTest()

94 runCodeCheckerTest()

95 runCodeOptimizer()

96 runDotGeneratorTest(optimizedVersion = true)

97

98 runCodeGenTest()

99 }

Listing G.1 – Fan speed regulation appplication
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Corresponding dataflow graph :

V
is

ua
lis

at
io

n 
o

f 
th

e
 'F

an
P

id
' p

ro
g

ra
m

.
F

an
P

id
_

o
p

t.d
o

t

in
N

o
t 

[1
1

]
In

ve
rt

e
r 

to
 u

in
t8

o
u

t

in
1

in
2

se
l

M
u

x2
 [

1
0

]
M

u
x2

o
u

t

u
i
n
t
8

C
o

n
st

a
n

t 
[3

]
c
o

n
st

a
n

t 
g

e
n

e
ra

to
r

(1
.0

)
o

u
t

kp ki kd m
in

m
a

x

m
e
a

su
re

se
tp

o
in

t

P
ID

 [
1

]
P

ID
 r

e
g

u
la

to
r

o
u

t

d
o
u
b
l
e

u
i
n
t
1
6

in
P

w
m

O
u

tp
u

t 
[1

2
]

P
W

M
 o

u
tp

u
t

o
n

 B
#

0
8

 
C

o
n

st
a

n
t 

[1
3

]
c
o

n
st

a
n

t 
g

e
n

e
ra

to
r

(5
0

)
o

u
t

u
i
n
t
1
6

P
u

ls
e
In

p
u

tC
o

u
n

te
r 

[7
]

p
u

ls
e
 c

o
u

n
te

r
o

n
 B

#
0

9
o

u
t

in
S

p
e
e
d

G
a

in
 [

9
]

C
u

st
o

m
 g

a
in

o
u

t
u
i
n
t
3
2

 
A

n
a

lo
g

In
p

u
t 

[8
]

a
n

a
lo

g
 i

n
p

u
t

o
n

 B
#

0
0

o
u

t

u
i
n
t
1
6

C
o

n
st

a
n

t 
[5

]
c
o

n
st

a
n

t 
g

e
n

e
ra

to
r

(2
5

5
.0

)
o

u
t

d
o
u
b
l
e

u
i
n
t
1
6

C
o

n
st

a
n

t 
[4

]
c
o

n
st

a
n

t 
g

e
n

e
ra

to
r

(1
.0

)
o

u
t

d
o
u
b
l
e

i
n
t
3
2

C
o

n
st

a
n

t 
[6

]
c
o

n
st

a
n

t 
g

e
n

e
ra

to
r

(4
0

9
5

.0
)

o
u

t

d
o
u
b
l
e

S
tm

3
2

st
k 

[0
]

S
T
M

3
2

-1
0

3
S

T
K

 b
o

a
rd

C
o

n
st

a
n

t 
[2

]
c
o

n
st

a
n

t 
g

e
n

e
ra

to
r

(0
.0

)
o

u
t

d
o
u
b
l
e

D
ig

it
a

lI
n

p
u

t 
[1

4
]

d
ig

it
a

l 
in

p
u

t
o

n
 C

#
0

0
o

u
t

b
o
o
l

Figure G.1 – Generated graph of the application G.1
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Generated code of the application G.1 :

1 // FanPid application

2 // Code generated automatically from the DSL program 'FanPID'.

3

4 //*// Section 00

5 #include "analoginput.h"

6 #include "pulseinput.h"

7 #include "digitalinput.h"

8 #include "demo/pid.h"

9 #include "pwmoutput.h"

10 //*// ----------

11

12 //*// Section 01

13 AnalogInput in_cmp08('B', 0, 8); // OutputPort[0] 'out' of Cmp[08] 'AnalogInput'

14 PulseInput in_cmp07('B', 9); // OutputPort[0] 'out' of Cmp[07] 'PulseInputCounter'

15 DigitalInput in_cmp14('C', 0); // OutputPort[0] 'out' of Cmp[14] 'DigitalInput'

16 pid_t pid_cmp01; // OutputPort[0] 'out' of Cmp[01] 'PID'

17 PwmOutput out_cmp12('B', 8); // InputPort[0] 'in' of Cmp[12] 'PwmOutput'

18 //*// ----------

19

20 //*// Section 02

21 uint16_t getlAnalogInputB0() {

22 return in_cmp08.read(); // Start an A/D conversion and wait for the result

23 }

24 //*// ----------

25

26 //*// Section 03

27 void initOutputs() {

28 out_cmp12.initialize();

29 }

30

31 void init() {

32 in_cmp08.initialize();

33 in_cmp07.initialize();

34 in_cmp14.initialize();

35 pid_init(&pid_cmp01, 1.0, 1.0, 0.0, 255.0, 4095.0);

36 }

37 //*// ----------

38

39 int main() {

40 initOutputs();

41 init();

42

43 //*// Section 04

44 //*// ----------

45

46 //*// Section 05

47 while(1) {

48 // 1) Read inputs

49 uint16_t in_B0 = getlAnalogInputB0();

50 uint32_t in_B9 = in_cmp07.get();

51 bool in_C0 = in_cmp14.get();

52

53 // 2) Loop logic
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54

55 // -- User input code of `SpeedGain`

56 int32_t out_cmp09 = 4096 - ((in_B9 - 110) * 50); // Speed gain

57 if (out_cmp09 <= 0)

58 out_cmp09 = 0;

59 // --

60

61 // -- User input code of `Not`

62 uint8_t out_cmp11 = (in_C0 == 0) ? 1 : 0;

63 // --

64

65 pid_cmp01.state.setpoint = in_B0;

66 uint16_t out_cmp01 = pid_step(&pid_cmp01, out_cmp09);

67 uint8_t sel_cmp10 = out_cmp11;

68 uint16_t out_cmp10;

69

70 if(sel_cmp10 == 0)

71 out_cmp10 = 50;

72 else

73 out_cmp10 = out_cmp01;

74

75 // 3) Update outputs

76 out_cmp12.setPeriod(out_cmp10);

77 }

78 //*// ----------

79

80 //*// Section 06

81 //*// ----------

82 }

83 // END of file 'FanPid.cpp'

Listing G.2 – Generated code of the application G.1
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