

Elektrotechnik und Informatik Stegerwaldstraße 39 48565 Steinfurt Tel,+49 (0) 25 51 9 62-1 99 Fax +49 (0) 25 51 9 62-7 10 eti @fh-muenster.de www.fh-muenster.de

Studiengang Systemtechnik

Vertiefungsrichtung Infotronics

DIPLOMARBEIT 2010

Lucien Roten

Stromversorgung für einen drathlosen Sensor

Dozent:Prof. Dr.-Ing. Peter GlösekötterExpert:Dr. sc. techn. Joseph Moerschell

Diplomarbeit — 2010 —

Studiengang Systemtechnik

Anwendungsbereich Vertiefungsrichtung Infotronics

Verantwortlicher Dozent Prof. Dr.-Ing. Peter Glösekötter peter.gloesekoetter@fh-muenster.de

Partner

Fachhochschule Münster Elektrotechnik und Informatik Stegerwaldstraße 39 48565 Steinfurt Tel.+49 (0) 25 51 9 62-1 99 Fax +49 (0) 25 51 9 62-7 10 eti@fh-muenster.de www.fh-muenster.de

Stromversorgung für einen drathlosen Sensor

■ Diplomand Lucien Roten

Ziel des Projekts

Das Ziel dieses Projekts ist es den Punkt der maximalen Leistung eines Solarpanels zu finden um ein drahtloses Sensor-Modul effizient einzuspeisen.

Methoden / Experimente / Resultate

In dieser Welt wollen wir immer mehr Freiheit und Autonomie. Handy und Laptop sind gute Biespiele dafür. Wir wollen immer das schnellste und beste Produkt, das leicht zu benutzen und zu installieren ist. Dieses Projekt ist eine kleine Antwort auf diese Erwartung.

Thema des ganzen Projekts ist ein drahtloses Sensor-Modul welches die Öffnung des Behälters einer Sauerstoffmaske auslöst. In dieser Arbeit wird nur die Stromversorgung für dieses Modul untersucht.

Am Anfang, mußte das Prinzip des MPPT (Maximal Power Point Tracking) ausgearbeitet werden. Dafür wurde ein Matlab Modell realisiert. In einen zweiten Schritt, wird eine Analysis von verschiedenen Realisierungarten durchgeführt um ein noch besseres Verständnis zu erhalten.

In einmen dritten Schritt, mußten wir die beste Lösung finden und aufbauen. Diese Lösung muß innovativ und zweckmäßig sein. Sie muß auch klein sein und wenig Leistung aufnehmen. Noch davor, mußten wir ein geeignetes Solarpanel finden. Dafür wurde ein Vergleich von einigen Solarpanels realisiert.

Am Ende, mußte diese Schaltung getestet werden, und wo es nötig war, korrigiert werden.

Inhaltsverzeichnis

1 Allgemeines

	1.1	Einfüh	rung	1
		1.1.1	Was ist ein MPPT ?	1
	1.2	Einges	etzte Software-Werkzeuge	1
		1.2.1	Matlab	1
		1.2.2	LtSpice IV	2
		1.2.3	Eagle	2
	1.3	Grund	llagen	3
		1.3.1	Solarzellenpanel	3
	1.4	"MPP	T (Maximum Power Point Tracking)"-Verfahren	7
		1.4.1	Eskalations-Methode	7
		1.4.2	Konduktanzzuwachs-Methode	7
		1.4.3	Referenz Spannung/Strom-Methode	8
		1.4.4	Gewählte Lösung	9
2	MPI	PT-Klei	nstromversorgung	10
	2.1	Zielan	wendung	10
	2.2	Erstes	Konzept	10
		2.2.1	P-Regler	11
		2.2.2	Simulation	11
	2.3	Wahl d	les Solarpanels	11
		2.3.1	Ersol Solarzellen	12
		2.3.2	Sanyo Solarzellen aus amorphem Silizium	13
		2.3.3	Photovoltaische Zellen GeneCIS	13
		2.3.4	Solar-Panel ASI-F 5/12	13
			,	

1

	2.3.5	Solar Akku Lader	16
2.4	Akkun	nulator	18
	2.4.1	Berechnung der Akkumulator-Kapazität	18
	2.4.2	Wahl des Akkumulators	19
2.5	Zweite	s Konzept	22
	2.5.1	Punkt maximaler Leistung	22
	2.5.2	Entwurf	22
	2.5.3	Optimierung	23
	2.5.4	Simulation	24
2.6	Leiterp	platten (PCB)	24
2.6 2.7	Leiter _I Tests .	blatten (PCB)	24 26
2.6 2.7	Leiterp Tests . 2.7.1	Dlatten (PCB)	24 26 26
2.6 2.7	Leiterr Tests . 2.7.1 2.7.2	Dlatten (PCB)	24 26 26 29
2.6 2.7	Leiterr Tests . 2.7.1 2.7.2 2.7.3	blatten (PCB)	24 26 26 29 30
2.6 2.7	Leiterr Tests . 2.7.1 2.7.2 2.7.3 2.7.4	Datten (PCB)	24 26 29 30 31
2.62.72.8	Leiterr Tests . 2.7.1 2.7.2 2.7.3 2.7.4 Verbes	blatten (PCB)	24 26 29 30 31 33
 2.6 2.7 2.8 2.9 	Leiterp Tests . 2.7.1 2.7.2 2.7.3 2.7.4 Verbes Schluß	Delatten (PCB)	 24 26 29 30 31 33 33

3 Anhänge

1 Allgemeines

1.1 Einführung

1.1.1 Was ist ein MPPT ?

MPPT ist ein englisches Akronym für Maximum Power Point Tracker. Wie sein Name vermuten läßt, ist es das Ziel dieses Systems den Punkt der maximalen Leistung zu suchen. Für alle Systeme, deren Leistungs-Ausgang nicht konstant bleibt, kann es eingesetzt werden. Ein MPPT System fonktioniert folgendermaßen:

- 1. Speichern der aktuellen Leistung.
- 2. Ändern der Steuergröße.
- 3. Einen Moment warten.
- 4. Vergleich der aktuellen Leistung mit der vorhergehenden Leistung. Wenn sie größer ist, Speicherung der Leistung.
- 5. Korrektur oder Änderung der Steuergröße.
- 6. Wiederholung von Punkt 3 an.

Das MPPT-Verfahren erlaubt Energie zu sparen und Zeit zu gewinnen. Energie zu sparen, weil die Verluste verringert werden. Und Zeit weil die Aufladung schneller abläuft.

1.2 Eingesetzte Software-Werkzeuge

1.2.1 Matlab

Matlab ist ein Programm oder/und ein Sprache welche für die Entwicklung von Algorithmen, numerische Berechnungen und Datenverarbeitung eingesetzt werden. Im Verein mit der "Simulink" Toolbox, ist es möglich mit Hilfe von mathematischen Modellen, das Verhalten von verschidenen Objekten zu simulieren. In unseren Fall handelt es sich um ein Solarpanel und ein MPPT System.

Matlab/Simulink für ein geschäfltiche Anwendung kostet ungefähr 5000 €.

1.2.2 LtSpice IV

LtSpice IV ist ein Simulationsprogramm für eletronische Schaltungen. Es ist ein einfach zu benutzendes Programm welches kostenlos Linear Technology zur Verfügung gestellt wird. Dieses Programme wurde für das Design der elektrischen Schaltung und ihren Test benutzt. Weil es ein Produkt von Linear Technology ist, befinden sich alle Komponenten von diesem Hersteller schon in der Bibliothek, aber beliebige andere Spice Modelle können ebenfalls integriert werden. Mit diesem Programm wird der Betrieb einer Schaltung simuliert. Wenn die Schaltung richtig in LtSpice funktioniert, sollte sie in Realität ebenso funktionieren.

Für dieses Programm existiert eine "Yahoo group,,. Diese ist wie ein Forum. Man kann dort viele Informationenen, Komponenten oder Schemata finden.

Der Zugang zur Group befindet sich unter der Adresse : http://tech.dir.groups.yahoo.com/group/LTspice

Das Programm selbst ist abrufbar unter folgender Adresse : http://www.linear.com/designtools/software

1.2.3 Eagle

Die auf der Eagle Website verfügbare Demostration erklärt alles. Dort steht :

Der EAGLE Layout Editor ist ein einfach zu benutzendes, aber dennoch leistungsfähiges Werkzeug für die Entwicklung von Leiterplatten. Der Name EAGLE ist ein Akronym und steht für "Einfach Anzuwendender Grafischer Layout Editor". Das Programm besteht aus drei Haupt-Modulen

- Layout-Editor
- Schaltplan-Editor
- Autorouter

Die unter einer einheitlichen Benutzeroberfläche zusammengefügt sind. Daher ist es nicht notwendig, Netzlisten zwischen Schaltplan und Layout zu konvertieren.

Diese Software wurde für den Entwurf der Schaltung und für zwei Layouts eingesetzt.

Eagle stellt nur genormte Bauteile zur Verfügung. Für andere Bauteile, kann jeweils eine neue Komponente erzeugt werden. Die drei folgenden verschiedene Teile ergeben zusammen eine elektronische Komponente:

- Symbol : Dies ist das im Schaltbild verwendete Symbol.
- Package : Hier handelt es sich um die physischen Abmessungen des Bauteils
- Device : Dies stellt die Verbindung zwischen Symbol und Package her.

