

Haute Ecole Spécialisée de Suisse occidentale Fachhochschule Westschweiz University of Applied Sciences Western Switzerland

Domaine Sciences de l'ingénieur Rte du Rawyl 47 CH- 1950 Sion 2 Tél. +41 27 606 85 11 Fax +41 27 606 85 75 info@hevs.ch

www.hevs.ch

Filière Systèmes industriels

Orientation Design and Materials

Diplôme 2007

Patrick Aeschlimann

Machine spéciale pour la découpe d'emballages en carton

Professeur

Alain Moreillon

Experts

Heinrich Lauber & Stefan Jeiziner

HES-SO Wallis

SI	TV	EE	IG	EST
Х	Х	Х	Х	

Données du travail de diplôme Daten der Diplomarbeit

FO.0.2.02.07.DB DD/18/05/2006

Etudiant / Student Patrick Aeschlimann Année scolaire / Schuljahr 2006/07 No TD / Nr. DA SI/2007/31 Proposé par / vorgeschlagen von Scintilla AG, St. Niklaus Lieu d'exécution / Ausführungsort HES-SO Wallis, DSI / Scintilla AG Experts / Experten Heinrich Lauber Stefan Jeiziner Titre / Titel: Sonderschneidmaschine für Verpackungskarton Description / Beschreibung: Etudier une machine permettant de couper par le centre les emballages en carton des lames de scies Scintilla La machine étudiée doit tenir compte des machines se trouvant en aval et en amont du mécanisme. Tous les mécanismes doivent tenir compte du temps de cycle et de la fiabilité que l'on peut exiger d'une machine de haute production.	Filière / Studiengang: Systèmes industriels			
Proposé par / vorgeschilagen von Scintilla AG, St. Nikiaus Titre / Titel: Sonderschneidmaschine für Verpackungskarton Description / Beschreibung: Etudier une machine permettant de couper par le centre les emballages en carton des lames de scies Scintilla La machine étudiée doit tenir compte des machines se trouvant en avail et en amont du mécanisme. Tous les mécanismes doivent tenir compte du temps de cycle et de la fiabilité que l'on peut exiger d'une machine de haute production. Remarque : suite à des modifications, le travail de diplôme a commencé deux semaines après la date du 3 09 2007 (attribution du thème). Objectifs / Ziele: — Le travail de diplôme consistera à fournir le dossier de fabrication complet de la machine. Délais / Termine Aitribution du thème / Ausgabe des Auftrags: 03.09.2007 Remisie du rapport / Abgabe des Schlussberichts: 23.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses corales / Mündliche Verfechtungen	Confidentiel / Vertraulich 🗌			
Scintilla AG, St. Niklaus HES-SO Wallis, DSI / Scintilla ĀĞ Experts / Experten Heinrich Lauber Stefan Jeiziner			No TD / Nr. DA SI/2007/31	
Sonderschneidmaschine für Verpackungskarton Description / Beschreibung: Etudier une machine permettant de couper par le centre les emballages en carton des lames de scies Scintilla La machine étudiée doit tenir compte des machines se trouvant en aval et en amont du mécanisme. Tous les mécanismes doivent tenir compte du temps de cycle et de la fiabilité que l'on peut exiger d'une machine de haute production. Remarque : suite à des modifications, le travail de diplôme a commencé deux semaines après la date du 3 09 2007 (attribution du thème). Objectifs / Ziele: — Le travail de diplôme consistera à fournir le dossier de fabrication complet de la machine. Signature ou visa / Unterschrift oder Visum Leiter Vertiefungsrichtung Design and materials — Attribution du thème / Ausgabe des Auftrags: 03.09.2007 Ongo 2007 Professeur/Dozent: Alain Moreillon Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen	Proposé par <i>I vorgeschlagen von</i> Scintilla AG, St. Niklaus		HES-SO Wallis, DSI / Scintilla ĀG Experts / Experten Heinrich Lauber	
Sonderschneidmaschine für Verpackungskarton Description / Beschreibung: Etudier une machine permettant de couper par le centre les emballages en carton des lames de scies Scintilla La machine étudiée doit tenir compte des machines se trouvant en aval et en amont du mécanisme. Tous les mécanismes doivent tenir compte du temps de cycle et de la fiabilité que l'on peut exiger d'une machine de haute production. Remarque : suite à des modifications, le travail de diplôme a commencé deux semaines après la date du 3 09 2007 (attribution du thème). Objectifs / Ziele: — Le travail de diplôme consistera à fournir le dossier de fabrication complet de la machine. Signature ou visa / Unterschrift oder Visum Leiter Vertiefungsrichtung Design and materials Attribution du thème / Ausgabe des Auftrags: 03.09.2007 Romarque: Attribution du thème / Ausgabe des Schlussberichts: 23.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen				
Etudier une machine permettant de couper par le centre les emballages en carton des lames de scies Scintilla La machine étudiée doit tenir compte des machines se trouvant en aval et en amont du mécanisme. Tous les mécanismes doivent tenir compte du temps de cycle et de la fiabilité que l'on peut exiger d'une machine de haute production. Remarque : suite à des modifications, le travail de diplôme a commencé deux semaines après la date du 3 09 2007 (attribution du thème). Objectifs / Ziele: — Le travail de diplôme consistera à fournir le dossier de fabrication complet de la machine. Signature ou visa / Unterschrift oder Visum Leiter Vertiefungsrichtung Design and materials Attribution du thème / Ausgabe des Auftrags: 03.09.2007 Remise du rapport / Abgabe des Schlussberichts: 23.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen		neidmaschine für Verpackungskarto	on	
La machine étudiée doit tenir compte des machines se trouvant en aval et en amont du mécanisme. Tous les mécanismes doivent tenir compte du temps de cycle et de la fiabilité que l'on peut exiger d'une machine de haute production. Remarque : suite à des modifications, le travail de diplôme a commencé deux semaines après la date du 3 09 2007 (attribution du thème). Objectifs / Ziele: — Le travail de diplôme consistera à fournir le dossier de fabrication complet de la machine. Signature ou visa / Unterschrift oder Visum Leiter Vertiefungsrichtung Design and materials Attribution du thème / Ausgabe des Auftrags: 03.09.2007 Remise du rapport / Abgabe des Schlussberichts: 23.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen	Description / Beschreibung:			
tenir compte du temps de cycle et de la fiabilité que l'on peut exiger d'une machine de haute production. Remarque : suite à des modifications, le travail de diplôme a commencé deux semaines après la date du 3 09 2007 (attribution du thème). Objectifs / Ziele: — Le travail de diplôme consistera à fournir le dossier de fabrication complet de la machine. Signature ou visa / Unterschrift oder Visum Leiter Vertiefungsrichtung Design and materials Attribution du thème / Ausgabe des Auftrags: 03.09.2007 Remise du rapport / Abgabe des Schlussberichts: 23.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen	Etudier une machine permettant de couper par le c	entre les emballages en carton des lan	nes de scies Scintilla	
Objectifs / Ziele: — Le travail de diplôme consistera à fournir le dossier de fabrication complet de la machine. Signature ou visa / Unterschrift oder Visum Leiter Vertiefungsrichtung Design and materials Professeur/Dozent: Alain Moreillon Professeur/Dozent: Alain Moreillon Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen				
Le travail de diplôme consistera à fournir le dossier de fabrication complet de la machine. Délais / Termine	Remarque : suite à des modifications, le travail de diplôme a commencé deux semaines après la date du 3 09 2007 (attribution du			
Le travail de diplôme consistera à fournir le dossier de fabrication complet de la machine. Délais / Termine				
Le travail de diplôme consistera à fournir le dossier de fabrication complet de la machine. Délais / Termine				
Le travail de diplôme consistera à fournir le dossier de fabrication complet de la machine. Délais / Termine	Objectifs / Ziele:			
Signature ou visa / Unterschrift oder Visum Leiter Vertiefungsrichtung Design and materials Professeur/Dozent: Alain Moreillon Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen		ssier de fabrication complet de la mach	ine	
Leiter Vertiefungsrichtung Design and materials Attribution du thème / Ausgabe des Auftrags: 03.09.2007 Remise du rapport / Abgabe des Schlussberichts: 23.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen				
Leiter Vertiefungsrichtung Design and materials Attribution du thème / Ausgabe des Auftrags: 03.09.2007 Remise du rapport / Abgabe des Schlussberichts: 23.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen				
Leiter Vertiefungsrichtung Design and materials Attribution du thème / Ausgabe des Auftrags: 03.09.2007 Remise du rapport / Abgabe des Schlussberichts: 23.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen				
Leiter Vertiefungsrichtung Design and materials Attribution du thème / Ausgabe des Auftrags: 03.09.2007 Remise du rapport / Abgabe des Schlussberichts: 23.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen				
Leiter Vertiefungsrichtung Design and materials Attribution du thème / Ausgabe des Auftrags: 03.09.2007 Remise du rapport / Abgabe des Schlussberichts: 23.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen				
Leiter Vertiefungsrichtung Design and materials Attribution du thème / Ausgabe des Auftrags: 03.09.2007 Remise du rapport / Abgabe des Schlussberichts: 23.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen				
Leiter Vertiefungsrichtung Design and materials Attribution du thème / Ausgabe des Auftrags: 03.09.2007 Remise du rapport / Abgabe des Schlussberichts: 23.11.2007 Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen				
Professeur/Dozent: Alain Moreillon Professeur/Dozent: Alain Moreillon Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen	Signature ou visa / Unterschrift oder Visum	Délais / Termine		
Professeur/Dozent: Alain Moreillon Alain Moreillon Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen	Leiter Vertiefungsrichtung Design and materials		/ Ausgabe des Auftrags:	
Exposition publique / Ausstellung Diplomarbeiten: 30.11.2007 Défenses orales / Mündliche Verfechtungen			Abgabe des Schlussberichts:	
	Alain Morellion		Ausstellung Diplomarbeiten:	
	Etudiant/Student: Reschlingun		indliche Verfechtungen	

Aeschlimann Patrick 2007

Machine spéciale de pour la découpe d'emballages en carton

Objectif Doubler la cadence d'une machine d'emballages de lames de scie sauteuse.
Résultats
Dossier de construction de la machine de découpe d'emballages en carton
Mots-clés
Découpe, Carton, Emballage en carton
Ziel
Verdoppeln von der Produktionskadenz von einer Einpackungsmaschine, indem man ein Kartonblisterschneidmaschie baut.
Resultate
Die Fabrikationspläne von der Kartonblisterschneidmaschie.
Schlüsselwörter
Schneidenm, Karton, Kartonblister.

Table des matières

1	But	2
2	Introduction	
3	Cahier des charges	
4	Explications	
5	Recherches effectuées.	
5	5.1 Essais de découpes	
	5.2 Renseignements obtenus auprès de Durham Duplex	3
	5.3 Renseignements obtenus auprès de Bobst	4
6	Différentes solutions et choix effectués	
O	6.1 Système de palettisations	
	6.2 Définition du nombre de stations	
	6.3 Station 1 : contrôle de la zone de découpe	
	6.4 Station 2 : centrage et découpe	
	6.4.1 Centrage	9
	6.4.2 Découpe	
	6.5 Station 3 : éjection des emballages	
	6.6 Station 4 : éjection des pièces rebuts	14
	6.7 Bâti	
_	6.8 Cage	
7	Dimensionnement des différentes stations	
	7.1 Plateau tournant et table d'indexage	
	7.2 Station 1	
	7.2.1 Capteurs	
	7.2.2 Vérin	
	7.3 Station 2	
	7.3.1 Châssis	
	7.3.2 Vérins de découpe	
	7.3.3 Goupilles de fixation	
	7.3.4 Guidages linéaire du poinçon et de la matrice	∠1
	7.3.6 Amortisseur	21
	7.3.7 Guidage linéaire	
	7.4 Station 3	22
	7.4.1 Vérins	
	7.5 Station 4	
	7.5.1 Vérin	
	7.6 Bâti	
	7.7 Capteur de sécurité	24
	7.8 Machine complète	24
8	Dessins de constructions	25
9	Estimations des coûts de fabrication	
	9.1 Machine découpe	
	9.2 Station de d'empaquetage	26
	9.3 Machine de cerclage	26
	9.4 Coûts totaux des modifications de la KB 220	26
10	Amélioration	26
11	Conclusion	
12	Remerciement	

1 But

Doubler la capacité de production d'une chaîne d'emballage.

2 Introduction

« Scintilla AG » est une entreprise faisant partie du groupe « BOSCH » qui est implanté à St.-Niklaus et à Soleure. La société « Scintilla AG » emploie près de 1'300 collaborateurs. C'est le leader mondial de la production de lames de scie haut de gamme, avec environ 900'000 lames produites par jour. Pour mon travail de diplôme, il s'agit de créer une machine qui permet de doubler la capacité d'une machine d'emballage pour « Scintilla AG ». Je vais le faire pour l'entreprise de St-Niklaus.

3 Cahier des charges

- Créer une machine qui permet de doubler la capacité d'emballages de la KB-220
- Cette machine doit pouvoir s'intégrer à la chaîne de production actuelle
- La cadence de la machine actuelle est de 40 emballages par minute
- La cadence à la sortie de la machine à concevoir sera de 80 emballages par minute
- Les emballages sont posés par un bras ventouse à une hauteur de 924mm
- Les emballages sont à remettre sur un tapis roulant avec une cadence régulière
- Dimensions des emballages devant être traités (annexe 1 à 4) :

55x170	65%
45x165	22%
55x200	8%
55x148	2%
67x187	2%
55x220	0% (jusque à présent)

⁻ Dans le travail de diplôme, je dois créer un dossier de construction de la partie mécanique de la machine.

