Hes Hes

School of
Engineering U

Degree Programme
Systems Engineering

Major Infotronics

Bachelor’s thesis
Diploma 2019

Fracheboud Loic

Video processing on SoC

Professor
Corthay Frangois

Expert
Faure Pascal

Submission date of the report
23.08.2019

u HES-SO0 Valais-Wallis - rte du Rawyl 47 « C.P. «+ 1950 Sion 2
+41 27 606 85 23 « hei@hevs.ch » www.hevs.ch

This document is the original report written by the student.
It wasn’t corrected and may contain inaccuracies and errors.

HES-SO Valais
[SYND | ETE | TEVI |
L x [x [X |

Données du travail de dipléome
Daten der Diplomarbeit

FO 1.2.02.07.CB
haj/11/01/2016

[

Etablissement partenaire
Partnerinstitution

Filiere / Studiengang Annee académique / Studienjahr | No TD / Nr. DA

SYND 2018/19 it/2019/84

Mandant / Auftraggeber Etudiant / Student Lieu d’'exécution / Ausfiihrungsort
[XI HES—SO Valais Lofc Fracheboud XI HES—SO Valais

[] Industrie Professeur / Dozent [1 industrie

Frangois Corthay

D Etablissement partenaire
Partnerinstitution

Travail confidentiel / vertrauliche Arbeit

Expert / Experte {données compiétes)

Pascal Faure
Oculox Technologies SA, Via Industria 3, 6933 Muzzano

[] oui/ja? <1 non /nein

Titre / Titel
Video processing on SoC

Description / Beschreibung

The aim of the diploma work is to develop the base for an image processing task on a Xilinx Zyng SoC. In this
system, the ARM Cortex-A9 based Processing System (PS) will stream images to the Programmable Logic (PL)
which will perform an image processing task on the fly.

Tasks to realize:

— Put together a Zyng design environment

— Develop a system where the PS can stream data to a component in the PL which does a very simple task and
stream the result back to the PS

— Develop a more complex component implementing an image processing task in real-time
— Investigate the possibilities of Direct Memory Access (DMA) for the image transfers

Signature ou visa / Unterschrift oder Visum Délais / Termine

Attribution du théme / Ausgabe des Auftrags:

Responsable de l'orientation / filiére 13.05.2019
Leiter der Vertiefungsrichtung / Studiengang:

= . Présentation intermédiaire / Zwischenprisentation

ikl e 17.06.2019
- Remise du rapport / Abgabe des Schlussberichts:
Etudiant / Student : 23.08.2019, 12:00

Expositions / Ausstellungen der Diplomarbeiten:
28, 29 — 30.08.2019

Défense orale / Miindliche Verfechtung:
02 - 05.09.2019

Par sa signature, I'étudiani-e s’engage a respecter strictement la directive DI.1.2.02.07 liée au travail de
dipléme.

Durch seine Unterschrift verpflichtet sich der/die Student/in, sich an die Richtlinie DI.1.2.02.07 der Diplomarbeit zu
halten.

Rapport recu le / Schlussbericht erhalfen am

Target - l:‘

ROT |
Normal mode “\

ROI

inverted mode

v1e [

Bachelor’'s Thesis
| 2019 |

Degree programme
Systems Engineering

Field of application
Major Infotronic

Supervising professor
Dr Corthay Frangois
frangois.corthay@hevs.ch

u B HES-SO Valais-Wallis - rte du Rawyl 47 « C.P. » 1950 Sion 2
+41 27 606 85 23 « hei@hevs.ch « www.hevs.ch

PX

Hes

School of
Engineering T

Video processing on SoC

Graduate Fracheboud Loic

Objectives

The goal of this project was to perform real-time video processing tasks on a Zynq
SoC with a dedicated development environment embedded in a virtual machine.

Methods | Experiences | Results

Eye tracking is a wide and emergent technology used in many fields such as
medicine or marketing.

Traditionally, eye tracking technologies are typically based on direction, amplitude
and location of the sight.

In this work, the movement was defined by tracking the limit between the white
part of an eye (sclera) and the dark part, the iris. Those two elements benefits
from the high colour contrast existing between them.

Practically, groups of pixels were defined in a target and their median value was
monitored. As soon as this median value changed, a flag was raised to indicate a
potential movement.

Difficulties of the project resided in the speed available in the system as all data
must be received and processed in the small timeframe imposed by the high-
speed camera.

To reach this objective, a real-time video processing was designed and
destinated to be embedded on a Zynq FPGA. The system has been then tested
with several test benches and results showed that its tracking was efficient in
several different conditions.

The eye (schematized as the black
dot) can move slightly within a
certain tolerance range without
trigger a response.

Activated sensor are marked in red.

If the eye moves beyond the
tolerance range, a response is
triggered and a movement is
detected.