Das Programm kann unter folgender Adresse gefunden werden : http://www.cadsoft.de

1.3 Grundlagen

Um das "MPPT" Prinzip zu verstehen, wurde eine einfache "MPPT" Matlab Simulation durchgeführt. Am Anfang wurde ein Solarzellenpanel mit mathematischen Gleichungen simuliert. Nachher wurde ein Simulink Diagramm gezeichnet, welches das "MPPT" Verfahren hinzufügt und es simuliert.

1.3.1 Solarzellenpanel

Eine Solarzelle kann mit dem folgenden elektrischen Schaltbild (Abbildung 1.1) dargestellt werden. Das folgende Modell ist ein einfaches Modell, aber es reicht aus um das Prinzip zu verstehen. Die Solarzelle liefert Strom in Funktion von der Solarleistung. Für unsere Anwendung wurde das Matlabskript aus der Referenz [5] angepaßt.

Abbildung 1.1: Solarzelle

Resultats von dem Simulation

Um dieses Model zu validieren, wurden die folgenden zwei Kurven mit Hilfe des Matlab Modells gezeichnet. Das Matlabmodell reagiert wie eine reale Solarzelle. Auf der Abbildung 1.2, ist die Änderung des Stroms mit der Sonneneinstrahlung und der Temperatur ersichtlich. Mehr Sonneneinstrahlung bewirkt mehr Strom. Aber bei einer höheren Temperatur oder Sonneneinstrahlung ändert sich auch die Leerlaufspannung.

Diese Änderungen haben auch einen Einfluß auf die Leistung. Die Abbildung 1.3 zeigt diese auf.

Abbildung 1.2: I-V Kurve

Abbildung 1.3: P-V Kurve

Simulink

Ein einfaches MPPT-Verfahren wurde mit Matlab/Simulink simuliert. Das MPPT-Verfahren sucht den Punkt der maximalen Leistung, und bleibt auf diesem Punkt. In der Abbildung 1.4 wird das Prinzipschema gezeigt.

Abbildung 1.4: MPPT Simulink Diagramm

Die Multiplikation von der Akkuspannung mit dem Akkustrom ergibt die Leistung. Diese Leistung gelangt zum Eingang eines Verzögerungsglieds. Am Eingang befindet sich damit die aktuelle Leistung und am Ausgang die vorhergehende Leistung. Mit diesen zwei Werten wird ein Korrekturfaktor berechnet. Nun wird eine neue Leistung berechnet. Dieser Kreis wird dauernd durchlaufen, und wenn der MPP gefunden ist, ändert sich der Korrekturfaktor nicht mehr.

Die Abbildung 1.5 zeigt das Ergebnis der Simulation des MPPT-Verfahrens während 0.1 Sekunden. Diese MPPT ist nicht "reell" weil sie sich nur auf mathematische Gleichungen stützt. In Wirklichkeit schwankt die Spannung, aber sie springt nicht. Der Strom folgt der Spannungskurve. Auf diesem Graph weist der Strom zu große Sprünge auf.

Die physikalischen Werte sind nicht richtig aber das Prinzip ist verständlich. Die Spannung steigt bis zum MPP an und schwankt nachher um diesen herum.

1.4 "MPPT (Maximum Power Point Tracking)"-Verfahren

Um ein geeignetes MPPT-Verfahren zur Implementierung auszuwählen, sollen zunächst verschidene "MPPT" Betriebsprinzipien untersucht werden. Dieser Teilabschnitt stellt die drei Hauptmodelle vor.

Ein MPPT ist ein Perturb & Observe System (P&O). Allerdings wird der Punkt maximaler Leistung nie sicher gefunden. Um sicher zu sein, müßte man diesen Punkt ändern und dann mit dem vorhergehenden Punkt vergleichen. Wenn die Leistung in diesem größer war, war es der MPP (Maximum Power Point) sonst muß dieser Punkt noch einmal gesucht werden.

Zuletzt wird die gewählte Lösung vorgestellt werden.

1.4.1 Eskalations-Methode

In dieser Methode wird ein einfaches Prinzip angewandt. Die Abbildung 1.6 gibt dazu eine kleine Erklärung. Wenn die Spannung steigt (1), steigt auch die Leistung. Nach einem Moment, kommt der MPP (2). Das System sieht das nachher weil die Leistung sinkt (3). In dieser Situation wird die Spannung reduziert um zu einem optimalen Punkt zurückzukommen. Diese Methode ist nie stabil. Sie schwankt immer um dem MPP herum.

Abbildung 1.6: Prinzip der Eskalations-Methode

Diese Methode kann auch umgekehrt eingesetzt werden. Man startet am Anfang mit einer großen Spannung *imLeerlauf* und reduziert diese solange die Leistung steigt. Ein kleiner Speicher wird benötigt um die letzten Werte zwischenzuspeichern.

1.4.2 Konduktanzzuwachs-Methode

Diese Methode ist etwas komplizierter als die erste. Das Prinzip besteht darin, die Steigung $\frac{dP}{dV}$ zu berechnen. Mit den folgenden drei Ungleichungen, läßt sich die ganze P-V Kurve in der Abbildung 1.7 beschreiben.

Vor dem MPP : $\frac{dP}{dV} > 0$ IM MPP : $\frac{dP}{dV} = 0$ Nach dem MPP : $\frac{dP}{dV} < 0$

Abbildung 1.7: Prinzip der Konduktanzzuwachs-Methode

Der MPP ist jetzt leicht zu finden, aber dies erfordert viele Berechnungen und einen größeren Speicher als bei der ersten Methode um die letzten Werte zwischenzuspeichern.

1.4.3 Referenz Spannung/Strom-Methode

Diese Methode basiert auf der Linearität der Kurve, wie die Abbildung 1.8 darstellt. Im Betrieb wird in jeder Periode eine Messung der Leerlaufspannung ausgefürt. Anschließend wird mit der bekannten Steigung der MMP berechnet. Die folgende Gleichung zeigt diese Verhältnisse auf.

Es handelt sich nicht um ein vollständiges MPPT-Verfahren. Diese Methode kommt in die Nähe des MPP, aber es wird keine Korrektur bis zur nächsten Messung vorgenommen.

Abbildung 1.8: Prinzip der Referenzspannungs-Methode

1.4.4 Gewählte Lösung

Alle diese Methoden sind dynamisch. Sie suchen den Punkt der maximalen Leistung. Allerdings wird während die Suche die höchste Leistung verbraucht. Außerdem erfordert die Umsetzung eines solchen Systems einen μC mit Speicher für die Berechnungen, um die Leistung zu verschiedenen Zeitpunkten vergleichen zu können. Weiter muß ein Analog-Digital-Wandler eingesetzt werden, der ebenfalls Energie aufnimmt. Der Einsatz eines μC würde in unserem Projekt einen zu großen Energieverbrauch nach sich ziehen. Aus diesem Grund wurde eine Lösung ohne μC entwickelt. Die sogenannte Referenz-Methode erfordet die Abschaltung des Solarpanels in regelmäßigen Zeitintervallen um die Leerlaufspannung zu messen. Dies ist unvorteilhaft in einer Umgebung, wo sehr wenig Energie vorhanden ist.

Die Lösung besteht schließlich darin, die I-V Kurve unter den gewünschten Helligkeitsbedigungen zu messen, um die Spannung bei der größten Leistung zu finden. Nachher, muß das System nur eine Regelung auf die richtige Spannung durchführen. Dadurch spart das System Energie.

Dieses System ist nicht ein vollständiges "MPPT,,-Verfahren. Aber es wird eine maximale Leistung bei kleiner Helligkeit abgeben, und wird auch mit einer größeren Helligkeit funktionieren.

2 MPPT-Kleinstromversorgung

2.1 Zielanwendung

Die hier zu entwickelnde Stromversorgung ist für den Einsatz in einem Flugzeug bestimmt. Das Solarpanel wird auf der Öffnung des Behälters der Sauerstoffmaske angebracht. Das System wird einen Akkumulator aufladen um ein drathlos arbeitendes Modul zu speisen. Das drathlos arbeitende Elektronik-Modul steuert einen kleinen Motor an, der die Öffnung im Berdarfsfall freigibt. Die drei Photos in der Abbildung 2.1 zeigen das System. Links sieht man die Vorderseite des Labortestsystems. Das weiße Teil ist der Öffnungsmechanismus des Behälters der Sauerstoffmaske. Rechts sieht man Seitenansichten des Behälters, oben geschlossen und unten offen . Das Solarpanel wird unten auf die schwarze Verkleidung geklebt.

Abbildung 2.1: Sauerstoffmaskekiste

2.2 Erstes Konzept

Das erste Konzept ist auf 4 Solarzellen in Serie verbindet gestützt. Vier Zellen geben ein Leerlaufspannung von 2 Volt. Mit einer kleine Spannung, mußt ein Temperaturkompensation implementiert. Diese Kompensation kann mit einem Thermistor realisieren. Das Schema vom Anhang A (Seite I) ziegt der Prinzip. Eine Strommeßung ist am Eingang und am Ausgang der DC/DC Boost Converter gemarcht. Nacher, mit einem P Regler, ein Sollwertekorrektur ist gegeben. Der LT3535 wurde wahlen weil es zwei DC/DC Boost Converter gibt. Mit dem zweite, ein Reglung die Spannung für der Werte der Akku kann ausgefürt sein. Deshalb, der Akku erlegt sein Spannung auf.

