Appendices

1. Study results about the wheel form done by Kojiro lizuka, Yoshinori Sato, Yoji Kuroda and Takashi Kubota (1a and 1b)
2. Extract of the Hyperion product catalogue
3. List of the first material bought for making the first battery charge and discharge tests
4. Test record of the cell voltage measuring circuit
5. $C D$ with the datasheets of electronic devices

5a) 12V DC-motor from Maxon (A-max 26) with gear \& encoder
5b) 12V DC-motor from Maxon (A-max 19) with gear \& encoder
5c) Charging unit 1210i from Hyperion (user manual)
5d) Balancer LBA10 from Hyperion (user manual)
5e) MOSFET transistor K2936
5f) Operational amplifier LMV324
5g) Comparator LMV339
5h) Operational amplifier LM324
5i) Comparator LM339
5j) Quad 2-input NOR gate M74HC02
5k) Relay from the company Finder (Series 66)
51) Relay from the company Omron (LY2)

5m) A/D-converter MAX197
5n) Current sensor LTSR 6-NP (LEM)
5o) Quad RS latch 74HC279
5p) Quad 2-input AND gate MM74HC08
5q) Temperature sensor LM35

Appendix 1a

Study on Wheeled Forms of Lunar Robots for Traversing Soft Terrain

by Kojiro lizuka, Yoshinori Sato, Yoji Kuroda and Takashi Kubota

Study on Wheeled Forms of Lunar Robots for Traversing Soft Terrain

Kojiro IIzuka, Yasuharu Kunii and Takashi Kubota

Abstract

Lunar rovers are required to move on rough terrains such as in craters and rear cliffs where it is scientifically very important to explore. Recently, wheel typed rovers are popular for planetary exploration missions. However, there is a problem that the wheel typed rovers have possibility of stack. Therefore, this paper investigates a mechanism of kinetic behavior between the wheels of the exploration rovers and soil. The important parameters are extracted by considering the mechanism. This paper proposes an elastic wheel by considering the important parameters. The elastic wheel has the surface which can be changed flexibly toward rough terrain. Running experiments on soil which imitated regolith are carried out to observe the traversability of the elastic wheel using slip ratio and sinkage.

I. INTRODUCTION

Robots are considered to be one of the most important mission devices for planetary explorations and will be expected to move on planetary surfaces to collect precise information regarding the origin and maturing. In the Mars mission by NASA in 1997, the micro robot Sojourner moved and explored on the surface of Mars. Sojourner sent the important data and detailed pictures to the earth.

The Sojourner mission showed the importance of moving exploration[1]. In planetary exploration, robots are required to move on rough terrains such as in craters and rear cliffs where it is scientifically very important to explore. Further, robots must avoid tip-over and stack even though they move on rough terrains. At past, in lunar missions, Lunokhod[Russian] and LRV[NASA] traveled long distance on regolith for explorations. These robots were so large and heavy (about $800[\mathrm{~kg}]$). On soil, the movement of robots with heavy load is better. In future missions, however, heavy robots are not realistic because of the limit of payload, cost and capacity etc. Therefore, the future robots have to do downsizing. But it is difficult for small robots like Sojourner to move on soil, because it is hard to get effective impulse from soil. Therefore, this paper focuses on robots with the middle scale and middle load (a few $10[\mathrm{~kg}]$) and constructs high performance for running on soil.
To investigate the running condition, it is needed to study the interaction between wheel and soil. However, the mechanism is not clear yet. Therefore, this paper investigates the kinematics behavior of lunar robots with tire-soil mechanism.

[^0]This paper defines the mechanism, where the running condition is bad when the circular wheel is running on slope. The reasons are extracted from the mechanism. To solve the problems is to increase the traversability of the exploration robots for exploring the lunar surface. This paper proposes a new wheel form for solving these problems.

In section II, the interaction between wheel and soil is modeled on slope. Important parameters for running wheel are extracted from the model. Then, a new wheel form is designed in section III. Section IV presents the running experiments and results. Section V is for the conclusion of this paper.

II. Interaction between wheel and soil

A. Dynamic Action of Soil

The lunar surface is covered with regolith, the lunar ground is soft and it is easy to slide. Regolith is made of the fragment broken from the moon and other heaven bodies. Moreover, the regolith was suffered from the chemical change for granule phenomenon. And the regolith is different from weathering soil of the Earth. On such a surface, a normally wheel can not produce the traction easily for the movement. Therefore, the exploration robots need to install "lug" for increasing the traction force. In case of the wheel which has lugs, the behavior of subsidence characteristics, the shearing strength of soil, the transformation by shearing and friction characteristics need for the consideration of the interaction between wheel and soil.

B. Wheeled Type on the Lunar Surface

When robots explore the surface of the moon, the environment is vacuum and is exposed to the space radiation. Moreover, the temperature difference between day and night is intense. In such environments, tires which are generally used on the Earth can not be used. Therefore, the wheels of metal are used for lunar robots.

C. Model of Interaction between Wheel and Soil

Some researchers have studied robots with interaction between wheel and soil on a flat terrain[4][6][9][10][11]. However they do not study the model on a slope. This paper cosiders the interaction model between wheel and soil on a slope as shown in Fig.1.
The line which the wheel runs on slope is shown as "soil surface". $r \omega$ and V_{ω} denote the revolution and velocity of the wheel. W_{t} means the parallel load of the wheel to soil surface. Z_{s} denotes the sinkage at a slope. θ is used to show the part of the wheel into soil. θ_{1} indicates the inserted angle into soil and θ_{2} indicates the escaped angle.

Fig. 1. Interaction Model between Wheel and Soil on Slope

D. Traction Load

In case of the slope, the traction load which is increased by gravity occurs to the wheel. If the slope for running increases, the traction load increases.

E. Stress at Contact Surface

If it is assumed that soil shows the hardening behavior of distortion by shearing stress when a wheel is moving, a shearing stress in an angle θ can be written as follows.

$$
\begin{equation*}
\tau(\theta)=(c+\sigma(\theta)) \tan \phi)\left(1-\exp ^{-\frac{j(\theta)}{K}}\right) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& c: \\
& \text { adhesive power } \\
& j: \\
& \phi \text { shearing strain } \\
& \phi: \\
& \text { internal friction angle }
\end{aligned}
$$

The slip ratio λ is defined by the following formula here.

$$
\lambda=\left\{\begin{array}{c}
1-\frac{V_{\omega}}{r \omega} \quad: \operatorname{drive}(r \omega \geq V \omega) \tag{2}\\
1-\frac{r \omega}{V_{\omega}} \quad: \operatorname{brake}\left(r \omega \leq V_{\omega}\right)
\end{array}\right.
$$

where,
$r:$ the radius of a wheel
ω : angular velocity of a wheel
V_{ω} : moving speed of a wheel
Moreover, the sinkage Z_{s} can be written as follows.

$$
\begin{equation*}
Z_{s}=r\left(1-\cos \left(\theta_{1}\right)\right) \tag{3}
\end{equation*}
$$

Fig. 2 shows the interaction between soil and the wheel when the wheel sinks. θ_{f} and θ_{e} denote the original angle. θ_{0} is the angle of direction of gravity. θ_{β} is the inserted angle after sinking. α^{\prime} is an angle of slope after sinking. In other
words, to increase slope for running means that the wheel sinks. Moreover, if the angle of slope for running is bigger, the traction load becomes large. α can be written as follows.

$$
\begin{equation*}
\alpha^{\prime}=\tan ^{-1} \times B \tag{4}
\end{equation*}
$$

where,
$B=\left(\frac{\sin \left(\theta_{0}+\theta_{f}-\frac{\pi}{2}+\theta_{\beta}\right)-\sin \left(\theta_{0}-\theta_{e}-\frac{\pi}{2}+\theta_{\beta}\right)}{\cos \left(\theta_{0}+\theta_{f}-\frac{\pi}{2}+\theta_{\beta}\right)-\cos \left(\theta_{0}-\theta_{e}-\frac{\pi}{2}+\theta_{\beta}\right)}\right)$

Fig. 2. Running Slope changed by rotation of Wheel

F. Traction Force produced by Wheel

The traction force of wheel $D P$ is expressed by the total of force working the wheel. Therefore, the traction force is expressed by intergrating a shearing stress $\tau(\theta)$ and a normal stress $\sigma(\theta)$ is intergrated using contacted area of wheel and soil. Then, the traction force $D P$ is written as follows using the wheel radius r and the wheel width b.

$$
\begin{align*}
D P=r b\left\{\int_{\theta_{1}}^{\theta_{2}} \tau(\theta) \cos \theta d \theta\right. & \left.-\int_{\theta_{1}}^{\theta_{2}} \sigma(\theta) \sin \theta d \theta\right\} \\
& +L_{j} b \lambda \int_{\theta_{1}}^{\theta_{2}} R_{b} \cos \theta d \theta \tag{5}
\end{align*}
$$

where,

$$
\begin{aligned}
& L_{j}: \text { length of lugs } \\
& R_{b}: \text { pressure given lugs }
\end{aligned}
$$

G. Important Parameters for Traversability

The running mechanism can be described in Fig. 3 from the interactional model between wheel and soil. On the slope, the wheel has traction load. When the wheel has traction load, the velocity for moving of the wheel decreases. To
decrease the velocity of moving means that the wheel slips. Even if the wheel slips, the soil under the wheel make discharged by lug installed on surface of the wheel. To discharge the soil under the wheel means the wheel sinks into soil. The slope for running increases, when the wheel sinks into soil. To move on the steep slope leads to the increase of the traction load. By repeating this mechanism during running, the running condition becomes so bad on the slope. This paper believes that there are problems on bad running condition of the circular forms of wheels. The stress on the circular wheel is high. Therefore, the circular wheels are easy to sink into soil and stack. As a method to solve this problem, in generally, the following schemes are candidates. 1) To decrease the load of space robots. 2) To size up the diameter of wheel. Whereas those methods can decrease the stress of the circular wheel, the stress distribution of wheel can not change. The stess distribution of the circular wheel is not uniform. Therefore, even if the stess of wheel decreases, the sinkage behaior of wheel is not changed unless the load of wheel is light extremely. Moreover, robots which are light extremely are not reality for acting on the moon. This paper defines that important points are the low stress and the uniform stress distribution.

Fig. 3. Mechanism between Wheel and Soil on Slope

III. Consideration of Wheeled Forms

A. Wheel of Low Stress

The wheel of low stress exists the vehicles on the earth.
The vehicles[13][14] with the wheel of low stress on the earth are shown in Fig. 4 and Fig.5. Those vehicles can move rough terrain or soft ground. The wheels of those vehicles have low stress and the low stress distribution. The traversibility of this low stress wheel is good, but this one can not use on the moon. It is important to select the material of wheels for use of the moon.

Fig. 4. Wheel for Agriculture [New Holland HFT Japan, Inc.]

Fig. 5. Vehicles with Low Stress on the earth[Mswing, Inc.]

B. Consideration of Wheel for lunar robots

This paper proposes a wheel for lunar robots. The wheel is shown in Fig.6. The proposed wheel has elastic metallic material. The material of the wheel is Copper Beryllium. Young's modulus and bending stress of Copper Beryllium are stronger than other elastic metallic materials. The diameter of the proposed wheel is 200 [mm], the width is 100 [mm]. In addition, the proposed wheel has the 10 lugs at $35[\mathrm{deg}]$ interval. The wheel can extract effects of the low stress and low stress distributiion.

C. Hardening Effect by New Wheel

The stress distribution of the elastic wheel is shown in Fig.7. The stress distribution of the elastic wheel proposed by this paper is uniform. Uniform stress distribution can harden soil on wide area under the wheel. To harden soil on wide area means that the repulsion given to lugs from soil increases. As a result, the traversability of robots is high.

Fig. 6. Elastic Wheel made with Copper Beryllium

Fig. 7. Stress Distribution of Elastic Wheel

IV. EXPERIMENTS

A. Experimental System

The overview of the experimental system is shown in Fig.8. In this experiment, the simulant is used as soil, whose the particle specific gravity is 2.83 , the minimum density is $1.39[\mathrm{~g} / \mathrm{cm} 3]$, the adhesive power is $5.0[\mathrm{kPa}]$ and the internal friction angle 36.7 [deg]. The depth of the simulant is 0.07 [m]. And the simulant is dry by the heater. The experimental system is composed of some mechanics and some sensors as shown in Fig.9. Here, one wheel, the parallel link, the stator, the guide rail, the load balance and the balance box are used. The parallel link is attached between the axis for the wheel and the load balance. The road balance runs on the guide rail. As sensors, there are differential transformer to measure the distance and two encoders. The differential trans-former measures the horizontal position of a wheel. The measurable distance of the differential transformer is within 20 [mm]. The vertical position of a wheel can be calculated by the rotary encoder. The velocity of the wheel is calculated by using vertical and horizontal position, and time. The rotation of wheel can be obtained from encoder. Therefore, the slip ratio is calculated using the velocity and the rotation. The sinkage is obtained from the present position and position of the original surface of the soil. Moreover, the wheel load can be set by some weight into the balance box.

Fig. 8. Overview of Experimental System

Fig. 9. Experimental Setup

1) Experimental Conditions: In the experiment, the wheel load, the speed of wheel and slope angle can be changed as parameters. Experimental parameters are shown in TABLE 1.

TABLE 1: Experimental Parameters

Load	$2[\mathrm{~kg}]$
Speed	$0.1[\mathrm{~m} / \mathrm{s}]$
Slope	$0,5,15,20[\mathrm{deg}]$

2) Measurement Item: The measurement items in this experiment are shown below. The initial shearing strength of soil is measured by the default of soil. Moreover, the shearing strength after running are measured for observing hardening effect.

- initial shearing strength of soil
- rotation angle of wheel
- wheel position

3) Wheels for Experiment: In the experiments, two kinds of wheels are used as below;

- Circular wheel
- Elastic wheel

B. Experimental Results

The running condition of the elastic wheel on slope is shown in Fig.10. The slope is 15 [deg]. In the case that circluar wheel runs on slope, the slipping phenomenon remarkably increases. However, the running condition of the elastic wheel is good. The elasic wheel is not easy to sink because of having the structure of low stress and wide hardening area. Therefore, the slipping phenomenon of the elastic wheel is not easy to increase. Moreover, the small sliping phenomene means that the sinkage of the wheel is small. If the sinkage of the wheel is small, the traction load hanging the wheel is small. The shearing stress is shown in Fig.11. The shearing stress were measured by the vane shearing tester. The shearing stress of both wheels after running became larger than before running. However, the rise of the shearing stress of the circular wheel was small. After hardening, the lugs of the circular wheel destroyed on hardened soil. On the other hands, the rise of shearing stress of the elastic wheel after running was larger than the circular wheel. Because of the hardened area is wide, the soil under the elastic wheel is not easy to destroy. Fig. 12 and Fig. 13 show the slip ratio and the sinkage of each wheel at 0 [deg]. The slip ratio and the sinkage of both wheels are small. Both wheels are good condition at $0[\mathrm{deg}]$. Fig. 14 shows the slip ratio of each wheels at 20 [deg] slope. The slip ratio of the elastic wheel was smaller than the circular wheel. The effect of low stress and wide hardening area appeared. Moreover, on the results of slip raito of elastic wheel, there were constant lines. These lines show the constant condition without the rise of slip ratio. On these experiments, the elastic wheel proposed by this paper has 10 lugs. If the elastic wheel has more lugs, the traversability of this wheel will be increased. Fig. 15 shows the sinkage of the of each wheels at 20 [deg] slope. The sinkage of the elastic wheel is smaller than the circular wheel. The elastic wheel was not easy to sink because of this one was low stress. The results of slip ratio are shown in Fig. 16 on each slope. The slip ratio of the elastic wheel is smaller than the circular wheel about 0.1 on each slope. The elastic wheel has high performance compared with the cicular wheel. From these results, the wheels with low stress like the elastic wheel are effective for traversing on soften ground like regolith.

V. Conclusion

In this paper, wheeled forms of the lunar robots on slope were discussed. From the theoretical approach, the important parameters on traversability on the slope were extracted. The extracted parameters are "low stress" and "hardening effect". In this paper, the wheel with low stress using elastic material were developed for traversing lunar surface. From the experimental results, to combine these effects are effective for traversability.

References

[1] NASA JPL, "http://mpfwww.jpl.nasa.gov/"
[2] NASA JPL, Mars robots, "http://Marsrobots.nasa.gov/"
[3] T.Kubota, "IN SELENE-B Exapmination of robot," The Robotics Society of Japan, Vol.21, No.5, pp.494-497, 2003

Fig. 10. Running View of Elastic Wheel (15[deg])

Fig. 11. Shearing Strength before and after running

Fig. 12. Experimental Result:Slip Ratio(2[kg], $0[\mathrm{deg}], 0.1[\mathrm{~m} / \mathrm{s}])$

Fig. 13. Experimental Result:Sinkage($2[\mathrm{~kg}], 0[\mathrm{deg}], 0.1[\mathrm{~m} / \mathrm{s}]$)

Fig. 14. Experimental Result:Slip Ratio(2[kg], 20[deg], $0.1[\mathrm{~m} / \mathrm{s}]$)

Fig. 15. Experimental Result:Sinkage($2[\mathrm{~kg}], 20[\mathrm{deg}], 0.1[\mathrm{~m} / \mathrm{s}]$)

Fig. 16. Experimental Result($2[\mathrm{~kg}], 0.1[\mathrm{~m} / \mathrm{s}]$)
[4] R.N.Yon, E.A.Fattah, N,Skidas, M.Kitano, "Run dynamics of off-road vehicles," The Japanese Society for Study Technology Education, 1986
[5] K.Iagnemma, S.Kang, H.Shibly, S.Dubowsky, "Online Terrain Parameter Estimation for Wheeled Mobile Robots With Application to Planetary robots," IEEE TRANSACTIONS ON ROBOTICS, Vol.20, No.5, pp.921-927, 2004
[6] K.Yoshida, H.Hamano, "Motion Dynamics Simulations and Experiments of an Exploration robot on Natural Terrain," Astrodynamics and Flight Mechanics, No.11, pp.306-313, 2001
[7] K.Yoshida, H.Hamano, "Motion Dynamics and Control of robot for Planetary Exploration," Astrodynamics and Flight Mechanics, No.12, pp.102-107, 2002
[8] K.Iagnemma, S.Dubowsky, "Traction Control of Wheeled Robotics Vehicles with Application to Planetary robot," International Journal of Robotics Research, Vol.23, No.10, 2004
[9] K.Iizuka, H.Kanamori, T.Kubota, "A Study of Terramechanics for Movement on Planetary Surface," Robotics Symposia, Vol.10, pp.3338, 2005 (in Japanese)
[10] K.Iizuka, H.Kanamori, T.Kubota, "Wheeled Running Experiment with Mimic Physiognomy of Moon by Planetary Explore Robots," Conf. on Robotics and Mechatronics, No.5, 2005(in Japanese)
[11] K.Iizuka, T.Teshima, Y.Sato, Y.Kuroda, T.Kubota, "Study of Wheeled Forms Considering Terramechanics for Lunar robot," Conf. of The Robotics Society, Vol.23, 2005(in Japanese)
[12] McCarthy, F.David "Essentials of Soil Mechanics and Foundations", Prentice Hall, 2001
[13] New Holland HFT Japan, Inc., "http://www.nh-hft.co.jp/"
[14] Mswing, Inc., "http://www.mswing.co.jp/"

Appendix 1b

Study on Wheel of Exploration Robot on Sandy Terrain

by Kojiro lizuka, Yoshinori Sato, Yoji Kuroda and Takashi Kubota

Study on Wheel of Exploration Robot on Sandy Terrain

Kojiro Iizuka
School of Physical Sciences
The Graduate University for Advanced Studies
3-1-1, Yoshinodai, Sagamihara, Japan
iizuka@nnl.isas.ac.jp

Yoshinori Sato
Department of Mechanical Engineering
Meiji University
1-1-1, Mita, Tama, Kawasaki, Kanagawa, Japan
ce44240@isc.meiji.ac.jp

Yoji Kuroda
Department of Mechanical Engineering
Meiji University
1-1-1, Mita, Tama, Kawasaki, Kanagawa, Japan
ykuroda@isc.meiji.ac.jp

Takashi Kubota
Institute of Space and Astronautical Science Japan Aerospace Exploration Agency
3-1-1, Yoshinodai, Sagamihara, Japan
kubota@nnl.isas.jaxa.jp

Abstract

In future planetary exploration missions, robots are required to traverse over very rough terrain. On the surface of the moon there are covered with soils, which is named regolith. Regolith is easy to slide. Any stack may occur to the robots that are running on the regolith. Some reseachers have studied the mobility system for robots. However the optimal and robust mobility systems have not been developed yet. For avoiding stack, this paper proposes a new wheel system, considering the characteristic of soil made a new wheel.

I. Introduction

Robots are considered to be one of the most important mission devices for planetary explorations and will be expected to move on planetary surfaces to collect precise information regarding the origin and maturing. In the Mars mission by NASA in 1997, the micro robot Sojourner moved and explored on the surface of Mars. Sojourner sent the important data and detailed pictures to the earth.

The Sojourner mission showed the importance of moving exploration[1]. In planetary exploration, robots are required to move on rough terrains such as in craters and rear cliffs where it is scientifically very important to explore. Further, robots must avoid tip-over and stack even though they move on rough terrains. At past, in lunar missions, Lunokhod[Russian] and LRV[NASA] traveled long distance on regolith for explorations. These robots were so large and heavy (about $800[\mathrm{~kg}]$). On soil, the movement of robots with heavy load is better. In future missions, however, heavy robots are not realistic because of the limit of payload, cost and capacity etc. Therefore, the future robots have to do downsizing. But small robots like Sojourner are difficult to move on soil because it is difficult to get effective impulse from soil. Therefore, this paper focuses on robots with the middle scale and middle load (a few $10[\mathrm{~kg}]$) and constructs high performance for running on soil.

To investigate the running condition, it is needed to study the interaction between wheel and soil. However, the mechanism is not clear yet. Therefore, this paper investigates the kinematics behavior of lunar robots with tire-soil mechanism. Then two important parameters are extracted for running wheel on regolith. A new wheel form is designed by considering these parameters. Some experiments using the proposed wheel are performed to observe the traversability.

In section II, the interaction between wheel and soil is modeled on slope. Important parameters for running wheel are extracted from the model. Then, a new wheel form is designed in section III. Section IV shows the running experiments and results. Section V is for the conclusion of this paper.

II. Interaction between wheel and soil

A. Dynamic Action of Soil

The lunar surface is covered with regolith, the lunar ground is soft and it is easy to slide. Regolith is made of the fragment broken from the moon and other heaven bodies. Moreover, the regolith was suffered from the chemical change for granule phenomenon. And the regolith is different from weathering soil of the Earth. On such a surface, a normally wheel can not produce the traction easily for the movement. Therefore, the exploration robots need to install "lug" for increasing the traction force. In case of the wheel which has lugs, the behavior of subsidence characteristics, the shearing strength of soil, the transformation by shearing and friction characteristics need for the consideration of the interaction between wheel and soil.

B. Wheeled Type on the Lunar Surface

When robots explore the surface of the moon, the environment is vacuum and is exposed to the space radiation. Moreover, the temperature difference between day and night
is intense. In such an environment, tires which are generally used on the Earth can not be used. Therefore, the rigid wheels of metal are used for lunar robots.

C. Model of Interaction between Wheel and Soil

Some researchers have studied robots with interaction between wheel and soil on a flat terrain[4][6][9][10][11]. However they do not study the model on a slope. This paper cosiders the interaction model between wheel and soil on a slope as shown in Fig.1.
The line which the wheel runs on a flat is shown as "Flat Line". Z_{f} denotes the sinkage at a flat and Z_{s} denotes the sinkage at a slope. Z_{f} and Z_{s} mean the distance from the bottom line of the wheel. θ_{0} indicates the vertical angle. θ_{1} indicates the inserted angle into soil and θ_{2} indicates the escaped angle.

Fig. 1. Interaction Model between Wheel and Soil on Slope

D. Stress at Contact Surface

If it is assumed that soil shows the hardening behavior of distortion by shearing stress when a wheel is moving, a shearing stress in an angle θ can be written as follows.

$$
\begin{equation*}
\tau(\theta)=(c+\sigma(\theta)) \tan \phi)\left(1-\exp ^{-\frac{j(\theta)}{K}}\right) \tag{1}
\end{equation*}
$$

$$
\begin{array}{lll}
c & : & \text { adhesive power } \\
j & : & \text { shearing strain } \\
\phi & : & \text { internal friction angle }
\end{array}
$$

The slip ratio λ is defined by the following formula here.

$$
\lambda=\left\{\begin{array}{c}
1-\frac{V_{\omega}}{r \omega} \quad: \operatorname{drive}(r \omega \geq V \omega) \tag{2}\\
1-\frac{r \omega}{V_{\omega}} \quad: \operatorname{brake}\left(r \omega \leq V_{\omega}\right)
\end{array}\right.
$$

where

$$
\begin{array}{rll}
r & : \text { the radius of a wheel } \\
\omega & : \text { angular velocity of a wheel } \\
V_{\omega} & : \text { moving speed of a wheel }
\end{array}
$$

The range of θ on the flat is from θ_{1} to θ_{2}. However, the range of θ on the slope is from $\left(\theta_{1}+\alpha\right)$ to $\left(\theta_{2}-\alpha\right)$, because the angle of slope is α. Moreover, the sinkage Z_{s} can be written as follows.

$$
\begin{equation*}
Z_{s}=r\left(1-\cos \left(\theta_{1}+\alpha\right)\right) \tag{3}
\end{equation*}
$$

The inserted angle on the slope is larger than the angle on the flat and the escape angle is small. If the angle of slope is bigger, the minus traction becomes large. Because the resistance of the movement increases by the angle of slop, and the supported force for wheel decreases by the small escaped angle.

E. Force Load on Wheel

A perpendicular force N can be expressed by intergrateing that a shearing stress $\tau(\theta)$ and a nomal stress $\sigma(\theta)$ using contacted area of wheel and soil. Then, a perpendicular force N is written as follows using the wheel radius r the and wheel width b.

$$
\begin{equation*}
N=r b\left\{\int_{\theta_{1}+\alpha}^{\theta_{2}-\alpha} \sigma(\theta) \cos \theta d \theta+\int_{\theta_{1}+\alpha}^{\theta_{2}-\alpha} \tau(\theta) \sin \theta d \theta\right\} \tag{4}
\end{equation*}
$$

The traction force of wheel $D P$ is expressed by the total of force working the wheel. Therefore, the traction force is expressed by intergrating a shearing stress $\tau(\theta)$ and a normal stress $\sigma(\theta)$ is intergrated using contacted area of wheel and soil. Then, the traction force $D P$ is written as follows using the wheel radius r and the wheel width b.

$$
\begin{equation*}
D P=r b\left\{\int_{\theta_{1}+\alpha}^{\theta_{2}-\alpha} \tau(\theta) \cos \theta d \theta-\int_{\theta_{1}+\alpha}^{\theta_{2}-\alpha} \sigma(\theta) \sin \theta d \theta\right\} \tag{5}
\end{equation*}
$$

However, a force of the range of $\left(\theta_{1}-\alpha\right)-\left(\theta_{0}\right)$ is the running resistence. The running resistence is written as follows.

$$
\begin{equation*}
R=r b \int_{0}^{\theta_{1}+\alpha} \sigma(\theta) \sin \theta d \theta \tag{6}
\end{equation*}
$$

F. Important Parameters for Traversability

The traction force of wheel is expressed by the function of the slip ratio λ and the inserted angle θ_{1}, and the escaped angle θ_{2}. Since the inserted angle θ_{1} and the escaped angle θ_{2} can be expressed with the sinkage Z_{s}, and the traction $D P$ is expressed by the function of the slip ratio λ, and the sinkage Z_{s}.

$$
\begin{equation*}
D P=f\left(\lambda, Z_{s}\right) \tag{7}
\end{equation*}
$$

The slip ratio λ and the sinkage z are important for traversability of wheel. The slip ratio is determined by the shearing stress.

If the wheel becomes impossible to run on slope, when the interaction between wheel and soil becomes smaller than the opposite force worked by the gravity. Moreover, when the running condition is not good, the slip ratio increases. To increase the slip ratio means the shearing stress increases. However, the shearing behavior is necessary to get impellent of wheel. The important thing is the balance of "strength of soil and shearing stress". When the amount of soil moved by shearing stress becomes large, the sinkage increases. Further, the large sinkage means that the inserted angle increases. As the inserted angle grows, the running resistance becomes large. Then, the traction force of wheel is small. However, if the shearing stress does not increase, the slip ratio and the traction force can be kept constantly. It is necessary to increase the shearing stress of soil so that the shearing stress should not increase. Moreover, the shearing strength of soil can increase with " hardening effect" . Hardening effect is occurred by wheel load. Therefore, this paper considers the wheel forms using" hardening effect" and" shearing effect".

III. Consideration of Wheeled Forms

A. Hardening Effect

When the soil under the wheel is pressured by a load of the wheel, the density of soil increases. As a result, the hardening effect is caused by a load of wheel. To understand the distribution of the normal stress needs to harden the soil effectively. The method to harden the soil effectively is to increase the area contacting with the soil. Therefore, this paper proposes a pentagon typed wheel(Fig.2). The pentagon typed has the flat surface. The distribution of the normal stress is stabilized by the flat surface. The reason why the type of pentagon was selected is bellow.

1) A surface of pentagon is larger than a surface of polygon over pentagon.
2) An angle of the pentagon forms is larger than an angle of polygon below pentagon.

The distribution of the normal stress is stabilized by large surface. Moreover, if the angle of polygon is large, the soil is not easy to destroy. The type of pentagon is selected by balance of these points. In case of pentagon typed wheel, the distribution of the normal stress σ can be shown in the following expression[12].

Fig. 2. Picture of Pentagon typed Wheel

$$
\begin{equation*}
\sigma=\frac{q}{\pi}(2 \epsilon+\sin \epsilon) \tag{8}
\end{equation*}
$$

where

$$
\begin{array}{lll}
\text { Load of wheel } & : & \mathrm{q} \\
\text { Parameter for stress } & : & \epsilon
\end{array}
$$

The distribution of the normal stress is shown in Fig.3. The pentagon typed wheel effectively causes the hardening effect.

Fig. 3. Ditribution of Normal Stress promoted by Pentagon typed Wheel

B. Shearing Effect

The wheel with lugs is shown in Fig. 4 as a form using the effect of the shearing stress. At the rotation of wheel, the lugs push soil. To push soil can generate impellent for travel of the wheel. Figure 5 shows the condition of lug into soil. When lugs run into soil, the movement of soil occurs. Soil is destroyed over shearing strength of soil. At this time, lugs are given the reaction force from soil. And the reaction force becomes impellent for wheel. However, the movement of soil means the destruction of soil. Soil is cultivated by lugs. Therefore,
the shearing strength of soil decreases, and the reaction force from soil decreases gradually. Therefore, the wheel slips more and more so that this behavior is repeated.

Fig. 4. Normal Wheel with Lugs

Fig. 5. Effect of Shearing Stress

C. Combined Effect of Hardening and Shearing

The new type of wheel which can combine the effect of hardening and shearing is shown in Fig.6. The soil is softened by the rotations of wheel. On the soft soil, the wheel cannot obtain enough impellent. Therefore, this paper proposes a new wheel which combines the hardening effect and the shearing effect. The combined wheel has the structure, which is added lugs on the surface of the pentagon typed wheel. Here, the two typed combined wheels are developed. One has 16 lugs. The other has 4 lugs. The combined wheel with 16 lugs is installed like the normal wheel with lugs. And, on the combined wheel with 4 lugs, the shearing force is demonstrated after the wheel hardens the soil. The mechanism of the combined wheel is shown in Fig.7. The soil is hardened by the wheel load. Then, the lugs push the hardened soil. Therefore, the reaction force is effectively translated to lugs.

IV. EXPERIMENTS

A. Experimental System

The overview of the experimental system is shown in Fig.8. In this experiment, the simulant is used as soil, whose the particle specific gravity is 2.83 , the minimum density is 1.39

Fig. 6. Picture of Combined Wheel

Fig. 7. Model of Combained Wheel
[$\mathrm{g} / \mathrm{cm} 3$], the adhesive power is $5.0[\mathrm{kPa}$] and the internal friction angle 36.7 [deg]. The depth of the simulant is 0.07 [m]. And the simulant is dry by the heater. The experimental system is composed of some mechanics and some sensors as shown in Fig.9. Here, one wheel, the parallel link, the stator, the guide rail, the load balance and the balance box are used. The parallel link is attached between the axis for the wheel and the load balance. The road balance runs on the guide rail. As sensors, there are differential transformer to measure the distance and two encoders. The differential trans-former measures the horizontal position of a wheel. The measurable distance of the differential trans-former is within 20 [mm]. The vertical position of a wheel can be calculated by the rotary encoder. The velocity of the wheel is calculated by using vertical and horizontal position, and time. The rotation of wheel can be obtained from encoder. Therefore, the slip ratio is calculated using the velocity and the rotation. The sinkage is obtained from the present position and position of the original surface of the soil. Moreover, the wheel load can

Fig. 8. Overview of Experimental System

Fig. 9. Experimental Setup
be set by some weight into the balance box.

1) Experimental Conditions: In the experiment, the wheel load, the speed of wheel and slope angle can be changed as parameters. Experimental parameters are shown in TABLE 1.

TABLE 1: Experimental Parameter	
Load	$23,32[\mathrm{~g}]$
Speed	$0.01,0.04[\mathrm{~m} / \mathrm{s}]$
Slope	$0,10,15[\mathrm{deg}]$

2) Measurement Item: The measurement items in this experiment are shown below. The initial shearing strength of soil is measured by the default of soil. Moreover, the shearing strength after running are measured for observing hardening effect.

- initial shearing strength of soil
- rotation angle of wheel
- wheel position

3) Wheels for Experiment: In the experiments, four kinds of wheels are used as below;

- Normal wheel with lugs (Normal)
- Pentagon typed wheel (Pentagon)

Fig. 10. The Track of Pentagon typed Wheel

- Combined wheel with 16 lugs (Combined A)
- Combined wheel with 4 lugs (Combined B)

B. Experimental Results

The track of pentagon typed wheel is shown in Fig. 10. The destruction of soil has not occurred after running. On each wheel, the shearing strength before and after running were measured by the vane shearing tester (TABLE 2). On the normal wheel with lugs, the shearing strength decreased after running. On other wheels, the shearing strength after running was stronger than before running. This phenomenon means that the hardening effect was occurred by the surface of the pentagon typed wheel.

