

Degree Programme
Systems Engineering

Major Infotronics

Bachelor’s thesis
Diploma 2018

Barman Corentin

Four-primary light environment system for specific
light stimulation of photoreceptors of the eye

Professor
Mart ial Geiser

Expert
Sei- ich i Tsu j imura

Submission date of the report
22.08.2018

This document is the original report written by the student.
It wasn’t corrected and may contain inaccuracies and errors.

Barman Corentin

Page 1 / 38

TABLE OF CONTENTS

1 LIST OF ACRONYMS 2

2 INTRODUCTION 3

3 DESCRIPTION 4

3.1 CURRENT EQUIPMENT 4
3.2 LED CUBE 4
3.3 PROJECT OBJECTIVES 4

4 ANALYSING THE LED CUBE 5

4.1 HARDWARE ANALYSIS 5
4.2 FLAWS 6
4.3 INTENDED MODIFICATIONS 6

5 HARDWARE DEVELOPMENT 7

5.1 MICROCONTROLLER 7
5.2 PWM REGULATOR 8

6 INTEGRATION INSIDE THE LED CUBE 13

7 COMMUNICATION PROTOCOL 14

7.1 DESCRIPTION 14
7.2 IMPLEMENTATION 15

8 EMBEDDED SOFTWARE 17

8.1 STM32CUBEMX AND TRUESTUDIO 17
8.2 DATA TRANSMISSION 18
8.3 DATA REPRESENTATION 18
8.4 JSON DECODING 19
8.5 CONTROLLING THE LED CUBE 22
8.6 COMPLETE UML DIAGRAM 23

9 PC SOFTWARE 24

9.1 TOOLS AND LIBRARIES 24
9.2 FUNCTIONALITIES 25

Barman Corentin

Page 2 / 38

10 EXPERIMENTS AND RESULTS 31

10.1 CALIBRATION 31
10.2 METAMERS 34
10.3 SUMMARY OF RESULTS 36

11 CONCLUSION 37

12 ANNEXES 37

13 REFERENCES AND SOURCES 38

1 LIST OF ACRONYMS
Acronym Description
LED Light-emitting diode
ipRGC Intrinsically photosensitive retinal ganglion cells
PWM Pulse width modulation
USB Universal serial bus
STM STMicroelectronics
PC Personal computer
IC Integrated circuit
GPIO General purpose input/output
PCB Printed circuit board
IDE Integrated development environment
HAL Hardware abstraction layer
UML Unified Modelling Language
WPF Windows Presentation Foundation
XAML Extensible Application Markup Language
MVVM Model-View-ViewModel
UI User interface
µC Microcontroller

Barman Corentin

Page 3 / 38

2 INTRODUCTION
Smartphones, televisions, computer screens, LED lights, every day we are exposed to artificial lighting
and we still don’t know all of the consequences. LED-based technology becomes more and more
popular every day, thanks to their efficiency and durability. But as with every recent technology, we
take them for granted without understanding all of the influence they could have on our body. We
hear in the news regularly that blue light provokes sleep disorder, and it is now well known. But how
fast does our body respond to it? Does changing the blue light intensity but keeping a similar perceived
colour changes anything?

That’s this kind of questions the laboratory from Prof. Sei-ichi Tsujimura, Ph.D., wants to answer. They
specifically focus on the intrinsically photosensitive retinal ganglion cells (ipRGC), which constitute the
third class of photoreceptors, in addition to rod and cone [1]. The ipRGC receptors produce
melanopsin, influence the pupillary light reflex and play a major role in the circadian rhythm.

To conduct these researches, they need very specific equipment that can be able to reproduce
precisely a given light source and vary it to generate different kinds of stimuli. They implemented
different methods with multiple projectors and light filters, and four high power LEDs redirected on
one surface, called a four-primary display.

Now they purchased a lighting product named LED Cube that contains a variety of different LEDs. The
goal is to reproduce the four-primary display but be able to choose any group of LEDs for that purpose.
At the same time, the light output must keep a high precision and be finely tuneable. This report details
the development process and modifications brought to the LED Cube to answer these needs.

Barman Corentin

Page 4 / 38

3 DESCRIPTION

3.1 CURRENT EQUIPMENT
The display system is composed of 4 high-power LEDs (Red, Green, Blue and Yellow) that are controlled
using a PWM to change the light intensity output. Each light output uses an optical cable to redirect
and combine all of them on the same surface. This result in a bulky and expensive equipment. The
equipment is also prone to heating, and it can cause slight calibrations errors during the use.

3.2 LED CUBE
The LED Cube is made by the company Thouslite. It is described as an “innovative spectral tunable
lighting product based on multi-channel LED technology, designed to create lighting environments with
different space and luminance requirements, including lighting room and large test chart 45/0
illumination” [1].

Figure 1: LED Cube promotional images (source: LED Cube user manual)

As the current equipment is very expensive and difficult to produce, the LED Cube seems like a decent
cheaper alternative that can be used to achieve the same result.

3.3 PROJECT OBJECTIVES
The LED Cube needs to be analysed to see if it can be used to generate precise light stimuli. If not, it
needs to be modified to allow precise control of the high-power LEDs to control their individual light
intensities output. A software will allow to select the desired output and control the system.

Barman Corentin

Page 5 / 38

4 ANALYSING THE LED CUBE

4.1 HARDWARE ANALYSIS
By removing the front panel, we can access the LEDs and see the configuration.

Figure 2: LED Cube with the front panel removed

According to the documentation of this model, it contains 11 different kinds of LEDs, ranging from
420nm to 660nm. From what can be seen, there are 64 LEDs soldered, grouped by 4 identical set of
16. There is space left to solder 4 more LEDs for each group.

As the LED Cube is meant to be used for lighting, the same white LEDs are present multiple times.
Conversely, the more unique colours are present only once.

Removing the back panel reveals the control electronics.

Figure 3: LED Cube control electronics

Barman Corentin

Page 6 / 38

It is composed of three parts (in order from the picture): the power supply that converts the voltage
from the grid, the electronic board that regulate the LEDs and the microcontroller board.

By further analysing the boards and reverse engineering the electronics, the following statements have
been deducted:

 The LEDs intensity is changed with a programmable constant current regulation.
 The desired programmable value is sent from the microcontroller to the current regulators

using a serial communication and shifting registers.
 The LEDs are powered with 15 Volts, and four are connected serially each time, forming the

groups seen before.
 The maximum current transferred to the LEDs is 500mA.

4.2 FLAWS
The objective is to use the LED Cube to generate dynamic light patterns to stimulate the eyes receptors.
However, through its internal working process, it is designed to generate any desired light spectrum
but not change it rapidly. Using shift registers to control the LEDs reduce greatly the frequency at which
the light intensities can be changed, and it may be not suitable to use. Because all the LEDs must be
changed each time a modification is done on the input, it may cause timing problems too.

The use of current regulation can influence the linearity of the LED and cause a light wavelength shift.
This effect can be present with a PWM regulation too, but the impact is smaller and more linear [2].
By measuring the light peak wavelength at low and high intensity, we can see the impact of current
regulation and we will be able to compare it later with the PWM regulation. Here are the peak
wavelengths for a sample of the LEDs from the Cube:

Tableau 1: Peak Wavelength of the LEDs vs. LED Current %

Some of the LEDs are stable, but some are varying a lot, like the 505nm that change its wavelength of
nearly 10nm. This influence can’t be neglected with the current system.

Also, the current system allows controlling the LED current with 1000 steps precision. This precision is
the minimum required, having more steps is preferred.

4.3 INTENDED MODIFICATIONS
Change the current regulation system to a PWM regulation. This will require to change entirely the
control electronics. As a software PWM is not always precise, the microprocessor will need to generate
only hardware PWM. Because there are 20 different channels possible for LED outputs (counting the
ones not used), the microprocessor will need 20 hardware PWM.

The power supply board will be kept, as it is satisfactory for this application. The microprocessor board
will be changed entirely. The current control board will be kept too because it contains the power
control for the LED supply and the power regulators for the microprocessor board.

A new software is developed to provide a better interface to the LED Cube. It will allow to control all
the LEDs precisely and generate dynamic patterns to be played.

Current % 420nm 450nm 475nm 505nm 520nm 540nm 595nm 610nm 635nm 660nm
10% 418 452 476 514 529 544 593 612 634 659
50% 418 451 475 508 524 543 595 611 637 660
100% 418 450 475 505 522 543 597 610 639 661

Barman Corentin

Page 7 / 38

5 HARDWARE DEVELOPMENT

5.1 MICROCONTROLLER

5.1.1 Choice
An already made development board will be selected as it is easier to maintain and faster to use. As
the ARM family of processors is used in the precedent system, it was decided to choose one of them
again.

The others necessary prerequisites are 20 hardware PWM outputs, USB communication to a PC and
integrated programming IC as to not require an external tool, for ease of use. At the same time, the
highest performance is desired, and the lowest cost is considered.

Answering all these criteria is the STM32F407VG Discovery board [3]. It contains a few pre-built
features and offers a large choice of GPIO, allowing to access all 20 needed PWM for our usage. It is
one of the fastest boards offered by the manufacturer STMicroelectronics.

Figure 4: STM32F4 Discovery Board

A lot of tools are provided by STMicroelectronics to configure and use this board easily.

Barman Corentin

Page 8 / 38

5.2 PWM REGULATOR

5.2.1 Description
The simplest PWM regulator is realised with the help of a transistor, driving the load in synchronisation
with the PWM. But a circuit as simple as this one does not fit this application. Different specifications
must be considered. The current can be high, up to 500 mA. The voltage on the regulator will vary, as
all the LEDs don’t possess the same forward voltage. The timings must be precise, and the regulator
must be able to operate at a frequency of at least 1000 Hz.

One of the features requested is the ability to change the current flowing through the LEDs. It must be
precise and constant, as the intensity of light directly depends on it.

For all the reasons cited above, the choice of the regulator is directed at the CAT4101, a constant-
current LED driver with PWM dimming. It is a specialised component that solves all our needs and is
meant to be used in this kind of applications.