Der erste Konzept wurde aufgegeben weil die Wahl von einem Solarpanel(Siehe Abschnitt 2.3) nicht mit diesem Konzept passend war.

2.2.1 P-Regler

Um die Reglung zu realisieren. Braucht die Schaltung einen P-Regler. Diesen Regler ist mit einem Operationalversärker, ein Kondensator und zwei Wiederstanden gebaut wie sagt die folgende Abbildung.

Abbildung 2.2: P-Regler schema

Diese Configuration ist ein Tief-pass Filter aber weil es ein Gleichspannung ist, vehraltet sich wie zeigt die Gleichung. Der kondensator ist einen Antistörungszeichengerät.

$$V_{out} = V_{+} \cdot \frac{R_2 + R_1}{R_1} - V_{-} \cdot \frac{R_2}{R_1}$$
(2.1)

Also mit $R_1 = R_2$ gibt $V_{out} = 2 \cdot V_+ - V_-$. Jetzt mit V_+ als Solwerte wird V_- vergleicht un korrigiert sein. Diese Korrektur wird die Solarpanelspannung regeln.

Auf dieser Schaltung, ein Operationalverstärker LT1490 ist gebraucht wie auf dem Model Dokument [2]. Der LT1490 wird ändern weil es nur zwei in einem Package abrufbar ist.

2.2.2 Simulation

Der Graph von dem Anhang B (Seite II) ist eine Simulation mit einem Temperatur Änderung. Erste am 20 Grad ,zweite am 25 Grad und der dritte am 35 Grad. Der maximal Leistung Punkt herhöht mit einem Abschlag der Temperatur. Mit einem Thermistor, der Sollwerte wachselt und der Solarpanel Ausspannung fallt auch. Diese Simulation zeigt auch ein großer Unterschied zwischen die Spannung Temperaturen. Es bedeutet, dass die aktuale Konzept nicht ohne ein verbessertes System der Messung mit dem Thermistor verwendet werden.

2.3 Wahl des Solarpanels

Zunächst mußte ein Solarpanel ausgewählt werden. Die Suche nach diesem folgte mehreren wichtigen Kriterien. Die Endanwendung des Projekts erfordert nämlich die Einhaltung mehrerer Bedingungen. Ins-

besondere muß das Solarpanel leicht, kleiner als 990 cm^2 (Fläche der Öffnung des Behälters), belastbar und billig sein! Es muß auch in einem Innenraum (Kabine) mit kleiner Sonneneinstrahlung Energie abgeben, fast genau das Gegenteil eines gewöhnlichen Solarpanels.

Aber die Frage ist "Wie groß ist eine kleine Sonneneinstrahlung?, "Als sich diese Frage stellte, flog Herr Glösekötter nach Spanien zu einer Tagung. Er hat diesen Flug zu einigen Messungen benutzt. Wir verwenden seine Ergebnisse als Grundlage. Sie werden unten präsentiert.

Verschiedene Lösungen wurden untersucht. Sie sind nachfolgend vorgestellt.

Messungen der Sonneneinstrahlung von Prof. Dr.-Ing. Peter Glösekötter

Die Messungen wurde mit Hilfe eines Intensitätssensor vorgenommen, dessen Spannungsausgang proportional zur Sonneneinstrahlung ist: $1V = 1000 \frac{W}{m^2}$. Sie fanden am 15. Juni 2010 um 16 Uhr während des Flugs von München nach Madrid statt. Das Flugzeug war ein Airbus A319-100. Sie wurden am Sitz 9C aufgenommen, am Gang, beim Notausgang. Das Wetter war nicht sehr schön, mit einer dichten Wolkendecke.

Die gemessenen Werte sind am höchsten neben dem Fester, mit einer Sonneneinstrahlung von $100\frac{W}{m^2}$, und am niedrigsten dort, wo sich unser System befindet, an der Kabinendecke, mit 1 bis $2\frac{W}{m^2}$

Vielen Dank für diese wichtigen Informationen!

2.3.1 Ersol Solarzellen

Der heutige Hersteller Bosch-Solarenergy hieß zuvor ErSol Solar Energy. Er liefert Solarzellen aus polykristallinem Silizium. Zellen von ErSol Solar Energy waren im Labor schon vorhanden. Die Typenbezeichnung dieser Zellen ist 100/3C/G, aber leider ist es nicht gelungen, ein Datenblatt dazu zu finden. Für ein Projekt, muß die vorgeschlagene Lösung analysierbar sein. Für diesen Zweck wurde die "Bosch Solar Cell P,, untersucht. Die Bosch Solar Cel P ist größer als die 100/3C/G. Die Abmessungen betragen 156x156mm für die erste und 100x100mm für die zweite. Dies ist ein großer Nachteil.

Diese Zelle hat einen positive Seite und eine negative. Die Spannung wird zwischen den beiden Seiten gemessen. Sie hat eine Leerlaufspannung von 0.6 V und einen Kurzschlußstrom von 8mA bei $1000 \frac{W}{m^2}$. Das ist gut, aber nicht in unserem Fall. Bei $200 \frac{W}{m^2}$, liegt die Leerlaufspannung in der Nähe von 0.55V und der Kurzschlußstrom ist kleiner als 1.5mA. Das Problem ist der Platz auf der Öffnung des Behälters. Dieser genügt nur für vier Zellen. Vier Zellen in Serie für 2.2V /1.5mA oder zwei mal zwei Zellen in Serie-/Parallelschaltung für 1,1V/3mA. Diese Zellen sind sehr brüchig, da ihre Dicke nur 200 μm oder 0.2mm beträgt.

Eine anderer Nachteil ist ihre komplizierte Anbringung. Es ist schwierig sie zu löten und sicherlich auch zu kleben. Es bleiben vier verschiedene Zellen. Einige Photos von Solarzellen vom Typ 100/3C/G sind unten in Abbildung 2.3 abgedruckt.

Abbildung 2.3: Solarzellen Typ 100/3C/G.

2.3.2 Sanyo Solarzellen aus amorphem Silizium

Die Solarzellen von Sanyo aus amorphem Silizium haben fast alle gewünschten Qualitäten für unsere Anwendung. Es handelt sich um eien Dünnfilmtechnologie, mit geringer Masse. Sie sind leicht zu kleben und belastbar. Aber die Daten stehen nur auf dem Papier: In Wirklichkeit, nach mehreren emails mit Sanyo, habe wir keine Liefer-Information von diesem revolutionären Solarpanel. Alle Dünnfilmprodukte seien verkauft, sie eigneten sich nur für Außenanwendungen. Die Brochure ist verfügbar auf folgender Webseite : http://semicon.sanyo.com/en/pamph_pdf_e/EP120B.pdf

2.3.3 Photovoltaische Zellen GeneCIS

GeneCIS von der Firma Würth Solar ist eine Solarzelle aus Kupfer,Indium und Di-Selenid. Es handelt sich eine neue Herstellungs-Technologie. Eine Zelle hat ein Leerlaufspannung von 0.65V. Im Punkt maximaler Leistung ist die Spannung 0.5V, und die Stromdichte $23 \frac{mA}{cm^2}$ bei $1000 \frac{W}{m^2}$.

Die große Vorteil sind die flexiblen Abmessungen. Der Bestellbereich liegt zwichen 120x120mm und 2400x2600mm. Die für uns gewünschten 330x300 mm liegen offensichtlich in diesem Bereich.

Aber zwei größere Nachteile sind auch leicht identifizierbar. Der erste ist der Preis. Eine neue Technologie ist teurer als eine andere. Das Basismodul auf der Webseite des Herstellers kostet bereits 239€. Die zweite ist der Gewicht. Das Gewicht des gewünschten Solarpanels bestimmt sich aus der folgenden Betiehung, welche das Datenblatt angibt,

 $Masse[g] = Länge[mm] \cdot Breite[mm] \cdot Tiefe[mm] \cdot 0.0025 = 330 \cdot 300 \cdot 6.5 \cdot 0.0025 = 1.61[Kg]$ (2.2)

2.3.4 Solar-Panel ASI-F 5/12

Dieses Solarpanel wurd auf der Webseite http://www.pollin.de für 59,95€ bestellt. Es ist schon ein Modul. Es hat eine Leerlaufspannung von 22.8V, einen Kurzschluß-strom von 0.398A für eine Leistung von 5.2

W bei $1000\frac{W}{m^2}$. Seine Maße sind 330x293mm. Es ist etwas größer aber besitzt einen Glasschutz. Ohne diesen Glasschutz wären seine Abmessungen und damit auch seine Masse kleiner.

Im Betrieb hat das Panel etwas Leistung eingebüßt nachdem der Glasschutz entfernt wurde.

Messungen

Um die Kennlinie zu bestimmen, sind Messungen in einem Dunkelraum für mehr Genauigkeit gemacht worden. Zwei verschiedene Tests wurden durchgeführt. Der erste bei $2\frac{W}{m^2}$ und der zweite mit einer zehnmal höheren Strahlungsleistung, d.h. bei $20\frac{W}{m^2}$. Die zwei folgenden Tabellen zeigen die entsprechenden Resultate.