4 Explications

La KB 220 fonctionne de la manière suivante. Un film plastique avec des logements dans lesquels sont posées les lames de scie est soudé contre le carton. Ensuite, les emballages sont empilés par paquet de 10 pour être cerclé avec une bande en plastique.

Il est possible de doubler la cadence d'emballage, pour les emballages de deux et trois lames de scie car la machine actuelle est prévue pour les paquets allant jusqu'à 8 ou 10 lames. L'idée est de créer des doubles paquets pour les couper sur la machine. Les cartons non coupés ont deux entailles de chaque coté, comme on peut le voir sur l'annexe 5. Ces entailles permettent de couper sans devoir créer des arrondis. Par contre, cela nous oblige à couper une largeur de 4mm.

5 Recherches effectuées

Le poinçonnage a été choisi comme méthode de découpe. Pour commencer, je dois définir quelle force est nécessaire pour découper le carton. J'ai fait quelques recherches personnelles en essayant de découper du carton avec des lames trouvées dans le commerce, et également pris contact avec deux entreprises qui étaient susceptibles de me renseigner.

5.1 Essais de découpes

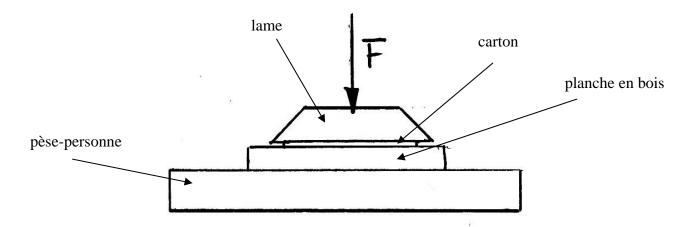


Figure 1 : essai de découpe

Pour faire cette expérience, j'ai utilisé un pèse-personne, une lame (type lame droite) et un morceau de bois. Comme on peut le voir sur la figure 1, le carton est posé sur le pèse-personne protégé par la planche en bois, ensuite une force est appliquée sur la lame jusqu'à ce que le carton se coupe. Pour une longueur de coupe de 50mm, il a fallu environ 40kg, soit 400N.

Ces valeurs sont à utiliser avec précaution, car il s'agit d'une grossière approximation.

5.2 Renseignements obtenus auprès de Durham Duplex

Une demande par courrier électronique a été envoyé auprès de la société « Durham Duplex ». C'est une entreprise anglaise qui fabrique toutes sortes de lames industrielles.

Ils pensent que le poinçonnage n'est pas la bonne solution. Ils proposent d'utiliser deux lames circulaires (annexe 6) dos à dos pour découper le carton.

5.3 Renseignements obtenus auprès de Bobst

J'ai fait une demande par courrier électronique auprès de l'entreprise « Bobst ». C'est une entreprise leader mondiale dans le domaine de l'emballage en carton.

Ils m'ont envoyé un document PDF qu'ils donnent à leurs clients. Ce document traite du découpage de carton, avec une de leur presse.

Ils m'ont aussi communiqué ces différentes informations : la force de découpe linéaire moyenne pour du carton (avec des outils neufs) est d'environ 5 t/m, l'angle du tranchant d'un couteau est de 52°, la dureté du corps 35 HRC et la dureté du tranchant 59 HRC.

6 Différentes solutions et choix effectués

6.1 Système de palettisations

La meilleure méthode pour déplacer les cartons, les centrer et les couper, est d'utiliser un système avec des palettes.

Dans mon cas, les cartons sont maintenus à plat par des aimants. Pendant les accélérations de la palette, des goupilles servent à empêcher le carton de se glisser.

Pour déplacer les palettes, il y a deux solutions. La première est de déplacer les palettes linéairement grâce une chaîne ou une courroie (Figure 2).

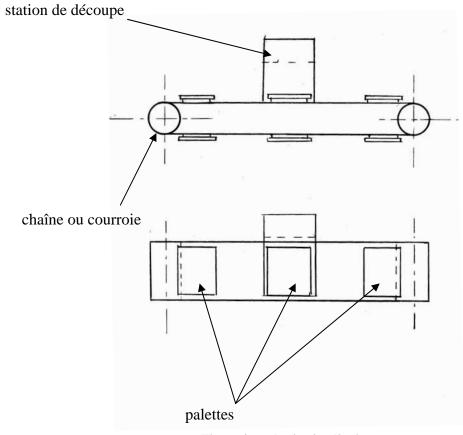


Figure 2: palettisation linaire

Comme on le voit sur la figure 3, la seconde solution est d'utiliser une table d'indexage et de faire un déplacement circulaire.

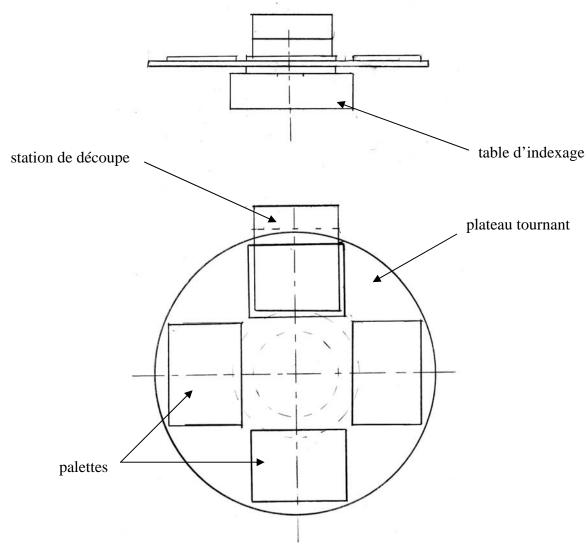


Figure 3: palettisation circulaire

La seconde solution a été choisie car elle permet d'utiliser une table d'indexage que l'on trouve sur le marché et l'entreprise « Scintilla » utilise souvent ce genre de système de palettisation.

6.2 Définition du nombre de stations

Il faut définir le nombre de stations que nous avons besoin autour de la table et leur fonction.

Les fonctions nécessaires : - réception des emballages

- contrôle de la zone de découpe

- centrage

- découpe
- éjection des pièces coupées
- éjection des pièces rebuts

Il y a donc 6 fonctions à réaliser.

Sur la station que je vais appeler station 1, on va réceptionner les emballages posés par le bras ventouse et on peut, sur la même station, procéder au contrôle de la zone de découpe depuis dessous.

Sur la station suivante, on va devoir centrer et couper les cartons.

Sur la troisième station, on va éjecter les emballages coupés contre un tapis roulant magnétique.

Sur la dernière station, on va éjecter les pièces qui ont présenté un défaut lors du contrôle de la station 1.

6.3 Station 1 : contrôle de la zone de découpe

C'est la station ou le bras ventouse de la machine précédente pose les emballages. C'est aussi sur cette station que l'on contrôle si la zone de découpe ne présente pas de lames de scie mal collées qui pourraient abîmer les couteaux. Il y a plusieurs solutions.

La première est d'utiliser une barrière lumineuse depuis le flanc du carton et de vérifier que l'épaisseur du carton sur la zone de découpe ne dépasse pas une certaine grandeur (voir Figure 4).

Inconvénients: - il est nécessaire de traiter l'image obtenue par la caméra

- il est nécessaire de créer une zone sans lumière autour de la station.

Avantage: - il n'y a aucune pièce mobile

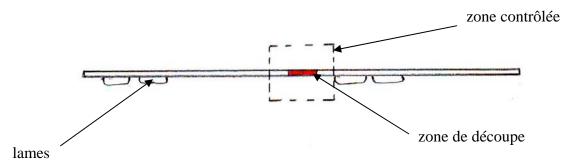
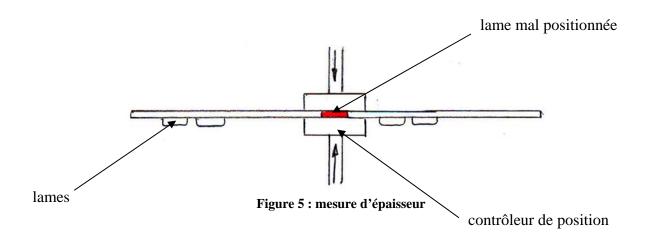


Figure 4 : barrière lumineuse


La 2^{ème} solution est d'utiliser un système de mesure mécanique comme sur la figure 5. C'està-dire, venir s'appuyer dessous et dessus avec deux surfaces et mesurer l'épaisseur. La valeur ne doit alors pas dépasser l'épaisseur du carton et du filme plastique.

Inconvénient : - il faut avoir accès depuis le haut et le bas pour cette méthode, donc

une station supplémentaire serait nécessaire

Avantage : - le système est relativement simple à mettre en œuvre, deux vérins et

deux capteurs de position.

La troisième solution est d'utiliser une rangée de capteurs inductifs et de leur faire balayer la zone de découpe (Figure 6). Le problème est qu'il faudrait créer un déplacement vertical pour venir placer les capteurs contre le carton et un déplacement horizontal pour balayer la zone.

Inconvénients : - ce système nécessite un déplacement vertical et un déplacement

horizontal.

- le temps de contrôle risque d'être plus long que celui à disposition

Avantage: - il faut seulement 4 à 5 capteurs inductifs.

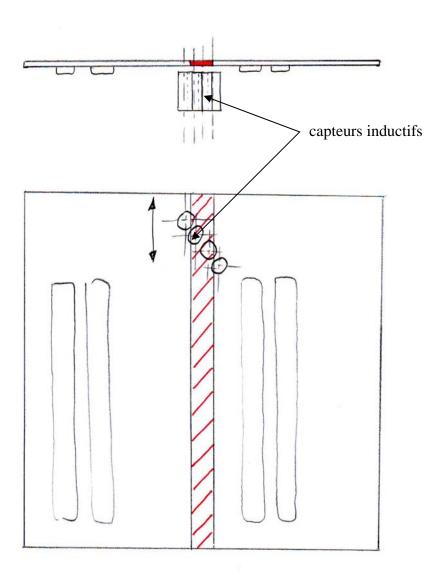


Figure 6 : capteur de balayage

La dernière solution est de mettre des capteurs inductifs sur toute la surface à contrôler et de les monter avec un vérin contre le carton (Figure 7).

Inconvénient : - beaucoup de capteurs inductifs sont nécessaires.

Avantage : - contrairement à la solution précédente, il n'y a qu'un déplacement

vertical.

- temps de contrôle rapide.

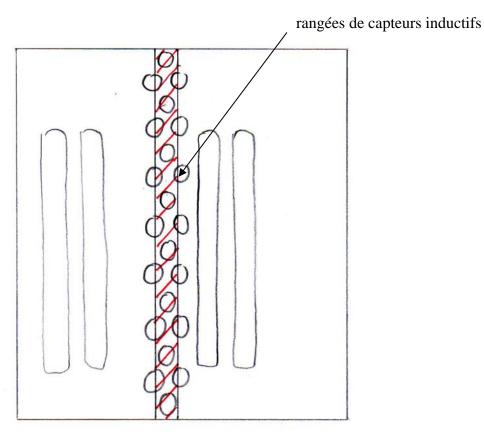


Figure 7 : rangés de capteur

C'est cette dernière solution qui a été choisie.

6.4 Station 2 : centrage et découpe

6.4.1 Centrage

Le centrage et la découpe se font sur la même station. Cela évite tout risque de déplacement entre les deux opérations.

Pour centrer les cartons, on va profiter des entailles qui sont réalisées pour arrondir les coins (annexe 5). Les entailles sont toujours placées au centre du carton à l'endroit où la coupe doit s'effectuer. Les utiliser évite de devoir faire un réglage dans le sens de la largeur du carton lorsqu'on change de type.

Une des solutions est d'utiliser des tiges actionnées par des vérins pneumatiques, comme on peut le voir sur la figure 8. Ce qui pose problème est la longue course à faire en un temps relativement court. Les calculs que j'ai pu faire sur les sites des fournisseurs de vérins pneumatiques montrent que cette solution n'est pas réalisable.

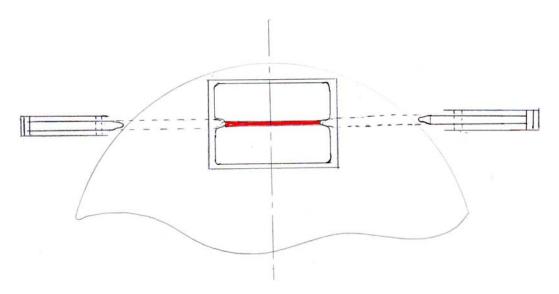


Figure 8 : centrage à tige

La possibilité d'un centrage qui tourne autour d'un axe vertical a aussi été étudiée. Comme en peut le voir sur la figure 9, il faut une rotation de moins de 90° pour sortir de la zone de coupe et de la zone délimitée par la rotation du plateau. Le problème est qu'il est difficile de créer un dispositif de réglage pour les différentes dimensions d'emballage.

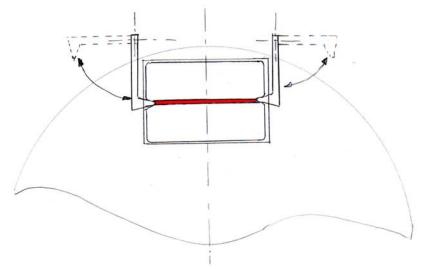


Figure 9 : centrage circulaire latéral

Finalement, une solution de centrage qui tourne autour d'un axe horizontal a été choisie. Sur la figure 10, on voit ce dispositif qui fonctionne comme une pince. Ici aussi, le déplacement nécessaire pour le dégagement n'est pas très grand,

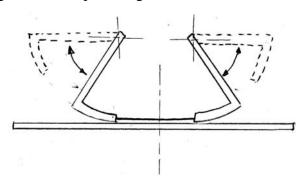


Figure 10 : centrage avec un système de pince

On a donc pensé à utiliser 2 vérins comme sur la figure 11.