Figure 5: CAT4101, Typical application circuit (source: CAT4101 datasheet)

The current can be adjusted by changing the resistor on the RSET pin. Sadly, as it can be seen in the
following figures, the relation is not linear. For our application, as the current won’t be modified very
often (only during calibration), we can be satisfied with this constraint.

Figure 6: LED Current vs. RSET Resistor (source: CAT4101 datasheet)

Barman Corentin

Page 9 / 38

As the nominal current in the LED is of 500mA, the upper limit of the current will be set to this value.
Then a trimmer will be used to lower the current as desired. This will offer the possibility to change
the current and protect the LEDs at the same time.

5.2.2 Timing characteristics
Another specification to take into consideration is the precision of the PWM. In fact, each time we
toggle the LED output, the current and voltage will take a certain time to rise and stabilise. This
characteristic is specified as follows:

Figure 7: PWM Timing (source: CAT4101 datasheet)

These characteristics don’t influence the precision with high duty cycle, because the difference will be
negligible. But at lower duty values, it will have an influence. As the times are fixed, the precision will
depend on the frequency used for our PWM and the duty cycle. This relation is shown in the next
figure:

Barman Corentin

Page 10 / 38

Figure 8: LED Current vs. PWM Duty Cycle (source: CAT4101 datasheet)

As we will be using a PWM frequency close to 1 kHz, the small difference will occur when the duty
cycle will be under 1%, getting worse as it approaches 0%. No PWM regulators can compensate entirely
for this characteristic, as all components will need time to switch between the logic levels.

5.2.3 Implementation
The implementation is straightforward and follows the typical application. As mentioned, a trimmer is
used to change the RSET resistor value.

Figure 9: Implementation in Circuit Maker

There are 20 different LED channels wired in the LED Cube. Only 16 of them are used for this model,
but 20 channels are implemented to add LEDs as needed.

Barman Corentin

Page 11 / 38

Figure 10: 3D view of the finished board – Topside

5.2.4 Thermal specifications
The CAT4101 possess an automatic thermal shutdown protection that becomes active whenever the
temperature exceeds 150°C. To prevent from reaching a temperature that high, the heatsink from
the previous board will be reused.

Thermal vias have been added under the regulators and they all connect to form a thermal pad in the
centre of the board. The heatsink is then fixed on top of the thermal pad and allow optimal heat
transfer.

Figure 11: 3D view of the finished board - Bottom side

The power dissipation of one CAT4101 can be calculated as follows (given by the datasheet):

𝑃 = (𝑉 × 𝐼) + (𝑉 × 𝐼)

With 𝑉 the voltage at the LED pin.

If we consider the worst possible case, where 𝑉 is at maximal value for the CAT4101 and 𝐼 =

500 𝑚𝐴 and we ignore 𝑉 × 𝐼 as it is inferior as 1% of the final value. We then get:

Barman Corentin

Page 12 / 38

𝑃 = 𝑉 × 𝐼 = 6 × 0.5 = 3 𝑊

Using an online tool from the company Celsia [4], we can determine the size of the required heat sink
to use. By their experience, it estimates the overall heat sink volume within +/- 15% of a final design.

The maximal thermal that will be dissipated is 𝑄 = 20 × 3 = 60 𝑊. The volumetric thermal
resistance 𝑅 is dependant on the air flow. As the LED Cube possess two ventilators, we will use
𝑅 = 80, as specified in the following table:

Figure 12: Airflow influence on Volumetric Thermal Resistance (source: Celsia [4])

The heatsink we are using is of dimensions 155 × 60 × 20𝑚𝑚. We can compare the desired volume
with the actual volume. The desired volume is given by the equation:

𝑉 =
𝑄 ∗ 𝑅

Δ𝑇

Figure 13: Comparison between estimated and actual heat sink volume (tool used: Celsia [4])

The heat sink is bigger than needed. The actual heat source power will be lower than 60 Watts in all
cases, as the 𝑉 voltage is always lower than the max value of 6V in our application. Even more, in
the experiences, only 4 channels are used at the same time.

Barman Corentin

Page 13 / 38

6 INTEGRATION INSIDE THE LED CUBE
One of the objectives was to incorporate entirely the new electronics system inside the cube, with no
apparent modifications from the outside.

Figure 14: New control electronics inside the LED Cube

On the left, the power supply has been kept. The new board is on the right, under the heat sink that
has been reused from the central board. The microcontroller board is fixed over the central board
using a standard prototype board where the cables transmitting the PWM are connected.

For programming and debugging, a different USB cable is used from the one that receives the
communication data. As the programming cable won’t be needed afterwards, the USB micro cable is
adapted to connect to a USB type B, identical to the original LED Cube. Using this, the external
connections are similar and the whole build look the same as before.

Figure 15: LED Cube interface, power supply and USB

Barman Corentin

Page 14 / 38

7 COMMUNICATION PROTOCOL

7.1 DESCRIPTION
The intention of the project is to generate dynamic light patterns tailored for specific experiments
that require precise timing and light intensity control.

With the current system, the PC software generates different configuration values depending on the
LED calibration and desired light stimulation, that are then sent to the microcontroller. The
microcontroller will then generate the patterns intensity that will be played during the experiment
based on the received configuration.

Figure 16: Current system of data transmission and output generation

As the microcontroller oversees the generation of the patterns, if the experiment is modified, the
microcontroller needs to be reprogrammed at the same time to answer the needs of the new
experiment. They are highly linked and dependent one from the other.

Now if we change the order in which these operations are done, and let the PC generate the patterns
and send the entirety to the microcontroller, we have a more flexible system.

Figure 17: Desired system of data transmission and output generation

The microcontroller is now only responsible for one task, to play the generated patterns on the LEDs.
The PC now will take care of generating these patterns and format them in a comprehensible way. It
is only needed to change the code on the side of the PC when we want to change the experiment.
The disadvantage is that the communication protocol is now dynamic and must adapt for any
possible data, making it more difficult to implement.

Barman Corentin

Page 15 / 38

7.2 IMPLEMENTATION

7.2.1 Pattern Data
The pattern data contains a set of data that is designed to be played in succession to form a pattern.
As memory is limited in the microcontroller, the data is separated from the pattern itself to be reused
in different cases.

7.2.2 Pattern
Using an index, the pattern is linked to a set of data. On top of that, the pattern describes how the data
should be interpreted. The interval attribute indicates the time between two data point, the duration
indicates for how long the pattern should be repeated until loading the next one. And finally, the start
position allows beginning the pattern at a different position in the data.

Here is an example of a sinus pattern. It contains 100 data points and specifies a 10ms interval between
each point. The desired duration is 3s. The sinus will then be looped 3 times to match the specifications.

Figure 18: Example of a sinus pattern

7.2.3 Sequence
A sequence contains mainly a list of patterns that will be played in order. It contains at the same time
the LED index that specifies the correct LED the sequence is destined to.

7.2.4 JSON

Figure 19: JSON Data UML Model

Barman Corentin

Page 16 / 38

To store and transmit the desired data, a convention or protocol must be defined for it. As the data
content can change, it must be flexible. Multiple file formats to transmit data are widely used, like XML
(Extensible Markup Language [5]) and JSON (JavaScript Object Notation [6]). Both can fit our
application, but JSON is easier to read, write and parse. For this reason, it was selected.

Here is an example of what the saved data looks like:

{
 "PatternDatas": [
 {
 "Data": [617, 655, …, 539, 578]
 },
 {
 "Data": [0, 12, …]
 },
 {
 "Data": [1000, 1062, …]
 }
],
 "Sequences": [
 {
 "LedIndex": 0,
 "Patterns": [
 {
 "PatternDataIndex": 0,
 "Interval": 10,
 "StartPosition": 0,
 "Duration": 1000
 },
 {
 "PatternDataIndex": 0,
 "Interval": 10,
 "StartPosition": 0,
 "Duration": 5000
 },
 …
]
 },
 {
 "LedIndex": 1,
 "Patterns": […]
 },
 …
]
}

Figure 20: JSON data example (parts are omitted for clarity using “…”)

For ease of use, both the embedded and the computer software must be able to read this file and
interpret it.

The computer software will then generate them, be able to save and open them, and finally send the
content to the microcontroller to be played.

Barman Corentin

Page 17 / 38

8 EMBEDDED SOFTWARE

8.1 STM32CUBEMX AND TRUESTUDIO
To facilitate the configuration of the code, a tool is provided by STMicroelectronics, named
STM32CubeMX. A basic setup specifically made for the microcontroller board is available with the
software.

Not only does the program generate the configuration code wanted, but it generates the project files
for different kind of integrated development environment (IDE). For this project, the selected IDE is
Atollic TrueSTUDIO for STM32 [7]. As Atollic is part of STMicroelectronics, TrueStudio has all the
features and complete support for their boards, completely free and with no license system.

The combination of these two softwares allows an easy integration and initial configuration. Therefore
all the timer’s initialisation code and the USB connection code have been generated this way.

Figure 21: IO configuration in STM32CubeMX

Barman Corentin

Page 18 / 38

8.2 DATA TRANSMISSION
The data transmission is done over a USB cable. As the USB protocol is complex to implement for data
transmission, we will use another functionality of the board, a virtual serial port. The hardware
abstraction layer (HAL) given by STM allows to send and receive serial data without taking care of the
specific USB implementation. The communication handshake is taken care of automatically, and the
connected PC will see the board as a serial communication port (COM port).

Figure 22: Virtual COM port over USB

The USB protocol will ensure no data is lost during the transmission.

8.3 DATA REPRESENTATION
The data representation on the side of the microcontroller must be optimised to use the limited
memory space to the fullest. Using dynamic memory allocation is undesired, as it risks causing memory
fragmentation and maintaining the code will be more complex.

If the JSON data representation is then used, a maximum size for pattern data is defined. The data
length is defined as the longest pattern desired. But then, all the shorter patterns will cause to lose
data, as it can’t be used.