U [V]	I[A]	P[W]
0.118	1.17×10^{-3}	1.38×10^{-4}
1.28	1.17×10^{-3}	1.50×10^{-3}
2.42	1.15×10^{-3}	2.78×10^{-3}
3.53	1.13×10^{-3}	3.99×10^{-3}
4.6	1.12×10^{-3}	5.15×10^{-3}
5.56	1.10×10^{-3}	6.12×10^{-3}
6.6	1.08×10^{-3}	7.13×10^{-3}
7.5	1.06×10^{-3}	7.95×10^{-3}
8.4	1.04×10^{-3}	8.74×10^{-3}
9.3	1.02×10^{-3}	9.49×10^{-3}
10	9.90×10^{-4}	9.90×10^{-3}
10.8	9.70×10^{-4}	1.05×10^{-2}
11.4	9.40×10^{-4}	1.07×10^{-2}
11.9	9.12×10^{-4}	1.09×10^{-2}
12.3	8.76×10^{-4}	1.08×10^{-2}
12.65	8.40×10^{-4}	1.06×10^{-2}
13.2	7.70×10^{-4}	1.02×10^{-2}
13.7	6.83×10^{-4}	9.36×10^{-3}
14.48	4.80×10^{-4}	6.95×10^{-3}
14.7	3.67×10^{-4}	5.39×10^{-3}
15	2.14×10^{-4}	3.21×10^{-3}
15.1	1.00×10^{-4}	1.51×10^{-3}
15.33	0.00	0.00

U [V]	I[A]	P[W]
0.048	5.00×10^{-5}	2.40×10^{-6}
0.089	4.85×10^{-5}	4.32×10^{-6}
0.14	4.95×10^{-5}	6.93×10^{-6}
0.2	4.96×10^{-5}	9.92×10^{-6}
0.24	4.80×10^{-5}	1.15×10^{-5}
0.47	4.75×10^{-5}	2.23×10^{-5}
0.96	4.84×10^{-5}	4.65×10^{-5}
1.3	4.43×10^{-5}	5.76×10^{-5}
1.67	4.13×10^{-5}	6.90×10^{-5}
1.97	3.99×10^{-5}	7.86×10^{-5}
2.35	3.92×10^{-5}	9.21×10^{-5}
3	3.48×10^{-5}	1.04×10^{-4}
3.55	3.00×10^{-5}	1.07×10^{-4}
3.88	2.83×10^{-5}	1.10×10^{-4}
4.2	2.56×10^{-5}	1.07×10^{-4}
4.42	2.40×10^{-5}	1.06×10^{-4}
5	1.78×10^{-5}	8.92×10^{-5}
5.7	1.04×10^{-5}	5.93×10^{-5}
6.6	0.00	0.00

Tabelle 2.2: Messung bei $2\frac{W}{m^2}$

Tabelle 2.1: Messung bei $20\frac{W}{m^2}$

Die Kurven der Abbildungen 2.4 und 2.5 sind anhand dieser Messungen gezeichnet. Dies sind die I-V und P-V Kennlinien des Solarpanels

Abbildung 2.4: Characteristic am $20\frac{W}{m^2}$

Abbildung 2.5: Characteristic am $2\frac{W}{m^2}$

2.3.5 Solar Akku Lader

Der Solar Akku Lader wurde auf der Webseite http://www.reichelt.de/ für 19,95€ bestellt. Nur das Solar-Palel wird für unsere Anwendung benötigt. Die Plastikabdeckung ließ sich leicht entfernen weil sie nur mit zwölf Schrauben befestigt ist. Die Elektronik wurde ebenfalls entfernt.

Dieses Solarpanel ist die beste Lösung unter allen untersuchten Solarpanels. Und zwar ist es das Leichteste, es ist schon ein Modul, und nur 5mm dick. Wenn erforderlich können drei gleiche Solarpanels benutzt werden um die Leistung zu steigern. Das Photo auf der Abbildung 2.6 zeigt den gekauften Solar Akku Lader und denselben ohne Plastikabdeckung.

Abbildung 2.6: Solar Akku Lader

Meßungen

Wie beim letzten Solarpanel wurden die Messungen unter den gleichen Bedingungen vorgenommen. Wie zuvor wurden zwei verschiedene Tests realisiert. Der erste bei $2\frac{W}{m^2}$ und der zweite mit einer zehnmal höheren Einstrahlungsleistung bei $20\frac{W}{m^2}$. Die zwei folgenden Tabellen zeigen die Resultate.

Mit diesen Daten wurden die Graphiken der Abbildungen 2.7 und 2.8 gezeichnet. Diese Graphiken sind die I-V und P-V Kurven von diesem Solarpanel bei $2\frac{W}{m^2}$ und bei $20\frac{W}{m^2}$.

U [V]	I[A]	P[W]
0.22	42.60×10^{-6}	009.37×10^{6}
0.44	42.50×10^{6}	18.70×10^{6}
0.88	42.80×10^{6}	37.66×10^{6}
1.29	42.00×10^{6}	54.18×10^{6}
1.69	42.00×10^{6}	70.98×10^{6}
2.5	41.00×10^{6}	102.50×10^{6}
3.3	40.00×10^{6}	132.00×10^{6}
4	40.50×10^{6}	162.00×10^{6}
6.9	33.70×10^{6}	232.53×10^{6}
9	22.40×10^{6}	201.60×10^{6}
9.7	16.20×10^{6}	157.14×10^{6}
10.2	12.70×10^{6}	129.54×10^{6}
10.4	10.00×10^{6}	104.00×10^{6}
11.2	00.00	00.00

U [V]	I[A]	P[W]
0.027	534.00×10^{-6}	14.42×10^{-6}
0.038	553.00×10^{-6}	21.01×10^{-6}
0.079	538.00×10^{-6}	42.50×10^{-6}
0.132	540.00×10^{-6}	71.28×10^{-6}
0.3	534.00×10^{-6}	160.20×10^{-6}
0.57	540.00×10^{-6}	307.80×10^{-6}
0.6	550.00×10^{-6}	330.00×10^{-6}
2.18	537.00×10^{-6}	001.17×10^{-3}
3.8	532.00×10^{-6}	002.02×10^{-3}
10.1	505.00×10^{-6}	005.10×10^{-3}
15.3	302.00×10^{-6}	004.62×10^{-3}
15.9	197.00×10^{-6}	003.13×10^{-3}
16	160.00×10^{-6}	002.56×10^{-3}
16.4	41.00×10^{-6}	672.40×10^{-6}
16.5	23.00×10^{-6}	379.50×10^{-6}
16.6	00.00	00.00

Tabelle 2.3: Messung bei $2\frac{W}{m^2}$

Tabelle 2.4: Messung bei $20\frac{W}{m^2}$

Abbildung 2.7: Characteristic am $2\frac{W}{m^2}$

Abbildung 2.8: Characteristic am $20\frac{W}{m^2}$

2.4 Akkumulator

Das Ziel des Projekts ist es das IdWarf Module zu speisen. In der IdWarf Dokumentation [13] steht, daß das IdWarf Module höchstens 74.8mA im Aktiv-Modus und 12.7 μ A im Schlaf-Modus verbraucht. Die Schaltung sendet alle 11.38ms \approx 11.4ms ein Paket. Mit diesen Informationen, kann man die Akkumulator-Kapazität berechnen.

2.4.1 Berechnung der Akkumulator-Kapazität

Bezeichnung	Berechnung	Resultat	Einheit
Aktive Zeit	$11.4 \cdot 10^{-3} \cdot 1$	11.4	ms
Schlaf-Zeit	$1 - 11.4 \cdot 10^{-3}$	988.6	ms
Elektrische Ladung im Aktiv-Modus	$11.4 \cdot 10^{-3} \cdot 74.8 \cdot 10^{-3}$	852.72	μAs
Elektrische Ladung im Schlaf-Modus	$(988.6 \cdot 10^{-3}) \cdot 12.7 \cdot 10^{-6}$	12.56	μAs
Gesamte elektrische Ladung	$852.72 \cdot 10^{-6} + 12.56 \cdot 10^{-6}$	865.28	μAs
Gesamte elektrische Ladung	$\frac{865.28 \cdot 10^{-6}}{3600}$	240.34	nAh

Die folgende Tabelle gibt die elektrische Ladung für einen "Duty Cycle" von eins.

und die nächste für einen "Duty Cycle" von zehn:

Bezeichnung	Berechnung	Resultat	Einheit
Aktive Zeit	$11.4 \cdot 10^{-3} \cdot 10$	114	ms
Schlaf-Zeit	$1 - 114 \cdot 10^{-3}$	886	ms
Elektrische Ladung im Aktiv-Modus	$114 \cdot 10^{-3} \cdot 74.8 \cdot 10^{-3}$	8.53	mAs
Elektrische Ladung im Schlaf-Modus	$(886 \cdot 10^{-3}) \cdot 12.7 \cdot 10^{-6}$	11.25	μAs
Gesamte elektrische Ladung	$8.53 \cdot 10^{-3} + 11.25 \cdot 10^{-6}$	8.54	mAs
Gesamte elektrische Ladung	$\frac{8.53 \cdot 10^{-3}}{3600}$	2.37	μAh

Das Solarpanel muß hier also 2.37 µAh liefern können.