Hes

School of
Engineering L

Video processing on SoC

Bachelor thesis

REPORT

Abstract

The aim of the diploma work is to develop the base for an image processing task on a Xilinx Zynq SoC. In this
system, the ARM Cortex-A9 based Processing System (PS) will stream images to the Programmable Logic (PL)
which will perform an image processing task on the fly.

Student : Loic FRACHEBOUD

Teacher : Francois CORTHAY

Expert : Pascal FAURE

From : HES-SO Valais-Wallis
V1.0

26.08.2019

Contents

Acknowledgement

Glossary

Conventions

Introduction

Objectives and analysis

Decomposition

5.1
52

53
54

55

Design environment
5.1.1 Environment setup
Basic operations
Real time image processing
Specifications
54.1 Sample image . . .

54.2 RegionOfInterest ROI)

5.4.3 Whatto detect . .
Principle of detection . . .
5.5.1 Video

Further steps

Planning

Design environment

Hardware

8.1

Board choice

Virtual Machine

9.1
9.2

Setup
Hands-on

III Loopback

10 Development basis

11 Implementation

11.1 Specifications
11.2 Hardware design
11.3 Software

IV Real-time processing

12 Analysis

12.1 Processing goal
12.2 Application
123 Howto.
12.4 Optimisations

12.4.1 Computations . . .

9]

BN RN BEN e) Nie) Ne e Y BV B N0) |

10
10
10

13 Processing

13.1 DesCription o v v i e e e e e e e e e e e e

14 Proof of concept

14.1 Statemachine e e
14.2 ProCesses v v v i v i e e e e e

15 VGA processing

15.1 Statemachine L e e
152 Pixel counters L e e
15.3 ROItracker e e
15.4 Pixel Tracker e
15.5 Accumulator L e e e e

16 Libraries

V Test benches

17 Basic processing

17.1 ODJeCtiVES o v ot e e e e e e e
17.2 Implementation e e e e

18 VGA processing
18.1 Data generation for global test

18.2 Unittests o o e e e e e
18.2.1 Accumulator e e e

VI Tests

19 Results

VII Further work and improvements

20 Remaining tasks

20.1 Implementation o . e e e e e e e e e e

21 System improvements

21.1 Accumulator e e e e
21.2 Testbench e e e

22 Others improvements

22.1 ROL . . .
222 Using DMA L e

VIII Conclusion

IX Bibliography

X Appendix

A Datasheet

ii

14
14

15
15
16

17
17
18
18
19
20

20

21

21
21
21

22
22
23
23

24

24

25

25
25

25
25
25

26
26
26

27

28

29

29

Specifications and initial analysis
VM setup

Codes

D.1 LEDs and buttons application e e e e e e
D.2 Testbenchbasic e e e e
D.3 Testbench VGA e e
D.4 Testbench accumulator e
D.5 Testsresults e e e e e
D.6 Compute ROI e e e e
D.7 Accumulator L e e e e
D.8 Pixelscounter e e e
D.9 Pixeltracker e
D.I0 ROItracker e e e
D.11 Statemachine e e e e e
D.12 General package e e e e e

Schematics

Figures and Tables

List of Figures
1 Simplified eye, front view L L e e
2 Compute time available e
3 Image processing principle e
4 ROI definition e
5 Target movements detection L. Lo e
6 Simplified view of PS and PL interaction
7 LEDSArivers o o it e e e e e e e
8 Loopback block design e
9 Simplified target
10 ROIcharacteristics i e e
11 Image processing detailled
12 ROIcomputeblock e e
13 State-machine for proof of concept
14 Internal architecture of COMPUTE ROI block
15 VGA processing state-machine
16 Chronogram of PIXEL COUNTERS principle
17 ROItrackersimplecase o i e
18 ROIwithoverlap e
19 Pixeltrackerprinciple e
20 Pixeltrackerexample L
21 Testbenchstatemachine
22 Basictestbenchsignals
23 VGAtestbenchsignals e
24 Cascadeaccumulator e e e
25 Balanced tree schematic Lo e e
26 Rectangle ROL. e

iii

30

39

43
43
46
49
54
57
59
64
66
68
70
73
75

76

List of Tables

1 Planning 8
2 Characteristics of the suggested boards Lo o 9
3 Main VM COMPONENtS v v v v o i e e i e e e e e e e e e e e e e e e e e e 10
Listings
1 The five lines to edit to test multiple ROI positions. Value are an arbitrary example. 24
2 Program written to handle LEDs and buttons, based on what was done in the hands-on (see
subsection 9.2) L L L e e e e e e e 43
3 Test bench written to test basic functionalities 0oL, 46
4 Testbenchentity e e e e e e e 49
5 Test bench written to test system with a VGA frame format 49
6 Test bench entity for accumulatoro 54
7 Test bench written to test the accumulator L oL 54
8 Entity and architecture of compute ROl L oo 59
9 Entity and architecture of accumulator L 64
10 Entity and architecture of pixel counter 66
11 Entity and architecture of pixel tracker Lo L. 68
12 Entity and architecture of ROl tracker 70
13 Entity and architecture of state-machine Lo 73
14 Package written to define some type and constants 75

iv

Video processing on SoC LF
Acknowledgement 26.08.2019

Preface

1 Acknowledgement

As I’'m reaching the end of my thesis I would like to thank some people who were there during my work.
Thank to my professor Mr. Frangois Corthay for his presence and help.