Figure 23: Memory usage example with fixed size patterns

The alternative is to place all the data in a contiguous array, that way no space is lost in between
each pattern data. This gain comes at a small cost, we can’t modify the length of each pattern once
it’s set. The whole array must be cleared, and then filled again completely.

0% 20% 40% 60% 80% 100%

Pattern data 1

Pattern data 2

Pattern data 3

Pattern data 4

Memory usage example with fixed size patterns data

Used memory Free memory

Barman Corentin

Page 19 / 38

Figure 24: Memory usage example with a shared array

 To realise this memory implementation, the UML representation for the JSON Data will be slightly
different.

Figure 25: UML Data representation for the embedded software

The raw data seen before is still saved based on the models on the right. But now to consider the
memory limitations, maximum sizes have been defined for the containers. To access and modify the
data, we now must use the accessor provided. The data are referenced using their indexes in the
containing class.

8.4 JSON DECODING

8.4.1 Description
The JSON data files can become relatively big depending on the number and size of the patterns data.
Usually, the data is decoded once the complete file has been received, this necessitates to allocate as
much memory for storing the data than decoding it. We could always split the sent data to reduce this
influence, but the problem will still be present at the core.

The other solution is to decode the data at the same time we receive it. Some frameworks allow to do
this, but the data is usually processed only at the end when one complete element has been received.
For the big arrays like the pattern data, this will not solve the problem as the received data must be

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Data array

Memory usage example example with shared array

Pattern data 1 Pattern data 2 Pattern data 3 Pattern data 4 Free memory

Barman Corentin

Page 20 / 38

kept in memory. What is needed is a completely streamed JSON decoder, that decodes and store the
data at the correct position in memory as soon as it has been received.

The only memory needed for this decoder is a small buffer at the start to swap with the serial port to
receive and decode at the same time, some variables to hold the currently decoded value and multiple
string buffers to retain the names of the variables.

The decoder will be able to find the correct destination for each data or discard it if it is not needed.

8.4.2 Implementation
The correct implementation of JSON is described on the website json.org [6]. They provide these
diagrams to understand it better. We will implement a decoder working with a state machine to
process the different steps. As all the functionalities of JSON are not needed, we will consider only the
desired cases. If the decoder finds something it is not capable of understanding, it will just ignore it.

The first step is finding the start of the file and separating data in name/value pairs. This is described
as follows:

“An object is an unordered set of name/value pairs. An object begins with { (left brace) and ends
with } (right brace). Each name is followed by : (colon) and the name/value pairs are separated by
, (comma).” [6]

Figure 26: JSON object description (source: [6])

The string part works the same as a C string, wrapped in double quotes. The value can take different
types and is more difficult to process, as each case must be taken care of. For our implementation,
we will ignore the values true, false and null, as they are not needed. True and false can be replaced
by an integer number. The floating points numbers are not implemented too.

Figure 27: JSON value types (source: [6])

As the values can contain objects, the JSON document can become infinitely long and complicated.
This problem is usually taken care of with recursion, but because of memory and call stack limitations,
it is a bad idea to use it on an embedded system.

Barman Corentin

Page 21 / 38

Multiple state machines for each “level” of the JSON document will be used instead. They will contain
the previous data. Only the last level is called to process the data, and it will redirect to the next level
when it finishes processing.

Arrays are a special case too because they give multiple values for a single string. As the data will be
given processed one value at a time, we will need to keep a counter to index it. And because they can
contain objects that can contain arrays again, the counters need to be implemented for each “level”
of the decoder.

“An array is an ordered collection of values. An array begins with [(left bracket) and ends with] (right
bracket). Values are separated by , (comma).” [6]

Figure 28: JSON array description (source: [6])

The implementation of the state machine is then as follows:

Figure 29: JSON decoder state machine

We can see the different parts described before with the colours. In blue is the array, in orange is the
value and in green is an object. When a curly brace { is detected (as can be seen near the centre of the
figure) a new state machine will be started and this one will be paused.

Barman Corentin

Page 22 / 38

The decoder will send all information received to a generic interface (JsonObject_t). This interface is
implemented by the different levels of the JSON document (JsonMainObject, JsonPatternData,
JsonSequence and JsonPattern). The decoder will use the interface to send the data to the correct
recipient and use them to know if the recipient must be changed.

Figure 30: UML description of the JSON decoder and interfaces

The recipients will then change directly the program memory to store the newly received values.
They will use the accessor classes described earlier (8.3 Data representation).

8.5 CONTROLLING THE LED CUBE
The controller is very simple. It simply retrieves the serial port data and sends it to the decoder. It
doesn’t do anything else except for the initialisation of the peripherals.

Then, sending commands must use the JSON protocol too. It is done by detecting string names received
in the main object. For example, sending this data will start the third LED sequence:

{
 "StartSequence": 3
}

Other commands to control the LED duty cycle in real time and start/stop all the sequences have also
been implemented. More can be easily be added the same way. The LED cube is then controlled from
the PC software.

Barman Corentin

Page 23 / 38

8.6 COMPLETE UML DIAGRAM

Figure 31: Complete UML Diagram of the embedded software

Barman Corentin

Page 24 / 38

9 PC SOFTWARE

9.1 TOOLS AND LIBRARIES
The previous project was using a Windows Forms Application in C++ to implement the PC program. As
Microsoft dropped support for this kind of applications since Visual Studio 2012 [8], it is recommended
to use C# and their new designers for a Windows Presentation Foundation (WPF) application.

C# is similar to C++, and with the .NET standard library provided by Microsoft allows to implement an
application quicker and safer. As WPF was started in 2006, these kinds of applications are now well
known and plenty of documentation and tutorials can be found easily.

WPF uses the architecture Model-View-ViewModel (MVVM). The view contains what is seen, as in the
user interface. It is written in XAML, a declarative XML-based language made by Microsoft. When the
user does an action, the view will send the information to the ViewModel, that will process it and
decides of the actions. The model contains all the data the ViewModels share and need to act on. The
View Model is basically a logic interface between the View and the Model.

Figure 32: Model-View-ViewModel relations

The additional libraries used are:

 A user interface design library, Material Design in XAML [9] was used to give a more modern
look to the application.

 A JSON decoding and encoding library, Json.Net [10].
 A library to plot graphs in C#, LiveCharts [11].
 A library to do matrix mathematics, Math.Net Numerics [12].

All these libraries are free to use and open source on Github.

Barman Corentin

Page 25 / 38

9.2 FUNCTIONALITIES
The only mandatory functionality of the program was to be able to send a configuration file and start
the sequences on the LED Cube. Most of the others options the program does could just be done in
code behind without visual feedback. They were done to simplify the use of the program and not need
to change the code and build the application for every small modification.

9.2.1 Virtual COM port communication and configuration
The first step of the program was to connect to the LED Cube and be able to send the JSON file. In a
Windows 10 computer, the correct driver is installed when the LED Cube is connected, and a COM port
is automatically assigned.

The COM port number will vary on each computer, so a configuration field was added to change this
parameter accordingly. The other configurations of the serial communication can also be changed. This
data can then be saved to be reused the next time the software will be launched.

Then connecting to the serial port from the code is simple by using the provided class SerialPort from
Microsoft libraries.

Figure 33: Serial port configuration and testing

Barman Corentin

Page 26 / 38

9.2.2 Direct control of the LEDs
To test and demonstrate the LED Cube, a functionality allows to directly change the intensity of every
LED channel with sliders. When the value is changed, the software will send a command to the Cube
to modify the value of the duty cycle from the desired PWM channel.

Figure 34: User interface of the direct control of the LEDs duty cycle

This is an example of the command used to change the PWM output:

{
 "LED" : {
 "LedIndex" : 3,
 "PWM Duty" : 1000
 }
}

Figure 35: JSON command to change the duty cycle to 1000 for the LED n°3

Barman Corentin

Page 27 / 38

9.2.3 JSON serialisation
No need for a custom decoder this time, as there is no memory limitation on the PC software. A few
more fields have been added to the data model for better visualisation, like the names of the patterns
and colour of the sequences.

Figure 36: Data model inside the PC software

Other than that, it is similar to the original model. The new fields can be sent to the LED Cube too, as
they will just be ignored.

What makes this data model interesting now is that once the different classes are implemented, the
process of serialisation and deserialization requires only one line of code thanks to the library Json.Net
[10].

This simple process allows us to save the JSON content to a file to save the changes done and even
load a configuration that was made with another program if it maintains the same model. This way, it
would be possible in the future to keep this program as it is to not put too many functionalities in one
place, and just use it to load the files generated elsewhere and send them to the cube. The software
would be easier to maintain.

Barman Corentin

Page 28 / 38

9.2.4 Sequences visualisation
One of the first ideas for this software was the possibility to see the sequences that were about to be
played on the LED Cube. The first step to achieve that goal is to represent a pattern. As we know the
pattern shape, the interval and duration we can just graph it dynamically.

For this example, we will use a sinus of amplitude 1000, containing 100 data points.

Figure 37: Description of the content of a pattern visualisation

For an interval of 10ms and a length of 1.5s, the 100 data points sinus will be played 1.5 times, as we
can see with the visualisation. The parameters can be changed directly in the program to observe
their influence.

Now to represent a sequence, we will put multiple of these patterns on a row and add a sequence
options card at the front to be able to change which LED this sequence will be played on.

Figure 38: Example of a sequence composed of 3 patterns

Barman Corentin

Page 29 / 38

Multiple sequences are then simply put next to one another, accordingly to the JSON document.

Figure 39: User interface when visualising multiple sequences

To add or remove sequences or patterns the edit mode can be activated, and small round buttons will
appear everywhere a modification can be made. This allows to quickly edit the currently loaded
configuration. The edit mode can then be deactivated to make the buttons disappear.

Figure 40: User interface with edit mode activated

Barman Corentin

Page 30 / 38

9.2.5 Generate preprogrammed sequences with different parameters
When testing and calibrating, the same operations are done again and again by changing only certain
values. The objective here was to be able to paste directly the data from excel, and not have to rebuild
the application again every time. This way, these small changes could be tested faster.