2.4.2 Wahl des Akkumulators

Die Wahl wurde schon vor dem Beginn unseres Projekts getroffen. Der "Infinite Power Solution " Akkumlator vom Hersteller mit demselben Namen war schon von Sören Hoppenau und Andre Kipke teilweise untersucht worden. Sie hatten bereits Muster bestellt.

Am Anfang und weil die Wahl schon getroffen war, haben wir nur untersucht wie diese Lösung anzuschließ en sei.

Erläuterungen zur Lösung

Der Akkumulator von "Infinite Power Solution ,, besteht aus zwei Teilen. Der erste Teil ist der MPM (Micro Power Management) Schaltkreis und der zweite Teil ist die MEC (Micro Energy Cell). Die zwei Teile werden unten erklärt.

Micro Power Module

Der MPM ist ein Leistungs-Manager. Es hat zwei Eingänge, einen für die Wechselspannung und einen anderen für die Gleichspannung. Nur der Gleichspannungs-Eingang ist wichtig für die gewünschte Anwendung. Dieser Eingang muß eine Leistung von bis zu 150mW erhalten. Sie muß bei einer Spannung zwischen 3.9V und 4.1 V bereitgestellt werden. Der MPM steuert die Akkumulatorladung; nur eine Gleichspannung von 4V muß gesichert sein. Die Abbildung 2.9 zeigt das elektrische Schema des Gleichspannungs-Eingangs.

Abbildung 2.9: Schaltbild des Eingangs des D-MPM101-7A.

In der Abbildung 2.10, wird die typische Konfiguration gezeigt. Mit dieser Lösung kann eine Solarpanel-Quelle und gleichzeitig auch eine piezoelektrische Quelle eingesetzt werden. Eine zweite Quelle ist von Vorteil um in einem Flugzeug mehr Strom zu produzieren, da ein Solarpanel nicht viel Strom wegen der schlechten Helligkeits-Bedingungen produziert.

Der Hersteller schlägt zwei verschiedene MPMs vor, der Typ 7A und der Typ 7B. Die folgende Tabelle zeigt die Unterschiede.

Abbildung 2.10: Typische Konfiguration des D-MPM101-7A.

		7B	7A
Größe	[mm]	31 x 32 x 3.8	25.4 x 26.7 x 4
Leistung	[mW]	bis 80	bis 200
Speicherkapazität	[Ah]	700µ bis 1.0m	700µ bis 2.0m
Maximaler Strom	[mA]	30	60
Anzahl Pins		20	14

Die Wahl fiel auf den Typ 7A. Dieses Modul hat bei etwas gleicher Baugröße eine größere Anpassungsfähigkeit der Speicherkapazität als der Typ 7B. Da die Zukunft dieses Projekt noch nicht bekannt ist, ist eine größere Anpassungsfähigkeit ein erheblicher Vorteil.

Micro Energy Cell 101

Die Micro Energy Cell oder MEC ist eine innovative Batterie-Lösung. Eine Zelle hat die Maße 25.4x25.4 x0.17 mm für bei einem Gewicht von 450 mg. Eine Zelle MEC101 hat eine Speicherkapazität zwichen 0.7mAh und 1.0mAh. Damit reicht eine Zelle für einen drahtlosen Sensor aus. Allderdings ergibt die Berechnung im Unterabschnitt 2.4.1 den Wert von $2.37\mu A$. Diese Zelle hat eine fast horizontale Entladungs-Kurve. Die Abbildung 2.11 zeigt diese Kurve.

Abbildung 2.11: Entladungs-Kurve der MEC101

Probleme

Das erste Probleme ist, daß die Muster nie eingetroffen sind . Auf mehrere e-mails erhielten wir keine Antwort. Der Lieferant verweist uns zum Hersteller und umgekehrt. Selbst die Kontaktaufnahme durch

zwei verschiedene Personen (Andre Kipke und Lucien Roten) ergab keine Informationen über diese Bestellung. Deswegen konnten in unserem Projekt diese Zellen nicht getestet werden. Nur die Information von 4V am Eingang war als Basis vorhanden.

Aber in diesem Bericht soll die zu treffende Auswahl der Zelle erklärt werden. Ein großes Probleme ist identifiziert worden. Der maximale Strom den die MEC101 liefern kann, ist kleiner als der maximal gebrauchte Strom. Die MEC101 kann höchstens 30mA liefern. Gemäß der Idwarf Documentation [13], braucht das Idwarf Modul maximal 74.8mA. Die MEC101 reicht nicht aus. Die Wahl einer MEC102 sollte vorzuziehen sein. Aber für die MEC102 existiert kein geeigneter MPM. Ohne MPM kann nur eine Quelle benutzen werden.

Micro Energy Cell 102

Die MEC 102 ist größer als die MEC101. Ihre Abmessungen sind 25,4 x 50.8 x0.17mm für ein Gewicht von 900mg. Dies entspricht der Größe von zwei MEC101. Der maximale Strom ist 75 mA für die Standard-Version und 100mA für die Perform-Version. Sie besitzt eine Speicherkapazität zwischen 1.2 und 2.5 *mAh*. Dies ist besser aber die nächste Abbildung 2.12 zeigt den Spannungfall für einen abgegebenen Strom von 75mA. Es gibt noch ein anderes Problem. Kann das Idwarf Modul bei 2.5 V funktionieren ?

Abbildung 2.12: Entladungs-Kurve der MEC102

Diese Frage ist noch offen. Da die Zelle nicht geliefert wurde, kam eine Lösung mit drei Akkumulatoren zum Einsatz.

Eneloop 1.2V

Wir verwenden für unsere Batterie drei Akkumulatoren Eneloop in Serie von Sanyo. Ein Akkumulator hat wie eine Batterie AAA einen Durchmesser von 10.5mm und eine Höhe von 44.5 mm. Eine Batterie kann maximal 800mA liefern. Dies ist besser als die MEC, selbst wenn die Entladungskurve nicht horizontal ist wie die Abbildung 2.13 zeigt .

Abbildung 2.13: Entladungs-Kurve von Eneloop

2.5 Zweites Konzept

Der Solarzellen des Akku Laders sind für unsere Anwendung gewählt worden. Daher ist nun die Spannung höher und das Konzept 1 funktioniert nicht unter diesen Bedingungen.

2.5.1 Punkt maximaler Leistung

Mit Hilfe der Daten aus dem Abschnitt 2.3.5 und der Graphiken der Abbildungen 2.7 und 2.8 kann der MPP leicht gefunden werden.

Eine graphische Darstellung hilft den Punkt maximaler Leistung zu finden wie die zwei Graphiken des Abschnitts 2.3.5 zeigen. Er liegt ungefähr bei sieben Volt bei $2\frac{W}{m^2}$. Dieser Wert wird für unsere Schaltung benutzt. Dies ist die beste Spannung, wenn die kleinste Sonneneinstrahlung zur Verfügung steht.

Mit unserem neuen Solarpanel benötigen wir einen DC/DC-Wandler der abwärts stellt. Auf der Webseite von Linear Technologies wurde eine Suche mit den folgenden Kriterien durchgeführt : Switching Regulator \rightarrow Step-Down (Buck) Regulators \rightarrow Micropower Buck. Der LTC3642 ist ein DC/DC-Wandler mit einem großen Eingangsbereich (4.5V bis 45V). Er hat einen Ruhestrom von 12 μ A. Er ist ein "Buck Konverter,, wie gewünscht. Wir diesen Konverter für das Weitere benutzen.

2.5.2 Entwurf

Die erste Idee war das Konzept 1 zu nehmen und anzupassen. Die Architektur ändert sich ein bißchen, aber der P-Teil kann derselbe bleiben. Nur der LT1490 ist gegen einen LTC1636 ausgetauscht worden. Der LTC1636 wurde gewählt weil er einen großen Versorgungsspannungsbereich (2 bis 44V) bei einer kleinen Stromaufnahme von $50\mu A$ besitzt. Er hat auch einen großen Ausgangsstrombereich (bis 25mA). Damit, besitzt er eine große Anpassungsfähigkeit an andere Solarpanels und Helligkeitsbedingungen.

Der Anhang C (Seite III) zeigt diese Schaltung.

Dimensionierung der passiven Bauelemente

Zuerst werden die Spannungsteiler am Ein- und Ausgang mit dieser Gleichung berechnet:

$$Vout = 0.8 \cdot \left(1 - \frac{R2}{R1}\right) \tag{2.3}$$

Am Eingang (Solarpanel), muß die Spannung 7V betragen, also $\frac{R6}{R7} = \frac{7}{0.8} - 1 = 7,75$. Eine Wahl von R7=75k Ω ergibt $R6 \approx 582k\Omega$. Am Ausgang (Akkumulator), muß sie 4V betragen, also $\frac{R1}{R2} = \frac{4}{0.8} - 1 = 4$. Eine Wahl von R2=100k Ω ergibt $R1 = 400k\Omega$.

Die Spulengroße ist abhängig vom Spitzenstrom. Die folgende zweite Gleichung zeigt wie :

$$L_{min} = \frac{V_{in(max)} \cdot t_{on(min)}}{I_{peak}} = \frac{15 \cdot 100ns}{25ms} = 60\mu H$$
(2.4)

Bei einer Frequenz von 685 kHz, ergibt sich :

$$L = \frac{V_{out}}{f \cdot I_{peak}} \cdot \left(1 - \frac{V_{out}}{V_{in}}\right) = \frac{4V}{685 \cdot 10^3 Hz \cdot 25mA} \cdot \left(1 - \frac{4V}{7V}\right) = 100.1\mu H \approx 100\mu H$$
(2.5)

Für die Filter-Kondensatoren gehen wir vor wie folgt. Ein kleiner keramischer Kondensator ist in parallel mit den anderen platziert um eine schnelle Antwort zu erzielen. Für ein einfaches Design sind die Werte der Kondensatoren am Eingang und am Ausgang dieselben.