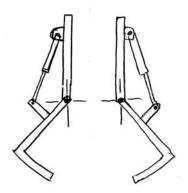


Figure 11 : centrage avec deux vérins

Afin de simplifier le dispositif de centrage, le système est modifié pour n'avoir plus qu'un seul vérin, ce qui permet un réglage plus simple. Pour ne pas entrer en collision trop violemment avec les emballages, on utilise un amortisseur qui sert aussi de butée de réglage. On voit, sur la figure 12, à quoi ressemble le dispositif de centrage que je vais construire.

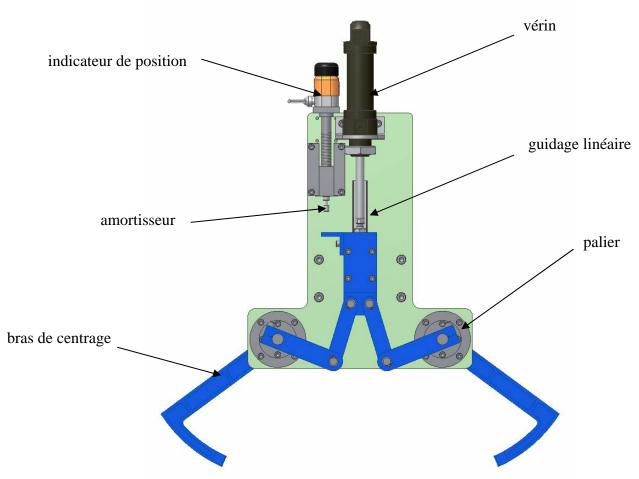


Figure 12 : système de centrage

Pour le réglage de la butée, on utilise un indicateur de position qui est fabriqué par « Fiama » (annexe 7). Ces indicateurs de position permettent d'utiliser n'importe quel type de vis de réglage. Il faut juste préciser, lors de la commande, pour quel pas de vis l'indicateur doit être dimensionné. On va aussi utiliser un dispositif de blocage angulaire de la vis, qui est fabriqué dans la même entreprise.

6.4.2 Découpe

La technique du poinçonnage pour séparer les cartons. Pour avoir un temps d'indexage aussi court que possible, il faut que le plateau ait un moment d'inertie aussi petit que possible ce qui induit de minimiser les efforts sur le plateau tournant. A cette fin, on utilise un système de matrice mobile, la matrice est fixée sur un guidage linéaire et actionnée par un vérin. Sur la figure 13, au moment de la coupe, la matrice vient s'appuyer contre le carton en passant à travers le plateau et la palette.

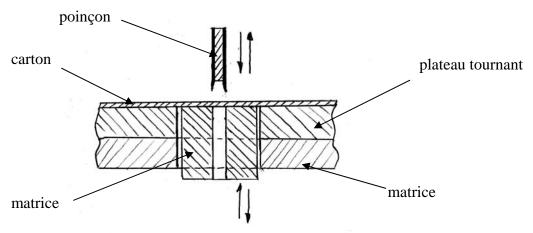


Figure 13 : mise en place de la matrice contre le carton

L'ajustement entre le poinçon et la matrice est très serré, c'est pourquoi pour éviter de devoir faire un montage avec des pièces trop précises, je crée. Comme on le voit sur la figure 14, le poinçon est positionné par un centrage au moment de la coupe.

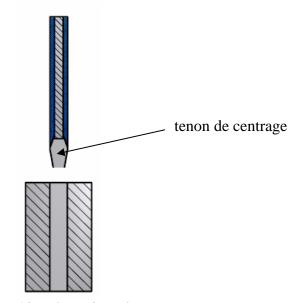


Figure 14: poinçon / matrice

6.5 Station 3 : éjection des emballages

Cette station doit permettre d'éjecter les cartons, pour les mettre sur un tapis roulant. Je pense faire passer un tapis roulant magnétique au dessus de la palette et appuyer les emballages contre ce tapis avec des éjecteurs actionnés par des vérins. Les éjecteurs passent au travers de rainures réalisées dans le plateau tournant. Pour que la cadence soit régulière, il faut utiliser deux vérins, un pour chaque emballage. Sur la figure 15, on voit le schéma de cette station.

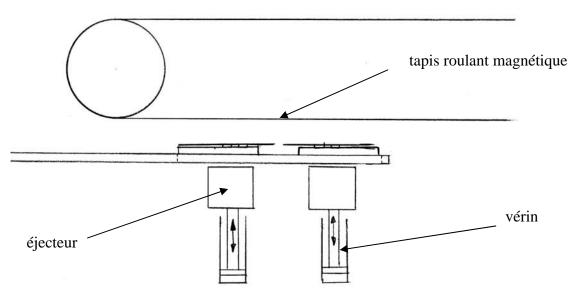


Figure 15 : système d'éjection des pièce coupées

6.6 Station 4 : éjection des pièces rebuts

Sur la dernière station, on doit éjecter les pièces qui n'ont pas pu être coupées à cause d'un défaut détecté dans la zone de coupe par les capteurs de la station 1. La figure 16 est la solution que j'ai retenue. J'utilise deux bras qui tournent autour d'un axe. Ces bras passent au travers des rainures déjà créées pour l'éjection à la station 3. Les « éjecteurs circulaires » sont actionnés par un vérin pneumatique.

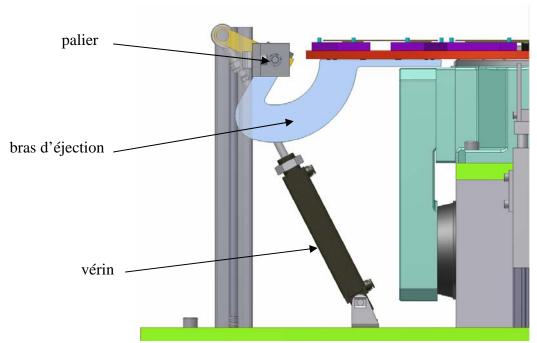


Figure 16 : système d'éjection des pièces rebuts

6.7 Bâti

Pour des raisons de simplicité, on utilise un bâti sous forme de table. Ce bâti sera simplement formé d'une plaque et de 4 pieds. L'avantage de ce genre de construction est qu'elle ne nécessite pas de soudure. Pour pouvoir fixer l'armoire électrique et d'autres composants facilement, on utilise des profilés de type BOSCH pour fabriquer les pieds de la table.

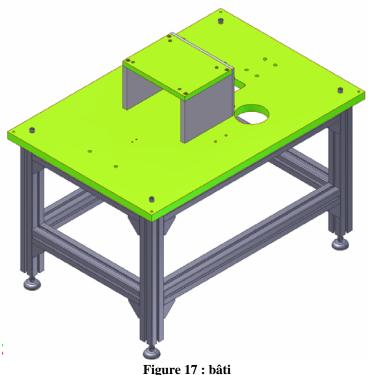


Figure 17 : bât 15/60

6.8 Cage

Pour garantir la sécurité autour de la machine, j'ajoute une cage complète (Figure 18), avec des portes munies de capteurs pour que la machine s'arrête dès que quelqu'un les ouvrent. L'entreprise Bosch fabrique des éléments standards pour ce genre de protection.

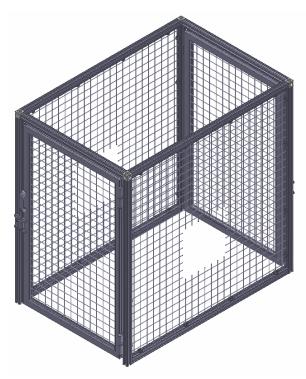


Figure 18: cage

7 Dimensionnement des différentes stations

Il reste à dimensionner les différents éléments de la machine et à définir les éléments standards.

7.1 Plateau tournant et table d'indexage

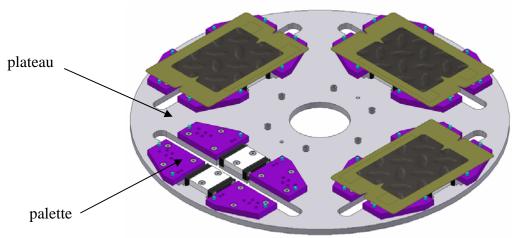


Figure 19: plateau

Sur la figure 19, on voit le plateau. On voit les rainures qui permettent à la matrice de monter contre le carton. Comme il n'y a pas d'autre effort que le poids propre et les accélérations sur le plateau, on peut le fabriquer dans une plaque en aluminium peu épaisse. Cette plaque a un diamètre de 580mm et une épaisseur de 10mm, cela permet de visser les palettes assez aisément. Les palettes sont fabriquées en nylon ou en polyoxyméthilène, ou dans un autre matériau léger et bon marché.

Le résultat du calcul (annexe 8) du moment d'inertie du disque cité ci-dessus est de 0.3 kgm². Le programme de DAO Autodesk Inventor calcule aussi cette valeur mais cette fois pour le plateau complet (palettes + aimants + plateau), et donne le résultat de 0.37 kgm².

Cela permet d'utiliser la table d'indexage TC-220-T produite par l'entreprise « Weiss » (annexe 9). Elle permet d'avoir un temps d'indexage de 0.32 seconde. Comme la cadence est de 40 emballages par minute, un toutes les 1.5 seconde, il reste un temps de travail de 1.18 seconde.

7.2 Station 1

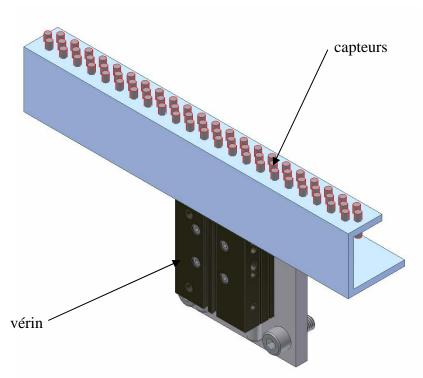


Figure 20: station 1

7.2.1 Capteurs

Le problème avec les capteurs inductifs est que son diamètre doit être complètement recouvert par une pièce métallique pour que celle-ci soit détectée. Pour cette raison, il faut utiliser un diamètre de capteur aussi petit que possible. J'ai choisi un petit capteur de 4 mm de diamètre et de 22 mm de long, c'est le IFRM 04N15B1 fabriqué par l'entreprise « Baumer » (annexe 10). Sur la figure 20, on peut voir la disposition des capteurs. Il y en a 67 au total. Cette disposition permet d'optimiser les chances pour il n'y ait aucune lame dans la zone de découpe.

7.2.2 Vérin

La fonction du vérin est de monter et descendre les capteurs. On utilise un vérin qui sert aussi de guidage linéaire. La série de vérin à guidage GPC de l'entreprise BOSCH (annexe 11) correspond à ce que je cherche. La dimension du plus petit piston disponible est 10 mm. Ce vérin dispose d'une force de 45N sous 6 bars de pression.

Dans notre cas la force nécessaire est l'addition du poids à monter et de la force pour accélérer le système. Ce vérin permet d'avoir une vitesse maximale de 0,5 m/s et une accélération de 124 m/s² ce qui est suffisant pout cette fonction (annexe 12).

7.3 Station 2

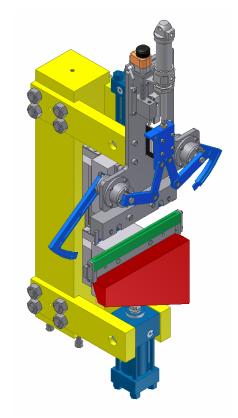


Figure 21

7.3.1 Châssis

Le châssis (pièces jaunes de la figure 21) doit pouvoir reprendre tous les efforts de la découpe, donc dans notre cas 20kN. Au début, il a été étudier de concevoir ce châssis avec des tubes carrés en acier, mais le problème est de fixer les éléments sur les parois minces du tube. Finalement, le châssis va être conçu en barres d'accier. J'ai fait des calculs par éléments finis pour connaître la valeur de l'éloignement des deux extrémités et de la contrainte maximale. Sur la figure 22, on peut voir que la contrainte équivalente maximale est 120 MPa et qu'elle se situe au niveau de la jonction entre les poutres horizontales et la poutre verticale. La valeur de l'augmentation de l'écartement entre les deux paliers est 0.62 mm.

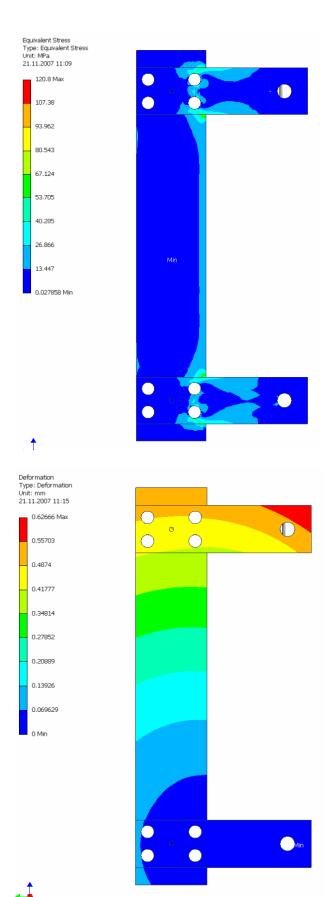


Figure 22 : contrainte équivalente et déformation

7.3.2 Vérins de découpe

La pression hydraulique à disposition est de 100 bars Pour avoir une force de découpe de 20kN il faut donc un piston de diamètre 50mm. Comme le châssis s'écarte de 0.6mm, il faut créer une articulation afin d'éviter de mettre les tiges des vérins sous contrainte. Pour cela, j'ai choisi des vérins ayant un tourillon en tête. L'entreprise Bosch vend des vérins type CDT3MT1, qui correspondent à ce que l'on recherche. La longueur de course nécessaire du vérin de la matrice est 27 mm et pour le vérin du poinçon 22 mm.