My coffee breaks would have not been the same without those lovely Marc and Eliot, thanks for that.
Speaking of breaks, Tristan and Adam, thanks for the ping-pong games.

Thanks to Juju for its priceless knowledge with Publisher, Amara for her expertise of I£IEX and Coach for its
supportive words when times were hard.

A special thanks to the storm of the 11th of August, which gave me the opportunity to test my hardware under rough
conditions.

Finally, a huge thanks to my supportive girlfriend, Lou, who took endless hours to review my thesis and spot my
missing s.

u E Page 1 on 29

Video processing on SoC LF
Acronyms 26.08.2019

2 Glossary

It is assumed that the reader has basic knowledge in programmable logic, C and hardware description in general.
Acronyms used in this work and their signification are listed below to avoid any confusion.

3 Conventions

The present document is based on the following conventions.
e [talic indicates a signal
* SMALL CAPITALS identifies blocks, states or processes depending of the context

An itemized list is used when concepts are employed without any order while an enumeration indicates a temporal
or hierarchical dependence.

Acronyms
AXI Advanced eXtensible Interface, A Xilinx AMBA (Advanced Microcontroller Bus Architecture) based bus.

DDR Double Data Rate.
DMA Direct Memory Access.

FIFO First In - First Out.
FPGA Field-Programmable Gate Array.
FPS Frames Per Second.
FPU Floating Point Unit.

GPIO General Purpose Input/Output.

HDL Hardware Description Language.
HDMI High-Definition Multimedia Interface.
HEI School of Engineering - Haute Ecole d’Ingénieur.

HES-SO University of Applied Sciences and Arts Western Switzerland - Haute Ecole Spécialisée de Suisse
occidentale.

IP Intellectual Property, in this context it defines a block which contains hardware description for block design.

LED Light Emitting Diode.
LSB Least Significant Bit.

MSB Most Significant Bit.

PL Programmable Logic.

PS Processing System.

u E Page 2 on 29

Video processing on SoC LF
Acronyms 26.08.2019

PWM Pulse Width Modulation.
ROI Region Of Interest.

SD-Card Secure Digital Card, a non-volatile type of memory card for.

SoC System on Chip.
TCL Tool Command Language.
USB Universal Serial Bus.

VGA Video Graphic Array, video format used as 640/480 pixels in greyscale in this work.
VHDL VHSIC (Very High Speed Integrated Circuits) Hardware Description Language.
VM Virtual Machine.

u B Page 3 on 29

Video processing on SoC LF
Introduction 26.08.2019

4 Introduction

Eye tracking is an evolving and challenging problematic. Used in many applications such as ophthalmology
treatment, visual attention research or even in marketing, this technology covers a lot of applications with different
needs.

According to the application, it could be desired to know where the subject is looking at a given time, how fast the
eye moves, the amplitude of the moves or even their type or trajectory.

This diploma work takes place into a context where it is more important to know when an eye is moving instead of
how and where, reactivity is a key feature.

To do so, a high-speed camera films an eye and a system receives this video flux.

Therefore, a real-time video processing task will be implemented in a Zynq SoC.
The high-speed induces a short time to do the computations and so on to know if the eye is moving the system focus
on a special area.

To see if any movement occurs, it tracks the limits between sclera and iris, see figure 1.

sclera

.
’

Figure 1: Simplified front view of an eye. By tracking the limit between the sclera (white part of an eye) and the iris
(coloured part), movements could be spotted.

There are many methods to track the movements of an eye, one of them is to look at the limit between sclera and
iris. This technique presents several advantages as it is focussed on the contrast created by the sclera and the iris
(usually much darker [17][18]). Its weakness resides in the presence of the eyelid which could potentially hide a
border region when the subject blinks. Methods which target the pupil only and its size are less precise due to the
contraction and reactivity of the pupil to luminosity.

One of the main challenges of this work resides in the speed limit allowed by the system. The flux is given in a fast
VGA and the operations units must be done in real-time. Hence, the time allowed for processing is limited.

a E Page 4 on 29

Video processing on SoC LF
Decomposition 26.08.2019

Part 1

Objectives and analysis

This diploma work was defined by the following goals:
1. Put together a Zynq design environment
2. Develop a system where the PS must interact the PL
3. Develop a more complex component implementing an image processing task in real-time
4. Investigate the possibilities of DMA for the image transfers

An initial analysis was done to divide the work in several main assignment and get an insight of the main tasks for
each objective. This work is described in detail in appendix B.

First step was to get familiar with Zynq architecture by testing some basic tasks, a communication had been then
implemented between the PS and the PL.

