

Studiengang Systemtechnik Vertiefungsrichtung Power and Control

Diplom 2013

Florian Steiner

Maximum Power Point Tracker MPPT mit galvanischer Trennung

Dozent/in Hans-Peter Biner Experte/Expertin Philippe Christ Datum der Abgabe des Schlussberichts 12. Juli 2013

Données du travail de diplôme Daten der Diplomarbeit

⊠ FSI	Année académique / <i>Studienjahr</i>	No TD / <i>Nr. DA</i>
□ FTV	2012/13	pc/2013/34
Mandant <i> / Auftraggeber</i> ⊠ HES—SO Valais	Etudiant <i>I Student</i> Florian Steiner	Lieu d'exécution <i>/ Ausführungsort</i>
 Industrie Etablissement partenaire	Professeur / Dozent	 Industrie Etablissement partenaire
Partnerinstitution	Hans-Peter Biner	Partnerinstitution
Travail confidentiel / <i>vertrauliche Arbeit</i> □ oui / ja ¹ ⊠ non / nein	Expert / Experte (données complètes) Christ Philippe Studer Innotec SA Rue des Case	ernes 57 1950 Sion

Titre / Titel

Maximum Power Point Tracker MPPT mit galvanischer Trennung

Description et Objectifs / Beschreibung und Ziele

Das Ziel des Projekts liegt in der Entwicklung und Realisierung eines im Solarpanel integrierten hoch effizienten und kostengünstigen Maximum Power Point Trackers MPPT mit galvanischer Trennung zwischen Solarpanel und Netzeinspeisungswechselrichter. Der Wandler entzieht dem Solarpanel immer die maximal verfügbare Leistung und führt sie auf den 500V Gleichspannungskreis des Wechselrichters. Das Konzept beruht auf einem einfachen hoch effizienten zentralen Wechselrichter (100kW Mehrpulssystem, 98.5% Wirkungsgrad) und individuell geregelten Solarpanel, die zusätzlich mit einem zentralen Überwachungssystem kommunizieren. Der MPPT soll einen hohen Wirkungsgrad (> 97%) erreichen.

Aufbauend auf der Semesterarbeit umfasst die Diplomarbeit folgende Punkte:

- Realisierung und Test der PFM Hilfsspeisung
- Realisierung und Test des Leistungsteils und der Steuerelektronik
- Zusammenfügung und Test des Gesamtsystems mit MPPT
- Ausführliche Dokumentation der erhaltenen Resultate.

Signature ou visa / Unterschrift oder Visum	Délais / Termine
Resp. de la filière Leiter des Studieng.:	Attribution du thème / <i>Ausgabe des Auftrags:</i> 13.05.2013
¹ Etudiant/Student: Henry Flamin	Remise du rapport / <i>Abgabe des Schlussberichts:</i> 12.07.2013
	Expositions / Ausstellungen Diplomarbeiten: 28 – 30.08.2013
	Défense orale <i>l Mündliche Verfechtung:</i> Semaine Woche 36

¹ Par sa signature, l'étudiant-e s'engage à respecter strictement le caractère confidentiel du travail de diplôme gui lui est confié et des informations mises à sa disposition.

Durch seine Unterschrift verpflichtet sich der Student, die Vertraulichkeit der Diplomarbeit und der dafür zur Verfügung gestellten Informationen zu wahren.

Diplomarbeit | 2013 |

Studiengang Systemtechnik

Anwendungsbereich Power & Control

Verantwortliche/r Dozent/in Hans-Peter Biner hpeter.biner@hevs.ch

MPPT mit galvanischer Trennung

Diplomand/in Florian Steiner

Ziel des Projekts

Das Ziel dieses Projektes ist die Entwicklung und Realisierung eines hocheffizienten MPPT (Maximum Power Point Tracker) mit galvanischer Trennung, welcher in Solarpanels integriert werden kann.

Methoden | Experimente | Resultate

Das Projekt bildet einen Teil eines Konzeptes für Solaranlagen mit individuellen integrierten DC/DC-Wandlern für jedes Solarpanel. Die Energie der Panel wird mit Hilfe eines DC-Bus einem zentralen Wechselrichter zugeführt, zur Einspeisung ins elektrische Netz.

Das Ziel der Diplomarbeit liegt in der Entwicklung und Realisierung dieses DC/DC-Wandlers inklusive einer Hilfsspeisung.

Ein Inverswandler mit zwei Schaltern und einem Ringkern-Transformator wurden für diese Aufgabe gewählt. Die Steuerung wird mit Hilfe eines Mikroprozessors bewerkstelligt, der über Spannungs- und Strom-Messungen den Hauptkreis steuert. Die Hilfsspeisung versorgt die benötigten Komponenten.

Ein Prototyp wurde erstellt und getestet. Die Spannungsversorgung durch die Hilfsspeisung sowie die elektronische Steuerung arbeiten korrekt bei geringer Leistungsaufnahme.

Aufgrund von Nichtidealitäten des Transformators wurde der gewünschte Wirkungsgrad nicht erreicht und der Test des MPP-Tracking nicht durchgeführt. Die Schaltung wurde zu einem Resonanzwandler umgebaut.

Konzept einer Solaranlage mit zentralem Wechselrichter und individuell geregelten Panels.

WirkungsgradmessungdesResonanzwandlersbeiverschiedenenEingangsspannungen.

INHALTSVERZEICHNIS

1	Vor	wort	1
2	Beschreibung der Diplomarbeit		
3	Pflic	chtenheft	1
4	Abla	auf und Planung	2
5	Einl	eitung	2
	5.1	Klassische Systeme	3
	5.2	System der Diplomarbeit	4
6	Der	Leistungsteil	5
	6.1	Das Solarpanel	5
	6.2	Die Topologie	6
	6.3	Allgemeine Berechnung	6
	6.4	Der Transformator	7
	64	1 Primärseitig	8
	6.4.2	2 Sekundärseitig	8
	6.4.3	3 Wicklungsaufbau und Verluste	9
	6.5	Die Schalter	9
	6.5.1	1 Verluste	10
	6.6	Die Sperr-Diode	11
	6.6.2	1 Verluste	12
	6.7	Die Freilauf-Dioden	12
	6.8	Simulation des Leistungsteils	13
7	Die	Steuerung	16
	7.1	Messungen	16
	7.1.1	1 Photovoltaik-Spannungsmessung	16
	7.1.2	2 Bus-Spannungsmessung 3 Strommessung	17 20
	7.2	Mosfet-Treiber	2 0
	7.3	Der Mikroprozessor	
	734	1 Die Schaltung	24
	7.3.2	2 Das Programm	25
	7.3.3	3 Erweiterungsmöglichkeiten	25
8	Die	Hilfsspeisung	26
	8.1	Benötigte Spannungen	26
	8.2	Leistungsberechnung	27
	8.3	Dimensionierung des Flyback-Transformators	28
	8.3.1	1 Berechnung der Induktivität	28
	8.3.2	2 Wahl des Kerns	28
	8.3.3	3 Benötigte Windungen	29
	0.3.4		30

Haute Ecole d'Ingénierie π Hochschule für Ingenieurwissenschaften

	8.3.5 8.4	Verluste im Transformator Wahl des Schalters der Hilfsspeisung	31 31
	841	Verluste	32
	8.5	Wahl der Sperr-Dioden	32
	8.5.1	Verluste	32
	8.6	Filterung	33
	8.7	Die PFM Schaltung	34
	8.8	Die Strom-Begrenzung	36
	8.9	Start der Schaltung	38
	8.10	Die Regelung	39
	8.10 8.10 8.10 8.10 8.10 8.10	 Der Regler Das System Die PFM-Schaltung Dimensionierung des Reglers Simulation mit Matlab/Plecs Regler-Entwurf 	39 41 42 43 45 47
	8.11	Simulation	48
	8.11	1 Start der Schaltung	49
	8.11	 Strombegrenzung Regelung und PEM-Schaltung 	51 53
9	Auft	pau & Inbetriebnahme	55
-	9.1	Erstellung & Überprüfung der Steuerkarte	55
	9.2	Erstellung der Hauptkarte	55
	9.3	Realisierung der Hilfsspeisung	56
	9.3.1 9.3.2 9.3.3 9.3.4 9.3.5	Erstellung und Messung des Flyback-Transformators Inbetriebnahme und Test der Aufstart-Schaltung Inbetriebnahme und Test der PFM-Schaltung Inbetriebnahme und Test der Strombegrenzung Inbetriebnahme und Test der gesamten Hilfsspeisung	56 57 59 61 63
	9.4	Messung der Leistungsaufnahme der Hilfsspeisung	67
	9.5	Messung des Ringkern-Transformators	67
	9.6	Inbetriebnahme des Hauptkreises	69
	9.6.1	Test im Teillastbereich	69
	9.7	Störungstest des Isolationsverstärkers AMC1200	71
	9.7.1 9.7.2 9.8	Gleichtaktstörungen am Eingang Gleichtaktstörungen durch Potentialsprünge Test der Messungen	71 74 78
	9.8.1 9.8.2 9.8.3	Eingangsspannungsmessung Ausgangsspannungsmessung Strommessung	78 78 79
10	Ana	lyse der Oszillation der Schaltung, Lösungsansätze und Realisierung	.80
	10.1	Bestimmung der parasitären Kapazitäten	80
	10.1 10.1 10.2	1 Der Transformator 2 Schalter und Dioden Simulation der parasitären Effekte	80 82 83

Haute Ecole d'Ingénierie π Hochschule für Ingenieurwissenschaften

10.3 Simulation des Resonanzwandlers.....85 10.4 10.5 Realisierung des Resonanzwandlers86 10.6 Test des Resonanzwandlers......87 10.7 10.7.1 Durch Messung 88 10.7.2 **Durch Wärmebild** 91 10.8 11 12 Datum und Unterschrift94 13 14 14.1 Zeitplan96 14.2 Magnetics-Berechnung Primärseite96 14.3 Magnetics-Berechnung Sekundärseite96 14.4 Schema des DC/DC-Wandlers96 14.5 14.6 Schema der Steuerkarte......96 14.7 Routing der Steuerkarte......96 14.8 Schema des Zusatz-PCB......96 14.9 Routing des Zusatz-PCB......96 Materialliste96 14.10

TABELLENVERZEICHNIS

Tabelle 1: Herstellerangaben X3-125	5
Tabelle 2: Spannungen	26
Tabelle 3: Leistungsübersicht der Steuerung	27
Tabelle 4: Kern-Berechnungen	29
Tabelle 5: Anzahl Windungen	29
Tabelle 6: Ausgangsströme	30
Tabelle 7: Vergleich zwischen Berechnung und Simulation	53
Tabelle 8: Messung der Primärseite	56
Tabelle 9: Messung der Übertragungsverhältnisse	56
Tabelle 10: Vergleich zwischen Berechnung und Messung	63
Tabelle 11: Messung der Ausgangsspannungen bei 90V	65
Tabelle 12: Messung der Ausgangsspannungen bei 125V	66
Tabelle 13: Messung der Ausgangsspannungen bei 190V	67
Tabelle 14: Leistungsmessung Hilfsspeisung	67
Tabelle 15: Transformator: Messung der Primärseite	68
Tabelle 16: Transformator: Messung der Sekundärseite	68
Tabelle 17: Transformator: Messung des Übertragungsverhältnisses	68
Tabelle 18: Transformator: Messung der Streuinduktivität	68
Tabelle 19: Messung im Teillastbereich	69
Tabelle 20: Eingangsspannungsmessung	78

	Haute Ecole d'Ingénierie T Hochschule für Ingenieurwissenschaften	
Tabelle 21: Ausgangsspannungsmessung Tabelle 22: Strommessung Tabelle 23: Nennbetrieb-Messung des Resonanzwandlers		79 79 87

ABBILDUNGSVERZEICHNIS

Abbildung 1: Maximum Power Point (nach [2] Wikipedia, 2013) Abbildung 2: Funktionsprinzip	2 2
Abbildung 3: Zentraler Wechselrichter	3
Abbildung 4: String-Wechselrichter	3
Abbildung 5: Modulintegrierter Wechselrichter	3
Abbildung 6: System der Dipiomarbeit	4
Abbildung 7: Topologie des Leistungstells	0
Abbildung 0. Ringkein (nach [5] dexiennag, 2015) Abbildung 0: Transformatoraufbau	1
Abbildung 10: Mosfet IPED/6682bE (nach [5] IP 2008)	9
Abbildung 11: Fin-und Ausschalten einer Ohmschen-Last	9 10
Abbildung 12: Ein-und Ausschalten einer Induktiven-Last	10
Abbildung 13: Schottky-Diode C3D10170H (nach [6] Cree 2011)	11
Abbildung 14: Freilaufdiode MBR20200CTG (nach [7] ON Semiconductor, 2008)) 12
Abbildung 15: Modell in Matlab/Plecs	13
Abbildung 16: Bang-Bang-Regler und System	13
Abbildung 17: Simulation der Ströme	14
Abbildung 18: Spannungen	15
Abbildung 19: Schaltung Spannungsmessung Photovoltaik	16
Abbildung 20: AMC1200 (nach [8] Texas Instruments, 2012)	17
Abbildung 21: Widerstandsteiler	17
Abbildung 22: Schaltung Spannungsmessung Bus	18
Abbildung 23: Thevenin-Ersatzschaltung	19
Abbildung 24: Stromsensor ACS712 (nach [9] Allegro, 2013)	20
Abbildung 25: Schaltung Strommessung	21
Abbildung 26: ACPL-W343 (nach [10] Avago, 2011)	22
Abbildung 27: Driver-Ansteuerung	22
Abbildung 28: I_F vs. U_F (nach [10] Avago, 2011)	23
Abbildung 29: Mikroprozessor MSP430 (nach [11] John Day,2011)	24
Abbildung 30: Mezzanin-Schnittstelle	24
Abbildung 31: MPPT-Algorithmus (nach [11] Rodolfo H.,2013)	25
Abbildung 32. Spannungsubersicht	20
Abbildung 33. Marstet SDD02N60C3 (nach [13] Infineon, 2007)	29
Abbildung 35: Sperr-Diode STPS05607 (nach [13] milleon, 2007)	32
Abbildung 36: I C-Filter Schaltung	33
Abbildung 37: PFM-Schaltung	34
Abbildung 38: Timer I MC555 (nach [17] National Semiconductor 2003)	34
Abbildung 39: PFM-Zvklus	36
Abbildung 40: Strom-Begrenzungs-Schaltung	37
Abbildung 41: Start Schaltung	38
Abbildung 42: LM431 Ersatzschaltbild (nach [14] TI, 2000)	39
Abbildung 43: Schmitt-Trigger Ersatzschaltbild	39
Abbildung 44: PI-Regler Schaltung	40
Abbildung 45: PI-Regler Ersatzschaltbild	40
Abbildung 46: Das System	41
Abbildung 47: Funktion U _{reg} vs. m	43
UES SO Wallie Valeis / Steiner Elorion	004

VALAIS WALLIS

Hes·so

Haute Ecole d'Ingénierie **T** Hochschule für Ingenieurwissenschaften

Hes·so

VALAIS

Abbildung 48: Regelstrecke Abbildung 50: Simulation des Reglers Abbildung 51: Simulation des Reglers Abbildung 52: Simulation PFM-Schaltung Abbildung 53: Simulation Ureg vs. m bei 125V Abbildung 54: Simulation: Sprung von 2.47V Abbildung 55: Simulation: Transformator mit Last Abbildung 56: Simulation- Transformator mit Last Abbildung 57: Aufstart-Schaltung Abbildung 58: Simulation der Aufstart-Schaltung bei 90V Abbildung 59: Simulation der Aufstart-Schaltung bei 90V Abbildung 60: Simulation der Aufstart-Schaltung bei 125V Abbildung 60: Simulation der Aufstart-Schaltung bei 125V Abbildung 61: Schaltung der Strombegrenzung Abbildung 63: Simulation: Strombegrenzung bei 125V Abbildung 63: Simulation: Strombegrenzung bei 125V Abbildung 64: Simulation: Strombegrenzung bei 90V Abbildung 65: Schaltung des Reglers und der PFM-Schaltung Abbildung 66: Simulation Hilfsspeisung bei 125V Abbildung 67: Simulation Hilfsspeisung bei 125V Abbildung 68: Simulation Hilfsspeisung bei 125V Abbildung 67: Simulation Hilfsspeisung bei 125V Abbildung 67: Simulation Hilfsspeisung bei 125V Abbildung 70: Aufstart-Messung bei 35V Abbildung 71: Aufstart-Messung bei 35V Abbildung 72: Aufstart-Messung bei 125V Abbildung 73: Messungen der PFM-Schaltung Abbildung 74: Angepasstes Schema: Strombegrenzung Abbildung 75: Messung Strombegrenzung bei 90V Abbildung 76: Messung Strombegrenzung bei 90V Abbildung 77: Messung Strombegrenzung bei 90V Abbildung 77: Messung Strombegrenzung bei 90V Abbildung 78: Spannungsmessung bei 90V Abbildung 79: Spannungsmessung bei 90V Abbildung 80: Spannungsmessung bei 90V Abbildung 81: Strom- und Spannungsmessung im Teillastbereich Abbildung 82: Messung Strombegrenzung hei 754 Abbildung 83: Messungsaufbau Gle	$\begin{array}{c} 43\\ 44\\ 45\\ 45\\ 46\\ 46\\ 46\\ 47\\ 47\\ 48\\ 49\\ 49\\ 50\\ 50\\ 51\\ 51\\ 52\\ 52\\ 53\\ 54\\ 54\\ 55\\ 57\\ 58\\ 58\\ 59\\ 60\\ 61\\ 62\\ 62\\ 63\\ 64\\ 65\\ 66\\ 69\\ 70\\ 71\\ 72\\ 72\\ 73\end{array}$
Abbildung 83: Messungsaufbau Gleichtaktstörungen	70
Abbildung 84: Gleichtaktstörung: Sinus 25kHz	72
Abbildung 85: Gleichtaktstörung: Sinus 50kHz	72
Abbildung 86: Gleichtaktstörung: Rechteck 1kHz	73
Abbildung 87: Gleichtaktstörung: Rechteck 25kHz	73
Abbildung 88: Gleichtaktstörung: Rechteck 50kHz	74
Abbildung 89: Messungsaufbau Potentialstörungen	74
Abbildung 90: Potentialstorung: Sinus 25 KHz	/5 75
Abbildung 91. Potentialstörung: Dochtock 1kHz	75
Abbildung 93: Potentialstörung Rechteck 25kHz	70
Abbildung 94: Potentialstörung: Rechteck 50kHz	70
Abbildung 95: Potentialstörung: Sprung 20V	77
Abbildung 96: Schema-Änderung: Differenzverstärker Ausgangsspannung	78
Abbildung 97: Fehlersuche Strommessung	80
Abbildung 98: Resonanzmessung Transformator 20kHz	81
Abbildung 99: Resonanzmessung Transformator 455kHz	82
Abbildung 100: Simulation der parasitären Elemente	83
Abbildung 101: Simulations-Ergebnisse der parasitären Elemente	83
Abbildung 102: Simulations-Ergebnisse der parasitären Elemente 2	84

Abbildung 103: Topologie Resonanzwandler 85 Abbildung 104: Simulation Resonanzwandler 85 Abbildung 105: Ergebnis der Simulation 86 Abbildung 106: Zusatz-PCB-Schaltung 86 Abbildung 107: Test bei Nennbetrieb des Resonanzwandlers 87 Abbildung 108: Verlustmessung 88 Abbildung 109: Ergebnisse der Verlustmessung 88 Abbildung 110: ESR-Bestimmung (nach [16] Wima, 2013) 89 Abbildung 111: Aufteilung der Verluste 90 Abbildung 112: Wärmebildanalyse Transformator und Ausgang 91 Abbildung 113: Wärmebildanalyse Schalter und Eingang 92 Abbildung 114: Wirkungsgradmessung 93

1 VORWORT

Das Resultat der Diplomarbeit ist nicht allein mein Verdienst. Während der Arbeit konnte ich bei Fragen und Problemen auf Unterstützung zählen.