Figure 11 shows the slip ratio at $0[\mathrm{deg}]$ and $40[\mathrm{~mm} / \mathrm{s}]$. The slip ratio of all wheels is steady tendency. The slip ratio of the pentagon typed wheel is higher than the other wheels. The surface of the pentagon typed wheel is the surface like parabolic. However, the wheel without lugs cannot obtain the large impellent. The impellent of twist wheel is only the friction force. Therefore, the slip ratio of the pentagon typed wheel is larger than the other wheels.
At 15 [deg] slope, the slip ratio is shown in Fig.12. The slip ratio of the pentagon typed wheel and the normal wheel with lugs have up tendency. Moreover, the slip ratio of the combined wheels have steady tendency. Since the results, the traversability of wheel cannot get effective impellent by only hardening effect of soil. However, the traversability of wheel can be improved by combining the effect of hardening and shearing.

TABLE 2: The Shearing Strength of Soil

Kind of wheel	Before Running	After Running	Tendency
Normal	$0.43[\mathrm{cNm}]$	$0.30[\mathrm{cNm}]$	\searrow
Pentagon	$0.40[\mathrm{cNm}]$	$0.53[\mathrm{cNm}]$	\nearrow
Combined A	$0.43[\mathrm{cNm}]$	$0.47[\mathrm{cNm}]$	\nearrow
Combined B	$0.43[\mathrm{cNm}]$	$0.50[\mathrm{cNm}]$	\nearrow

V. Conclusion

In this paper, wheeled forms of the lunar robot on slope soil were discussed. From the theoretical approach, this

Fig. 11. Experimental Result $(5[\mathrm{~kg}], 10[\mathrm{~mm} / \mathrm{s}], 0[\mathrm{deg}])$

Fig. 12. Experimental Result ($5[\mathrm{~kg}], 40[\mathrm{~mm} / \mathrm{s}], 15[\mathrm{deg}]$)
paper extracted the important parameters. These parameters are "hardening effect" and "shearing effect". From the experimental results, to combine these effects are effective for traversability.

References

[1] http://mpfwww.jpl.nasa.gov/
[2] http://Marsrobots.nasa.gov/
[3] T.Kubota, "IN SELENE-B Exapmination of robot," The Robotics Society of Japan, Vol.21, No.5, pp.494-497, 2003
[4] R.N.Yon, E.A.Fattah, N,Skidas, M.Kitano, "Run dynamics of off-road vehicles," The Japanese Society for Study Technology Education, 1986
[5] K.Iagnemma, S.Kang, H.Shibly, S.Dubowsky, "Online Terrain Parameter Estimation for Wheeled Mobile Robots With Application to Planetary robots," IEEE TRANSACTIONS ON ROBOTICS, Vol.20, No.5, pp.921927, 2004
[6] K.Yoshida, H.Hamano, "Motion Dynamics Simulations and Experiments of an Exploration robot on Natural Terrain," Astrodynamics and Flight Mechanics, No.11, pp.306-313, 2001
[7] K.Yoshida, H.Hamano, "Motion Dynamics and Control of robot for Planetary Exploration," Astrodynamics and Flight Mechanics, No.12, pp.102-107, 2002
[8] K.Iagnemma, S.Dubowsky, "Traction Control of Wheeled Robotics Vehicles with Application to Planetary robot," International Journal of Robotics Research, Vol.23, No.10, 2004
[9] K.Iizuka, H.Kanamori, T.Kubota, "A Study of Terramechanics for Movement on Planetary Surface," Robotics Symposia, Vol.10, pp.33-38, 2005 (in Japanese)
[10] K.Iizuka, H.Kanamori, T.Kubota, "Wheeled Running Experiment with Mimic Physiognomy of Moon by Planetary Explore Robots," Conf. on Robotics and Mechatronics, No.5, 2005(in Japanese)
[11] K.Iizuka, T.Teshima, Y.Sato, Y.Kuroda, T.Kubota, "Study of Wheeled Forms Considering Terramechanics for Lunar robot," Conf. of The Robotics Society, Vol.23, 2005(in Japanese)
[12] McCarthy, F.David "Essentials of Soil Mechanics and Foundations", Prentice Hall, 2001

Appendix 2

Extract of the Hyperion product catalogue

Hyperion VX LiPo packs

The Hyperion VX lipos is the Blue Series. VX stands for 'Voltage Xtreme' and that is exactly what we are talking about here.

To many modellers, the lipo market is a jungle. What factory makes the same cells as this or that brand of packs, why are some packs so cheap etc. Here are a few of the typical questions we hear:
"Will I really ever need all the power of high quality lipo packs such as the Hyperion VX?"

It can be answered quickly, if you will excuse this simple analogy: Two cars can both travel at a $100 \mathrm{~km} / \mathrm{h}$ at a straight road. The question is what happens when you want to go over a mountain? A good, powerful car would continue to drive $100 \mathrm{~km} / \mathrm{h}$ even uphill. A less powerful car would loose speed and before you know it, you are going $60 \mathrm{~km} / \mathrm{h}$ with the gas pedal all pressed down.

Which car would you rather be driving?
"Other brands of lipos claim 25C continous discharge - are the Hyperion packs inferior to those packs?"

The VX packs from Hyperion are the newest and best battery chemistry available on the planet Earth today. They ARE capable of 25C discharge with high retained capacity. However, running ANY battery at it's maximum possible discharge rate involves a shortened life in battery cycles. As such, Hyperion feels that such ratings are irresponsible, because many users will not notice the 'fine print' cautions on the websites of other makers.

However, we do have users that use our VX-packs way beyond 20 or $25 C$. We have feedback from competition pilots that they are getting bursts of over 50C discharges in F5B models. Their use consists of very short runs of motor time, a pause, then another run, etc. While such use is not recommended nor covered by warranty, if you are a competition pilot it is really good to know that a lipo pack capable of over 270 Amps weighing just 400 gr exists.

Product number	Product	MSRP (EUR)
HP-LVX0300-2S	Hyperion VX-2S 300mAh, 6.0A Continuous (20-30C) Weight: 20gr, Size: $23.5 \times 51 \times 10 \mathrm{~mm}$, No balance connector	19,30
HP-LVX0300-3S	Hyperion VX - 3S 300mAh, 6.0A Continuous (20-30C) Weight: 29gr, Size: $23.5 \times 51 \times 14 \mathrm{~mm}$, No balance connector	25,73
HP-LVX0400-2S	Hyperion VX - 2S 400mAh, 8.0A Continuous (20-30C) Weight: 27.0 gr , Size: $36.5 \times 65 \times 8 \mathrm{~mm}$	23,16
HP-LVX0400-3S	Hyperion VX - 3S 400mAh, 8.0A Continuous (20-30C) Weight: 40.0 gr , Size: $37.5 \times 65 \times 12 \mathrm{~mm}$	27,02
HP-LVX0800-2S	Hyperion VX - 2S 800mAh, 16.0A Continuous (20-30C) Weight: 47.0 gr , Size: $36 \times 65 \times 10 \mathrm{~mm}$	26,53
HP-LVX0800-3S	Hyperion VX - 3S 800mAh, 16.0A Continuous (20-30C) Weight: 62.0 gr , Size: $36 \times 65 \times 14 \mathrm{~mm}$	38,27
HP-LVX1200-2S	Hyperion VX - 2S 1200mAh, 24.0A Continuous (20-30C) Weight: 67gr, Size: $30.5 \times 100 \times 11 \mathrm{~mm}$	28,46
HP-LVX1200-3S	Hyperion VX - 3S 1200mAh, 24.0A Continuous (20-30C) Weight: 99gr, Size: $30.5 \times 100 \times 16 \mathrm{~mm}$	41,33
HP-LVX1500-2S	Hyperion VX - 2S 1500mAh, 30.0A Continuous (20-30C) Weight: 80 gr , Size: $31 \times 100 \times 13.5 \mathrm{~mm}$	34,57
HP-LVX1500-3S	Hyperion VX - 3S 1500mAh, 30.0A Continuous (20-30C) Weight: 118gr, Size: $31 \times 100 \times 20 \mathrm{~mm}$	50,98
HP-LVX1800-2S	Hyperion VX - 2S 1800mAh, 36.0A Continuous (20-30C) Weight: 91gr, Size: $31 \times 100 \times 15 \mathrm{~mm}$	41,33
HP-LVX1800-3S	Hyperion VX - 3S 1800mAh, 36.0A Continuous (20-30C) Weight: 136gr, Size: $33 \times 100 \times 23 \mathrm{~mm}$	59,66
HP-LVX1800-4S	Hyperion VX - 4S 1800mAh, 36.0A Continuous (20-30C) Weight: 176 gr , Size: $33 \times 100 \times 30 \mathrm{~mm}$	77,03
HP-LVX2000-2S	Hyperion VX - 2S 2000mAh, 40.0A Continuous (20-30C) Weight: 107gr, Size: $31 \times 109 \times 15 \mathrm{~mm}$	48,08
HP-LVX2000-3S	Hyperion VX - 3S 2000mAh, 40.0A Continuous (20-30C) Weight: 161gr, Size: $31 \times 109 \times 27 \mathrm{~mm}$	70,27
HP-LVX2000-4S	Hyperion VX - 4S 2000mAh, 40.0A Continuous (20-30C) Weight: 200gr, Size: $31 \times 109 \times 29 \mathrm{~mm}$	93,59

Hyperion VX LiPo packs (continued)

Product number	Product	MSRP (EUR)
HP-LVX2100-2S	Hyperion VX-2S 2100mAh, 42.0A Continuous (20-30C) Weight: 118 gr , Size: $39 \times 121 \times 12 \mathrm{~mm}$	51,94
HP-LVX2100-4S	Hyperion VX - 4S 2100mAh, 42.0A Continuous (20-30C) Weight: 222 gr , Size: $40 \times 121 \times 24 \mathrm{~mm}$	100,19
HP-LVX2200-2S	Hyperion VX-2S 2200mAh, 44.0A Continuous (20-30C) Weight: 117 gr , Size: $34 \times 108 \times 17 \mathrm{~mm}$	52,10
HP-LVX2200-3S	Hyperion VX - 3S 2200mAh, 44.0A Continuous (20-30C) Weight: 173 gr , Size: $34 \times 108 \times 24.5 \mathrm{~mm}$	77,03
HP-LVX2200-4S	Hyperion VX - 4S 2200mAh, 44.0A Continuous (20-30C) Weight: 221 gr , Size: $34 \times 108 \times 33 \mathrm{~mm}$	103,24
HP-LVX2500-2S	Hyperion VX - 2S 2500mAh, 50.0A Continuous (20-30C) Weight: 136 gr , Size: $39.5 \times 121 \times 13 \mathrm{~mm}$	66,41
HP-LVX2500-3S	Hyperion VX-3S 2500mAh, 50.0A Continuous (20-30C) Weight: 203gr, Size: $40 \times 121 \times 20 \mathrm{~mm}$	96,33
HP-LVX2500-4S	Hyperion VX - 4S 2500mAh, 50.0A Continuous (20-30C) Weight: 258 gr , Size: $40 \times 121 \times 27 \mathrm{~mm}$	128,49
HP-LVX2500-5S	Hyperion VX - 5S 2500mAh, 50.0A Continuous (20-30C) Weight: 320gr, size: $40 \times 121 \times 34 \mathrm{~mm}$	159,04
HP-LVX3300-2S	Hyperion VX - 2 S 3300 mAh , 66.0A Continuous (20-30C) Weight: 175 gr , Size: $46 \times 142 \times 13 \mathrm{~mm}$	77,03
HP-LVX3300-3S	Hyperion VX - 3S 3300mAh, 66.0A Continuous (20-30C) Weight: 260 gr , Size: $46 \times 142 \times 20 \mathrm{~mm}$	114,66
HP-LVX3300-4S	Hyperion VX - 4S 3300mAh, 66.0A Continuous (20-30C) Weight: 335 gr , Size: $46 \times 142 \times 26 \mathrm{~mm}$	153,25
HP-LVX3300-5S	Hyperion VX - 5S 3300mAh, 66.0A Continuous (20-30C) Weight: 420 gr , Size: $46 \times 142 \times 32 \mathrm{~mm}$	191,85
HP-LVX3700-2S	Hyperion VX - 2S 3700mAh, 74.0A Continuous (20-30C) Weight: 192gr, Size: $46 \times 142 \times 15 \mathrm{~mm}$	82,82
HP-LVX3700-3S	Hyperion VX - $\mathbf{3 S}$ 3700mAh, 74.0A Continuous (20-30C) Weight: 287 gr , Size: $46 \times 142 \times 21.5 \mathrm{~mm}$	122,38
HP-LVX3700-4S	Hyperion VX - 4S 3700mAh, 74.0A Continuous (20-30C) Weight: 368 gr , Size: $46 \times 142 \times 28 \mathrm{~mm}$	161,94
HP-LVX3700-5S	Hyperion VX - 5S 3700mAh, 74.0A Continuous (20-30C) Weight: 460 gr , Size: $46 \times 142 \times 34.5 \mathrm{~mm}$	200,53
HP-LVX4350-2S	Hyperion VX - 2S 4350mAh, 87.0A Continuous (20-30C) Weight: 235 gr , Size: $44 \times 160 \times 16 \mathrm{~mm}$	93,75
HP-LVX4350-3S	Hyperion VX - 3S 4350mAh, 87.0A Continuous (20-30C) Weight: 349 gr , Size: $47 \times 160 \times 23 \mathrm{~mm}$	141,19
HP-LVX4350-4S	Hyperion VX - 4S 4350mAh, 87.0A Continuous (20-30C) Weight: 440gr, Size: $44 \times 160 \times 31 \mathrm{~mm}$	186,70
HP-LVX4350-5S	Hyperion VX-5S 4350mAh, 87.0A Continuous (20-30C) Weight: 557 gr , Size: $47 \times 160 \times 39 \mathrm{~mm}$	238,16
HP-LVX4350-6S	Hyperion VX - 6S 4350mAh, 87.0A Continuous (20-30C) Weight: 652 gr , Size: $44 \times 160 \times 46 \mathrm{~mm}$	287,37
HP-LVX5000-2S	Hyperion VX - 2S 5000mAh, 100.0A Continuous (20-30C) Weight: 268gr, Size: $44 \times 160 \times 18.5 \mathrm{~mm}$	121,73
HP-LVX5000-3S	Hyperion VX - 35 5000mAh, 100.0A Continuous (20-30C) Weight: 400gr, Size: $47 \times 160 \times 27 \mathrm{~mm}$	182,68
HP-LVX5000-4S	Hyperion VX - 4S 5000mAh, 100.0A Continuous (20-30C) Weight: 511gr, Size: $44 \times 160 \times 36.5 \mathrm{~mm}$	243,79
HP-LVX5000-5S	Hyperion VX - 5S 5000mAh, 100.0A Continuous (20-30C) Weight: 642 gr , Size: $47 \times 160 \times 45 \mathrm{~mm}$	304,74
HP-LVX5000-6S	Hyperion VX - 6S 5000mAh, 100.0A Continuous (20-30C) Weight: 755 gr , Size: $44 \times 160 \times 53.5 \mathrm{~mm}$	363,59

Hyperion CL LiPo packs

The Hyperion CL lipo packs is the red series. The CL-series offers CAPACITY and LIGHT lipo packs.
The CL-series is 'C-rated' slightly lower than the VX-series. The CL-series takes aim at the sports pilot who wants long flight times, long battery life and low weight. Hyperion recommends a 16-22C load with the exception of the incredible new 350mAh packs and 950 mAh packs in this line.

Both of these new smaller packs are still comparably very light, but yet so advanced that they are capable of up to 25C discharge, taking indoor flying to new levels of power-to-weight ratios. The CL-350mAh 2 S packs are awesome in their performance.

Each pack (like the VX-series) offer a multi-connector that allows tapping into each cell individually to check cell voltage and re-balance when necessary, and supports the Hyperion LBA10 Cell Balance Adapter. Note that Hyperion packs may be charged via the main wires like any other lithium pack, but that the multi-connector also gives you additional diagnostic and charge safety options.

All CL Series packs come with high-quality, flexible silicone cabling sized appropriately for expected current draw, and foam end caps to reduce chances of impact damage.

Product number	Product	MSRP (EUR)
HP-LCL0350-2S	Hyperion CL-2S 350mAh, 9.1A Continuous (26C) Weight: 25.6 gr , Size: $34 \times 60 \times 7 \mathrm{~mm}$	24,76
HP-LCL0350-3S	Hyperion CL - 35 350mAh, 9.1A Continuous (26C) Weight: 36.9 gr , Size: $34 \times 60 \times 10.3 \mathrm{~mm}$	34,90
HP-LCL0950-2S	Hyperion CL - 2S 950mAh, 24.7A Continuous (26C) Weight: 62.2gr, Size: $33 \times 75 \times 12 \mathrm{~mm}$	33,77
HP-LCL0950-3S	Hyperion CL-3S 950mAh, 24.7A Continuous (26C) Weight: 90.0gr, Size: $33 \times 75 \times 19 \mathrm{~mm}$	48,40
HP-LCL2100-2S	Hyperion CL-2S 2100mAh, 33.6A Continuous (16-22C) Weight: 102gr, Size: $34 \times 102 \times 12 \mathrm{~mm}$	44,06
HP-LCL2100-3S	Hyperion CL-3S 2100mAh, 33.6A Continuous (16-22C) Weight: 149gr, Size: $34 \times 102 \times 19 \mathrm{~mm}$	65,45
HP-LCL2100-4S	Hyperion CL - 4S 2100mAh, 33.6A Continuous (16-22C) Weight: 205gr, Size: $34 \times 102 \times 26 \mathrm{~mm}$	78,96
HP-LCL2500-2S	Hyperion CL-2S 2500mAh, 50.0A Continuous (16-22C) Weight: 142gr, Size: $44 \times 145 \times 11 \mathrm{~mm}$	57,09
HP-LCL2500-3S	Hyperion CL-3S 2500mAh, 50.0A Continuous (16-22C) Weight: 207gr, Size: $44 \times 145 \times 16 \mathrm{~mm}$	84,43
HP-LCL2500-4S	Hyperion CL-4S 2500mAh, 50.0A Continuous (16-22C) Weight: 271 gr , Size: $44 \times 145 \times 22 \mathrm{~mm}$	109,99
HP-LCL2500-5S	Hyperion CL-5S 2500mAh, 50.0A Continuous (16-22C) Weight: 335 gr , Size: $44 \times 145 \times 27 \mathrm{~mm}$	137,33
HP-LCL2500-6S	Hyperion CL-6S 2500mAh, 50.0A Continuous (16-22C) Weight: 401 gr , Size: $44 \times 145 \times 33 \mathrm{~mm}$	165,96
HP-LCL3200-2S	Hyperion CL-2S 3200mAh, 64.0A Continuous (16-22C) Weight: 177 gr , Size: $44 \times 145 \times 14 \mathrm{~mm}$	72,36
HP-LCL3200-3S	Hyperion CL - 3S 3200mAh, 64.0A Continuous (16-22C) Weight: 260 gr , Size: $44 \times 145 \times 21 \mathrm{~mm}$	106,14
HP-LCL3200-4S	Hyperion CL - 4S 3200mAh, 64.0A Continuous (16-22C) Weight: 341gr, Size: $44 \times 145 \times 27 \mathrm{~mm}$	138,94
HP-LCL3200-5S	Hyperion CL-5S 3200mAh, 64.0A Continuous (16-22C) Weight: 425 gr , Size: $44 \times 145 \times 34 \mathrm{~mm}$	173,51
HP-LCL3200-6S	Hyperion CL-6S 3200mAh, 64.0A Continuous (16-22C) Weight: 515 gr , Size: $44 \times 145 \times 41 \mathrm{~mm}$	208,41
HP-LCL4000-2S	Hyperion CL-2S 4000mAh, 64.0A Continuous (16-22C) Weight: 225 gr , Size: $42 \times 143 \times 17 \mathrm{~mm}$	86,84
HP-LCL4000-3S	Hyperion CL-3S 4000mAh, 80.0A Continuous (20C) Weight: 328 gr , Size: $42 \times 143 \times 25 \mathrm{~mm}$	129,29
HP-LCL4000-4S	Hyperion CL-4S 4000mAh, 80.0A Continuous (20C) Weight: 436 gr , Size: $42 \times 148 \times 33 \mathrm{~mm}$	169,82

Hyperion CL LiPo packs (continued)

Product number	Product	MSRP (EUR)
HP-LCL4000-5S	Hyperion CL-5S 4000mAh, 80.0A Continuous (20C) Weight: 542 gr , Size: $42 \times 148 \times 42 \mathrm{~mm}$	212,27
HP-LCL4000-6S	Hyperion CL-6S 4000mAh, 80.0A Continuous (20C) Weight: 642 gr , Size: $42 \times 148 \times 50 \mathrm{~mm}$	255,69
HP-LCL4200-3S	Hyperion CL-3S 4200mAh, 67.2A Continuous, (2100-2P 16-22C) Weight: 294gr, Size: $34 \times 102 \times 40 \mathrm{~mm}$	119,48
HP-LCL4200-4S	Hyperion CL-4S 4200mAh, 67.2A Continuous, (2100-2P 16-22C) Weight: 384 gr , Size: $34 \times 102 \times 51 \mathrm{~mm}$	157,11
HP-LCL4200-5S	Hyperion CL-5S 4200mAh, 67.2A Continuous, (2100-2P 16x22C) Weight: 475gr, Size: $34 \times 102 \times 67 \mathrm{~mm}$	192,65
HP-LCL4800-2S	Hyperion CL-2S 4800mAh, 96.0A Continuous (20C) Weight: 264 gr , Size: $44 \times 147 \times 20 \mathrm{~mm}$	100,35
HP-LCL4800-3S	Hyperion CL-3S 4800mAh, 96.0A Continuous (20C) Weight: 388 gr , Size: $44 \times 147 \times 30 \mathrm{~mm}$	150,52
HP-LCL4800-4S	Hyperion CL-4S 4800mAh, 96.0A Continuous (20C) Weight: 515 gr , Size: $44 \times 150 \times 40 \mathrm{~mm}$	196,83
HP-LCL4800-5S	Hyperion CL-5S 4800mAh, 96.0A Continuous (20C) Weight: 636 gr , Size: $44 \times 150 \times 50 \mathrm{~mm}$	247,01
HP-LCL4800-6S	Hyperion CL-6S 4800mAh, 96.0A Continuous (20C) Weight: 755 gr , Size: $44 \times 150 \times 60 \mathrm{~mm}$	297,18

NEW - Hyperion EOS 1210i 12S CHARGER, with Terminal Capacity Selection and Speed 2C Rate

Highlights: MSRP:

- Dimensions: 6 cm tall $\times 15.5 \mathrm{~cm}$ front/back $x 14.5 \mathrm{~cm}$ wide
- Weight: 640gr
- Lipos: 2-12S

Product number:
HP-EOS1210i
Price in EUR including 19\% VAT

The EOS 1210 i is an extremely powerful (180W, 10A max), versatile, easy-to-use charger with special features for speed charging lithium packs up to 12S! 2C rates are possible - in addition to Terminal Capacity Selection - allowing you to charge and fly lithium polymer packs* in as little as 27 minutes. NiCd and NiMH packs of up to 30 cells, and lead-acid batteries to 12 V are also supported. Output Charge Cord/Connector set included (\$3.50 value)

Monitor the individual cell voltages on the LCD screen of EOS1210i while you balance your lithium packs with LBA 10 and optional cable \#HP-EOSLBA10-DPC. Network two LBA 10 together with NET Adapter pack \#HP-EOSLBA10-MSC, and you can charge two packs of same cell type and capacity (such as 6 S and 6 S) at the same time, and every cell in both packs will be balanced to the other when charging is done, for packs from 7 S to 12 S !

HP-EOS1210I-SEN is the Temperature sensor for EOS1210i. It plugs into a dedicated port and allows you to specify a pack termperature at which charging will be stopped, and/or monitor pack temp during the charge.

Hyperion EOS 5i Speed 5S / 14N charger - with dataport

Highlights:

- Versatile and easy to use
- Connectivity with LBA10 balancer

NEW! Hyperion EOS 5i DP - Speed 5S14N CHARGER with DataPort for LBA10
The EOS 5i DP [SPEED 5S14N] is a versatile, easy-to-use charger with special features for fast charging, discharging and cycling NiCd and NiMH packs of up to 14 cells, Lithium packs to 5S, and lead-acid batteries to 12 V .

New Function! You can monitor the individual cell voltages on the LCD screen of EOS5iDP while you balance your lithium packs with LBA 10, using optional cable HP-EOSLBA10-DPC

NEW - Hyperion EOS 5i DP 12V / 220V input CHARGER, with DataPort for LBA10

Highlights:

- Very versatile charger for both 220 V and 12 V
- Identical in features with Hyperion EOS5i-DP

MSRP:
90,05

Product number:
HP-EOS5i-DP-AD
Price in EUR including 19\% VAT

The EOS 5i DP AC/DC is a versatile, easy-to-use charger with special features for fast charging, discharging and cycling NiCd and NiMH packs of up to 14 cells, Lithium packs to 5 S , and lead-acid batteries to 12 V .

Of course, the AC/DC part means that you can charge directly from AC wall supply while at home or from a 12V DC battery while at the field.

EOS LBA10 Balance Charge Adapter 2S~6S 10A Max

Highlights:

- New balance unit from Hyperion
- Charge with 10 A
- Network 2 LBA10 for 12S balancing Lithium Packs. Max 6S, 10A rating - Network 2 units for 7S~12S balancing.

The Hyperion EOS Lithium Balance Adapter 10 (LBA10) is the newest, most feature-packed and
reliable lithium balancer on the market today, and comes at a bargain price. Simply put, it is the
The Hyperion EOS Lithium Balance Adapter 10 (LBA10) is the newest, most feature-packed and
reliable lithium balancer on the market today, and comes at a bargain price. Simply put, it is the most powerful, versatile, and safest way to charge your lithium packs today. A single LBA10 provides three ways to balance your lithium packs from $2 S$ to $6 S$, at a maximum of up to 10-ampere rate!

Or, you can network two LBA 10 together with NET cable and adapter pack \#HP-EOSLBA10-MSC. Set one LBA10 to Master and one to Slave mode. Series the LBA input leads together, and connect to a charger with appropriate S rating. Now you can charge two
packs of same cell type and capacity (such as $6 S$ and $6 S$) at the same time, and every cell in leads together, and connect to a charger with appropriate S rating. Now you can charge two
packs of same cell type and capacity (such as 6 S and 6 S) at the same time, and every cell in both packs will be balanced to the other when charging is done. Connect the packs in series and fly, with balanced packs from 7 S to 12 S in this way!

Or, say you have two 5 S chargers, and want to charge two 5 S packs to connect and fly as 10 S . Use each LBA10 in Master mode, and connect each to a separate charger and battery. When charging is finished, Connect the two LBA10 together in Master-Slave configuration, and connect them to the just-charged lithium packs. The LBA10 will work together until every cell in
the two packs are balanced together, then automatically shut down. Takes only a few minutes. connect them to the just-charged lithium packs. The LBA10 will work together until every cell in
the two packs are balanced together, then automatically shut down. Takes only a few minutes. Now series the packs together and fly in peace!

Each LBA 10 comes with balance harnesses for 2 S and 3 S packs. For 4 S to 6 S packs, get the appropriate optional harnesses from these part numbers:

HP-EOSLBA10-MC-H4SHP-EOSLBA10-MC-H5SHP-EOSLBA10-MC-H6S

The LBA 10 also has a DataPort (use optional cable HP-EOSLBA10-DPC) which will allow you to monitor the individual cell voltages while you balance, using the LCD screen of any HYPERION charger which has DataPort option. (DP Chargers available on about Oct1, 2006)
New Hyperion EOS LBA10A Net - The Most Powerful, Versatile Balance-Safety Adapter for

MSRP:
36,99

Product number:

HP-EOSLBA10

Price in EUR including 19\% VAT

Connection wires for EOS-LBA10 Lipo balancer

Product number	Product	MSRP (EUR)
HP-EOSLBA10-DPC	LBA10 Balancer DataPort Cable	3,54
HP-EOSLBA10-MSC	LBA10 NET Cable/Adapter Set	5,15
HP-EOSLBA-MC-P4	MALE PACK SIDE for 2S~4S	2,57
HP-EOSLBA-MC-P5	MALE PACK SIDE for 5S	2,57
HP-EOSLBA10-MC-H2S	LBA 10 Balance Harness 2S, Std	2,89
HP-EOSLBA10-MC-H3S	LBA 10 Balance Harness 3S, Std.	3,38
HP-EOSLBA10-MC-H4S	LBA 10 Balance Harness 4S, Std.	3,70
HP-EOSLBA10-MC-H5S	LBA 10 Balance Harness 5S, Std.	3,86
HP-EOSLBA10-MC-H6S	LBA 10 Balance Harness 6S, Std.	3,86
HP-EOSLBA10-EH-H2S	LBA 10 JST EH Harness 25	3,70
HP-EOSLBA10-EH-H3S	LBA 10 JST EH Harness 3S	3,70
HP-EOSLBA10-EH-H4S	LBA 10 JST EH Harness 4 S	3,86
HP-EOSLBA10-EH-H5S	LBA 10 JST EH Harness 5S	4,18
HP-EOSLBA10-EH-H6S	LBA 10 JST EH Harness 6S	4,34
HP-EOSLBA10-XH-H2S	LBA 10 JST XH Harness H2S	3,70
HP-EOSLBA10-XH-H3S	LBA 10 JST XH Harness H3S	3,70
HP-EOSLBA10-XH-H4S	LBA 10 JST XH Harness H4S	3,86
HP-EOSLBA10-XH-H5S	LBA 10 JST XH Harness H5S	4,18
HP-EOSLBA10-XH-H6S	LBA 10 JST XH Harness H6S	4,34

Appendix 3

List of material bought for making the first battery charge/discharge tests

Material to buy for first charge/discharge tests

- Batteries: 2x Hyperion CL-4S 4800mAh, 96.0A Continuous (20C) Weight: 515gr, Size: $44 \times 150 \times 40 \mathrm{~mm}$

Product number: HP-LCL4800-4S
MSRP: 196,83€

Remark: This picture is from the CL-5S 4800mAh

- Charger: 1x EOS 1210i; charge: 180W, 10A; discharge: 50W, 5A 640 gr ; 6 cm tall $\times 15.5 \mathrm{~cm}$ front/back $\times 14.5 \mathrm{~cm}$ wide DC input voltage between 12 V and 15 V

Product number: HP-EOS1210i MSRP: $154.38 €$

$1 \mathrm{x} \quad$ temperature sensor, range $10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
For monitoring pack temperature on charger and stop charging at given temperature.

Product number: HP-EOS1210i-SEN
MSRP: $12.86 €$

Remark: All prices in EUR including 19\% VAT

Material to buy for first charge/ discharge tests (continued)

- Balancer: $2 x$

EOS 1210i, 180W, 10A max
Product number: HP-EOSLBA10
MSRP: $36.99 €$

$2 x \quad$ balance harnesses for 4S batteries For connecting 4S batteries
Product number: HP-EOSLBA10-MC-H4S MSRP: $3.70 €$

1x data port cable
For monitoring cell voltage on charger
Product number: HP-EOSLBA10-DPC
MSRP: $3.54 €$
1x network cable/adapter set
To connect the two balancer together
Product number: HP-EOSLBA10-MSC
MSRP: $5.15 €$

- Cellmeter: 1 x CellMeter-8

Remark: How I saw, the cell meter is quite expensive. It allows displaying the voltage of each cell. I just found Japanese sites and therefore just poor information about it.

Appendix 4

Test record of the cell voltage measuring circuit

Test record - cell voltag measuring circuit

No.	Description	Conditions	Measurand(s)	Result	Status
1	Verification of short circuits	no supply voltage	-	no short circuit on 5V supply	OK
2	Checking the supply voltage of all ICs	ciruit supplied with +5Vdc; ICs not plugged in	supply of each IC	all components supplied correctly	OK
3	Setting reference voltage to 1.92 V $\left(1.92 \mathrm{~V}=0.6^{*} 3.2 \mathrm{~V}\right)$	ciruit supplied with +5 Vdc	voltage given by the potentiometer	voltage adjusted to 1.92 V by adapting the resistance value	OK
Take away supply voltage of +5 Vdc and plug in the ICs (LM324 and LM339). Reconnect the power supply of +5 Vdc .					
Connect the two battery packs in series. Connect them with the CellMeter8 for allowing displaying each cell voltage. Than connect the batteries with the circuit.					
4*	Test of the cell voltage measure. The gain of each amplifier have to be 0.6.	batteries connected to the circuit	Uout of each op-amp and each cell voltage	one amplifier has a gain of 0.665 (results see table below)	KO
5	Check of the functionality of the comparators (part one)	reference voltage of 1.92 V	Uout of comparators	Uout $=+5 \mathrm{Vdc}$	OK
Increase reference voltage given by the potentiometer until it's higher than 0.6 times the voltage one cell, but if possible lower than the voltage of another cell (0.6)					
6	Check of the functionality of the comparators (part two)	reference voltage at 2.35 V $\left(\right.$ Ucell $_{\text {min }}=2.324 \mathrm{~V}$ and Ucell $_{\text {max }}=2.574 \mathrm{~V}$)	Uout of comparators	Uout $=0 \mathrm{Vdc}$ as soon as the reference voltage is higher than 0.6 times the voltage of one cell	OK

Cell voltages		Uout of the op-amps	Gain of the amplifier (G = Uout / Ucell)
1. CellMeter:	2. Multimeter:	Multimeter:	Designated gain G = 0.6
cell1 3.88 V	cell1 3.874 V	cell1 2.363 V	cell1: $G=0.610$
cell2 3.88 V	cell2 3.879 V	cell2 2.375 V	cell2: $\mathrm{G}=0.612$
cell3 3.90 V	cell3 3.892V	cell3 2.377 V	cell3: $\mathrm{G}=0.611$
cell4 3.89 V	cell4 3.886 V	cell4 2.387 V	cell4: $\mathrm{G}=0.614$
cell5 3.90 V	cell5 3.906V	cellf 2.378 V	cell5: $\mathrm{G}=0.609$
cell6 3.88 V	cell6 3.873 V	cell6 2.574 V	cell6: $\mathrm{G}=0.665$
cell7 3.88 V	cell7 3.878 V	cell7 2.326 V	cell7: $\mathrm{G}=0.600$
cell8 3.89 V	cell8 3.887 V	cell8 2.324 V	cell8: $\mathrm{G}=0.598$

[^1]
Appendix 5

CD with the datasheets of electronic devices

HighPower

M 1:2

Stock program
Standard program
Special program (on request)

Motor Data

Values at nominal voltage

Values at nominal voltage			
1	Nominal voltage	V	6.0

Order Number
110935 [10936 [10937 [10938 [10939 [10940 [1094] [10942 110943 [10944 [10945

Specifications

Thermal data

17 Thermal resistance housing-ambient
-3.2K/W
19 Thermal time constant winding
20 Thermal time constant motor
21 Ambient temperature
22 Max. permissible winding temperature

Mechanical data (ball bearings)

23 Max. permissible speed
24 Axial play
25 Radial play
26 Max. axial load (dynamic)
27 Max. force for press fits (static)
10400 rpm

Max force for press fits (static) $\quad 5 \mathrm{~N}$
28 Max. radial loading, 5 mm from flange

Mechanical data (sleeve bearings)

3 Max. permissible speed
24 Axial play
25 Radial play
26 Max. axial load (dynamic)
27 Max. force for press fits (static)
28 Max. radial loading, 5 mm from flange

Other specifications

29 Number of pole pairs
30 Number of commutator segments
31 Weight of motor
Values listed in the table are nominal.
Explanation of the figures on page 47.