Then a flux was given to the PL from the PS and a few operations such as noticing luminosity changes were done.

5 Decomposition

5.1 Design environment
The first objective was to define a design environment and began by defining the development board.
During the thesis introduction meeting several boards were suggested and a choice has to be made.

It has been decided that the work would be done with the help of a VM. Working within a VM allocated an
appropriate portability of the project as well a light working environment.

5.1.1 Environment setup

The evironment had been be composed mainly as following:
* based on Ubuntu
* Vivado to work with Xilinx FPGA
* HDL Designer for VHDL development
* Atom, git and such useful tools

The exact list of tools will be defined on setup and can be prone to evolution.

5.2 Basic operations

Basic operations were decomposed in a few milestones:
1. Being able to use the whole environment

2. Setup a simple communication between the PS and the PL

ﬂ E Page 5 on 29

Video processing on SoC LF
Decomposition 26.08.2019

5.3 Real time image processing

A test bench had been be conceived. It was designed to provide at least those functionalities:
1. Creating a video-like data flux
2. Defining and transmitting information to do the tracking

The video flux is a VGA on 10-bits greyscale transmitted on 8 16-bits data lines.

To reach a real-time video processing, first development had been deployed on a small scale. Meaning, only one
data line and a reduced image size has been used.
Then a second iteration will do the job on all data lines, which means 8 in parallel.

Working in real-time here required to do all the needed operations in a limited time-frame, the one created between
two images. This time is defined by the video framerate.

N N IR A

T T T T
_
compute time

Figure 2: Each frame processing must be done within the time between two frames.

5.4 Specifications

As said, movements were tracked by looking at the limits between the iris and the sclera. It was accomplished by
defining groups of pixels on the said border.
Visuals of the principle are listed in the subsection 5.4.1.

5.4.1 Sample image

The figure 11 gives a visual indication of how the border of the iris and the sclera was defined in the system.
The iris was simplified into a full black circle and the sclera was reduced to the white area surrounding it.

To detect movements, the median value of groups of pixels near the border was tracked. Therefore, when one
median value tends to move away of the black value, it indicated that the target was moving.
To be sure that a movement was actually occurring, a minimum of median values must be out of the defined bounds.

Secondary, to be sure that the pixels groups inside in the dark area are valid, a few other pixels groups are placed
outside the target and act as control.

By placing those pixels groups in a light area, it became possible to assess if problems occured (invalid video flux
for example).

Figure 3 introduce the concept of ROI with the squares. It defines an interesting group of pixels. More information
can be found in the subsection 5.4.2.

54.2 ROI

On this video flux, up to 32 ROI could be placed. One ROl is defined as a square of 3 to 8 pixels wide (see figure
4), a flag assigned to the ROI that would indicates its mode (inverted or not, explained below) and a X/Y position
within the VGA frame. A ROI in its normal operation works in NORMAL MODE. It meant that the detection was
based on a dark base deviating towards clear tones. The INVERTED MODE was defined as its exact opponent. The
ROI was triggered by a deviation from clear to dark tones. The application of both modes is given in figure 11.

ﬂ E Page 6 on 29

Video processing on SoC LF
Decomposition 26.08.2019

Figure 3: The final image processing was based on the following of several pixel groups. It intended to track the
movements of the circular target by looking at the median luminosity of specific pixels groups, called ROL

oIl || [s o

Figure 4: One ROl is a square between 3 to 8 pixels wide.

Attention must be drawn on the fact that the system must handle a ROI of only 1 pixel even if this is not encountered
in real working conditions. This is a tested specification.

5.4.3 What to detect

The figure 5 shows how the movement was detected. A red ROI indicated a trigged one.

ROI are used to track movement when placed inside the dark circle and as a control group when placed outside, in
the white area.

5.5 Principle of detection

An invalid ROI was defined by a too high medians value (or too low if it was in inverted mode). Mathematically,
this was translated as the sum of all pixels within the ROI frame, divided by the number of pixels.

5.5.1 Video

The video flux was in VGA format (640/480 pixels), up to S00[FPS], grayscale 8-10 bits (parametrizable but defined
on 10 bits for the thesis) on the LSB of a 16 bits value.

Alternatively, video flux could be provided by a standard Raspberry Pi camera which gave 1080 30[FPS], 720
60[FPS] or VGA up to 90[FPS] [15][16].
This version would give more time to work as framerate would be substantially reduced.

" E Page 7 on 29

Video processing on SoC LF
Planning 26.08.2019

(a) When the target would move within the tolerance range, (b) If the target crosses the tolerance range, a signal is
no response is flagged. triggered and a flag is raised.
A red square indicates a trigged ROIL.

Figure 5: Example of how the target movements were detected. The centred position of the target is indicated in
dotted lines.

6 Further steps

An investigation of images transfers via DMA could lead to a more efficient usage of resources.

7 Planning

A simple planning was extrapolated of the analysis in appendix B.