Daher möchte ich mich bei all jenen Personen bedanken, welche mir mit fachlicher Kompetenz, viel Geduld und Verständnis geholfen haben.

Einen speziellen Dank möchte ich meinem Betreuer Hans-Peter Biner entgegenbringen, der mich bei dieser Arbeit besonders unterstützt hat und bei Fragen stets weiterhalf.

Danken möchte ich auch dem Elektronik-Team der HES-SO Sion, bestehend aus Alain Germanier, Didier Blatter, Blaise Evéquoz, Dominic Furrer, Horta Rodolfo und Carmine Arcudi.

2 BESCHREIBUNG DER DIPLOMARBEIT

Ziel dieser Diplomarbeit ist die Entwicklung und Realisierung eines hocheffizienten und kostengünstigen DC/DC Wandlers mit galvanischer Trennung zwischen Solarpanel und Netzeinspeisungswechselrichter. Der Wandler entzieht dem Panel immer die maximal verfügbare Leistung und führt diese auf einen 500V-Gleichspannungs-Zwischenkreis des Wechselrichters. Das Konzept beruht also auf einem hocheffizienten zentralen Wechselrichter und individuell geregelten Solarpanels. Zusätzlich soll der Wandler mit dem Überwachungssystem kommunizieren können. Der DC/DC Wandler soll einen hohen Wirkungsgrad erzielen.

3 PFLICHTENHEFT

Die Diplomarbeit ist eine Weiterführung der Semesterarbeit (nach [1] Steiner, 2013) und umfasst folgende Punkte:

- Realisierung und Test der PFM Hilfsspeisung
- Realisierung und Test des Leistungsteils der Steuerelektronik
- Zusammenfügung und Test des Gesamtsystems mit MPPT
- Wirkungsgradmessungen und Messungen mit dem Photovoltaik-Panel
- Ausführliche Dokumentation der erhaltenen Resultate.

4 ABLAUF UND PLANUNG

Für den Ablauf der Diplomarbeit wurde ein Zeitplan erstellt. Dieser ist im Anhang ersichtlich. (Siehe Anhang 14.1)

5 EINLEITUNG

Solarpanels haben eine Gleichspannung und je nach Belastung liefern sie unterschiedliche Leistungen. Es gibt einen Belastungspunkt MPP (Maximum Power Point) (Siehe Abbildung 1), bei dem ein Panel die maximale Leistung bringt. Dieser kann sich je nach Witterung und Sonneneinstrahlung verschieben. Es bedarf einen Regler, der diesen Punkt sucht und beibehält; das Prinzip ist unter MPPT (MPP-Tracker) bekannt. Dazu wird ein DC/DC-Wandler verwendet, dieser hat eine konstante Ausgangsspannung und versucht den Ausgangsstrom zu maximieren.

Abbildung 1: Maximum Power Point (nach [2] Wikipedia, 2013)

Um die gewonnene Leistung ins Netz einspeisen zu können, wird zusätzlich ein Wechselrichter benötigt. Dieser wandelt die konstante Gleichspannung in Wechselspannung um. Das gesamte Prinzip ist in Abbildung 2 ersichtlich.

Abbildung 2: Funktionsprinzip

5.1 Klassische Systeme

Eine Photovoltaik-Anlage besteht aus mehreren Panels und einem Wechselrichter-System. Es gibt verschiedene Konzepte, die gewonnene Energie ins Netz einzuspeisen. In den folgenden drei Abbildungen sind die am meisten verwendeten Konzepte aufgeführt:

Abbildung 3: Zentraler Wechselrichter

Abbildung 4: String-Wechselrichter

Abbildung 5: Modulintegrierter Wechselrichter

5.2 System der Diplomarbeit

Bei der Diplomarbeit wird ein spezielles neuartiges Konzept verwendet (Siehe Abbildung 6). Hierbei besitzt jedes Panel einen integrierten DC/DC-Wandler, welcher das MPP-Tracking übernimmt und die Leistung an einen 500Vdc-Bus weitergibt. Ein zentraler hocheffizienter Wechselrichter (100kW Mehrpulssystem, 98.5% Wirkungsgrad) führt die Energie dann ins Netz.

Abbildung 6: System der Diplomarbeit

Bei der Diplomarbeit geht es nun um die Entwicklung, Realisierung und Messung des DC/DC-Wandlers mit MPPT dieses Konzeptes.

Dieser muss über eine galvanische Trennung verfügen, dadurch können defekte Panels gefahrlos ausgewechselt werden.

6 DER LEISTUNGSTEIL

6.1 Das Solarpanel

Der MPPT wird für ein bestimmtes Panel entworfen, das folgende Daten hat:

Hersteller			Inventux
Serie			X-Series
Тур			X3-125
Max. elektrische Leistung (-0/+5 W _p)	P _{max}	[W]	125
Spannung bei P _{max}	U _{mpp}	[V]	124
Leerlaufspannung	U _{oc}	[V]	165
Kurzschlussstrom	I _{sc}	[A]	1,17
Temperaturkoeffizient von P _{max}	γ	[%/°C]	-0,3
Temperaturkoeffizient von U _{oc}	β	[%/°C]	-0,4
Temperaturkoeffizient von Isc	α	[%/°C]	+0,07
Leerlaufspannung, initial	U_{oc} , initial	[V]	166
Kurzschlussstrom, initial	I _{sc} , initital	[A]	1,20

*Angaben bei einer Modultemperatur von 25°C und einer Sonnenstrahlung von 1.000 W/m2

Tabelle 1: Herstellerangaben X3-125

Es wird angenommen, dass die Umgebungstemperatur -20°C nicht unterschreitet, somit lassen sich folgende Maximal-Werte berechnen:

$$P_{max-20^{\circ}} = \left(1 + \frac{\gamma \cdot \Delta T}{100\%}\right) \cdot P_{max25^{\circ}} = 141.88 W$$
$$U_{oc-20^{\circ}} = \left(1 + \frac{\beta \cdot \Delta T}{100\%}\right) \cdot U_{oc25^{\circ}} = 194.7 V$$
$$I_{sc-20^{\circ}} = \left(1 + \frac{\alpha \cdot \Delta T}{100\%}\right) \cdot I_{sc25^{\circ}} = 1.13 A$$

6.2 Die Topologie

Im Rahmen der Semesterarbeit wurde eine Topologie gewählt bei welcher es sich um einen Sperrwandler im kontinuierlichen Betrieb handelt:

Abbildung 7: Topologie des Leistungsteils

Hierbei werden zwei Schalter verwendet, damit diese für eine kleinere Sperrspannung ausgelegt werden können.

Für den Transformator wird ein Ringkern benutzt, da dieser eine sehr gute Kopplung besitzt.

Die Schaltfrequenz wurde auf 20 kHz festgelegt, um geringe Schaltverluste zu haben.

6.3 Allgemeine Berechnung

Während der Semesterarbeit wurden verschiedene Betriebsarten studiert und jene ausgewählt, welche realisierbar ist und am wenigsten Verluste aufweist. Die Berechnung der gewählten Lösung wird hier aufgezeigt:

Folgende Daten wurden für die Berechnung verwendet:

•	Übertragene Leistung im Nennbetrieb:	P _N = 130W
•	Eingangsspannung bei P _{max:}	U ₁ = 125V
•	Maximale Eingangsspannung:	U _{1max} = 195V
•	Ausgangsspannung:	U ₂ = 500V
•	Maximale Spannungsschwankung Ausgang:	∆U _{2%} = 10%
•	Eingangsspannung projiziert auf Primärseite:	U ₂ ' = 90V
٠	Schaltfrequenz:	f = 20kHz
٠	Stromwelligkeit in der Induktanz:	∆i _{L%} = 52.5%

Für die Berechnung wird von einem idealen Wandler ausgegangen. Somit lassen sich das Übersetzungsverhältnis des Transformators, der Modulationsgrad und die Einschaltzeit bei der Nennleistung wie folgt berechnen:

I.

- Übersetzungsverhältnis: - Modulationsgrad: $\ddot{u} = \frac{N_2}{N_1} = \frac{U_2}{U_{2'}} = 5.56$ $m = \frac{U_{2'}}{U_1 + U_{2'}} = 0.42$

- Einschaltzeit:

 $U_1 + U_2,$ $T_{on} = \frac{m}{f_c} = 20.9 \mu s$

Die Ströme lassen sich wie folgt berechnen:

- Eingangsstrom avg:
- Eingangsstrom rms:
- Projizierter Ausgangsstrom avg:
- Ausgangsstrom avg:
- Ausgangsstrom rms:

U_1	1.0 111
$I_{1rms} = \frac{\sqrt{m}}{m} \cdot$	$I_{1avg} = 1.61A$
$I_{2,avg} = \frac{(1-a)}{m}$	$\frac{m}{2} \cdot I_{1avg} = 1.44A$
$I_{2avg} = \frac{N_1}{N_2} \cdot $	$I_{2'avg} = 0.26A$
$I_{2rms} = \frac{\sqrt{1-n}}{1-m}$	$\frac{\overline{n}}{2} \cdot I_{2avg} = 0.34A$

 $-\frac{P_{max}}{1044}$

6.4 Der Transformator

Normalerweise werden für solche Anwendungen Transformatoren aus Ferrit mit einem Luftspalt verwendet. Jedoch lieferte ein früheres Projekt mit einem Ringkern (siehe Abbildung 8) von Herrn Germanier Alain überzeugende Ergebnisse¹. Daher wurde während der Semesterarbeit entschieden, einen Ringkerntransformator zu verwenden.

Abbildung 8: Ringkern (nach [3] dextermag, 2013)

Mit Hilfe eines Online-Tools von Magnetics (nach [4] Magnetics, 2013), dem "Inductor Design Calculator", wurde der Transformator entworfen. Mit diesem Tool liessen sich die Verluste berechnen.

Als geeignetes Material wurde Molypermalloy-Powder gewählt.

¹Gemäss mündlichen Angaben meines betreuenden Dozenten.

Als Kern wurde der C055866A2 mit einem Aussendurchmesser von 77.8mm und einer Permeabilität von 125 Hm⁻¹ gewählt.

6.4.1 Primärseitig

Um die gewünschte Stromwelligkeit zu erhalten, wird folgende Induktanz benötigt:

- Induktanz primär:
$$L_p = \frac{U_1}{\Delta I_L} \cdot T_{on} = 2.01 mH$$

Durch diese fliesst folgender Strom:

- Strom in der Induktanz avg: $I_{Lpavg} = I_{1avg} + I_{2'avg} = 2.48A$
- Stromwelligkeit der Induktanz primär:

 $\Delta I_{Lp} = \frac{\Delta I_{L\%}}{100} \cdot I_{Lavg} = 1.30A$

Um einen Vorschlag des Online-Tools zu erhalten, wird zusätzlich die Stromdichte verlangt. Diese wurde so festgelegt, dass möglichst wenige Verluste entstehen.

- Stromdichte primär: $J_P = 90A/cm^2$

Somit wurden vom Tool folgende Daten berechnet:

- Windungszahl primär:	$N_1 = 120$
- Drahtdurchmesser:	$d_1 = AWG12 \ (2.05mm)$
- Kupferverluste:	$P_{pCu} = 0.363W$
- Kernverluste:	$P_{pcore} = 0.768W$

Die genauen Ergebnisse des Tools sind im Anhang ersichtlich (siehe Anhang 14.2).

6.4.2 Sekundärseitig

Das Online-Tool ist eigentlich nur für eine Induktanz gedacht und nicht für Transformatoren. Deshalb wird die Sekundärseite auch als Induktanz entworfen.

Mit Hilfe des Übersetzungsverhältnisses werden folgende Daten berechnet:

- Induktanz sekundär:	$L_s = \ddot{\mathbf{u}}^2 \cdot L_p = 61.9mH$
- Windungszahl sekundär:	$N_2 = \ddot{\mathbf{u}} \cdot N_1 = 670$
- Strom in der Induktanz avg:	$I_{Lsavg} = \frac{I_{Lpavg}}{\ddot{u}} = 0.45A$
- Stromwelligkeit:	$\Delta I_{LS} = \frac{\Delta I_{Lp}}{\ddot{u}} = 0.23A$

Mit diesen Daten wurde nun wieder eine entsprechende Induktanz gesucht; dabei wurde darauf geachtet, dass die Kupfer- und Kernverluste ungefähr die gleiche Grösse und das gleiche Verhältnis wie jene der Primärseite haben.

- Stromdichte sekundär:	$J_s = 90A/cm^2$
- Drahtdurchmesser:	$d_2 = AWG20 \ (0.91mm)$
- Kupferverluste:	$P_{sCu} = 0.441W$
- Kernverluste:	$P_{score} = 0.733W$

Die genauen Ergebnisse des Tools sind im Anhang ersichtlich (siehe Anhang 14.3).

Wicklungsaufbau und Verluste 6.4.3

Die Verluste des Transformators werden approximiert mittels des Modulationsgrades sowie den berechneten Werten der Induktanzen primär- und sekundärseitig.

Transformatorverluste:

$$P_t = m \cdot (P_{pcu} + P_{pcore}) + (1 - m) \cdot (P_{scu} + P_{score}) = 1.16W$$

Um den Transformator zu bestellen und zu prüfen, ob beide Wicklungen auf den Kern passen, wurde folgende Grafik erstellt:

Abbildung 9: Transformatoraufbau

6.5 **Die Schalter**

Die Schalter müssen die maximale Spannung der Solarpanels plus die maximale Ausgangsspannung projiziert auf die Primärseite unterstützen können:

- Maximale Eingangsspannung:	$U_{1max} = 195V$
- Maximale Ausgangsspannung:	$U_{2max} = U_2 \cdot \left(1 + \frac{\Delta U_{2\%}}{M_{2max}}\right) = 55$

- Projizierte Ausgangsspannung:

 $U_{2max} = U_2 \cdot \left(1 + \frac{\Delta U_{2\%}}{100\%}\right) = 550V$ $U_{2\prime max} = \frac{U_{2max}}{\ddot{u}} = 99V$

 $U_{Tsperrmin} = \frac{U_{1max} + U_{2}max}{2} = 147V$ Anhand der Sperrspannung des Primärstromes und unter Berücksichtigung der Verluste wurde folgender Mosfet für die Funktion gewählt:

IRFP4668PbF Typ: ٠ $V_{DSS} = 200V$ ٠ Sperrspannung: Leitwiderstand: $R_{DS(on)} = 8m\Omega$ Maximaler Strom: $I_{D} = 130A$

Abbildung 10: Mosfet IRFP4668PbF (nach [5] IR, 2008)

6.5.1 Verluste

Die Leitverluste eines Schalters lassen sich mittels des Leitwiderstands und dem Primärstrom berechnen:

- Leitverluste:
$$P_{cond} = R_{dson} \cdot I_{1rms}^2 = 20.7 mW$$

Für die Schaltverluste werden die Einschalt- und Ausschaltzeiten aus dem Datenblatt (nach [5] IR, 2008) benötigt:

Einschaltzeit:
$$T_r = 150ns$$

- Ausschaltzeit: $T_f = 74ns$

Bei den Schaltverlusten gibt es einen Unterschied beim Schalten einer Induktiven- oder einer Ohmschen-Last.

Bei einer Ohmschen-Last sieht das Ein- und Ausschalten wie folgt aus:

Abbildung 11: Ein-und Ausschalten einer Ohmschen-Last

Durch ein Integral erhält man die benötigte Energie zum Ein- und Ausschalten.

 $E_{on} = \frac{U \cdot I}{6} \cdot T_r$ - Einschaltenergie: $E_{off} = \frac{U \cdot I}{6} \cdot T_f$ - Ausschaltenergie:

Bei einer Induktiven-Last sieht das Ein- und Ausschalten wie folgt aus:

Abbildung 12: Ein-und Ausschalten einer Induktiven-Last

Durch ein Integral erhält man die benötigte Energie zum Ein- und Ausschalten.

- $E_{on} = \frac{U \cdot I}{2} \cdot T_r$ - Einschaltenergie: $E_{off} = \frac{U \cdot I}{2} \cdot T_f$
- Ausschaltenergie:

HES-SO Wallis Valais / Steiner Florian 12.07.2013

Die Spannungen und Ströme beim Ein- und Ausschalten sind die folgenden:

- Spannung beim Ein- und Ausschalten: $U_T = \frac{U_1 + U_2'}{2} = 107.5V$ - Strom beim Einschalten: $I_r = I_L - \frac{\Delta I_L}{2} = 1.83A$
- Strom beim Ausschalten: $I_f = I_L + \frac{\Delta I_L}{2} = 3.14A$

Somit wären die Verluste bei einer Ohmschen-Last eines Schalters wie folgt:

- Einschaltenergie: $E_{on} = \frac{U_T \cdot I_r}{6} \cdot T_r = 3.45 \mu J$
- Ausschaltenergie:
- Schaltverluste:

Im Falle einer induktiven Last ergeben sich folgende Verluste:

- Einschaltenergie: $E_{on} = \frac{U_T \cdot I_r}{2} \cdot T_r = 10.3 \mu J$ - Ausschaltenergie: $E_{off} = \frac{U_T \cdot I_f}{2} \cdot T_f = 12.5 \mu J$ - Schaltverluste: $P_{comm} = (E_{on} + E_{off}) \cdot f = 456.3 m W$

Im Falle der gewählten Topologie trifft eine induktive Last eher zu. Jedoch gilt zu beachten, dass die Ein- und Ausschaltzeiten abhängig von der Treiberschaltung sind und diese wahrscheinlich minimiert werden.

 $E_{off} = \frac{U_T \cdot I_f}{6} \cdot T_f = 4.16 \mu J$

 $P_{comm} = (E_{on} + E_{off}) \cdot f = 152.1 mW$

Die Gate-Verluste werden als Verluste der Steuerung betrachtet und in einem späteren Abschnitt (Siehe Kapitel 7.2) berechnet.

6.6 Die Sperr-Diode

Die Diode muss die Spannung des Busses und zusätzlich die projizierte Eingangsspannung sperren können. Die Sperrspannung lässt sich wie folgt berechnen:

- Maximale Eingangsspannung:	$U_{1max} = 195V$
- Projizierte Eingangsspannung:	$U_{1\prime\prime max} = U_{1max} \cdot \ddot{\mathbf{u}} = 1083.33V$
- Maximale Ausgangsspannung:	$U_{2max} = U_2 \cdot \left(1 + \frac{\Delta U_{2\%}}{100\%}\right) = 550V$
- Minimale Sperrspannung:	$U_{Tsperrmin} = U_{1'max} + U_{2max} = 1633.33V$

Anhand dieser Daten wurde eine Silicium-Carbid Schottky-Diode ausgewählt, diese zeichnet sich durch eine niedrige Durchlassspannung und einen kleinen Leitwiderstand aus.