Option

Sleeve bearings in place of ball bearings Pigtails in place of terminals

10400 rpm
$0.1-0.2 \mathrm{~mm}$

Operating Range

12.0
8010
56.7
6030
14.2
1.08
66.6
4.80
76
2.50
0.227
13.9
689
124
17.5
13.5

Comments

Continuous operation

In observation of above listed thermal resistance (lines 17 and 18) the maximum permissible winding temperature will be reached during continuous operation at $25^{\circ} \mathrm{C}$ ambient.
= Thermal limit.

Short term operation

The motor may be briefly overloaded (recurring).
— Assigned power rating

maxon Modular System

Overview on page 16-21
Planetary Gearhead $\begin{array}{ll}0.012 \mathrm{~mm} & \varnothing 26 \mathrm{~mm} \\ 0.5-2.0 \mathrm{Nm}\end{array}$
1.7 N Page 226

80 N Spur Gearhead
$\varnothing 30$ mm
$0.07-0.2 \mathrm{Nm}$
Page 227
Planetary Gearhead
117 g 0.4-6.0 Nm
$0.4-6.0 \mathrm{Nm}$
Page 228 / 229 / 232
Spur Gearhead
$\varnothing 38$ mm
$0.1-0.6$ Nm
Page 234

15.0	18.0	24.0	30.0	36.0	42.0	48.0	48.0
8320	7950	8820	7020	7250	7850	7450	600
47.3	37.0	31.7	18.9	16.9	15.5	12.7	9.67
6150	583	6730	4910	5160	5770	5340	3860
16.5	17.2	17.2	17.6	17.7	17.6	17.5	17.7
1.03	0.846	0.704	0.455	0.394	0.365	0.300	0.244
70.3	69.8	77.6	60.5	63.1	68.4	63.2	50.6
4.19	3.30	3.04	1.51	1.35	1.36	1.04	0.672
77	78	79	78	79	79	79	77
3.58	5.46	7.90	19.9	26.6	30.9	46.0	71.4
0.332	0.528	0.770	1.90	2.57	2.99	4.34	6.68
16.8	21.2	25.5	40.1	46.7	50.3	60.6	75.2
569	451	374	238	205	190	158	127
122	116	116	118	117	116	120	121
16.7	16.2	15.7	15.4	15.3	15.2	15.2	15.2
13.1	13.2	13.0	12.5	12.5	12.5	12.1	12.0

Encoder MEnc 13, 16 Counts per turn, 2 Channels

Stock program tandard program

Special program (on request)
 Type
 Counts per turn
 Number of channels
 Max. operating frequency (kHz)

 2

Technical Data

Supply voltage V_{cc}	$3.8-24 \mathrm{~V}$
Output signal $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{VDC}$	TTL compatible
Phase shift	$90^{\circ} \mathrm{e} \pm 45^{\circ} \mathrm{e}$
Power input at $\mathrm{V}_{\mathrm{cc}} 5 \mathrm{VDC}$	max .8 mA
Inertia of the magnetic disc	$0.07 \mathrm{gcm}^{2}$
Operating temperature range	$-20 \ldots+80^{\circ} \mathrm{C}$

Pin Allocation

Planetary Gearhead GP 32 C $\varnothing 32 \mathrm{~mm}, 1.0-6.0 \mathrm{Nm}$

Ceramic Version

Technical Data
Planetary Gearhead

M 1:2
Option: Low-noise version

Combination

+ Motor	Page	+ Tacho / Brake	Page	Overall length [mm] = Motor length + gearhead length + (tacho / brake) + assembly parts											
A-max 26	113-120			71.2	81.1	81.1	87.8	87.8	94.5	94.5	94.5	101.2	101.2	101.2	101.2
A-max 26	113-119	MEnc 13	262	78.3	88.2	88.2	94.9	94.9	101.6	101.6	101.6	108.3	108.3	108.3	108.3
A-max 26	114-120		246	80.0	89.9	89.9	96.6	96.6	103.3	103.3	103.3	110.0	110.0	110.0	110.0
A-max 26	114-120	Enc 22	252	85.6	95.5	95.5	102.2	102.2	108.9	108.9	108.9	115.6	115.6	115.6	115.6
A-max 26	114-120	HED_5540	254/256	90.0	99.9	99.9	106.6	106.6	113.3	113.3	113.3	120.0	120.0	120.0	120.0
A-max 32	121/123			89.4	99.3	99.3	106.0	106.0	112.7	112.7	112.7	119.4	119.4	119.4	119.4
A-max 32	122/124			88.0	97.9	97.9	104.6	104.6	111.3	111.3	111.3	118.0	118.0	118.0	118.0
A-max 32	122/124	MR	247	99.2	109.1	109.1	115.8	115.8	122.5	122.5	122.5	129.2	129.2	129.2	129.2
A-max 32	122/124	HED_5540	254/256	108.8	118.7	118.7	125.4	125.4	132.1	132.1	132.1	138.8	138.8	138.8	138.8
RE-max 29	143-146			71.2	81.1	81.1	87.8	87.8	94.5	94.5	94.5	101.2	101.2	101.2	101.2
RE-max 29	144/146	MR	246	80.0	89.9	89.9	96.6	96.6	103.3	103.3	103.3	110.0	110.0	110.0	110.0
EC $32,80 \mathrm{~W}$	162			86.5	96.4	96.4	103.1	103.1	109.8	109.8	109.8	116.5	116.5	116.5	116.5
EC 32, 80 W	162	HED_5540	254/256	104.9	114.8	114.8	121.5	121.5	128.2	128.2	128.2	134.9	134.9	134.9	134.9
EC 32, 80 W	162	Res 26	264	106.6	116.5	116.5	123.2	123.2	129.9	129.9	129.9	136.6	136.6	136.6	136.6
EC-max 22, 25 W	175			75.0	84.9	84.9	91.6	91.6	98.3	98.3	98.3	105.0	105.0	105.0	105.0
EC-max 22, 25 W	175	MR	245	84.7	94.6	94.6	101.3	101.3	108.0	108.0	108.0	114.7	114.7	114.7	114.7
EC-max 22, 25 W	175	AB 20	298	110.0	119.9	119.9	126.6	126.6	133.3	133.3	133.3	140.0	140.0	140.0	140.0
EC-max 30, 40 W	176			68.5	78.4	78.4	85.1	85.1	91.8	91.8	91.8	98.5	98.5	98.5	98.5
EC-max 30, 40 W	176	MR	247	80.7	90.6	90.6	97.3	97.3	104.0	104.0	104.0	110.7	110.7	110.7	110.7
EC-max 30, 40 W	176	HEDL 5540	254	89.1	99.0	99.0	105.7	105.7	112.4	112.4	112.4	119.1	119.1	119.1	119.1
EC-max 30, 40 W	176	AB 20	298	100.6	110.5	110.5	117.2	117.2	123.9	123.9	123.9	130.6	130.6	130.6	130.6
EC-max 30, 40 W	176	HEDL 5540 / AB 20	254/298	121.2	131.1	131.1	137.8	137.8	144.5	144.5	144.5	151.2	151.2	151.2	151.2
EC-power 22, 90 W	183			75.1	85.0	85.0	91.7	91.7	98.4	98.4	98.4	105.1	105.1	105.1	105.1
EC-power 22, 120 W	184			92.5	102.4	102.4	109.1	109.1	115.8	115.8	115.8	122.5	122.5	122.5	122.5
MCD EPOS, 60 W	295			146.5	156.4	156.4	163.1	163.1	169.8	169.8	169.8	176.5	176.6	176.7	176.8
MCD EPOS P, 60 W	295			146.5	156.4	156.4	163.1	163.1	169.8	169.8	169.8	176.5	176.6	176.7	176.8

A-max $19 \varnothing 19$ mm, Precious Metal Brushes CLL, 1.5 Watt, C \in approved

Order Number

Motor Data

M 1:1

Special program (on request)

Values at nominal voltage

Values at nominal voltage								
1	Nominal voltage	Vpm	1.2	2.4	3.0	4.8	6.0	7.2

Specifications

Thermal data

17 Thermal resistance housing-ambient
18 Thermal resistance winding-housing
19 Thermal time constant winding
20 Thermal time constant motor
21 Ambient temperature
22 Max. permissible winding temperature

Mechanical data (sleeve bearings)

23 Max. permissible speed
24 Axial play
25 Radial play
26 Max. axial load (dynamic)
27 Max. force for press fits (static)
(static, shaft supported)
28 Max. radial loading, 5 mm from flange
Mechanical data (ball bearings)
23 Max. permissible speed
24 Axial play
25 Radial play
26 Max. axial load (dynamic)
27 Max. force for press fits (static)
(static, shaft supported)
28 Max. radial loading, 5 mm from flange

Other specifications

29 Number of pole pairs
30 Number of commutator segments
31 Weight of motor
CLL = Capacitor Long Life
Values listed in the table are nominal. Explanation of the figures on page 47.

Option

Ball bearings in place of sleeve bearings
Pigtails in place of terminals
Without CLL

Operating Range

 (lines 17 and 18) the maximum permissible winding temperature will be reached during continuous operation at $25^{\circ} \mathrm{C}$ ambient.
= Thermal limit
Short term operation
The motor may be briefly overloaded (recurring).
—— Assigned power rating

maxon Modular System

Overview on page 16-21
Planetary Gearhead $\varnothing 19 \mathrm{~mm}$
$0.1-0.3 \mathrm{Nm}$
Page 217
3.3 N Spur Gearhead

45 N Spur Gearh
$480 \mathrm{~N} \quad 0.06-0.25 \mathrm{Nm}$
11.9 N Page 218

Planetary Gearhead $\varnothing 22$ mm
1 0.1-2.0 Nm
9 Page 219 / 221 / 222
34 g Spur Gearhead
$\varnothing 24 \mathrm{~mm}$
0.1 Nm

Page 225

Comments
Continuous operation
In observation of above listed thermal resistance

12.0
6140
8.39
2300
3.51
0.200
5.72
0.314
71
38.2
1.98
18.2
525
1100
23.8
2.06

18.0
6.17

2670
3.42
0.139
5.85
0.23
78.2
3.87
25.4

376
1160
24.1
$99 \square|+|$

Encoder MEnc 13, 16 Counts per turn, 2 Channels

Stock program tandard program
Special program (on request)

Type
 Counts per turn
 Number of channels
 Combination

Order Number

 162

Technical Data

Rechnical Data	$3.8-24 \mathrm{~V}$
Supply voltage V_{CC}	TTL compatible
Output signal $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{VDC}$	$90^{\circ} \mathrm{e} \pm 45^{\circ} \mathrm{e}$
Phase shift	max. 8 mA
Power input at $\mathrm{V}_{\mathrm{CC}} 5 \mathrm{VDC}$	$0.07 \mathrm{gcm}^{2}$
Inertia of the magnetic disc	$-20 \ldots+80^{\circ} \mathrm{C}$
Operating temperature range	

Planetary Gearhead GP 22 C $\varnothing 22$ mm, 0.5-2.0 Nm

Ceramic Version

Technical Data

Planetary Gearhead
straight teeth
Output shaft
stainless steel, hardened
Bearing at output

Radial play, 10 mm from flange
Axial play
max. 0.2 mm $\max .0 .2 \mathrm{~mm}$ 70 N
Max. radial load, 10 mm from flange
Max. permissible axial load
Max. permissible force for press fits
Sense of rotation, drive to output
Recommended input speed
Recommended temperature range
Extended area as option
< 8000 rpm
$<8000 \mathrm{rpm}$ $-35 \ldots+100^{\circ} \mathrm{C}$

Combination														
+ Motor	Page	+ Tacho / Brake	Page	Overall length [mm] = Motor length + gearhead length + (tacho / brake) + assembly parts										
A-max 19	105/106			51.6	58.4	65.2	65.2	72.0	72.0	72.0	78.8	78.8	78.8	78.8
A-max 19, 1.5 W	106	MR	247/248	56.7	63.5	70.3	70.3	77.1	77.1	77.1	83.9	83.9	83.9	83.9
A-max 19, 1.5 W	106	Enc 22	253	66.0	72.8	79.6	79.6	86.4	86.4	86.4	93.2	93.2	93.2	93.2
A-max 19, 1.5 W	106	MEnc 13	262	59.1	65.9	72.7	72.7	79.5	79.5	79.5	86.3	86.3	86.3	86.3
A-max 19, 2.5 W	107/108			54.2	61.0	67.8	67.8	74.6	74.6	74.6	81.4	81.4	81.4	81.4
A-max 19, 2.5 W	108	MR	247/248	58.5	65.3	72.1	72.1	78.9	78.9	78.9	85.7	85.7	85.7	85.7
A-max 19, 2.5 W	108	Enc 22	253	68.6	75.4	82.2	82.2	89.0	89.0	89.0	95.8	95.8	95.8	95.8
A-max 19, 2.5 W	108	MEnc 13	262	61.7	68.5	75.3	75.3	82.1	82.1	82.1	88.9	88.9	88.9	88.9
A-max 22	109-112			54.6	61.4	68.2	68.2	75.0	75.0	75.0	81.8	81.8	81.8	81.8
A-max 22	110/112	MR	247/248	59.6	66.4	73.2	73.2	80.0	80.0	80.0	86.8	86.8	86.8	86.8
A-max 22	110/112	Enc 22	253	69.0	75.8	82.6	82.6	89.4	89.4	89.4	96.2	96.2	96.2	96.2
A-max 22	110/112	MEnc 13	262	61.7	68.5	75.3	75.3	82.1	82.1	82.1	88.9	88.9	88.9	88.9
RE-max 21	135/136			51.6	58.4	65.2	65.2	72.0	72.0	72.0	78.8	78.8	78.8	78.8
RE-max 21, 3.5 W	136	MR	247/248	56.7	63.5	70.3	70.3	77.1	77.1	77.1	83.9	83.9	83.9	83.9
RE-max 21	137/138			54.2	61.0	67.8	67.8	74.6	74.6	74.6	81.4	81.4	81.4	81.4
RE-max 21, 6 W	138	MR	247/248	58.5	65.3	72.1	72.1	78.9	78.9	78.9	85.7	85.7	85.7	85.7
RE-max 24	139-142			54.6	61.4	68.2	68.2	75.0	75.0	75.0	81.8	81.8	81.8	81.8
RE-max 24	140/142	MR	247/248	59.6	66.4	73.2	73.2	80.0	80.0	80.0	86.8	86.8	86.8	86.8

2SK2936

Silicon N Channel MOS FET High Speed Power Switching
 HITACHI

Features

- Low on-resistance
$\mathrm{R}_{\mathrm{DS}}=0.010 \Omega$ typ.
- High speed switching
- 4 V gate drive device can be driven from 5 V source

Outline

2SK2936

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$			
Item	Symbol	Ratings	Unit
Drain to source voltage	$\mathrm{V}_{\mathrm{Dss}}$	60	V
Gate to source voltage	$\mathrm{V}_{\mathrm{Gss}}$	± 20	V
Drain current	I_{D}	45	A
Drain peak current	$\mathrm{I}_{\mathrm{D} \text { (pulse) }}$ Note1	180	A
Body-drain diode reverse drain current	I_{DR}	45	A
Avalanche current	I_{AP} Note3	45	A
Avalanche energy	$\mathrm{E}_{\mathrm{AR}}{ }^{\text {Note3 }}$	mJ	
Channel dissipation	$\mathrm{Pch}^{\text {Note2 }}$	173	W
Channel temperature	Tch	35	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	150	${ }^{\circ} \mathrm{C}$

Note: 1. PW $\leq 10 \mu \mathrm{~s}$, duty cycle $\leq 1 \%$
2. Value at $\mathrm{Tc}=25^{\circ} \mathrm{C}$
3. Value at $\mathrm{Tch}=25^{\circ} \mathrm{C}, \mathrm{Rg} \geq 50 \Omega$

Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Min	Typ	Max	Unit	Test Conditions
Drain to source breakdown voltage	$\mathrm{V}_{\text {(BR) }}$ dss	60	-	-	V	$\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$
Gate to source breakdown voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {gss }}}$	± 20	-	-	V	$\mathrm{I}_{\mathrm{G}}= \pm 100 \mu \mathrm{~A}, \mathrm{~V}_{\text {DS }}=0$
Gate to source leak current	$\mathrm{I}_{\text {Gss }}$	-	-	± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {GS }}= \pm 16 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=0$
Zero gate voltege drain current	$\mathrm{I}_{\text {DS }}$	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DS }}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$
Gate to source cutoff voltage	$\mathrm{V}_{\text {GS(off) }}$	1.5	-	2.5	V	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}$
Static drain to source on state	$\mathrm{R}_{\mathrm{DS}(\text { (on) }}$	-	0.010	0.013	Ω	$\mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}^{\text {Note4 }}$
resistance	$\mathrm{R}_{\mathrm{DS}(\text { (on) }}$	-	0.015	0.025	Ω	$\mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=4 \mathrm{~V}^{\text {Note4 }}$
Forward transfer admittance	$\left\|y_{\text {fs }}\right\|$	24	40	-	S	$\mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}^{\text {Note } 4}$
Input capacitance	Ciss	-	2200	-	pF	$V_{\text {DS }}=10 \mathrm{~V}$
Output capacitance	Coss	-	1050	-	pF	$V_{\text {GS }}=0$
Reverse transfer capacitance	Crss	-	320	-	pF	$\mathrm{f}=1 \mathrm{MHz}$
Turn-on delay time	$\mathrm{t}_{\mathrm{d}(0 n)}$	-	25	-	ns	$\mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
Rise time	t_{r}	-	200	-	ns	$\mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}$
Turn-off delay time	$\mathrm{t}_{\mathrm{d} \text { (ffi) }}$	-	320	-	ns	$\mathrm{R}_{\mathrm{L}}=1.5 \Omega$
Fall time	t_{f}	-	240	-	ns	
Body-drain diode forward voltage	V_{DF}	-	0.95	-	V	$\mathrm{I}_{\mathrm{F}}=45 \mathrm{~A}, \mathrm{~V}_{\text {GS }}=0$
Body-drain diode reverse recovery time	$\mathrm{t}_{\text {r }}$	-	60	-	ns	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=45 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{diF} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$

[^2]
2SK2936

Main Characteristics

HITACHI

Switching Time Test Circuit

Waveform

Package Dimentions

Unit: mm

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HITACHI

Hitachi, Ltd.
Semiconductor \& Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL NorthAmerica : http:semiconductor.hitachi.com/
Europe : http://www.hitachi-eu.com/hel/ecg
Asia (Singapore) \vdots http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan) \vdots http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) \quad http://www.hitachi.com.hk/eng/bo/grp3/index.htm Japan
: http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc.
179 East Tasman Drive, San Jose, CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223

Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany
Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9293000
Hitachi Europe Ltd
Electronic Components Group. Whitebrook Park
Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay \#20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No. 167 ,
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tun-Hwa North Road, $<886>$ (2) $2718-3666$
Tel: <886> (2) 2718-366
Fax: <886> (2) 2718-8180

LMV321 / LMV358 / LMV324 Single/Dual/Quad General Purpose, Low Voltage, Rail-to-Rail Output Operational Amplifiers

General Description

The LMV358/324 are low voltage (2.7-5.5V) versions of the dual and quad commodity op amps, LM358/324, which currently operate at $5-30 \mathrm{~V}$. The LMV321 is the single version.
The LMV321/358/324 are the most cost effective solutions for the applications where low voltage operation, space saving and low price are needed. They offer specifications that meet or exceed the familiar LM358/324. The LMV321/358/324 have rail-to-rail output swing capability and the input common-mode voltage range includes ground. They all exhibit excellent speed-power ratio, achieving 1 MHz of bandwidth and $1 \mathrm{~V} / \mu \mathrm{s}$ of slew rate with low supply current.
The LMV321 is available in space saving SC70-5, which is approximately half the size of SOT23-5. The small package saves space on pc boards, and enables the design of small portable electronic devices. It also allows the designer to place the device closer to the signal source to reduce noise pickup and increase signal integrity.
The chips are built with National's advanced submicron silicon-gate BiCMOS process. The LMV321/358/324 have bipolar input and output stages for improved noise performance and higher output current drive.

Features

(For $\mathrm{V}^{+}=5 \mathrm{~V}$ and $\mathrm{V}^{-}=0 \mathrm{~V}$, Typical Unless Otherwise Noted)
\square Guaranteed 2.7V and 5V Performance
\square No Crossover DistortionSpace Saving Package
SC70-5 2.0x2.1×1.0mmndustrial Temp.Range
\square Gain-Bandwidth Product
\square Low Supply Current
LMV321
$130 \mu \mathrm{~A}$
LMV358
$210 \mu \mathrm{~A}$
LMV324
$410 \mu \mathrm{~A}$
\square Rail-to-Rail Output Swing
@ 10k Ω Load
$\mathrm{V}^{+}-10 \mathrm{mV}$
$\mathrm{V}^{-}+65 \mathrm{mV}$
-0.2 V to $\mathrm{V}^{+}-0.8 \mathrm{~V}$

Applications

- Active Filters
- General Purpose Low Voltage Applications
- General Purpose Portable Devices

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Machine Model	100 V
Human Body Model	2000 V
LMV358/324	900 V
LMV321	\pm Supply Voltage
Differential Input Voltage	5.5 V
Supply Voltage ($\mathrm{V}^{+}-\mathrm{V}^{-}$)	(Note 3)
Output Short Circuit to V^{+}	(Note 4)
Output Short Circuit to V^{-} $235^{\circ} \mathrm{C}$	

Storage Temp. Range
Junction Temp. (T_{j}, max) (Note 5)

Operating Ratings (Note 1)

Supply Voltage	2.7 V to 5.5 V
Temperature Range	
LMV321, LMV358, LMV324	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 85^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)($ Note 10)	
5-pin SC70-5	$478^{\circ} \mathrm{C} / \mathrm{W}$
5-pin SOT23-5	$265^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin SOIC	$190^{\circ} \mathrm{C} / \mathrm{W}$
8-Pin MSOP	$235^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin SOIC	$145^{\circ} \mathrm{C} / \mathrm{W}$
14-Pin TSSOP	$155^{\circ} \mathrm{C} / \mathrm{W}$

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 7) } \end{gathered}$	Units
$\mathrm{V}_{\text {os }}$	Input Offset Voltage		1.7	7	mV max
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		11	250	$\begin{gathered} \hline \mathrm{nA} \\ \max \end{gathered}$
Ios	Input Offset Current		5	50	nA max
CMRR	Common Mode Rejection Ratio	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.7 \mathrm{~V}$	63	50	$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~min} \end{aligned}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \end{aligned}$	60	50	$\begin{gathered} \hline \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.2	0	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			1.9	1.7	$\begin{gathered} \mathrm{V} \\ \max \end{gathered}$
V_{O}	Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 1.35 V	$\mathrm{V}^{+}-10$	$\mathrm{V}^{+}-100$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \end{aligned}$
			60	180	mV max
$\mathrm{I}_{\text {s }}$	Supply Current	LMV321	80	170	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
		LMV358 Both amplifiers	140	340	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
		LMV324 All four amplifiers	260	680	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$.

Symbol	Parameter	Conditions	Typ (Note 6)	Limit (Note 7)	Units
GBWP	Gain-Bandwidth Product	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	1		MHz
Φ_{m}	Phase Margin		60		Deg
G_{m}	Gain Margin		10		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	46		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.17		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	$\begin{gathered} \text { Limit } \\ \text { (Note 7) } \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1.7	$\begin{aligned} & \hline 7 \\ & 9 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \max \end{gathered}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		15	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	nA max
Ios	Input Offset Current		5	$\begin{gathered} 50 \\ 150 \end{gathered}$	$\begin{gathered} \mathrm{nA} \\ \max \end{gathered}$
CMRR	Common Mode Rejection Ratio	$\mathrm{OV} \leq \mathrm{V}_{\mathrm{CM}} \leq 4 \mathrm{~V}$	65	50	$\begin{gathered} \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \mathrm{~V}_{\mathrm{CM}}=1 \mathrm{~V} \\ & \hline \end{aligned}$	60	50	$\begin{gathered} \hline \mathrm{dB} \\ \mathrm{~min} \end{gathered}$
V_{CM}	Input Common-Mode Voltage Range	For CMRR $\geq 50 \mathrm{~dB}$	-0.2	0	$\begin{gathered} \mathrm{V} \\ \mathrm{~min} \end{gathered}$
			4.2	4	V max
A_{V}	Large Signal Voltage Gain (Note 8)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	100	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\begin{gathered} \hline \mathrm{V} / \mathrm{mV} \\ \mathrm{~min} \end{gathered}$
$\mathrm{V}_{\text {O }}$	Output Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to 2.5 V	$\mathrm{V}^{+}-40$	$\begin{aligned} & \hline \mathrm{V}^{+}-300 \\ & \mathrm{~V}^{+}-400 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \end{aligned}$
			120	$\begin{aligned} & \hline 300 \\ & 400 \end{aligned}$	$\begin{gathered} \mathrm{mV} \\ \max \end{gathered}$
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to 2.5 V	$\mathrm{V}^{+}-10$	$\begin{aligned} & \hline \mathrm{V}^{+}-100 \\ & \mathrm{~V}^{+}-200 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~min} \end{aligned}$
			65	$\begin{aligned} & \hline 180 \\ & 280 \end{aligned}$	$\begin{aligned} & \hline \mathrm{mV} \\ & \max \end{aligned}$
I_{0}	Output Short Circuit Current	Sourcing, $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ Sinking, $V_{\mathrm{O}}=5 \mathrm{~V}$	60	5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
			160	10	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~min} \end{aligned}$
$\mathrm{I}_{\text {s }}$	Supply Current	LMV321	130	$\begin{aligned} & 250 \\ & 350 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
		LMV358 Both amplifiers	210	$\begin{aligned} & \hline 440 \\ & 615 \end{aligned}$	$\begin{gathered} \mu \mathrm{A} \\ \max \end{gathered}$
		LMV324 All four amplifiers	410	$\begin{gathered} \hline 830 \\ 1160 \\ \hline \end{gathered}$	$\mu \mathrm{A}$ \max

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}^{+} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 6)	Limit (Note 7)	Units
SR	Slew Rate	(Note 9)	1		$\mathrm{V} / \mu \mathrm{s}$
GBWP	Gain-Bandwidth Product	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	1		MHz
Φ_{m}	Phase Margin		60		Deg
G_{m}	Gain Margin		10		dB
e_{n}	Input-Referred Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$,	39		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
i_{n}	Input-Referred Current Noise	$\mathrm{f}=1 \mathrm{kHz}$	0.21		$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Note 2: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 0Ω in series with 200 pF .
Note 3: Shorting output to V^{+}will adversely affect reliability.
Note 4: Shorting output to V^{-}will adversely affect reliability.
Note 5: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{\mathrm{JA}}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $\mathrm{P}_{\mathrm{D}}=$
$\left(T_{J(\max)}-T_{A}\right) / \theta_{J A}$. All numbers apply for packages soldered directly into a PC board.
Note 6: Typical values represent the most likely parametric norm.
Note 7: All limits are guaranteed by testing or statistical analysis.
Note 8: R_{L} is connected to V^{-}. The output voltage is $0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$.
Note 9: Connected as voltage follower with 3 V step input. Number specified is the slower of the positive and negative slew rates.
Note 10: All numbers are typical, and apply for packages soldered directly onto a PC board in still air.
Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Supply Current vs Supply
 Voltage (LMV321)

Input Current vs
Temperature

Sinking Current vs Output Voltage

Sourcing Current vs Output Voltage

Output Voltage

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Input Voltage Noise vs Frequency

Crosstalk Rejection vs Frequency

CMRR vs Input
Common Mode Voltage

Input Current Noise vs Frequency

PSRR vs Frequency

CMRR vs Input
Common Mode Voltage

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)
$\Delta \mathbf{V}_{\text {os }}$ vs CMR

Input Voltage vs
Output Voltage

Open Loop Frequency

Response vs Temperature

Open Loop
Frequency Response

Gain and Phase vs Capacitive Load

Input Voltage vs Output Voltage

Open Loop
Frequency Response

Gain and Phase vs

 Capacitive Load

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Slew Rate vs
Supply Voltage

Non-Inverting Large
Signal Pulse Response

Non-Inverting Small

Signal Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{div}$)
DS100060-A3

Non-Inverting Large
Signal Pulse Response

Non-Inverting Small
Signal Pulse Response

Inverting Large Signal
Pulse Response

TIME ($1 \mu \mathrm{~s} / \mathrm{div}$)
DS100060-90

Non-Inverting Large Signal Pulse Response

Non-Inverting Small Signal Pulse Response

Inverting Large Signal Pulse Response

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Inverting Large Signal Pulse Response

Inverting Small Signal Pulse Response

Stability vs Capacitive Load

Inverting Small Signal
Pulse Response

Stability vs Capacitive Load

Output Voltage (V)
DS100060-46

Stability vs Capacitive Load

Inverting Small Signal
Pulse Response

Stability vs Capacitive Load

THD vs Frequency

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, single supply,
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Continued)

Open Loop Output
Impedance vs Frequency

Short Circuit Current vs Temperature (Sinking)

Short Circuit Current vs Temperature (Sourcing)

Application Notes

1.0 Benefits of the LMV321/358/324

Size. The small footprints of the LMV321/358/324 packages save space on printed circuit boards, and enable the design of smaller electronic products, such as cellular phones, pagers, or other portable systems. The low profile of the LMV321/358/324 make them possible to use in PCMCIA type III cards.
Signal Integrity. Signals can pick up noise between the signal source and the amplifier. By using a physically smaller amplifier package, the LMV321/358/324 can be placed closer to the signal source, reducing noise pickup and increasing signal integrity.
Simplified Board Layout. These products help you to avoid using long pc traces in your pc board layout. This means that no additional components, such as capacitors and resistors, are needed to filter out the unwanted signals due to the interference between the long pc traces.
Low Supply Current. These devices will help you to maximize battery life. They are ideal for battery powered systems.
Low Supply Voltage. National provides guaranteed performance at 2.7 V and 5 V . These guarantees ensure operation throughout the battery lifetime.
Rail-to-Rail Output. Rail-to-rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.
Input Includes Ground. Allows direct sensing near GND in single supply operation.
The differential input voltage may be larger than V^{+}without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 V (at $25^{\circ} \mathrm{C}$). An input clamp diode with a resistor to the IC input terminal can be used.
Ease of Use \& No Crossover Distortion. The LMV321/ 358/324 offer specifications similar to the familiar LM324. In addition, the new LMV321/358/324 effectively eliminate the output crossover distortion. The scope photos in Figure 1 and Figure 2 compare the output swing of the LMV324 and the LM324 in a voltage follower configuration, with $\mathrm{V}_{\mathrm{s}}= \pm$ 2.5 V and $\mathrm{R}_{\mathrm{L}}(=2 \mathrm{k} \Omega)$ connected to GND. It is apparent that the crossover distortion has been eliminated in the new LMV324.

Time ($50 \mu \mathrm{~s} / \mathrm{div}$)
DS100060-97
FIGURE 1. Output Swing of LMV324

FIGURE 2. Output Swing of LM324

2.0 Capacitive Load Tolerance

The LMV321/358/324 can directly drive 200 pF in unity-gain without oscillation. The unity-gain follower is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers. The combination of the amplifier's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation. To drive a heavier capacitive load, circuit in Figure 3 can be used.

Application Notes (Continued)

FIGURE 3. Indirectly Driving A Capacitive Load Using Resistive Isolation

In Figure 3, the isolation resistor $\mathrm{R}_{\text {Iso }}$ and the load capacitor C_{L} form a pole to increase stability by adding more phase margin to the overall system. The desired performance depends on the value of $\mathrm{R}_{\text {ISo }}$. The bigger the $\mathrm{R}_{\text {Iso }}$ resistor value, the more stable Vout will be. Figure 4 is an output waveform of Figure 3 using 620Ω for $\mathrm{R}_{\mathrm{ISO}}$ and 510 pF for $\mathrm{C}_{\mathrm{L} .}$.

FIGURE 4. Pulse Response of the LMV324 Circuit in Figure 3

The circuit in Figure 5 is an improvement to the one in Figure 3 because it provides DC accuracy as well as AC stability. If there were a load resistor in Figure 3, the output would be voltage divided by $\mathrm{R}_{\text {Iso }}$ and the load resistor. Instead, in Figure $5, R_{F}$ provides the $D C$ accuracy by using feed-forward techniques to connect V_{IN} to R_{L}. Caution is needed in choosing the value of R_{F} due to the input bias current of the LMV321/358/324. C_{F} and $R_{\text {ISO }}$ serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. Increased capacitive drive is possible by increasing the value of C_{F}. This in turn will slow down the pulse response.

FIGURE 5. Indirectly Driving A Capacitive Load with DC Accuracy

3.0 Input Bias Current Cancellation

The LMV321/358/324 family has a bipolar input stage. The typical input bias current of LMV321/358/324 is 15 nA with 5 V supply. Thus a $100 \mathrm{k} \Omega$ input resistor will cause 1.5 mV of error voltage. By balancing the resistor values at both inverting and non-inverting inputs, the error caused by the amplifier's input bias current will be reduced. The circuit in Figure 6 shows how to cancel the error caused by input bias current.

FIGURE 6. Cancelling the Error Caused by Input Bias Current

4.0 Typical Single-Supply Application Circuits

4.1 Difference Amplifier

The difference amplifier allows the subtraction of two voltages or, as a special case, the cancellation of a signal common to two inputs. It is useful as a computational amplifier, in making a differential to single-ended conversion or in rejecting a common mode signal.