Die Wahl von $10\mu F$ dient dazu die Welligkeit klein zu halten. Ein paralleler Kondensator von 10pF filtert schnelle Schwingungen. Dies ist grösser als die Richtwerte des Datenblatts. So sind wir auf der sicheren Seite.

2.5.3 Optimierung

Der LTC3642 hat einen Pin SS. Dieser Pin ist ein dritter Eingang eines internen Komparators, wie die Abbildung 2.14zeigt. Eine Optimierung bestünde darin direkt die Eingangssapnnungen anzuschließen und so einen Operationsverstärker einzusparen .

Dimensionierung der passiven Bauelemente

Für diese Schaltung werden dieselben Gleichungen wie vorher benutzt. Die einzige Unterschied ist die Größe der Spule.

$$Vout = 0.8 \cdot \left(1 - \frac{R2}{R1}\right) \tag{2.6}$$

Am Eingang (Solarpanel), muß die Spannung 7V betragen, also $\frac{R6}{R7} = \frac{7}{0.8} - 1 = 7,75$. Eine Wahl von R7=75k Ω ergibt $R6 \approx 582k\Omega$. Am Ausgang (Akkumulator), muß sie 4V betragen, also $\frac{R1}{R2} = \frac{4}{0.8} - 1 = 4$. Eine Wahl von R2=100k Ω ergibt $R1 = 400k\Omega$.

Abbildung 2.14: Block Diagramm des LT3642

Die Spulengröße ist abhängig vom Spitzenstrom und der Frequenz. Eine kleinere Frequenz (460 kHz) wurde für diese Anwendung gewählt.

$$L = \frac{V_{out}}{f \cdot I_{peak}} \cdot \left(1 - \frac{V_{out}}{V_{in}}\right) = \frac{4V}{460 \cdot 10^3 Hz \cdot 25mA} \cdot \left(1 - \frac{4V}{7V}\right) = 149\mu H \approx 150\mu H$$
(2.7)

Die Werte der Kondenzatoren sind dieselben wie in der anderen Schlaltung. Die Wahl von $10\mu F$ dient dazu die Welligkeit klein zu halten. Ein paralleler Kondensator von 10pF filtert schnelle Schwingungen.

2.5.4 Simulation

Die Schaltung, in beiden Varianten, wurde mit pSPICE simuliert. Die Ergebnisse dieser Simulationen sind nicht in diesem Bericht enthalten, da sie mit den Testergebnissen nicht gut übereinstimmen.

2.6 Leiterplatten (PCB)

Dieser Abschnitt erklärt warum mehrere Leiterplatten-Layouts erforderlich waren. Der französische Spruch "C'est en forgeant que l'on devient forgeron,, entspricht dem deutschen Spruch "Übung macht den Meister,, und faßt die PCB-Entwicklung gut zusammen.

SMD

Das erste Layout, das erstellt wurde, ist der SMD PCB. Für ein Flugzeug sind eine kleine Masse (32x24mm) und ein kleines Gewicht Vorteile. Aus diesem Grund wurden zunächst SMD Komponenten gewählt. Dieser PCB kannt im Anhang E (Seite V) nachgesehen werden.

Normale Komponenten

Nach einer Projektbesprechung, wurde jedoch die Lösung mit normalen Komponenten bevorzugt, weil das Labor bereits solche Komponenten besitzt und weil für einen Prototyp dieser Vorschlag einfacher aufzubauen und zu testen ist. Gleichzeitig wurde die Lösung ohne Operationsverstärker untersucht (siehe 2.5.3). Zwei Leiterplatten-Layouts wurden erstellt, eine Version ohne Operationsverstärker und ein andere mit.

Eine Problem ist mit diesen zwei Leiterplatten-Layouts jedoch aufgetaucht. Alle Leiterbahnen sind auf der Oberseite. Es gibt deswegen Probleme zu löten, weil oben Komponenten Leiterbahnen bedecken. Also wurden zwei andere Leiterplatten-Layouts mit den Leiterbahnen auf der Unterseite realisiert. Die verschidenen Leiterplatten-Layouts finden Sie in den Anhängen.

- Leiterbahnen auf der Oberseite
 - mit OP : Anhang F (Seite VI)
 - ohne OP : Anhang G (Seite VII)
- Leiterbahnen auf der Unterseite
 - mit OP : Anhang H (Seite VIII)
 - ohne OP : Anhang I (Seite IX)

Korrektur

Die in dem vorigen Abschnitt beschriebenen Leiterplatten-Layouts waren zu kompakt. Es war ein Probleme sie zu bestücken und besonders dann zu testen. Deswegen wurden zwei PCBs mit größeren Vias hergestellt.

Ein kleine Korrektur ist auf der Platine mit Operationsverstärker ausgeführt worden. Der Pin Zwei (V_{in}) und der Pin Fünf(run) waren unter dem LTC3642 verbindet. Aber der LTC3642 hat Neun Pins und nicht Acht. Der letzte ist unter dem Chip und muß mit den Masse verbunden werden. Diese Situation verursachte einen Kurzschluß. Nun sind der Pin Vier (I_{set}) und der Pin Sieben(GND) sind über die Rückseite verbunden. So wird der Kurzschlußvermieden. Die zwei verschidenen PCBs sind sind dargestellt in:

- mit OP : Anhang J (Seite X)
- ohne OP : Anhang K (Seite XI)

Löten

Nach einigen Tests, haben wir mehrere Regeln für das Löten gefunden. Sie sind dazu da, einen guten PCB aufzubauen und Zeit zu sparen. Diese Regeln sind nicht obligatorisch, aber empfohlen.

- 1. Nach jeder Lötung prüfen daß kein Kurzschluß entstand.
- 2. Alle Komponenten vor dem Löten platzieren, um eine Sequenz zu definieren.
- 3. Vor dem Löten prüfen, daß keine kleine Komponente eine große beim Einlöten behindert.
- 4. Löten von der kleinsten zur größten Komponente. In dieser Reihenfolge für unsere Platinen : Vias, SMD, Wiederstände, Kondensatoren, Potentiometer und Kabel.

2.7 Tests

Um den korrekten Betrieb der Schaltungen zu validieren, wurden Tests durchgeführt. Drei verschidedene Prüfungen sind realisieren worden. Die zwei erste sind in einem Dunkelraum ausgefürt. Die Resulate und die erklärungen sind nachfolgende.

2.7.1 Test mit variabler Helligkeit

Der erste Test prüft das Verhalten bei variabler Hellikeit. In einem abgedunkelten Raum wird ein Akkumulator aufgeladen mit Hilfe einer Beleuchtung, deren Helligkeit von $2\frac{W}{m^2}$ bis 100 $\frac{W}{m^2}$ erhöht wurde. Die Abbildung 2.15 stellt den Testaufbau dar.

Name	Apparat
A_1	Mutlimeter Metrahit 26S als Ampermeter
V_1	Mutlimeter Metrahit PRO als Voltmeter
V_2	Mutlimeter Metrahit PRO als Voltmeter
A_2	Mutlimeter Metrahit X-TRA als Ampermeter

Abbildung 2.15: Testaufbau.

Dieser Test lieferte die folgenden Ergebnisse für die zweite Schaltungen, in Tabellenform :

Anhand dieser Daten kannveine Graphik der Spannung in Abhängigkeit von der Helligkeit gezeichnet werden. Die Schaltungen funktionieren gut, wie man auf der Graphik in der Abbildung 2.18 sehen kann. Die Solarpanelspannung bleibt bei 7V wie gewünscht.

In der Abbildung 2.18 kann man aber auch sehen, daß die Schaltungen funktionnieren ab einem Helligkeitspegel von 5.5 $\frac{W}{m^2}$ für die Schaltung mit Operationsverstärker, und 6.8 $\frac{W}{m^2}$ ohne Operationsverstärker. Dies ist ein erstaunliches Resultat. Normalerweise müßte die Schaltung ohne Operationsverstärker vorher

Helligkeit $\left[\frac{W}{m^2}\right]$	V_1 [V]	<i>A</i> ₁ [A]	V_2 [V]	A_2 [A]
2	3.2	3.60×10^{-5}	3.73	-6.90×10^{-5}
3.2	3.3	5.60×10^{-5}	3.73	-5.10×10^{-5}
5.5	6.9	9.50×10^{-5}	3.73	3.40×10^{-5}
6.3	7	1.16×10^{-4}	3.73	7.00×10^{-5}
10	7.3	2.12×10^{-4}	3.73	2.15×10^{-4}
18.6	7	4.70×10^{-4}	3.73	6.13×10^{-4}
27	7.1	7.69×10^{-4}	3.73	1.00×10^{-3}
37	7.3	1.16×10^{-3}	3.73	1.70×10^{-6}
46	7.3	1.50×10^{-3}	3.73	2.30×10^{-3}
68	6.7	2.67×10^{-3}	3.74	4.10×10^{-3}
83	7	3.40×10^{-3}	3.74	5.88×10^{-3}
103	7.1	4.51×10^{-3}	3.74	6.90×10^{-3}

Abbildung 2.16: Messungen an der Schaltung mit Operationsverstärker.