Here the example that was made is to generate specific colours based on the intensity to voltage array.
This array is a result of the calibration showing the non-linearity of the LEDs. How it is generated and
used will be explained by the experiences in a later section “10 Experiments and Results”.

Figure 41: User interface for generating sequences of data

Barman Corentin

Page 31 / 38

10 EXPERIMENTS AND RESULTS

10.1 CALIBRATION
The first objective was to get the intensity graphs from each LED, to observe the linearity for the
main wavelength and the luminance. The old electronics in the LED Cube was using a current
regulation and that was causing a noticeable shift in the LED wavelength.

If the luminance is not linear, that can be corrected by remapping the PWM values with the
measurements. But nothing can be done for the wavelength. That’s why one of the main focus was
on the reliability of the PWM control for this matter.

The device used to measure a given spectrum takes 3 minutes for each configuration. It was decided
to do 16 different points per LED. The Cube has 16 different LED channels. The total time taken to do
one set of measurements is then 12.8 hours, automated. The students from the laboratory where
then of huge help in processing the data and generating the following graphs.

In this report we will focus on only one of the LED to provide context. The other measurements and
graphs can be found in annexe. The chosen LED has a wavelength of 595nm, the colour is close to
orange-yellow. It is the LED that was found to be the less linear and is then the best example to
represent the steps involved.

10.1.1 Spectrum measurement
Each line of this graph represents a different PWM duty cycle. It was linearly increased with steps of
1/16 of the maximum value.

Figure 42: Spectrum at multiple different duty cycles of the 595nm LED

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

380 430 480 530 580 630 680 730 780

RA
DI

AN
CE

 [
 W

 /
M

^2
 ・

SR
]

WAVELENGTH [NM]

595nm LED spectrum

Barman Corentin

Page 32 / 38

10.1.2 Wavelength shift
By selecting the maximum value by wavelength for each set of data we can observe any change in
the colour of the LED. For comparison, here is the maximal wavelength shift for the electric current
regulation, used before in the LED Cube.

We can see that it varies greatly for each LED, getting up to a 9nm difference.

With the new PWM regulation, we obtain the following results:

 The wavelength shift was reduced and now all types of LEDs behave similarly. The error left could be
caused for two reasons:

 The PWM duty cycle induces a change in the LED wavelength. This theory was supported by
the paper on LED dimming methods [2].

 4 LEDs are actually used at the same time. They will have a slightly different central
wavelength due to the manufacturing process and the maximum values are actually very
close.

In any cases, we can conclude that the PWM regulation is, in fact, more precise and more adapted
for experiences that needs a precise light output.

Current % 420nm 450nm 475nm 505nm 520nm 540nm 595nm 635nm 660nm
10 418 452 476 514 529 544 593 634 659
50 418 451 475 508 524 543 595 637 660

100 418 450 475 505 522 543 597 639 661
Δnm 0 -2 -1 -9 -7 -1 4 5 2

PWM % 420nm 450nm 475nm 505nm 520nm 540nm 595nm 635nm 660nm
10 418 451 475 504 522 540 593 635 662
50 418 451 475 505 522 541 594 636 663

100 419 451 476 505 523 542 595 637 664
Δnm 1 0 1 1 1 2 2 2 2

Barman Corentin

Page 33 / 38

10.1.3 Luminance linearity
The luminance given by each measurement can also be compared to the duty cycle. This way, we will
see the relation between the two, effectively giving the linearity. As we chose one of the worst LED to
show, we can clearly see the non-linearity. The values have also been normalised with the maximum.

Figure 43: Normalised duty vs luminance (595nm LED)

It is possible to reduce the non-linearity by reducing the current in the LED. But as this will allows
fewer options to use the Cube for experiments, as the maximum luminance will be reduced.

The other solution that is already used in the laboratory for the previous system, is to correct the
PWM duty value according to the desired luminance value. Using the graph above, we can just look
at the corresponding duty cycle for every luminance value. Or even better, by characterising the
curve, we can apply a mathematics identity to solve for any value.

First, we need to invert the previous graph.

Figure 44: Normalised luminance vs duty (595nm LED)

y = -0.013x4 + 0.0267x3 - 0.2366x2 + 1.223x
R² = 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Lu
m

in
an

ce
 [%

]

Duty cycle [%]

Normalised Duty vs Luminance for 595nm LED

y = 0.0616x4 - 0.0295x3 + 0.1529x2 + 0.8148x
R² = 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

D
ut

y
cy

cl
e

[%
]

Luminance [%]

Normalised Luminance vs Duty for 595nm LED

Barman Corentin

Page 34 / 38

Then a polynomial trendline of order 4 is added.

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑡𝑟𝑒𝑛𝑑𝑙𝑖𝑛𝑒: 𝑦 = 𝑎 × 𝑥 + 𝑏 × 𝑥 + 𝑐 × 𝑥 + 𝑑 × 𝑥

Now we can convert any desired PWM value (or luminance) to have a completely linear system using
the factors of the trendline.

𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑃𝑊𝑀 𝑉𝑎𝑙𝑢𝑒: 𝑃𝑊𝑀 , 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑊𝑀 𝑉𝑎𝑙𝑢𝑒: 𝑃𝑊𝑀

𝑃𝑊𝑀 = 𝑃𝑊𝑀 × 𝑎 + 𝑃𝑊𝑀 × 𝑏 + 𝑃𝑊𝑀 × 𝑐 + 𝑃𝑊𝑀 × 𝑑

10.2 METAMERS
“In colorimetry, metamerism is a perceived matching of the colors with different (nonmatching)
spectral power distributions. Colors that match this way are called metamers.” [14]

The methodology described here along with the different calculations are the ones used for the
previous system. The objective is to provide insight on one of the experiments that the LED Cube will
be used for. The explanations may be incomplete as it only describes the flow process, and as the goal
of the project was not to develop these experiments.

First, we will choose 4 LEDs that will cover the cones and ipRGC cells receptors. The perceived spectrum
used is the following:

Figure 45: ipRGC, L-, M- and S-cone perceived spectrum (source: from the student’s calibration files)

It will change slightly for everybody, but this is the one used in the laboratory.

The four LED chosen are then blue, green, red and yellow to cover the maximum spectrum. Their
relative intensity is represented in the following graph.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

380 430 480 530 580 630 680

N
o
rm

al
is

e
d
 L

u
m

in
an

ce

Wavelength [nm]

L-cone*0.692839

M-cone*0.349676

S-energy

ipRGC
POD0.1_10degMacularP

Barman Corentin

Page 35 / 38

Figure 46: Max spectrum of the different LEDs used

A relation can be expressed between these two graphs, representing how much each LED stimulate
each receptor. It is represented in our case by a matrix, called phase to cone (P2C). This matrix was
determined by the students of the laboratory from the measurements made before.

We can also generate another matrix that will contain all the parameters to correct the linearity of the
luminance, as explained before. It is named the intensity to voltage matrix (Int2Volt).

Then by using these two matrices, we can compute another metamer from a given colour. We can find
the stimulation given to each cone by the colour using the P2C matrix:

𝐶𝑜𝑙𝑜𝑟 𝐴 = 𝑃2𝐶 ∗ 𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =

L
M
S

ipRGC

= 𝑃2𝐶 ∗ 𝐶𝑜𝑙𝑜𝑟 𝐴

If we change the ipRGC part of the Stimulation vector, while maintaining the cones values, we will
effectively get a metamer color.

𝐶𝑜𝑙𝑜𝑟𝐵 = 𝑃2𝐶 ∗ 𝑆𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜n

The two colours can then be corrected with the Int2Volt matrix by using the same methodology as
before.

Color = 𝐶𝑜𝑙𝑜𝑟 × 𝐼𝑛𝑡2𝑉𝑜𝑙𝑡(0) + 𝐶𝑜𝑙𝑜𝑟 × 𝐼𝑛𝑡2𝑉𝑜𝑙𝑡(1) + 𝐶𝑜𝑙𝑜𝑟 × 𝐼𝑛𝑡2𝑉𝑜𝑙𝑡(2)

+ 𝐶𝑜𝑙𝑜𝑟 × 𝐼𝑛𝑡2𝑉𝑜𝑙𝑡(3)

The resulting color contains the duty cycle percentage to generate it.

0

0.2

0.4

0.6

0.8

1

1.2

380 430 480 530 580 630 680

R
e
la

ti
ve

 l
u
m

in
an

c
e

Wavelength [nm]

Red Yellow

Green Blue

Barman Corentin

Page 36 / 38

10.3 SUMMARY OF RESULTS

Parameter Result
Duty cycle steps 65535 steps
PWM frequency 1281Hz
Wavelength shift ±2nm
Luminance linearity Corrected with polynomial trendline

The original requirement for the PWM control was of 1000 steps and a frequency of at least 1000Hz.
Both of these requirements are met. For the precision, it was improved from the current regulation
and the residual error is now acceptable.

The controls over the output have been improved, and the software allows fast and easy small
modifications. All the experiments have not yet been reproduced or tested, but the first results with
the metamer experiment are promising.

Barman Corentin

Page 37 / 38

11 CONCLUSION
The goal of this project was to adapt the LED Cube to be used for different experiments, like L-, M- and
S-cone or ipRGC stimulations. Generating these stimuli require precise control over the LED light
intensities. Even though the experiments have not been completely implemented and tested yet as
they were not required for the completion of the project, the adaptation of the electronics from the
current control to PWM control offer very promising results.

The wavelength shift at different light intensities has been nearly reduced completely. The residual
difference is of only 1-2nm variation between minimum and maximum intensity. The luminance
relation with the duty cycle has been linearized according to the same method used on the previous 4
primary display. These results are very promising to realize the experiments.

A communication protocol based on JSON has been implemented, rendering the data transmission
flexible and easily alterable. The PC software and the embedded software can load the same data file
to either visualise and modify it for the PC or play it in real time for the microprocessor.

The new data flow consisting in generating everything on the PC and only using the LED Cube as a part
that doesn’t alter the data or is specific to an experiment will certainly facilitate modifications as the
embedded software doesn’t need to be modified as frequently.