Preparing the whole system and analysing it was planned on 6 weeks, including hands-on.

Working on basic task was estimated on 3 weeks.

Finally, implementing the real-time operation was estimated to take 6 weeks as it constituted the central task.

In temporal terms, this decomposition looks like the following Gantt-Diagram.

Week number current/in project

Time in weeks 20/1(21/2| 22/3 | 23/4 | 24/5| 25/6 | 26/7 | 27/8 | 28/9 [29/10|30/11|31/12(32/13|33/14|34/15

Initial analysis 3
Hands-on 3
PS-PL interactions 3
Real-time operations 6

Table 1: Initial planning.

The initial analysis intented to decompose the work into a handful! of main tasks and thinking about how to
implement and achieve them.
It also contained the VM setup.

The hands-on one was dedicated to be comfortable with the development environment.

Finally, the main task was divided into two versions. One to work on a reduced and simplified system to outline the
problematic and then a second with the real-time operations was implemented.

Thttps://xked.com/1070/

u B Page 8 on 29

https://xkcd.com/1070/

Video processing on SoC LF
Hardware 26.08.2019
Part 11

Design environment

The design environment was composed by the hardware and the software and the work done is described in following
sections.

8 Hardware

Several boards could be used in this study.
As discussed during the introduction meeting, three boards met the needed requirements:

* FPGARackZynq[1], a board from HEI
» Snickerdoodle[2], a really compact board
» ZyngBerry[4], a board with a Raspberry Pi form-factor

All of them are based on Zynq 7000 family but are available with different types of core.
Similarities stand in a PS composed by one or two Cortex A9 with FPU and a PL equivalent to Artix-7 FPGA family.
More details are available in the Xilinx documentation, see appendix A.

8.1 Board choice

All three are based on a Zynq 7000 serie, therefore, their performances are similar. Slight difference appeared in
peripherals and support.

The peripherals were not significant choice criteria as they were not important for this project. Except for the DDR
which could be used in a particular use case that was not part of this work.

Having DDR could be useful if the system had to locally store a few images. In theory, the PS was fast enough to
get the stream correctly.

If not, the PL must have had a direct access to a dedicated DDR.

The following table compares briefly the characteristics to choose the board.

SoC

Rackzynq

Z-7020-1C

Black

Z-7020-3E

SnickerDoodle
Prime LE
2-7020-1C

One

Z-7010-1C

| no-name

Z-7010

ZynqgBerry

2-7007s

Frequency [MHz]
DRAM

Type

SRAM

667
1[GB]

DDR3L SDRAM (2 x 256[Mb] x 16, 32-bit data bus)

866
1[GB]

256[kB]/28.4[Gbps] |

Cortex-A9 dual-core
667
512[MB]
400[MHz] LPDDR2

667

512[MB]

| 256[kB1/36.9[Gbps] |

| 1leB

667

64/128 - 512/512[MB] (Rev1/2/3)

Cortex-A9 single-core

512[mB]

DDR3L SDRAM

PL

Cells

LuT
Flip-flops
Block RAM

85K
53200

106400

4.9[Mb]

Artix-7 FPGA

28K
17600
35200

2.1[Mb]

23K
14400
28800

1.8[Mb]

Other Additional CPU | STM32F078 (cortex MO) |

Table 2: Characteristics of the suggested boards. A void cell indicates missing information from the manufacturer.

As no board disposes of separated DDR, the ZyngBerry, mounted with a 7Z007s, was chosen for its direct availability
in the school.

Furthermore, this board was easy to handle and work with as it only needed a uUSB cable to power and program it.
Finally, its form-factor was a plus to easily add functionalities such as the official Raspberry camera instead of
a dedicated one, direct access to storage via SD-Card-card, HDMI port and other standard as the hardware was
designed in this direction.

HEEEBR

Page 9 on 29

Video processing on SoC LF
Virtual Machine 26.08.2019

9 Virtual Machine

To be able to work in a portable and dedicated environment, all the software components were installed in a VM.
The chosen environment was composed by the following main components listed in table 3.

Type Software Version Note
Ubuntu 18.4.3 LTS
VirtualBox 6.0.8

ModelSim 10.7c

OS related

Design HDL Designer 5.05-015

Vivado 2018.3

Typora 0.9.74 beta
Documentation JAtom 1.40.0

MediaWiki 1.32.1

git 2171

Version control | ciyraken 6.0.0

Table 3: List of the VM components and version used.

The complete instructions are given in appendix C.

During the initial meeting it was defined to work on a Linux based system and Ubuntu was chosen because of its
popularity.
VirtualBox was chosen because of its popularity and associated documentation was available .

Design tools were defined by school licences and hardware requirements.

Version control and documentation tools (Typora, Atom, MediaWiki) were described as essential and are popular
amongst the informatic tools development community. Typora is a Markdown editor which give a nice what you see
is what you get paired with an easy to use interface.