Application Notes (Continued)

$V_{\text {OUT }}=\left(\frac{R 1+R 2}{R 3+R 4}\right) \frac{R 4}{R 1} V_{2}-\frac{R 2}{R 1} V_{1}+\left(\frac{R 1+R 2}{R 3+R 4}\right) \frac{R 3}{R 1} \cdot \frac{V^{+}}{2}$
for $R 1=R 3$ and $R 2=R 4$
$V_{\text {OUT }}=\frac{R 2}{R 1}\left(V_{2}-V_{1}\right)+\frac{V^{+}}{2}$
DS100060-19

FIGURE 7. Difference Amplifier

4.2 Instrumentation Circuits

The input impedance of the previous difference amplifier is set by the resistors R_{1}, R_{2}, R_{3}, and R_{4}. To eliminate the problems of low input impedance, one way is to use a voltage follower ahead of each input as shown in the following two instrumentation amplifiers.

4.2.1 Three-op-amp Instrumentation Amplifier

The quad LMV324 can be used to build a three-op-amp instrumentation amplifier as shown in Figure 8.

FIGURE 8. Three-op-amp Instrumentation Amplifier
The first stage of this instrumentation amplifier is a differential-input, differential-output amplifier, with two voltage followers. These two voltage followers assure that the input impedance is over $100 \mathrm{M} \Omega$. The gain of this instrumentation amplifier is set by the ratio of $R_{2} / R_{1} . R_{3}$ should equal R_{1}, and R_{4} equal R_{2}. Matching of R_{3} to R_{1} and R_{4} to R_{2} affects the CMRR. For good CMRR over temperature, low drift resistors should be used. Making R_{4} slightly smaller than R 2 and adding a trim pot equal to twice the difference between R_{2} and R_{4} will allow the CMRR to be adjusted for optimum.

4.2.2 Two-op-amp Instrumentation Amplifier

A two-op-amp instrumentation amplifier can also be used to make a high-input-impedance dc differential amplifier (Figure 9). As in the three-op-amp circuit, this instrumentation amplifier requires precise resistor matching for good CMRR. R4 should equal to R1 and R3 should equal R2.

DS100060-11

$$
\begin{aligned}
& V_{0}=\left(1+\frac{R 4}{R 3}\right)\left(V_{2}-V_{1}\right), \text { where } R 1=R 4 \text { and } R 2=R 3 \\
& \text { As shown: } V_{0}=2\left(V_{2}-V_{1}\right)
\end{aligned}
$$

FIGURE 9. Two-Op-amp Instrumentation Amplifier

4.3 Single-Supply Inverting Amplifier

There may be cases where the input signal going into the amplifier is negative. Because the amplifier is operating in single supply voltage, a voltage divider using R_{3} and R_{4} is implemented to bias the amplifier so the input signal is within the input common-mode voltage range of the amplifier. The capacitor C_{1} is placed between the inverting input and resistor R_{1} to block the DC signal going into the AC signal source, V_{IN}. The values of R_{1} and C_{1} affect the cutoff frequency, fc $=1 / 2 \pi R_{1} C_{1}$.
As a result, the output signal is centered around mid-supply (if the voltage divider provides $\mathrm{V}^{+} / 2$ at the non-inverting input). The output can swing to both rails, maximizing the signal-to-noise ratio in a low voltage system.

FIGURE 10. Single-Supply Inverting Amplifier

4.4 Active Filter

4.4.1 Simple Low-Pass Active Filter

The simple low-pass filter is shown in Figure 11. Its lowfrequency gain $(\omega \rightarrow 0)$ is defined by $-R_{3} / R_{1}$. This allows lowfrequency gains other than unity to be obtained. The filter has a $-20 \mathrm{~dB} /$ decade roll-off after its corner frequency fc. R_{2} should be chosen equal to the parallel combination of R_{1} and R_{3} to minimize errors due to bias current. The frequency response of the filter is shown in Figure 12.

Application Notes (Continued)

$$
\begin{aligned}
A_{L} & =-\frac{R_{3}}{R_{1}} \\
f_{c} & =\frac{1}{2 \pi R_{3} C_{1}} \\
R_{2} & =R_{1} \| R_{3}
\end{aligned}
$$

FIGURE 11. Simple Low-Pass Active Filter

FIGURE 12. Frequency Response of Simple Low-Pass Active Filter in Figure 11

Note that the single-op-amp active filters are used in to the applications that require low quality factor, $Q(\leq 10)$, low frequency ($\leq 5 \mathrm{kHz}$), and low gain (≤ 10), or a small value for the product of gain times $Q(\leq 100)$. The op amp should have an open loop voltage gain at the highest frequency of interest at least 50 times larger than the gain of the filter at this frequency. In addition, the selected op amp should have a slew rate that meets the following requirement:

$$
\text { SlewRate } \geq 0.5 \times\left(\omega_{\mathrm{H}} \mathrm{~V}_{\text {OPP }}\right) \times 10^{-6} \mathrm{~V} / \mu \mathrm{sec}
$$

where ω_{H} is the highest frequency of interest, and $\mathrm{V}_{\text {opp }}$ is the output peak-to-peak voltage.

4.4.2 Sallen-Key 2nd-Order Active Low-Pass Filter

The Sallen-Key 2nd-order active low-pass filter is illustrated in Figure 13. The dc gain of the filter is expressed as

$$
\begin{equation*}
A_{L P}=\frac{R_{3}}{R_{4}}+1 \tag{1}
\end{equation*}
$$

Its transfer function is

$$
\begin{equation*}
\frac{V_{\text {OUT }}}{V_{I N}}(S)=\frac{\frac{1}{C_{1} C_{2} R_{1} R_{2}} A_{L P}}{S^{2}+S\left(\frac{1}{C_{1} R_{1}}+\frac{1}{C_{1} R_{2}}+\frac{1}{C_{2} R_{2}}-\frac{A_{L P}}{C_{2} R_{2}}\right)+\frac{1}{C_{1} C_{2} R_{1} R_{2}}} \tag{2}
\end{equation*}
$$

FIGURE 13. Sallen-Key 2nd-Order Active Low-Pass Filter

The following paragraphs explain how to select values for $R_{1}, R_{2}, R_{3}, R_{4}, C_{1}$, and C_{2} for given filter requirements, such as $A_{L P}, Q$, and f_{c}.
The standard form for a 2 nd-order low pass filter is

$$
\begin{equation*}
\frac{V_{\text {OUT }}}{V_{I N}}(S)=\frac{A_{L P} \omega_{c}^{2}}{S^{2}+\left(\frac{\omega_{C}}{Q}\right) S+\omega_{c}{ }^{2}} \tag{3}
\end{equation*}
$$

where
Q: Pole Quality Factor
ω_{C} : Corner Frequency
Comparison between the Equation (2) and Equation (3) yields

$$
\begin{gather*}
\omega_{c}^{2}=\frac{1}{C_{1} C_{2} R_{1} R_{2}} \tag{4}\\
\frac{\omega_{c}}{Q}=\frac{1}{C_{1} R_{1}}+\frac{1}{C_{1} R_{2}}+\frac{1}{C_{2} R_{2}}-\frac{A_{L P}}{C_{2} R_{2}} \tag{5}
\end{gather*}
$$

To reduce the required calculations in filter design, it is convenient to introduce normalization into the components and design parameters. To normalize, let $\omega_{C}=\omega_{n}=1 \mathrm{rad} / \mathrm{s}$, and $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{\mathrm{n}}=1 \mathrm{~F}$, and substitute these values into Equation (4) and Equation (5). From Equation (4), we obtain

$$
\begin{equation*}
R_{1}=\frac{1}{R_{2}} \tag{6}
\end{equation*}
$$

From Equation (5), we obtain

$$
\begin{equation*}
R_{2}=\frac{1 \pm \sqrt{1-4 Q^{2}\left(2-A_{\mathrm{LP}}\right)}}{2 Q} \tag{7}
\end{equation*}
$$

For minimum dc offset, $\mathrm{V}+=\mathrm{V}$-, the resistor values at both inverting and non-inverting inputs should be equal, which means

$$
\begin{equation*}
R_{1}+R_{2}=\frac{R_{3} R_{4}}{R_{3}+R_{4}} \tag{8}
\end{equation*}
$$

From Equation (1) and Equation (8), we obtain

$$
\begin{equation*}
R_{3}=\left(R_{1}+R_{2}\right) A_{L P} \tag{9}
\end{equation*}
$$

Application Notes (Continued)

$$
\begin{equation*}
R_{4}=\left(\frac{A_{L P}}{A_{L P}-1}\right)\left(R_{1}+R_{2}\right) \tag{10}
\end{equation*}
$$

The values of C_{1} and C_{2} are normally close to or equal to

$$
C=\frac{10}{f_{c}} \mu F
$$

As a design example:
Require: $A_{L P}=2, Q=1$, fc $=1 \mathrm{KHz}$
Start by selecting C1 and C2. Choose a standard value that is close to

$$
\begin{gathered}
C=\frac{10}{f_{C}} \mu \mathrm{~F} \\
C_{1}=C_{2}=\frac{10}{1 \times 10^{3}} \mu \mathrm{~F}=0.01 \mu \mathrm{~F}
\end{gathered}
$$

From Equations (6), (7), (9), (10),

$$
\begin{aligned}
& \mathrm{R}_{1}=1 \Omega \\
& \mathrm{R}_{2}=1 \Omega \\
& \mathrm{R}_{3}=4 \Omega \\
& \mathrm{R}_{4}=4 \Omega
\end{aligned}
$$

The above resistor values are normalized values with $\omega_{\mathrm{n}}=1 \mathrm{rad} / \mathrm{s}$ and $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{\mathrm{n}}=1 \mathrm{~F}$. To scale the normalized cut-off frequency and resistances to the real values, two scaling factors are introduced, frequency scaling factor $\left(\mathrm{k}_{\mathrm{f}}\right)$ and impedance scaling factor $\left(k_{m}\right)$.

$$
\begin{gathered}
\mathrm{k}_{\mathrm{f}}=\frac{\omega_{\mathrm{c}}}{\omega_{\mathrm{n}}}=\frac{2 \pi \times 1 \times 10^{3}}{1}=2 \pi \times 10^{3} \\
k_{m} k_{\mathrm{f}}=\frac{\mathrm{cn}}{\mathrm{c} 1} \\
k_{m}=1.59 \times 10^{4}
\end{gathered}
$$

Scaled values:

$$
\begin{aligned}
& \mathrm{R}_{2}=\mathrm{R}_{1}=15.9 \mathrm{k} \Omega \\
& \mathrm{R}_{3}=\mathrm{R}_{4}=63.6 \mathrm{k} \Omega \\
& \mathrm{C}_{1}=\mathrm{C}_{2}=0.01 \mu \mathrm{~F}
\end{aligned}
$$

An adjustment to the scaling may be made in order to have realistic values for resistors and capacitors. The actual value used for each component is shown in the circuit.

4.4.3 2nd-order High Pass Filter

A 2nd-order high pass filter can be built by simply interchanging those frequency selective components $\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right.$, $\mathrm{C}_{1}, \mathrm{C}_{2}$) in the Sallen-Key 2nd-order active low pass filter. As shown in Figure 14, resistors become capacitors, and capacitors become resistors. The resulted high pass filter has the same corner frequency and the same maximum gain as the previous 2nd-order low pass filter if the same components are chosen.

FIGURE 14. Sallen-Key 2nd-Order Active High-Pass Filter

4.4.4 State Variable Filter

A state variable filter requires three op amps. One convenient way to build state variable filters is with a quad op amp, such as the LMV324 (Figure 15).
This circuit can simultaneously represent a low-pass filter, high-pass filter, and bandpass filter at three different outputs. The equations for these functions are listed below. It is also called "Bi-Quad" active filter as it can produce a transfer function which is quadratic in both numerator and denominator.

Application Notes (Continued)

$$
\begin{aligned}
& V_{L P}=\left(\frac{2 R_{3}}{R_{2}+R_{3}}\right) \frac{\frac{1}{R^{2} C^{2}}}{S^{2}+\frac{1}{\left(\frac{R_{2}+R_{3}}{2 R_{2}}\right) R C} S+\frac{1}{R^{2} C^{2}}} V_{I N} \\
& V_{H P}=\left(\frac{2 R_{3}}{R_{2}+R_{3}}\right) \frac{S^{2}}{S^{2}+\frac{1}{\left(\frac{R_{2}+R_{3}}{2 R_{2}}\right) R C} S+\frac{1}{R^{2} C^{2}}} V_{I N} \\
& V_{B P}=\left(\frac{2 R_{3}}{R_{2}+R_{3}}\right) \frac{\left(\frac{1}{R C}\right) S}{S^{2}+\frac{1}{\left(\frac{R_{2}+R_{3}}{2 R_{2}}\right) R C} S+\frac{1}{R^{2} C^{2}}} V_{I N}
\end{aligned}
$$

where for all three filters,

$$
\begin{equation*}
Q=\frac{R_{2}+R_{3}}{2 R_{2}} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{0}=\frac{1}{R C} \quad \text { (resonant frequency) } \tag{12}
\end{equation*}
$$

A design example for a bandpass filter is shown below:
Assume the system design requires a bandpass filter with f_{o} $=1 \mathrm{kHz}$ and $\mathrm{Q}=50$. What needs to be calculated are capacitor and resistor values.
First choose convenient values for $\mathrm{C}_{1}, \mathrm{R}_{1}$ and R_{2} :

$$
\begin{gathered}
\mathrm{C}_{1}=1200 \mathrm{pF} \\
2 \mathrm{R} 2=\mathrm{R}_{1}=30 \mathrm{k} \Omega
\end{gathered}
$$

Then from Equation (11),

$$
\begin{gathered}
R_{3}=R_{2}(2 Q-1) \\
R_{3}=15 \mathrm{k} \Omega \times(2 \times 50-1) \\
=1.5 \mathrm{M} \Omega
\end{gathered}
$$

From Equation (12),

$$
\begin{gathered}
R=\frac{1}{\omega_{0} C_{1}} \\
R=\frac{1}{\left(2 \pi \times 10^{3}\right)\left(1.2 \times 10^{-9}\right)} \\
=132.7 \mathrm{k} \Omega
\end{gathered}
$$

From the above calculated values, the midband gain is $\mathrm{H}_{0}=$ $R_{3} / R_{2}=100(40 \mathrm{~dB})$. The nearest 5% standard values have been added to Figure 15.

4.5 Pulse Generators and Oscillators

A pulse generator is shown in Figure 16. Two diodes have been used to separate the charge and discharge paths to capacitor C.

FIGURE 16. Pulse Generator

When the output voltage V_{O} is first at its high, V_{OH}, the capacitor C is charged toward V_{OH} through R_{2}. The voltage across C rises exponentially with a time constant $\tau=R_{2} C$, and this voltage is applied to the inverting input of the op amp. Meanwhile, the voltage at the non-inverting input is set at the positive threshold voltage $\left(\mathrm{V}_{\mathrm{TH}+}\right)$ of the generator. The capacitor voltage continually increases until it reaches $\mathrm{V}_{\mathrm{TH}+}$, at which point the output of the generator will switch to its low, V_{OL} ($=0 \mathrm{~V}$ in this case). The voltage at the non-inverting input is switched to the negative threshold voltage $\left(\mathrm{V}_{\mathrm{TH}_{-}}\right)$of the generator. The capacitor then starts to discharge toward V_{OL} exponentially through R_{1}, with a time constant $\tau=\mathrm{R}_{1} \mathrm{C}$. When the capacitor voltage reaches V_{TH}, the output of the pulse generator switches to V oh. The capacitor starts to charge, and the cycle repeats itself.

Application Notes (Continued)

$$
\begin{aligned}
& T_{1}=R_{2} C \ln \frac{3 V_{O H}-V_{O L}-V^{+}}{2 V_{O H}-V^{+}} \text {and } T_{2}=R_{1} C \ln \frac{3 V_{\mathrm{OL}}-V_{\mathrm{OH}}-V^{+}}{2 V_{O L}-V^{+}} \\
& \text {When } V_{\mathrm{OL}}=O V \\
& T_{1}=R_{2} C \ln \frac{3 V_{O H}-V^{+}}{2 V_{O H}-V^{+}} \quad \text { and } T_{2}=R_{1} C \ln \left(1+\frac{V_{\mathrm{OH}}}{V^{+}}\right)
\end{aligned}
$$

FIGURE 17. Waveforms of the Circuit in Figure 16
As shown in the waveforms in Figure 17, the pulse width $\left(T_{1}\right)$ is set by R_{2}, C and $V_{O H}$, and the time between pulses $\left(T_{2}\right)$ is set by $R{ }_{1}, C$ and $V_{O L}$. This pulse generator can be made to have different frequencies and pulse width by selecting different capacitor value and resistor values.
Figure 18 shows another pulse generator, with separate charge and discharge paths. The capacitor is charged through R1 and is discharged through R_{2}.

FIGURE 18. Pulse Generator
Figure 19 is a squarewave generator with the same path for charging and discharging the capacitor.

FIGURE 19. Squarewave Generator

4.6 Current Source and Sink

The LMV321/358/324 can be used in feedback loops which regulate the current in external PNP transistors to provide current sources or in external NPN transistors to provide current sinks.

4.6.1 Fixed Current Source

A multiple fixed current source is show in Figure 20. A voltage $\left(V_{\text {REF }}=2 \mathrm{~V}\right)$ is established across resistor R_{3} by the voltage divider $\left(R_{3}\right.$ and $\left.R_{4}\right)$. Negative feedback is used to cause the voltage drop across R_{1} to be equal to $V_{R E F}$. This controls the emitter current of transistor Q_{1} and if we neglect the base current of Q_{1} and Q_{2}, essentially this same current is available out of the collector of Q_{1}.
Large input resistors can be used to reduce current loss and a Darlington connection can be used to reduce errors due to the β of Q_{1}.
The resistor, R_{2}, can be used to scale the collector current of Q_{2} either above or below the 1 mA reference value.

FIGURE 20. Fixed Current Source

Application Notes (Continued)

4.6.2 High Compliance Current Sink

A current sink circuit is shown in Figure 21. The circuit requires only one resistor $\left(\mathrm{R}_{\mathrm{E}}\right)$ and supplies an output current which is directly proportional to this resistor value.

FIGURE 21. High Compliance Current Sink

4.7 Power Amplifier

A power amplifier is illustrated in Figure 22. This circuit can provide a higher output current because a transistor follower is added to the output of the op amp.

FIGURE 22. Power Amplifier

Connection Diagrams

5-Pin SC70-5/SOT23-5

Top View

4.8 LED Driver

The LMV321/358/324 can be used to drive an LED as shown in Figure 23.

FIGURE 23. LED Driver

4.9 Comparator with Hysteresis

The LMV321/358/324 can be used as a low power comparator. Figure 24 shows a comparator with hysteresis. The hysteresis is determined by the ratio of the two resistors.

$$
\begin{aligned}
& \mathrm{V}_{\text {TH }}=\mathrm{V}_{\mathrm{REF}} /\left(1+\mathrm{R}_{1} / \mathrm{R}_{2}\right)+\mathrm{V}_{\mathrm{OH}} /\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \\
& \mathrm{V}_{\text {TH- }}=\mathrm{V}_{\mathrm{REF}} /\left(1+\mathrm{R}_{1} / \mathrm{R}_{2}\right)+\mathrm{V}_{\mathrm{OL}} /\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \\
& V_{\mathrm{H}}=\left(\mathrm{V}_{\mathrm{OH}-}-\mathrm{V}_{\mathrm{OL}}\right) /\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)
\end{aligned}
$$

where
$\mathrm{V}_{\mathrm{TH}+}$: Positive Threshold Voltage
$\mathrm{V}_{\mathrm{TH}-}$: Negative Threshold Voltage
$\mathrm{V}_{\text {Он }}$: Output Voltage at High
V_{OL} : Output Voltage at Low
V_{H} : Hysteresis Voltage
Since LMV321/358/324 have rail-to-rail output, the ($\mathrm{V}_{\text {ОН }}-\mathrm{V}_{\mathrm{OL}}$) equals to V_{S}, which is the supply voltage.

$$
V_{H}=V_{S} /\left(1+R_{2} / R_{1}\right)
$$

The differential voltage at the input of the op amp should not exceed the specified absolute maximum ratings. For real comparators that are much faster, we recommend you to use National's LMV331/393/339, which are single, dual and quad general purpose comparators for low voltage operation.

FIGURE 24. Comparator with Hysteresis

8-Pin SO/MSOP

Top View

Connection Diagrams (Continued)

Ordering Information

Package	Temperature Range	Packaging Marking	Transport Media	NSC Drawing
	Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
5-Pin SC70-5	LMV321M7	A12	1k Units Tape and Reel	MAA05
	LMV321M7X	A12	3k Units Tape and Reel	
5-Pin SOT23-5	LMV321M5	A13	1k Units Tape and Reel	MA05B
	LMV321M5X	A13	3k Units Tape and Reel	
8-Pin Small Outline	LMV358M	LMV358M	Rails	M08A
	LMV358MX	LMV358M	2.5k Units Tape and Reel	
8-Pin MSOP	LMV358MM	LMV358	1k Units Tape and Reel	MUA08A
	LMV358MMX	LMV358	3.5k Units Tape and Reel	
14-Pin Small Outline	LMV324M	LMV324M	Rails	M14A
	LMV324MX	LMV324M	2.5k Units Tape and Reel	
14-Pin TSSOP	LMV324MT	LMV324MT	Rails	MTC14
	LMV324MTX	LMV324MT	2.5k Units Tape and Reel	

SC70-5 Tape and Reel Specification

SOT-23-5 Tape and Reel Specification

TAPE FORMAT

Tape Section	\# Cavities	Cavity Status	Cover Tape Status
Leader (Start End)	$0(\mathrm{~min})$	Empty	Sealed
	$75(\mathrm{~min})$	Empty	Sealed
	3000	Filled	Sealed
	250	Filled	Sealed
Trailer			
(Hub End)	$125(\mathrm{~min})$	Empty	Sealed
	$0(\mathrm{~min})$	Empty	Sealed

TAPE DIMENSIONS

$\mathbf{8} \mathrm{mm}$	$\mathbf{0 . 1 3 0}$	$\mathbf{0 . 1 2 4}$	0.130	$\mathbf{0 . 1 2 6}$	$\mathbf{0 . 1 3 8} \pm \mathbf{0 . 0 0 2}$	$\mathbf{0 . 0 5 5} \pm 0.004$	$\mathbf{0 . 1 5 7}$	$\mathbf{0 . 3 1 5} \mathbf{\pm 0 . 0 1 2}$
	(3.3)	(3.15)	(3.3)	(3.2)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)
Tape Size	DIM A	DIM Ao	DIM B	DIM Bo	DIM F	DIM Ko	DIM P1	DIM W

SOT-23-5 Tape and Reel Specification (Continued)

REEL DIMENSIONS

8 mm	7.00	0.059	0.512	0.795	2.165	$0.331+0.059 /-0.000$	0.567	$\mathrm{~W} 1+0.078 /-0.039$
	330.00	1.50	13.00	20.20	55.00	$8.40+1.50 /-0.00$	14.40	$\mathrm{~W} 1+2.00 /-1.00$
Tape Size	A	B	C	D	N	W 1	W 2	W 3

Physical Dimensions inches (millimeters) unless otherwise noted

LAND PATTERN RECOMMENDATION

5-Pin SC70-5 Tape and Reel
Order Number LMV321M7 and LMV321M7X
NS Package Number MAA05A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

5-Pin SOT23-5 Tape and Reel
Order Number LMV321M5 and LMV321M5X
NS Package Number MA05B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

8-Pin MSOP
Order Number LMV358MM and LMV358MMX
NS Package Number MUA08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

[^3]
Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)
Human Body Model
LMV331/ 393/ 339 800V
Machine Model LMV331/339/393 120V
Differential Input Voltage \pm Supply Voltage
Voltage on any pin 5.5 V
(referred to V^{-}pin)
Soldering Information
Infrared or Convection (20 sec)
$235^{\circ} \mathrm{C}$
Storage Temp. Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (Note 3) $150^{\circ} \mathrm{C}$

Operating Ratings(Note 1)

Supply Voltage
2.7 V to 5.0 V

Temperature Range
LMV393, LMV339,
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+85^{\circ} \mathrm{C}$
LMV331
Thermal Resistance (θ_{JA})

M Package, 8-pin Surface	$190^{\circ} \mathrm{C} / \mathrm{W}$
Mount	
M Package, 14-pin Surface	
Mount	
MTC Package, 14-pin	$145^{\circ} \mathrm{C} / \mathrm{W}$
TSSOP MAA05 Package, 5-pin SC70-5	$155^{\circ} \mathrm{C} / \mathrm{W}$
M05A Package 5 -pin SOT23-5 MM Package, 8-pin Mini Surface Mount	$478^{\circ} \mathrm{C} / \mathrm{W}$

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	$\begin{gathered} \text { LMV331/ } \\ \text { 393/3339 } \\ \text { Limit } \\ \text { (Note 5) } \end{gathered}$	Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1.7	7	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		10	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	nA max
$\mathrm{l}_{\text {OS }}$	Input Offset Current		5	$\begin{gathered} \hline 50 \\ 150 \end{gathered}$	nA max
V_{CM}	Input Voltage Range		-0.1		V
			2.0		V
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	$\mathrm{I}_{\text {sink }} \leq 1 \mathrm{~mA}$	200		mV
I_{0}	Output Sink Current	$\mathrm{V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$	23	5	mA min
$\mathrm{I}_{\text {s }}$	Supply Current	LMV331	40	100	$\mu \mathrm{A}$ max
		LMV393 Both Comparators	70	140	$\mu \mathrm{A}$ max
		LMV339 All four Comparators	140	200	$\mu \mathrm{A}$ max
	Output Leakage Current		. 003	1	$\mu \mathrm{A}$ max

2.7V AC Electrical Characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{V}-=0 \mathrm{~V}$.

Symbol	Parameter	Conditions	Typ (Note 4)	Units
$\mathrm{t}_{\text {PHL }}$	Propagation Delay (High to Low)	Input Overdrive $=10 \mathrm{mV}$	1000	ns
		Input Overdrive $=100 \mathrm{mV}$	350	ns
	Propagation Delay (Low to High)	Input Overdrive $=10 \mathrm{mV}$	500	ns
		Input Overdrive $=100 \mathrm{mV}$	400	ns

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$		Units
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		1.7	$\begin{aligned} & \hline 7 \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
$\mathrm{TCV}_{\text {os }}$	Input Offset Voltage Average Drift		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		25	$\begin{aligned} & 250 \\ & 400 \end{aligned}$	$n A$ max
$\mathrm{l}_{\text {os }}$	Input Offset Current		2	$\begin{gathered} 50 \\ 150 \end{gathered}$	$n A$ max
$\mathrm{V}_{\text {CM }}$	Input Voltage Range		-0.1		V
			4.2		V
A_{V}	Voltage Gain		50	20	V / mV min
$\mathrm{V}_{\text {sat }}$	Saturation Voltage	$\mathrm{I}_{\text {sink }} \leq 4 \mathrm{~mA}$	200	$\begin{aligned} & 400 \\ & 700 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \max \end{aligned}$
I_{0}	Output Sink Current	$\mathrm{V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$	84	10	mA
$\mathrm{I}_{\text {s }}$	Supply Current	LMV331	60	$\begin{aligned} & 120 \\ & 150 \end{aligned}$	$\mu \mathrm{A}$ max
		LMV393 Both Comparators	100	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$ max
		LMV339 All four Comparators	170	$\begin{aligned} & 300 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$ max
	Output Leakage Current		003	1	$\mu \mathrm{A}$ max

5V AC Electrical Characteristics

$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{V}-=0 \mathrm{~V}$.

Symbol	Typ (Note 4)	Conditions	Units	
$\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay (High to Low)	Input Overdrive $=10 \mathrm{mV}$	600	ns
		Input Overdrive $=100 \mathrm{mV}$	200	ns
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay (Low to High)	Input Overdrive $=10 \mathrm{mV}$	450	ns
	Input Overdrive $=100 \mathrm{mV}$	300	ns	

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical characteristics.
Note 2: : Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF . Machine model, 200Ω in series with 100 pF .
Note 3: The maximum power dissipation is a function of $T_{J(\max)}, \theta_{J A}$, and T_{A}. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(\max)}\right.$ $-\mathrm{T}_{\mathrm{A}} / \theta_{\mathrm{JA}}$. All numbers apply for packages soldered directly into a PC board.
Note 4: Typical Values represent the most likely parametric norm.
Note 5: All limits are guaranteed by testing or statistical analysis.

Typical Performance Characteristics Unless otherwise specified, $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$, single supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Supply Current vs

 Supply Voltage Output High (LMV331)

Output Voltage vs
Output Current
at 2.7 Supply

Response Time for
Input Overdrive
Positive Transition

Supply Current vs
Supply Voltage Output Low
(LMV331)

Input Bias Current vs Supply Voltage

Response Time vs Input Overdrives Negative Transition

Output Voltage vs Output Current at 5V Supply

Response Time vs
Input Overdrives
Negative Transition

Response Time for
Input Overdrive
Positive Transition

Simplified Schematic

Application Circuits

Basic Comparator

A basic comparator circuit is used for converting analog signals to a digital output. The LMV331/393/339 have an open-collector output stage, which requires a pull-up resistor to a positive supply voltage for the output to switch properly. When the internal output transistor is off, the output voltage will be pulled up to the external positive voltage.
The output pull-up resistor should be chosen high enough so as to avoid excessive power dissipation yet low enough to supply enough drive to switch whatever load circuitry is used on the comparator output. On the LMV331/393/339 the pull-up resistor should range between 1 k to $10 \mathrm{k} \Omega$.
The comparator compares the input voltage $\left(\mathrm{V}_{\text {in }}\right)$ at the non-inverting pin to the reference voltage $\left(\mathrm{V}_{\text {ref }}\right)$ at the inverting pin. If $\mathrm{V}_{\text {in }}$ is less than $\mathrm{V}_{\text {ref }}$, the output voltage $\left(\mathrm{V}_{\mathrm{o}}\right)$ is at the saturation voltage. On the other hand, if $\mathrm{V}_{\text {in }}$ is greater than $\mathrm{V}_{\text {ref }}$, the output voltage $\left(\mathrm{V}_{\mathrm{o}}\right)$ is at $\mathrm{V}_{\text {cc. }}$.

FIGURE 1. Basic Comparator

Comparator with Hysteresis

The basic comparator configuration may oscillate or produce a noisy output if the applied differential input voltage is near the comparator's offset voltage. This usually happens when the input signal is moving very slowly across the comparator's switching threshold. This problem can be prevented by the addition of hysteresis or positive feedback.

Inverting Comparator with Hysteresis

The inverting comparator with hysteresis requires a three resistor network that are referenced to the supply voltage V_{cc} of the comparator. When Vin at the inverting input is less than V_{a}, the voltage at the non-inverting node of the comparator $\left(\mathrm{V}_{\mathrm{in}}<\mathrm{V}_{\mathrm{a}}\right)$, the output voltage is high (for simplicity assume V_{o} switches as high as V_{cc}). The three network resistors can be represented as $R_{1} / / R_{3}$ in series with R_{2}. The lower input trip voltage $\mathrm{V}_{\mathrm{a} 1}$ is defined as

$$
v_{a_{1}}=\frac{V_{C C} R_{2}}{\left(R_{1} \| R_{3}\right)+R_{2}}
$$

When $V_{\text {in }}$ is greater than $\mathrm{Va}\left(\mathrm{V}_{\text {in }} \mathrm{V}_{\mathrm{a}}\right)$, the output voltage is low very close to ground. In this case the three network resistors can be presented as $R_{2} / / R_{3}$ in series with R_{1}. The upper trip voltage $\mathrm{V}_{\mathrm{a} 2}$ is defined as

$$
V_{a 2}=\frac{V_{C C}\left(R_{2} / / R_{3}\right)}{R_{1}+\left(R_{2} / / R_{3}\right)}
$$

The total hysteresis provided by the network is defined as

$$
\Delta V_{a}=V_{a 1}-V_{a 2}
$$

To assure that the comparator will always switch fully to V_{cc} and not be pulled down by the load the resistors values should be chosen as follow:

$$
\begin{aligned}
& R_{\text {pull-up }} \ll R_{\text {load }} \\
& \text { and } R_{1}>R_{\text {pull-up }} .
\end{aligned}
$$

Application Circuits (Continued)

DS100080-25
FIGURE 2. Inverting Comparator with Hysteresis

Non-Inverting Comparator with Hysteresis

Non inverting comparator with hysteresis requires a two resistor network, and a voltage reference $\left(\mathrm{V}_{\text {ref }}\right)$ at the inverting input. When $V_{\text {in }}$ is low, the output is also low. For the output to switch from low to high, $\mathrm{V}_{\text {in }}$ must rise up to $\mathrm{V}_{\text {in } 1}$ where $\mathrm{V}_{\mathrm{in} 1}$ is calculated by

$$
V_{\text {in } 1}=\frac{V_{\text {ref }}\left(R_{1}+R_{2}\right)}{R_{2}}
$$

When $\mathrm{V}_{\text {in }}$ is high, the output is also high, to make the comparator switch back to it's low state, $\mathrm{V}_{\text {in }}$ must equal $\mathrm{V}_{\text {ref }}$ before V_{a} will again equal $\mathrm{V}_{\text {ref. }} \mathrm{V}_{\text {in }}$ can be calculated by:

$$
V_{\text {in } 2}=\frac{V_{\text {ref }}\left(R_{1}+R_{2}\right)-V_{C C} R_{1}}{R_{2}}
$$

The hysteresis of this circuit is the difference between $\mathrm{V}_{\text {in } 1}$ and $\mathrm{V}_{\mathrm{in} 2}$.

$$
\Delta V_{\text {in }}=V_{c c} R_{1} / R_{2}
$$

DS100080-22

Application Circuits (Continued)

Square Wave Oscillator

Comparators are ideal for oscillator applications. This square wave generator uses the minimum number of components. The output frequency is set by the RC time constant of the capacitor C_{1} and the resistor in the negative feedback R_{4}. The maximum frequency is limited only by the large signal propagation delay of the comparator in addition to any capacitive loading at the output, which would degrade the output slew rate.