7.3.3 Goupilles de fixation

Le support de matrice, le support du poinçon et les deux articulations sont fixés avec des goupilles. Dans l'annexe 13, on trouve le calcul de dimensionnement des goupilles. La force de cisaillement est la même pour toutes les pièces, donc je peux utiliser le même type de goupille. Dans notre cas, on va utiliser des goupilles de diamètre 12 mm.

7.3.4 Guidages linéaire du poinçon et de la matrice

Pour reprendre les efforts de rotation horizontale, il faut monter le poinçon et la matrice sur un guidage linéaire. On le dimensionne de façon à ce qu'il résiste au couple engendré si un objet bloque la lame en une de ses extrémités. Les calculs (annexe 14) montrent qu'il faut pouvoir reprendre un moment de 2500 Nm. On peut donc utiliser des guidages linéaires à rouleaux STAR de 45 mm de large (annexe 15). Cela donne un facteur de sécurité de 1.14.

7.3.5 Vérin de centrage

Le vérin actionne les deux bras simultanément. Une course de 80 mm est nécessaire pour réaliser cette fonction. Le résultat du calcul en annexe 16 donne une force de 360 N. Pour avoir cette force sous 6 bars de pression il faut un piston de diamètre 32 mm. Un vérin de la série 132 fabriqué par l'entreprise Bosch (annexe 17) convient.

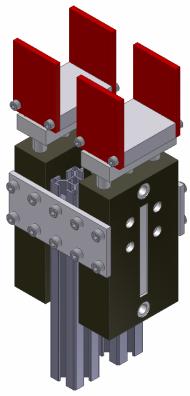
7.3.6 Amortisseur

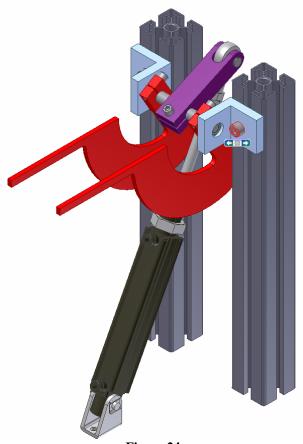
Pour dimensionné l'amortisseur, il faut trouver la masse m_e et la vitesse d'impact. Dans notre cas la vitesse d'impact va être environ 0.6 m/s. Les calculs (annexe 18) nous montrent que l'on peut utiliser l'amortisseur MC 75 M-3 (annexe 19).

7.3.7 Guidage linéaire

Ce guidage linéaire doit supporter le couple provoqué par l'amortissement. Un couple à 29 Nm a été calculé(annexe 20). On peut donc utiliser un guidage à bille de la série e-line avec un rail de 20 mm (annexe 21).

7.4 Station 3




Figure 23: station 3

7.4.1 Vérins

Pour éjecter les emballages, le choix d'utiliser un vérin avec un guidage linéaire a été fait. Comme le tapis roulant magnétique va passer environ 25 mm au-dessus des emballages, il faut donc une course de 50 mm pour le vérin. La force nécessaire dépend de la force magnétique des aimants qui elle-même dépend du matériau des lames, de l'épaisseur des lames et du nombre de lames. Il faut environ 20 N pour décoller les emballages mais comme cela dépend de tous les paramètres cités avant, on va utiliser un facteur de sécurité de 10. Le vérin de la série DGC de la marque Bosch correspond à ce qu'on a besoin. Pour avoir une force de 200 N il faut un piston avec un diamètre de 25 mm (annexe 22).

7.5 Station 4

Figure 24

7.5.1 Vérin

La force nécessaire pour décoller les emballages est moins grande que pour la station 3, car on ne les décolle pas à plat. Ici il faut environ 10 N pour décoller l'emballage. Pour les même raisons que pour la station 3, on prend un coefficient de sécurité de 10. Le calcul (annexe 23) montre qu'il faut une force de vérins de 430 N. La course nécessaire est de 100 mm. On a choisi un vérin de la série OCT fabriqué par l'entreprise BOSCH avec un piston de diamètre 25 mm pour actionner le bras d'éjection (annexe 24).

7.6 Bâti

Le bâti va être fait avec une plaque en aluminium d'épaisseur 30 mm. Cela permet d'avoir des bonnes profondeurs de vissage et une bonne rigidité. Les pieds sont des profilés Bosch de 60mm.

7.7 Capteur de sécurité

Pour que la machine fonctionne correctement, il faut pouvoir contrôler la position des différents éléments mobiles. Il ne faut pas que la table d'indexage pivote s'il y a encore des éléments comme la matrice ou les éjecteurs dans le plateau. Pour garantir cela, on va utiliser des capteurs de fin de course sur tous les vérins. Cela permettra au programmeur de mettre les conditions dans lesquels la table a le droit de pivoter.

7.8 Machine complète

Tous les éléments de la machine sont dimensionnés. Sur la figure 25 on voit à quoi ressemble la conception définitive.

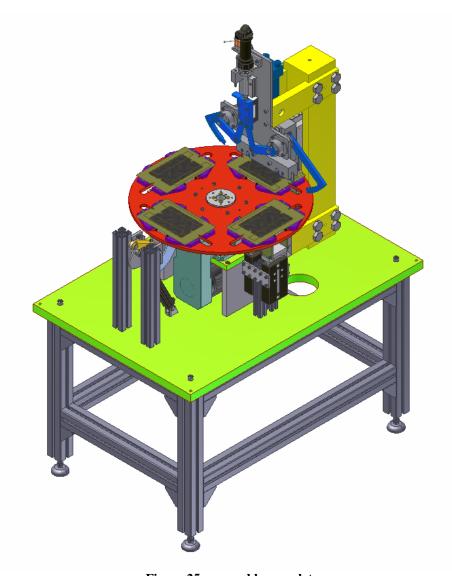


Figure 25 : ensemble complet

8 Dessins de constructions

Les dessins se trouvant en annexe 25 ont été réalisé sur Autodesk Invento 2008.

9 Estimations des coûts de fabrication

J'ai fait une estimation des coûts de fabrication et de l'installation de la machine de découpe en collaboration avec Monsieur Heinrich Lauber de l'entreprise « Scintilla ». Les prix sont affiché en francs suisse.

9.1 Machine découpe

Bâti	Matériels : Travail :	4'000 2'100
Table d'indexage Carte de commande	Weiss TC 220:	14'000 1'000
Plateau tournant et palettes	Matériels : Travail :	3'000 2'800
Station 1 (réception et contrôle)	Matériels : Travail :	2'000 2'800
Station 2 (centrage et découpe)	Matériels : Travail :	15'000 7'000
Station 3 (acheminement)	Matériels : Travail :	6'000 3'500
Station 4 (rebuts)	Matériels : Travail :	2'500 2'100
Commande et cablage	Matériels : Travail :	3'000 7'700
Sécurité (cage)	Matériels : Travail :	1'500 2'100
Montage	Matériels :	4'200
Mise en service	Travail:	4'200
Imprévu		4'000

94'500

9.2 Station de d'empaquetage

Modification de la machine existante 45'000

45'000

9.3 Machine de cerclage

Adaptation de la machine de cerclage 5'000

5'000

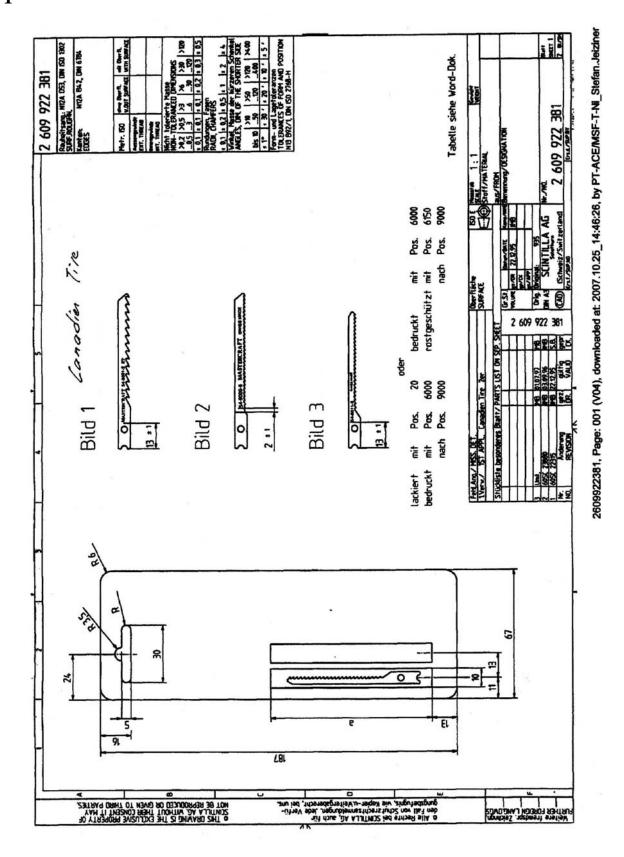
9.4 Coûts totaux des modifications de la KB 220

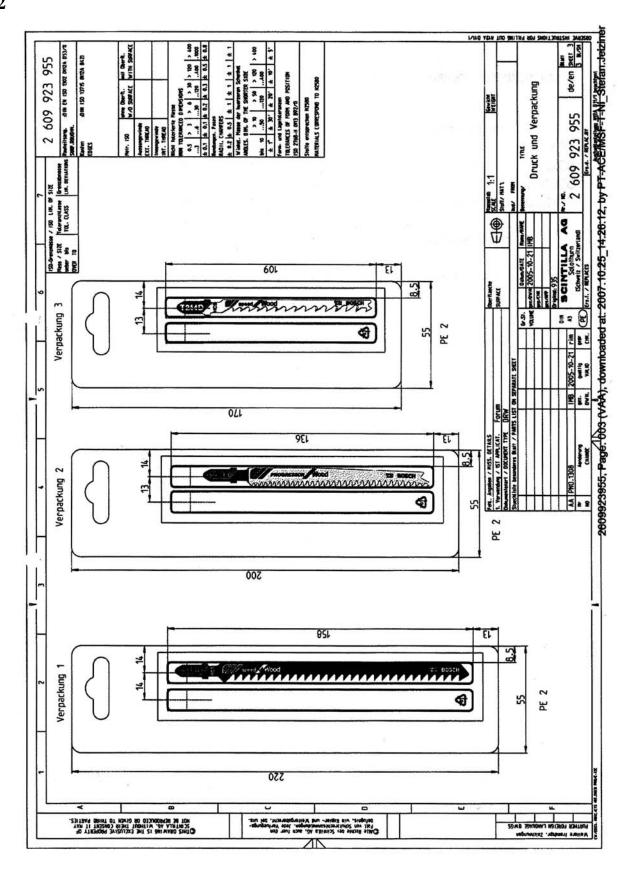
144'500

10 Amélioration

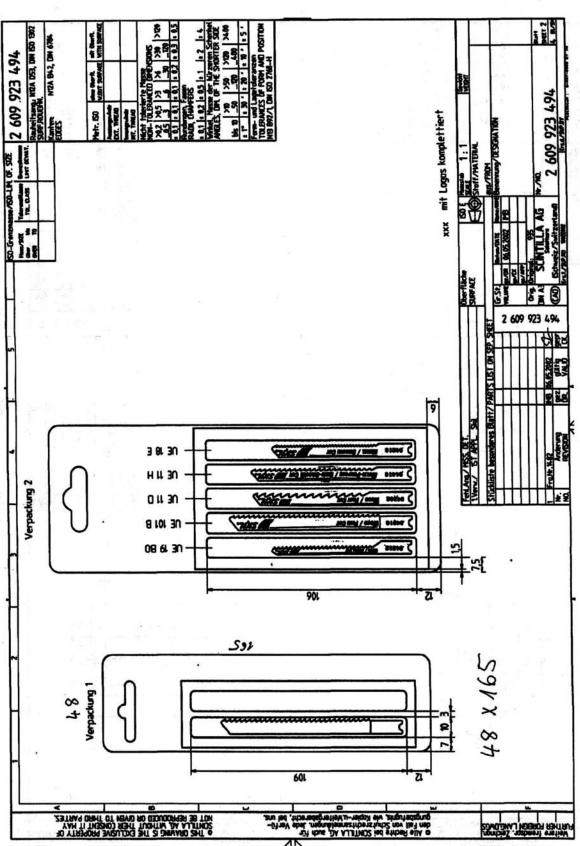
Globalement, je pense que la machine de découpe d'emballages en carton, ne présente pas de défaut majeur. Ce qui pourrait être modifié et optimisé serait la première station, car le grand nombre de capteurs nécessaires pourrait poser des problèmes de fiabilité.