Finally MediaWiki was suggested in the initial meeting to host the VM configurations and generics information’s.

9.1 Setup

Shortly, VirtualBox was used to host a near naked Ubuntu. Where additional tools could be introduced.
Instructions from Mondzeu Wiki” have been followed to install HDL Designer.
Then ModelSim by similar method? and finally Vivado.

9.2 Hands-on

To test the setup and get an insight of how the environment works, a simple example provided by Digi-Key[7] was
followed. This design applies a PWM with a variable duty-cycle driven by a hardware timer on a GPIO and prints
some words through serial port.

The VM did not let the serial transmission pass between the board and the environment. As this was not essential,
no further investigations were made in VirtualBox configurations.

The facts that the GPIO was reacting and measured with an oscilloscope was sufficient to validate the development
chain.

2http://mondzeu.ch/wikis/EDA/index.php?title=Install_HDL_Designer
3http://mondzeu.ch/wikis/EDA/index.php?title=Install_Modelsim

ﬂ B Page 10 on 29

http://mondzeu.ch/wikis/EDA/index.php?title=Install_HDL_Designer
http://mondzeu.ch/wikis/EDA/index.php?title=Install_Modelsim

Video processing on SoC LF
Implementation 26.08.2019

Part 111

Loopback

To assess the communication between PS and PL, a form of loopback was implemented.

Taking the form of connecting LEDs and buttons to the processor and linking them via the PL before accessing
through AXI to their belonging registers.

Figure 8 gives a simplified schematic view. The GPIO IP is configured with two channels each one dedicated to
buttons, respectively LEDs.

SoC
ARM GPIO BUTTONS
If >'| LEDS
:‘ """"""""" /’/”"3‘"”””''””””””"3 PhyS'ica'L WOI"‘Ld
)
AXI BUS '

Figure 6: Simplified view of PS and PL interaction. The processor can access to buttons state via the logic and the
AXI bus.

10 Development basis

Working with the hardware was facilited by a minimal working example easily editable in Vivado.
Based on the previously followed tutorial (see subsection 9.2) which make a LED fade-in and out with a hardware
timer, it has served for the loopback task.

11 Implementation

Added to the basis, a GPIO IP was added from the Xilinx libraries. It was parametrized with two channels, one for
LEDs and one for buttons, it allowed the PS to access the physical components through the PL.

The implementation was trivial as it consisted of reading GPIO dedicated to buttons and write the value into the
registers of LEDs GPIO.

11.1 Specifications

GPIO This IP was configured with two channels, one for buttons and one

for LEDs. DS
Channel 1 was dedicated to buttons, WIDTH parameter = 4 (one bit per 7
button). 6 } Unused
Channel 2 was dedicated to LEDs, WIDTH = 7 (one bit per LEDs but LED 5

0 was dedicated to the PWM).

Interruption was not used. .
p driven

0 PWM

4
3} Buttons

r_
LITTTITTT]m

LEDs Physically, the connections were done as shown in figure 7. The
first LED was driven by the PWM from the hands-on, then the next four Figure 7: LEDs are driven by

LEDs were driven by one button per LED. The three remaining were not PWM, buttons 0-3 and remainings
left unused.

ﬂ B Page 11 on 29

Video processing on SoC LF
Implementation 26.08.2019

used.
The wanted behaviour was button pressed leads to a LED ON then OFF
when released.

11.2 Hardware design
To fulfil the desired requirements, the block design shown in figure 8 have been implemented.

processing_system?_0

GRO_0 +||
ooR o+ | {> DDR
FIXED_IO 4|} {> FIXED_IO
M_AXIGPO 4 i

TTCO_WAVED OUT
TTCO WAVEL OUT

axl_timer_0

—= M_AXl_GFD_ACLK

-
TTCO_WAVEZ_OUT (= "
IR _F2F{0:0 ZYN . =
AR.F2M0:0] O TTC1_WAVED OUT (= B)
) - capturetrigd generateoutd
TTC1_WAVEL OUT (=)
= capturetrigl generateoutl
TTC1_WAVEZ_OUT =
= freeze pwmi pwm0Q 0
FCLK_CLKO —— i i N
s_axi_aclk interrupt
FCLK CLK1 (= q
.) s_axi_aresetn
FCLK_RESETO_N £ ps7_0_axi_periph
AXI Timer
ZYNQT Processing System L i S00_AXI) '
ACLK
b ARESETN
rst_ps?_0_50M i gpi
Psl D SDO_ACLK =N " axi_gpio 0
- - K MOO_AKI o [t
f——— SOD_ARESETN H—H] W
slowest_sync_clk mb_reset MOD ACLK MOL_AXI 4 i -4 S_AXI aPIO " - t
ext_reset_in bus_struct_reset[0:0] MOD ARESETN =n s_axl_aclk chio2 W D gp!o_rtl_lm;;u .
@ aux_reset_in peripheral_reset[0:0] e s_axl_aresetn + " 5 gpio_rtl_outpu
- mib_debug_sys st interconnect_aresetn[0:0] MOL ARESETN
- dem_locked peripheral_aresetn[0:0] AXI GPIO
AX| Interconnect
Processor System Reset

Figure 8: Block design implemented for working with LEDs and buttons. The block named AXI GPIO was the
centre of this design by allowing the PS to interact with external hardware through PL. (source: Vivado block design
explorer)

Consisting of two families of blocks, this design allowed an interaction of the PS with external hardware through
PL.