DS100080-8

DS100080-24
FIGURE 5. Squarewave Oscillator
To analyze the circuit, assume that the output is initially high. For this to be true, the voltage at the inverting input V_{c} has to be less than the voltage at the non-inverting input V_{a}. For V_{c} to be low, the capacitor C_{1} has to be discharged and will charge up through the negative feedback resistor R_{4}. When it has charged up to value equal to the voltage at the positive input $\mathrm{V}_{\mathrm{a} 1}$, the comparator output will switch.
$V_{a 1}$ will be given by:

$$
V_{a 1}=\frac{V_{C C} R_{2}}{R_{2}+\left(R_{1} / / R_{2}\right)}
$$

If:

Then:

$$
R_{1}=R_{2}=R_{3}
$$

$$
\mathrm{V}_{\mathrm{a} 1}=2 \mathrm{~V}_{\mathrm{cc}} / 3
$$

When the output switches to ground, the value of V_{a} is reduced by the hysteresis network to a value given by:

$$
\mathrm{V}_{\mathrm{a} 2}=\mathrm{V}_{\mathrm{cc}} / 3
$$

Capacitor C_{1} must now discharge through R_{4} towards ground. The output will return to its high state when the voltage across the capacitor has discharged to a value equal to $\mathrm{V}_{\mathrm{a} 2}$.
For the circuit shown, the period for one cycle of oscillation will be twice the time it takes for a single RC circuit to charge up to one half of its final value. The time to charge the capacitor can be calculated from

$$
V_{C}=V_{\text {max }} e^{\frac{-t}{\mathrm{RC}}}
$$

Where $\mathrm{V}_{\text {max }}$ is the max applied potential across the capacitor $=\left(2 \mathrm{~V}_{\mathrm{cc}} / 3\right)$
and $\mathrm{V}_{\mathrm{C}}=\mathrm{Vmax} / 2=\mathrm{V}_{\mathrm{cc}} / 3$
One period will be given by:

$$
1 / \text { freq }=2 t
$$

or calculating the exponential gives:

$$
1 / \text { freq }=2(0.694) \mathrm{R}_{4} \mathrm{C}_{1}
$$

Resistors R_{3} and R_{4} must be at least two times larger than R_{5} to insure that V_{0} will go all the way up to $V_{c c}$ in the high state. The frequency stability of this circuit should strictly be a function of the external components.

Free Running Multivibrator

A simple yet very stable oscillator that generates a clock for slower digital systems can be obtained by using a resonator as the feedback element. It is similar to the free running multivibrator, except that the positive feedback is obtained through a quartz crystal. The circuit oscillates when the transmission through the crystal is at a maximum, so the crystal in its series-resonant mode.
The value of R_{1} and R_{2} are equal so that the comparator will switch symmetrically about $+\mathrm{V}_{\mathrm{cc}} / 2$. The RC constant of R_{3} and C_{1} is set to be several times greater than the period of the oscillating frequency, insuring a 50% duty cycle by maintaining a DC voltage at the inverting input equal to the absolute average of the output waveform.
When specifying the crystal, be sure to order series resonant with the desired temperature coefficient

DS100080-7
FIGURE 6. Crystal controlled Oscillator

Application Circuits (Continued)

Pulse generator with variable duty cycle:
The pulse generator with variable duty cycle is just a minor modification of the basic square wave generator. Providing a separate charge and discharge path for capacitor C_{1} generates a variable duty cycle. One path, through R_{2} and D_{2} will charge the capacitor and set the pulse width $\left(t_{1}\right)$. The other path, R_{1} and D_{1} will discharge the capacitor and set the time between pulses $\left(t_{2}\right)$.
By varying resistor R_{1}, the time between pulses of the generator can be changed without changing the pulse width. Similarly, by varying R_{2}, the pulse width will be altered without affecting the time between pulses. Both controls will change the frequency of the generator. The pulse width and time between pulses can be found from:

FIGURE 7. Pulse Generator

$$
\begin{aligned}
& V_{1}=V_{\max }\left(1-e^{-t_{1} / R_{4} C_{1}}\right) \text { rise time } \\
& V_{1}=V_{\max } \quad e^{-t_{2} / R_{5} C_{1}} \quad \text { fall time }
\end{aligned}
$$

Where

$$
V_{\max }=\frac{2 V_{C C}}{3}
$$

and

$$
V_{1}=\frac{V_{\max }}{3}=\frac{V_{C C}}{3}
$$

Which gives

$$
\frac{1}{2}=e^{-t_{1} / R_{4} C_{1}}
$$

t_{2} is then given by:

$$
\frac{1}{2}=e^{-t_{2} / R_{5} C_{1}}
$$

Solving these equations for t_{1} and t_{2}

$$
\begin{aligned}
& t_{1}=R_{4} C_{1} \ln 2 \\
& t_{2}=R_{5} C_{1} \ln 2
\end{aligned}
$$

These terms will have a slight error due to the fact that $\mathrm{V}_{\text {max }}$ is not exactly equal to $2 / 3 \mathrm{~V}_{\mathrm{cc}}$ but is actually reduced by the diode drop to:

$$
\begin{aligned}
& V_{\max }=\frac{2}{3}\left(V_{C C}-V_{B E}\right) \\
& \frac{1}{2\left(1-V_{B E}\right)}=e^{-t_{1} / R_{4} C_{1}} \\
& \frac{1}{2\left(1-V_{B E}\right)}=e^{-t_{2} / R_{5} C_{1}}
\end{aligned}
$$

Positive Peak Detector:

Positive peak detector is basically the comparator operated as a unit gain follower with a large holding capacitor from the output to ground. Additional transistor is added to the output to provide a low impedance current source. When the output of the comparator goes high, current is passed through the transistor to charge up the capacitor. The only discharge path will be the 1 M ohm resistor shunting C1 and any load that is connected to the output. The decay time can be altered simply by changing the 1 M ohm resistor. The output should be used through a high impedance follower to a avoid loading the output of the peak detector.

FIGURE 8. Positive Peak Detector

Negative Peak Detector:

For the negative detector, the output transistor of the comparator acts as a low impedance current sink. The only discharge path will be the $1 \mathrm{M} \Omega$ resistor and any load impedance used. Decay time is changed by varying the 1 $\mathrm{M} \Omega$ resistor

FIGURE 9. Negative Peak Detector

Application Circuits (Continued)

Driving CMOS and TTL

The comparator's output is capable of driving CMOS and TTL Logic circuits.

FIGURE 10. Driving CMOS

FIGURE 11. Driving TTL

AND Gates

The comparator can be used as three input AND gate. The operation of the gate is as follow:
The resistor divider at the inverting input establishes a reference voltage at that node. The non-inverting input is the sum of the voltages at the inputs divided by the voltage dividers. The output will go high only when all three inputs are high, casing the voltage at the non-inverting input to go above that at inverting input. The circuit values shown work for a " 0 " equal to ground and a " 1 " equal to 5 V .
The resistor values can be altered if different logic levels are desired. If more inputs are required, diodes are recommended to improve the voltage margin when all but one of the inputs are high.

FIGURE 12. AND Gate

OR Gates

A three input OR gate is achieved from the basic AND gate simply by increasing the resistor value connected from the inverting input to V_{cc}, thereby reducing the reference voltage.
A logic "1" at any of the inputs will produce a logic "1" at the output.

ORing the Output

By the inherit nature of an open collector comparator, the outputs of several comparators can be tied together with a pull up resistor to V_{cc}. If one or more of the comparators outputs goes low, the output V_{o} will go low.

Application Circuits (Continued)

FIGURE 15. Large Fan-In AND Gate

Connection Diagrams

Application Circuits (Continued)

5-Pin SC70-5/SOT23-5

Top View
8-Pin SO/MSOP

Top View

14-Pin SO/TSSOP

Top View

Ordering Information

Package	Temperature Range	Packaging Marking	Transport Media	NSC Drawing
	Industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
5-pin SC70-5	LMV331M7	C13	1k Units Tape and Reel	MAA05
	LMV331M7X	C13	3k Units Tape and Reel	
5-pin SOT23-5	LMV331M5	C12	1k Units Tape and Reel	MA05B
	LMV331M5X	C12	3k Units Tape and Reel	
8-pin Small Outline	LMV393M	LMV393M	Rails	M08A
	LMV393MX	LMV393M	2.5k Units Tape and Reel	
8-pin MSOP	LMV393MM	LMV393	1k UnitsTape and Reel	MUA08A
	LMV393MMX	LMV393	3.5k Units Tape and Reel	
14-pin Small Outline	LMV339M	LMV339M	Rails	M14A
	LMV339MX	LMV339M	2.5k Units Tape and Reel	
14-pin TSSOP	LMV339MT	LMV339MT	Rails	MTC14
	LMV339MTX	LMV339MT	2.5k Units Tape and Reel	

SC70-5 Tape and Reel Specification

SOT-23-5 Tape and Reel Specification

TAPE FORMAT

Tape Section	\# Cavities	Cavity Status	Cover Tape Status
Leader	$0(\mathrm{~min})$	Empty	Sealed
(Start End)	$75(\mathrm{~min})$	Empty	Sealed
Carrier	3000	Filled	Sealed
	250	Filled	Sealed
Trailer	$125(\mathrm{~min})$	Empty	Sealed
$($ Hub End $)$	$0(\min)$	Empty	Sealed

SOT-23-5 Tape and Reel Specification (Continued)

TAPE DIMENSIONS

8 mm	0.130	0.124	0.130	0.126	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
	(3.3)	(3.15)	(3.3)	(3.2)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)
Tape Size	DIM A	DIM Ao	DIM B	DIM Bo	DIM F	DIM Ko	DIM P1	DIM W

SOT-23-5 Tape and Reel Specification (Continued)

REEL DIMENSIONS

8 mm	7.00	0.059	0.512	0.795	2.165	$0.331+0.059 /-0.000$	0.567	$\mathrm{~W} 1+0.078 /-0.039$
	330.00	1.50	13.00	20.20	55.00	$8.40+1.50 /-0.00$	14.40	$\mathrm{~W} 1+2.00 /-1.00$
Tape Size	A	B	C	D	N	W 1	W 2	W 3

Physical Dimensions inches (millimeters) unless otherwise noted

LAND PATTERN RECOMMENDATION

dIMENSIONS ARE IN MILLIMETERS

5-Pin SC70-5 Tape and Reel
Order Number LMV331M7 and LMV331M7X
NS Package Number MAA05A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

5-Pin SOT23-5 Tape and Reel
Order Number LMV331M5 and LMV331M5X
NS Package Number MA05B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Europe

Fax: +49 (0) 180-530 8586 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 6995086208
English Tel: +44 (0) 8702402171
Français Tel: +33 (0) 141918790

National Semiconductor Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: ap.support@nsc.com

National Semiconductor Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507

[^4]
LM124/LM224/LM324/LM2902

Low Power Quad Operational Amplifiers

General Description

The LM124 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.
Application areas include transducer amplifiers, DC gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM124 series can be directly operated off of the standard +5 V power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional $\pm 15 \mathrm{~V}$ power supplies.

Unique Characteristics

- In the linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage
- The unity gain cross frequency is temperature compensated
■ The input bias current is also temperature compensated

Advantages

- Eliminates need for dual supplies
- Four internally compensated op amps in a single package
- Allows directly sensing near GND and $\mathrm{V}_{\text {Out }}$ also goes to GND
- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Internally frequency compensated for unity gain
- Large DC voltage gain 100 dB
- Wide bandwidth (unity gain) 1 MHz (temperature compensated)
- Wide power supply range:

Single supply 3 V to 32 V or dual supplies $\pm 1.5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$
■ Very low supply current drain $(700 \mu \mathrm{~A})$ - essentially independent of supply voltage
■ Low input biasing current 45 nA (temperature compensated)

- Low input offset voltage 2 mV and offset current: 5 nA
- Input common-mode voltage range includes ground

■ Differential input voltage range equal to the power supply voltage
■ Large output voltage swing 0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$

Connection Diagrams (Continued)

Order Number LM124AW/883, LM124AWG/883, LM124W/883 or LM124WG/883 LM124AWRQML and LM124AWRQMLV(Note 3)

See NS Package Number W14B
LM124AWGRQML and LM124AWGRQMLV(Note 3) See NS Package Number WG14A

Note 1: LM124A available per JM38510/11006
Note 2: LM124 available per JM38510/11005
Note 3: See STD Mil DWG 5962R99504 for Radiation Tolerant Device
Schematic Diagram (Each Amplifier)

00929902

Absolute Maximum Ratings (Note 12)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/
please contact
Distributors for availability and specifications.

LM124/LM224/LM324
 LM124A/LM224A/LM324A

Supply Voltage, ${ }^{+}$
Differential Input Voltage
Input Voltage
Input Current

$$
\left(\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}\right)(\text { Note } 6)
$$

Power Dissipation (Note 4)
Molded DIP
Cavity DIP
Small Outline Package
Output Short-Circuit to GND
(One Amplifier) (Note 5)
$\mathrm{V}^{+} \leq 15 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Operating Temperature Range
LM324/LM324A
LM224/LM224A
LM124/LM124A
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
Soldering Information
Dual-In-Line Package
$\begin{array}{ll}\text { Soldering (10 seconds) } 260^{\circ} \mathrm{C} & 260^{\circ} \mathrm{C}\end{array}$
Small Outline Package
Vapor Phase (60 seconds)
Infrared (15 seconds)
32V 26V
32V
26V
-0.3 V to +32 V
-0.3 V to +26 V

50 mA
50 mA

> 1130 mW
> 1260 mW
> 800 mW

1130 mW
1260 mW
800 mW

Continuous	Continuous $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.
ESD Tolerance (Note 13)
250V
250V

Electrical Characteristics

$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, (Note 7), unless otherwise stated

Parameter	Conditions	LM124A			LM224A			LM324A			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 8) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	2		1	3		2	3	mV
Input Bias Current (Note 9)	$\begin{aligned} & \mathrm{I}_{\mathrm{IN}(+)} \text { or } \mathrm{I}_{\mathrm{IN(-)},}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			50		40	80		45	100	nA
Input Offset Current	$\begin{aligned} & \mathrm{I}_{\mathrm{IN}(+)} \text { or } \mathrm{I}_{\mathrm{IN(-)},}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			10		2	15		5	30	nA
Input Common-Mode Voltage Range (Note 10)	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V},\left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right), \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	0		${ }^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	0		-1.5	V
Supply Current	Over Full Temperature Range $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { On All Op Amps } \\ & \mathrm{V}^{+}=30 \mathrm{~V}\left(\mathrm{LM} 2902 \mathrm{~V}^{+}=26 \mathrm{~V}\right) \\ & \mathrm{V}^{+}=5 \mathrm{~V} \end{aligned}$			$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$	mA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & \left(\mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { to } 11 \mathrm{~V}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	50	100		50	100		25	100		V / mV
Common-Mode	$\mathrm{DC}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $\mathrm{V}^{+}-1.5 \mathrm{~V}$,	70	85		70	85		65	85		dB

Electrical Characteristics (Continued)
$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, (Note 7), unless otherwise stated

Parameter		Conditions		LM124A			LM224A			LM324A			Units		
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max					
Rejection Ratio				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$											
Power Supply Rejection Ratio		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=5 \mathrm{~V} \text { to } 26 \mathrm{~V}\right. \text {), } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		65	100		65	100		65	100		dB		
Amplifier-to-Amplifier Coupling (Note 11)		$\mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Input Referred)			-120			-120			-120		dB		
Output Current	Source	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{+}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}^{-}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		20	40		20	40		20	40		mA		
	Sink	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}^{-}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}^{+}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		10	20		10	20		10	20				
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}^{-}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}^{+}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		12	50		12	50		12	50		$\mu \mathrm{A}$		
Short Circuit to Ground		(Note 5) $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			40	60		40	60		40	60	mA		
Input Offset Voltage		(Note 8)				4			4			5	mV		
$\mathrm{V}_{\text {OS }}$ Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$			7	20		7	20		7	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
Input Offset Current		$\mathrm{I}_{\mathrm{IN}(+)}-\mathrm{I}_{\mathrm{IN}(-)}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$				30			30			75	nA		
Ios Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$			10	200		10	200		10	300	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$		
Input Bias Current		$\mathrm{I}_{\mathrm{IN}(+)}$ or $\mathrm{I}_{\mathrm{IN}(-)}$			40	100		40	100		40	200	nA		
Input Common-Mode Voltage Range (Note 10)		$\begin{aligned} & \mathrm{V}^{+}=+30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right) \end{aligned}$		0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	V		
Large Signal Voltage Gain		$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{O}} \text { Swing }=1 \mathrm{~V} \text { to } 11 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$		25			25			15			V / mV		
Output Voltage Swing	V_{OH}	$\mathrm{V}^{+}=30 \mathrm{~V}$$\left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right)$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	26			26			26			V		
			$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	27	28		27	28		27	28				
	V_{OL}	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			5	20		5	20		5	20	mV		
Output Current	Source	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}{ }^{+}=+1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}^{-}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	10	20		10	20		10	20		mA		
	Sink		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}^{-}=+1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}^{+}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	10			5	8		5	8				

Electrical Characteristics

$\mathrm{V}^{+}=+5.0 \mathrm{~V}$, (Note 7), unless otherwise stated

Parameter	Conditions	LM124/LM224			LM324			LM2902			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage	(Note 8) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	5		2	7		2	7	mV
Input Bias Current (Note 9)	$\begin{aligned} & \mathrm{I}_{\mathrm{IN(+)}} \text { or } \mathrm{I}_{\mathrm{IN(-)},}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		45	150		45	250		45	250	nA
Input Offset Current	$\begin{aligned} & \mathrm{I}_{\mathrm{IN}(+)} \text { or } \mathrm{I}_{\mathrm{IN(-)}}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		3	30		5	50		5	50	nA
Input Common-Mode Voltage Range (Note 10)	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V},\left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right), \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	0		$\mathrm{V}^{+}-1.5$	V

Electrical Characteristics（Continued）
$\mathrm{V}^{+}=+5.0 \mathrm{~V}$ ，（Note 7），unless otherwise stated

Parameter		Conditions		LM124／LM224			LM324			LM2902			Units		
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max					
Supply Current				Over Full Temperature Range $\mathrm{R}_{\mathrm{L}}=\infty$ On All Op Amps $\mathrm{V}^{+}=30 \mathrm{~V}\left(\mathrm{LM} 2902 \mathrm{~V}^{+}=26 \mathrm{~V}\right)$ $\mathrm{V}^{+}=5 \mathrm{~V}$			$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 3 \\ 1.2 \end{gathered}$	mA
Large Signal Voltage Gain		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \\ & \left(\mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { to } 11 \mathrm{~V}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		50	100		25	100		25	100		V／mV		
Common－Mode Rejection Ratio		$\begin{aligned} & \mathrm{DC}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } \mathrm{V}^{+}-1.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		70	85		65	85		50	70		dB		
Power Supply Rejection Ratio		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=5 \mathrm{~V} \text { to } 26 \mathrm{~V}\right. \text {), } \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		65	100		65	100		50	100		dB		
Amplifier－to－Amplifier Coupling（Note 11）		$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \text { to } 20 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (Input Referred) } \end{aligned}$			－120			－120			－120		dB		
Output Current	Source	$\begin{aligned} & \mathrm{V}_{\text {IN }}^{+}=1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}^{-}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		20	40		20	40		20	40		mA		
	Sink	$\begin{aligned} & \mathrm{V}_{\text {IN }}^{-}=1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}^{+}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		10	20		10	20		10	20				
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{-}=1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}^{+}=0 \mathrm{~V},} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		12	50		12	50		12	50		$\mu \mathrm{A}$		
Short Circuit to Ground		（Note 5） $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			40	60		40	60		40	60	mA		
Input Offset Voltage		（Note 8）				7			9			10	mV		
$\mathrm{V}_{\text {OS }}$ Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$			7			7			7		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
Input Offset Current		$\mathrm{I}_{\operatorname{IN}(+)}-\mathrm{I}_{\operatorname{IN}(-)}, \mathrm{V}_{\text {CM }}=0 \mathrm{~V}$				100			150		45	200	nA		
Ios Drift		$\mathrm{R}_{\mathrm{S}}=0 \Omega$			10			10			10		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$		
Input Bias Current		$\mathrm{I}_{\mathrm{N}(+)}$ or $\mathrm{I}_{\mathrm{IN}(-)}$			40	300		40	500		40	500	nA		
Input Common－Mode Voltage Range（Note 10）		$\begin{aligned} & \mathrm{V}^{+}=+30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right) \end{aligned}$		0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	0		$\mathrm{V}^{+}-2$	V		
Large Signal Voltage Gain		$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{O}} \text { Swing }=1 \mathrm{~V} \text { to } 11 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \end{aligned}$		25			15			15			V／mV		
Output Voltage Swing	$\mathrm{V}_{\text {OH }}$	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V} \\ & \left(\mathrm{LM} 2902, \mathrm{~V}^{+}=26 \mathrm{~V}\right) \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	26			26			22			V		
			$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	27	28		27	28		23	24				
	V_{OL}	$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			5	20		5	20		5	100	mV		
Output Current	Source	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}^{+}}=+1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}^{-}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	10	20		10	20		10	20		mA		
	Sink		$\begin{aligned} & \hline \mathrm{V}_{1 \mathrm{~N}^{-}}=+1 \mathrm{~V}, \\ & \mathrm{~V}_{1 \mathrm{IN}^{+}}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	5	8		5	8		5	8				

Note 4：For operating at high temperatures，the LM324／LM324A／LM2902 must be derated based on a $+125^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $88^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board，operating in a still air ambient．The LM224／LM224A and LM124／LM124A can be derated based on a $+150^{\circ} \mathrm{C}$ maximum junction temperature．The dissipation is the total of all four amplifiers－use external resistors，where possible，to allow the amplifier to saturate of to reduce the power which is dissipated in the integrated circuit．
Note 5：Short circuits from the output to V^{+}can cause excessive heating and eventual destruction．When considering short circuits to ground，the maximum output current is approximately 40 mA independent of the magnitude of V^{+}．At values of supply voltage in excess of +15 V ，continuous short－circuits can exceed the power dissipation ratings and cause eventual destruction．Destructive dissipation can result from simultaneous shorts on all amplifiers．
Note 6：This input current will only exist when the voltage at any of the input leads is driven negative．It is due to the collector－base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps．In addition to this diode action，there is also lateral NPN parasitic transistor action

Electrical Characteristics (Continued)

on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V^{+}voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than $-0.3 \mathrm{~V}\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$.
Note 7: These specifications are limited to $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ for the LM124/LM124A. With the LM224/LM224A, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, the LM324/LM324A temperature specifications are limited to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, and the LM2902 specifications are limited to $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq$ $+85^{\circ} \mathrm{C}$.

Note 8: $\mathrm{V}_{\mathrm{O}} \simeq 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with V^{+}from 5 V to 30 V ; and over the full input common-mode range (0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$) for $\mathrm{LM} 2902, \mathrm{~V}^{+}$from 5 V to 26 V .
Note 9: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
Note 10: The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V (at $25^{\circ} \mathrm{C}$). The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$ (at $25^{\circ} \mathrm{C}$), but either or both inputs can go to +32 V without damage (+26 V for LM 2902), independent of the magnitude of V^{+}.
Note 11: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.
Note 12: Refer to RETS124AX for LM124A military specifications and refer to RETS124X for LM124 military specifications.
Note 13: Human body model, $1.5 \mathrm{k} \Omega$ in series with 100 pF .

Typical Performance Characteristics

Input Voltage Range

Supply Current

Input Current

Voltage Gain

Typical Performance Characteristics (Continued)

Voltage Follower Pulse Response

Large Signal Frequency Response

Voltage Follower Pulse Response (Small Signal)

Output Characteristics Current Sourcing

Typical Performance Characteristics

Application Hints

The LM124 series are op amps which operate with only a single power supply voltage, have true-differential inputs, and remain in the linear mode with an input common-mode voltage of $0 \mathrm{~V}_{\mathrm{DC}}$. These amplifiers operate over a wide range of power supply voltage with little change in performance characteristics. At $25^{\circ} \mathrm{C}$ amplifier operation is possible down to a minimum supply voltage of $2.3 \mathrm{~V}_{\mathrm{DC}}$.
The pinouts of the package have been designed to simplify PC board layouts. Inverting inputs are adjacent to outputs for all of the amplifiers and the outputs have also been placed at the corners of the package (pins 1, 7, 8, and 14).
Precautions should be taken to insure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a test socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.
Large differential input voltages can be easily accommodated and, as input differential voltage protection diodes are not needed, no large input currents result from large differential input voltages. The differential input voltage may be larger than V^{+}without damaging the device. Protection

should be provided to prevent the input voltages from going negative more than $-0.3 \mathrm{~V}_{\mathrm{DC}}$ (at $25^{\circ} \mathrm{C}$). An input clamp diode with a resistor to the IC input terminal can be used.
To reduce the power supply drain, the amplifiers have a class A output stage for small signal levels which converts to class B in a large signal mode. This allows the amplifiers to both source and sink large output currents. Therefore both NPN and PNP external current boost transistors can be used to extend the power capability of the basic amplifiers. The output voltage needs to raise approximately 1 diode drop above ground to bias the on-chip vertical PNP transistor for output current sinking applications.
For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor should be used, from the output of the amplifier to ground to increase the class A bias current and prevent crossover distortion.
Where the load is directly coupled, as in dc applications, there is no crossover distortion.
Capacitive loads which are applied directly to the output of the amplifier reduce the loop stability margin. Values of 50 pF can be accommodated using the worst-case noninverting unity gain connection. Large closed loop gains or resistive isolation should be used if larger load capacitance must be driven by the amplifier.

Application Hints
 （Continued）

The bias network of the LM124 establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $3 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$ ．
Output short circuits either to ground or to the positive power supply should be of short time duration．Units can be de－ stroyed，not as a result of the short circuit current causing metal fusing，but rather due to the large increase in IC chip dissipation which will cause eventual failure due to exces－ sive junction temperatures．Putting direct short－circuits on more than one amplifier at a time will increase the total IC power dissipation to destructive levels，if not properly pro－ tected with external dissipation limiting resistors in series with the output leads of the amplifiers．The larger value of
output source current which is available at $25^{\circ} \mathrm{C}$ provides a larger output current capability at elevated temperatures （see typical performance characteristics）than a standard IC op amp．
The circuits presented in the section on typical applications emphasize operation on only a single power supply voltage． If complementary power supplies are available，all of the standard op amp circuits can be used．In general，introduc－ ing a pseudo－ground（a bias voltage reference of $\mathrm{V}^{+} / 2$ ）will allow operation above and below this value in single power supply systems．Many application circuits are shown which take advantage of the wide input common－mode voltage range which includes ground．In most cases，input biasing is not required and input voltages which range to ground can easily be accommodated．

Typical Single－Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{Dc}}\right)$

＊R not needed due to temperature independent I_{IN}
DC Summing Amplifier
（ $\mathrm{V}_{\mathrm{IN}, \mathrm{S}} \geq 0 \mathrm{~V}_{\mathrm{DC}}$ and $\mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{DC}}$ ）

00929906
Where：$V_{0}=V_{1}+V_{2}-V_{3}-V_{4}$
$\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) \geq\left(\mathrm{V}_{3}+\mathrm{V}_{4}\right)$ to keep $\mathrm{V}_{\mathrm{O}}>0 \mathrm{~V}_{\mathrm{DC}}$

Power Amplifier

$$
V_{0}=0 V_{D C} \text { for } V_{I N}=0 V_{D C}
$$

$$
A_{V}=10
$$

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)
High Compliance Current Sink

$\mathrm{I}_{\mathrm{O}}=1 \mathrm{amp} /$ volt V_{IN}
(Increase R_{E} for I_{0} small)

00929919

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{Dc}}\right)$ (Continued)

Ground Referencing a Differential Input Signal

00929921
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{R}}$

Voltage Controlled Oscillator Circuit

*Wide control voltage range: $0 \mathrm{~V}_{\mathrm{DC}} \leq \mathrm{V}_{\mathrm{C}} \leq 2\left(\mathrm{~V}^{+}-1.5 \mathrm{~V}_{\mathrm{DC}}\right)$

Photo Voltaic-Cell Amplifier

00929923

Typical Single-Supply Applications $\left(\mathrm{v}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

$$
A_{V}=\frac{R_{f}}{R 1}\left(A s \text { shown, } A_{V}=10\right)
$$

00929925

$$
\begin{aligned}
& A_{V}=1+\frac{R 2}{R 1} \\
& A_{V}=11(\text { As shown })
\end{aligned}
$$

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

DC Coupled Low-Pass RC Active Filter

00929926

```
fo = 1 kHz
\(Q=1\)
\(A_{V}=2\)
```

High Input Z, DC Differential Amplifier

For $\frac{R 1}{R 2}=\frac{R 4}{R 3}$ (CMRR depends on this resistor ratio match)
$V_{O}=1+\frac{R 4}{R 3}\left(V_{2}-V_{1}\right)$
As shown: $\mathrm{V}_{\mathrm{O}}=2\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

00929928
If $\mathrm{R} 1=\mathrm{R} 5 \& \mathrm{R} 3=\mathrm{R} 4=\mathrm{R} 6=\mathrm{R} 7$ (CMRR depends on match)
$V_{O}=1+\frac{2 R 1}{R 2}\left(V_{2}-V_{1}\right)$
As shown $V_{O}=101\left(V_{2}-V_{1}\right)$

Typical Single-Supply Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$ (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Dual-In-Line Package (J)
Order Number JL124ABCA, JL124BCA, JL124ASCA, JL124SCA, LM124J, LM124AJ, LM124AJ/883, LM124J/883, LM224J, LM224AJ or LM324J NS Package Number J14A

MX S.O. Package (M)
Order Number LM324M, LM324MX, LM324AM, LM324AMX, LM2902M or LM2902MX
NS Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS
DIMENSIONS IN () FOR REFERENCE ONLY

14-Pin TSSOP
Order NumberLM324MT or LM324MTX
NS Package Number MTC14

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 www.national.com	National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 8586 Email: europe.support @ nsc.com Deutsch Tel: +49 (0) 6995086208 English Tel: +44 (0) 8702402171 Français Tel: +33 (0) 141918790	National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com	National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

[^5]National Semiconductor

LM139/LM239/LM339/LM2901/LM3302

Low Power Low Offset Voltage Quad Comparators

General Description

The LM139 series consists of four independent precision voltage comparators with an offset voltage specification as low as 2 mV max for all four comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.
Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic- where the low power drain of the LM339 is a distinct advantage over standard comparators.

Advantages

- High precision comparators
- Reduced $\mathrm{V}_{\text {OS }}$ drift over temperature
- Eliminates need for dual supplies

Allows sensing near GND

- Compatible with all forms of logic
- Power drain suitable for battery operation

Features

- Wide supply voltage range

LM139 series,
LM139A series, LM2901 LM3302
$2 V_{D C}$ to $36 V_{D C}$ or $\pm 1 V_{D C}$ to $\pm 18 V_{D C}$ $2 V_{D C}$ to $28 V_{D C}$ or $\pm 1 \mathrm{~V}_{\mathrm{DC}}$ to $\pm 14 \mathrm{~V}_{\mathrm{DC}}$

- Very low supply current drain (0.8 mA) - independent of supply voltage
- Low input biasing current 25 nA
- Low input offset current $\pm 5 \mathrm{nA}$ and offset voltage
- Input common-mode voltage range includes GND
- Differential input voltage range equal to the power supply voltage
- Low output saturation voltage 250 mV at 4 mA
■ Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. (Note 10) LM139/LM239/ M139A/LM239A/LM339A LM2901

Supply Voltage, V^{+}
Differential Input Voltage (Note 8)
Input Voltage
Input Current $\left(\mathrm{V}_{\mathrm{IN}}<-0.3 \mathrm{~V}_{\mathrm{DC}}\right)$,
(Note 3)
Power Dissipation (Note 1)
Molded DIP
Cavity DIP
Small Outline Package
Output Short-Circuit to GND,
(Note 2)
Storage Temperature Range
Lead Temperature
(Soldering, 10 seconds)
$36 V_{D C}$ or $\pm 18 V_{D C}$ $36 V_{D C}$
$-0.3 V_{D C}$ to $+36 V_{D C}$

$$
50 \mathrm{~mA}
$$

1050 mW 1190 mW 760 mW

Continuous $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $260^{\circ} \mathrm{C}$

LM3302
$28 \mathrm{~V}_{\mathrm{DC}}$ or $\pm 14 \mathrm{~V}_{\mathrm{DC}}$ $28 \mathrm{~V} D$
$-0.3 \mathrm{~V} D$ to $+28 \mathrm{~V}_{\mathrm{DC}}$
50 mA
1050 mW

Continuous $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range LM339/LM339A LM239/LM239A LM2901 /LM139A Soldering Information Dual-In-Line Package Small Outline paconds) Small Outline Package Vapor Phase (60 seconds
Infrared (15 seconds)

LM139/LM239/LM339 M139A/LM239A/LM339 LM2901

LM3302
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

$260^{\circ} \mathrm{C}$	$260^{\circ} \mathrm{C}$
$215^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$

See AN-450 "S other methods of soldering surfaethods and Their Efrect on Product Reliability" for , ESD rating ($1.5 \mathrm{k} \Omega$ in series with 100 pF) 600 V

600 V

Electrical Characteristics $\left(\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise stated)

Parameter	Conditions	LM139A		LM239A, LM339A			LM139		LM239, LM339			LM2901		LM3302		Units
		Min Typ	Max	Min	Typ	Max	Min Typ	Max	Min	Typ	Max	Min Typ	Max	Min Typ	Max	
Input Offset Voltage	(Note 9)	1.0	2.0		1.0	2.0	2.0	5.0		2.0	5.0	2.0	7.0	3	20	$\mathrm{m} V_{D C}$
Input Bias Current	$\operatorname{IN}(+)$ or $\operatorname{IN}(-)$ with Output in Linear Range, (Note 5), $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	25	100		25	250	25	100		25	250	25	250	25	500	$n A_{D C}$
Input Offset Current	$\operatorname{liN(+)}{ }^{-1 / \ln (-), V_{C M}=0 \mathrm{~V}}$	3.0	25		5.0	50	3.0	25		5.0	50	5	50	3	100	$n A_{D C}$
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}+=30 \mathrm{~V}_{\mathrm{DC}}\left(\mathrm{LM} 3302, \mathrm{~V}^{+}=28 \mathrm{~V}_{\mathrm{DC}}\right) \\ & (\text { Note 6) } \end{aligned}$	0	$\mathrm{V}^{+}-1.5$	0		$\mathrm{v}^{+}-1.5$	0	$\mathrm{V}^{+-1.5}$	0		$\mathrm{V}^{+}-1.5$	0	$\mathrm{V}^{+}-1.5$	0	$\mathrm{V}^{+}-1.5$	$V_{D C}$
Supply Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \text { on all Comparators, } \\ & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=36 \mathrm{~V}, \\ & \left(\mathrm{LM} 3302, \mathrm{~V}^{+}=28 \mathrm{~V}_{\mathrm{DC}}\right) \end{aligned}$	0.8	2.0		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.5 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$m A_{D C}$ $m A_{D C}$
Voltage Gain	$\begin{aligned} & R_{L} \geq 15 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}_{\mathrm{DC}} \\ & \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{DC}} \text { to } 11 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	50200		50	200		50200		50	200		25100		230		V / mV
Large Signal Response Time	$\mathrm{V}_{\text {IN }}=$ TTL Logic Swing, $\mathrm{V}_{\text {REF }}=$ $1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega$,	300			300		300			300		300		300		ns
Response Time	$\begin{aligned} & \mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \text { (Note 7) } \end{aligned}$	1.3			1.3		1.3			1.3		1.3		1.3		$\mu \mathrm{s}$
Output Sink Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(-)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\mathrm{IN}(+)}=0, \\ & \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$	6.016			16		6.016		6.0	16		6.016		6.016		$\mathrm{mA}_{\text {DC }}$

Electrical Characteristics $\left(\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise stated) (Continued)

Parameter	Conditions	LM139A			LM239A, LM339A			LM139			LM239, LM339			LM2901			LM3302			Units
		Min	Typ	Max																
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN(-)}}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\operatorname{IN}(+)}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA} \end{aligned}$		250	400		250	400		250	400		250	400		250	400		250	500	$m V_{D C}$
Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}(+)}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\operatorname{IN}(-)}=0, \\ & \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}_{\mathrm{DC}} \end{aligned}$		0.1			0.1			0.1			0.1			0.1			0.1		$n A_{D C}$

Electrical Characteristics $\left(\mathrm{V}^{+}=5.0 \mathrm{v}_{\mathrm{DC}}\right.$, Note 4)

Parameter	Conditions	LM139A		LM239A, LM339A			LM139		LM239, LM339		LM2901		LM3302		Units
		Min Typ	Max	Min	Typ	Max	Min Typ	Max							
Input Offset Voltage	(Note 9)		4.0			4.0		9.0		9.0	9	15		40	$m V_{D C}$
Input Offset Current	$\ln (+)^{-l} \ln (-), \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		100			150		100		150	50	200		300	$n A_{D C}$
Input Bias Current	${ }^{I} \mathrm{IN}(+)$ or $\mathrm{I}_{\mathrm{IN}(-)}$ with Output in Linear Range, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ (Note 5)		300			400		300		400	200	500		1000	$n A_{D C}$
Input Common-Mode Voltage Range	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V}_{\mathrm{DC}}\left(\mathrm{LM} 3302, \mathrm{~V}^{+}=28 \mathrm{~V}_{\mathrm{DC}}\right) \\ & (\text { Note 6) } \end{aligned}$	0	$\mathrm{V}+-2.0$	0		v+-2.0	0	V+-2.0		v+ -2.0	0	$\mathrm{V}^{+}-2.0$	0	$\mathrm{V}^{+}-2.0$	$V_{D C}$
Saturation Voltage	$\begin{aligned} & \mathrm{V}_{\operatorname{IN(-)}}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{\operatorname{IN}(+)}=0, \\ & \mathrm{I}_{\mathrm{SINK}} \leq 4 \mathrm{~mA} \end{aligned}$		700			700		700		700	400	700		700	$m V_{\text {DC }}$
Output Leakage Current	$\begin{aligned} & V_{I N(+)}=1 V_{D C}, V_{I N(-)}=0, \\ & V_{O}=30 V_{D C},\left(L M 3302, V_{O}=28 V_{D C}\right) \end{aligned}$		1.0			1.0		1.0		1.0		1.0		1.0	$\mu A_{D C}$
Differential Input Voltage	Keep all $V_{I N}$'s $\geq 0 V_{D C}$ (or V^{-}, if used), (Note 8)		36			36		36		36		36		28	V_{DC}

[^6]Typical Performance Characteristics Lм139/Lм239/LM339, Lм139A/LM239A/LM339A, Lм3302

Response Time for Various Input Overdrives-Positive Transition

TL/H/5706-6
Typical Performance Characteristics Lм2901

Response Time for Various Input Overdrives-Negative Transition

Application Hints

The LM139 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing this input resistors to $<10 \mathrm{k} \Omega$ reduces the feedback signal levels and finally, adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required.
All pins of any unused comparators should be grounded.
The bias network of the LM139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from $2 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$.
It is usually unnecessary to use a bypass capacitor across the power supply line.