Die Diode besitzt folgende Daten:

٠	Тур:	C3D10170H
٠	Sperrspannung:	V _{RRM} = 1700V
٠	Maximaler Strom:	I _F = 14.4A

Abbildung 13: Schottky-Diode C3D10170H (nach [6] Cree, 2011)

6.6.1 Verluste

Anhand des Datenblattes (nach [6] Cree, 2011) kann ein Modell der Diode in Funktion der Temperatur erstellt werden.

 - Betriebstemperatur:
 $T_j = 35^{\circ}$

 - Durchlassspannung:
 $U_{dfs} = 0.975 + (T_j \cdot -1.4 \cdot 10^{-3}) = 0.926V$

 - Leitwiderstand:
 $R_{ddiff} = 0.053 + (T_j \cdot 1.1 \cdot 10^{-3}) = 0.092\Omega$

Da die Ausgangsströme bekannt sind, können die Leitverluste wie folgt berechnet werden:

$$P_{dcond} = U_{dfs} \cdot I_{2avg} + R_{ddiff} \cdot I_{2rms}^{2} = 251.4mW$$

6.7 Die Freilauf-Dioden

Da der Transformator eine gewisse Streuinduktivität besitzt, werden Dioden benötigt, welche den Strom der Schalter nach dem Ausschalten übernehmen können.

Die Streuinduktivität des Transformators ist nicht bekannt. Daher können die Dioden können nur anhand der Sperrspannung ausgewählt werden. Diese ist die gleiche wie bei den Schaltern.

Die Verluste dieser Diode können nicht berechnet werden. Es wird von einer guten Kopplung des Transformators ausgegangen, daher wird die Belastung der Dioden als gering geschätzt.

6.8 Simulation des Leistungsteils

Um die Konzeption der Schaltung zu simulieren, wird ein Modell in Matlab/Plecs erstellt.

Die Schaltung des Systems sieht wie folgt aus:

Abbildung 15: Modell in Matlab/Plecs

Es werden ideale Dioden und Schalter verwendet. Das Photovoltaik-Panel und der Bus werden durch eine Spannungsquelle dargestellt.

Mit einer Strommessung der Primär- und der Sekundärseite und einem Bang-Bang-Regler werden die Schalter angesteuert. Die Schaltung in Matlab sieht wie folgt aus:

Abbildung 16: Bang-Bang-Regler und System

Der Primär- und Sekundärstrom sehen wie folgt aus:

Abbildung 17: Simulation der Ströme

Dies ergibt folgende Werte:

٠	Frequenz:	f = 20.58 kHz
٠	Stromwelligkeit primär:	$\Delta I_{Lp} = 1.3A$
٠	Stromwelligkeit sekundär:	$\Delta I_{Ls} = 0.23A$
٠	Primärstrom avg:	I _{1avg} = 1.04A
٠	Primärstrom rms:	I _{1rms} = 1.63A
٠	Sekundärstrom avg:	I _{2avg} = 0.26A
٠	Sekundärstrom rms:	I _{2rms} = 0.35A

Die Werte entsprechen der Berechnung, somit kann diese als korrekt angenommen werden.

Die Spannungen der Sperr-Diode, der Induktivität und beider Schalter sehen wie folgt aus:

Dies ergibt folgende Werte:

٠	Dioden-Sperrspannung :	U _{dsperr}	=	1194V
	Cabaltar Charrenannungu		_	100 EV

♦ Schalter-Sperrspannung: U_{Tsperr} = 109.5V

7 DIE STEUERUNG

7.1 Messungen

7.1.1 Photovoltaik-Spannungsmessung

Die Spannungsmessung auf der Seite des Solarpanels erfolgt mittels eines Instrumentenverstärkers mit Filter. Die Schaltung sieht folgendermassen aus:

Abbildung 19: Schaltung Spannungsmessung Photovoltaik

Man wählt die Komponenten symmetrisch, also:

 $R_1 = R_4$ $R_2 = R_5$ $R_3 = R_6$ $C_1 = C_2$

Die Verstärkung dieser Schaltung lautet somit:

$$G = \frac{R_6}{R_4 + R_5}$$

Man möchte eine Verstärkung von **3V/200V** erreichen, dadurch wird die volle Bandbreite des A/D-Wandlers des Mikroprozessors ausgeschöpft. Wählt man die Widerstände R_3 und R_6 = 30k Ω , erhält man folgende Werte:

$$R_4 + R_5 = \frac{R_6}{G} = \frac{30k\Omega}{0.015} = 2M\Omega$$

Man wählt:

$$R_4 = 1.41M\Omega = 470k\Omega + 470k\Omega + 470k\Omega$$
$$R_5 = 590k\Omega = 470k\Omega + 120k\Omega$$

Die Grenzfrequenz dieses Verstärkers lautet:

$$f_g = \frac{1}{2 \cdot \pi \cdot R_4 / / R_5 \cdot C_2}$$

Wählt man $f_g = 1 \text{ kHz}$, ergibt sich folgender Wert für C₁ und C₂:

$$C_1 = C_2 = \frac{1}{2 \cdot \pi \cdot 1 k H z \cdot 415.95 k \Omega} = 382.63 p F \approx 470 p F$$

7.1.2 Bus-Spannungsmessung

Die Spannungsmessung auf dem Bus ist komplizierter, man benötigt eine galvanische Trennung zwischen Steuerung und Bus. Dies ist mit einem isolierten Verstärker möglich. Es wurde ein Verstärker mit einem geringem Stromverbrauch gewählt. Dabei handelt es sich um den AMC1200 (siehe Abbildung 20), dieser verwendet eine Silizium-Dioxid-Barriere für die galvanische Trennung.

Abbildung 20: AMC1200 (nach [8] Texas Instruments, 2012)

Über einen Widerstandsteiler (siehe Abbildung 21) wird die Spannung des DC-Busses auf den Isolationsverstärker gebracht.

Die Verstärkung zwischen der Spannung des Busses und der Eingangsspannung beträgt daher:

$$G_1 = \frac{R_2 / / R_{IN}}{R_1 + R_2 / / R_{IN}}$$

Der Eingangswiderstand R_{IN} ist durch das Datenblatt (nach [8] Texas Instruments, 2012) mit 28k Ω gegeben. Er kann jedoch variieren. Darum wird R₂ kleiner dimensioniert, er wurde 2k Ω gewählt.

Der Spannungsteiler wird so gewählt, dass bei einer Spannung von 500V eine Eingangsspannung von 200mV resultiert. Somit kann R_1 wie folgt dimensioniert werden:

$$R_1 = R_2 / / R_{IN} \cdot \frac{U_{bus} - U_{IN}}{U_{IN}} = 4.664 M\Omega \approx 4.7 M\Omega$$

Die genaue Verstärkung lautet dadurch:

$$G_1 = \frac{R_2 / / R_{IN}}{R_1 + R_2 / / R_{IN}} = 397.005 \cdot 10^{-6}$$

Der isolierte Verstärker AMC1200 besitzt eine fixe Verstärkung:

 $G_2 = 8$

Um die gewünschte Verstärkung von **3V/600V** zu erreichen, wird zusätzlich ein Instrumentenverstärker verwendet. Der Isolationsverstärker besitzt bei einer Speisung von 3.3V ein Referenz bei 1.29V (siehe Abbildung 20). Diese sollte abgezogen werden um eine Referenz bei 0V zu erhalten. Die Schaltung des Instrumentenverstärkers dafür sieht wie folgt aus:

Abbildung 22: Schaltung Spannungsmessung Bus

Die Referenz von 1.29V werden über den Spannungsteiler $R_{5,6}$ erzielt. Wählt man R_6 = 100k Ω , ergibt dies für R_5 :

$$R_5 = R_6 \cdot \frac{U_{3.3V} - U_{1.29V}}{U_{1.29V}} = 155.8k\Omega \approx 150k\Omega$$

Um die Schaltung besser analysieren zu können, wird eine Thevenin-Ersatzschaltung verwendet:

Abbildung 23: Thevenin-Ersatzschaltung

л

Die Ersatzgrössen sind demnach die folgenden:

$$U_{TH1} = \frac{R_2}{R_1 + R_2} \cdot U_{outp}$$

$$R_{TH1} = R_1 / / R_2$$

$$U_{TH2} = \frac{R_5 / / R_6}{R_4 + R_5 / / R_6} \cdot U_{outn} + \frac{R_4}{R_4 + R_5 / / R_6} \cdot \frac{R_6}{R_5 + R_6} \cdot U_{3.3V}$$

$$R_{TH2} = R_4 / / R_5 / / R_6$$

Die Schaltung muss symmetrisch aufgebaut werden, daher ergibt sich für R4:

 $R_4 = R_5 / / R_6 = 60k\Omega = 30k\Omega + 30k\Omega$

Dasselbe gilt für RTH1:

$$R_{TH1} = R_{TH2} = R_4 / (R_5 / R_6) = 30 k \Omega$$

Dadurch erhält man R1 und R2:

$$R_1 = R_2 = 2 \cdot R_{TH1} = 60k\Omega = 30k\Omega + 30k\Omega$$

Wird R₃ = R₇ gewählt, beträgt die Verstärkung der Schaltung:

$$G_3 = \frac{1}{2} \cdot \frac{R_3}{R_{TH1}}$$

Die gesamte Verstärkung sollte **3V/600V** betragen, damit ergibt sich für die Verstärkung G₃ folgende Gleichung:

$$G_3 = \frac{G_{Tot}}{G_1 \cdot G_2} = 1.574$$

R₃ und R₇ können wie folgt berechnet werden:

$$R_3 = R_7 = 2 \cdot G_3 \cdot R_{TH1} = 94.45k\Omega \approx 94k\Omega = 47k\Omega + 47k\Omega$$

Da die Widerstände nicht exakt gewählt werden können, erhält man folgende gesamte Verstärkung:

$$G_{Tot} = G_1 \cdot G_2 \cdot \frac{1}{2} \cdot \frac{R_3}{R_{TH1}} = 4.9758 \cdot 10^{-3}$$

Die Referenz von 1.29V ist nicht exakt. Dadurch ergibt sich ein Offset am Ausgang, welches vom Mikroprozessor berücksichtigt werden muss.

$$U_{Off} = \frac{1}{2} \cdot \frac{R_3}{R_{TH1}} \cdot \left(U_{1.29V} - U_{3.3V} \cdot \frac{R_6}{R_5 + R_6} \right) = -47mV$$

Die Grenzfrequenz wird 1kHz gewählt, somit erhält man C1 und C2:

$$C_1 = C_2 = \frac{1}{2 \cdot \pi \cdot f_g \cdot R_3} = 1.69nF \approx 2.2nF$$

7.1.3 Strommessung

Die Strommessung wird mittels eines Hall-Effekt-Sensors bewerkstelligt, dieser befindet sich am Eingang des MPPT. Weil der Strom hier höher und deshalb einfacher zu messen ist. Zudem wird er auf dem Minus-Pol des Panels angebracht, somit ist er weniger Spannungsschwankungen ausgesetzt. (siehe Schema Anhang 14.4)

Als Sensor wird der ACS712 (siehe Abbildung 24) verwendet. Durch seine kompakte Bauform ist das Hall-Effekt-Element sehr nahe an dem stromführenden Kupfer. Dadurch wird eine hohe Empfindlichkeit bei kleinen Strömen erreicht.

Abbildung 24: Stromsensor ACS712 (nach [9] Allegro, 2013)

Die Empfindlichkeit bei dem gewählten Typ ACS712ELCTR-05B-T beträgt G₁= 185mV/A

Der Sensor ist bei einer Speisung von 5V Referenziert auf 2.5V. Da die Messung negativer Ströme nicht benötigt wird, wird diese Referenz abgezogen.

Um die gewünschte Verstärkung G_{Tot} von **3V/4A** zu bekommen, wird ein Instrumentenverstärker verwendet, siehe Abbildung 25:

Abbildung 25: Schaltung Strommessung

Die Referenz von 2.5V wird über die Widerstände R_3 und R_4 bewerkstelligt. Wählt man R_3 = 4k Ω , ergibt sich:

$$R_4 = R_3 = 4k\Omega = 2k\Omega + 2k\Omega$$

Die Schaltung muss symmetrisch aufgebaut werden, daher ergibt sich R1:

$$R_1 = R_3 / / R_4 = 2k\Omega$$

Die Verstärkung der Schaltung wird wie folgt berechnet:

$$G_2 = \frac{G_{Tot}}{G_1} = 4.054$$

Damit lassen sich R₂ und R₅ bestimmen:

$$R_2 = R_5 = G_2 \cdot R_1 = 8.11 k\Omega \approx 8k\Omega = 4.7 k\Omega + 3.3 k\Omega$$

Die exakte Verstärkung lautet somit:

$$G_{Tot} = G_1 \cdot \frac{R_2}{R_1} = 0.74$$

Es wird eine Grenzfrequenz von 1kHz gewählt, dadurch erhält man für C1 und C2:

$$C_1 = C_2 = \frac{1}{2 \cdot \pi \cdot f_g \cdot R_1} = 79.58nF \approx 100nF$$

7.2 Mosfet-Treiber

Um die zwei Mosfets des Hauptkreises betreiben zu können, werden Driver benötigt. Diese liefern den Strom zum Einschalten und sind die Schnittstelle zur Steuerung.

Da die Source des oberen Mosfets nicht definiert und floatend ist, wird eine galvanische Trennung zwischen Schalter und Steuerung benötigt.

Damit die Mosfet-Schalter genügend schnell einschalten, muss der Einschaltstrom berechnet werden. Man möchte die Gate-Kapazität des IRFP4668 innerhalb von 50ns geladen haben. Somit lässt sich der benötigte Strom berechnen:

$$I_{peak} = C_G \cdot \frac{\Delta U}{\Delta t} = 10.72 nF \cdot \frac{15V}{50 ns} = 3.22A$$

Es wurde nach einem Treiber gesucht, der diesen Strom unterstützt, einen Optokoppler zur galvanischen Trennung besitzt und wenig Leistung verbraucht.

Die Wahl fiel auf den ACPL-W343 von Avago Technologies:

Abbildung 26: ACPL-W343 (nach [10] Avago, 2011)

Der Driver und der Mosfet werden mit zwei Speisungen betrieben U_{cc} = 15V und U_{EE} =-5V, um ein sauberes Ausschalten zu garantieren (siehe Schaltung im Anhang 14.4).

Der Gate Widerstand zur Strombegrenzung lässt sich wie folgt berechnen:

$$R_g = \frac{U_{CC} - U_{EE} - U_{OL}}{I_{peak}} = 5.57\Omega \approx 5.6\Omega$$

Die Spannung U_{OL} ist abhängig vom Ausgangsstrom und lässt sich aus einer Grafik des Datenblattes (nach [10] Avago, 2011) lesen. Sie beträgt 2.1V.

Die Ausgangsenergie pro Zyklus E_{SW} des Drivers ist abhängig vom Gate-Widerstand R_G und lässt sich ebenfalls aus dem Datenblatt lesen: Mit dem gewählten Gate-Widerstand ergibt sich: $E_{SW} = 5\mu J$.

Die Gate-Leistung bei 20kHz wird folgendermassen berechnet:

$$P_{O(Switching)} = E_{SW} \cdot f_g = 100mw$$

Die Ausgangsspannung des Mikrokontrollers beträgt 3.3V. Um einen Driver anzusteuern, wird ein Vorwiderstand benötigt. Die vereinfachte Schaltung sieht wie folgt aus:

Abbildung 27: Driver-Ansteuerung

Wählt man den Strom I_f auf 10mA, ergibt sich U_f aus folgender Grafik des Datenblattes:

Abbildung 28: I_F vs. U_F (nach [10] Avago, 2011)

Dies ergibt eine Spannung U_f von 1.56V. Dadurch lässt sich der Vorwiderstand R_s bestimmen:

$$R_s = \frac{U_{3.3V} - U_f}{I_f} = 174\Omega = 150\Omega + 24\Omega$$

Die Verluste der Ansteuerung sind also bei einer Duty-Cycle m von 0.42 folgende:

$$P_E = \left(R_s \cdot I_f^2 + U_f \cdot I_f\right) \cdot m = 13.86mW$$

Der Driver benötigt zur Speisung einen Strom von 3mA. Damit verbraucht er folgende Leistung:

$$P_{O(BIAS)} = I_{CC} \cdot (U_{CC} - U_{EE}) = 60mW$$

Pro Driver wird also folgende gesamte Leistung benötigt:

 $P_T = P_E + P_{O(Switching)} + P_{O(BIAS)} = 173.86mW$

7.3 Der Mikroprozessor

Zur Steuerung der Schaltung wird ein Mikroprozessor von Texas Instruments verwendet, dabei handelt es sich um das Modell MSP430F5510IPT (siehe Abbildung 29). Dieser zeichnet sich durch seinen extrem niedrigen Leistungsverbrauch aus.

Abbildung 29: Mikroprozessor MSP430 (nach [11] John Day,2011)

7.3.1 Die Schaltung

Der Mikroprozessor befindet sich auf einer separaten Karte, somit kann dieser einfacher ausgetauscht und erweitert werden. Über eine Mezzanin-Schnittstelle ist er mit der Schaltung verbunden.

Abbildung 30: Mezzanin-Schnittstelle

Über die Schnittstelle wird der Prozessor mit 3.3V versorgt und bekommt die Messungen der Eingangsspannung, Ausgangsspannung und des Eingangsstromes. Er liefert die Steuersignale der beiden Driver über die Schnittstelle.

Die Schaltung der Steuer-Karte ist im Anhang 14.6 ersichtlich. Dieselbe Karte wird bei einem anderen Projekt (nach [11] Rodolfo H., 2013) von Herrn Horta Rodolfo verwendet.

Auf der Karte befinden sich zudem ein Quarz von 12Mhz, eine U-ART Schnittstelle, drei Debug-LEDs und ein JTAG-Interface.

7.3.2 Das Programm

Bei dem verwendeten Programm handelt es sich um eine leicht abgeänderte Version, wie sie in einem Projekt von Herrn Horta Rodolfo (nach [11] Rodolfo H., 2013) verwendet wurde. Dieser verwendet zwei Schalter welche jedoch nicht gleichzeitig arbeiten, dies wurde angepasst auf die Funktion dieser Diplomarbeit.

Das vereinfachte Flussschema sieht wie folgt aus:

Abbildung 31: MPPT-Algorithmus (nach [11] Rodolfo H.,2013)

Bei jedem Durchgang wird die Leistung des Panels gemessen und mit dem zuletzt gemessenen Wert verglichen. Je nach Änderung wird die Duty-Cycle entweder vergrössert oder verkleinert. Dadurch tastet sich das Programm langsam an den MPP.

7.3.3 Erweiterungsmöglichkeiten

Da die Steuer-Karte austauschbar ist, kann diese beliebig erweitert werden.