The software within the ZYNQ 7 PROCESSING SYSTEM block reacted to the buttons push (more information in
subsection 11.3).

Blocks ZYNQ 7 PROCESSING SYSTEM and PROCESSOR SYSTEM RESET were mandated to use the processor and
AXI INTERCONNECT to use the AXI bus.

The only required action was to configure the PS as needed (and already done as this was a common part with the
empty architecture realised previously in the hands-on, see subsection 9.2).

GPIO As explained in subsection 11.1, this IP was configured in dual-channels to read and write buttons,
respectively LEDs.

11.3 Software

The software was constantly reading the GPIO buttons’s registers to acknowledge when a button is pushed. Then it
wrote the buttons status into the register dedicated to LEDs.
The entire code is available in appendix D.

a B Page 12 on 29

Video processing on SoC LF
Analysis 26.08.2019

Part IV

Real-time processing
12 Analysis

As explained in the initial analysis (see subsection 5.4), the tracking was based on following the state of ROI.

12.1 Processing goal

As said in the introduction, the objective was to track the movements of an eye, which could be schematized as a
black target in a white environment as shown in figure 9.

Figure 9: An eye could be seen as a black on white target.

12.2 Application

In reality, an eye is not perfectly black and white. Hence the real coloration of the iris and the sclera can be evaluated
on a greyscale.

Factors such as patient himself, exposure time, illumination and angle of view could induce a lighter black (or
darker white).

Detection threshold was a parameter proper to each ROI.

As well, ROIs could be placed on a clear environment to detect a decreasing luminosity. In this case, it was working
in inverted mode.

Those parameters are shown in figure 10.

size

Figure 10: An ROI was composed by a position in X/Y and a size as shown here. A non-represented feature was the
threshold to which the median value will be compared to, the mode and an id were the remaining characteristics.

. E Page 13 on 29

Video processing on SoC LF
Processing 26.08.2019

640 px

Target | I:'

ROI .
Normal mode

ROI
inverted mode

O |:| 480 px

Figure 11: The final image processing was based on the tracking of ROIs. Their placement showed in this figure is
an example. In reality, their positionning and number are user defined.

12.3 How to

In facts, the processing of each ROI was done in one dedicated bloc. It means that for n-ROIs, n-blocks were
generated in parallel and data were dispatched by a monitor.

12.4 Optimisations
12.4.1 Computations

The calculations to get a ROI value included a division (as the median is defined as the sum of all pixels divided by
their quantity).

As divisions were consuming high amount of logic and are inefficient operations in HDL the median was not
calculated. Instead, thresholds were given multiplied by the ROI’s pixels amount.

13 Processing

One block computes one ROI. Composed by a state-machine and a few processes, its interface is shown in figure 12.
It takes ROI parameters and frame data to do the desired computations namely accumulate each pixel value and
confronting it to the given threshold.

13.1 Description

The system is based on a state-machine which drives some counters to count pixels. Then a few processes make the
effective ROI detection.

Two processes driven by a counter and the frame signals counted the pixels for a third process which took care
of checking if the current pixel was in the ROI. If yes, the value was transmitted to an accumulator before being
confronted to the threshold to determine validity.

E Page 14 on 29

Video processing on SoC LF
Proof of concept 26.08.2019

result
compute_roi —3 valid
id

start of frame
start of line

L

data_0

data_7

roi_x

roi_y
roi_size
roi_threshold
roi_mode
roi_id

enable
reset
clock

AR AR

Figure 12: This block takes a ROI and return the according result. It is composed by subblocks which are dedicated
to specific tasks.

14 Proof of concept

To validate the global design, a first version which worked on only one data line has been implemented. Using the
test bench BASIC PROCESSING (see subsection 17), it was state-machine based.
The top level was the same as in figure 12 unlike there was only one data line.

The code for this version is contained within one file available in appendix D.6.

14.1 State machine

Each time a new frame is received, the computation will begin, and this event launches a state-machine which goes
as shown in figure 13.

new frame

search
pixels

end accumulate in ROI

of ROI value

Figure 13: Proof of concept state-machine. A new frame launches the detection and then each time a ROI pixel is
found, its value is accumulated. The cycle continue until each pixel has been accumulated.

In a few words, the system behaves as following.

Waiting a new frame is done in IDLE and when a start of frame occurs, it goes into SEARCH PIXELS. This state
launches the search and wait for an indication of a pixel located in the ROI. Then the value is accumulated, and the
cycle repeats itself until the last ROI’s pixel.