11 Conclusion

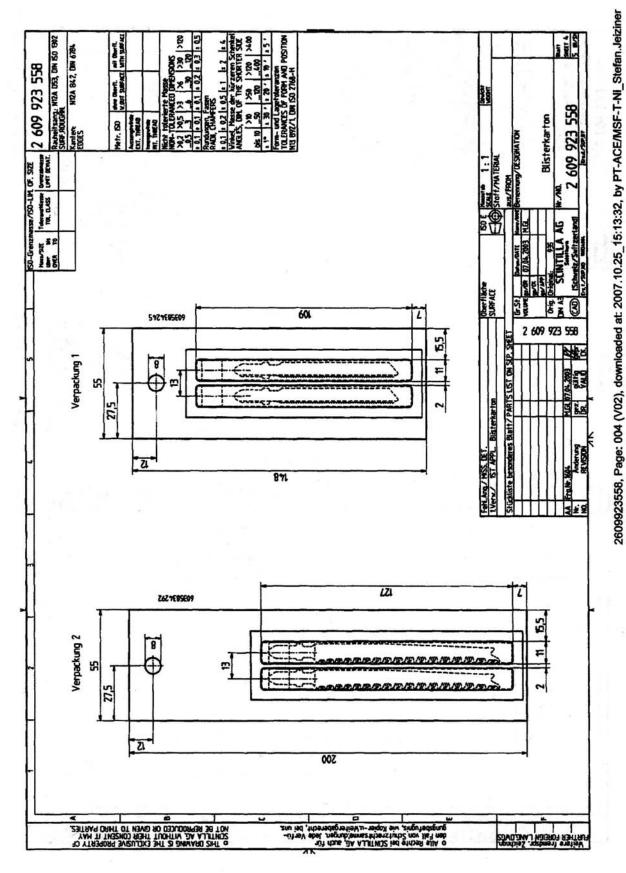

La machine conçue correspond entièrement au cahier des charges. La construction de cette machine est faite de nombreux éléments standards ce qui diminue considérablement les heures d'usinage.


12 Remerciement

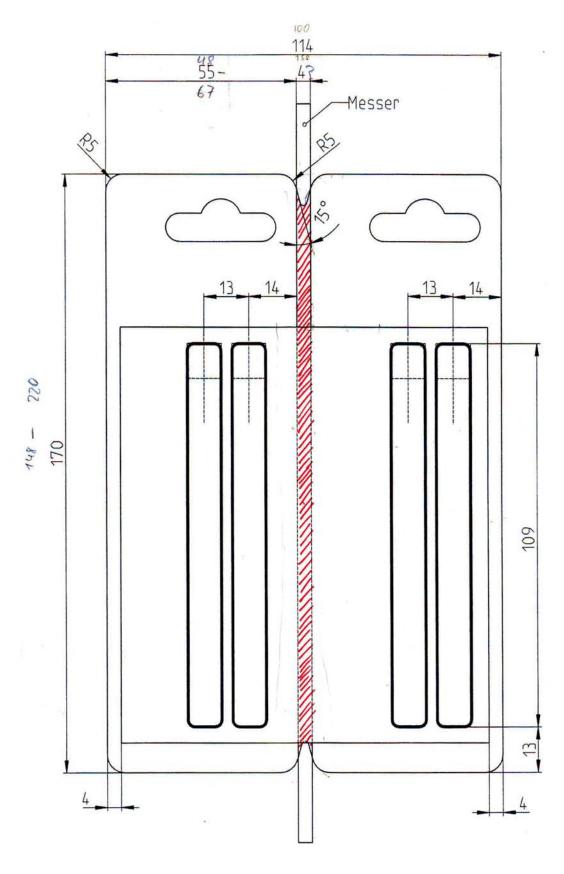
J'aimerai remercier en particulier Monsieur Heinrich Lauber et Monsieur Stefan Jeiziner qui se sont pris beaucoup de temps pour moi. J'aimerai aussi Monsieur Olivier Jauslin de l'entreprise Bobst et Monsieur Simon Grayson de l'entreprise Durham-duplex pour leur renseignements.



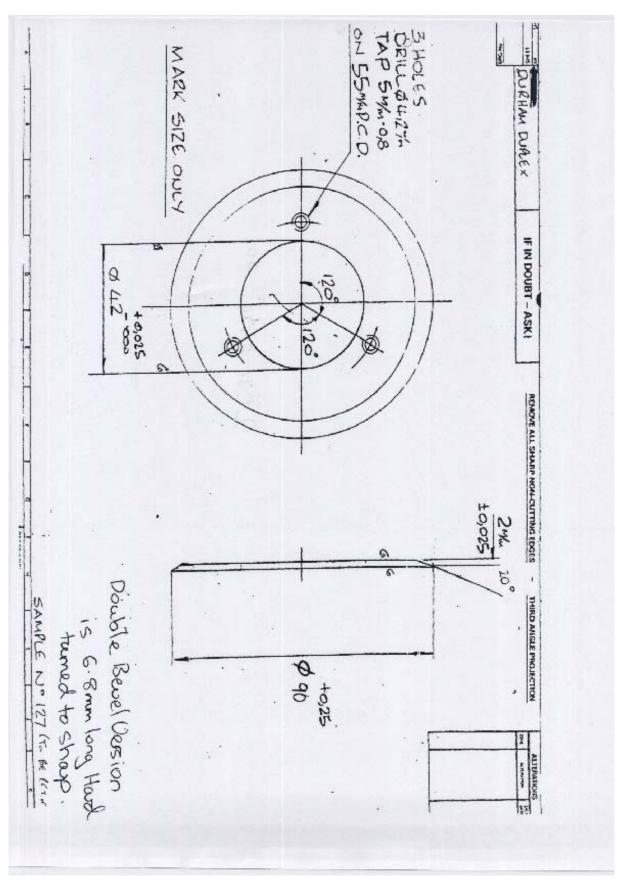
Annexe 1



University of Applied Sciences Western Switzerland



2609923494, Page: 002 (V01), downloaded at: 2007.10.25_15:31:36, by PT-ACEMSF-T-NI_Stefan.Jeiziner

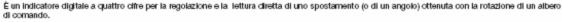

University of Applied Sciences Western Switzerland

30/60

מממ

7

INDICATORE DI POSIZIONE


AD ALBERO PASSANTE

INDICATEUR DE POSITION

A ARBRE CREUX

INDICADOR DE POSICION

A ARBOL PASANTE

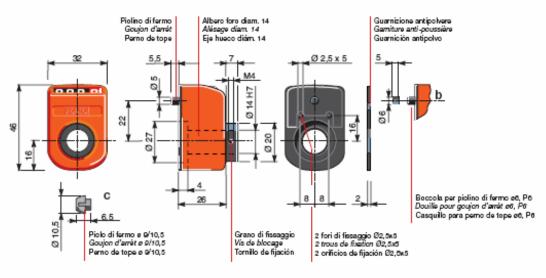
- Cassa in policarbonato autoestinguente. Protezione IP64. Temperatura max 80°C.
- Colori: arancio RAL 2004, nero RAL 9006, rosso RAL 9000, grigio RAL 7004.
 Contatore a 4 cifre (cifra rossa per Indicare I decimi o I centesimi): misure decimali od in polici. Lettura fino a 9999. Altezza cifre mm 5.

nnan

חחחם

- Lettura con vista inclinata 18° o frontale.
- Foro standard nell'albero 14H7, altri fori minori di 14 con bussola di riduzione.
- A richiesta piolino di fermo (b) ø6 mm o (c) ø9/10,5 mm.
- Versione I con parti metalliche inox.

C'est un indicateur digital à quatre chiffres pour le réglage et la lecture directe d'un déplacement (ou d'un angle) obtenu grâce à la rotation d'un arbre de commande.


• Bottler en polycarbonate ininfammable. Protection IP64. Température max. 80°.

• Couleurs: orange RAL 2004, noir RAL 9006, rouge RAL 3000, gris RAL 7004.

- Compteur à 4 chiffres johtfire rouge pour Indiquer les divièmes ou les centièmes); mesures en décimaux ou en pouces. Lecture jusqu'à 9999. Hauter des chiffres mm 5.
- Lecture avec vue inclinée 18° ou de face.
- Alésage standard 14H7, autres alésages plus petits que 14 avec d'outile de réduction.
 Sur demande goujon d'arrêt (b) ø 6 mm ou (c) ø9/10,5 mm.
 Modéle I avec parties métalliques inox.

Es un indicador digital a cuatro cifras para la regulación y la lectura directa de un desplazamiento (o de un ángulo) obtenida mediante la rotación de un eje de transmisión.


- Caja policarbonato con auto-extinción. Protección IP64, Temperatura máx. 80°.
- Colores: anaranjado RAL 2004, negro RAL 9005, rojo RAL 3000, gris RAL 7004.
 Contador a 4 citras (citra roja para indicar los décimos o los centésimos); medida decimal o en pulgadas. Lectura hasta 9999. Altura citras mm 5.
 Lectura con vista inclinada 18º o frontal.
- Eje hueco standard de 14 H7. Ortficios menores de 14 con buje de reducción.
- A pedido, perno de tope (b) Ø 6 mm o (c) Ø9/10,5 mm.
 Versión I con partes metálicas inox.

POSIZIONE DI MONTAGGIO - POSITION DE MONTAGE - POSICION DE MONTAJE

PASSO mm	INDICAZIONE DOPO UN	GIRO	VELOCITA' MASSIMA				
PAS MM	INDICATION APRES UN	TOUR	VITESSE MAXIMUM				
PASO mm	INDICACION DESPUES DE UN	NA VUELTA	VELOCIDAD MAXIMA				
	mm po	llici - pouces - pulgadas	mm	pollici - pouces - pulgada			
0,5	000 5		600				
0,5	00 50		200				
0,75	000 7(5)		600	3			
1	01 00		100	- 1			
1	001 0	0 039(37)	600	200			
1,25	001 2(5)		600				
1,5	001 5		600	- 5			
1,7(5)	001 7(5)		500				
2	002 0	0 078(74)	500	100			
2,5	002 5		300				
3	003.0	00 11(81)	300	600			
4	004 0	00 15(74)	200	500			
5	005 0	00 19(66)	200	500			
6	0060	2. 3.	200	6			
7,5	007 5		100				
8	0000		100				
10	010 0	00 39(37)	100	200			
12	012 0		90				

IN FASE DI ORDINE PRECISARE - AU MOMENT DE LA COMMANDE PRECISER - EN FASE DE PEDIDO INDICAR

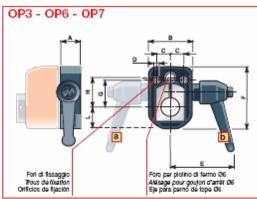
TIPO - TYPE - TIPO	OP3
POSIZIONE DI MONTAGGIO - POSITION DE MONTAGE - POSICION DE MONTAJE	vista - vue - vista A - B - C - D
NDICAZIONE DELLA MISURA DOPO UN GIRO	un giro
INDICATION DE LA MESURE APRES UN TOUR	un tour
NDICACION DE LA MEDIDA DESPUES DE UNA VUELTA	una vuolta
SENSO DI INCREMENTO DELLA MISURA	DX (orario) - SX (antiorario)
SENS DE L'AUGMENTATION DE LA MESURE	DX (horaire) - SX (anti-horaire)
SENTIDO DE INCREMENTO DE LA MEDIDA	DX (horario) - SX (antihorario)
FORO NELL'ALBERO - ALESAGE - EJE HUECO	F (diam. fore) - F (a alésage) - F (diám. crificio)
COLORE DELLA SCATOLA - COULEUR DE LA BOITE - COLOR DE LA CAJA	nero - noire - negro - G arancione - orange - anaranjado - R
	grigio - grise - gris- GR

ESEMPIO DI ORDINAZIONE - EXEMPLE DE COMMANDE - EJEMPLO DE PEDIDO

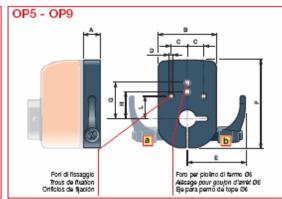
MONTAGGIO inserire l'indicatore attraverso l'albero cavo avendo cura che il piolino di ancoraggio entri nei foro diam. 5 o 6 (b) predisposto. Postzionare lo strumento sulla quota iniziale (zero) e bioccare il grano di fissaggio.

MONTAGE
Monter l'Indicateur sur l'arbre en ayant soin que le goujon d'arrêt soit compatible avec l'alésage Ø5 ou Ø6 (b) prédisposé. Faire la mise à zaro initiale et bioquer la vis de fixation.

MONTAJE
Colocar el Indicador a través del eje hueco teniendo cuidado de que el perno de tope entre en el orificio predispuesto de diám. 5 o 6 (b).
Posicionar el Instrumento sobre la cota inicial (cero) y bioquear el tornito de fijación.


Con la flangia di blocco albero posta sotto l'indicatore CP3, CP6, CP7, CP5, CP9 in un insieme compatto, si ottiene un bloccaggio sicuro dell'albero di comando.

co. L'elemento di bloccaggio è in alluminio. Foro nell'albero s14mm per 0P3, s20mm per 0P5, 0P6, 0P7, s25mm per 0P6, 0P7, s30mm per 0P9. Altri fori con bussola di riduzione. Maniglia in posizione a o b.


Avec la bride de blocage d'arbre située sous l'indicateur OP3, OP6, OP7, OP5, OP9 dans un ensemble compact, on obtient un blocage sûr de l'arbre de commande. Materiel: l'élèment de blocage est en aluminium. Diamètre de l'arbre #14mm pour OP3, #20mm pour OP5, OP6, OP7, #25mm pour OP6, OP7, #30mm pour OP9. Autres sièsages avec double de réduction. Poignée en position a ou b.

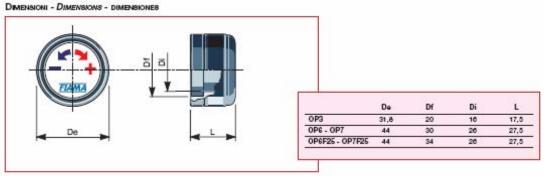
Con la brida de bloqueo del eje situada debajo del indicador OP3, OP6, OP7, OP5, OP97 en una unidad compacta, se obtiene un bloqueo seguro del eje de transmisión.Material: el elemento de bloqueo esta de aluminio. Diámetro del eje e14mm para el OP3, e20mm para OP6, OP6, OP7, e25 para OP6 y OP7, e30 para OP9. Otros crificios con buje de reducción. Manija en posición a o b.