Um mit einem zentralen Rechner kommunizieren zu können, muss eine galvanische Trennung vorhanden sein. Dies wäre am einfachsten mit einem Bluetooth-Interface zu realisieren.

Zudem könnte mit einem Thermoelement eine Temperatur-Messung des Panels hinzugefügt werden.

8 DIE HILFSSPEISUNG

Um die Schaltung zu betreiben, wird eine Hilfsspeisung benötigt. Dabei handelt es sich um einen Flyback-Wandler, dieser arbeitet mit dem sogenannten PFM-Prinzip (pulse frequency modulation). Dabei variiert die Frequenz und die Einschaltzeit ist fix, dies im Gegensatz zum PWM-Prinzip (pulse width modulation), wo die Frequenz konstant ist und der Tastgrad variiert.

Um das PFM zu realisieren, wird ein CMOS-Timer verwendet, welcher von einem PI-Regler gesteuert wird. Es wird zusätzlich eine Strombegrenzung der Primärseite vorgenommen.

8.1 Benötigte Spannungen

Es muss zuerst bestimmt werden welche Spannungen für die Schaltung benötigt werden, um den Transformator zu entwickeln.

- Die Driver des Mosfets benötigen zwei Spannungen 15V und -5V. Zudem wird dies zweimal benötigt, da der obere Mosfet nicht auf dem Minus des Panels arbeitet und floatend ist.
- Die Speisung der Strommessung benötigt 5V.
- Die Steuerung benötigt 3.3V, diese werden über einen LDO (Low-dropout regulator) zur Verfügung gestellt. Dieser hat eine Eingangsspannung von 3.7V.
- Die Messung der Sekundärspannung muss galvanisch getrennt sein und benötigt daher eine zusätzliche 5V Speisung.

In der Abbildung 32 sind die verschiedenen Spannungen zu sehen und in der Tabelle 2 die dazugehörigen Werte.

Bezeichnung	Spannung
U ₁	15V
U _{pd1}	-5V
U ₂	15V
U _{pd2}	-5V
U ₃	5V
U ₄	3.7V
U ₅	5V

Abbildung 32: Spannungsübersicht

Tabelle 2: Spannungen

8.2 Leistungsberechnung

Um den Flyback-Wandler dimensionieren zu können, muss man wissen, wie viel Leistung übertragen werden soll. Dazu werden die benötigten Leistungen der einzelnen Komponenten zusammengerechnet:

Leistung Steuerung	
500V-Kreis	
Spannungsteiler [W]	53.6E-3
Driver Kreis 1 15V/5V	
Gate-Verluste [W]	160.0E-3
Pull-down [W]	16.0E-3
Driver Kreis 2 15V/5V	
Gate-Verluste [W]	160.0E-3
Pull-down [W]	16.0E-3
CMOS Timer [W]	3.0E-3
3.3V Kreis	
Mikroprozessor [W]	16.4E-3
Isolationsverstärker Sekundär [W]	12.5E-3
Driver-Ansteuerung [W]	27.7E-3
Operationsverstärker MCP601 [W]	759.0E-6
Operationsverstärker LM6142 [W]	5.3E-3
5V Isolierter Kreis	
Isolationsverstärker Primär [W]	27.0E-3
3.7 V Kreis	
LDO [W]	7.6E-3
5V Kreis	
Strommessung [W]	50.0E-3
Total [W]	555.9E-3
Total Flyback [W]	502.3E-3

Tabelle 3: Leistungsübersicht der Steuerung

Leistungen, welche Widerstandsteiler benötigen, werden als gering angenommen und nicht berücksichtigt.

8.3 Dimensionierung des Flyback-Transformators

Folgende Dimensionierungsvorsätze werden vorgenommen:

- Die maximale Leistung die in jedem Fall übertragen werden soll, beträgt 2W.
- Bei der Nennleistung von 0.5W sollte die Taktfrequenz 10kHz betragen.
- Bei maximaler Leistung sollte die Taktfrequenz 40kHz betragen.
- Der maximale Strom auf der Primärseite ist fix und beträgt 80mA.
- Der Transformator soll zwischen 90V und 195V arbeiten können.

8.3.1 Berechnung der Induktivität

Die Induktivität lässt sich wie folgt berechnen:

$$L_p = \frac{2 \cdot P_{max}}{F_{max} \cdot I_{pmax}^2} = 15.6mH$$

Bei der Nennleistung würde dann folgende Frequenz resultieren:

$$f_N = \frac{2 \cdot P_N}{L_p \cdot I_{pmax}^2} = 10 k Hz$$

Die Einschaltzeit T_{on} ist abhängig von der Eingangsspannung, dies ergibt folgende Minimal- und Maximal-Werte:

$$T_{onmin} = I_{pmax} \cdot \frac{L_p}{U_{pmax}} = 6.6\mu s$$
$$T_{onmax} = I_{pmax} \cdot \frac{L_p}{U_{pmin}} = 13.9\mu s$$

8.3.2 Wahl des Kerns

Der Transformator benötigt einen Coil-Former, um die verschiedenen Wicklungen anzubringen. Dieser muss 12 Pins besitzen.

Es wurde ein RM8 Transformator von EPCOS gewählt, da dieser den entsprechenden Coil-Former besitzt. Der effektive magnetische Querschnitt A_e des RM8-Kerns beträgt hierbei 52mm² oder 64mm² mit einem Loch.

Nun muss das geeignete Material gewählt werden. Es wurde N41 gewählt, da dieses bereits in einem Projekt (nach [11] Rodolfo H., 2013) von Herrn Horta Rodolfo verwendet wurde und zufriedenstellende Ergebnisse lieferte.

Es gibt verschiedene Luftspalt-Grössen bei diesem Material, welche sich auf den A_L-Wert auswirken. Um die geeignete Grösse zu finden, werden die Anzahl Primär-Windungen N_p sowie die maximale Flussdichte B_{max} berechnet:

$$N_{p} = \sqrt{\frac{L_{p}}{A_{L}}}$$
$$B_{max} = N_{p} \cdot I_{pmax} \cdot \frac{A_{L}}{A_{e}}$$

Dies ergibt folgende Ergebnisse:

A, [H]	160.0E-9	250.0E-9	630.0E-9	1.6E-6	4.1E-6
N ₁ [-]	313.0E+0	250.0E+0	157.0E+0	99.0E+0	62.0E+0
B _{max} [T]	77.0E-3	96.2E-3	152.2E-3	243.7E-3	391.1E-3
B _{max} with hole [T]	62.6E-3	78.1E-3	123.6E-3	198.0E-3	317.8E-3

Tabelle 4:	Kern-Ber	echnungen
------------	----------	-----------

Es wurde der Kern mit einem AL-Wert von 250 H ohne Loch gewählt. Es sind genügend Windungen auf der Primärseite, um die gewünschten Spannungen auf der Sekundärseite zu erzielen. Zudem wird die maximale Flussdichte von 200mT nicht überschritten.

8.3.3 Benötigte Windungen

Um die Anzahl Windungen zu dimensionieren, wird zuerst von einem idealen Übersetzungsverhältnis ausgegangen:

$$\ddot{\mathbf{u}} = \frac{N_p}{N_s} = \frac{U_p}{U_s}$$

Die Primärspannung wird auf U_{min} mit 90V festgelegt, somit ergeben sich folgende Windungen:

Spannung [V]	Übersetzungsverhältnis []	Anzahl Windungen []
15	6	42
5	18	14
3.7	24	11

Tabelle 5: Anzahl Windungen

Der Aufbau der Windungen sieht somit wie folgt aus:

Abbildung 33: Transformator-Aufbau

Mit der Simulation wurde die Windungsanzahl der Speisung der Driver von 15V angepasst. (In den Klammern befinden sich die alten Werte)

8.3.4 Wahl des Drahtes

Der Drahtdurchmesser sollte so gewählt werden, dass eine Stromdichte von 4A/mm² erreicht wird. Dazu müssen zuerst die Ströme der einzelnen Wicklungen berechnet werden.

Driver Kreis 1 15V/5V	
I ₁ [A]	8.0E-3
I _{pd1} [A]	3.2E-3
Driver Kreis 2 15V/5V	
I ₂ [A]	8.2E-3
I _{pd2} [A]	3.2E-3
5V Kreis	
I ₃ [A]	10.0E-3
3.7 V Kreis	
I ₄ [A]	19.00E-3
5V Isolierter Kreis	
I ₅ [A]	5.4E-3

Tabelle 6: Ausgangsströme

Nun werden die maximalen Ströme in den drei sekundären Wicklungen berechnet:

$$I_{W1} = I_1 + I_{pd1} = 11.2mA$$
$$I_{W2} = I_2 + I_{pd2} + I_3 + I_4 = 40.4mA$$
$$I_{W3} = I_5 = 5.4mA$$

Für die Wahl des Durchmessers der Sekundärseite werden der grösste Strom I_{W2} genommen sowie der RMS-Wert berechnet. Dazu wird die Duty-Cycle m benötigt. Bei Nennlast beträgt diese 0.1.

$$I_{W2RMS} = \sqrt{\frac{4}{3 \cdot (1-m)}} \cdot I_{W2AVG} = 49.17mA$$

Bei einer Stromdichte γ von 4A/mm² muss folgender Durchmesser gewählt werden:

$$D_s = \sqrt{\frac{4 \cdot I_{W2RMS}}{\pi \cdot \gamma}} = 0.125mm$$

Für die Primärseite wird der Strom approximiert. Es wird von einem Wirkungsgrad ŋ von 80% ausgegangen. Zudem wird der Strom bei Nennlast und bei einer Spannung von 125V berechnet.

$$I_{WP} = \frac{P_N}{U \cdot \eta} = 5mA$$
$$I_{WPRMS} = \sqrt{\frac{4}{3 \cdot m}} \cdot I_{WPAVG} = 18.26mA$$

$$D_p = \sqrt{\frac{4 \cdot I_{WPRMS}}{\pi \cdot \gamma}} = 0.076mm$$

Der kleinste zur Verfügung stehende Draht hat einen Durchmesser von 0.25mm. Werden Primär- und Sekundär-Wicklung mit diesem Draht gemacht, besteht die Gefahr, dass die Wicklung nicht auf den Spulenkörper passt. Deshalb wurde zusätzlich ein Draht von 0.1mm Durchmesser für die Primär-Wicklung bestellt. Die gewählten Durchmesser wären somit:

$$D_p = 0.1mm$$

 $D_s = 0.25mm$

Nun werden die Widerstände der Wicklungen berechnet, dazu muss zuerst die Gesamtlänge des Drahtes berechnet werden.

$$l_p = \pi \cdot (250 \cdot D_{IN} + 532 \cdot D_{Po}) = 7.98m$$

$$l_s = \pi \cdot (120 \cdot D_{IN} + 282 \cdot D_{So}) = 3.98m$$

D_{po}: Aussendurchmesser Draht primär D_{so}: Aussendurchmesser Draht sekundär D_{IN}: Innendurchmesser Spulenkörper

Daraus kann nun der Widerstand der Primärseite und der Widerstand pro Wicklung der Sekundärseite berechnet werden:

$$R_{p} = \gamma_{Cu} \cdot \frac{4 \cdot l_{P}}{D_{p}^{2} \cdot \pi} = 18.29\Omega$$
$$R_{sN} = \gamma_{Cu} \cdot \frac{4 \cdot l_{s}}{D_{p}^{2} \cdot \pi \cdot N_{stot}} = 12.16m\Omega$$

8.3.5 Verluste im Transformator

Die Verluste im Flyback-Transformator sind schwer abzuschätzen. Die Widerstände der Wicklungen sind bekannt, jedoch tritt bei solchen Anwendungen der Skin-Effekt auf, welcher diese erhöht.

Um eine gewisse Vorstellung zu haben, werden die Verluste ohne Skin-Effekt gerechnet.

- Verluste Primärwicklung:	$P_{VW1} = R_p \cdot I_{WPRMS}^2 = 6.1 mW$
- Verluste Sekundärwicklung 1:	$P_{Vw1} = N_{w1} \cdot R_{sN} \cdot I_{W1RMS}^2 = 119.8 \mu W$
- Verluste Sekundärwicklung 2:	$P_{Vw2} = N_{w2} \cdot R_{sN} \cdot I_{W2RMS}^2 = 1.6mW$
- Verluste Sekundärwicklung 3:	$P_{Vw3} = N_{w3} \cdot R_{sN} \cdot I_{W3RMS}^2 = 7.4 \mu W$

Die Kernverluste wären durch Simulationen ermittelbar, diese würden aber den Rahmen der Diplomarbeit sprengen.

8.4 Wahl des Schalters der Hilfsspeisung

Um einen geeigneten Schalter finden zu können, muss zuerst die Sperr-Spannung ermittelt werden.

Sperrspannung:
$$U_{TSperr} = U_{pmax} + U'_{s} = 280V$$

Abbildung 34: Mosfet

SPD02N60C3 (nach [13] Infineon, 2007)

Anhand der Sperrspannung, des Primärstromes und unter Berücksichtigung der Verluste wurde folgender Mosfet für die Funktion gewählt:

- Typ: SPD02N60C3
- ♦ Sperrspannung: V_{DSS} = 650V
- Leitwiderstand: $R_{DS(on)} = 2\Omega$
- ♦ Maximaler Strom:
 I_D = 1.8A

8.4.1 Verluste

Die Leitverluste lassen sich wie folgt ermitteln:

- Leitverluste $P_{cond} = R_{dson} \cdot I_{WPRMS}^2 = 666.86 \mu W$

Da es sich um einen Flyback-Wandler handelt, wird beim Einschalten keine Energie verbraucht, da kein Strom vorhanden ist. Die Ausschaltenergie lässt sich wie folgt ermitteln:

- Ausschaltstrom:	$I_{pmax} = 80mA$
- Ausschaltspannung:	$U_T = U_p + U'_s = 115V$
- Ausschaltzeit:	$t_f = 12ns$
- Ausschaltenergie:	$E_{Off} = \frac{U_T \cdot I_{pmax}}{2} \cdot t_r = 55.2nJ$
- Schaltverluste:	$P_{comm} = E_{off} \cdot f = 552 \mu W$

8.5 Wahl der Sperr-Dioden

Die geeigneten Sperr-Dioden werden durch die Sperrspannung, den Spitzenstrom und den höchsten Strom ermittelt.

 $I_{max} = 40.4 mA$

- Sperrspannung: $U_{dsperrmax} = U_{pmax} \frac{1}{\ddot{u}_{15}} + U_{15} = 44.64V$
- Spitzenstrom: $I_{peak} = I_{pmax} \cdot \ddot{u}3.7 = 1.82A$
- Maximaler Strom:

Folgende Schottky-Diode wurde ausgewählt:

٠	Тур:	STPS0560Z
٠	Sperrspannung:	V_{RRM} = 60V
٠	Maximaler Strom:	I _F = 2A
٠	Spitzenstrom:	I _p = 5.5A

Abbildung 35: Sperr-Diode STPS0560Z (nach [14] ST, 2002)

8.5.1 Verluste

Es werden insgesamt sieben Dioden verwendet. Um die Verluste bestimmen zu können, werden zuerst die Ströme durch die Dioden berechnet. Es werden die Dioden-Bezeichnungen des Schemas verwendet:

- Strom D₇: $I_{D7} = I_1 = 8mA$ - Strom D₁₁: $I_{D11} = I_1 + I_{pd1} = 11.2mA$

- Strom D ₈ :	$I_{D8} = I_2 = 8.2mA$
- Strom D ₁₂ :	$I_{D12} = I_2 + I_{pd2} = 11.4mA$
- Strom D ₉ :	$I_{D9} = I_3 = 10mA$
- Strom D ₁₀ :	$I_{D10} = I_4 = 19mA$
- Strom D₅:	$I_{D5} = I_5 = 5.4 mA$

Die gewählte Diode besitzt folgende Durchlassspannung:

- Durchlassspannung: $U_f = 0.44V$

Somit ergibt dies folgende Verluste:

- Verlust D ₇ :	$P_{VD7} = U_f \cdot I_{D7} = 3.52mW$
- Verlust D ₁₁ :	$P_{VD11} = U_f \cdot I_{D11} = 4.93 mW$
- Verlust D ₈ :	$P_{VD8} = U_f \cdot I_{D8} = 3.61 mW$
- Verlust D ₉ :	$P_{VD9} = U_f \cdot I_{D9} = 4.40 mW$
- Verlust D ₁₀ :	$P_{VD10} = U_f \cdot I_{D10} = 8.36 mW$
- Verlust D ₅ :	$P_{VD5} = U_f \cdot I_{D5} = 2.38mW$

Die Leitverluste werden als gering betrachtet und vernachlässigt. Dies ergibt folgenden gesamten Verlust:

- Verlustleistung der Dioden: $P_{vd} = 27.19mW$

8.6 Filterung

Die Driver können Störungen der Schaltung provozieren, daher erhält jeder Ausgang einen Filter, um Gegentaktstörungen zu minimieren. Beim Filter handelt es sich um einen LC-Filter, dieser sieht wie folgt aus:

Abbildung 36: LC-Filter Schaltung

Die Kondensatoren C₁ und C₂ werden gleich gross gewählt. Diese sind für die 15V Speisung 10 μ F und für alle anderen Speisungen 100 μ F gross. Für die Dimensionierung wird der kleinere Wert verwendet.

Die Grenzfrequenz des Filters wird auf 2kHz festgelegt, somit kann die Induktivität bestimmt werden:

$$L_{tot} = \frac{1}{4 \cdot \pi^2 \cdot f_g^2 \cdot C_{min}} = 633.26 \mu H$$

$$L_1 = L_2 = \frac{L_{tot}}{2} = 316.63\mu F \approx 330\mu H$$

Damit keine Schwingung auftritt, wird eine Dämpfung durch einen Serie-Widerstand benötigt. Dieser muss folgende Grösse haben.

$$R_{tot} > \sqrt{\frac{L_{tot}}{C_{min}}} = 8.12\Omega$$

Die Spule der Induktanz besitzt bereits einen Innenwiderstand von 0.5 Ω , somit wird folgender Widerstand benötigt.

$$R_1 = R_2 = \frac{R_{tot}}{2} - R_L = 3.56\Omega \approx 3.9\Omega$$

8.7 Die PFM Schaltung

Das Steuersignal des Schalters wird mit Hilfe eines CMOS-Timers generiert (siehe Abbildung 37)

Abbildung 37: PFM-Schaltung

Es wird der LMC555 verwendet. Im Innern dieses Timers befindet sich ein RS-Flipflop (siehe Abbildung 38). Dieses wird gesetzt, falls der Trigger-Eingang kleiner ist als ein Drittel der Speisespannung. Die Rücksetzung findet statt, falls der Threshold-Eingang zwei Drittel der Speisespannung übersteigt oder ein Reset getätigt wird.

Abbildung 38: Timer LMC555 (nach [17] National Semiconductor, 2003)

Bei der Schaltung (siehe Abbildung 37) wird eine Speisespannung von 15V verwendet. Der Threshold- und der Trigger-Eingang werden zusammengefasst.