The differential input voltage may be larger than $\mathrm{V}+$ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 V_{DC} (at $25^{\circ} \mathrm{C}$). An input clamp diode can be used as shown in the applications section.
The output of the LM139 series is the uncommitted collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the $\mathrm{V}+$ terminal of the LM139A package. The output can also be used as a simple SPST switch to ground (when a pull-up resistor is not used). The amount of current which the output device can sink is limited by the drive available (which is independent of V^{+}) and the β of this device. When the maximum current limit is reached (approximately 16 mA), the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately $60 \Omega \mathrm{R}_{\text {SAT }}$ of the output transistor. The low offset voltage of the output transistor (1 mV) allows the output to clamp essentially to ground level for small load currents.

Typical Applications $\left(\mathrm{V}^{+}=5.0 \mathrm{~V}_{\mathrm{DC}}\right)$

5

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)($ Continued $)$

TL/H/5706-10
Bi-Stable Multivibrator

TL/H/5706-11
One-Shot Multivibrator with Input Lock Out

Typical Applications $\left(\mathrm{V}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)($ Continued)

TL/H/5706-14

TL/H/5706-18

Typical Applications $\left(\mathrm{v}^{+}=15 \mathrm{~V}_{\mathrm{DC}}\right)($ (Continued)

TL/H/5706-22
*Or open-collector logic gate without pull-up resistor

Typical Applications $\left(\mathrm{V}^{+}=5 \mathrm{~V}_{\mathrm{DC}}\right)($ Continued $)$

TL/H/5706-28
Split-Supply Applications $\left(V^{+}=+15 \mathrm{~V}_{D C}\right.$ and $\left.\mathrm{V}^{-}=-15 \mathrm{~V}_{\mathrm{DC}}\right)$

TL/H/5706-31

Split-Supply Applications $\left(\mathrm{v}^{+}=+15 \mathrm{~V}_{\mathrm{DC}}\right.$ and $\left.\mathrm{V} \mathrm{V}^{-}=-15 \mathrm{~V} \mathrm{VC}\right)($ (Continued)

 Reference
TL/H/5706-32
TL/H/5706-33

Schematic Diagram

TL/H/5706-1

Physical Dimensions inches (millimeters)

Ceramic Dual-In-Line Package (J)
Order Number LM139J, LM139J/883, LM139AJ, LM139AJ/883, LM239J, LM239AJ, LM339J

NS Package Number J14A

Physical Dimensions inches (millimeters) (Continued)

S.O. Package (M)

Order Number LM339AM, LM339M or LM2901M
NS Package Number M14A

option 1
option 02

Molded Dual-In-Line Package (N)
Order Number LM339N, LM339AN, LM2901N or LM3302N
NS Package Number N14A

Physical Dimensions inches (millimeters) (Continued)

Order Number LM139AW/883 or LM139W/883 NS Package Number W14B

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

M74HC02

QUAD 2-INPUT NOR GATE

- HIGH SPEED:
$t_{\text {PD }}=8 \mathrm{~ns}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$
- LOW POWER DISSIPATION:
$\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}(\mathrm{MAX}$.$) at \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- HIGH NOISE IMMUNITY:
$\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}(\mathrm{MIN}$.
- SYMMETRICAL OUTPUT IMPEDANCE:
$\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}(\mathrm{MIN})$
- BALANCED PROPAGATION DELAYS:
$t_{\text {PLH }} \cong t_{\text {PHL }}$
- WIDE OPERATING VOLTAGE RANGE:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=2 \mathrm{~V}$ to 6 V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 02

DESCRIPTION

The M74HC02 is an high speed CMOS QUAD 2-INPUT NOR GATE fabricated with silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology.
The internal circuit is composed of 3 stages including buffer output, which enables high noise immunity and stable output.

ORDER CODES

PACKAGE	TUBE	T\&R
DIP	M74HC02B1R	
SOP	M74HC02M1R	M74HC02RM13TR
TSSOP		M74HC02TTR

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

M74HC02

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
$2,5,8,11$	1 A to 4A	Data Inputs
$3,6,9,12$	1 B to 4B	Data Inputs
$1,4,10,13$	1 Y to 4 Y	Data Outputs
7	GND	Ground (0V)
14	V $_{\text {CC }}$	Positive Supply Voltage

TRUTH TABLE

A	B	Y
L	L	H
L	H	L
H	L	L
H	H	L

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current	± 20	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Current	± 25	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	$500\left(^{*}\right)$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied
(*) 500 mW at $65^{\circ} \mathrm{C}$; derate to 300 mW by $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	2 to 6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to V_{CC}	V
V_{O}	Output Voltage	0 to V_{CC}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time		0 to 1000

DC SPECIFICATIONS

Symbol	Parameter	Test Condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	2.0		1.5			1.5		1.5		V
		4.5		3.15			3.15		3.15		
		6.0		4.2			4.2		4.2		
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	2.0				0.5		0.5		0.5	V
		4.5				1.35		1.35		1.35	
		6.0				1.8		1.8		1.8	
V_{OH}	High Level Output Voltage	2.0	$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$	1.9	2.0		1.9		1.9		V
		4.5	$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$	4.4	4.5		4.4		4.4		
		6.0	$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$	5.9	6.0		5.9		5.9		
		4.5	$\mathrm{l}_{0}=-4.0 \mathrm{~mA}$	4.18	4.31		4.13		4.10		
		6.0	$\mathrm{I}_{\mathrm{O}}=-5.2 \mathrm{~mA}$	5.68	5.8		5.63		5.60		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	2.0	$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$		0.0	0.1		0.1		0.1	V
		4.5	$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$		0.0	0.1		0.1		0.1	
		6.0	$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$		0.0	0.1		0.1		0.1	
		4.5	$\mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA}$		0.17	0.26		0.33		0.40	
		6.0	$\mathrm{I}_{\mathrm{O}}=5.2 \mathrm{~mA}$		0.18	0.26		0.33		0.40	
1	Input Leakage Current	6.0	$V_{1}=V_{C C}$ or GND			± 0.1		± 1		± 1	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent Supply Current	6.0	$V_{1}=V_{C C}$ or GND			1		10		20	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{aligned} & V_{C C} \\ & (V) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {TLH }} \mathrm{t}_{\text {THL }}$	Output Transition Time	2.0			30	75		95		110	ns
		4.5			8	15		19		22	
		6.0			7	13		16		19	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time	2.0			27	75		95		110	ns
		4.5			9	15		19		22	
		6.0			8	13		16		19	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5.0			5	10		10		10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	5.0			21						pF

[^7] load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{C C}(o p r)=C_{P D} \times V_{C C} \times f_{I N}+I_{C C} / 4$ (per gate)

TEST CIRCUIT

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
WAVEFORM : PROPAGATION DELAY TIMES(f=1MHz; 50\% duty cycle)

Plastic DIP-14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20		0.335	
E		2.54			0.100	
e		15.24				
e3			7.1			0.2800
F			5.1		0.130	
I		3.3				0.201
L			2.54	0.050		0.100
Z	1.27					

SO-14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.68			0.026
S	8° (max.)					

TSSOP14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com

Features
2 Pole Changeover (DPDT) 30 A Power relay

66.22	PCB connections \& mount
66.82	Faston 250 connections
	- Flange mount
$66.82-\times x 07$	Faston 250 connections
	-35 mm rail mount

- Reinforced insulation between coil and contacts according to EN 60335-1;
8 mm creepage and clearance distances
- AC coils \& DC coils
- Cadmium Free option available

66.82-xxxx

For Ul Horsepower and Pilot Duty ratings SEE "General technical information" page V

Contact specification

Contact configuration

| Rated current/Maximum peak current $\quad \mathrm{A}$ |
| :--- | ---: |
| Rated voltage/Maximum switching voltage V AC |

Rated load AC1
Rated load AC15 (230 V AC)
Single phase motor rating (230 VAC) kW
Breaking capacity DC1: 30/110/220 V A

Minimum switching load	mW
Standard contact material	

Coil specification

Nominal voltage (UN)	$\mathrm{VAC}(50 / 60 \mathrm{~Hz})$
	V DC
Rated power AC/DC	$\mathrm{VA}(50 \mathrm{~Hz}) / \mathrm{W}$
Operating range	AC
	DC
Holding voltage	$\mathrm{AC} / \mathrm{DC}$
Must drop-out voltage	$\mathrm{AC} / \mathrm{DC}$
Technical data	
Mechanical life AC/DC	cycles
Electrical life at rated load ACl	cycles
Operate/release time	ms
Insulation between coil and contacts $(1.2 / 50$	js)
kV	
Dielectric strength between open contacts	V AC
Ambient temperature range	${ }^{\circ} \mathrm{C}$
Environmental protection	

Approvals (according to type)
66.22

66.82-xx07

- 30 A rated contacts
- 35 mm rail mount
- Faston 250 connections

Copper side view

2 CO (DPDT)
30/50 (NO) - 10/20 (NC)
$\frac{250 / 440}{7500(N O)-2,500(N C)}$
7,500 (NO) - 2,500 (NC)
1,200 (NO)

$1.5(\mathrm{NO})$	$1.5(\mathrm{NO})$
$25 / 0.7 / 0.3(\mathrm{NO})$	$25 / 0.7 / 0.3(\mathrm{NO})$
$1,000(10 / 10)$	$1,000(10 / 10)$
AgCdO	AgCdO

6-12-24-110/115-120/125-230-240
6-12-24-110-125
3.6/1.7
$(0.8 \ldots 1.1) U_{N}$
$(0.8 \ldots 1.1) U_{N}$
$0.8 U_{N} / 0.5 U_{N}$
$0.2 U_{N} / 0.1 U_{N}$
10

Features
2 Pole NO (DPST-NO) 30 A Power relay

$66.22-\times 300$	PCB mount
$66.82-\times 300$	Faston 250 connections
	- Flange mount
$66.82-\times 307$	Faston 250 connections
	-35 mm rail mount

- Reinforced insulation between coil and contacts according to EN 60335-1;
8 mm creepage and clearance distances
- AC coils \& DC coils
- Cadmium Free option available

66.22-0300

66.82-0300

For UL Horsepower and Pilot Duty ratings SEE "General technical information" page V

Contact specification

Contact configuration
Rated current/Maximum peak current
Rated voltage/Maximum switching voltage V AC

Rated load AC1

Rated load AC15 (230 V AC)	VA
Single phase motor rating $(230 \mathrm{~V} \mathrm{AC})$	kW

Breaking capacity DC1:30/110/220 V A

Minimum switching load	$\mathrm{mW}(\mathrm{V} / \mathrm{mA})$
Standard contact material	

Coil specification

Nominal voltage $\left(U_{N}\right) \quad V \operatorname{AC}(50 / 60 \mathrm{~Hz})$

V DC
Rated power AC/DC \quad VA $(50 \mathrm{~Hz}) / W$

Operating range

Holding voltage

Must drop-out voltage AC/DC

Technical data

Mechanical life AC/DC cycles
Electrical life at rated load AC1 cycles

Operate/release time	ms
Insulation between coil and contacts $(1.2 / 50 \mathrm{\mu s})$	kV

Dielectric strength between open contacts V AC
Ambient temperature range
Environmental protection
66.22-x300

- 30 A rated contacts
- PCB mount -
bifurcated terminals
66.82-x300
66.82-x307

-30 A rated contacts - PCB mount bifurcated terminals	-30 A rated contacts - Flange mount - Faston 250 connections	-30 A rated contacts - 35 mm rail mount - Faston 250 connections
Copper side view		
2 NO (DPST-NO)	2 NO (DPST-NO)	2 NO (DPST-NO)
30/50	30/50	30/50
250/440	250/440	250/440
7,500	7,500	7,500
1,200	1,200	1,200
1.5	1.5	1.5
25/0.7/0.3	25/0.7/0.3	25/0.7/0.3
1,000 (10/10)	1,000 (10/10)	1,000 (10/10)
AgCdO	AgCdO	AgCdO
6-12-24-110/115-120/125-230-240		
6-12-24-110-125		
3.6/1.7	3.6/1.7	3.6/1.7
$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$	$(0.8 \ldots 1.1) U_{N}$
$0.8 U_{N} / 0.5 U_{N}$	$0.8 U_{N} / 0.5 U_{N}$	$0.8 \mathrm{U}_{\mathrm{N}} / 0.5 \mathrm{U}_{\mathrm{N}}$
$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$	$0.2 \mathrm{U}_{\mathrm{N}} / 0.1 \mathrm{U}_{\mathrm{N}}$
$10 \cdot 10^{6}$	$10 \cdot 10^{6}$	$10 \cdot 10^{6}$
$100 \cdot 10^{3}$	$100 \cdot 10^{3}$	$100 \cdot 10^{3}$
8/10	8/10	8/10
$6(8 \mathrm{~mm})$	6 (8 mm)	$6(8 \mathrm{~mm})$
1,500	1,500	1,500
$-40 \ldots+70$	$-40 \ldots+70$	$-40 \ldots+70$
RT II	RT II	RT II
C(ANCE (H) c¢ ${ }_{\text {US }}^{\text {UDE }}$		

Ordering information

Example: 66 series relay, Faston $250(6.3 \times 0.8 \mathrm{~mm})$ with top flange mount, 2 CO (DPDT) 30 A contacts, 24 V DC coil.

$8=\mathrm{AC}(50 / 60 \mathrm{~Hz})$
$9=D C$
Coil voltage
See coil specifications
Selecting features and options: only combinations in the same row are possible.
Preferred selections for best avaliability are shown in bold.

Type	Coil version	A	B	C	D
66.22	AC-DC	$\mathbf{0}-1$	$\mathbf{0}-3$	$\mathbf{0}$	$\mathbf{0 - 1}$
66.82	AC-DC	$\mathbf{0}-1$	$\mathbf{0}-3$	$\mathbf{0}$	$\mathbf{0}-3-7$

Technical data

Insulation according to EN 61810-1:2004

Nominal voltage of supply system V AC	230/400	
Rated insulation voltage V AC	400	
Pollution degree	3	
Insulation between coil and contact set		
Type of insulation	Reinforced (8 mm)	
Overvoltage category	III	
Rated impulse voltage kV (1.2/50 s)	6	
Dielectric strength V AC	4,000	
Insulation between adjacent contacts		
Type of insulation	Basic	
Overvoltage category	III	
Rated impulse voltage $\mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$	4	
Dielectric strength V AC	2,500	
Insulation between open contacts		
Type of disconnection	Micro-disconnection	
Dielectric strength V AC/kV (1.2/50 s)	1,500/2	
Conducted disturbance immunity ${ }^{\text {a }}$		
Burst ($5 \ldots .50$)ns, 5 kHz , on Al - A2	EN 61000-4-4 \quad level $4(4 \mathrm{kV})$	
Surge ($1.2 / 50 \mu \mathrm{~s}$) on A1-A2 (differential mode)	EN 61000-4-5	level $4(4 \mathrm{kV})$
Other data		
Bounce time: NO/NC ms	7/10	
Vibration resistance (10...150)Hz: NO/NC g	20/19	
Shock resistance g	20	
Power lost to the environment without contact current W	2.3	
with rated current W	5	
Recommended distance between relays mounted on PCB mm	≥ 10	

Contact specification

F 66 - Electrical life (AC) v contact current
250 V (normally open contact)

H 66 - Maximum DC1 breaking capacity

Coil specifications

DC coil data

Nominal voltage U_{N}	Coil code	Operating range		Resistance R	Rated coil consumption I at U_{N}
		$\mathrm{U}_{\text {min }}$	$\mathrm{U}_{\max }$		
V		V	V	Ω	mA
6	9.006	4.8	6.6	21	283
12	9.012	9.6	13.2	85	141
24	9.024	19.2	26.4	340	70.5
110	9.110	88	121	7,000	15.7
125	9.125	100	137.5	9,200	13.6

R 66 - DC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

F 66 - Electrical life (AC) v contact current

440 V (normally open contact)

- When switching a resistive load (DC1) having voltage and current values under the curve, an electrical life of $\geq 100 \cdot 10^{3}$ can be expected.
- In the case of $\mathrm{DC13}$ loads, the connection of a diode in parallel with the load will permit a similar electrical life as for a $\mathrm{DC1}$ load. Note: the release time for the load will be increased.

AC coil data

| $\begin{array}{c}\text { Nominal } \\ \text { voltage } \\ U_{N}\end{array}$ | $\begin{array}{c}\text { Coil } \\ \text { code }\end{array}$ | | Operating range | | Resistance |
| ---: | :---: | :---: | :---: | ---: | :---: | \(\left.\begin{array}{c}Rated coil

consumption

\mathrm{V}\end{array}\right)\)

R 66 - AC coil operating range v ambient temperature

1 - Max. permitted coil voltage.
2 - Min. pick-up voltage with coil at ambient temperature.

OmROn.

General Purpose Relay

- Arc barrier equipped
- High dielectric strength (2,000 VAC)

■ Long dependable service life assured by AgCdO contacts

- Choose models with single or bifurcated contacts, LED indicator, diode surge suppression, push-to-test button, or RC circuit
- All models meet UL and CSA approvals; VDE, LR, and SEV approved versions are available

机 (5)

Ordering Information

To Order: Select the part number and add the desired coil voltage rating (e.g., LY1-DC6).

Type	Terminal	Contact form	Part number					
			Single contact			Bifurcated contact		
			Standard bracket mounting	Upper mounting bracket	Lower mounting bracket	Standard bracket mounting	Upper mounting bracket	Lower mounting bracket
Standard	Plug-in/solder	SPDT	LY1	LY1F	LY1S	-	-	-
		DPDT	LY2	LY2F	LY2S	LY2Z	LY2ZF	LY2ZS
		3PDT	LY3	LY3F	LY3S	-	-	-
		4PDT	LY4	LY4F	LY4S	-	-	-
	PCB	SPDT	LY1-0	-	-	-	-	-
		DPDT	LY2-0	-	-	LY2Z-0	-	-
		3PDT	LY3-0	-	-	-	-	-
		4PDT	LY4-0	-	-	-	-	-
LED indicator	Plug-in/solder	SPDT	LY1N	-	-	-	-	-
		DPDT	LY2N	-	-	LY2ZN	-	-
		3PDT	LY3N	-	-	-	-	-
		4PDT	LY4N	-	-	-	-	-
Diode surge suppression		SPDT	LY1-D	-	-	-	-	-
		DPDT	LY2-D	-	-	LY2Z-D	-	-
		3PDT	LY3-D	-	-	-	-	-
		4PDT	LY4-D	-	-	-	-	-
LED indicator and diode surge suppression		SPDT	LY1N-D2	-	-	-	-	-
		DPDT	LY2N-D2	-	-	LY2ZN-D2	-	-
		4PDT	LY4N-D2	-	-	-	-	-
RC circuit		SPDT	LY1-CR	-	-	-	-	-
		DPDT	LY2-CR	-	-	LY2Z-CR	-	-
LED indicator and RC circuit		SPDT	LY1N-CR	-	-	-	-	-
		DPDT	LY2N-CR	-	-	LY2ZN-CR	-	-

[^8]
Ordering Information, continued

\qquad

Type	Terminal	Contact form	Part number					
			Single contact			Bifurcated contact		
			Standard bracket mounting	Upper mounting bracket	Lower mounting bracket	Standard bracket mounting	Upper mounting bracket	Lower mounting bracket
Push-to-test button	Plug-in/solder	SPDT	LY114	-	-	-	-	-
		DPDT	LY214	-	-	LY2ZI2	-	-
		3PDT	LY314	-	-	-	-	-
		4PDT	LY414	-	-	-	-	-
LED indicator and push-to-test button	Plug-in/solder	DPDT	LY214N	-	-	LY2ZI2N	-	-
		4PDT	LY414N	-	-	-	-	-

Note: 1. Types with specifications other than those listed are available. Contact your OMRON Sales representative.
2. To order connecting sockets and mounting tracks, see "Accessories" section.

- ACCESSORIES

Connecting Sockets

To Order: Select the appropriate part numbers for sockets, clips, and mounting tracks (if required) from the following charts.

Track mounted sockets

Relay	Socket*	Relay hold-down clip		Mounting track
		Standard	RC circuit	
SPDT	PTF08A-E	PYC-A1	Y92H-3	 PFP-M or PFP-100N2 PFP-S (Option spacer)
DPDT				
3PDT	PTF11A			
4PDT	PTF14A-E			

* Track mounted socket can be used as a front connecting socket.

Back connecting sockets

	Solder terminal	Wire wrap terminal	Relay hold-down clip				Socket Mounting Plate			
Relay	socket	socket	Standard	Push-to-test	RC circuit	Mtg. plate	1	10	12	18
$\begin{aligned} & \text { SPDT } \\ & \text { DPDT } \end{aligned}$	PT08	PT08QN	PYC-P	PYC-P2	PYC-1	PYC-S	PYP-1	-	-	PYP-18
3PDT	PT11	PT11QN					PTP-1-3	-	PTP-12	-
4PDT	PT14	PT14QN					PTP-1	PTP-10	-	-

Note: Types PYP-18, PTP-12 and PTP-10 may be cut to any desired length.

Relay	PC terminal socket	Relay hold-down clip		
		Standard	Push-to-test	RC circuit
SPDT	PT08-0	PYC-P	PYC-P2	PYC-1
DPDT				
3PDT	PT11-0			
4PDT	PT14-0			

Specifications

- CONTACT DATA

Load	Single contact				Bifurcated contact	
	SPDT		DPDT, 3PDT, 4PDT		DPDT	
	Resistive load (p.f. = 1)	Inductive load (p.f. $=0.4$) ($\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)	Resistive load (p.f. = 1)	Inductive load (p.f. $=0.4$) ($\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)	Resistive load (p.f. $=1$)	Inductive load (p.f. $=0.4$) ($\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$)
Rated load	15 A at 110 VAC 15 A at 24 VDC	10 A at 110 VAC 7 A at 24 VDC	10 A at 110 VAC 10 A at 24 VDC	7.5 A at 110 VAC 5 A at 24 VDC	5 A at 110 VAC 5 A at 24 VDC	4 A at 110 VAC 4 A at 24 VDC
Contact material	AgCdO					
Carry current	15 A		10 A		7 A	
Max. operating voltage	$\begin{aligned} & 250 \text { VAC } \\ & 125 \text { VDC } \end{aligned}$					
Max. operating current	15 A		10 A		7 A	
Max. switching capacity	$\begin{aligned} & 1,700 \mathrm{VA} \\ & 360 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,100 \mathrm{VA} \\ & 170 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 1,100 \mathrm{VA} \\ & 240 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 830 \mathrm{VA} \\ & 120 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 550 \mathrm{VA} \\ & 120 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \hline 440 \mathrm{VA} \\ & 100 \mathrm{~W} \end{aligned}$
Min. permissible load	$100 \mathrm{~mA}, 5 \mathrm{VDC}$				$10 \mathrm{~mA}, 5 \mathrm{VDC}$	

- COIL DATA

1- and 2-pole types - AC

Rated voltage (V)	Rated current (mA)		Coil resistance (Ω)	Coil inductance (ref. value) (H)		Pick-up voltage	Dropout voltage	Maximum voltage	Power consumption (VA, W)
			Armature OFF	Armature ON					
	50 Hz	60 Hz			(\% of rated voltage)				
6	214.10	183	12.20	0.04	0.08	80\% max.	30\% min.	110\%	Approx.$1.00 \text { to } 1.20$$(60 \mathrm{~Hz})$
12	106.50	91	46	0.17	0.33				
24	53.80	46	180	0.69	1.30				
50	25.70	22	788	3.22	5.66				
100/110	11.70/12.90	10/11	3,750	14.54	24.60				Approx.
110/120	9.90/10.80	8.40/9.20	4,430	19.20	32.10				0.90 to 1.10
200/220	6.20/6.80	5.30/5.80	12,950	54.75	94.07				(60 Hz)
220/240	4.80/5.30	4.20/4.60	18,790	83.50	136.40				

1- and 2-pole types - DC

Rated voltage (V)	Rated current (mA)	Coil resistance(Ω)	Coil inductance (ref. value) (H)		Pick-up voltage	Dropout voltage	Maximum voltage	Power consumption (VA, W)
			Armature OFF	Armature ON				
6	150	40	0.16	0.33	80\% max.	10\% min.	110\%	Approx.0.90
12	75	160	0.73	1.37				
24	36.90	650	3.20	5.72				
48	18.50	2,600	10.60	21				
100/110	9.10/10	11,000	45.60	86.20				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$ with tolerances of $+15 \%,-20 \%$ for AC rated current, and $\pm 15 \%$ for DC rated coil resistance.
2. The AC coil resistance and inductance are reference values at 60 Hz .
3. The performance characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$.
4. Class B coil insulation is available.

COIL DATA(continued)

3-pole type - AC

Rated voltage (V)	Rated current (mA)		Coil resistance(Ω)	Coil inductance (ref. value) (H)		Pick-up voltage	Dropout voltage	Maximum voltage	Power consumption (VA, W)
			Armature OFF	Armature ON					
	50 Hz	60 Hz			(\% of rated voltage)				
6	310	270	6.70	0.03	0.05	80\% max.	30% min.	110\%	Approx. 1.60 to 2.00 (60 Hz)
12	159	134	24	0.12	0.21				
24	80	67	100	0.44	0.79				
50	38	33	410	2.24	3.87				
100/110	15.90/18.30	13.60/15.60	2,300	10.50	18.50				
120	17.30	14.8	2,450	11.50	20.60				
200/220	10.50/11.60	9.00/9.90	8,650	34.80	59.50				
240	9.40	8	10,400	38.60	74.60				

3-pole type - DC

Rated voltage (V)	Rated current (mA)	Coil resistance (Ω)	Coil inductance (ref. value) (H)		Pick-up voltage	Dropout voltage	Maximum voltage	Power consumption (VA, W)
			Armature	Armature				
			OFF	ON	(\% of rated voltage)			
6	234	25.70	0.11	0.21	80\% max.	10\% min.	110\%	Approx.1.40
12	112	107	0.45	0.98				
24	58.60	410	1.89	3.87				
48	28.20	1,700	8.53	13.90				
100/110	12.70/13	8,500	29.60	54.30				

4-pole type - AC

Rated voltage (V)	Rated current (mA)		Coil resistance (Ω)	Coil inductance (ref. value) (H)		Pick-up voltage	Dropout voltage	Maximum voltage	Power consumption (VA, W)
			Armature OFF	Armature ON					
	50 Hz	60 Hz			(\% of rated voltage)				
6	386	330	5	0.02	0.04	80\% max.	30\% min.	110\%	Approx. 1.95 to 2.50 (60 Hz)
12	199	170	20	0.10	0.17				
24	93.60	80	78	0.38	0.67				
50	46.80	40	350	1.74	2.88				
100/110	22.50/25.50	19/21.80	1,800	10.50	17.30				
120	19.00	16.40	2,200	9.30	19				
200/220	11.50/13.10	9.80/11.20	6,700	33.10	57.90				
240	11.00	9.50	9,000	33.20	63.40				

4-pole type - DC

Rated voltage (V)	Rated current (mA)	Coil resistance (Ω)	Coil inductance (ref. value) (H)		Pick-up voltage	Dropout voltage	Maximum voltage	Power consumption (VA, W)
			Armature	Armature				
			OFF	ON	(\% of rated voltage)			
6	240	25	0.09	0.21	80\% max.	10\% min.	110\%	Approx.1.50
12	120	100	0.39	0.84				
24	69	350	1.41	2.91				
48	30	1,600	6.39	13.60				
100/110	15/15.90	6,900	32	63.70				

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$ with tolerances of $+15 \%,-20 \%$ for AC rated current, and $\pm 15 \%$ for DC rated coil resistance.
2. The AC coil resistance and inductance are reference values at 60 Hz .
3. The performance characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$.
4. Class B coil insulation is available.

CHARACTERISTICS

Contact resistance		$50 \mathrm{~m} \Omega$ max.
Operate time		25 ms max.
Release time		25 ms max.
Operating frequency	Mechanically	18,000 operations/hour
	Under rated load	1,800 operations/hour
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)
Dielectric strength		2,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 minute $1,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 minute between contacts of same polarity
Vibration	Mechanical durability	10 to $55 \mathrm{~Hz}, 1.00 \mathrm{~mm}$ (0.04 in) double amplitude
	Malfunction durability	10 to $55 \mathrm{~Hz}, 1.00 \mathrm{~mm}$ (0.04 in) double amplitude
Shock	Mechanical durability	$1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100 G)
	Malfunction durability	$200 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 20 G)
Ambient temperature	Operating	-40° to $70^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Humidity		35 to 85\% RH
Service Life	Mechanically	AC: 50 million operations min. (at operating frequency of 18,000 operations/hour) DC: 100 million operations min. (at operating frequency of 18,000 operations/hour)
	Electrically	See "Characteristic Data"
Weight		SPDT, DPDT: Approx. 40 g (1.41 oz), 3PDT: Approx. 50 g (1.76 oz) 4PDT: Approx. 70 g (2.47 oz)

Note: Data shown are of initial value.

- CHARACTERISTIC DATA

Maximum switching capacity

LY1

LY2

LY3, LY4

LY2Z

Electrical service life

LY1

LY2

LY3, LY4

Rated operating current (A)

LY2Z

Dimensions

\qquad
Unit: mm (inch)

■ RELAYS

LY1

Terminal
LY2
arrangement
(Bottom view)

Terminal arrangement (Bottom view)

LY1-0, LY2-0, LY3-0, LY4-0

Note: The above drawing shows LY2-0. With LY1-0, dimension " \star " should read as 6.35 (.25).

Mounting holes for LY1-0, LY2-0, LY3-0, LY4-0 (Bottom view)

LY1F, LY2F

Mounting
LY3F
Mounting holes holes

LY4F

Mounting holes

LY1S, LY2S

Round hole

Rectangular hole

Note: The above drawing shows LY2S-US. With LY1S-US, dimension " $*$ "
should read as eight 2.03 mm (0.08 in) dia. holes.

ACCESSORIES

Unit: mm (inch)

Track mounted sockets (UL File No. E87929) (CSA Report No. LR31928)

PTF08A-E

Terminal arrangement/ mounting holes
(Top view)

2-4.57 (.18) dia. holes

PTF11A
Terminal arrangement/ mounting holes
(Top view)

Track mounting sockets (UL File No. E87929) (CSA Report No. LR31928)

PTF14A-E

Terminal arrangement/ mounting holes
(Top view)

Mounting height of relay with socket (Applies to all PTF \square A sockets)

Note: 1. UL/CSA does not apply to wire wrap (Q) type sockets.
2. Values in brackets for LY $\square \mathrm{CR}$.