The PC software user interface has been designed to allow quick modifications to the experiments and
be able to test them rapidly. With all kinds of quality of life improvements that have been added
compared to the old workflow on the previous 4 primary system, it should allow using the LED Cube in
a more effective way with a better visual feedback.

The development of this kind of project never stops simply because new functionalities can always be
added to tailor every specific experiment possible. The code architecture has been thought to follow
design patterns to be able to build easily on top of it. It is the same for the communication protocol,
that can be adapted for other needs.

12 ANNEXES
 Electronics schematics
 LEDs measurements graphs

Kagoshima-city, Wednesday, 22 August 2018 Corentin Barman

Barman Corentin

Page 38 / 38

13 REFERENCES AND SOURCES

[1] Wikipedia, “Intrinsically photosensitive retinal ganglion cells,” [Online]. Available:
https://www.wikiwand.com/en/Intrinsically_photosensitive_retinal_ganglion_cells. [Accessed
20 August 2018].

[2] Thouslite, “LED-based Standard Lighting Environment,” [Online]. Available:
http://www.thouslite.com. [Accessed 3 August 2018].

[3] N. N. A. B. a. T. K. Marc Dyble, “Impact of Dimming White LEDs: Chromaticity Shifts Due to
Different Dimming Methods,” Lighting Research Center, Rensselaer Polytechnic Institute, Troy,
NY, 2005.

[4] STMicroelectronics, “STM32F4Discovery,” [Online]. Available:
https://www.st.com/en/evaluation-tools/stm32f4discovery.html. [Accessed 6 August 2018].

[5] Celsia, “Heat Sink Sizing Calculator,” [Online]. Available: https://celsiainc.com/heat-sink-size-
calculator/. [Accessed 7 August 2018].

[6] Wikipedia, “Extensible Markup Language,” [Online]. Available:
https://www.wikiwand.com/fr/Extensible_Markup_Language. [Accessed 8 August 2018].

[7] “JSON,” [Online]. Available: https://www.json.org/. [Accessed 8 August 2018].

[8] Atollic, “TrueSTUDIO - Atollic - ST,” [Online]. Available: https://atollic.com/truestudio/. [Accessed
16 August 2018].

[9] Microsoft, “Breaking Changes in Visual C++,” 8 February 2014. [Online]. Available:
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-
2012/bb531344(v=vs.110)#Anchor_1. [Accessed 20 August 2018].

[10] “Material Design In XAML,” [Online]. Available: http://materialdesigninxaml.net/. [Accessed 20
August 2018].

[11] Newtonsoft, “Json.Net - Newtonsoft,” [Online]. Available: https://www.newtonsoft.com/json.
[Accessed 20 August 2018].

[12] A. Rodríguez, “Live Charts,” [Online]. Available: https://lvcharts.net/. [Accessed 20 August 2018].

[13] C. Ruegg, “Math.NET Numerics,” [Online]. Available: https://numerics.mathdotnet.com/.
[Accessed 20 August 2018].

[14] Wikipedia, “Metamerism (color),” [Online]. Available:
https://www.wikiwand.com/en/Metamerism_(color). [Accessed 20 August 2018].

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 22.08.2018 Sheet of
File: PowerCard.SchDoc Drawn By:

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U1

CAT4101TV-T75

+5

GND

R1

910 Ω

R5
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U6

CAT4101TV-T75

+5

GND

R10

910 Ω

R14
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U10

CAT4101TV-T75

+5

GND

R19

910 Ω

R22
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U14

CAT4101TV-T75

+5

GND

R27

910 Ω

R30
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U2

CAT4101TV-T75

+5

GND

R2

910 Ω

R6
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U7

CAT4101TV-T75

+5

GND

R11

910 Ω

R15
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U11

CAT4101TV-T75

+5

GND

R20

910 Ω

R23
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U15

CAT4101TV-T75

+5

GND

R28

910 Ω

R31
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U3

CAT4101TV-T75

+5

GND

R3

910 Ω

R7
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U8

CAT4101TV-T75

+5

GND

R12

910 Ω

R16
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U12

CAT4101TV-T75

+5

GND

R21

910 Ω

R24
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U16

CAT4101TV-T75

+5

GND

R29

910 Ω

R32
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U4

CAT4101TV-T75

+5

GND

R4

910 Ω

R8
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U5

CAT4101TV-T75

+5

GND

R9

910 Ω

R13
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U9

CAT4101TV-T75

+5

GND

R17

910 Ω

R18
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U13

CAT4101TV-T75

+5

GND

R25

910 Ω

R26
5.00 kΩ

GND

LED1

LED2

LED3

LED4 LED8

LED7

LED6

LED5 LED9

LED10

LED11

LED12

LED16

LED15

LED14

LED13

PWM1

PWM2

PWM3

PWM4 PWM8

PWM7

PWM6

PWM5

PWM12

PWM11

PWM10

PWM9 PWM13

PWM14

PWM15

PWM16

PIR101 PIR102
COR1

PIR201 PIR202
COR2

PIR301 PIR302
COR3

PIR401 PIR402
COR4

PIR501
PIR502

PIR503

COR5
PIR601

PIR602

PIR603

COR6
PIR701

PIR702

PIR703

COR7
PIR801

PIR802

PIR803

COR8

PIR901 PIR902
COR9

PIR1001 PIR1002
COR10

PIR1101 PIR1102
COR11

PIR1201 PIR1202
COR12 PIR1301

PIR1302

PIR1303

COR13
PIR1401

PIR1402

PIR1403

COR14
PIR1501

PIR1502

PIR1503

COR15
PIR1601

PIR1602

PIR1603

COR16

PIR1701 PIR1702
COR17

PIR1801
PIR1802

PIR1803

COR18

PIR1901 PIR1902
COR19

PIR2001 PIR2002
COR20

PIR2101 PIR2102
COR21

PIR2201
PIR2202

PIR2203

COR22
PIR2301

PIR2302

PIR2303

COR23
PIR2401

PIR2402

PIR2403

COR24

PIR2501 PIR2502
COR25

PIR2601
PIR2602

PIR2603

COR26

PIR2701 PIR2702
COR27

PIR2801 PIR2802
COR28

PIR2901 PIR2902
COR29

PIR3001
PIR3002

PIR3003

COR30
PIR3101

PIR3102

PIR3103

COR31
PIR3201

PIR3202

PIR3203

COR32

PIU101

PIU102

PIU103PIU104

PIU105

PIU106

COU1

PIU201

PIU202

PIU203PIU204

PIU205

PIU206

COU2

PIU301

PIU302

PIU303PIU304

PIU305

PIU306

COU3

PIU401

PIU402

PIU403PIU404

PIU405

PIU406

COU4

PIU501

PIU502

PIU503PIU504

PIU505

PIU506

COU5

PIU601

PIU602

PIU603PIU604

PIU605

PIU606

COU6

PIU701

PIU702

PIU703PIU704

PIU705

PIU706

COU7

PIU801

PIU802

PIU803PIU804

PIU805

PIU806

COU8

PIU901

PIU902

PIU903PIU904

PIU905

PIU906

COU9

PIU1001

PIU1002

PIU1003PIU1004

PIU1005

PIU1006

COU10

PIU1101

PIU1102

PIU1103PIU1104

PIU1105

PIU1106

COU11

PIU1201

PIU1202

PIU1203PIU1204

PIU1205

PIU1206

COU12

PIU1301

PIU1302

PIU1303PIU1304

PIU1305

PIU1306

COU13

PIU1401

PIU1402

PIU1403PIU1404

PIU1405

PIU1406

COU14

PIU1501

PIU1502

PIU1503PIU1504

PIU1505

PIU1506

COU15

PIU1601

PIU1602

PIU1603PIU1604

PIU1605

PIU1606

COU16

PIU102 PIU202 PIU302 PIU402

PIU502

PIU602 PIU702 PIU802

PIU902

PIU1002 PIU1102 PIU1202

PIU1302

PIU1402 PIU1502 PIU1602

PIR502

PIR503
PIR602

PIR603
PIR702

PIR703
PIR802

PIR803

PIR1302

PIR1303
PIR1402

PIR1403
PIR1502

PIR1503
PIR1602

PIR1603

PIR1802

PIR1803

PIR2202

PIR2203
PIR2302

PIR2303
PIR2402

PIR2403

PIR2602

PIR2603

PIR3002

PIR3003
PIR3102

PIR3103
PIR3202

PIR3203

PIU103

PIU106

PIU203

PIU206

PIU303

PIU306

PIU403

PIU406

PIU503

PIU506

PIU603

PIU606

PIU703

PIU706

PIU803

PIU806

PIU903

PIU906

PIU1003

PIU1006

PIU1103

PIU1106

PIU1203

PIU1206

PIU1303

PIU1306

PIU1403

PIU1406

PIU1503

PIU1506

PIU1603

PIU1606

PIR101

PIR501
PIR102 PIU104 PIR201

PIR601
PIR202 PIU204 PIR301

PIR701
PIR302 PIU304 PIR401

PIR801
PIR402 PIU404

PIR901

PIR1301
PIR902 PIU504

PIR1001

PIR1401
PIR1002 PIU604 PIR1101

PIR1501
PIR1102 PIU704 PIR1201

PIR1601
PIR1202 PIU804

PIR1701

PIR1801
PIR1702 PIU904

PIR1901

PIR2201
PIR1902 PIU1004 PIR2001

PIR2301
PIR2002 PIU1104 PIR2101

PIR2401
PIR2102 PIU1204

PIR2501

PIR2601
PIR2502 PIU1304

PIR2701

PIR3001
PIR2702 PIU1404 PIR2801

PIR3101
PIR2802 PIU1504 PIR2901

PIR3201
PIR2902 PIU1604

PIU101POPWM1

PIU105 POLED1

PIU201POPWM5

PIU205 POLED5

PIU301POPWM9

PIU305 POLED9

PIU401POPWM13

PIU405 POLED13

PIU501POPWM14

PIU505 POLED14

PIU601POPWM2

PIU605 POLED2

PIU701POPWM6

PIU705 POLED6

PIU801POPWM10

PIU805 POLED10

PIU901POPWM15

PIU905 POLED15

PIU1001POPWM3

PIU1005 POLED3

PIU1101POPWM7

PIU1105 POLED7

PIU1201POPWM11

PIU1205 POLED11

PIU1301POPWM16

PIU1305 POLED16

PIU1401POPWM4

PIU1405 POLED4

PIU1501POPWM8

PIU1505 POLED8

PIU1601POPWM12

PIU1605 POLED12

POLED1

POLED2

POLED3

POLED4

POLED5

POLED6

POLED7

POLED8

POLED9

POLED10

POLED11

POLED12

POLED13

POLED14

POLED15

POLED16

POPWM1

POPWM2

POPWM3

POPWM4

POPWM5

POPWM6

POPWM7

POPWM8

POPWM9

POPWM10

POPWM11

POPWM12

POPWM13

POPWM14

POPWM15

POPWM16

Power Card LED Cube

Corentn Barman

1.01

1

1

2

2

3

3

4

4

D D

C C

B B

A A

Title

Number RevisionSize

A4

Date: 22.08.2018 Sheet of
File: PowerCard_IO.SchDoc Drawn By:

PWM1
PWM2
PWM3
PWM4
PWM5
PWM6
PWM7
PWM8
PWM9
PWM10

PWM11
PWM12
PWM13
PWM14
PWM15
PWM16
PWM17
PWM18
PWM19
PWM20

LED1
LED2
LED3
LED4
LED5
LED6
LED7
LED8
LED9
LED10

LED11
LED12
LED13
LED14
LED15
LED16
LED17
LED18
LED19
LED20

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U17

CAT4101TV-T75

+5

GND

R33

910 Ω

R34
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U18

CAT4101TV-T75

+5

GND

R35

910 Ω

R36
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U19

CAT4101TV-T75

+5

GND

R37

910 Ω

R38
5.00 kΩ

GND

EN/PWM1

VIN2

GND 3RSET4

LED 5

TAB 6

U20

CAT4101TV-T75

+5

GND

R39

910 Ω

R40
5.00 kΩ

GND

PWM17

PWM18

PWM19

PWM20

LED17

LED18

LED19

LED20

11

22

J3

11

22

J5

GND

GND

+5

+5

C1
1uF

C2
1uF

C3
1uF

C4
1uF

C5
1uF

C6
1uF

C7
1uF

C8
1uF

C9
1uF

C10
1uF

C20
1uF

C19
1uF

C18
1uF

C17
1uF

C16
1uF

C15
1uF

C14
1uF

C13
1uF

C12
1uF

C11
1uF

GND

GND

+5

+5

1
2
3
4
5
6
7
8
9
10

J1

1
2
3
4
5
6
7
8
9
10

J4

1
2
3
4
5
6
7
8
9
10

J6

1
2
3
4
5
6
7
8
9
10

J2

PIC101

PIC102
COC1

PIC201

PIC202
COC2

PIC301

PIC302
COC3

PIC401

PIC402
COC4

PIC501

PIC502
COC5

PIC601

PIC602
COC6

PIC701

PIC702
COC7

PIC801

PIC802
COC8

PIC901

PIC902
COC9

PIC1001

PIC1002
COC10

PIC1101

PIC1102
COC11

PIC1201

PIC1202
COC12

PIC1301

PIC1302
COC13

PIC1401

PIC1402
COC14

PIC1501

PIC1502
COC15

PIC1601

PIC1602
COC16

PIC1701

PIC1702
COC17

PIC1801

PIC1802
COC18

PIC1901

PIC1902
COC19

PIC2001

PIC2002
COC20

PIJ101

PIJ102

PIJ103

PIJ104

PIJ105

PIJ106

PIJ107

PIJ108

PIJ109

PIJ1010

COJ1

PIJ201

PIJ202

PIJ203

PIJ204

PIJ205

PIJ206

PIJ207

PIJ208

PIJ209

PIJ2010

COJ2

PIJ301

PIJ302

COJ3
PIJ401

PIJ402

PIJ403

PIJ404

PIJ405

PIJ406

PIJ407

PIJ408

PIJ409

PIJ4010

COJ4

PIJ501

PIJ502

COJ5

PIJ601

PIJ602

PIJ603

PIJ604

PIJ605

PIJ606

PIJ607

PIJ608

PIJ609

PIJ6010

COJ6

PIR3301 PIR3302
COR33

PIR3401
PIR3402

PIR3403

COR34

PIR3501 PIR3502
COR35

PIR3601
PIR3602

PIR3603

COR36

PIR3701 PIR3702
COR37

PIR3801
PIR3802

PIR3803

COR38

PIR3901 PIR3902
COR39

PIR4001
PIR4002

PIR4003

COR40

PIU1701

PIU1702

PIU1703PIU1704

PIU1705

PIU1706

COU17

PIU1801

PIU1802

PIU1803PIU1804

PIU1805

PIU1806

COU18

PIU1901

PIU1902

PIU1903PIU1904

PIU1905

PIU1906

COU19

PIU2001

PIU2002

PIU2003PIU2004

PIU2005

PIU2006

COU20

PIC102 PIC202 PIC302 PIC402 PIC502 PIC602 PIC702 PIC802 PIC902 PIC1002

PIC1102 PIC1202 PIC1302 PIC1402 PIC1502 PIC1602 PIC1702 PIC1802 PIC1902 PIC2002

PIJ301

PIJ501

PIU1702

PIU1802

PIU1902

PIU2002

PIC101 PIC201 PIC301 PIC401 PIC501 PIC601 PIC701 PIC801 PIC901 PIC1001

PIC1101 PIC1201 PIC1301 PIC1401 PIC1501 PIC1601 PIC1701 PIC1801 PIC1901 PIC2001

PIJ302

PIJ502

PIR3402

PIR3403

PIR3602

PIR3603

PIR3802

PIR3803

PIR4002

PIR4003

PIU1703

PIU1706

PIU1803

PIU1806

PIU1903

PIU1906

PIU2003

PIU2006

PIJ101POLED1
PIJ102POLED2
PIJ103POLED3
PIJ104POLED4
PIJ105POLED5
PIJ106POLED6
PIJ107POLED7
PIJ108POLED8
PIJ109POLED9
PIJ1010POLED10

PIJ201POLED11
PIJ202POLED12
PIJ203POLED13
PIJ204POLED14
PIJ205POLED15
PIJ206POLED16
PIJ207

PIU1705

POLED17
PIJ208

PIU1805

POLED18
PIJ209

PIU1905

POLED19
PIJ2010

PIU2005

POLED20

PIJ401POPWM1
PIJ402POPWM2
PIJ403POPWM3
PIJ404POPWM4
PIJ405POPWM5
PIJ406POPWM6
PIJ407POPWM7
PIJ408POPWM8
PIJ409POPWM9
PIJ4010POPWM10

PIJ601POPWM11
PIJ602POPWM12
PIJ603POPWM13
PIJ604POPWM14
PIJ605POPWM15
PIJ606POPWM16
PIJ607

PIU1701

POPWM17
PIJ608

PIU1801

POPWM18
PIJ609

PIU1901

POPWM19
PIJ6010PIU2001 POPWM20

PIR3301

PIR3401
PIR3302 PIU1704

PIR3501

PIR3601
PIR3502 PIU1804

PIR3701

PIR3801
PIR3702 PIU1904

PIR3901

PIR4001
PIR3902 PIU2004

POLED1
POLED2
POLED3
POLED4
POLED5
POLED6
POLED7
POLED8
POLED9
POLED10

POLED11
POLED12
POLED13
POLED14
POLED15
POLED16

POLED17

POLED18

POLED19

POLED20

POPWM1
POPWM2
POPWM3
POPWM4
POPWM5
POPWM6
POPWM7
POPWM8
POPWM9
POPWM10

POPWM11
POPWM12
POPWM13
POPWM14
POPWM15
POPWM16

POPWM17

POPWM18

POPWM19

POPWM20

Power Card IO LED Cube

Corentin Barman

1.02

LEDs Measurements Barman Corentin

Page 1 of 10

LEDs Measurements
Spectrum

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

380 430 480 530 580 630 680 730 780

Ra
di

an
ce

 [
 W

 /
m

^2
 ・

sr
]

Wavelength [nm]

660nm spectrum

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

380 430 480 530 580 630 680 730 780

Ra
di

an
ce

 [
 W

 /
m

^2
 ・

sr
]

Wavelength [nm]

635nm spectrum

LEDs Measurements Barman Corentin

Page 2 of 10

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

380 430 480 530 580 630 680 730 780

Ra
di

an
ce

 [
 W

 /
m

^2
 ・

sr
]

Wavelength [nm]

595nm spectrum

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

380 430 480 530 580 630 680 730 780

Ra
di

an
ce

 [
 W

 /
m

^2
 ・

sr
]

Wavelength [nm]

540nm spectrum

LEDs Measurements Barman Corentin

Page 3 of 10

-0.05

0

0.05

0.1

0.15

0.2

0.25

380 430 480 530 580 630 680 730 780

Ra
di

an
ce

 [
 W

 /
m

^2
 ・

sr
]

Wavelength [nm]

525nm spectrum

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

380 430 480 530 580 630 680 730 780

Ra
di

an
ce

 [
 W

 /
m

^2
 ・

sr
]

Wavelength [nm]

505nm spectrum

LEDs Measurements Barman Corentin

Page 4 of 10

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

380 430 480 530 580 630 680 730 780

Ra
di

an
ce

 [
 W

 /
m

^2
 ・

sr
]

Wavelength [nm]

475nm spectrum

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

380 430 480 530 580 630 680 730 780

Ra
di

an
ce

 [
 W

 /
m

^2
 ・

sr
]

Wavelength [nm]

450nm spectrum

LEDs Measurements Barman Corentin

Page 5 of 10

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

380 430 480 530 580 630 680 730 780

Ra
di

an
ce

 [
 W

 /
m

^2
 ・

sr
]

Wavelength [nm]