Ist der Ausgang gesetzt, wird der Kondensator C_{21} über den Widerstand R_{30} geladen. Dabei handelt es sich um eine exponentielle Funktion:

$$U_c = U_s \cdot \left(1 - e^{-\frac{t_a + t}{R_{30} \cdot C_{21}}}\right)$$

Der Kondensator besitzt vor dem Laden schon eine Spannung von einem Drittel der Speisespannung, durch die Zeit t_a wird dies berücksichtigt.

$$t_a = R_{30} \cdot C_{21} \cdot \ln\left(\frac{3}{2}\right)$$

Hat die Spannung nun zwei Drittel der Speisespannung erreicht oder wurde ein Reset betätigt, wird er nicht mehr weiter geladen. Die maximale Einschaltzeit lässt sich ermitteln und ist durch folgende Formel gegeben:

$$t_{onmax} = R_{30} \cdot C_{21} \cdot \ln(2)$$

Nun wird das RS-Flipflop zurückgesetzt und der Discharge-Eingang eingeschaltet. Dadurch wird der Kondensator über den Transistor Q_4 und den Widerstand R_{29} entladen. Über die Spannung U_{REG} kann der Entlade-Strom vorgegeben werden. Die Entladung kann als eine lineare Funktion angenommen werden und sieht wie folgt aus:

$$U_c = U_c(t_{on}) - \frac{I}{C} \cdot t$$

Hat die Spannung U_c wieder ein Drittel der Speisespannung erreicht, beginnt der Zyklus erneut. In folgender Abbildung ist ein Zyklus dargestellt:

Abbildung 39: PFM-Zyklus

Die Diode D_{15} wird benötigt, damit der Kondensator sich nur über den Discharge-Eingang entladen kann. Die Dioden D_{13} und D_{14} werden benötigt, um die Entladung erst ab einer gewissen minimalen Eingangs-Spannung zu starten.

Der Kondensator C_{21} wurde 4.7nF gross gewählt, somit ergibt sich mit t_{onmax} der Widerstand R_{30} .

$$R_{30} = \frac{t_{onmax}}{C_{21} \cdot \ln(2)} = 4.26k\Omega \approx 4.3k\Omega$$

Der Widerstand R_{29} wurde durch Versuche aus der Simulation bestimmt und beträgt 510 Ω .

8.8 Die Strom-Begrenzung

Der Primärstrom der Hilfsspeisung wird begrenzt, somit ist die Frequenz linear abhängig von der Last:

$$f = \frac{2}{\mathrm{I_{pmax}}^2 \cdot \mathrm{L_p}} \cdot \mathrm{P}$$

Dies ist der grosse Vorteil der PFM-Schaltung. Somit werden die Schaltverluste kleiner bei weniger Last.

Die Schaltung zur Erkennung des Maximal-Stromes sieht wie folgt aus:

Abbildung 40: Strom-Begrenzungs-Schaltung

Über den Shunt-Widerstand R₁₇ auf der Primärseite (siehe Schaltung Anhang 14.4) wird der Strom gemessen. Der Transistor zusammen mit den Widerständen R₅, R₆ und R₉ dient als Stromquelle. Damit addiert sich zu der Spannung des Shunts die Spannung über dem Widerstand P₁. Übersteigt die Summe der Spannungen die Referenzspannung von 2.5V des LM431Z, zieht dieser das Potential herunter. Um ein sauberes Reset zu bekommen, werden zusätzlich zwei NAND-Gatter verwendet.

Der Kondensator C₆ dient zur Filterung des Signals, da es bei Schaltvorgängen Spannungsspitzen gibt.

Damit der Transistor als Stromquelle arbeitet, muss beachtet werden dass die Spannung U_{CE} grösser als die Sättigungsspannung ist. Diese beträgt für den BC177B 250mV. Die Spannung über R₉ wird daher 600mV gewählt. Wählt man R₅ 20k Ω gross, erhält man R₆ wie folgt:

$$R_6 = \frac{U_{3.7} - U_{R9} - U_{BE}}{U_{R9} + U_{BE}} = 36.9k\Omega \approx 36k\Omega$$

Wenn R₉ 1kΩ gewählt wird, ergibt der Strom der Stromquelle:

$$I \approx \frac{U_{R9}}{R_9} = 600 \mu A$$

Zuletzt muss noch P₁ bestimmt werden:

$$P_1 = \frac{U_{REF} - I_{pmax} \cdot R_{Shunt}}{I} = 2.57k\Omega$$

Da die Berechnung nicht exakt ist, wird hierbei ein Potentiometer verwendet, um den Strom einstellen zu können.

Durch die Strombegrenzung ist die Einschaltzeit des Mosfets nun abhängig von der Eingangsspannung:

$$T_{on} = I_{pmax} \cdot \frac{L_p}{U_1}$$

8.9 Start der Schaltung

Die Steuerung der Hilfsspeisung benötigt eine gewisse minimale Spannung, um arbeiten zu können. Daher wird eine Schaltung benötigt, die diese zur Verfügung stellt. Zudem wird damit eine gewisse minimal Leistung des Panels überprüft.

Abbildung 41: Start Schaltung

Für die Aufgabe wird ein Depletion-Mosfet verwendet, dieser leitet im Initial-Zustand. Mit einem Vorwiderstand von 5k Ω , werden die Kondensatoren der 15V Speisung geladen. Ein Schmitt-Trigger überwacht, dass die Spannung beim auf Starten zwischen 10V und 12V bleibt und steuert den Depletion-Mosfet. Sobald die Hilfsspeisung gestartet ist, bleibt der Depletion-Mosfet dauerhaft ausgeschaltet. Eine Zenerdiode von 13V dient als Sicherheit.

Der Vorwiderstand besteht aus vier $5k\Omega$ Widerständen von je 5Watt, diese dienen zudem dazu, eine gewisse Grundlast zu detektieren.

Um den Schmitt-Trigger dimensionieren zu können wird eine Ersatzschaltung verwendet. Der LM431 besitzt eine interne Spannungsreferenz von 2.5V, folgendes Ersatzschaltbild wird vom Hersteller gegeben:

Abbildung 42: LM431 Ersatzschaltbild (nach [14] TI, 2000)

Zusammen mit einem NAND-Gatter wird nun folgendes Ersatzschaltbild für den Schmitt-Trigger verwendet:

Abbildung 43: Schmitt-Trigger Ersatzschaltbild

Wählt man $R_3 20k\Omega$ gross, lassen sich R_4 und R_8 wie folgt berechnen:

$$R_8 = \frac{U_L}{U_H - U_L} \cdot R_3 = 100k\Omega$$
$$R_4 = \frac{U_L}{U_H} \cdot \frac{U_{REF}}{U_L - U_{REF}} \cdot R_3 = 5.56k\Omega \approx 5.6k\Omega$$

8.10 Die Regelung

8.10.1 Der Regler

Um das System zu regeln, wird ein PI-Regler verwendet. Es wird der 3.7V-Ausgang des Flyback-Wandlers geregelt. Die Schaltung des Reglers sieht wie folgt aus:

Abbildung 44: PI-Regler Schaltung

Es wird wieder ein LM431 verwendet, da dieser schon eine präzise Referenz von 2.5V und einen Operationsverstärker besitzt.

Zuerst wird die zu regelnde Spannung mit einem Spannungsteiler auf 2.5V referenziert. Wird R_{11} 12k Ω gross gewählt, erhält man:

$$R_{12+13} = \frac{U_{REF}}{U_{3.7V} - U_{REF}} \cdot R_{11} = 25k\Omega = 24k\Omega + 1k\Omega$$

Um den Regler einfacher zu dimensionieren, wird der Spannungsteiler mit Thevevin ersetzt und der LM431 durch einen Operationsverstärker.

$$R_{TH} = R_{11} / R_{12+13} = 8.11 k\Omega$$
$$U_{TH} = \frac{R_{12+13}}{R_{11} + R_{12+13}} \cdot U_{3.7V} = U_{3.7V}$$

Somit sieht die Ersatzschaltung wie folgt aus:

Abbildung 45: PI-Regler Ersatzschaltbild

Die Übertragungsfunktion des Reglers sieht somit wie folgt aus:

$$G(s) = \frac{1 + s \cdot R_{16} \cdot C_9}{s \cdot R_{TH} \cdot C_9}$$

Dies ergibt für K_p und K_i:

$$K_P = \frac{R_{16}}{R_{TH}}$$
$$K_i = \frac{1}{C_9 \cdot R_{TH}}$$

Über eine Zenerdiode wird der Regler-Ausgang auf 4.7V begrenzt

8.10.2 Das System

Ersetzt man den Transformator durch eine Induktanz und projiziert die Last der Sekundärseite auf die Primärseite, sieht dies wie folgt aus:

Abbildung 46: Das System

Das System kann sich im kontinuierlichen oder im diskontinuierlichen Betrieb befinden. Der kontinuierliche Betrieb tritt beim Aufstarten der Schaltung auf, da ein grosser Strom zum Laden der Kondensatoren gefragt ist. Der diskontinuierliche Betrieb herrscht im stationären Zustand.

Übertragungsfunktion im kontinuierlichen Betrieb

Es wird nach einer Funktion gesucht, die den Modulationsgrad m mit der Ausgangsspannung $U_{2^{\circ}}$ in Verbindung bringt. Man nimmt an, dass die Strombegrenzung noch nicht arbeitet, da die benötigte Spannung beim Aufstarten noch nicht vorhanden ist.

Die Spannung über der Induktivität lässt sich einerseits durch den Strom und anderseits durch den Modulationsgrad ausdrücken:

$$U_{Lp} = L_p \cdot I_L \cdot s = m \cdot U_1 - (1 - m) \cdot U_2$$

Der Strom in der Induktivität ist durch die Last gegeben:

$$I_L = \frac{1}{1-m} \cdot \frac{U_{2,r}}{Z_L}$$

Dabei sieht die Last folgendermassen aus:

$$Z_L = \frac{R_{L'}}{1 + s \cdot C_{L'} \cdot R_{L'}}$$

Anhand dieser Gleichungen lässt sich eine Funktion bestimmen:

$$U_{2'} = \frac{1}{s^2 \cdot \frac{1}{(1-m)^2} \cdot C_L \cdot L_p + s \cdot \frac{1}{(1-m)^2} \cdot \frac{L_p}{R_L} \cdot s + 1} \cdot \frac{m}{1-m} \cdot U_1$$

Man sieht direkt, dass diese Funktion nicht linear ist und somit keine Übertragungsfunktion berechnet werden kann.

Übertragungsfunktion im diskontinuierlichen Betrieb

Man nimmt an, dass die Strombegrenzung bei dieser Betriebsart funktioniert. Somit lässt sich der Strom auf der Sekundärseite wie folgt bestimmen:

$$I_2 = \frac{I_{pmax}}{2} \cdot m \cdot \frac{U_1}{U_{2/2}}$$

Der Strom ist abhängig von der Last:

$$I_2 = \frac{U_{2\prime}}{Z_L}$$

Dabei sieht die Last folgendermassen aus:

$$Z_L = \frac{R_{L'}}{1 + s \cdot C_{L'} \cdot R_{L'}}$$

Somit lässt sich eine Verbindung herstellen:

$$U_{2\prime}^2 = \frac{R_{L\prime}}{1 + s \cdot C_{L\prime} \cdot R_{L\prime}} \cdot \frac{I_{pmax}}{2} \cdot m$$

Es handelt sich hierbei wieder um eine nicht-lineare Funktion.

8.10.3 Die PFM-Schaltung

Es wird nach einer Funktion gesucht, welche den Modulationsgrad m in Verbindung zum Regler-Ausgang U_{reg} gibt.

Im Kapitel 8.8 haben wir gesehen, dass die Einschaltzeit des Mosfets abhängig von der Eingangsspannung ist:

$$T_{on} = I_{pmax} \cdot \frac{L_p}{U_1}$$

Die Ausschaltzeit wird über die Spannung am Transistor bestimmt (siehe Abbildung 37). Nimmt man an, dass der Transistor nicht sättigt und die Basis-Emitter-Spannung konstant ist, ergibt sich folgende Gleichung für den Strom:

$$I_c = \frac{U_{reg} - U_{BE}}{R_{29}}$$

Die Ausschaltzeit kann nun bestimmt werden. Über die Variation der Spannung ΔU am Kondensator lässt sich eine Verbindung herstellen:

$$\Delta U = U_s \cdot \left(1 - \frac{2}{3} \cdot e^{-\frac{Ton}{R_{30} \cdot C_{21}}}\right) = \frac{1}{3} \cdot U_s + \frac{T_{off}}{C_{21}} \cdot I_c$$
$$T_{off} = U_s \cdot \frac{2}{3} \cdot \left(1 - e^{-\frac{Ton}{R_{30} \cdot C_{21}}}\right) \cdot \frac{R_{29} \cdot C_{21}}{U_{reg} - U_{BE}}$$

Mit der Einschalt- und der Ausschaltzeit lässt sich der Modulationsgrad bestimmen:

$$m = \frac{T_{on}}{T_{on} + T_{off}}$$

Es ergibt sich eine Funktion, welche nicht linear ist, zudem hängt diese von der Speisespannung U_s und der Eingangsspannung U_1 ab. Nimmt man diese als konstant an, kann das Verhalten der Funktion in einem Graph gezeigt werden:

Abbildung 47: Funktion U_{reg} vs. m

Bei diesem Graph wurde die Speisespannung U_s als konstant genommen. Zudem wurde U_1 zwischen 90V und 190V variiert und die Basis-Emitter-Spannung vernachlässigt.

8.10.4 Dimensionierung des Reglers

Die Regelstrecke sieht wie folgt aus:

Abbildung 48: Regelstrecke

Um den Regler dimensionieren zu können, müssen einige Linearisierungen vorgenommen werden.

Im stationären Betrieb beträgt der Modulationsgrad ca. m = 0.1, linearisiert man den Graph der Abbildung 47, ergibt dies eine Verstärkung k_{PFM} = 1.

Es wird angenommen, dass der Regler das Offset durch eine Linearisierung und durch die Basis-Emitter-Spannung ausgleichen kann. Daher werden diese vernachlässigt.

Im stationären Betrieb hat das System eine nicht-lineare Übertragungsfunktion, für eine Dimensionierung wird diese als linear angenommen:

$$F(s) = \frac{U_{2'}(s)}{m(s)} = \frac{R_{L'}}{1 + s \cdot C_{L'} \cdot R_{L'}} \cdot \frac{I_{pmax}}{2}$$

Das vereinfachte linearisierte System sieht somit wie folgt aus:

Abbildung 49: Linearisierte Regelstrecke

Die projizierte Last muss zuerst einmal berechnet werden:

$$R'_{L} = \frac{U_{S'}^{2}}{P_{N}} = 16.2k\Omega$$
$$C'_{L} = \frac{4 \cdot C_{10\mu F}}{\ddot{u}15^{2}} + \frac{8 \cdot C_{100\mu F}}{\ddot{u}5^{2}} + \frac{2 \cdot C_{100\mu F}}{\ddot{u}3.7^{2}} = 3.9\mu F$$

Somit hat das System im offenen Regelkreis folgende Zeitkonstante:

$$T_{OL} = C_{L'} \cdot R_{L'} = 62.69ms$$

Die Übertragungsfunktion im geschlossenen Regelkreis lautet wie folgt:

$$F_{CL}(s) = \frac{\ddot{\mathsf{u}}3.7}{n_{TH}} \cdot \frac{\frac{K_P}{K_i} \cdot s + 1}{\frac{C'_L \cdot 2 \cdot \ddot{\mathsf{u}}3.7}{K_i \cdot I_{pmax} \cdot n_{TH}} \cdot s^2 + \left(\frac{2 \cdot \ddot{\mathsf{u}}3.7}{K_i \cdot R_{L'} \cdot I_{pmax} \cdot n_{TH}} + \frac{K_P}{K_i}\right) \cdot s + 1$$

Dabei stellt n_{TH} den Spannungsteiler des Reglers dar.

$$n_{TH} = \frac{R_{12+13}}{R_{11} + R_{12+13}} = \frac{2.5V}{3.7V} = 0.675$$

Die Übertragungsfunktion besitzt eine Nullstelle und zwei Pole. Man möchte, dass die Übertragungsfunktion im geschlossenen Regelkreis zwei identische reelle Pole besitzt, so ergibt sich folgender Zusammenhang:

$$K_{i} = \frac{2 \cdot \ddot{\mathrm{u}} 3.7}{I_{pmax} \cdot n_{TH}} \cdot C'_{L} \cdot \frac{1}{T_{Cl}^{2}}$$
$$K_{P} = \frac{2 \cdot \ddot{\mathrm{u}} 3.7}{I_{pmax} \cdot n_{TH}} \cdot \left(2 \cdot C'_{L} \cdot \frac{1}{T_{Cl}} - \frac{1}{R'_{L}}\right)$$

Die Zeitkonstante im geschlossenen Kreis wird zehnmal grösser als die Periodendauer des PFM bei Nennlast gewählt:

$$T_{Cl} = 10 \cdot \frac{1}{f_n} = 1ms$$

Somit ergibt sich folgende Übertragungsfunktion im geschlossenen Kreis:

$$F_{CL}(s) = \frac{\ddot{u}3.7}{n_{TH}} \cdot \frac{\frac{K_P}{K_i} \cdot s + 1}{T_{Cl}^2 \cdot s^2 + 2 \cdot T_{Cl} \cdot s + 1}$$

Die Parameter Ki und Kp werden berechnet:

$$K_P = 6.5$$
$$K_i = 3279.5$$

8.10.5 Simulation mit Matlab/Plecs

Um die Dimensionierung zu überprüfen, wird eine Simulation mit Matlab/Plecs durchgeführt. Die Gesamtübersicht sieht wie folgt aus:

Abbildung 50: Simulation des Reglers

Das System in Plecs sieht wie folgt aus:

Und die PFM-Schaltung sieht folgendermassen aus:

Die Funktion der PFM-Schaltung wurde getestet und funktioniert. Um den Graph in Abbildung 47 zu überprüfen, wurden ein Rampen-Signal am Eingang der PFM-Schaltung angebracht und der Modulationsgrad des Ausgangssignals gemessen. Das Ergebnis sieht wie folgt aus:

Abbildung 53: Simulation Ureg vs. m bei 125V

Die Sprünge im Graph sind auf die ungenügende Anzahl an Messpunkten zurückzuführen. Jedoch kann angenommen werden, dass die simulierte Schaltung mit der Berechnung übereinstimmt.

Der Regler wurde für den kontinuierlichen Betrieb erstellt, daher werden nur kleine Sprünge um den Betriebspunkt simuliert. Dazu wird der Kondensator auf eine gewisse Spannung vorgeladen.

Bei einem Sprung von 2.47V auf 2.50V sieht das Ergebnis wie folgt aus:

Abbildung 54: Simulation: Sprung von 2.47V

Bei einem Sprung von 2.42V auf 2.50V sieht das Ergebnis wie folgt aus:

Abbildung 55: Simulation: Sprung von 2.42V

Man sieht sehr gut die Nicht-Linearität des Systems, jedoch wird der Sollwert in jedem Fall erreicht und dies in der gewünschten Zeit.