Helligkeit $\frac{W}{m^2}$	V_1 [V]	<i>A</i> ₁ [A]	V_2 [V]	<i>A</i> ₂ [A]
2	3.32	3.63×10^{-5}	3.79	-7.50×10^{-5}
4	3.35	6.86×10^{-5}	3.789	-4.46×10^{-5}
6	3.44	1.06×10^{-4}	3.791	-1.10×10^{-5}
7	7	1.27×10^{-4}	3.793	4.69×10^{-5}
10	7.037	2.09×10^{-4}	3.795	1.37×10^{-4}
14.4	7.09	3.15×10^{-4}	3.795	2.68×10^{-4}
26	7.001	6.61×10^{-4}	3.797	8.37×10^{-4}
36	7.14	1.05×10^{-3}	3.798	1.42×10^{-3}
44	7.1	1.35×10^{-3}	3.80	1.86×10^{-3}
64	7.2	2.25×10^{-3}	3.80	2.98×10^{-3}
83	7.3	3.07×10^{-3}	3.80	4.16×10^{-3}
105	7.2	4.28×10^{-3}	3.81	6.57×10^{-3}

Abbildung 2.17: Messungen an der Schaltung ohne Operationsverstärker.

Abbildung 2.18: Testaufbau

funktionieren weil sie weniger Strom verbraucht. Eine mögliche Erklärung ist, daß die Akkumulatoren hier mehr aufgeladen waren. Zum Nachprüfen dieser Vermutung wurde ein zweiter Test durchgeführt. Dieses mal mit fast leerem Akkumulator. Die zwei folgenden Tabellen zeigen die Ergebnisse.

Helligkeit $\frac{W}{m^2}$	V_1 [V]	<i>A</i> ₁ [A]	V_2 [V]	<i>A</i> ₂ [A]
2	3.1	4.10×10^{-5}	3.52	-4.00×10^{-5}
3	3.16	6.00×10^{-5}	3.52	-2.60×10^{-5}
4	3.2	8.00×10^{-6}	3.52	-1.00×10^{-5}
6	4.8	1.14×10^{-4}	3.527	7.87×10^{-6}
8	6.5	1.38×10^{-4}	3.53	7.30×10^{-5}
10	7.9	1.70×10^{-5}	3.53	1.34×10^{-4}
16	11.5	2.47×10^{-4}	3.53	3.43×10^{-4}
21	13.56	2.81×10^{-4}	3.54	3.86×10^{-4}
32	14.8	4.03×10^{-4}	3.55	4.79×10^{-4}
43	15.99	4.53×10^{-4}	3.55	5.51×10^{-4}
56	16.62	5.34×10^{-4}	3.58	7.20×10^{-4}
73	17	6.39×10^{-4}	3.56	9.31×10^{-4}
84	17.34	7.36×10^{-1}	3.56	1.14×10^{-3}
100	17.51	1.04×10^{-3}	3.57	1.95×10^{-3}

Abbildung 2.19: Messungen an der Schaltung ohne Operationsverstärker mit einem fast leeren Akkumulator.

Helligkeit $\frac{W}{m^2}$	V_1 [V]	<i>A</i> ₁ [A]	V_2 [V]	A_2 [A]
2.2	3.26	4.18×10^{-5}	3.671	-1.03×10^{-4}
4.8	3.33	8.85×10^{-5}	3.671	-2.00×10^{-5}
5.8	3.4	1.12×10^{-4}	3.671	-8.00×10^{-6}
6.6	6.2	1.28×10^{-4}	3.671	7.65×10^{-5}
10	6.3	2.22×10^{-4}	3.672	2.13×10^{-4}
14.7	6.3	3.50×10^{-4}	3.673	4.12×10^{-4}
23.3	6.4	6.24×10^{-4}	3.675	8.13×10^{-4}
31.2	6.2	9.59×10^{-4}	3.67	1.30×10^{-3}
40	6.26	1.30×10^{-3}	3.68	1.78×10^{-3}
52	6.3	1.88×10^{-3}	3.68	2.60×10^{-3}
63	6.3	2.40×10^{-3}	3.69	3.33×10^{-3}
80	6.3	3.20×10^{-3}	3.69	4.60×10^{-3}
93	6.3	3.70×10^{-3}	3.7	5.50×10^{-3}
100	6.34	4.40×10^{-3}	3.708	6.32×10^{-3}

Abbildung 2.20: Messungen an der Schaltung mit Operationsverstärker mit einem fast leeren Akkumulator.

Der Schaltung mit dem Operationsvertärker reagiert korrekt und lädt den Akkumulator auf. Die andere Schaltung funktioniert auch aber regelt nicht die Spannung.

2.7.2 Tests zur Optimierung

Um die Leistung zu optimieren, wurde eine Messung mit minimaler Helligkeit gemacht. Die Ergebnisse sind in der Abbildung 2.21 aufgezeichnet. Weil die Schaltungen nicht bei $2\frac{W}{m^2}$ funktionieren, ist es wichtig, dne Sollwert der Spannung des Solarpanel so anzupassen, daß es möglich ist , den Punkt maximaler Leistung bei der kleinsten Helligkeit zu erreichen. Die beiden Schaltungen haben nicht denselben Regelbereich. Die Graphen unten erlauben die maximalen Werte zu schätzen. Die beste Spannung beträgt demnach 8V.

Abbildung 2.21: Testaufbau

Ein zweiter Test wurde mit der Schaltung mit Operationsverstärkerdurchgeführt. Das Ziel war die beste Spannung finden. Die Schaltung fängt bei $6.7 \frac{W}{m^2}$ oder einem Strom von $120 \,\mu A$ zu funktionieren an . Dann funktioniert sie bis zu einer Sonneneinstrahlung von $4.3 \frac{W}{m^2}$ oder einem Strom von $75 \mu A$. Diese Prüfung ist bei $5.5 \frac{W}{m^2}$ ausgeführt worden. Die Eingangws- wurde mit der Ausgangsleistung verglichen. Die nächste Kurve 2.22 zeigt das Ergebnis.

Abbildung 2.22: Leistungsvergleich

Ab einem gewissen Moment fällt die Ausgangleistung selbst wenn die Eingangsleistung größer wird. Dies ist zurückzuführen auf Verluste in der Schaltung. Wenn der Strom am Eingang fällt, bewirkt dies dasselbe am Ausgang. Aber die Spannung bleibt gleich, und so fällt auch die Ausgangsleistung.

V_{pv} [V]	I_{ein} [A]	V_{akku} [V]	I_{akku} [A]	P_{ein} [W]	P_{aus} [W]
5	1.03×10^{-4}	3.89	3.15×10^{-5}	5.14×10^{-4}	1.22×10^{-4}
5.7	1.02×10^{-4}	3.89	3.49×10^{-5}	5.81×10^{-4}	1.36×10^{-4}
6.4	1.01×10^{-4}	3.89	3.60×10^{-5}	6.46×10^{-4}	1.40×10^{-4}
7	9.60×10^{-5}	3.89	3.00×10^{-5}	6.72×10^{-4}	1.17×10^{-4}
7.6	9.86×10^{-5}	3.89	3.10×10^{-5}	7.49×10^{-4}	1.21×10^{-4}
7.98	9.56×10^{-5}	3.89	2.80×10^{-5}	7.63×10^{-4}	1.09×10^{-4}
8.5	9.40×10^{-5}	3.89	2.87×10^{-5}	7.99×10^{-4}	1.12×10^{-4}
9.1	9.00×10^{-5}	3.89	2.34×10^{-5}	8.19×10^{-4}	9.10×10^{-5}
10	8.40×10^{-5}	3.89	1.08×10^{-5}	8.40×10^{-4}	4.18×10^{-5}

Abbildung 2.23: Messungen an der Schaltung mit Operationsverstärker mit ein fast voll Akku

2.7.3 Prüfung des Ladevorgangs

Die letzte Prüfung beginnt mit fast leerem Akkumulator. Im vorigen Test wurde die Schaltung ohne Operationsverstärker geprüft. Dieser Test wird mit der Schaltung mit Operationsverstärker realisiert weil die andere Schaltung nicht mit einem fast leeren Akkumulator funktioniert. Bei diesem Test ist die Helligkeit 100 $\frac{W}{m^2}$. Die Ergebnisse zeigt die Abbildung 2.25 und 2.24. Der Akkumulator wird korrekt aufgeladen. Nach genügend langer Zeit wird der Akku vollgeladen.