420nm spectrum

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

380 430 480 530 580 630 680 730 780

Ra
di

an
ce

 [
 W

 /
m

^2
 ・

sr
]

Wavelength [nm]

White LED spectrum (610nm)

LEDs Measurements Barman Corentin

Page 6 of 10

Duty vs Luminance with linearization

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

380 430 480 530 580 630 680 730 780

Ra
di

an
ce

 [
 W

 /
m

^2
 ・

sr
]

Wavelength [nm]

White LED spectrum (550nm)

y = 0.0291x4 - 0.0529x3 - 0.0264x2 + 1.05x
R² = 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Lu
m

ia
nn

ce

Duty

Duty vs Luminance 660nm

LEDs Measurements Barman Corentin

Page 7 of 10

y = 0.0019x4 - 0.012x3 - 0.084x2 + 1.0942x
R² = 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Lu
m

in
an

ce

Duty

Duty vs Luminance 635nm

y = -0.013x4 + 0.0267x3 - 0.2366x2 + 1.223x
R² = 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Lu
m

in
an

ce

Duty

Duty vs Luminance 595nm

LEDs Measurements Barman Corentin

Page 8 of 10

y = -0.0131x4 + 0.0367x3 - 0.0578x2 + 1.034x
R² = 1

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

0 0.2 0.4 0.6 0.8 1 1.2

Lu
m

in
an

ce

Duty

Duty vs Luminance 540nm

y = 0.0072x4 - 0.0174x3 - 0.0079x2 + 1.0181x
R² = 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Lu
m

in
an

ce

Duty

Duty vs Luminance 525nm

LEDs Measurements Barman Corentin

Page 9 of 10

y = 0.0134x4 - 0.0315x3 + 0.0108x2 + 1.0072x
R² = 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Lu
m

in
an

ce

Duty

Duty vs Luminance 505nm

y = 0.0186x4 - 0.0319x3 + 0.0265x2 + 0.9866x
R² = 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Lu
m

in
an

ce

Duty

Duty vs Luminance 475nm

LEDs Measurements Barman Corentin

Page 10 of 10

y = 0.0095x4 - 0.0086x3 + 0.0421x2 + 0.9568x
R² = 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Lu
m

in
an

ce

Duty

Duty vs Luminance 450nm

y = 0.0548x4 - 0.1214x3 + 0.0981x2 + 0.9677x
R² = 1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Lu
m

in
an

ce

Duty

Duty vs Luminance 420nm

	Schematic Print("All Documents",Logical)
	PowerCard.SchDoc
	Components
	R1
	R1-1
	R1-2

	R2
	R2-1
	R2-2

	R3
	R3-1
	R3-2

	R4
	R4-1
	R4-2

	R5
	R5-1
	R5-2
	R5-3

	R6
	R6-1
	R6-2
	R6-3

	R7
	R7-1
	R7-2
	R7-3

	R8
	R8-1
	R8-2
	R8-3

	R9
	R9-1
	R9-2

	R10
	R10-1
	R10-2

	R11
	R11-1
	R11-2

	R12
	R12-1
	R12-2

	R13
	R13-1
	R13-2
	R13-3

	R14
	R14-1
	R14-2
	R14-3

	R15
	R15-1
	R15-2
	R15-3

	R16
	R16-1
	R16-2
	R16-3

	R17
	R17-1
	R17-2

	R18
	R18-1
	R18-2
	R18-3

	R19
	R19-1
	R19-2

	R20
	R20-1
	R20-2

	R21
	R21-1
	R21-2

	R22
	R22-1
	R22-2
	R22-3

	R23
	R23-1
	R23-2
	R23-3

	R24
	R24-1
	R24-2
	R24-3

	R25
	R25-1
	R25-2

	R26
	R26-1
	R26-2
	R26-3

	R27
	R27-1
	R27-2

	R28
	R28-1
	R28-2

	R29
	R29-1
	R29-2

	R30
	R30-1
	R30-2
	R30-3

	R31
	R31-1
	R31-2
	R31-3

	R32
	R32-1
	R32-2
	R32-3

	U1
	U1-1
	U1-2
	U1-3
	U1-4
	U1-5
	U1-6

	U2
	U2-1
	U2-2
	U2-3
	U2-4
	U2-5
	U2-6

	U3
	U3-1
	U3-2
	U3-3
	U3-4
	U3-5
	U3-6

	U4
	U4-1
	U4-2
	U4-3
	U4-4
	U4-5
	U4-6

	U5
	U5-1
	U5-2
	U5-3
	U5-4
	U5-5
	U5-6

	U6
	U6-1
	U6-2
	U6-3
	U6-4
	U6-5
	U6-6

	U7
	U7-1
	U7-2
	U7-3
	U7-4
	U7-5
	U7-6

	U8
	U8-1
	U8-2
	U8-3
	U8-4
	U8-5
	U8-6

	U9
	U9-1
	U9-2
	U9-3
	U9-4
	U9-5
	U9-6

	U10
	U10-1
	U10-2
	U10-3
	U10-4
	U10-5
	U10-6

	U11
	U11-1
	U11-2
	U11-3
	U11-4
	U11-5
	U11-6

	U12
	U12-1
	U12-2
	U12-3
	U12-4
	U12-5
	U12-6

	U13
	U13-1
	U13-2
	U13-3
	U13-4
	U13-5
	U13-6

	U14
	U14-1
	U14-2
	U14-3
	U14-4
	U14-5
	U14-6

	U15
	U15-1
	U15-2
	U15-3
	U15-4
	U15-5
	U15-6

	U16
	U16-1
	U16-2
	U16-3
	U16-4
	U16-5
	U16-6

	Nets
	+5
	Pins
	U1-2
	U2-2
	U3-2
	U4-2
	U5-2
	U6-2
	U7-2
	U8-2
	U9-2
	U10-2
	U11-2
	U12-2
	U13-2
	U14-2
	U15-2
	U16-2

	GND
	Pins
	R5-2
	R5-3
	R6-2
	R6-3
	R7-2
	R7-3
	R8-2
	R8-3
	R13-2
	R13-3
	R14-2
	R14-3
	R15-2
	R15-3
	R16-2
	R16-3
	R18-2
	R18-3
	R22-2
	R22-3
	R23-2
	R23-3
	R24-2
	R24-3
	R26-2
	R26-3
	R30-2
	R30-3
	R31-2
	R31-3
	R32-2
	R32-3
	U1-3
	U1-6
	U2-3
	U2-6
	U3-3
	U3-6
	U4-3
	U4-6
	U5-3
	U5-6
	U6-3
	U6-6
	U7-3
	U7-6
	U8-3
	U8-6
	U9-3
	U9-6
	U10-3
	U10-6
	U11-3
	U11-6
	U12-3
	U12-6
	U13-3
	U13-6
	U14-3
	U14-6
	U15-3
	U15-6
	U16-3
	U16-6