8.10.6 Regler-Entwurf

Da die Regler-Parameter nun bekannt sind, können die Widerstände des Reglers (siehe Abbildung 44) berechnet werden.

$$R_{16} = K_P \cdot R_{TH} = 52.8k\Omega \approx 51k\Omega$$

$$C_9 = \frac{1}{K_i \cdot R_{TH}} = 37.6nF \approx 33nF$$

8.11 Simulation

Es wurde eine Simulation mit Orcad erstellt, um die Funktionen der Schaltung zu überprüfen. Die Schaltung des Transformators mit Last sieht wie folgt aus:

Abbildung 56: Simulation- Transformator mit Last

Die Last wurde durch einen äquivalenten Widerstand ersetzt, die Filter wurden nicht berücksichtigt.

8.11.1 Start der Schaltung

Die Schaltung zum Aufstarten sieht in Orcad wie folgt aus:

Abbildung 57: Aufstart-Schaltung

Bei einer Photovoltaik-Spannung von 90 V, sieht das Ergebnis folgendermassen aus:

Abbildung 58: Simulation der Aufstart-Schaltung bei 90V

HES-SO Wallis Valais / Steiner Florian 12.07.2013

Bei einer Photovoltaik-Spannung von 125 V, sieht das Ergebnis folgendermassen aus:

Abbildung 59: Simulation der Aufstart-Schaltung bei 125V

Bei einer Photovoltaik-Spannung von 190 V, sieht das Ergebnis folgendermassen aus:

Abbildung 60: Simulation der Aufstart-Schaltung bei 190V

Die Schaltung funktioniert wie gewünscht und regelt die Spannung U_2 zwischen 10V und 12V in jedem Fall. Die Abweichung ist durch die Wahl der Widerstände zu erklären.

8.11.2 Strombegrenzung

Die Schaltung zum Begrenzen des Flyback-Stromes sieht wie folgt aus:

Der Widerstand R₂ wird durch mehrere Simulationen bei einer Eingangsspannung von 125V so gewählt, dass die Schaltung bei 80mA ein Reset-Signal sendet. Die Kapazität C₄ dient dazu, den Spannungspeak der Shunt-Spannung zu minimieren. Das Simulationsergebnis sieht wie folgt aus:

Abbildung 62: Simulation: Strombegrenzung bei 125V

Die Simulation wurde für eine Photovoltaik-Spannung von 90V und für eine Photovoltaik-Spannung von 190V wiederholt, siehe Abbildung 63 bzw. Abbildung 64:

Abbildung 63: Simulation: Strombegrenzung bei 90V

Abbildung 64: Simulation: Strombegrenzung bei 190V

Eingangsspannung U _{pv} [V]	Maximaler Strom I _{pmax}			E	inschaltzeit t _{on}	
	Berechnet [A]	Simuliert [A]	Abweichung [%]	Berechnet [s]	Simuliert [s]	Abweichung [%]
90	80.0E-3	77.8E-3	2.8	13.9E-6	13.8E-6	0.5
125	80.0E-3	80.3E-3	0.3	10.0E-6	9.8E-6	1.8
190	80.0E-3	84.2E-3	5.3	6.6E-6	6.9E-6	5.0

Vergleich mit Berechnung

Tabelle 7: Vergleich zwischen Berechnung und Simulation

Mit einer höchsten Abweichung von 5.3% entspricht die Simulation der Berechnung. Die Abweichungen sind auf die Filterkapazität zurückzuführen, welche eine Verzögerung des Signals mit sich bringt.

8.11.3 Regelung und PFM-Schaltung

Der Regler und die PFM-Schaltung wurden folgendermassen aufgebaut:

Abbildung 65: Schaltung des Reglers und der PFM-Schaltung

Die gesamte Schaltung mit Regler und PFM wurde bei verschiedenen Eingangsspannungen simuliert. Die Ergebnisse sehen wie folgt aus:

Abbildung 66: Simulation Hilfsspeisung bei 90V

Abbildung 67: Simulation Hilfsspeisung bei 125V

Abbildung 68: Simulation Hilfsspeisung bei 190V

Die Hilfsspeisung arbeitet bei Nennlast mit 10kHz, dies entspricht der Berechnung. Der Regler und die PFM-Schaltung funktionieren korrekt. Die 15V Speisungen waren anfangs aufgrund der Belastung ein wenig zu hoch. Dies wurde durch eine Anpassung der Windungen korrigiert. Die verschiedenen Spannungen werden bis auf kleine Abweichungen erreicht, diese sind auf das nicht exakte Übertragungsverhältnis und die Belastung zurückzuführen.

9 AUFBAU & INBETRIEBNAHME

Zur Realisierung der Schaltung wurden alle benötigten Komponenten aus dem Lager bezogen oder bestellt. Die Materialliste ist im Anhang 14.10 ersichtlich.

9.1 Erstellung & Überprüfung der Steuerkarte

Da der gleiche PCB wie bei einem anderen Projekt von Herrn Horta Rodolfo verwendet wird. Konnte dieser einfach hergestellt und mit dessen Schaltung kontrolliert werden. Hierbei funktionierte dieser einwandfrei.

Das Schema und das Routing der Karte sind im Anhang ersichtlich. (siehe Anhang 14.6 und 14.7).

9.2 Erstellung der Hauptkarte

Mit Hilfe von P-Cad Schematic wurde das Schema des PCBs gezeichnet, dieses ist im Anhang ersichtlich (siehe Anhang 14.4). Das Routing der Karte wurde von Herrn Carmine Arcudi erstellt. (siehe Anhang 14.5)

Anschliessend wurde der PCB hergestellt und die Komponenten montiert. Die Inbetriebnahme der Karte geschah blockweise.

9.3 Realisierung der Hilfsspeisung

9.3.1 Erstellung und Messung des Flyback-Transformators

Der Transformator der Hilfsspeisung wurde gemäss Kapitel 8.3 hergestellt und anschliessend ausgemessen.

Zuerst wurde eine Messung der Primärseite vorgenommen:

	berechnet	gemessen	Abweichung [%]
Induktivität [H]	15.6E-03	15.4E-03	1.09
Widerstand [Ω]	18.29	18.87	3.17

Tabelle 8: Messung der Primärseite

Mit einer Abweichung von unter 5% entspricht die Messung den erwarteten Werten.

Anschliessend wurden die verschiedenen Übertragungsverhältnisse überprüft, dazu wurde auf der Primärseite ein Sinus-Signal mit einer Amplitude von 4.25V und einer Frequenz von 100kHz angelegt und das Verhältnis der verschiedenen Ausgangs-Spannungen zum Eingang gemessen:

Bezeichnung	Spannung	Übertragungsverhältnis ü			
	[V]	Berechnet []	Gemessen []	Abweichung[%]	
U ₁	15	6.41	6.63	3.43	
U _{pd1}	-5	17.86	18.06	1.14	
U ₂	15	6.41	6.43	0.31	
U _{pd2}	-5	17.86	17.89	0.18	
U ₃	5	17.86	17.16	3.90	
U ₄	3.7	22.73	21.53	5.27	
U ₅	5	17.86	17.16	3.90	

Tabelle 9: Messung der Übertragungsverhältnisse

Mit einer höchsten Abweichung von 5.27 sind die Ergebnisse zufriedenstellend.

Es wurden zudem die Polarisierung der Wicklung und der Pin-Anschluss überprüft, hierbei ist alles korrekt.

9.3.2 Inbetriebnahme und Test der Aufstart-Schaltung

Bei der Montage wurde der Depletion-Mosfet BSS129 falsch montiert und zerstört. Dieser war leider nicht mehr verfügbar und wurde daher durch den BSP129 ausgewechselt.

Für diesen Test wurde der Flyback-Transformator noch nicht montiert. Bei verschiedenen Eingangsspannungen wurde die Schaltung ausgemessen.

Die Schaltung startet ab einer Spannung von 34.5V.

Messgerät: LeCroy Waverunner 44Xi

Abbildung 69: Aufstart-Messung bei 35V

Die Messung wurde für weitere Eingangsspannungen wiederholt:

Abbildung 72: Aufstart-Messung bei 190V

Die Schaltung funktioniert und regelt die Spannung zwischen 10V und 12V. Die Abweichung der Spannungen stimmt mit der Simulation überein.

9.3.3 Inbetriebnahme und Test der PFM-Schaltung

Für diesen Test wurden die Komponenten der PFM-Schaltung montiert. Die Schaltung wurde mit Hilfe einer Spannungsquelle betrieben. Anschliessend wurden verschiedene Spannungen am Eingang der Schaltung angebracht und die Reaktion der Schaltung überprüft.

Haute Ecole d'Ingénierie π Hochschule für Ingenieurwissenschaften

SISO

VALAIS WALLIS

CH1: Mosfet-Gate-Signal	PT16
CH2: PFM-Eingang	PT4
CH3: Speisespannung	PT11

Abbildung 73: Messungen der PFM-Schaltung

Man kann gut sehen, dass die Schaltung je nach Eingangsspannung die Frequenz ändert, wobei die Einschaltzeit konstant bleibt.

9.3.4 Inbetriebnahme und Test der Strombegrenzung

Für diesen Test wurden der Transformator, der Regler und die PFM-Schaltung in Betrieb genommen.

Dabei gab es ein Problem: Die Spannungsspitze beim Einschalten des Mosfets Q_3 war viel grösser als in der Simulation. Dies führte dazu, dass die Strombegrenzung auf die Spitze reagierte und ein Reset des CMOS-Timers bewirkte. Das Problem wurde durch eine Rückkopplung am LM431, einer Anpassung des Pull-up-Widerstandes R_{10} und einem höher dimensioniertem Filter gelöst.

Durch die Rückkopplung schaltet der LM431 besser.

Mit der kleineren Wahl des Pull-up-Widerstandes wird das Potential am Eingang des NAND-Gatters weniger heruntergezogen.

Mit einer Anpassung der Kapazität C₆ auf 470pF wird die Spitze besser gefiltert. Die Anpassung ist in folgender Abbildung ersichtlich:

Abbildung 74: Angepasstes Schema: Strombegrenzung

Anschliessend wurden die Strombegrenzung mittels des Potentiometers P₁ kalibriert und Messungen bei verschiedenen Spannungen vorgenommen:

Messgerät: LeCroy Waverunner 44Xi

Abbildung 75: Messung Strombegrenzung bei 90V

Abbildung 76: Messung Strombegrenzung bei 125V

Abbildung 77: Messung Strombegrenzung bei 190V

Eingangsspannung U1 [V]	Maximalerstrom I _{pmax}			Maximalerstrom I _{pmax} Einschaltzeit t _{on}		
	Berechnet [A]	Gemessen [A]	Abweichung [%]	Berechnet [s]	Gemessen [s]	Abweichung [%]
90	80.0E-3	80.0E-3	0.0	13.9E-6	14.1E-6	1.3
125	80.0E-3	83.8E-3	4.7	10.0E-6	10.3E-6	3.2
190	80.0E-3	89.2E-3	11.5	6.6E-6	7.1E-6	7.6

Vergleich zwischen Messung und Berechnung

Tabelle 10: Vergleich zwischen Berechnung und Messung

Die Strombegrenzung funktioniert in jedem Fall. Jedoch schaltet sie bei einer höheren Spannung verzögert. Dies ist auf den grösseren Filter zurückzuführen.

9.3.5 Inbetriebnahme und Test der gesamten Hilfsspeisung

Für diesen Test wurden blockweise die verschiedenen Speisungen in Betrieb genommen. Angefangen wurde bei der geregelten 3.7V-Speisung und der 15V-Speisung.

Dabei trat ein Problem auf. Die Ausgangsspannung des Reglers war zu tief. Damit der Regler funktioniert, muss eine minimale Ausgangsspannung vorhanden sein. Diese muss höher sein als die Referenzspannung von 2.5V des LM431. Dieses Problem trat in der Simulation nicht auf, da das Simulationsmodell dies nicht berücksichtigte.

Das Problem wurde gelöst, indem der Transistor Q₄ (BC107) der PFM-Schaltung durch einen anderen mit einer höheren Basis-Emitter-Spannung ersetzt wurde. Die Wahl fiel auf den BS170. Jedoch bestand das Problem bei gewissen Betriebspunkten weiterhin. Deshalb wurde zusätzlich der Regler abgeändert. Durch den Einsatz von einem LMV431 mit einer Referenzspannung von 1.24V konnte das Problem endgültig gelöst werden.

Aufgrund der Änderung der Referenzspannung des Reglers muss dieser neu dimensioniert werden.

Der Spannungsteiler muss auf 1.24V angepasst werden. Wird R_{11} 130k Ω gewählt, ergibt sich:

$$R_{12+13} = \frac{U_{REF}}{U_{3.7V} - U_{REF}} \cdot R_{11} = 65.53k\Omega \approx 62k\Omega + 3.6k\Omega$$
$$R_{TH} = R_{11} / R_{12+13} = 43.6k\Omega$$

Die Änderung des Spannungsteilers wirkt sich zudem auf die Regler-Parameter aus:

$$n_{TH} = \frac{1.24V}{3.7V} = 0.335$$

$$K_i = \frac{2 \cdot \ddot{u}3.7}{I_{pmax} \cdot n_{TH}} \cdot C'_L \cdot \frac{1}{T_{Cl}^2} = 6611.99$$

$$K_P = \frac{2 \cdot \ddot{u}3.7}{I_{pmax} \cdot n_{TH}} \cdot \left(2 \cdot C'_L \cdot \frac{1}{T_{Cl}} - \frac{1}{R'_L}\right) = 13.12$$

$$R_{16} = K_P \cdot R_{TH} = 572k\Omega \approx 560k\Omega$$

$$C_9 = \frac{1}{K_i \cdot R_{TH}} = 3.5nF \approx 3.3nF$$

Alle Änderungen sind im Schema ersichtlich (siehe Anhang 14.6).

Nach dem das Problem behoben wurde, konnte schrittweise jede Ausgangsspannung in Betrieb genommen werden. Bei verschiedenen Eingangsspannungen wurden dann Messungen vorgenommen:

Bei einer Eingangsspannung von 90V:

Messgerät: LeCroy Waverunner 44Xi

Abbildung 78: Spannungsmessung bei 90V

Messgerät: Fluke 175

Bezeichnung	Messwert [V]	Abweichung [%]
Upv	90.00	
AUX1_+15V	13.57	9.53
AUX1_+5V	4.59	8.20
AUX1_+3.7V	3.56	3.78
AUX15V	-5.26	5.20
AUX2_+15V	14.19	5.40
AUX25V	-5.32	6.40
AUX3_+5V	4.73	5.40
+3V3	3.30	0.00

Bei einer Eingangsspannung von 125V:

Messgerät: LeCroy Waverunner 44Xi

Abbildung 79: Spannungsmessung bei 125V

Messgerät: Fluke 175

Bezeichnung	Messwert [V]	Abweichung [%]
U1	125.00	
AUX1_+15V	13.59	9.40
AUX1_+5V	4.71	5.80
AUX1_+3.7V	3.55	4.05
AUX15V	-5.27	5.40
AUX2_+15V	14.19	5.40
AUX25V	-5.69	13.80
AUX3_+5V	4.74	5.20
+3V3	3.30	0.00

Bei einer Eingangsspannung von 190V:

Messgerät: LeCroy Waverunner 44Xi

Abbildung 80: Spannungsmessung bei 190V

Bezeichnung	Messwert [V]	Abweichung [%]
U1	189.90	
AUX1_+15V	14.19	5.40
AUX1_+5V	4.72	5.60
AUX1_+3.7V	3.56	3.78
AUX15V	-5.23	4.60
AUX2_+15V	14.20	5.33
AUX25V	-5.34	6.80
AUX3_+5V	4.99	0.20
+3V3	3.30	0.00

Tabelle 13: Messung der Ausgangsspannungen bei 190V

Die Messungen wurden ohne den Betrieb der Hauptschaltung vorgenommen. Damit ist die tiefere Arbeitsfrequenz zu erklären, da die Driver noch nicht arbeiten und somit weniger Leistung benötigt wird.

Die Ausgangsspannungen bewegen sich um die berechneten Werte. Die Abweichungen sind durch die Belastung oder durch das nicht exakte Übersetzungsverhältnis zu erklären.

9.4 Messung der Leistungsaufnahme der Hilfsspeisung

Die benötigte Leistung der Hilfsspeisung wird bei verschiedenen Spannungen gemessen:

Eingangsspannung [V] Leistung [W] 90 325.8E-3 100 330.6E-3 110 317.0E-3 120 320.9E-3 130 343.4E-3 140 360.0E-3 150 366.9E-3 160 355.9E-3 170 360.8E-3

Messgerät: Zimmer LMG 500

Tabelle 14: Leistungsmessung Hilfsspeisung

383.5E-3

372.1E-3

180

190

Die Leistungsaufnahme ist wie erwartet sehr gering. Da der Hauptkreis aber noch nicht in Betrieb ist, sind die Gate-Verluste noch nicht vorhanden. Bei höheren Spannungen benötigt die Schaltung tendenziell mehr Leistung.

9.5 Messung des Ringkern-Transformators

Der bestellte Transformator entsprach nicht ganz den Anforderungen, da dieser zu wenig isoliert wurde zwischen den einzelnen Lagen der Wicklungen. Zudem war der verwendete

Kern nicht exakt der gleiche wie in der Berechnung. Daher wurde dieser von einem Mitarbeiter der Fachhochschule neu gewickelt.

Der Transformator konnte nun ausgemessen werden. Die Induktivität wurde mit einem RCL-Meter gemessen und der Widerstand mit einer Strom-Spannungsmessung.

	Berechnet Gemessen		Abweichung [%]
Induktivität L _p [H]	2.02E-03	1.92E-03	5.11
Widerstand R_p [Ω]	0.045	0.047	4.18

Tabelle 15: Transformator: Messung der Primärseite

	Berechnet	Gemessen	Abweichung [%]
Induktivität L _s [H]	62.0E-3	61.4E-3	0.87
Widerstand R_s [Ω]	1.654	2.02	22.13

Tabelle 16: Transformator: Messung der Sekundärseite

Die Induktivität primär- bzw. sekundärseitig entspricht der Berechnung. Jedoch fällt der Widerstand der Sekundärseite grösser aus als die Berechnung. Dies hat damit zu tun, dass nicht der exakt gleiche Draht wie in der Berechnung verwendet wurde.

Mit einem Funktionsgenerator bei 20kHz und 10Vpp wurde das Übertragungsverhältnis des Transformators gemessen:

	Berechnet	Gemessen	Abweichung [%]
ü	5.58	5.58	0.06

Tabelle 17: Transformator: Messung des Übertragungsverhältnisses

Dies entspricht der Berechnung.

Um die Kopplung des Transformators zu berechnen, wird der Transformator einmal sekundär- und einmal primärseitig kurzgeschlossen. Somit wird die Streuinduktivität gemessen.

Induktivität L _{sp} [H]	25.2E-6
Induktivität L _{ss} [H]	808.3E-6

Tabelle 18: Transformator: Messung der Streuinduktivität

Damit lässt sich der Kopplungsfaktor berechnen:

$$k_{p} = \sqrt{1 - \frac{L_{sp}}{L_{p}}} = 0.9937$$
$$k_{s} = \sqrt{1 - \frac{L_{ss}}{L_{s}}} = 0.9934$$

Der Kopplungsfaktor ist wie erwartet sehr hoch und der Transformator besitzt somit sehr wenig Streuinduktivität.