Zeit [min]	V_1 [V]	<i>A</i> ₁ [A]	V_2 [V]	A_2 [A]
vorher	18.94	0	3.57	0.00
0	5.9	4.28×10^{-3}	3.61	5.90×10^{-3}
2	6.07	4.27×10^{-3}	3.639	6.00×10^{-3}
4	6.18	4.21×10^{-3}	3.665	6.14×10^{-3}
6	6.25	4.24×10^{-3}	3.68	6.00×10^{-3}
8	6.3	4.22×10^{-3}	3.7	6.00×10^{-3}
10	6.346	4.24×10^{-3}	3.71	6.15×10^{-3}
12	63.95	4.18×10^{-3}	3.72	6.20×10^{-3}
14	6.403	4.30×10^{-3}	3.727	6.20×10^{-3}
18	6.442	4.27×10^{-3}	3.737	6.19×10^{-3}
25	6.49	4.20×10^{-3}	3.75	6.22×10^{-3}
34	6.52	4.25×10^{-3}	3.76	6.11×10^{-3}
40	6.54	4.30×10^{-3}	3.767	6.23×10^{-3}
50	6.59	4.20×10^{-3}	3.778	6.23×10^{-3}
60	6.63	4.25×10^{-3}	3.788	6.25×10^{-3}
71	6.66	4.30×10^{-3}	3.79	6.26×10^{-3}
80	6.67	4.27×10^{-3}	3.8	6.24×10^{-3}
90	6.7	4.28×10^{-3}	3.805	6.26×10^{-3}
nachher	18.72	0.00	3.79	0.00

Abbildung 2.24: Ergebnis der Prüfung des Aufladevorgangs

Abbildung 2.25: Aufladung

2.7.4 Frequenztest

Mit einem Oszillokop wurde eine Messung der Frequenz realisiert. Die folgende Abbildung 2.26,2.27und 2.28 zeigt das Ergebnis. Die Schaltung mit einen Operationsverstärker schwingt sauberer als die andere und ihre Frequenz ist so wie berechnet. Die andere Schaltung schwingt mit einer Frequenz von 1,08 MHz. Normalerweise müßte sie 685kHz sein. Dieses Ergebnis stützt die Idee daß der innere Komparator nicht wie bei der Optimierung angenommen funktioniert.

Abbildung 2.26: Ausgang der DC/DC Schaltung mit OPV

Abbildung 2.27: Ausgang der DC/DC Schaltung mit OPV

Abbildung 2.28: Ausgang der DC/DC Schaltung ohne OPV

2.8 Verbesserungsmöglichkeiten

Mehrere Verbesserungsmöglichkeiten sind realisierbar.

Die erste ist, zwei oder drei Solarpanels zu verwenden oder ein Solarpanel mit mehr Leistung zu finden. Bisher wurden alle Tests mit einem Solarpanel gemacht. Aber mit zwei oder drei Panels kann der Strom grösser sein und so würde die Aufladung schneller verlaufen.

Die zweite ist, einen kleineren Akkumulator zu benutzen. Velleicht den Typ MEC 102. Dies ist eine guter Vorschlag. Er ist viel kleiner als drei Akkumulatoren AAA. Aber die Speicherkapazität ist ebenfalls geringer, 2.5mAh verglichen mit 800mAh. Es wäre gut zu wissen wie lange die Speisung benötigt um diesen MEC vollständig aufzuladen, unter den schächsten zu erwartenden Helligkeitsbedigungen.

Der dritte ist, die Schaltung kleiner aufzubauen als im Anhang L (Seite XII) oder eine andere nur mit SMD Komponenten, um Platz und Gewicht zu sparen.

2.9 Schluß

Eines der vielen Dinge, die ich während dieser Arbeit lernte, und sicherlich das Wichtigste, ist, daßselbst wenn wir eine gute Grundidee von dem was erreicht werden soll besitzen, die eigentliche Arbeit erst beginnt.

Durch das Studium der Materie im Detail, können wir am Ende unter Umständen zu einem ganz anderen Ergebnis kommen, als was urspr ünglich geplant war.

Am Anfang war meine Idee für das Projekt, ein μC zu benutzen, um die Reglung zu implementieren. Die Untersuchungen haben das Gegenteil gezeigt und ich stürzte mich in eine Welt, die nicht meine bevorzugte war. Doch mit Geduld und Arbeit konnte das Projekt ohne größere Schwierigkeiten bewältigt werden, indem es in kleinere, durchführbare Teile unterteilt wurde.

Literaturverzeichnis

- [1] Joachim Knobloch und Bernhard Voss Adolf Goetzberger. Crystalline Silicon Solar Cells: Technology and Systems Applications.
- [2] VCesare Alippi and Cristian Galperti. An adaptive system for optimal solar energy harvesting in wireless sensor network nodes. Technical report, IEEE, 2008.
- [3] Convertisseur DC/ DC. Moerschell joseph und biner hans-peter. Technical report, Hes-so Sion.
- [4] V.BOITIER et P. MAUSSION. Recherche du maximum de puissance sur les générateurs photovoltaïques. Technical report, Université de Toulouse, 2006.
- [5] Francisco M. González-Longatt. Model of Photovoltaic Module in Matlab. Technical report, 2DO CONGRESO IBEROAMERICANO DE ESTUDIANTES DE INGENIERÍA ELÉCTRICA, ELEC-TRÓNICA Y COMPUTACIÓN, 2005.
- [6] Hong Ji Hui Zhang, Jing Ren, Lin Shan, and Yongjun Gao. Research on mppt controle and implementation method for photovotaic generation system and its simulation. Technical report, University of Technology Xi'an, 2009.
- [7] Quan Li and Peter Wolfs. Experimental evaluation of the mppt hardware for vehicle solar arrays with silicon junction cells. Technical report, Central Queensland University (Autralia), 2008.
- [8] Joan Albesa Maria Teresa Penella and Manel Gasulla. Powering wireless sensor nodes : Primary batteries versus energy harvesting. Technical report, Universitat Politècnica de Catalunya(Spain), 2009.
- [9] L'amplicateur opérationnel idéal. Moerschell joseph und biner hans-peter. Technical report, Hes-so Sion.
- [10] Maria Teresa Penella Oscar López-Lapeña and Manel Gasulla. A new mppt method for low-power solar energy harvesting. Technical report, Universitat Politècnica de Catalunya(Spain), 2009.
- [11] V.Vaidehi P.T.V.Bhuvaneswari, R.Balakumar and P.Balamuralidhar. Solar energy harvesting for wireless sensor networks. Technical report, MITWSN lab, Madras Institute of Technology, Anna University (India), 2009.
- [12] Photovoltaik Skript. Konrad mertens. Technical report, Fachhochschule Münster.
- [13] Sören Hoppenau. Piezoaktive und thermische Energiequellen f
 ür autonome drahtlos Sensornetzwerke. Technical report, Fachhochschule M
 ünster University Of Applied Sciences, 2009.
- [14] Linear Technologies. Lt3642 step-down converter data sheet, 2008.

- [15] Ukonline.be. http://www.ukonline.be/programmation/latex/.
- [16] Petra Schlager und Manfred Thibaud. Wissenschafttisch mit latex arbeiten.
- [17] Khalgh Alizera und Onar Omer C. Energy Harversting.

Danksagung

Mit diesen kurzen Zeilen, möchte ich mich bedanken, zuallererst bei den Schulen:

- bei der HES-SO Sion(Sitten), die mir erlaubt, diese Erfahrung zu erwerben
- bei der Fachhochschule Münster für den Empfang und das Angebot einer Bachelor Arbeit

und bei den folgenden Personen:

- Prof. Dr.-Ing. Peter Glösekötter für seine Gastfreundschaft und Unterstützung während des Projekts.
- Dr. sc. techn. Joseph Moerschell der die Verbindung zwischen den beiden Schulen aufrecht erhielt.
- Frau. Samia Jalal, die die administrativen Probleme während meiner ersten Woche in Deutschland gelöst hat.

Ich möchte auch meiner Familie danken für ihre Unterstützung während der letzten vier Monate.

Ort und Datum

Sion, den 16. September 2010

Lucien Roten

3 Anhänge

Alle folgenden Anhangen wurden verkleinert um im Bericht integriert zu werden. Die normal großen Anhänge sind verfügbar auf der CD in ./rapport/annexes.

Verzeichnis der Anhänge

Α	Simulation Schema von Konzept 1
В	Temperatur-Simulation von Konzept 1
С	Simulations-Schema von Konzept 2 mit Operationsverstärker III
D	Simulations-Schema von Konzept 2 ohne Operationsverstärker
Ε	SMD-PCB V
F	Normal-PCB, mit oberen Leiterbahnen VI
G	Normal-PCB ohne Operationsverstärker, mit oberen Leiterbahnen VII
Н	Normal-PCB, mit unteren Leiterbahnen
Ι	Normal-PCB ohne Operationsverstärker, mit unteren Leiterbahnen IX
J	PCB Normal, mit unteren Leiterbahnen verdeckt
K	Normal-PCB ohne Operationsverstärker mit unteren Leiterbahnen verdeckt XI
L	Normal-PCB, mit unteren Leiterbahnen korrigiert XII

A Simulation Schema von Konzept 1

B Temperatur-Simulation von Konzept 1

C Simulations-Schema von Konzept 2 mit Operationsverstärker

D Simulations-Schema von Konzept 2 ohne Operationsverstärker

E SMD-PCB

F Normal-PCB, mit oberen Leiterbahnen

G Normal-PCB ohne Operationsverstärker, mit oberen Leiterbah-

H Normal-PCB, mit unteren Leiterbahnen

VIII

I Normal-PCB ohne Operationsverstärker, mit unteren Leiterbah-

J PCB Normal, mit unteren Leiterbahnen verdeckt

K Normal-PCB ohne Operationsverstärker mit unteren Leiterbahnen verdeckt

L Normal-PCB, mit unteren Leiterbahnen korrigiert