	Α	В	С	D	Ε	F	G	Н	L
OP3	15	32	10	04,2	50	46	20	22	16
OP6 - OP7	15	48	18	04,2	60	66	25	30	24

	Α	В	С	D	E	F	G	Н	L	
OP5	18	52	18	ø4,5	57,5	74		30	25	
OP9	18	64	18	ø4,5	64	94	40	30	25	

18

POMELLO DI MANOVRA PER INDICATORI
OP3 - OP6 - OP7
POIGNÉE POUR INDICATEURS
OP3 - OP6 - OP7
EMPUÑADURA DE MANIOBRA PARA INDICADORES
OP3 - OP6 - OP7


Il pomello di manovra, viene montato direttamente sull'albero dell'indicatore OP3, OP6, OP6F25, OP7, OP7F25. Una targhetta adesiva, sul fronte del pomello, indica il senso di incremento o decremento della misura.

-Materiale: alluminio anodizzato nero.

La poignée est montée directement sur l'arbre de l'indicateur OP3, OP6, OP6F25, OP7, OP7F25. Une piaque adhésive appliquée sur la poignée indique le sens d'augmentation ou de diminution de la mesure.

-Materieit aluminium anodisé noix

La empuñadura de maniobra se monta directamente sobre el eje indicador OP3, OP6, OP6F25, OP7, OP7F25. Una etiqueta autoadhesiva sobre la parte frontal de la empuñadura indica el sentido de incremento o decremento de la medida.
-Material: aluminio anodizado negro.

Montaggio: si svita il grano di bioccaggio posto sull'albero dell'Indicatore OP e si postziona il pomello sull'albero. Si introduce il grano più lungo, fornito coi pomello, attraverso il foro non filettato e si va a bioccare nuovamente l'Indicatore. Il primo grano serve per bioccare a sua volta il pomello sull'albero cavo.

Montage; dévisser la vis de biocage situé sur l'arbe de l'Indicateur OP et positionner la polgnée sur l'arbre. Introduire la vis plus longue fournie avec la polgnée à travers le trou non fileté, et à ce point bioquer à nouveau l' indicateur. La première vis sert pour bioquer à son tour la polgnée sur l'arbre creux.

Montaje: se destornilla el perno de tope colocado sobre el eje del indicador OP y se coloca la empuñadura por encima de él. Se introduce la espiga más larga suministrada junto con la empuñadura a través de la perforación no fleteada y se bloquea nuevamente el indicador. La primera espiga sirve para bloquear a su vez la empuñadura sobre el eje hueco.

21

Calcul du Moment d'inertie

$$J = \frac{1}{2} \cdot m \cdot r^2$$

$$J = \frac{1}{2} \cdot 2700 \cdot 3,14 \cdot 0,01 \cdot 0,29^4$$

TC 220T

Caractéristiques techniques TC 220T

Diamètre maximum recommandé: env. 1100 mm Diamètre du plateau: 220 mm

Sens de rotation: horaire - antihoraire ou alternatif

Divisions: 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 30, 36, autres divisions sur demande

Cadence: Jusqu'à env. 220 C/mn, en fonction du moment d'inertie et de l'angle de rotation

Tension: 230 / 400 V 50 Hz, tension spéciale sur demande

Puissance d'entraînement: 0,06 - 1,1 kW; BG 63/71 Poids: 44 kg

Position de montage:

voir page 39 sur demande possibilité de vissage par dessus (demander le plan)

Divisions 2-12: ± 20° Divisions 16-24: ± 30° Divisions 30-36: ± 40 (en secondes d'angle) Précision angulaire:

précision angulaire supérieure sur demande

Précision angulaire arc: Isur Ø 220 mml

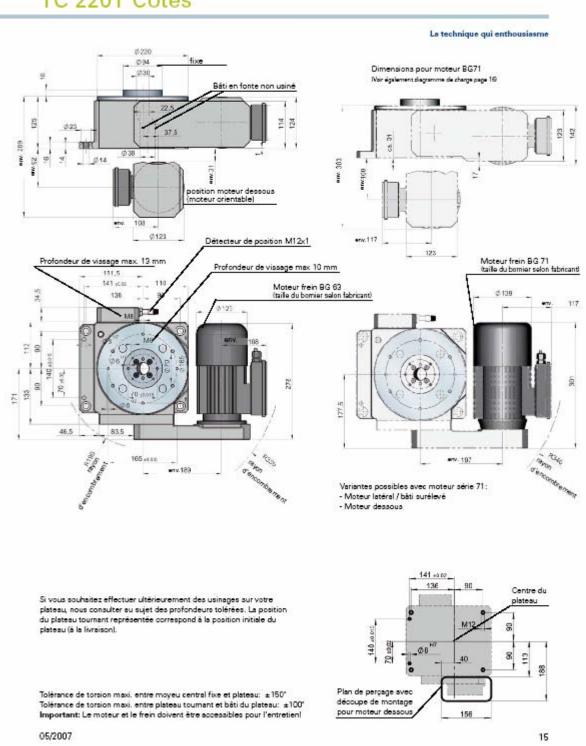
Divisions 2-12: ± 0,011 mm, 16-24: ± 0,016 mm, 30-36: ± 0,021 mm Répétabilité: Divisions 2-12: ± 3°, 30-36: ± - 4" 16-24: ±-3

Défaut de planéité maxi. du plateau: Isur Ø 220 mml 0,01 mm 0,01 mm

Défaut d'excentration maxi: Défaut de parallélisme maxi. de la

surface du plateau par rapport à la

face d'appui du bâti: Isur Ø 220 mml 0,03 mm


Alésage central mini du faux-plateau

toumant: 96 mm

14 05/2007

TC 220T Cotes

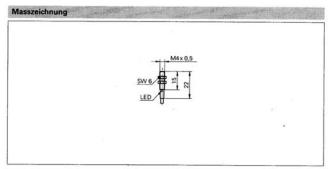
TC 220T

Diagramme de charge (Si vous souhaitez une charge plus élevée, demandez conseil à notre équipe.)

Rapport transmi		b	С	d	9	f	g	h	i	j	k	1
Divisi	on											
2	Jmax	-	-	0,15	0,34	0,57	0,73	1,15	1,70	2,77	6,59	8,80
	t.	-	-	0,35	0,50	0,60	0,67	0,84	1,02	1,30	1,99	2,30
3	J _{max}	-	0,18	0,30	0,62	0,92	1,16	1,83	2,68	4,37	10,36	13,82
	t,	-	0,29	0,35	0,50	0,60	0,67	0,84	1,02	1,30	1,99	2,30
4	Jmax	0,12 (0,19)	0,24 (0,37)	0,46 (0,69)	1,34 (1,97)	2,38 (3,50)	3,36 (4,61)	6,60	8,36	17,13	31,50	48,50
	t,	0,22	0,26	0,32	0,45	0,54	0,61	0,76	0,92	1,17	1,80	2,07
6	J _{max}	0,31 (0,48)	0,58 (0,87)	1,06 (1,59)	3,05 (4,46)	5,40 (7,45)	7,60	14,64	18,84	26,00	70,90	109
	t.	0,22	0,26	0,32	0,45	0,54	0,61	0,76	0,92	1,17	1,80	2,07
8	Jmax	0,58 (0,87)	1,06 (1,58)	1,92 (2,85)	5,44 (6,92)	9,63 (10,22)	12,82	19,05	29,20	46,20	112	150
	t,	0,22	0,26	0,32	0,45	0,54	0,61	0,76	0,92	1,17	1,80	2,07
10	Jmax	0,92 (1,37)	1,67 (2,48)	3,01 (4,24)	8,48 (8,4)	12,40	15,23	24,30	35,50	57,60	136	182
	t.	0,22	0,26	0,32	0,45	0,54	0,61	0,76	0,92	1,17	1,80	2,07
12	J _{max}	1,34 (1,96)	2,41 (2,90)	4,29	10,19	14,89	15,73	24,60	35,80	58,20	138	183
	t,	0,22	0,26	0,32	0,45	0,54	0,61	0,76	0,92	1,17	1,80	2,07
16	Jmax	-	-	-	2,00	2,94	3,69	5,79	8,45	13,73	32,50	43,30
	t.	-	-	-	0,22	0,26	0,29	0,37	0,44	0,56	0,86	1,00
20	J _{max}	-	-	-	3,05	4,47	5,62	8,80	12,83	20,80	49,30	65,80
	t.	-	-	-	0,22	0,26	0,29	0,37	0,44	0,56	0,86	1,00
24	Jmax	-	-	-	3,67	5,37	6,75	10,56	15,40	25,00	59,20	78,90
	t,	-	-	-	0,22	0,26	0,29	0,37	0,44	0,56	0,86	1,00
30	J _{max}	-	-	-	-	-	3,59	5,63	8,21	13,35	31,60	42,20
	t.	-	-	-	-	-	0,19	0,24	0,29	0,37	0,57	0,65
36	Jmax	-	-	-	-	-	4,32	6,76	9,89	16,03	37,90	50,60
	t,	-	-	-	-	-	0,19	0,24	0,29	0,37	0,57	0,65

J = moment d'inetie masi admissible ligne? : t_a = temps de transfert les accondes). Le temps entre l'ordre « départ cycle » et le aignal en retour « plateauvenouillé » est d'environ 80 à 130 ms plus long que le temps de cycle membrané ordessus. Le temps accard dépard du moteur, du temps de acrutation automate et des réglages d'optimisation (voir page 34). Commande Et - finança électrique; plus d'unes du tem mêtranque.

Sollicitations (sur le moyeu central fixe)

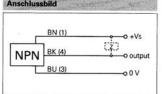

05/2007 16

Baumer

Induktive Sensoren

Induktive Näherungsschalter

IFRM 04N15B1/L



Allgemeine Daten	
Einbauart	bündig
Nennschaltabstand Sn	0,8 mm
Schalthysterese	2 20 % von Sr
Schaltzustandsanzeige	LED rot
Elektrische Daten	AND THE SAME SAME
Schaltfrequenz	< 3 kHz
Betriebsspannungsbereich +Vs	10 30 VDC
Stromaufnahme max.	12 mA
Ausgangsschaltung	NPN Schliesser (NO)
Spannungsabfall Vd	< 2 VDC
Ausgangsstrom	< 100 mA
kurzschlussfest	ja
verpolungsfest	ja

Bauform	zylindrisch mit Gewinde
Material (aktive Fläche)	Acrylat mod. PUR
Gehäusematerial	Chrom-Nickel-Stahl
Baugrösse	4 mm
Gehäuselänge	22 mm
Anschlussart	Kabel

Umgebungsbedingungen	The second secon
Arbeitstemperatur	-25 +75 °C
Schutzart	IP 67

• Standard-Kabelausf. 22 mm

www.baumerelectric.com

26.10.2007

Bosch Rexroth AG | Pneumatics

Handhabungs- und Vakuumtechnik

* Führungszylinder, Serie GPC

Ø 10 - 100 mm, doppeltwirkend, Gleitlager, Magnetkolben

Betriebsdruck min./max. Umgebungstemperatur min/max.

Medium Druckluftklasse Druck zur Bestimmung der Kolbenkräfte Werkstoffe:

Gehäuse Frontplatte Führungsstangen Abstreifer Führungsbuchse

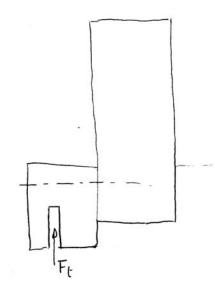
1/8bar -10°C/+70°C

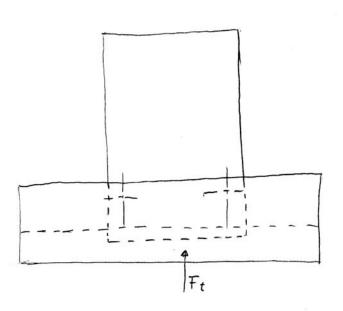
Druckluft nach ISO 8573-1:2001 Klasse 6-4-3, Klasse 5-4-4

Aluminium, eloxiert Stahl, verzinkt Nichtrostender Stahl Polyurethan Sinterbronze

Kolben-Ø		[mm]	10	12	16	20	25
Anachluss	A AUGUSTA	8	M5	M5	M5	M5	G 1/8
Betriebsdruci	k.min./max.	[bar]	1,3 - 8	1,3 - 8	1,3 - 8	1,3 - 8	1,3 - 8
Kolbenkraft e	einfahrend	[N]	40	50	100	140	240
Kolbenkraft a	usfahrend	[N]	45	67	120	180	290
Geschwindig	Geschwindigkeit max.		0,5	0,5	0,5	0,5	8,0
Dämpfungse	nergie	[Nm]	0,04	0,1	0,11	0,15	0,35
Gewicht	10 mm Hub	[kg]	0,19	0,3	0,38	0,5	0,82
	+10 mm Hub	[kg]	0,03	0,04	0,06	0,07	0,1
Kolben-Ø		[mm]	32	40	50	63	80
Anachluss		3	G 1/8	G 1/8	G 1/4	G 1/4	G1/4
Betriebsdruck min./max.		[bar]	1 - 8	1 - 8	1 - 8	1 - 8	1 - 8
Kolbenkraft einfahrend		[N]	410	680	1040	1670	2800
Kolbenkraft ausfahrend		[N]	480	750	1150	1850	3000
Geschwindig	keit max.	[m/s]	0,6	0,6	0,6	0,6	0,4
Dämpfungse	nergie	[Nm]	0,4	0,52	0,64	0,75	0,75
Gewicht	10 mm Hub	[kg]	1,2	1,4	2,4	3,1	6,3
eriores de	+10 mm Hub	[kg]	0,36	0,4	0,6	0.7	1
Kolben-Ø		[mm]	100				3
Anschluss	ernes, e e e e		G 3/8				
Betriebsdrug	k min./max.	[bar]	1 - 8				
Kolbenkraft e	einfahrend	[N]	4400				
Kolbenkraft a	usfahrend	[N]	4700				
Geschwindig	keit max.	[m/s]	0,4				
Dämplungse		[Nm]	1				
Gewicht	10 mm Hub	[kg]	7,6				
	+10 mm Hub	[kg]	1,2			1	