9.6 Inbetriebnahme des Hauptkreises

Für die Inbetriebnahme des Hauptkreises werden nun die restlichen Komponenten montiert und der Transformator angeschlossen.

9.6.1 Test im Teillastbereich

Für diesen Test wird eine Last von $28k\Omega$ am Ausgang angeschlossen, um die Funktion der Schaltung zu überprüfen.

Die Eingangsspannung wird auf die Nennspannung von 125V eingestellt. Mit dem Modulationsgrad wird die Ausgangsspannung auf 500V gestellt. Die Ein- und Ausgangsleistung wird überwacht.

Messgerät: Fluke 175

Eingangsspannung [V]	124.8
Eingangsstrom [A]	106.6E-3
Eingangsleistung [W]	13.3
Ausgangsspannung [V]	493.4
Ausgangsstrom [A]	18.5E-3
Ausgangsleistung [W]	9.13
Wirkungsgrad [%]	68.6

Tabelle 19: Messung im Teillastbereich

Die Spannungen und Ströme sehen wie folgt aus:

Messgerät: LeCroy Waverunner 44Xi

Abbildung 81: Strom- und Spannungsmessung im Teillastbereich

Die Schaltung befindet sich im diskontinuierlichen Betrieb, dies ist anhand des Sekundärstromes in Abbildung 81 zu sehen.

Der Primärstrom ist von starken Schwingungen geprägt. Die Kommutierung vom Primärauf den Sekundärstrom erfolgt mit einer Verzögerung. Die hohen Spitzenwerte des Stromes führen zu einem Spannungseinbruch auf der Sekundärseite. Die Schwingungen haben eine Frequenz von 455 kHz.

Die Spannungen über den Schaltern Q_5 und Q_6 , der Gleichrichtungsdiode D_{18} und der Primärseite des Transformators sehen wie folgt aus:

Abbildung 82: Messung der Sperrspannungen

Durch die Schwingung des Stromes wird die Sperrspannung der Diode D₁₈ erhöht, dies kann zu deren Zerstörung führen. Sobald der Sekundärstrom abklingt entsteht durch parasitäre Kapazitäten eine Spannungsschwingung.

Diese Oszillationen führen zu erhöhten Verlusten in der Schaltung und könnten Komponenten zerstören. Der Test bei einer höheren Leistung wird daher abgebrochen und das Verhalten der Schaltung genauer untersucht. Das Kapitel 10 befasst sich mit der Analyse des Problems.

9.7 Störungstest des Isolationsverstärkers AMC1200

Im Rahmen der Diplomarbeit sollte die Reaktion des Isolationsverstärkers AMC1200 auf Gleichtaktstörungen (Common Mode) gemessen werden. Der Verstärker wird auf Störungen am Eingang und durch Potentialsprünge zwischen den beiden Speisungs-Massen geprüft.

9.7.1 Gleichtaktstörungen am Eingang

Abbildung 83: Messungsaufbau Gleichtaktstörungen

Mit Hilfe des Funktionsgenerators V1 (siehe Schema in Abbildung 83) wurden Störungen von verschiedenen Formen und Frequenzen auf den Eingang des Isolationsverstärkers gebracht. Es wurden eine Messung am Ausgang des Isolationsverstärkers CH3 und ein e nach dem Differenzverstärker CH2 vorgenommen.

Folgende Ergebnisse ergab die Messung:

Abbildung 84: Gleichtaktstörung: Sinus 25kHz

Abbildung 85: Gleichtaktstörung: Sinus 50kHz

Hes.so Valais Haute Ecole d'Ingénierie T Hochschule für Ingenieurwissenschaften

Abbildung 86: Gleichtaktstörung: Rechteck 1kHz

Abbildung 87: Gleichtaktstörung: Rechteck 25kHz

Abbildung 88: Gleichtaktstörung: Rechteck 50kHz

Sinusförmige Störungen werden gar nicht übertragen. Jedoch gibt es bei rechteckförmigen Störungen am Ausgang einige Ausschläge von wenigen Milli-Volt. Diese werden aber vom Differenzverstärker genug amgedämpft.

9.7.2 Gleichtaktstörungen durch Potentialsprünge

Abbildung 89: Messungsaufbau Potentialstörungen

Mit Hilfe des Funktionsgenerators V1 (siehe Schema in Abbildung 89) wurden Störungen von verschiedenen Formen und Frequenzen zwischen den beiden Massen der Speisungen gebracht. Es wurde eine Messung am Ausgang des Isolationsverstärkers CH3 und nach dem Differenzverstärker CH2 vorgenommen.

VALAIS

Folgende Ergebnisse ergab die Messung:

V1: Amplitude: 20Vpp Offset: 0V CH1: Störungssignal CH2: Ausgang Isolationsverstärker PT19-Pt20 CH3: Ausgang Differenzverstärker PT21-AUX1_GND inden dilladi yan kaya ya bir ani da Alami ya sikuma maka kiri baka ki mina ya akala yani yana mina kana kiri k բարվար բնագրութերությունը տեղությունը, վենքալ, դ^րու բոնքին ներել հետ ամել չերում _ենչու երկ_{ան տու}րվությունը կարարի հետ հե 1111 فالله والملية dina shikada d ور المار المالي الجزيرية الالمرول مساورين الراسي التربي والمالية الشراط والمراطل والالماري والمأر بالمالي والألا ألتني Measure P1:rms(C1) P2:rms(C2) P4:rms(C4) P5:freq(C1) P3:rms(C3) P6:--value 7.06 V 271.4 mV 121.3 mV 31 mV 24.950048 kHz status -39.8 µs Timeba CILDO

Abbildung 90: Potentialstörung: Sinus 25 kHz

Abbildung 91: Potentialstörung Sinus 50kHz

Hes So VALAIS Haute Ecole d'Ingénierie

Abbildung 92: Potentialstörung: Rechteck 1kHz

Abbildung 93: Potentialstörung Rechteck 25kHz

Abbildung 94: Potentialstörung: Rechteck 50kHz

Abbildung 95: Potentialstörung: Sprung 20V

Bei sinusförmigen Störungen besteht wiederum kein Problem. Bei rechteckigen Störungen hingegen gibt es Spannungsspitzen an den Flanken. In der Abbildung 95 sind diese besser dargestellt. Der Differenzverstärker schafft es nicht diese zu filtern. Jedoch ist es fraglich, ob diese Störungen nur über den Isolationsverstärker übertragen werden oder sie über einen anderen Weg kommen.

9.8 Test der Messungen

9.8.1 Eingangsspannungsmessung

Messgerät: Fluke 175

Bei verschiedenen Eingangsspannungen wurde das Ausgangssignal der Verstärkerstufe gemessen, sowie die berechnete Spannung des Mikroprozessors kontrolliert.

5					
Eingangsspannung [V]	Berechnet [V]	Mess-Ausgang [V]	Abweichung [%]	Mikroprozessor [V]	Abweichung [%]
90	1.349	1.350	0.11	88	2.11
110	1.650	1.650	0.00	112	1.82
130	1.950	1.950	0.00	132	1.54
150	2.250	2.250	0.00	152	1.33
170	2.550	2.545	0.20	173	1.76
190	2.850	2.840	0.35	193	1.58

2.000 2.000 0.00

Tabelle 20: Eingangsspannungsmessung

Die Verstärkerstufe arbeitet sehr genau, wobei der Mikrocontroller eine leicht höhere Abweichung vorweist. Wahrscheinlich ist dies ein Fehler im Programm und muss korrigiert werden.

9.8.2 Ausgangsspannungsmessung

Bei der Konzeption der Differenzverstärker-Stufe wurden zwei Fehler gemacht.

Da der Eingang die Differenz bildet, ist es nicht nötig, einen Abzug der referenzierten Spannung zu machen. Daher werden einige Widerstände entfernt oder angepasst.

Zudem wurden beim Zeichnen des Schemas die Anschlüsse vertauscht, dies wurde korrigiert.

Das geänderte Schema sieht wie folgt aus:

Abbildung 96: Schema-Änderung: Differenzverstärker Ausgangsspannung

Nun wurde die Funktion bei verschiedenen Ausgangsspannungen kontrolliert.

messgerat.					
Ausgangsspannung [V]	Berechnet [V]	Mess-Ausgang [V]	Abweichung [%]	Mikroprozes- sor [V]	Abweichung [%]
450	2.239	2.241	0.08	449	0.22
470	2.339	2.341	0.10	468	0.43
490	2.438	2.440	0.08	489	0.20
510	2.538	2.541	0.13	512	0.39
530	2.637	2.641	0.15	532	0.38
550	2.737	2.740	0.12	551	0.18

Tabelle 21: Ausgangsspannungsmessung

9.8.3 Strommessung

Für die Strommessung wurden bei laufendem Betrieb des Wandlers, der Strom am Eingang auf verschiedene Werte eingestellt:

Messgerät: Fluke 175

Messaerät: Eluke 175

Eingangsstrom [A]	Berechnet [V]	Mess-Ausgang [V]	Abweichung [%]	Mikroprozes- sor [A]	Abweichung [%]
0.2	0.148	0.092	37.84	0.102	49.00
0.4	0.296	0.185	37.50	0.234	41.50
0.6	0.444	0.278	37.39	0.360	40.00
0.8	0.592	0.362	38.85	0.465	41.88
1.0	0.740	0.456	38.38	0.590	41.00

Tabelle 22: Strommessung

Die Strommessung weist grosse Abweichungen auf, die relative Abweichung ist immer in der gleichen Grössenordnung. Somit handelt es sich nicht um ein Offset Problem. Um das Problem genauer zu überprüfen wurden die Signale mit einem Oszilloskop überprüft.

Abbildung 97: Fehlersuche Strommessung

In der Abbildung 97 ist gut ersichtlich, dass der Strom Dreieckförmig ist. Mit dem verwendeten Multimeter wird der RMS-Wert des Stromes berechnet. Die Strommessung der Schaltung besitzt einen Filter. Somit misst diese den Mittelwert. Diese unterscheiden sich mit einem gewissen Faktor.

Der Ausgang des Differenzverstärkers besitzt viele Störungen, da dieser eine neue Referenz mittels Speisespannung macht. Das Problem sollte durch ein zusätzliches RC-Glied gelöst werden.

10 ANALYSE DER OSZILLATION DER SCHALTUNG, LÖSUNGSANSÄTZE UND REALISIERUNG

Der Test des Hauptkreises in Kapitel 9.6.1 hat ein Problem der Schaltung aufgedeckt. Die Schaltung besitzt eine Oszillation, welche dominant gegenüber der Normalfunktion ist. Dieses Kapitel befasst sich damit die Ursachen dieser Oszillation zu finden, Lösungsansätze zu suchen und zu realisieren.

10.1 Bestimmung der parasitären Kapazitäten

10.1.1 Der Transformator

Durch den Aufbau der Wicklungen entsteht eine Art Röhrenkondensator zwischen Primärund Sekundärseite. Dieser ist recht einfach zu messen, indem man beide Seiten kurzschliesst und die Kapazität misst:

$$C_P = 714 pF$$

Zwischen den einzelnen Schichten der Windungen gibt es eine zusätzliche Kapazität, diese bewirkt zusammen mit der Streuinduktivität einen Reihenschwingkreis. Damit lässt sich anhand der Resonanzfrequenz die Kapazität bestimmen.

Auf den Transformator wird ein Sinussignal angelegt und dabei die Frequenz erhöht. Es werden der Primärstrom und die Sekundärspannung beobachtet. Dabei wird nach der Resonanzfrequenz und somit nach der grössten Amplitude gesucht.

Bei einer Frequenz von 20kHz sehen die Signale wie folgt aus:

Abbildung 98: Resonanzmessung Transformator 20kHz

Die maximale Amplitude tritt bei einer Frequenz von 455kHz auf.

Abbildung 99: Resonanzmessung Transformator 455kHz

Aus der Resonanzfrequenz und den Amplituden lässt sich die parasitäre Kapazität primär und sekundär rechnen:

$$C_{Rs} = \frac{1}{4 \cdot \pi^2 \cdot f_r^2 \cdot L_{ss}} = 151.4pF$$
$$C_{Rp} = \frac{1}{4 \cdot \pi^2 \cdot f_r^2 \cdot L_{sp}} = 4.9nF$$

Der Gütefaktor lässt sich aus dem Dämpfungsfaktor berechnen, welcher aus der Resonanzamplitude und der normalen Amplitude errechnet wird.

$$\frac{A_{res}}{A} = \frac{1}{2 \cdot D \cdot \sqrt{1 - D^2}}$$
$$Q = \frac{1}{2 \cdot D} = 1.40$$

Die Resonanzfrequenz entspricht der Oszillation der Schaltung im Teillastbereich (siehe Abbildung 81).

10.1.2 Schalter und Dioden

Die Schalter besitzen anhand des Datenblatts eine Ausgangskapazität von 810pF, die Gleichrichter-Diode eine Kapazität von 41pF und die Freilaufdioden eine Kapazität von 500pF.

10.2 Simulation der parasitären Effekte

Um Lösungsansätze zu finden, wird eine Simulation der Schaltung mit den parasitären Elementen erstellt. Die Schaltung in Orcad sieht wie folgt aus:

Die Ergebnisse der Simulation sind in folgender Abbildung ersichtlich:

Abbildung 101: Simulations-Ergebnisse der parasitären Elemente

Wie bei der realen Messung in Abbildung 81 werden die Ströme von einer Oszillation überlagert und die Kommutierung erfolgt verzögert. Die Frequenz der Schwingung beträgt 456kHz

Abbildung 102: Simulations-Ergebnisse der parasitären Elemente 2

Die Simulation stimmt mit den Ergebnissen der realen Messung in der Abbildung 82 überein.

Die Amplitude des Primärstroms ist nicht so stark wie in der realen Messung und der Spannungseinbruch auf der Sekundärseite kommt nicht vor. Jedoch kann dieses Modell trotzdem für eine weitere Analyse verwendet werden.

10.3 Lösungsansätze

Die dominante Oszillation ist ein Zusammenspiel aus den verschiedenen parasitären Elementen.

Eine Lösung ist, diese parasitären Elemente zu minimieren. Jedoch müsste man dafür der Transformator neu wickeln und zwischen den einzelnen Lagen eine grössere Isolation anbringen. Dies würde jedoch die Kopplung verschlechtern und somit die Streuinduktivität erhöhen.

Eine weitere Lösung wurde vom betreuenden Dozenten vorgeschlagen. Sie sieht vor, mit der Oszillation zu arbeiten und die Schaltung in einen Resonanzwandler umzubauen. Dazu wird eine Kapazität und eine Induktivität hinzugefügt. Die vereinfachte Schaltung sieht nun wie folgt aus:

Abbildung 103: Topologie Resonanzwandler

Die Komponenten werden so gewählt um eine dominante Oszillation zu erhalten. Wählt man nun wieder das PFM-Prinzip und nimmt die Einschaltzeit konstant, können die Schaltverluste minimiert werden. Die übertragene Leistung ist somit frequenzabhängig.

Es wurde vom betreuenden Dozenten entschieden, die Lösung des Resonanzwandlers durchzuführen.

10.4 Simulation des Resonanzwandlers

Die Schaltung wurde in Orcad aufgebaut und simuliert. Diese sieht wie folgt aus:

Abbildung 104: Simulation Resonanzwandler

Die Induktivität wurde auf 200µH festgelegt und die Kapazität auf 5nF. Die Einschaltzeit wurde angepasst, um bei minimalem Primärstrom zu schalten.

Das Ergebnis der Simulation sieht wie folgt aus:

Abbildung 105: Ergebnis der Simulation

Die parasitären Oszillationen werden nun überlagert von einer dominanten Oszillation.

10.5 Realisierung des Resonanzwandlers

An dem Hauptkreis müssen einige Änderungen vorgenommen werden. Daher wird ein PCB erstellt, welcher dann an die Hauptkarte angeschlossen wird. Die Schaltung dieses PCBs sieht wie folgt aus:

Abbildung 106: Zusatz-PCB-Schaltung

Als Induktivitäten L_1 und L_2 werden Ringkern-Spulen mit Ferrit-Kern gewählt. Die zusätzlichen Dioden werden für eine Sperrspannung von 600V ausgelegt. Das Schema und das Routing des PCBs sind im Anhang ersichtlich (siehe Anhang 14.8 und 14.9)

Das Programm des Mikrocontrollers ist auf ein PWM-Signal ausgelegt, jedoch wird für den Resonanzwandler ein PFM-Signal benötigt. Da eine Änderung des Programms zu umfangreich wäre, wird für den Test ein Signalgenerator verwendet.

10.6 Test des Resonanzwandlers

Der Resonanzwandler wird auf den Nennbetrieb eingestellt und die Funktion überprüft:

Messgerät: Zimmer LMG 500

Eingangsspannung [V]	124.917
Eingangsstrom [A]	998.597E-3
Eingangsleistung [W]	124.663
Ausgangsspannung [V]	499.597
Ausgangsstrom [A]	234.350E-3
Ausgangsleistung [W]	117.229
Wirkungsgrad [%]	94.037

Messgerät: LeCroy Waverunner 44Xi

Abbildung 107: Test bei Nennbetrieb des Resonanzwandlers

Wie bei der Simulation, ist nun eine dominante Oszillation vorhanden, die Einschaltzeit wurde so eingestellt, dass bei minimalem Strom ausgeschaltet wird.

Die Sperrspannungen werden nicht überschritten. Jedoch könnte bei zu hoher Photovoltaik-Spannung die Diode D_{18} eine zu hohe Spannung erreichen. Um diese zu schützten, könnte eine Snubber oder eine Transil-Diode verwendet werden.

10.7 Verlust-Analyse

10.7.1 Durch Messung

Um genauer zu analysieren wo Verluste auftreten, wird an verschiedenen Punkten eine Leistungsmessung vorgenommen. Der Messaufbau sieht wie folgt aus:

Abbildung 108: Verlustmessung

Eine Messung bei Nennbetrieb ergab folgende Resultate:

Messgerät: Zimmer LMG 500

P1 [W]	123.536
P2 [W]	121.959
P3 [W]	117.681
P4 [W]	115.690
l1rms [A]	1.09219
I2rms [A]	1.89315
I3rms [A]	0.37986
l4rms [A]	0.29376
U1rms [V]	124.932
U2rms [V]	99.790
U3rms [V]	616.160
U4rms [V]	499.829

Abbildung 109: Ergebnisse der Verlustmessung

Durch die Messmethode wird das Ergebnis leicht verfälscht, jedoch gibt diese einen Eindruck wo die Verluste auftreten.

Verluste der Hilfsspeisung wurden im Kapitel 9.4 gemessen:

$$P_{Hilf} = 0.332W$$

Die Verluste der Schalter und der Freilaufdioden lassen sich mit den gemessenen Leistungen und der Leistungsaufnahme der Hilfsspeisung ermitteln:

$$P_{Comm} = P_1 - P_2 - P_{Hilf} = 1.245W$$

Diese fallen höher aus als ursprünglich gerechnet. Beim Einschalten ist der Primärstrom null. Jedoch passiert ein höherer Effektivwert den Schalter und die Freilaufdioden werden durch die Resonanz mehr belastet.