Back connecting socket (UL File No. E87929) (CSA Report No. LR31928) PT08

Terminal arrangement
PT11
(Bottom view)

Terminal arrangement (Bottom view)

Back connecting socket (UL File No. E87929) (CSA Report No. LR31928)

PT14

Terminal arrangement
(Bottom view)

Mounting height of relay with socket (Applies to all PT sockets)

Note: Values in brackets for $\mathrm{LY} \square \mathrm{CR}$.

Back connecting socket (UL File No. E87929) (CSA Report No. LR31928)

PT08QN
Panel cut-out and terminal arrangement are the same as Type PT08.

PT11QN
Panel cut-out and terminal arrangement are the same as Type PT11.

PT14QN

Panel cut-out and terminal arrangement are the same as Type PT14.

Back connecting socket (UL File No. E87929) (CSA Report No. LR31928)

PT08-0
Terminal arrangement is the same as Type PT08.

Mounting holes
(Bottom view)

PT11-0
Terminal arrangement is the same as Type PT11.

Mounting holes

(Bottom view)

Back connecting socket (UL File No. E87929) (CSA Report No. LR31928)

PT14-0
Terminal arrangement is
the same as Type PT14.

Mounting holes
(Bottom view)

ACCESSORIES (continued)

Unit: mm (inch)

Relay hold-down clips

PYC-A1
For PTF \square A socket

PYC-S
For relay mounting plates
(Applicable to Type PYP-1 and PYP-18 socket mounting plates only.)

(Applicable to Type PYP-1 and PYP-18 socket mounting plates only.)

PYC-P
For PT \square socket

Relay hold-down clips

PYC-P2
For push-to-test button type with PT \square socket

Y92H-3

For RC circuit type

PYC-1
For RC circuit type

Mounting track/end plate/spacer

PFP-100N/PFP-50N mounting track

PFP-M end plate

PFP-100N2 mounting track

PFP-S spacer

* This dimension is $14.99 \mathrm{~mm}(0.59 \mathrm{in})$ on both ends in the case of PFP-100N, but on one end in the case of PFP-50N.
** L = Length
PFP-50N
$\ldots \ldots \ldots \ldots . . . \mathrm{L}=497.84 \mathrm{~mm}(19.60 \mathrm{in})$
PFP-100N $L=990.60 \mathrm{~mm}(39.00 \mathrm{in})$
PFP-100N2 \qquad $\mathrm{L}=990.60 \mathrm{~mm}(39.00 \mathrm{in})$
*** A total of twelve $24.89 \times 4.57 \mathrm{~mm}(0.98 \times 0.18 \mathrm{in})$ elliptic holes are provided, with six holes cut from each end of the track at a pitch of 9.91 (0.39) between holes.

Socket mounting plates [t=1.52 (.06)]

	Number of socket specs.			
Socket needed	1	10	12	18
PT08, PT08QN	PYP-1	-	-	PYP-18
PT11, PT11QN	PTP-1-3	-	PTP-1-2	-
PT14, PT14QN	PTP-1	PTP-10	-	-

PYP-1

PTP-1-3

PTP-1

PYP-18

PTP-10

PTP-12

RELAY OPTIONS

LED Indicator

Specifications and dimensions same as the Standard Type with the following exception. With the LED indicator type, the rated current is approximately 0 to 5.0 mA higher than the Standard Type.

Terminal arrangement/Internal connections (Bottom view)
LY2N
DC coil rating type

AC coil rating type

Note: 1. The coil terminals 10 and 11 of Type LY3N become (-) and (+) and terminals 13 and 14 of Type LY4N become (-) and (+), respectively.
2. Pay special attention to the polarities when using the DC type.

Diode Surge Suppression

Specifications and dimensions same as the Standard Type with the following exception. Ambient operating temperature: -25° to $40^{\circ} \mathrm{C}$ (-13° to $104^{\circ} \mathrm{F}$)

Without Diode

With Diode

Terminal arrangement/Internal connections (Bottom view)
LY2(N)-D(2)

LY2-D
6, 12, 24, 48 100/110 VDC

LY2N-D2
6, 12, 24, 48 VDC

LY2N-D2 100/110 VDC

Note: 1. Pay special attention to the polarities when using the DC type.
2. The release time is somewhat longer, but satisfies the standard specifications of 25 ms .
3. The reverse-breakdown voltage of the diode is $1,000 \mathrm{VDC}$.
4. Available on DC versions only.

RELAY OPTIONS

RC Circuit
Specifications and dimensions same as the Standard Type with the following exceptions.

Characteristic Data

Without RC circuit

LY1-CR, LY2(Z)-CR

Note: 1. The above drawing shows LY2(Z)-CR. With LY1-CR, "*" should read eight $2.03 \mathrm{~mm}(0.08 \mathrm{in})$ dia. holes.
2. Available on AC versions only.

Push-to-test Button

Specifications and dimensions same as the Standard Type with the following exceptions.
LY112, LY212

Note: Type LY112 has the same dimensions and appearances as Type LY212 shown except that dimension "*" is 2.03 mm (0.08 in) dia. holes

LY312

LY412

APPROVALS

UL recognized type (File No. E41643)

Type	Contact form	Coil ratings	Contact ratings
LY \square	SPDT	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 120 \text { VDC } \end{aligned}$	15 A, 240 VAC (Inductive)
			$15 \mathrm{~A}, 28 \mathrm{VDC}$ (Resistive)
			TV-5 (ACTV)
			1/2 HP, 120 VAC (Motor)
LY \square	DPDT		$13 \mathrm{~A}, 120$ VAC (Resistive)
			$12 \mathrm{~A}, 240$ VAC (Inductive)
			$10 \mathrm{~A}, 28 \mathrm{VDC}$ (Resistive)
			TV-3 (ACTV)
			1/2 HP, 120 VAC (Motor)
LY \square	$\begin{aligned} & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$		$10 \mathrm{~A}, 240$ VAC (Inductive)
			$10 \mathrm{~A}, 28 \mathrm{VDC}$ (Resistive)
			1/2 HP, 240 VAC (Motor)

CSA certified type (File No. LR31928)

Type	Contact form	Coil ratings	Contact ratings
LY \square	SPDT	6 to 240 VAC 6 to 120 VDC	$15 \mathrm{~A}, 120$ VAC (Inductive)
			$10 \mathrm{~A}, 240$ VAC (Inductive)
			$15 \mathrm{~A}, 28 \mathrm{VDC}$ (Resistive)
			TV-5 (ACTV)
LY \square	DPDT		$13 \mathrm{~A}, 28 \mathrm{VDC}$ (Resistive)
			$12 \mathrm{~A}, 120$ VAC (Inductive)
			$10 \mathrm{~A}, 240$ VAC (Inductive)
			1/3 HP, 120 VAC (Motor)
			TV-3 (ACTV)
LY \square	3PDT		$10 \mathrm{~A}, 240$ VAC (Inductive)
	4PDT		$10 \mathrm{~A}, 28 \mathrm{VDC}$ (Resistive)

VDE approved type (File No. 9903 [SPDT, DPDT \& 3PDT], File No. 9947 [4PDT])

Type	Contact form	Coil ratings	Contact ratings
LY \square-VD	SPDT	$\begin{aligned} & 6,12,24,50, \\ & 110,220 \text { VAC } \\ & \text { and } 6,12,24, \\ & 48,110 \text { VDC } \end{aligned}$	10 A, 220 VAC (Resistive)
			$10 \mathrm{~A}, 28 \mathrm{VDC}$ (Resistive)
			$7 \mathrm{~A}, 220 \mathrm{VAC}$ (Inductive)
			$7 \mathrm{~A}, 28 \mathrm{VDC}$ (Inductive)
LY \square-VD	$\begin{aligned} & \text { DPDT } \\ & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$		$7 \mathrm{~A}, 220 \mathrm{VAC}$ (Resistive)
			$7 \mathrm{~A}, 28 \mathrm{VDC}$ (Resistive)
			$4 \mathrm{~A}, 220 \mathrm{VAC}$ (Inductive)
			4 A, 28 VDC (Inductive)

LR (Lloyd's Register) approved type (File No. 562KOB-204523)

Type	Contact form	Coil ratings	Contact ratings
LY \square	DPDT	6 to 240 VAC	$7.5 \mathrm{~A}, 230$ VAC (Inductive)
	4PDT	6 to 110 VDC	5 A, 24 VDC (Inductive)

SEV listed type (File No. D7 91/82 [2- \& 4-pole], D 91/204a [1- \& 3-pole])

Type	Contact form	Coil ratings	Contact ratings
LY \square-SV	SPDT	$\begin{aligned} & 6 \text { to } 240 \text { VAC } \\ & 6 \text { to } 110 \text { VDC } \end{aligned}$	$15 \mathrm{~A}, 220$ VAC (Resistive)
			$15 \mathrm{~A}, 24 \mathrm{VDC}$ (Resistive)
LY \square-SV	DPDT		$10 \mathrm{~A}, 220$ VAC (Resistive)
	3PDT		10 A, 24 VDC (Resistive)
	4PDT		

Note: 1. The rated values approved by each of the safety standards (e.g., UL, CSA, VDE, and SEV) may be different from the performance characteristics individually defined in this catalog.
2. In the interest of product improvement, specifications are subject to change.

Multi-Range ($\pm 10 V_{r} \pm 5 V_{r}+10 V_{r}+5 \mathrm{~V}$),

 Single +5V, 12-Bit DAS with 8+4 Bus Interface
General Description

The MAX197 multi-range, 12-bit data-acquisition system (DAS) requires only a single +5 V supply for operation, yet accepts signals at its analog inputs that may span both above the power-supply rail and below ground. This system provides 8 analog input channels that are independently software programmable for a variety of ranges: $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0 \mathrm{~V}$ to +10 V , or 0 V to +5 V . This increases effective dynamic range to 14 bits, and provides the user flexibility to interface 4 mA -to- 20 mA , $\pm 12 \mathrm{~V}$, and $\pm 15 \mathrm{~V}$ powered sensors to a single +5 V system. In addition, the converter is overvoltage tolerant to $\pm 16.5 \mathrm{~V}$; a fault condition on any channel will not affect the conversion result of the selected channel. Other features include a 5 MHz bandwidth track/hold, a 100ksps throughput rate, software-selectable internal or external clock and acquisition, 8+4 parallel interface, and an internal 4.096 V or an external reference.
A hardware $\overline{\text { SHDN }}$ pin and two programmable powerdown modes (STBYPD, FULLPD) are provided for lowcurrent shutdown between conversions. In STBYPD mode, the reference buffer remains active, eliminating start-up delays.
The MAX197 employs a standard microprocessor ($\mu \mathrm{P}$) interface. A three-state data I/O port is configured to operate with 8 -bit data buses, and data-access and bus-release timing specifications are compatible with most popular $\mu \mathrm{Ps}$. All logic inputs and outputs are TTL/CMOS compatible.
The MAX197 is available in 28-pin DIP, wide SO, SSOP, and ceramic SB packages.
For a different combination of ranges $(\pm 4 \mathrm{~V}, \pm 2 \mathrm{~V}, 0 \mathrm{~V}$ to 4V, OV to 2V), see the MAX199 data sheet. For 12-bit bus interface, see the MAX196 and MAX198 data sheets.

Applications

Industrial-Control Systems
Robotics
Data-Acquisition Systems
Automatic Testing Systems
Medical Instruments
Telecommunications

- 12-Bit Resolution, 1/2LSB Linearity
- Single +5V Operation
- Software-Selectable Input Ranges: $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0 \mathrm{~V}$ to $10 \mathrm{~V}, 0 \mathrm{~V}$ to 5 V
- Fault-Protected Input Multiplexer ($\mathbf{\pm 1 6 . 5 \mathrm { V } \text {) }) ~ (1) ~}$
- 8 Analog Input Channels
- 6μ s Conversion Time, 100ksps Sampling Rate
- Internal or External Acquisition Control
- Internal 4.096V or External Reference
- Two Power-Down Modes
- Internal or External Clock

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX197ACNI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Narrow Plastic DIP
MAX 197 BCNI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Narrow Plastic DIP
MAX197ACWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MAX197BCWI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Wide SO
MAX197ACAI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX197BCAI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 SSOP
MAX197BC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$

Ordering Information continued at end of data sheet.
*Dice are specified at $T A=+25^{\circ} \mathrm{C}, ~ D C$ parameters only.
Pin Configuration

\qquad

Multi-Range ($\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V},+10 \mathrm{~V},+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

A ABSOLUTE MAXIMUM RATINGS

VDo to AGND. AGND to DGND REF to AGND. REFADJ to AGND Digital Inputs to DGND Digital Outputs to DGND CHO-CH7 to AGND $\mathrm{CHO}-\mathrm{CH} 7$ to AGND
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
Narrow Plastic DIP (derate $14.29 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1143 mW Wide SO (derate $12.50 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).............$~ 1000 \mathrm{~mW}$
 Narrow Ceramic SB (derate $20.00 \mathrm{~mW} / /^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). 1600 mW

Operating Temperature Ranges	
MAX197_C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX197_E	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX197_M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	$+300^{\circ}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%$; unipolar/bipolar range; external reference mode, $\mathrm{V}_{\mathrm{REF}}=4.096 \mathrm{~V} ; 4.7 \mu \mathrm{~F}$ at REF pin; external clock, $\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$ with 50% duty cycle; $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted.)

Multi-Range ($\pm 10 V_{r} \pm 5 V_{r}+10 V_{r}+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 5 \%$; unipolar/bipolar range; external reference mode, $\mathrm{V}_{\mathrm{REF}}=4.096 \mathrm{~V} ; 4.7 \mu \mathrm{~F}$ at REF pin; external clock, fCLK $=2.0 \mathrm{MHz}$ with 50% duty cycle; $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG INPUT							
Track/Hold Acquisition Time		$\mathrm{f}_{\text {CLK }}=2.0 \mathrm{MHz}$				3	$\mu \mathrm{s}$
Small-Signal Bandwidth		-3dB rolloff	$\pm 10 \mathrm{~V}$ range		5		MHz
			$\pm 5 \mathrm{~V}$ range		2.5		
			0 V to 10 V range		2.5		
			OV to 5V range		1.25		
Input Voltage Range (See Table 1)		Unipolar		0		10	V
				0		5	
		Bipolar		-10		10	
				-5		5	
Input Current		Unipolar	OV to 10V range			720	$\mu \mathrm{A}$
			0 V to 5 V range			360	
		Bipolar	-10V to 10V range	-1200		720	
			-5V to 5V range	-600		360	
Input Dynamic Resistance		Unipolar			21		k Ω
		Bipolar		16			
Input Capacitance		(Note 5)				40	pF
INTERNAL REFERENCE							
REF Output Voltage	VREF	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		4.076	4.096	4.116	V
REF Output Tempco	TC VREF			40			ppm $/{ }^{\circ} \mathrm{C}$
Output Short-Circuit Current						30	mA
Load Regulation		OmA to 0.5 mA output current ((ote 6)				7.5	mV
Capacitive Bypass at REF				4.7			$\mu \mathrm{F}$
REFADJ Output Voltage				2.465	2.500	2.535	V
REFADJ Adjustment Range		With recommended circuit (Figure 1)		± 1.5			\%
Buffer Voltage Gain					1.6384		V/V
REFERENCE INPUT (Buffer disabled, reference input applied to REF pin)							
Input Voltage Range				2.4		4.18	V
Input Current		$\mathrm{V}_{\text {REF }}=4.18 \mathrm{~V}$	Normal or STANDBY power-down mode			400	$\mu \mathrm{A}$
			FULL power-down mode			1	
Input Resistance		Normal or STANDBY power-down mode		10			k Ω
		FULL power-down mode		5			$\mathrm{M} \Omega$
REFADJ Threshold for Buffer Disable				VDD - 50			V

Multi-Range ($\pm 10 V_{r} \pm 5 V_{r}+10 V_{r}+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

Multi-Range ($\pm 10 V_{r} \pm 5 V_{r}+10 V_{r}+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

TIMING CHARACTERISTICS

($\mathrm{V} D \mathrm{DD}=5 \mathrm{~V} \pm 5 \%$; unipolar/bipolar range; external reference mode, $\mathrm{V}_{\mathrm{REF}}=4.096 \mathrm{~V} ; 4.7 \mu \mathrm{~F}$ at REF pin; external clock, $\mathrm{f}_{\mathrm{CLK}}=2.0 \mathrm{MHz}$ with 50% duty cycle; $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
$\overline{\text { CS Pulse Width }}$	tcs		80		ns
$\overline{\text { WR Pulse Width }}$	tWR		80		ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Setup Time	tcsws		0		ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ Hold Time	tCSWH		0		ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Setup Time	tCSRS		0		ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{RD}}$ Hold Time	tCSRH		0		ns
CLK to $\bar{W} \mathrm{R}$ Setup Time	tCWS			100	ns
CLK to $\overline{\text { WR }}$ Hold Time	tcWH			50	ns
Data Valid to $\overline{W R}$ Setup	tDS		60		ns
Data Valid to $\bar{W} \mathrm{~V}$ Hold	tDH		0		ns
$\overline{\mathrm{RD}}$ Low to Output Data Valid	tDO	Figure 2, CL = 100pF (Note 12)		120	ns
HBEN High or HBEN Low to Output Valid	tDO1	Figure 2, CL = 100pF (Note 12)		120	ns
$\overline{\mathrm{RD}}$ High to Output Disable	tTR	(Note 13)		70	ns
$\overline{\mathrm{RD}}$ Low to INT High Delay	tINT1			120	ns

Note 1: Accuracy specifications tested at $V_{D D}=5.0 \mathrm{~V}$. Performance at power-supply tolerance limits guaranteed by Power-Supply Rejection test. Tested for the $\pm 10 \mathrm{~V}$ input range.
Note 2: External reference: $V_{\text {REF }}=4.096 \mathrm{~V}$, offset error nulled, ideal last code transition $=F S-3 / 2 \mathrm{LSB}$
Note 3: Ground "on" channel; sine wave applied to all "off" channels
Note 4: Maximum full-power input frequency for 1LSB error with 10 ns jitter $=3 \mathrm{kHz}$.
Note 5: Guaranteed by design. Not tested.
Note 6: Use static loads only.
Note 7: Tested using internal reference
Note 8: PSRR measured at full-scale.
Note 9: External acquisition timing: starts at data valid at $A C Q M O D=$ low control byte; ends at rising edge of $\overline{W R}$ with $A C Q M O D$ = high control byte.
Note 10: Not subject to production testing. Provided for design guidance only
Note 11: All input control signals specified with $t_{R}=t F=5 \mathrm{~ns}$ from a voltage level of 0.8 V to 2.4 V .
Note 12: tDO and tDO1 are measured with the load circuits of Figure 2 and defined as the time required for an output to cross 0.8 V or 2.4 V
Note 13: tTR is defined as the time required for the data lines to change by 0.5 V

Multi-Range ($\pm 10 V_{r} \pm 5 V_{r}+10 V_{r}+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

Multi-Range ($\pm 10 V_{r} \pm 5 V_{r}+10 V_{r}+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

Pin Description

PIN	NAME	FUNCTION
1	CLK	Clock Input. In external clock mode, drive CLK with a TTL/CMOS compatible clock. In internal clock mode, place a capacitor from this pin to ground to set the internal clock frequency; fcLK $=1.56 \mathrm{MHz}$ typical with CCLK $=100 \mathrm{pF}$.
2	$\overline{\mathrm{CS}}$	Chip Select, active low.
3	$\overline{W R}$	When $\overline{\mathrm{CS}}$ is low, in the internal acquisition mode, a rising edge on $\overline{\mathrm{WR}}$ latches in configuration data and starts an acquisition plus a conversion cycle. When $\overline{\mathrm{CS}}$ is low, in the external acquisition mode, the first rising edge on
4	$\overline{\mathrm{RD}}$	If $\overline{\mathrm{CS}}$ is low, a falling edge on $\overline{\mathrm{RD}}$ will enable a read operation on the data bus.
5	HBEN	Used to multiplex the 12-bit conversion result. When high, the 4 MSBs are multiplexed on the data bus; when low, the 8 LSBs are available on the bus.
6	$\overline{\text { SHDN }}$	Shutdown. Puts the device into full power-down (FULLPD) mode when pulled low.
7-10	D7-D4	Three-State Digital I/O
11	D3/D11	Three-State Digital I/O. D3 output (HBEN = low), D11 output (HBEN = high).
12	D2/D10	Three-State Digital I/O. D2 output (HBEN = low), D10 output (HBEN = high).
13	D1/D9	Three-State Digital I/O. D1 output (HBEN = low), D9 output (HBEN = high).
14	D0/D8	Three-State Digital I/O. D0 output (HBEN = low), D8 output (HBEN = high). D0 = LSB.
15	AGND	Analog Ground
16-23	CHO-CH7	Analog Input Channels
24	$\overline{\text { INT }}$	$\overline{\text { INT }}$ goes low when conversion is complete and output data is ready.
25	REFADJ	Bandgap Voltage-Reference Output/External Adjust Pin. Bypass with a $0.01 \mu \mathrm{~F}$ capacitor to AGND. Connect to $V_{D D}$ when using an external reference at the REF pin.
26	REF	Reference Buffer Output/ADC Reference Input. In internal reference mode, the reference buffer provides a 4.096V nominal output, externally adjustable at REFADJ. In external reference mode, disable the internal buffer by pulling REFADJ to VDD.
27	VDD	+5 V Supply. Bypass with $0.1 \mu \mathrm{~F}$ capacitor to AGND.
28	DGND	Digital Ground

Figure 1. Reference-Adjust Circuit

Figure 2. Load Circuits for Enable Time

Multi-Range ($\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V},+10 \mathrm{~V},+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

Detailed Description

Converter Operation

The MAX197, a multi-range, fault-tolerant ADC, uses successive approximation and internal input track/hold (T/H) circuitry to convert an analog signal to a 12-bit digital output. The parallel-output format provides easy interface to microprocessors ($\mu \mathrm{Ps}$). Figure 3 shows the MAX197 in its simplest operational configuration

Analog-Input Track/Hold

In the internal acquisition control mode (control bit D5 set to 0), the T/H enters its tracking mode on WR's rising edge, and enters its hold mode when the internally timed (6 clock cycles) acquisition interval ends. A low impedance input source, which settles in less than $1.5 \mu \mathrm{~s}$, is required to maintain conversion accuracy at the maximum conversion rate.
In the external acquisition control mode (D5 = 1), the T/H enters its tracking mode on the first $\overline{W R}$ rising edge and enters its hold mode when it detects the second $\overline{W R}$ rising edge with D5 $=0$. See the External Acquisition section.

Input Bandwidth
The ADC's input tracking circuitry has a 5 MHz smallsignal bandwidth. When using the internal acquisition

Figure 3. Operational Diagram
mode with an external clock frequency of 2 MHz , a 100ksps throughput rate can be achieved. It is possible to digitize high-speed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by using undersampling techniques. To avoid high-frequency signals being aliased into the frequency band of interest, anti-alias filtering is recommended (MAX274/MAX275 continuous-time filters).

Input Range and Protection

Figure 4 shows the equivalent input circuit. With VREF = 4.096 V , the MAX197 can be programmed for input ranges of $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0 \mathrm{~V}$ to 10 V , or 0 V to 5 V by setting the appropriate control bits (D3, D4) in the control byte (see Tables 2 and 3). The full-scale input voltage depends on the voltage at REF (Table 1). When an external reference is applied at REFADJ, the voltage at REF is given by VREF $=1.6384 \times V_{\text {REFADJ }}\left(2.4 \mathrm{~V}<\mathrm{V}_{\text {REF }}<4.18 \mathrm{~V}\right)$.

Table 1. Full Scale and Zero Scale

RANGE (V)	ZERO SCALE (V)	-FULL SCALE	+FULL SCALE
0 to 5	0	-	V $_{\text {REF }} \times 1.2207$
0 to 10	0	-	V REF $\times 2.4414$
± 5	-	- V REF $\times 1.2207$	V REF $\times 1.2207$
± 10	-	$-V_{\text {REF }} \times 2.4414$	V REF $\times 2.4414$

Figure 4. Equivalent Input Circuit

Multi-Range ($\pm 10 V_{r} \pm 5 V_{r}+10 V_{r}+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

The input channels are overvoltage protected to $\pm 16.5 \mathrm{~V}$. This protection is active even if the device is in power-down mode.
Even with $V_{D D}=0 V$, the input resistive network provides current-limiting that adequately protects the device.

Digital Interface

Input data (control byte) and output data are multiplexed on a three-state parallel interface. This parallel I/O can easily be interfaced with a $\mu \mathrm{P} . \overline{\mathrm{CS}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{RD}}$ control the write and read operations. $\overline{\mathrm{CS}}$ is the standard chipselect signal, which enables a $\mu \mathrm{P}$ to address the MAX197 as an I/O port. When high, it disables the $\overline{W R}$ and $\overline{R D}$ inputs and forces the interface into a high- Z state.

Input Format

The control byte is latched into the device, on pins D7-D0, during a write cycle. Table 2 shows the controlbyte format.

Output Data Format
The output data format is binary in unipolar mode and twos-complement binary in bipolar mode. When reading the output data, $\overline{\mathrm{CS}}$, and $\overline{\mathrm{RD}}$ must be low. When HBEN is low, the lower eight bits are read. When HBEN is high, the upper four MSBs are available and the output data bits D4-D7 are either set low (in unipolar mode) or set to the value of the MSB (in bipolar mode) (Table 6).

Table 2. Control-Byte Format

D7 (MSB)	D6	D5	D4	D3	D2	D1
PD1	PD0	ACQMOD	RNG	BIP	A2	A1
BIT	NAME	DESCRIPTION				
7,6	PD1, PD0	These two bits select the clock and power-down modes (Table 4).				
5	ACQMOD	$0=$ internally controlled acquisition (6 clock cycles), $1=$ externally controlled acquisition				
4	RNG	Selects the full-scale voltage magnitude at the input (Table 3).				
3	BIP	Selects unipolar or bipolar conversion mode (Table 3).				
$2,1,0$	A2, A1, A0	These are address bits for the input mux to select the "on" channel (Table 5).				

Table 3. Range and Polarity Selection

BIP	RNG	INPUT RANGE (V)
0	0	0 to 5
0	1	0 to 10
1	0	± 5
1	1	± 10

Table 4. Clock and Power-Down Selection

PD1	PD0	DEVICE MODE
0	0	Normal Operation / External Clock Mode
0	1	Normal Operation / Internal Clock Mode
1	0	Standby Power-Down (STBYPD); clock mode is unaffected
1	1	Full Power-Down (FULLPD); clock mode is unaffected

Table 5. Channel Selection

A2	A1	A0	CH0	CH1	CH2	CH3	CH4	CH5	CH6	CH7
0	0	0	$*$							
0	0	1		$*$						
0	1	0			$*$					
0	1	1				$*$				
1	0	0					$*$			
1	0	1						$*$		
1	1	0							$*$	
1	1	1								$*$

Multi-Range ($\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V},+10 \mathrm{~V},+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

Table 6. Data-Bus Output

PIN	HBEN $=$ LOW	HBEN $=\mathbf{H I G H}$
D 0	$\mathrm{~B} 0(\mathrm{LSB})$	B 8
D 1	B 1	B 9
D 2	B 2	B 10
D 3	B 3	$\mathrm{~B} 11(\mathrm{MSB})$
D 4	B 4	$\mathrm{~B} 11(\mathrm{BIP}=1) / 0(\mathrm{BIP}=0)$
D 5	B 5	$\mathrm{~B} 11(\mathrm{BIP}=1) / 0(\mathrm{BIP}=0)$
D 6	B 6	$\mathrm{~B} 11(\mathrm{BIP}=1) / 0(\mathrm{BIP}=0)$
D 7	B 7	$\mathrm{~B} 11(\mathrm{BIP}=1) / 0(\mathrm{BIP}=0)$

How to Start a Conversion

Conversions are initiated with a write operation, which selects the mux channel and configures the MAX197 for either unipolar or bipolar input range. A write pulse ($\overline{\mathrm{WR}}$ $+\overline{\mathrm{CS}})$ can either start an acquisition interval or initiate a combined acquisition plus conversion. The sampling interval occurs at the end of the acquisition interval. The ACQMOD bit in the input control byte offers two options for acquiring the signal: internal or external. The conversion period lasts for 12 clock cycles in either internal or external clock or acquisition mode.

Writing a new control byte during conversion cycle will abort conversion and start a new acquisition interval

Internal Acquisition

Select internal acquisition by writing the control byte with the ACQMOD bit cleared (ACQMOD $=0$). This causes the write pulse to initiate an acquisition interval whose duration is internally timed. Conversion starts when this six-clock-cycle acquisition interval (3 3 s with $\mathrm{f}_{\mathrm{CLK}}=2 \mathrm{MHz}$) ends. See Figure 5 .

External Acquisition

Use the external acquisition timing mode for precise control of the sampling aperture and/or independent control of acquisition and conversion times. The user controls acquisition and start-of-conversion with two separate write pulses. The first pulse, written with $\mathrm{ACQMOD}=1$, starts an acquisition interval of indeterminate length. The second write pulse, written with $\mathrm{ACQMOD}=0$, terminates acquisition and starts conversion on $\overline{W R}$'s rising edge (Figure 6). However, if the second control byte contains ACQMOD = 1, an indefinite acquisition interval is restarted.
The address bits for the input mux must have the same values on the first and second write pulses. Powerdown mode bits (PD0, PD1) can assume new values on the second write pulse (see Power-Down Mode).

Figure 5. Conversion Timing Using Internal Acquisition Mode

Multi-Range ($\pm 10 V_{r} \pm 5 V_{r}+10 V_{r}+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

Figure 6. Conversion Timing Using External Acquisition Mode

How to Read a Conversion

A standard interrupt signal, INT, is provided to allow the device to flag the $\mu \mathrm{P}$ when the conversion has ended and a valid result is available. INT goes low when conversion is complete and the output data is ready (Figures 5 and 6). It returns high on the first read cycle or if a new control byte is written.

Clock Modes
The MAX197 operates with either an internal or an external clock. Control bits (D6, D7) select either internal or external clock mode. Once the desired clock mode is selected, changing these bits to program power-down will not affect the clock mode. In each mode, internal or external acquisition can be used. At power-up, external clock mode is selected

Internal Clock Mode

Select internal clock mode to free the $\mu \mathrm{P}$ from the burden of running the SAR conversion clock. To select this mode, write the control byte with D7 $=0$ and $\mathrm{D} 6=1$ A 100pF capacitor between the CLK pin and ground sets this frequency to 1.56 MHz nominal. Figure 7
shows a linear relationship between the internal clock period and the value of the external capacitor used.

Figure 7. Internal Clock Period vs. Clock Pin Capacitance

Multi-Range ($\pm 10 V_{r} \pm 5 V_{r}+10 V_{r}+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

External Clock Mode

Select external clock mode by writing the control byte with D7 $=0$ and $D 6=0$. Figure 8 shows CLK and WR timing relationships in internal and external acquisition modes, with an external clock. A 100 kHz to 2.0 MHz
external clock with 45% to 55% duty cycle is required for proper operation. Operating at clock frequencies lower than 100 kHz will cause a voltage droop across the hold capacitor, and subsequently degrade performance.

Figure 8a. External Clock and $\overline{W R}$ Timing (Internal Acquisition Mode)

Figure 8b. External Clock and $\overline{W R}$ Timing (External Acquisition Mode)

Multi-Range ($\pm 10 V_{r} \pm 5 V_{r}+10 V_{r}+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

Applications Information

Power-On Reset

At power-up, the internal power-supply circuitry sets INT high and puts the device in normal operation/external clock mode. This state is selected to keep the internal clock from loading the external clock driver when the part is used in external clock mode.

Internal or External Reference

The MAX197 can operate with either an internal or an external reference. An external reference can be connected to either the REF pin or to the REFADJ pin (Figure 9).
To use the REF input directly, disable the internal buffer by tying REFADJ to VDD. Using the REFADJ input eliminates the need to buffer the reference externally. When the reference is applied at REFADJ, bypass REFADJ with a $0.01 \mu \mathrm{~F}$ capacitor to AGND.
The REFADJ internal buffer gain is trimmed to 1.6384 to provide 4.096 V at the REF pin from a 2.5 V reference.

Internal Reference

The internally trimmed 2.50 V reference is gained through the REFADJ buffer to provide 4.096V at REF. Bypass the REF pin with a $4.7 \mu \mathrm{~F}$ capacitor to AGND and the REFADJ pin with a $0.01 \mu \mathrm{~F}$ capacitor to AGND. The internal reference voltage is adjustable to $\pm 1.5 \%$ ($\pm 65 \mathrm{LSBs}$) with the reference-adjust circuit of Figure 1.

External Reference
At REF and REFADJ, the input impedance is a minimum of $10 \mathrm{k} \Omega$ for DC currents. During conversions, an

Figure 9a. Internal Reference
external reference at REF must be able to deliver $400 \mu \mathrm{~A}$ DC load currents, and must have an output impedance of 10Ω or less. If the reference has higher input impedance or is noisy, bypass it close to the REF pin with a $4.7 \mu \mathrm{~F}$ capacitor to AGND.
With an external reference voltage of less than 4.096 V at the REF pin or less than 2.5 V at the REFADJ pin, the increase in the ratio of the RMS noise to the LSB value (FS / 4096) results in performance degradation (loss of effective bits).

Figure 9b. External Reference, Reference at REF

Figure 9c. External Reference, Reference at REFADJ

Multi-Range ($\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V},+10 \mathrm{~V},+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

Power-Down Mode

To save power, you can put the converter into lowcurrent shutdown mode between conversions. Two programmable power-down modes are available, in addition to a hardware shutdown. Select STBYPD or FULLPD by programming PD0 and PD1 in the input control byte. When software power-down is asserted, it becomes effective only after the end of conversion. In all power-down modes, the interface remains active and conversion results may be read. Input overvoltage protection is active in all power-down modes. The device returns to normal operation on the first $\overline{W R}$ falling edge during write operation.
For hardware-controlled (FULLPD) power-down, pull the SHDN pin low. When hardware shutdown is asserted, it becomes effective immediately and the conversion is aborted.

Choosing Power-Down Modes

The bandgap reference and reference buffer remain active in STBYPD mode, maintaining the voltage on the $4.7 \mu \mathrm{~F}$ capacitor at the REF pin. This is a "DC" state that does not degrade after power-down of any duration. Therefore, you can use any sampling rate with this mode, without regard to start-up delays.