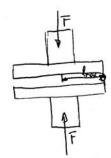
Kemprodukte - vorzugsweise für Neukonstruktion, Bevorratung im Zentrallager Laatzen, weltweiter Service
 Ergänzungsprodukte - bestehendes Standardprogramm, weltweiter Service
 Pneumatik-Katalog, Orline-PDF, Stand 2007-10-24, © Bosch Rexroth AG


Calcul de la force du vérin de la Station 1


$$\frac{\sum F}{m} = a$$

$$a = \frac{45 - 0.335 \cdot 9.81}{0.335} = 124 \, \text{m/s}^2$$

Calcul des gonpilles


On reprendre la force avec deux goupille cylindrique

$$F_C = \frac{F_t}{2} = 10000 \text{ N}$$

$$T_{andn} \gg \frac{T}{A}$$
 $T_{andn} \approx \frac{R_{po,2}}{Z_{,2}} = \frac{295}{Z_{,2}} = 134 MPa$

$$A = \widehat{\Pi} \cdot \frac{D^2}{4} \implies D = \sqrt{\frac{4A}{\widehat{\Pi}}} = 11,9 \text{mm} \implies 612 \text{mm}$$

Calcul guidage linéaire poinçon/matrice

M= F·l

38 Bosch Rexroth AG

Roller Rail Systems | R310EN 2302 (2006.04)

Standard Runner Blocks, Steel version

Runner Block FNS

Runner block FNS R1851 ... 10 Flanged, normal, standard height

Further runner block versions

- with aluminum end caps
- for oil and grease lubrication from above
- for central oil lubrication systems
- for wall mounting

See the relevant sections for part numbers.

For corrosion-resistant runner blocks, Resist CR, matte silver hard chrome plated, see section on *Standard Runner Blocks, Resist CR*.

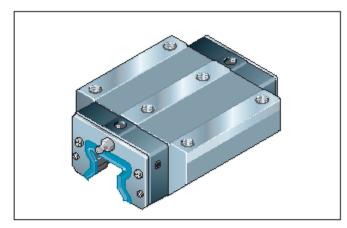
Recommended preload and accuracy class combinations - For preload class C2: H and P

 For preload class C2: H and P
 For preload class C3: P and SP
 Preference should be given to runner blocks with preload C2.

Runner blocks with preload C1 are available on request. Part number: R1851 .1. 10

Preload classes

C1 = preload 3% C (on request)


C2 = preload 8% C

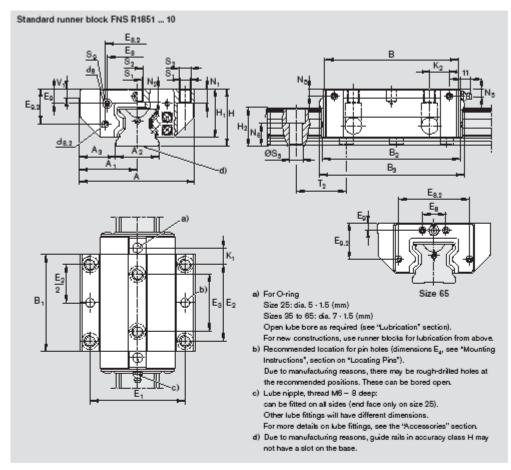
C3 = preload 13% C

Note on dynamic load capacities and moments (see table)

The dynamic load capacities and moments are based on 100,000 m travel. However, a travel of just 50,000 m is often taken as a basis.

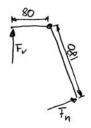
If this is the case, for comparison purposes: Multiply values C, $\rm M_t$ and $\rm M_L$ from the table by 1.23.

Size	Accuracy	Part numbers for preload clas	s				
	class	C2	C3				
25	н	R1851 223 10	-				
	Р	R1851 222 10	R1951 232 10				
	SP	R1951 221 10	R1951 231 10				
	UP	R1951 229 10	R1851 239 10				
35	Н	R1951 323 10	-				
	P	R1951 322 10	R1851 332 10				
	SP	R1851 321 10	R1851 331 10				
	UP	R1851 329 10	R1951 339 10				
45	Н	R1851 423 10	-				
	P	R1851 422 10	R1951 432 10				
	SP	R1851 421 10	R1951 431 10				
	UP	R1851 429 10	R1951 439 10				
55	Н	R1851 523 10	-				
	Р	R1851 522 10	R1851 532 10				
	SP	R1851 521 10	R1851 531 10				
	UP	R1951 529 10	R1951 539 10				
65	Н	R1951 623 10	-				
	Р	R1851 622 10	R1951 632 10				
	SP	R1851 621 10	R1951 631 10				
	UP	R1951 629 10	R1851 639 10				


Size	Load capaci	ities (N)	Moment loads (Nm	n)					
	С	c,	M _t	Mto	ML	MLo			
25	26 900	53 200	348	690	260	520			
35	56 300	113 500	1 114	2 245	700	1 400			
45	92 300	184 900	2 277	4 559	1 430	2 860			
55	128 900	248 600	3 779	7 288	2 400	4 620			
65	207 000	392 000	7 300	13 500	4 5 9 0	8 470			

R310EN 2302 (2006.04) | Roller Rail Systems

Bosch Rexroth AG



Size	Dimens	ions (mm)														
	A	A,	A_2	As	В	В,	В,	В	de	$d_{9.2}$	E,	E,	E _s	Ee	Egg	E ₉	E,2
25	70	35	23	23.5	91.0	63.5	93.0	97	6	5	57	45	40	33.4	40.22	8.40	21.40
35	100	50	34	33.0	114.0	79.6	116.0	121	6	5	82	62	52	50.3	56.60	13.10	29.10
45	120	60	45	37.5	140.0	101.5	144.0	150	8	6	100	80	60	62.9	69.55	16.70	36.50
55	140	70	53	43.5	166.5	123.1	170.5	177	10	6	116	95	70	74.2	81.60	18.85	40.75
65	170	85	63	53.5	206.0	146.0	216.5	218	8	8	142	110	82	35.0	106.00	9.30	55.00

Size	Dimer	sions	(mm)														Weight
	н	н,	H ₂ ¹⁰	H,2)	K,	K ₂	N,	N,	Ns	N ₆ ^{±0.8}	s,	S ₂	Sg	S ₉ 8)	T ₂ *9	٧,	kg
25	36	30	23.60	23.40	14.10	-	9	7.3	5.5	14.3	6.8	M8	7	M3-5deep	30.0	7.5	0.8
35	48	41	31.10	30.80	15.55	17.40	12	11.0	7.0	19.4	8.8	M10	9	M3-5deep	40.0	8.0	1.7
45	60	51	39.10	38.80	17.45	20.35	15	13.5	9.0	22.4	10.5	M12	14	M4-7deep	52.5	10.0	3.3
55	70	58	47.85	47.55	21.75	24.90	18	13.7	9.0	28.7	12.5	M14	16	M5-8deep	60.0	12.0	5.5
65	90	76	58.15	57.85	29.80	33.00	23	21.5	9.3	36.5	14.5	M16	18	M4-7deep	75.0	15.0	12.0

- 3) Thread for attachments
- Dimension H₂ with cover strip
 Dimension H₂ without cover strip
- 4) Dimension T_2 = hole spacing in the guide rail

Calcul verin de centrage

la force nécessoire pour déplacer le carton est environ 2N par aimant. Comme il y a 4 aimants sur la palette il faut 8N. Cette force dépend aussi du nombre de lame de scies et du matérian de ces lames, donc on va prendre un facteur de sécurité de 10, soit 80N.

$$F_V = F_n \cdot \frac{l_n}{l_V} = 80 \cdot \frac{180}{80} = 180N$$
 (force pour 1 bras)

donc le vérin doit avoir min 360 N de force de rentrée

Bosch Rexroth AG | Pneumatics

Kolbenstangenzylinder

Minizylinder, Serie 132

Ø8-32 mm, doppeltwirkend, Dämpfungsschelben, korrosionsbeständig

Betriebsdruck min/max. Umgebungstemperatur min/max.

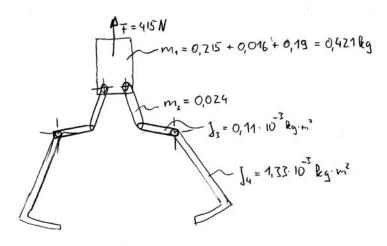
Medium Druckluftklasse

Druck zur Bestimmung der Kolbenkräfte Werkstoffe:

Zylinderrohr Kolbenstange Deckel und Boden Anschlussgewinde Dichtung

1.5 / 10 bar -20°C/+70°C

Druckluft nach ISO 8573-1-2001 Nasse 6-4-3, Nasse 5-4-4 6 bar


Nichtrostender Stahl Nichtrostender Stahl Polyamid Nichtrostender Stahl Acrylnitril-Butadien-Kautschuk

Kolben-Ø		[mm]	8	10	12	16	20
Kolbenkraft e	einfahrend	[N]	23	40	51	104	158
Kolbenkraft a	ausfahrend	[N]	30	47	68	120	188
Gewicht	0 mm Hub	[kg]	0,025	0,035	0,048	0,054	0,08
200,000	+10 mm Hub	[kg]	0,003	0,003	0,004	0,005	0,01
Kolben-Ø	Company (1972)	[mm]	25	32			
Kolbenkraft e	einfahrend	[N]	246	415	4	- 27	
Kolbenkraft ausfahrend		[N]	290	480			
Gewicht.	0 mm Hub	[kg]	0,1	0,26			
	+10 mm Hub	[kg]	0,014	0,022			

	Kolbenstangengewinde Anschlüsse	8 M4 M5	10 M4 M5	12 M6 M5	16 M6 M5	20 M8 G 1/8
	Hub max.	50	80	100	250	250
্য	Hub 12	1320801000	1321001000	1321201000	1321601000	1322001000
	25	1320802000	1321002000	1321202000	1321602000	1322002000
	50	1320805000	1321005000	1321205000	1321605000	1322005000
	80	1320808000	1321008000	1321208000	1321608000	1322008000
	100	*		1321210000	1321610000	1322010000
	125		1.5	200	-	1322012000
	160				7	1322016000
	200				-	
	Kolbenstangengewinde Anschlüsse	25 M1 0x1 ,25 G 1/8	32 M1 0x 1,25 G 1/8			
ং 'গ্র	Hub max.	250	250	0.8	- 2	
1	Hub 12	1322501000	-			
	25	1322502000	1323202000			
	50	1322505000	1323205000			
	80	1322508000	1323208000			
	100	1322510000	1323210000			
	125	1322512000	1323212000			
	160	1322516000	1323216000			
	200	34	1323220000			

 [★] Kemprodukte - vorzugsweise für Neukonstruktion, Bevorratung im Zentrallager Laatzen, weltweiter Service
 ● Ergänzungsprodukte - bestehendes Standardprogramm, weltweiter Service
 Pneumatik-Katalog, Orline-PDF, Stand 2007-05-09, © Bosch Rexroth AG

Calcul de l'amortisseur

$$m_{red} = \frac{1}{r_i^2}$$

$$m_{\text{red}} = m_1 + 2 \cdot m_2 + 2 \cdot \frac{J_3 + J_4}{r_j^2}$$

de boschrexvoth. Ce qui donne 23,5 kg

Calculation result

Page 1 of 1

Calculation result

Self-compensatir	ng shock abs	sorber series 370				
SHOCK ABSORBER	Matching absorber	Cushioning length s _d [mm]	Impact velocity v [m/s]	Energy per stroke E [Nm]	Energy per hour E _h [Nm]	Equivalent mass m _e [kg]
□ <u>0821005021</u>	NO	10.0	0.6 (0.15 - 5.0)	4.23 (max 9.0)	10140.0 (max 28200.0)	23.5 (0.3 - 1.1)
□ 0821005022	NO	10.0	0.6 (0.15 - 5.0)	4.23 (max 9.0)	10140.0 (max 28200.0)	23.5 (0.9 - 4.8)
□ 0821005023	REC	10.0	0.6 (0.15 - 5.0)	4.23 (max 9.0)	10140.0 (max 28200.0)	23.5 (2.7 - 36.2)
□ <u>0821005032</u>	YES	12.5	0.6 (0.08 - 6.0)	5.24 (max 17.0)	12580.0 (max 34000.0)	29.1 (8.6 - 86.0)
□ 0821005042	YES	12.5	0.6 (0.08 - 6.0)	5.24 (max 25.0)	12580.0 (max 45000.0)	29.1 (23.0 - 230.0)

Additional values for the recommended absorber. The recommended shock absorber is marked with a green colored 'REC' in column 'Matching absorber'.