Um Kupfer und Kernverluste der Induktivitäten und des Transformators besser unterscheiden zu können. Werden die Kupferverluste anhand des Effektivwertes des Stromes berechnet. Dabei wird der Skin-Effekt mit einbezogen, dieser lässt sich Anhand der Transformator-Berechnung approximieren.

$$k_{sp} = \frac{P_{Cup}}{R_p \cdot I_p^2} = 1.31$$
$$k_{ss} = \frac{P_{Cus}}{R_s \cdot I_s^2} = 1.32$$

Der Widerstand der hinzugefügten Induktivitäten muss dafür noch gemessen werden:

$$R_R = 0.3\Omega$$

Somit sind die Kupferverluste:

$$P_{CuR} = 2 \cdot k_{sp} \cdot R_R \cdot I_{2RMS}^2 = 2.820W$$
$$P_{Cup} = k_{sp} \cdot R_p \cdot I_{2RMS}^2 = 0.221W$$
$$P_{Cus} = k_{ss} \cdot R_s \cdot I_{3RMS}^2 = 0.384W$$

Der Widerstand der hinzugefügten Induktivitäten ist zu gross und verursacht grosse Verluste. Dies könnte durch bessere Komponenten behoben werden.

Die Kernverluste lassen sich nun wie folgt bestimmen:

$$P_{Core} = P_2 - P_2 - P_{CuR} - P_{Cup} - P_{Cus} = 0.853W$$

Der Gleichrichter Kreis mit den drei Dioden verbraucht folgende Leistung:

$$P_{VD} = P_4 - P_3 = 1.991W$$

Diese Verluste sind unerwartet hoch und sind schwer zu erklären. Die zusätzlichen Dioden tragen einen wesentlichen Teil dazu bei. Die Diode D_5 in Abbildung 106 wurde durch eine Silicium-Carbid-Diode ersetzt, dies führte zu keiner Besserung. Daher werden die Verluste in den Kondensatoren vermutet. Diese besitzen einen gewissen Serie-Widerstand. Dieser kann anhand vom tanō bestimmt werden:

Abbildung 110: ESR-Bestimmung (nach [16] Wima, 2013)

Bei einer Frequenz von 22kHz (Einschaltzeit von 22.9µs) ergibt der E-R (Serie Ersatzwiderstand):

$$tan\delta = 12 \cdot 10^{-4}$$
$$ESR = \frac{tan\delta}{2 \cdot \pi \cdot f \cdot C} = 0.874\Omega$$

Dieser ist sehr hoch und trägt somit einen Teil zu den Verlusten bei.

Die Aufteilung der gesamten Verluste sieht nun wie folgt aus:

Abbildung 111: Aufteilung der Verluste

Es gilt zu beachten, dass diese Aufteilung approximativ erstellt wurde und sie somit gewisse Abweichungen gegenüber der Realität haben kann.

10.7.2 Durch Wärmebild

Um weiter zu analysieren wo genau Verluste auftreten, wird die Schaltung nach einem längeren Betrieb mit Hilfe einer Wärmebild-Kamera analysiert. Folgende Bilder wurden gemacht:

Abbildung 112: Wärmebildanalyse Transformator und Ausgang

Man kann gut sehen, dass die zusätzlichen Induktivitäten einen grossen Teil zum Verlust beitragen. Da der Draht kälter als der Kern ist, wird vermutet, dass die Kern-Verluste dafür verantwortlich sind.

Der Transformator hat eine niedrigere Temperatur, jedoch besitzt dieser eine grössere Masse und benötigt daher mehr Zeit sich zu erwärmen.

Die Verluste der Ausgangsdiode und der Gleichrichter-Diode lassen sich durch eine Berechnung approximieren:

Ausgangsdiode:	$P_{VD5} \approx \frac{\Delta T}{R_{thJA}} = \frac{15K}{62K/W} = 241.9mW$
Gleichrichterdiode:	$P_{VD1} \approx \frac{\Delta T}{R_{thJA}} = \frac{12.5K}{30K/W} = 416.7mW$

Dabei muss beachtet werden das eine solche Temperaturmessung durch Reflexionen gestört werden könnte und somit nicht als genau angenommen werden kann.

Abbildung 113: Wärmebildanalyse Schalter und Eingang

Auf den Bildern ist gut zu erkennen, welche Komponenten für die Verluste zuständig sind. Erstaunlich hoch fallen die Elektrolyt-Eingangskapazitäten auf, diese arbeiten schlecht bei hohen Frequenzen. Dies könnte durch eine Anpassung des parallelen normalen Kondensators verbessert werden.

Die Freilaufdioden wurden nicht gross erwärmt, somit sind diese wahrscheinlich nicht zuständig für die Verluste.

Die Verluste der Schalter lassen sich wie folgt berechnen:

Schalter:

$$P_{Vs} \approx 2 \cdot \frac{\Delta T}{R_{thJA}} = 2 \cdot \frac{10.9K}{40K/W} = 545.0mW$$

10.8 Wirkungsgrad-Messung

Der Wirkungsrad des Resonanzwandlers wurde bei verschiedenen Leistungen und Eingangsspannungen gemessen, das Ergebnis sieht folgendermassen aus:

Messgerät: Zimmer LMG 500

Abbildung 114: Wirkungsgradmessung

Es gilt zu beachten, dass die Ansteuerung der Mosfet-Treiber über einen Frequenzgenerator gemacht wird und diese Leistung somit nicht im Wirkungsgrad einbezogen wurde. Jedoch ist diese nach der Berechnung sehr gering.

Der Wirkungsgrad ist dank dem PFM-Prinzip konstant, lediglich bei tieferen Spannungen und hoher Leistung nimmt er ab. Dies ist auf den höheren Strom und somit den Kupferverlusten zurückzuführen.

Diese Ergebnisse sind unter den erwarteten Werten, jedoch wurde diese Schaltung zu Beginn nicht als Resonanzwandler ausgelegt. Die Verlust-Analyse im Kapitel 10.7 zeigt jedoch, dass durch die Optimierung einiger Komponenten der Wirkungsgrad verbessert werden könnte.

11 SCHLUSSFOLGERUNG

Die Hilfsspeisung der Schaltung funktioniert einwandfrei und reagiert schnell auf Laständerungen. Zudem ist arbeitet diese bei geringer Leistungsaufnahme. Die Messung der Primärspannung, Sekundärspannung und Primärstrom funktioniert und somit wäre der Mikroprozessor in der Lage das MPP-Tracking zu steuern und die Sicherheit zu garantieren.

Aufgrund von parasitären Elementen wurde die Hauptfunktion der Schaltung immens gestört, so dass diese abgeändert werden musste. Durch zusätzliche Elemente wurde ein Resonanzwandler erstellt. Dieser Wandler erfordert jedoch ein PFM-Signal welches der Mikroprozessor nicht generieren konnte. Das Signal wurde daher über einen Frequenzgenerator erstellt.

Aus diesem Grund konnte die Funktion des MPP-Trackings und der Betrieb an einem realen Solarpanel nicht getestet werden. Der Wirkungsgrad der Schaltung ist tiefer als erwar-

tet, jedoch sind die verlustreichsten Komponenten bekannt und die Schaltung noch optimierbar.

12 DATUM UND UNTERSCHRIFT

Sion, 12. Juli 2013

Steiner Florian

13 LITERATURVERZEICHNIS

- [1] Steiner, F. (April 2013) Semesterarbeit 2013:Maximum Power Point Tracker MPPT mit galvanischer Trennung. Sion: HES-SO Valais Wallis
- [2] Wikipedia (März, 2013) *Maximum Power Point*. Zugriff am 7. Juli 2013 unter: http://de.wikipedia.org/wiki/Maximum_Power_Point
- [3] Dexter magnetic technologies (2013) *C055038A2*. Zugriff am 7. Juli 2013 unter: http://www.dextermag.com/products-page/c055038a2-mpp-160-perm-grey-040-size.html
- [4] Magnetics (2013). *Inductor Design Calculator*. Zugriff am 03. April 2013 unter: http://www.mag-inc.com/design/software/inductor-design
- [5] International Rectifier (August, 2008) Datasheet: IRFP4668PbF
- [6] Cree (2011) Datasheet: C3D10170H
- [7] ON Semiconductor (2008) Datasheet: MBR20200CTG
- [8] Texas Instruments (August, 2012) Datasheet: AMC1200
- [9] Alegro (2012) 0 to 50 A Integrated Conductor Sensor ICs. Zugriff am 07. Juli 2013 unter: http://www.allegromicro.com/en/Products/Current-Sensor-ICs/Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs.aspx
- [10] Avago (November, 2011) Datasheet ACPL-W343
- [11] John Day Automotive Electronics (November, 2011) TI MSP430[™] MCUs are AEC-Q100 certified. Zugriff am 07. Juli 2013 unter: http://johndayautomotivelectronics.com/ti-msp430%E2%84%A2-mcus-areaec-q100-certified/
- [12] Rodolfo H. (Juli, 2013) Convertisseur DC/DC Avec MPPT. Sion: HES-SO Valais Wallis
- [13] Infineon (April, 2007) Datasheet SPD02N60C3
- [14] ST (Januar, 2002) Datasheet STPS0560Z
- [15] Texas Instruments (May, 2000) Datasheet LM431
- [16] Wima, (2013) Typical Characteristics and Graphs of the Polypropylene (PP) Film. Zugriff am 09. Juli 2013 unter: http://www.wima.com/EN/polypropylenkurven_pulse.htm
- [17] National Semiconductor (Oktober, 2003) Datasheet LMC555

14 ANHANG

- 14.1 Zeitplan
- 14.2 Magnetics-Berechnung Primärseite
- 14.3 Magnetics-Berechnung Sekundärseite
- 14.4 Schema des DC/DC-Wandlers
- 14.5 Routing des DC/DC-Wandlers
- 14.6 Schema der Steuerkarte
- 14.7 Routing der Steuerkarte
- 14.8 Schema des Zusatz-PCB
- 14.9 Routing des Zusatz-PCB
- 14.10 Materialliste

Zeitplan Diplomarbeit

Woche	Мо	Di	Mi	Do	Fr	
2	0 13.05.2013	14.05.2013	15.05.2013	16.05.2013	17.05.2013	
		Entwicklung de	Erstellen der Materialliste			
	Ausgabe des Auftrags					
2	1 20.05.2013	21.05.2013	22.05.2013	23.05.2013	24.05.2013	
	Pfingstmontag	Dimensionierung des Trafos der Hilfsspeisung + Bestellung		Entwurf des Schemas		
2	2 27.05.2013	28.05.2013	29.05.2013	30.05.2013	31.05.2013	
	Fertigstellen de	s Schemas + Erstellen des	PCB-Routings	Frankrichnam	Fertigstellen des PCB- Routings	
2	3 03.06.2013	0/ 06 2013	05.06.2013		07.06.2013	
	00.00.2010	04.00.2013	00.00.2013	00.00.2013	07.00.2013	
	Herstellung	der PCB-Karte + Wicklung	des Transformators der H	ilfsspeisung + Test der Ko	omponenten	
2	4 10.06.2013	11.06.2013	12.06.2013	13.06.2013	14.06.2013	
2	5 17.06.2013	Montage der Ko 18.06.2013	0mponenten + Uberprüfung 19.06.2013	g des Routings 20.06.2013	21.06.2013	
		·				
	Inbetriebnahme und Test der Hilfsspeisung Fehlersuche + Mess					
2	6 24.06.2013	25.06.2013	26.06.2013	27.06.2013	28.06.2013	
	Inbetriet	+ Messungen				
2	7 01.07.2013	02.07.2013	03.07.2013	04.07.2013	05.07.2013	
	Test und M	ng mit PV-Panel				
2	8 08.07.2013	09.07.2013	10.07.2013	11.07.2013	12.07.2013	
		Vergleich mit Simulation +	Fertigstellen des Berichts		Abgabe des Schlussberichts	

Feiertag

Home	Products	Design	Order	Company	English	
				Keyword Search:	Part # Search Advanced Par	: t Number Finder: >
	Ho In	me / Calculators	Calculator			
		Design Inputs				
		Material		Stack Cores	Parameters	
		MPP (Molyperma	alloy Powder)	One	DC Current (A)	2.48
		High Flux		Two	Ripple Current (Amps peak-peak)	1.3
		Kool Mµ		Three	Frequency (kHz)	20
		Kool Mµ E-Cores	3	Four	Current Density (A/sq cm)	90
		Kool Mµ U-Cores	8	Five	Full Load L (µH)	2000
		Kool Mµ Segmer	nts		No Load L (µH)	3000
		XFlux			Temperature Rise (°C)	35
		🗏 Full Load L Maxi	mum		Ambient Temperature	20

Single Layer Choke

Design	Output

Core Information

Part Number	55107-A2
ID (inches, nominal)	1.400
OD (inches, nominal)	2.250
Height (inches, nominal)	0.550
Permeability	160
Core Area (sq cm)	1.463
Path Length (cm)	14.56
AL (mH/1000 turns)	200
Recommended Header	None Availab
Select Core from List	55866-A2 (OD = 3.060, 125
english	

	Inductance at Full Load (µH)	
	Inductance at No Load (µH)	
	Effective Permeability at Full DC	
	Wound Core Dimensions (in)	
	Number of Turns	
	Wire Size (AWG)	
	Winding Factor	
	DC Resistance of Winding (Ohms)	
	Core Loss (mW)	
ōμ	Copper Loss (mW)	
	Total Losses (mW)	
	Temperature Rise (degrees C)	

Inductor Information

(value between -50 and 150, in degrees C)

2021.35
2928.20
110.4
2.977 x 1.09
121
12
0.46
0.045
767.7
363.0
1130.6
5.2
1

SAVE DESIGN

LOAD DESIGN

© 2013 Magnetics Privacy Policy Site Map Contact Magnetics

1 von 1

lone	Products	Design	Order	Company	English	
				Keyword Searc	h: Part # Search: Advanced Part	: t Number Finder: >
	На	me / Calculators				
	Ir	ductor Design Ca	alculator			
		Design Inputs				
		Material		Stack Cores	Parameters	
		MPP (Molypermallo	y Powder)	One	DC Current (A)	0.45
		C High Flux		C Two	Ripple Current (Amps peak-peak)	0.23
		C Kool Mµ		C Three	Frequency (kHz)	20
		C Kool Mµ E-Cores		C Four	Current Density (A/sq cm)	90
		C Kool Mµ U-Cores		C Five	Full Load L (µH)	61900
		C Kool Mµ Segments			No Load L (µH)	1000
		C XFlux			Temperature Rise (°C)	35
		🗌 Full Load L Maximu	m		Ambient Temperature	20
		Single Layer Choke	9		(value between -50 and 150, in de	grees C)

Part Number			
ID (inches, nominal)			
OD (inches, nominal)			
Height (inches, nominal)			
Permeability			
Core Area (sq cm)			
Path Length (cm)			
AL (mH/1000 turns)			
Recommended Header			
Select Core from List			
English C Metric			

1.400	l
2.250	E
0.550	١
160	١
1.463	١
14.56	١
200	0
None Availab	C
55866-A2 (OD = 3.060, 125µ	(

Inductance at No Load (µH)	89780.00
Effective Permeability at Full DC	110.5
Wound Core Dimensions (in)	2.930 x 1.07
Number of Turns	670
Wire Size (AWG)	20
Winding Factor	0.43
DC Resistance of Winding (Ohms)	1.654
Core Loss (mW)	733.0
Copper Loss (mW)	440.9
Total Losses (mW)	1174.0
Temperature Rise (degrees C)	5.5

LOAD DESIGN

PRINT

SAVE DESIGN

© 2013 Magnetics Privacy Policy Site Map Contact Magnetics

	ح 🗸	۵	U	<u>م</u>	ш	<u></u> <u></u>			
6						31 2013 SCHS			σ
80						DFS 24.6		DATAØ1\ MSP430.pcb	0
	-								
7									7
9							430	TE ECOLE VALAISANNE	g
5		Ē						HAU	5
4									4
м			TERES 30762						£
2									2
-									-
0									0
		۵	U		ш		ш		

		I					,
-	-	<u> </u>	Ŋ	4	u)	013 Steiner F.	reuit.SCH J
.	-					DES 06.03.2 REV V1	1/1 Res_ci
	_					Snubber	
:	-						т
c							U
	-						NE
L	_	D5 2560 J7	ິ ຊິ			Steiner	E VALAISAN
ı		C1 C2 10000001/10000 C3D10170H				TSTD Florian Snubber	HAUTE ECOLI
4	2	L 10	9 C				٩
c		1 <mark>- L1</mark> 100u J3	180u J4				o
		5	2				m
-	ζ						4
		N	M	4	ω	ω	

	▼	۵	U	۵	ш	L.			
6						.13 SCHS		cb	6
80						DES 02.07	REV V1.0	PCB/ Res_circuit.po	8
						-			
7									7
9					7	Florian Steiner	circuit	E ECOLE VALAISANNE	9
5		S.				TSTD	RES (HAUT	5
4			J3 rian Steiner cult V1.0 013 ARC	4 ¹					4
£			LTSTD FIC RES CIR 04.07.2	57	_				5
2									2
-									٢
0									0
			U		ш		LL.		

Materialliste					
Komponent	Typ	Anzahl	Vertreiher	Finzelpreis [CHF]	Total [CHE]
Kern	C055866A2	1	mag-inc	5.00	5 00
Diode	C3D10170H	1	Mouser	20.10	20.10
Diode Schottky	STPS0560Z	7	Distrelec	0.49	3.43
Diode Schottky	MBR20200	2	Farnell	1.30	2.60
Mosfet	IRFP4668PbF	2	Farnell	10.80	21.60
Mosfet Depletion	BSP129	1	Farnell	1.05	1.05
Mosfet Cool Mos	SPD02N60C3	1	Farnell	1.95	1.95
Hall-Strommessung	ACS712ELCTR-05B-T	1	Arrow	1.75	1.75
Treiber	ACPL-W343	2	Farnell	5.65	11.30
Prozessor	MSP430F5510IPT	1	Farnell	4.55	4.55
CMOS Timer	LMC555CM	1	Farnell	1.80	1.80
Opamp 2-Channel	LM6142AIM	1	Distrelec	6.50	6.50
Opamp single	MCP601	1	Distrelec	2.16	2.16
Isolationsverstärker	AMC1200SDUB	1	Farnell	7.70	7.70
Nand Schmitt-Trigger	CD4093BE	1	Distrelec	1.03	1.03
LDO-Spannungsregler	LP2981IM5-3.3	1	Farnell	1.15	1.15
Spannungsregler	LM431	2	Farnell	1.17	2.34
Spannungsregler	LMV431	1	Farnell	0.68	0.68
Transistor	BS170	1	Farnell	0.33	0.33
Transistor	BC177B	1	Farnell	1.60	1.60
Kern RM8 N41	B65811-J250-J41	1	Distrelec	4.86	4.86
Coil Former 12 Pins	B65812-C1512-T1	1	Distrelec	2.81	2.81
Clamps	B65812-A2203X0	2	Distrelec	0.92	1.84
Filterinduktivität 330µH		10			
Zenerdiode 18V 1.3W		1			
Zenerdiode 4.7V		1			
Zenerdiode 300V Transil	1.5KE300CA	1	Farnell	0.95	0.95
Diode	D1N4148	3	Farnell	0.10	0.30
			Total		104.38