However, in FULLPD mode, only the bandgap reference is active. Connect a $33 \mu \mathrm{~F}$ capacitor between REF and AGND to maintain the reference voltage between conversion and to reduce transients when the buffer is enabled and disabled. Throughput rates down to 1 ksps can be achieved without allotting extra acquisition time for reference recovery prior to conversion. This allows conversion to begin immediately after power-down ends. If the discharge of the REF capacitor during FULLPD exceeds the desired limits for accuracy (less than a fraction of an LSB), run a STBYPD power-down cycle prior to starting conversions. Take into account that the reference buffer recharges the bypass capacitor at an $80 \mathrm{mV} / \mathrm{ms}$ slew rate and add $50 \mu \mathrm{~s}$ for settling time. Throughput rates of 10 ksps offer typical supply currents of $470 \mu \mathrm{~A}$, using the recommended $33 \mu \mathrm{~F}$ capacitor value.

Auto-Shutdown

Selecting STBYPD on every conversion automatically shuts the MAX197 down after each conversion without requiring any start-up time on the next conversion.

Figure 10. Unipolar Transfer Function

Figure 11. Bipolar Transfer Function

Multi-Range ($\pm 10 V_{r} \pm 5 V_{r}+10 V_{r}+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

Transfer Function

Output data coding for the MAX197 is binary in unipolar mode with $1 \mathrm{LSB}=(\mathrm{FS} / 4096)$ and twos-complement binary in bipolar mode with $1 \mathrm{LSB}=((2 \times|F S|) /$ 4096). Code transitions occur halfway between succes-sive-integer LSB values. Figures 10 and 11 show the input/output (I/O) transfer functions for unipolar and bipolar operations, respectively. For full-scale (FS) values, refer to Table 1.

Layout, Grounding, and Bypassing

Careful printed circuit board layout is essential for best system performance. For best performance, use a ground plane. To reduce crosstalk and noise injection, keep analog and digital signals separate. Digital ground lines can run between digital signal lines to minimize interference. Connect analog grounds and DGND in a star configuration to AGND. For noise-free operation, ensure the ground return from AGND to the supply ground is low impedance and as short as possible. Connect the logic grounds directly to the supply ground. Bypass VDD with $0.1 \mu \mathrm{~F}$ and $4.7 \mu \mathrm{~F}$ capacitors to AGND to minimize high- and low-frequency fluctuations. If the supply is excessively noisy, connect a 5Ω resistor between the supply and VDD, as shown in Figure 12

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX197AENI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Narrow Plastic DIP
MAX197BENI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Narrow Plastic DIP
MAX197AEWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO
MAX197BEWI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Wide SO
MAX197AEAI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP
MAX197BEAI	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 SSOP
MAX197AMYI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Narrow Ceramic SB $^{* *}$
MAX197BMYI	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Narrow Ceramic SB $^{* *}$

** Contact factory for availability and processing to MIL-STD-883.
Chip Topography

TRANSISTOR COUNT: 2956
substrate connected to Gnd

Figure 12. Power-Supply Grounding Connection

Multi-Range ($\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V},+10 \mathrm{~V},+5 \mathrm{~V}$), Single +5V, 12-Bit DAS with 8+4 Bus Interface

[^9]- HIGH SPEED
tpD $=12 \mathrm{~ns}$ (TYP.) AT VCc $=5 \mathrm{~V}$
- LOW POWER DISSIPATION $\mathrm{I}_{\mathrm{cc}}=2 \mu \mathrm{~A}$ (MAX.) AT TA $=25^{\circ} \mathrm{C}$
- HIGH NOISE IMMUNITY
$\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\text {NIL }}=28 \% \mathrm{~V}_{\text {CC }}$ (MIN.)
- OUTPUT DRIVE CAPABILITY

10 LSTTL LOADS

- SYMMETRICAL OUTPUT IMPEDANCE $|\mathrm{loh}|=\mathrm{loL}=4 \mathrm{~mA}(\mathrm{MIN}$.)
- BALANCED PROPAGATION DELAYS tpLH $=$ tpHL
- WIDE OPERATING VOLTAGE RANGE $\mathrm{Vcc}(\mathrm{OPR})=2 \mathrm{~V}$ TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS279

DESCRIPTION

The M54/74HC279 is a high speed CMOS QUAD $\overline{\mathrm{S}}$ - $\overline{\mathrm{R}}$ LATCH fabricated in silicon gate C^{2} MOS technology. It has the same high speed performance of LSTTL combined with true CMOS low power consumption.
All inputs are equipped with protection circuits against static discharge and transient excess voltage.

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
$1,5,10.14$	$1 \overline{\mathrm{R}}$ to $4 \overline{\mathrm{R}}$	Reset Inputs (Active LOW)
$2,3,6,11$, 12,15	$\frac{1 \overline{\mathrm{~S} 1,1 \mathrm{~S} 2,2 \mathrm{~S}},}{3 \mathrm{~S} 1,3 \mathrm{~S} 2,4 \mathrm{~S}}$	Set Inputs (Active LOW)
$4,7,9,13$	1 Q to 4 Q	Outputs
8	GND	Ground (0V)
16	VCC	Positive Supply Voltage

TRUTH TABLE

$\overline{\mathbf{S}} \#$	$\overline{\mathbf{R}}$	\mathbf{Q}
H	H	Q0
L	H	H
H	L	L
L	L	H

NOTE: Q0 = THE LEVEL OF Q BEFORE THE INDICRTED INPUT CONDITION WAS ESTABLISHED.
\# FOR LATCHES WITH DOUBLE S INPUT: H = BOTH S INPUTS HIGH L = ONE OF BOTH INPUTS LOW

IEC LOGIC SYMBOL

LOGIC DIAGRAM
\square
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current	± 20	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Source Sink Current Per Output Pin	± 25	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC VCC or Ground Current	± 50	mA
P_{D}	Power Dissipation	$500\left(^{*}\right)$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature $(10 \mathrm{sec})$	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is notimplied. (*) $500 \mathrm{~mW}: \cong 65^{\circ} \mathrm{C}$ derate to 300 mW by $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$: $65{ }^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V_{CC}	Supply Voltage		2 to 6	V
V_{1}	Input Voltage		0 to V_{CC}	V
Vo	Output Voltage		0 to V Cc	V
$\mathrm{T}_{\text {op }}$	Operating Temperature: M54HC Series M74HC Series		$\begin{aligned} & \hline-55 \text { to }+125 \\ & -40 \text { to }+85 \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	0 to 1000	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	0 to 500	
		$\mathrm{V}_{\mathrm{cc}}=6 \mathrm{~V}$	0 to 400	

DC SPECIFICATIONS

Symbol	Parameter	Test Conditions			Value							Unit
		$V_{c c}$ (V)			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ 54HC and 74 HC			$\begin{gathered} -40 \text { to } 85{ }^{\circ} \mathrm{C} \\ 74 \mathrm{HC} \end{gathered}$		$\begin{gathered} -55 \text { to } 125^{\circ} \mathrm{C} \\ 54 \mathrm{HC} \\ \hline \end{gathered}$		
					Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	2.0			1.5			1.5		1.5		V
		4.5			3.15			3.15		3.15		
		6.0			4.2			4.2		4.2		
VIL	Low Level Input Voltage	2.0					0.5		0.5		0.5	V
		4.5					1.35		1.35		1.35	
		6.0					1.8		1.8		1.8	
V_{OH}	High Level Output Voltage	2.0	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}= \\ & \mathrm{V}_{\mathrm{IH}} \\ & \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{l}=-20 \mu \mathrm{~A}$	1.9	2.0		1.9		1.9		V
		4.5			4.4	4.5		4.4		4.4		
		6.0			5.9	6.0		5.9		5.9		
		4.5		$\mathrm{l}_{0}=-4.0 \mathrm{~mA}$	4.18	4.31		4.13		4.10		
		6.0		$\mathrm{I}_{\mathrm{O}}=-5.2 \mathrm{~mA}$	5.68	5.8		5.63		5.60		
Vol	Low Level Output Voltage	2.0	$\begin{gathered} \mathrm{V}_{\mathrm{I}}= \\ \mathrm{V}_{\mathrm{IH}} \\ \text { or } \\ \mathrm{V}_{\mathrm{IL}} \end{gathered}$	$\mathrm{lo}=20 \mu \mathrm{~A}$		0.0	0.1		0.1		0.1	V
		4.5				0.0	0.1		0.1		0.1	
		6.0				0.0	0.1		0.1		0.1	
		4.5		$\mathrm{l}=4.0 \mathrm{~mA}$		0.17	0.26		0.33		0.40	
		6.0		$\mathrm{I}_{\mathrm{O}}=5.2 \mathrm{~mA}$		0.18	0.26		0.33		0.40	
1	Input Leakage Current	6.0	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND				± 0.1		± 1		± 1	$\mu \mathrm{A}$
Icc	Quiescent Supply Current	6.0	$\mathrm{V}_{1}=$	Cc or GND			2		20		40	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	Test Conditions		Value							Unit
		Vcc (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ 54HC and 74HC			$\begin{gathered} -40 \text { to } 85^{\circ} \mathrm{C} \\ 74 \mathrm{HC} \end{gathered}$		$\begin{array}{\|c\|} \hline-55 \text { to } 125^{\circ} \mathrm{C} \\ 54 \mathrm{HC} \\ \hline \end{array}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{T} \text { L }}$ tтhl	Output Transition Time	2.0			30	75		95		110	ns
		4.5			8	15		19		22	
		6.0			7	13		16		19	
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay Time(S1, S2-Q)	2.0			45	130		165		195	ns
		4.5			15	26		33		39	
		6.0			13	22		28		33	
$\begin{aligned} & \text { tpLH } \\ & \text { tphL } \end{aligned}$	Propagation Delay Time (S - Q)	2.0			38	100		125		150	ns
		4.5			12	20		25		30	
		6.0			10	17		21		26	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time ($\bar{R}-Q$)	2.0			42	120		150		180	ns
		4.5			14	24		30		36	
		6.0			12	20		26		31	
$\mathrm{C}_{\text {IN }}$	Input Capacitance				5	10		10		10	pF
$\mathrm{C}_{\text {PD }}\left({ }^{*}\right)$	Power Dissipation Capacitance				18						pF

(*) $^{*} \mathrm{C}_{\text {PD }}$ is defined as the value of the IC's internal equivalent capadtanœ which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operting current can be obtained by the following equation. $I_{C C}(o p r)=C_{P D} \bullet V_{C C} \bullet f_{I N}+I_{C C}$

SWITCHING CHARACTERISTICS TEST WAVEFORM

TEST CIRCUIT Icc (Opr.)

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
B	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.335	0.100
D						0.700
E		2.54				
e3		17.78				0.280
F						
I						
L						

Ceramic DIP16/1 MECHANICAL DATA

DIM.	mm				inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			20			0.787
B			7			0.276
D		3.3			0.130	
E	0.38					0.700
e3		17.78				
F	2.29		0.55	0.016		0.110
G	0.4		1.52	0.046		0.022
H	1.17		0.31	0.009		0.012
L	0.22		1.27	0.020		0.050
M	0.51		10.3			0.406
N			8.05	0.307		0.317
P	7.8					
Q						

P053D

SO16 (Narrow) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

PLCC2O MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	9.78		10.03	0.385		0.395
B	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
e		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
M		1.27			0.050	
M1		1.14			0.045	

$\square \mathrm{G}$ (Seating Plane Coplanariy)

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

Ordering Code:

Order Number	Package Number	Package Description
MM74HC08M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Wide
MM74HC08SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC08MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC08N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$	
				Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Level Input Voltage		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{IL}	Maximum LOW Level Input Voltage		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ \mid \mathrm{I}_{\mathrm{OUT}} \leq 20 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 4.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	Maximum LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{I}_{\text {OUT }} \leq 4.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{IN}	Maximum Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0 V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	6.0 V		2.0	20	40	$\mu \mathrm{A}$
Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V .) The worst case leakage current $\left(\mathrm{I}_{\mathrm{N}}, \mathrm{I}_{\mathrm{CC}}\right.$, and $\left.\mathrm{I}_{\mathrm{OZ}}\right)$ occur for CMOS at the higher voltage and so the 6.0 V values should be used.								

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

Symbol	Parameter	Conditions	Typ	Guaranteed Limit	Units
$t_{\text {PHL }}$	Maximum Propagation Delay, Output HIGH-to-LOW		12	20	ns
$t_{\text {PLH }}$	Maximum Propagation Delay, Output LOW-to-HIGH		7	15	ns

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $125^{\circ} \mathrm{C}$	Units
				Typ	Guaranteed Limits		
${ }_{\text {tPHL }}$	Maximum Propagation Delay,		2.0 V	77	121	175	ns
	Output HIGH-to-LOW		4.5 V	15	24	35	ns
			6.0 V	13	20	30	ns
$\mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay,		2.0 V	30	90	134	ns
	Output LOW-to-HIGH		4.5 V	10	18	27	ns
			6.0 V	8	15	23	ns
$\overline{\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }}}$	Maximum Output		2.0 V	30	75	110	ns
	Rise and Fall Time		4.5 V	8	15	22	ns
			6.0 V	7	13	19	ns
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 5)	(per gate)		38			pF
C_{IN}	Maximum Input Capacitance			4	10	10	pF

$I_{S}=C_{P D} V_{C C} f+I_{C C}$

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS

NOTES:
A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

M14DRevB1

14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M14D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

LM35

Precision Centigrade Temperature Sensors

General Description

The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in - Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of $\pm 1 /{ }^{\circ} \mathrm{C}$ at room temperature and $\pm 3 / 4^{\circ} \mathrm{C}$ over a full -55 to $+150^{\circ} \mathrm{C}$ temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only $60 \mu \mathrm{~A}$ from its supply, it has very low self-heating, less than $0.1^{\circ} \mathrm{C}$ in still air. The LM35 is rated to operate over a -55° to $+150^{\circ} \mathrm{C}$ temperature range, while the LM35C is rated for a -40° to $+110^{\circ} \mathrm{C}$ range $\left(-10^{\circ}\right.$ with improved accuracy). The LM35 series is available pack-
aged in hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface mount small outline package and a plastic TO-220 package.

Features

- Calibrated directly in ${ }^{\circ}$ Celsius (Centigrade)
- Linear $+10.0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ scale factor
- $0.5^{\circ} \mathrm{C}$ accuracy guaranteeable (at $+25^{\circ} \mathrm{C}$)
- Rated for full -55° to $+150^{\circ} \mathrm{C}$ range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4 to 30 volts
- Less than $60 \mu \mathrm{~A}$ current drain
- Low self-heating, $0.08^{\circ} \mathrm{C}$ in still air
- Nonlinearity only $\pm 1 / 4^{\circ} \mathrm{C}$ typical
- Low impedance output, 0.1Ω for 1 mA load

Typical Applications

FIGURE 1. Basic Centigrade Temperature Sensor ($+2^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$)

Choose $\mathrm{R}_{1}=-\mathrm{V}_{\mathrm{S}} / 50 \mu \mathrm{~A}$
V out $=+1,500 \mathrm{mV}$ at $+150^{\circ} \mathrm{C}$
$=+250 \mathrm{mV}$ at $+25^{\circ} \mathrm{C}$
$=-550 \mathrm{mV}$ at $-55^{\circ} \mathrm{C}$
FIGURE 2. Full-Range Centigrade Temperature Sensor

$\sum_{1}^{\text {N }}$ Connection Diagrams

TO-46
Metal Can Package*

*Case is connected to negative pin (GND)
Order Number LM35H, LM35AH, LM35CH, LM35CAH or LM35DH
See NS Package Number H03H

TO-92
Plastic Package

Order Number LM35CZ, LM35CAZ or LM35DZ
See NS Package Number Z03A

SO-8
Small Outline Molded Package

N.C. = No Connection

Top View
Order Number LM35DM
See NS Package Number M08A

TO-220
Plastic Package*

*Tab is connected to the negative pin (GND).
Note: The LM35DT pinout is different than the discontinued LM35DP.
Order Number LM35DT See NS Package Number TA03F

Absolute Maximum Ratings (Note 10)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage
Output Voltage
Output Current
Storage Temp.;

TO-46 Package,	$-60^{\circ} \mathrm{C}$ to $+180^{\circ} \mathrm{C}$
TO-92 Package,	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
SO-8 Package,	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
TO-220 Package,	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

To-220 Package,
Lead Temp.:
TO-46 Package,
(Soldering, 10 seconds) $300^{\circ} \mathrm{C}$

TO-92 and TO-220 Package,

$$
\text { (Soldering, } 10 \text { seconds) } \quad 260^{\circ} \mathrm{C}
$$

SO Package (Note 12)
Vapor Phase (60 seconds) $215^{\circ} \mathrm{C}$
Infrared (15 seconds) $220^{\circ} \mathrm{C}$
ESD Susceptibility (Note 11) 2500V
Specified Operating Temperature Range: $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Note 2)
LM35, LM35A
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

Electrical Characteristics

(Notes 1, 6)

Parameter	Conditions	LM35A			LM35CA			Units (Max.)
		Typical	Tested Limit (Note 4)	Design Limit (Note 5)	Typical	Tested Limit (Note 4)	Design Limit (Note 5)	
Accuracy (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.2 \\ & \pm 0.3 \\ & \pm 0.4 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \\ & \pm 1.0 \end{aligned}$		$\begin{aligned} & \pm 0.2 \\ & \pm 0.3 \\ & \pm 0.4 \\ & \pm 0.4 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 1.5 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Nonlinearity (Note 8)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	± 0.18		± 0.35	± 0.15		± 0.3	${ }^{\circ} \mathrm{C}$
Sensor Gain (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	+10.0	$\begin{aligned} & +9.9, \\ & +10.1 \end{aligned}$		+10.0		$\begin{aligned} & +9.9, \\ & +10.1 \end{aligned}$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Load Regulation (Note 3) $0 \leq \mathrm{l}_{\mathrm{L}} \leq 1 \mathrm{~mA}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \end{aligned}$	± 1.0	± 3.0	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \end{aligned}$	± 1.0	± 3.0	$\mathrm{mV} / \mathrm{mA}$ $\mathrm{mV} / \mathrm{mA}$
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.02 \end{aligned}$	± 0.05	± 0.1	$\begin{aligned} & \pm 0.01 \\ & \pm 0.02 \end{aligned}$	± 0.05	± 0.1	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Quiescent Current (Note 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 56 \\ 105 \\ 56.2 \\ 105.5 \\ \hline \end{gathered}$	67 68	$\begin{aligned} & 131 \\ & 133 \end{aligned}$	$\begin{gathered} \hline 56 \\ 91 \\ 56.2 \\ 91.5 \\ \hline \end{gathered}$	67 68	$\begin{aligned} & 114 \\ & 116 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Change of Quiescent Current (Note 3)	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{s}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	1.0	2.0	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	1.0	2.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Temperature Coefficient of Quiescent Current		+0.39		+0.5	+0.39		+0.5	$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, $\mathrm{I}_{\mathrm{L}}=0$	+1.5		+2.0	+1.5		+2.0	${ }^{\circ} \mathrm{C}$
Long Term Stability	$\begin{aligned} & \hline T_{J}=T_{\text {MAX }} \text {, for } \\ & 1000 \text { hours } \end{aligned}$	± 0.08			± 0.08			${ }^{\circ} \mathrm{C}$

(Notes 1, 6)

Parameter	Conditions	LM35			LM35C, LM35D			Units (Max.)
		Typical	Tested Limit (Note 4)	Design Limit (Note 5)	Typical	Tested Limit (Note 4)	Design Limit (Note 5)	
Accuracy, LM35, LM35C (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}} \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \\ & \pm 0.8 \\ & \pm 0.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 1.5 \end{aligned}$	± 1.5	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \\ & \pm 0.8 \\ & \pm 0.8 \\ & \hline \end{aligned}$	± 1.0	$\begin{aligned} & \pm 1.5 \\ & \pm 1.5 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Accuracy, LM35D (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MAX }} \\ & \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \\ & \hline \end{aligned}$				$\begin{aligned} & \pm 0.6 \\ & \pm 0.9 \\ & \pm 0.9 \end{aligned}$	± 1.5	$\begin{array}{r} \pm 2.0 \\ \pm 2.0 \\ \hline \end{array}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Nonlinearity (Note 8)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	± 0.3		± 0.5	± 0.2		± 0.5	${ }^{\circ} \mathrm{C}$
Sensor Gain (Average Slope)	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	+10.0	$\begin{aligned} & +9.8, \\ & +10.2 \end{aligned}$		+10.0		$\begin{aligned} & +9.8, \\ & +10.2 \end{aligned}$	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Load Regulation (Note 3) $0 \leq \mathrm{I}_{\mathrm{L}} \leq 1 \mathrm{~mA}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} \end{aligned}$	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \end{aligned}$	± 2.0	± 5.0	$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \end{aligned}$	± 2.0	± 5.0	$\mathrm{mV} / \mathrm{mA}$ $\mathrm{mV} / \mathrm{mA}$
Line Regulation (Note 3)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.02 \end{aligned}$	± 0.1	± 0.2	$\begin{aligned} & \pm 0.01 \\ & \pm 0.02 \end{aligned}$	± 0.1	± 0.2	$\begin{aligned} & \mathrm{mV} / \mathrm{V} \\ & \mathrm{mV} / \mathrm{V} \end{aligned}$
Quiescent Current (Note 9)	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{S}}=+30 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 56 \\ 105 \\ 56.2 \\ 105.5 \end{gathered}$	80 82	$\begin{array}{r} 158 \\ 161 \\ \hline \end{array}$	$\begin{gathered} \hline 56 \\ 91 \\ 56.2 \\ 91.5 \end{gathered}$	80 82	$\begin{array}{r} 138 \\ 141 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Change of Quiescent Current (Note 3)	$\begin{aligned} & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{s}} \leq 30 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & 4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{s}} \leq 30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	2.0	3.0	$\begin{aligned} & 0.2 \\ & 0.5 \end{aligned}$	2.0	3.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Temperature Coefficient of Quiescent Current		+0.39		+0.7	+0.39		+0.7	$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Minimum Temperature for Rated Accuracy	In circuit of Figure 1, $\mathrm{I}_{\mathrm{L}}=0$	+1.5		+2.0	+1.5		+2.0	${ }^{\circ} \mathrm{C}$
Long Term Stability	$\begin{aligned} & \hline T_{J}=T_{\text {MAX }}, \text { for } \\ & 1000 \text { hours } \end{aligned}$	± 0.08			± 0.08			${ }^{\circ} \mathrm{C}$

Note 1: Unless otherwise noted, these specifications apply: $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{j} \leq+150^{\circ} \mathrm{C}$ for the LM 35 and $\mathrm{LM} 35 \mathrm{~A} ;-40^{\circ} \leq \mathrm{T}_{j} \leq+110^{\circ} \mathrm{C}$ for the LM 35 C and LM 35 CA ; and $0^{\circ} \leq T_{J} \leq+100^{\circ} \mathrm{C}$ for the LM35D. $\mathrm{V}_{\mathrm{S}}=+5 \mathrm{Vdc}$ and $\mathrm{I}_{\text {LOAD }}=50 \mu \mathrm{~A}$, in the circuit of Figure 2. These specifications also apply from $+2^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}$ in the circuit of Figure 1 . Specifications in boldface apply over the full rated temperature range.
Note 2: Thermal resistance of the TO-46 package is $400^{\circ} \mathrm{C} / \mathrm{W}$, junction to ambient, and $24^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. Thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. Thermal resistance of the small outline molded package is $220^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. Thermal resistance of the TO-220 package is $90^{\circ} \mathrm{C} / \mathrm{W}$ junction to ambient. For additional thermal resistance information see table in the Applications section.
Note 3: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.
Note 4: Tested Limits are guaranteed and 100% tested in production.
Note 5: Design Limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels.
Note 6: Specifications in boldface apply over the full rated temperature range.
Note 7: Accuracy is defined as the error between the output voltage and $10 \mathrm{mv} /{ }^{\circ} \mathrm{C}$ times the device's case temperature, at specified conditions of voltage, current, and temperature (expressed in ${ }^{\circ} \mathrm{C}$).
Note 8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device's rated temperature range.
Note 9: Quiescent current is defined in the circuit of Figure 1.
Note 10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions. See Note 1.
Note 11: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 12: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in a current National Semiconductor Linear Data Book for other methods of soldering surface mount devices.

Typical Performance Characteristics

Thermal Resistance
Junction to Air

Thermal Response in Stirred Oil Bath

Quiescent Current
vs. Temperature
(In Circuit of Figure 2.)

Thermal Time Constant

Minimum Supply
Voltage vs. Temperature

Accuracy vs. Temperature
(Guaranteed)

Thermal Response in Still Air

DS005516-27

Quiescent Current
vs. Temperature (In Circuit of Figure 1.)

DS005516-30

Accuracy vs. Temperature (Guaranteed)

DS005516-33

Typical Performance Characteristics (Continued)

Noise Voltage

Applications

The LM35 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface and its temperature will be within about $0.01^{\circ} \mathrm{C}$ of the surface temperature.
This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature of the LM35 die would be at an intermediate temperature between the surface temperature and the air temperature. This is expecially true for the TO-92 plastic package, where the copper leads are the principal thermal path to carry heat into the device, so its temperature might be closer to the air temperature than to the surface temperature.
To minimize this problem, be sure that the wiring to the LM35, as it leaves the device, is held at the same temperature as the surface of interest. The easiest way to do this is to cover up these wires with a bead of epoxy which will insure that the leads and wires are all at the same temperature as the surface, and that the LM35 die's temperature will not be affected by the air temperature.

Start-Up Response

The TO-46 metal package can also be soldered to a metal surface or pipe without damage. Of course, in that case the V- terminal of the circuit will be grounded to that metal. Alternatively, the LM35 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM35 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to insure that moisture cannot corrode the LM35 or its connections.
These devices are sometimes soldered to a small light-weight heat fin, to decrease the thermal time constant and speed up the response in slowly-moving air. On the other hand, a small thermal mass may be added to the sensor, to give the steadiest reading despite small deviations in the air temperature.

Temperature Rise of LM35 Due To Self-heating (Thermal Resistance, θ_{JA})

	TO-46, no heat sink	TO-46*, small heat fin	TO-92, no heat sink	TO-92**, small heat fin	SO-8 no heat sink	$\begin{gathered} \text { SO-8** } \\ \text { small heat fin } \end{gathered}$	TO-220 no heat sink
Still air	$400^{\circ} \mathrm{C} / \mathrm{W}$	$100^{\circ} \mathrm{C} / \mathrm{W}$	$180^{\circ} \mathrm{C} / \mathrm{W}$	$140^{\circ} \mathrm{C} / \mathrm{W}$	$220^{\circ} \mathrm{C} / \mathrm{W}$	$110^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$
Moving air	$100^{\circ} \mathrm{C} / \mathrm{W}$	$40^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$70^{\circ} \mathrm{C} / \mathrm{W}$	$105^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$26^{\circ} \mathrm{C} / \mathrm{W}$
Still oil	$100^{\circ} \mathrm{C} / \mathrm{W}$	$40^{\circ} \mathrm{C} / \mathrm{W}$	$90^{\circ} \mathrm{C} / \mathrm{W}$	$70^{\circ} \mathrm{C} / \mathrm{W}$			
Stirred oil	$50^{\circ} \mathrm{C} / \mathrm{W}$	$30^{\circ} \mathrm{C} / \mathrm{W}$	$45^{\circ} \mathrm{C} / \mathrm{W}$	$40^{\circ} \mathrm{C} / \mathrm{W}$			
(Clamped to metal, Infinite heat sink)	(24* ${ }^{\circ} \mathrm{W}$)					C/W)	

*Wakefield type 201, or 1 " disc of 0.020 " sheet brass, soldered to case, or similar.
**TO-92 and SO-8 packages glued and leads soldered to 1 " square of $1 / 16$ " printed circuit board with 2 oz. foil or similar.

Typical Applications

FIGURE 3. LM35 with Decoupling from Capacitive Load

FIGURE 4. LM35 with R-C Damper

CAPACITIVE LOADS

Like most micropower circuits, the LM35 has a limited ability to drive heavy capacitive loads. The LM35 by itself is able to drive 50 pf without special precautions. If heavier loads are anticipated, it is easy to isolate or decouple the load with a resistor; see Figure 3. Or you can improve the tolerance of capacitance with a series R-C damper from output to ground; see Figure 4.
When the LM35 is applied with a 200Ω load resistor as shown in Figure 5, Figure 6 or Figure 8 it is relatively immune to wiring capacitance because the capacitance forms a bypass from ground to input, not on the output. However, as with any linear circuit connected to wires in a hostile environment, its performance can be affected adversely by intense electromagnetic sources such as relays, radio transmitters, motors with arcing brushes, SCR transients, etc, as its wiring can act as a receiving antenna and its internal junctions can act as rectifiers. For best results in such cases, a bypass capacitor from V_{IN} to ground and a series R-C damper such as 75Ω in series with 0.2 or $1 \mu \mathrm{~F}$ from output to ground are often useful. These are shown in Figure 13, Figure 14, and Figure 16.

FIGURE 5. Two-Wire Remote Temperature Sensor (Grounded Sensor)

FIGURE 6. Two-Wire Remote Temperature Sensor (Output Referred to Ground)

FIGURE 7. Temperature Sensor, Single Supply, -55° to $+150^{\circ} \mathrm{C}$

FIGURE 8. Two-Wire Remote Temperature Sensor (Output Referred to Ground)

FIGURE 9. $4-\mathrm{To}-20 \mathrm{~mA}$ Current Source $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+100^{\circ} \mathrm{C}\right)$

Typical Applications
(Continued)

FIGURE 10. Fahrenheit Thermometer

FIGURE 12. Fahrenheit ThermometerExpanded Scale Thermometer
(50° to 80° Fahrenheit, for Example Shown)

FIGURE 13. Temperature To Digital Converter (Serial Output) ($+128^{\circ} \mathrm{C}$ Full Scale)

FIGURE 14. Temperature To Digital Converter (Parallel TRI-STATE ${ }^{\text {TM }}$ Outputs for Standard Data Bus to $\mu \mathrm{P}$ Interface) ($128^{\circ} \mathrm{C}$ Full Scale)

Typical Applications (Continued)

*=1\% or 2\% film resistor
Trim R_{B} for $\mathrm{V}_{\mathrm{B}}=3.075 \mathrm{~V}$
Trim R_{C} for $\mathrm{V}_{\mathrm{C}}=1.955 \mathrm{~V}$
Trim R_{A} for $\mathrm{V}_{\mathrm{A}}=0.075 \mathrm{~V}+100 \mathrm{mV} /{ }^{\circ} \mathrm{C} \times \mathrm{T}_{\text {ambient }}$
Example, $\mathrm{V}_{\mathrm{A}}=2.275 \mathrm{~V}$ at $22^{\circ} \mathrm{C}$
FIGURE 15. Bar-Graph Temperature Display (Dot Mode)

FIGURE 16. LM35 With Voltage-To-Frequency Converter And Isolated Output ($2^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$; 20 Hz to 1500 Hz)

\sum_{\beth}^{∞} Block Diagram

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

TO-92 Plastic Package (Z)
Order Number LM35CZ, LM35CAZ or LM35DZ NS Package Number Z03A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 180-530 8586	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0)6995086208	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +44 (0) 8702402171	Email: ap.support@nsc.com	
www.national.com	Français Tel: +33 (0) 141918790		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

[^0]: Kojiro Iizuka and Yasuharu kunii are with Faculty of Science and Engineering, Department of Electrical, Electronic, and Communication Engineering, Chuo University, 1-13-27, Kasuga, Bnkyo, Tokyo, Japan iizuka@comp.chuo-u.ac.jp, kunii@hmsl.elect.chuo-u.ac.jp

 Takashi Kubota is with Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Sagamihara, Japan kubota@nnl.isas.jaxa.jp

[^1]: As we can see, for the cells 1 to 5 the average error is only about $+0.011(+1.8 \%$, which is acceptable. For the cells 7 and 8 the error is nearly 0 . Only the gain for the 6 th cell is 0.065 to high, which corresponds to an error of $+10.8 \%$. This is too high and inadmissible. This error is due to the tolerances of the components (measuring device, resistances ($\pm 5 \%$) etc.)

[^2]: Note: 4. Pulse test

[^3]: National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

[^4]: National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

[^5]: National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

[^6]: Note 1: For operating at high temperatures, the LM339/LM339A, LM2901, LM 3302 must be derated based on a $122^{\circ} \mathrm{C}$ maximum junction temperature and a thermal resistance of $95^{\circ} \mathrm{C} / \mathrm{W}$ which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM239 and LM139 must be derated based on a $150^{\circ} \mathrm{C}$ maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps the chip dissipation very small ($\mathrm{P}_{\mathrm{D}} \leq 100 \mathrm{~mW}$), provided the output transistors are allowed to saturate,
 Note 2: Short circuits from the output to $\mathrm{V}+$ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 20 mA independent of the magnitude of $\mathrm{V}+$. Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the $V+$ voltage level (or to ground for a large
 overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than $-0.3 \mathrm{~V}_{\mathrm{DC}}\left(\right.$ at 25°)C. Note 4: These specifications are limited to $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, for the $\mathrm{LM} 139 / \mathrm{LM139A}$. With the $\mathrm{LM} 239 / \mathrm{LM} 239 \mathrm{~A}$, all temperature specifications are limited to $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, the $\mathrm{LM} 339 / \mathrm{LM} 339 \mathrm{~A}$ temperature specifications are limited to $0^{\circ} \mathrm{C} \leq T_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$, and the $\mathrm{LM} 2901, \mathrm{LM} 3302$ temperature range is $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$.
 Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines. Note 6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$, but either or both inputs can go to $+30 \mathrm{~V}_{\mathrm{DC}}$ without damage (25 V for LM 3302), independent of the magnitude of $\mathrm{V}+$
 Note 7: The response time specified is a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be obtained, see typical performance characteristics section.
 Note 8: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than $-0.3 \mathrm{~V}_{D C}$ (or $0.3 \mathrm{~V}_{D C}$ below the magnitude of the negative power supply, if used) (at $25^{\circ} \mathrm{C}$).
 Note 9: At output switch point, $\mathrm{V}_{\mathrm{O}} \cong 1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}+$ from $5 \mathrm{~V}_{\mathrm{DC}}$ to $30 \mathrm{~V}_{\mathrm{DC}}$; and over the full input common-mode range ($0 \mathrm{~V}_{\mathrm{DC}}$ to $\mathrm{V}+-1.5 \mathrm{~V}_{\mathrm{DC}}$), at $25^{\circ} \mathrm{C}$. For $\mathrm{LM} 3302, \mathrm{~V}+$ from $5 \mathrm{~V}_{\mathrm{DC}}$ to $28 \mathrm{~V}_{\mathrm{DC}}$
 Note 10: Refer to RETS139AX for LM139A military specifications and to RETS 139 X for LM139 military specifications.

[^7]: 1) $\mathrm{C}_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without
[^8]: Note: 1. Types with specifications other than those listed are available. Contact your OMRON Sales representative.
 2. To order connecting sockets and mounting tracks, see "Accessories" section.

[^9]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time