SHOCK ABSORBER 0821005023 Cushioning time T_d [s] 0.03333

Calculation parameters

Variable	Input data	Figure
Mass [kg]	0.919	Fc
Velocity [m/s]	0.6	v m/s
Gradient [°]ß	-90.0	
Impelling force [N] $\rm F_c$	415.0	n kg
Number of strokes per hour n [1/hour]:	2400.0	+β
Ambient temperature T [° C]	20.0	-В

Fill in your own name and comments for this calculation. This step is not necessary, but it might make your work easier. If you later want to print out the result of this computation or save it to disk, the comments you make will also be saved or printed.

2007-11-19 17:57:14

http://w1.boschrexroth.se/computation/shock absorbers/laservlet

19.11.2007

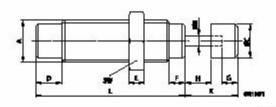
Bosch Rexroth AG | Pneumatics

Handhabungs- und Vakuumtechnik

* Industriestoßdämpfer, Serie SA1-MC selbstkompensierend, mit Anschlagkopf

Umgebungstemperatur min/max. Belestigung Dämpfung Werkstoffe: Kolbenstange Zylindenohr Kontermutter

+0°C/+65°C Kontermutter salbstkampensierend

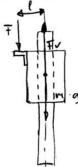

Nichtrostender Stahl, gehärtet Stahl, brûniert Stahl, brûniert

MC 9 -1-B, Werkstoff Kontermutter: Aluminium

	Тур	Effektive Masse m [kg]	Energieaufnah- me/Hub max. [Nm]	Energieaufreh- me/Stunde max. [Nm/h]	Gewicht [kg]	Materialnummer
- 9	MC 9 M-1-B	0,6 - 3,2	1	2000	0,005	R402000752
	MC 10 ML-B	0,3 - 2,7	1,25	4000	0,01	0821005001
	MC 10 MH-B	0,7 - 5	1,25	4000	0,01	0821005002
8.00	MC 25 ML	0,7 - 2,2	2,8	22500	0,02	0821005011
	MC 25 M	1,8 - 5,4	2,8	22500	0,02	0821005012
0.6574	MC 25 MH	4,6 - 13,6	2,8	22500	0,02	0821005013
	MC 75 M-1	0,3 - 1,1	9	28200	0,03	0821005021
	MC 75 M-2	0,9 - 4,8	9	28200	0,03	0821005022
	MC 75 M-3	2,7 - 36,2	9	28200	0,03	0821005023

Bei einem seitlichen Beaufschlagung swinkel von über 2° wird eine Bolzenvorlagerung empfohlen. Mit einer Bolzenvorlagerung sind seitliche Aufgrallwinkel von bis zu 30° möglich.

Mattreichnung



H = Hub

	A	ØB	ØC	D	E	F	G	н	L	K	SW	
MC 9 M	M6x0,5	2	4.8	2.5	2.5	2.7	2	5	26	10	8	- 100
MC 10 M	M8x1	2	6.4	5	3	2	2	5	28.5	10	10	
MC 25 M	M10x1	3.2	7.6	5	4	5	3	6.6	43	14.6	12	- [
MC 75 M	M12x1	3.2	7.6	4.6	5	3	3	10	52	18	14	- 16

 [★] Kemprodukte - vorzugsweise für Neukonstruktion, Bevorratung im Zentrallager Laatzen, weltweiter Service
 ◆ Ergänzungsprodukte - bestehendes Standardprogramm, weltweiter Service
 Pneumatik-Katalog, Orline-PDF, Stand 2007-10-11, © Bosch Rexroth AG

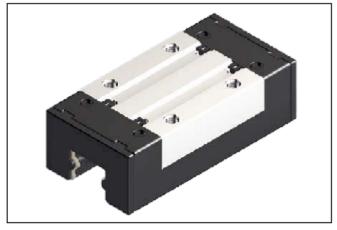
Calcul guidage linéaire du centrage

mrd = 0,92 kg

 $T_{\rm d} = 0.03 \, {\rm s}$ (valent du temps d'arret) $V = 0.6 \, {\rm m/s}$ $T_{\rm v} = 415 \, {\rm N}$ (Force du vevin $\ell = 45 \, {\rm mn}$

$$a = \frac{V}{T_A} = \frac{0.6}{0.03} = 20 \text{ m/s}^2$$

Bosch Rexroth AG

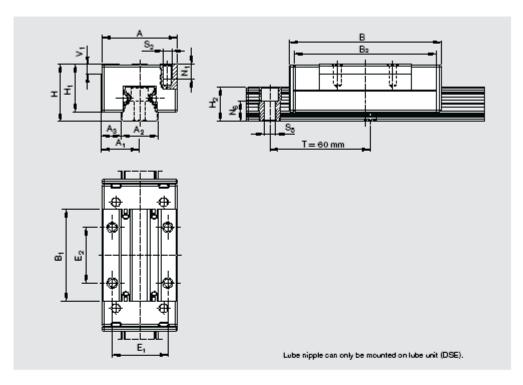

eLINE Profiled Rail Systems | R310EN 2211 (2006.11)

eLINE Ball Runner Blocks

Ball runner block SNS R2032 Slimline, normal, standard height

- Runner block body made from wrought aluminum alloy
 Hardened steel running tracks
 Steel balls to DIN 5401

- With seal unit (DE)
- hitial greasing with Dynalub 510
 For F_{comb} ≤ F_{0.15C}, no relubrication necessary throughout the stated minimum service life


Size	Accuracy class	Part numbers							
		C0	C1						
15	N	R2032 194 10	R2032 114 10						
	E	R2032 195 10	-						
20	N	R2032 894 10	R2032 814 10						
	E	R2032 895 10	-						
25	N	R2032 294 10	R2032 214 10						
	E	R2032 295 10	-						

R310EN 2211 (2006.11) | leLINE Profiled Rail Systems

Bosch Rexroth AG

15

Size	Dime	nsions	(mm)															Weight ⁰
	А	Α,	A ₂	As	В	B,	B ₂	н	H,	H ₂	V ₁	E,	Eg	N ₁	No ^{±0.5}	S2	Se	(kg)
15	34	17	15	9.5	64.0	37.8	59.0	24	19.8	14.0	4.1	26	26	6.0	8.1	M4	4.4	0.07
20	44	22	20	12.0	85.9	51.5	80.3	30	24.7	19.0	5.5	32	36	7.5	11.6	M5	6.0	0.15
25	48	24	23	12.5	96.0	58.0	90.0	36	29.9	21.8	6.4	35	35	9.0	12.9	M6	7.0	0.22

Load capacities ²⁾ (N)		Moment loads (Nm)						
	→ []-		Į	<u> </u>					
Size	Size C F _{max}		Mt	M _{timax}	ML	Mirror			
15	5000	2000	96	14	29	12			
20	11000	4400	101	40	89	35			
25	16000	6400	165	66	147	59			

¹⁾ Please note the low weight of the runner block.

²⁾ Determination of dynamic load capacities and moments is based on a travel life of 100 000 m. However, frequently this is determined on the basis of only 50 000 m. In this case, for comparison: Multiply values C, M, and M, from the table by 1.26.

Bosch Rexroth AG | Pneumatics

1.5 / 7 bar

Handling and vacuum equipment

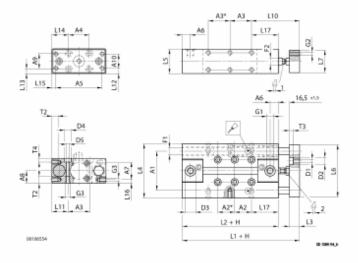
Guide cylinder, series DGC

Ø 12 - 63 mm, friction bearing, magnetic piston, with pneumatic cushioning, adjustable cushioning

Working pressure

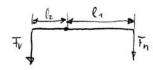
min/max Ambient temperature min./max. -10°C/+70°C

Medium compressed air acc. to ISO 8573-1: 2001 class 6-4-3


compressed air acc. to ISO 8573-1:2001

materials: aluminum, anodized Housing piston rod steel, smooth-rolled

Note: This product may only be operated with oil-free, dry compressed air.


Piston Ø		[mm]	12	16	20	25	32
Weight	nt 0 mm stroke		0,4	0,54	8,0	0,9	1,7
	+10 mm stroke	[kg]	0,04	0,05	0,07	0,09	0,1
Piston Ø		[mm]	40	50	63		
Weight 0 mm stroke		[kg]	2,8	4,5	6,1		
+10 mm strake		[kg]	0,16	0,25	0,3		

	Piston Ø	12	16	20	25	32
	Stroke 50	0821405200	0821405210	0821405220	0821405230	0821405240
	100	0821405201	0821405211	0821405221	0821405231	0821405241
1.1	200	-	-	-	-	0821405243
	Piston Ø	40	50	63		
Y''	Stroke 50	0821405250	0821405260	0821405270		
	100	0821405251	0821405261	0821405271		
	200	0821405253	0821405263	0821405273		

Ø	A1	A2	A31)	A4	A5	A6	A7	A8	A9	A10	D1	D2	D3	D4
12	40	19	19	19	45	7.5	19	13	19	16	4.5	8	8	6
16	46	20	24	19	53	8.5	20	14	19	18	4.5	8	8	6

Calcul du verin de la station 4

 $\overline{t}_{v} \cdot \ell_{z} = \overline{t}_{n} \cdot \ell_{n}$

Bosch Rexroth AG | Pneumatics

Piston rod cylinders

* Mini cylinder, series OCT

Ø 10 - 25 mm, double-acting, magnetic piston, cushioning rings, piston rod: rotatable

Standards Working pressure min/max

Ambient temperature min./max.

Medium

Compressed air class Pressure for determining piston forces

materials: cylinder tube piston rod End covers Seal

ISO 6432:1985 1.5 / 10 bar

-20°C/+75°C

compressed air acc. to ISO 8573-1: 2001

class 6-4-3

6

aluminum, anodized stainless steel, cold hardened

Polyacrylamide polyurethane

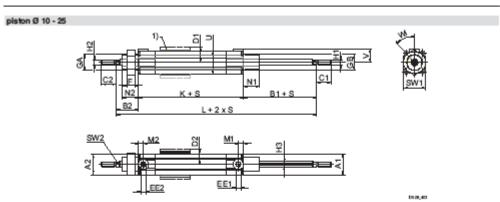
Piston Ø		[mm]	10	12	16	20	25
Retracted piston	force	[N]	46	60	124	186	247
Extended piston	force	[N]	54	77	141	216	294
Cushioning ener	gy	[J]	0,04	0,07	0,14	0,23	0,35
Weight	ght 0 mm stroke		0,045	0,058	0,07	0,122	0,168
+10 mm stroke		[kg]	0,004	0,007	0,006	0,009	0,012
Stroke max.		[mm]	600	600	950	1100	1300

	Piston Ø	10	12	16	20	25
	Piston rod thread Ports	M4 M5	M6 M5	M6 M5	M8 G1/8	M10x1.25 G 1/8
	Stroke 10	R480052297	R412003614	5283010020	5284010020	5285010020
	25	R480052298	R412003615	5283010050	5284010050	5285010050
	50	R480052299	R412003616	5283010100	5284010100	5285010100
	90	R480052300	R412003617	5283010160	5284010160	5285010160
	100	R480052301	R412003618	5283010200	5284010200	5285010200
	125	R480052302	R412003619	5283010250	5284010250	5285010250
 - 	160	R480052303	R412003620	5283010320	5284010320	5285010320
	200	R480052304	R412003621	5283010400	5284010400	5285010400
	250	R480052305	R412003622	5283010500	5284010500	5285010500
	320	R480052306	R412003623	5283010640	5284010840	5285010840
	400	R480052307	R412003624	5283010800	5284010800	5285010800
	500		R412003625	5283011000	5284011000	5285011000

configura	ble product	
- 1		
- 6		

This product is configurable. Please use our configurator at www.boschrexroth.com/pneumatics or contact the nearest Bosch Rexroth sales office.

^{*} core products - preferably for new constructions, stockpilling in Lastzen central warehouse, worldwide service
• service products - existing standard program, worldwide service
pneumatics catalog, online pdf, as of 2007-11-03, © Bosch Rexroth AG


Bosch Rexroth AG | Pneumatics

Piston rod cylinders

* Mini cylinder, series OCT

Ø 10 - 25 mm, double-acting, magnetic piston, cushioning rings, piston rod: rotatable

S = stroke

1) clamp for sensor -installation at all 4 cylinder sides (Ø 12 mm at 3 sides, Ø 10 mm at 2 sides) possible

10		B (-2	D1/D2	E H9	EE1/E	9E2	- 1		G A/GE		н	K	L	M1/M2
10	15	16	11	12,5	4	1	M5	7		M12x1,25		M4	46	64	9
12	19 2	2,4	15	14,5	6		M5	8		M16x1,5	i	M6	46	75	8
16	21	22	15	15,5	6		M5	8		M16x1,5	i	M6	56	82	6
20	25	24	19	17,5	8	G	1/8	10		M22x1,5	i	M8	68	95	8
25 2	8,5	28	21	19,25	8	G	1/8	10		M22x1,5	M:	10x1,25	70	104	8
Ø	N	P	R	T d13	T1	U	٧		Х	SW1	SW2	SW3			
10	12	12	10	8	6	18	12		2,2	17	3	7			
12	17	17	10	12	9	19	14	1	3,2	22	5	10			
16	16	17	13	12	9	23	13,9	1	3	22	5	10			
20	18	19	16	16	12,5	27	17,5		4	30	7	13			
25	21	21	15	16	12,5	30	18		5	30	9	17			

core products - preferably for new constructions, stockplling in Laatzen central warehouse, worldwide service
 service products - existing standard program, worldwide service
 pneumatics catalog, online pdf, as of 2007-11-03, © Bosch Rexroth AG

Dossier de construction

Machine de découpe d'emballages en carton