	N00003
	NetR1_1
	Pins
	R1-1
	R5-1

	NetR1_2
	Pins
	R1-2
	U1-4

	NetR2_1
	Pins
	R2-1
	R6-1

	NetR2_2
	Pins
	R2-2
	U2-4

	NetR3_1
	Pins
	R3-1
	R7-1

	NetR3_2
	Pins
	R3-2
	U3-4

	NetR4_1
	Pins
	R4-1
	R8-1

	NetR4_2
	Pins
	R4-2
	U4-4

	NetR9_1
	Pins
	R9-1
	R13-1

	NetR9_2
	Pins
	R9-2
	U5-4

	NetR10_1
	Pins
	R10-1
	R14-1

	NetR10_2
	Pins
	R10-2
	U6-4

	NetR11_1
	Pins
	R11-1
	R15-1

	NetR11_2
	Pins
	R11-2
	U7-4

	NetR12_1
	Pins
	R12-1
	R16-1

	NetR12_2
	Pins
	R12-2
	U8-4

	NetR17_1
	Pins
	R17-1
	R18-1

	NetR17_2
	Pins
	R17-2
	U9-4

	NetR19_1
	Pins
	R19-1
	R22-1

	NetR19_2
	Pins
	R19-2
	U10-4

	NetR20_1
	Pins
	R20-1
	R23-1

	NetR20_2
	Pins
	R20-2
	U11-4

	NetR21_1
	Pins
	R21-1
	R24-1

	NetR21_2
	Pins
	R21-2
	U12-4

	NetR25_1
	Pins
	R25-1
	R26-1

	NetR25_2
	Pins
	R25-2
	U13-4

	NetR27_1
	Pins
	R27-1
	R30-1

	NetR27_2
	Pins
	R27-2
	U14-4

	NetR28_1
	Pins
	R28-1
	R31-1

	NetR28_2
	Pins
	R28-2
	U15-4

	NetR29_1
	Pins
	R29-1
	R32-1

	NetR29_2
	Pins
	R29-2
	U16-4

	NetU1_1
	Pins
	U1-1

	Ports
	NetU1_1

	NetU1_5
	Pins
	U1-5

	Ports
	NetU1_5

	NetU2_1
	Pins
	U2-1

	Ports
	NetU2_1

	NetU2_5
	Pins
	U2-5

	Ports
	NetU2_5

	NetU3_1
	Pins
	U3-1

	Ports
	NetU3_1

	NetU3_5
	Pins
	U3-5

	Ports
	NetU3_5

	NetU4_1
	Pins
	U4-1

	Ports
	NetU4_1

	NetU4_5
	Pins
	U4-5

	Ports
	NetU4_5

	NetU5_1
	Pins
	U5-1

	Ports
	NetU5_1

	NetU5_5
	Pins
	U5-5

	Ports
	NetU5_5

	NetU6_1
	Pins
	U6-1

	Ports
	NetU6_1

	NetU6_5
	Pins
	U6-5

	Ports
	NetU6_5

	NetU7_1
	Pins
	U7-1

	Ports
	NetU7_1

	NetU7_5
	Pins
	U7-5

	Ports
	NetU7_5

	NetU8_1
	Pins
	U8-1

	Ports
	NetU8_1

	NetU8_5
	Pins
	U8-5

	Ports
	NetU8_5

	NetU9_1
	Pins
	U9-1

	Ports
	NetU9_1

	NetU9_5
	Pins
	U9-5

	Ports
	NetU9_5

	NetU10_1
	Pins
	U10-1

	Ports
	NetU10_1

	NetU10_5
	Pins
	U10-5

	Ports
	NetU10_5

	NetU11_1
	Pins
	U11-1

	Ports
	NetU11_1

	NetU11_5
	Pins
	U11-5

	Ports
	NetU11_5

	NetU12_1
	Pins
	U12-1

	Ports
	NetU12_1

	NetU12_5
	Pins
	U12-5

	Ports
	NetU12_5

	NetU13_1
	Pins
	U13-1

	Ports
	NetU13_1

	NetU13_5
	Pins
	U13-5

	Ports
	NetU13_5

	NetU14_1
	Pins
	U14-1

	Ports
	NetU14_1

	NetU14_5
	Pins
	U14-5

	Ports
	NetU14_5

	NetU15_1
	Pins
	U15-1

	Ports
	NetU15_1

	NetU15_5
	Pins
	U15-5

	Ports
	NetU15_5

	NetU16_1
	Pins
	U16-1

	Ports
	NetU16_1

	NetU16_5
	Pins
	U16-5

	Ports
	NetU16_5

	Ports
	LED1
	LED2
	LED3
	LED4
	LED5
	LED6
	LED7
	LED8
	LED9
	LED10
	LED11
	LED12
	LED13
	LED14
	LED15
	LED16
	PWM1
	PWM2
	PWM3
	PWM4
	PWM5
	PWM6
	PWM7
	PWM8
	PWM9
	PWM10
	PWM11
	PWM12
	PWM13
	PWM14
	PWM15
	PWM16

	PowerCard_IO.SchDoc
	Components
	C1
	C1-1
	C1-2

	C2
	C2-1
	C2-2

	C3
	C3-1
	C3-2

	C4
	C4-1
	C4-2

	C5
	C5-1
	C5-2

	C6
	C6-1
	C6-2

	C7
	C7-1
	C7-2

	C8
	C8-1
	C8-2

	C9
	C9-1
	C9-2

	C10
	C10-1
	C10-2

	C11
	C11-1
	C11-2

	C12
	C12-1
	C12-2

	C13
	C13-1
	C13-2

	C14
	C14-1
	C14-2

	C15
	C15-1
	C15-2

	C16
	C16-1
	C16-2

	C17
	C17-1
	C17-2

	C18
	C18-1
	C18-2

	C19
	C19-1
	C19-2

	C20
	C20-1
	C20-2

	J1
	J1-1
	J1-2
	J1-3
	J1-4
	J1-5
	J1-6
	J1-7
	J1-8
	J1-9
	J1-10

	J2
	J2-1
	J2-2
	J2-3
	J2-4
	J2-5
	J2-6
	J2-7
	J2-8
	J2-9
	J2-10

	J3
	J3-1
	J3-2

	J4
	J4-1
	J4-2
	J4-3
	J4-4
	J4-5
	J4-6
	J4-7
	J4-8
	J4-9
	J4-10

	J5
	J5-1
	J5-2

	J6
	J6-1
	J6-2
	J6-3
	J6-4
	J6-5
	J6-6
	J6-7
	J6-8
	J6-9
	J6-10

	R33
	R33-1
	R33-2

	R34
	R34-1
	R34-2
	R34-3

	R35
	R35-1
	R35-2

	R36
	R36-1
	R36-2
	R36-3

	R37
	R37-1
	R37-2

	R38
	R38-1
	R38-2
	R38-3

	R39
	R39-1
	R39-2

	R40
	R40-1
	R40-2
	R40-3

	U17
	U17-1
	U17-2
	U17-3
	U17-4
	U17-5
	U17-6

	U18
	U18-1
	U18-2
	U18-3
	U18-4
	U18-5
	U18-6

	U19
	U19-1
	U19-2
	U19-3
	U19-4
	U19-5
	U19-6

	U20
	U20-1
	U20-2
	U20-3
	U20-4
	U20-5
	U20-6

	Nets
	+5
	Pins
	C1-2
	C2-2
	C3-2
	C4-2
	C5-2
	C6-2
	C7-2
	C8-2
	C9-2
	C10-2
	C11-2
	C12-2
	C13-2
	C14-2
	C15-2
	C16-2
	C17-2
	C18-2
	C19-2
	C20-2
	J3-1
	J5-1
	U17-2
	U18-2
	U19-2
	U20-2

	GND
	Pins
	C1-1
	C2-1
	C3-1
	C4-1
	C5-1
	C6-1
	C7-1
	C8-1
	C9-1
	C10-1
	C11-1
	C12-1
	C13-1
	C14-1
	C15-1
	C16-1
	C17-1
	C18-1
	C19-1
	C20-1
	J3-2
	J5-2
	R34-2
	R34-3
	R36-2
	R36-3
	R38-2
	R38-3
	R40-2
	R40-3
	U17-3
	U17-6
	U18-3
	U18-6
	U19-3
	U19-6
	U20-3
	U20-6

	NetJ1_1
	Pins
	J1-1

	Ports
	NetJ1_1

	NetJ1_2
	Pins
	J1-2

	Ports
	NetJ1_2

	NetJ1_3
	Pins
	J1-3

	Ports
	NetJ1_3

	NetJ1_4
	Pins
	J1-4

	Ports
	NetJ1_4

	NetJ1_5
	Pins
	J1-5

	Ports
	NetJ1_5

	NetJ1_6
	Pins
	J1-6

	Ports
	NetJ1_6

	NetJ1_7
	Pins
	J1-7

	Ports
	NetJ1_7

	NetJ1_8
	Pins
	J1-8

	Ports
	NetJ1_8

	NetJ1_9
	Pins
	J1-9

	Ports
	NetJ1_9

	NetJ1_10
	Pins
	J1-10

	Ports
	NetJ1_10

	NetJ2_1
	Pins
	J2-1

	Ports
	NetJ2_1

	NetJ2_2
	Pins
	J2-2

	Ports
	NetJ2_2

	NetJ2_3
	Pins
	J2-3

	Ports
	NetJ2_3

	NetJ2_4
	Pins
	J2-4

	Ports
	NetJ2_4

	NetJ2_5
	Pins
	J2-5

	Ports
	NetJ2_5

	NetJ2_6
	Pins
	J2-6

	Ports
	NetJ2_6

	NetJ2_7
	Pins
	J2-7
	U17-5

	Ports
	NetJ2_7
	NetJ2_7 (1)

	NetJ2_8
	Pins
	J2-8
	U18-5

	Ports
	NetJ2_8
	NetJ2_8 (1)

	NetJ2_9
	Pins
	J2-9
	U19-5

	Ports
	NetJ2_9
	NetJ2_9 (1)

	NetJ2_10
	Pins
	J2-10
	U20-5

	Ports
	NetJ2_10
	NetJ2_10 (1)

	NetJ4_1
	Pins
	J4-1

	Ports
	NetJ4_1

	NetJ4_2
	Pins
	J4-2

	Ports
	NetJ4_2

	NetJ4_3
	Pins
	J4-3

	Ports
	NetJ4_3

	NetJ4_4
	Pins
	J4-4

	Ports
	NetJ4_4

	NetJ4_5
	Pins
	J4-5

	Ports
	NetJ4_5

	NetJ4_6
	Pins
	J4-6

	Ports
	NetJ4_6

	NetJ4_7
	Pins
	J4-7

	Ports
	NetJ4_7

	NetJ4_8
	Pins
	J4-8

	Ports
	NetJ4_8

	NetJ4_9
	Pins
	J4-9

	Ports
	NetJ4_9

	NetJ4_10
	Pins
	J4-10

	Ports
	NetJ4_10

	NetJ6_1
	Pins
	J6-1

	Ports
	NetJ6_1

	NetJ6_2
	Pins
	J6-2

	Ports
	NetJ6_2

	NetJ6_3
	Pins
	J6-3

	Ports
	NetJ6_3

	NetJ6_4
	Pins
	J6-4

	Ports
	NetJ6_4

	NetJ6_5
	Pins
	J6-5

	Ports
	NetJ6_5

	NetJ6_6
	Pins
	J6-6

	Ports
	NetJ6_6

	NetJ6_7
	Pins
	J6-7
	U17-1

	Ports
	NetJ6_7
	NetJ6_7 (1)

	NetJ6_8
	Pins
	J6-8
	U18-1

	Ports
	NetJ6_8
	NetJ6_8 (1)

	NetJ6_9
	Pins
	J6-9
	U19-1

	Ports
	NetJ6_9
	NetJ6_9 (1)

	NetJ6_10
	Pins
	J6-10
	U20-1

	Ports
	NetJ6_10
	NetJ6_10 (1)

	NetR33_1
	Pins
	R33-1
	R34-1

	NetR33_2
	Pins
	R33-2
	U17-4

	NetR35_1
	Pins
	R35-1
	R36-1

	NetR35_2
	Pins
	R35-2
	U18-4

	NetR37_1
	Pins
	R37-1
	R38-1

	NetR37_2
	Pins
	R37-2
	U19-4

	NetR39_1
	Pins
	R39-1
	R40-1

	NetR39_2
	Pins
	R39-2
	U20-4

	Ports
	LED1
	LED2
	LED3
	LED4
	LED5
	LED6
	LED7
	LED8
	LED9
	LED10
	LED11
	LED12
	LED13
	LED14
	LED15
	LED16
	LED17
	LED17 (1)
	LED18
	LED18 (1)
	LED19
	LED19 (1)
	LED20
	LED20 (1)
	PWM1
	PWM2
	PWM3
	PWM4
	PWM5
	PWM6
	PWM7
	PWM8
	PWM9
	PWM10
	PWM11
	PWM12
	PWM13
	PWM14
	PWM15
	PWM16
	PWM17
	PWM17 (1)
	PWM18
	PWM18 (1)
	PWM19
	PWM19 (1)
	PWM20
	PWM20 (1)