At that moment, the output is set at the right value, depending of the ROI median value confronted to the threshold
and the system is ready for a new frame after being pass through FINISHED.

A deeper explanation on how each state behaves and which process are involved is given in the following paragraphs.

u E Page 15 on 29

Video processing on SoC LF
Proof of concept 26.08.2019

IDLE This state wait for a start of frame.

SEARCH PIXEL Begin the search by enabling a main counter and waiting for a flag which indicates that a pixel
located in ROI is detected to go in the next state. The search itself is delegated to a combination of processes (see
further) driven by the state machine and the main counter.

ACCUMULATE VALUE When entering this state, a flag is raised to enable an accumulator located in a process. If
the pixel is the last of the ROI, the state machine will go in the last state, else it will continue the search by returning
to the previous state.

FINISHED When the entire ROI is scanned, this stage disables the main counter and indicates the validity of the
outputs by rising valid.

14.2 Processes

The state machine uses a few processes to perform actions.
Three of them are dedicated to counting bits and pixels, one detects if the current pixel is in a ROI or not, one
accumulates values of ROI’s pixels and the last one verifies if the ROI is valid or not.

COUNTINPUTFLOW Described as main counter, this synchronous reset/clock process counts the incoming bits
to synchronize the data flow with the pixel’s counters.

Counts on a base of a constant defining the data duration (in clock cycles).

This counter reset its value when not receiving frame, or by a global reset.

COUNTPIXELX Asynchronous process driven by the main counter and the frame signals (start of frame and start
of line) to count the pixels in x-axis.

Increment itself when the main counter reaches its half-period (arbitrary timing, parametrizable).

This counter reset its value when a global reset or a new frame occurs and on every new line.

COUNTPIXELY Similar to the x-axis counter but driven by start of line to increment itself.
This counter reset its value when a global reset or a new frame occurs.

DETECTPIXEL Synchronous reset/clock process which check if the actual pixel is in the ROI or not. This is done
by confronting its coordinates to the counters x/y every time that a new pixel was incoming. This is known by
checking changes on the x-axis counter.

When a wanted pixel is detected, its value is stored in a buffer and a flag is raised for the state machine.

It is also detecting when the actual pixel is the last to be buffered, there too by rising a flag intended to the
state-machine.

ACCUMULATE_PROC Combinatorial process which accumulates given pixels values in a buffer.
When a new frame occurs, resets itself.

CHECKVALUE Combinatorial process which was triggered when the ROI’s last pixel is detected. Confronts the
accumulator buffer to the threshold and returns a logic response.

u E Page 16 on 29

Video processing on SoC LF
VGA processing 26.08.2019

15 VGA processing

The main difference with previous data format occurs in transmission, as VGA format is given through eight parallel
lines instead of one.

One frame is transmitted by batch of 8 pixels on 8 data lines, meaning that between two batches, each pixel must be
checked to see if it is comprised into a ROL

This leads to a more complex design which is not anymore hidden in one block but divided to get an easier and
clearer view.

start of frame p3 start of frame start of frame L5 offset X
state machine start of Line ‘:)) pixel counter start of Line ;:)) roi tracker
last pixel 3| o) L5 overlap
L 0 receiving new pixels
enable |3 last pixel
reset L5 end of processing enable pixel counter X
clock reset E [pixel counter ¥ 3 3 inroi
clock
data_e
new pixels start of frame 3 ’ result
| pixel tracker accumulator
b data _y 4id = [6..7] value(0) end of processing JR— _’ valid
offset X __y ety new pixels) —p did
value(id
data_7 /T/ overlap — values
in roi N
value(7) roi threshold
id roi size py| roi mode
roi id
One instance per Concatenate all values

input data line into one signal

Legend
— input signal
_’ output signal

5 dinternal signal

Figure 14: cOMPUTE ROI is composed by a state-machine which drives the tracking, some counters to search
pixels, several blocks to get the right values and finally an accumulator/comparator to deliver the result.

Figure 14 show the new repartition of tasks into the blocks.

Principle is the same, counting incoming data and extract from this pixel’s values and coordinates, driven by a
state-machine. Analysing if any of the pixels could be in ROI and then buffer interesting values.

Finally, an accumulator will add-up and check if the value is above or not of the given threshold.

15.1 State machine

In this second iteration, the state machine is reduced in three states as the accumulation is done by a dedicated
sub-system.

new frame

end of ROI

Figure 15: To work with VGA and its 8 input data lines, the state machine has been simplified as some of the work
is done in driven subblocks.

The code is available in appendix D.11.

u E Page 17 on 29

Video processing on SoC LF
VGA processing 26.08.2019

15.2 Pixel counters

To synchronize and receive correctly the incoming pixel flow, a block is dedicated to counting and indicating when
values are ready to be read and what they correspond to.
Figure 16 show the chronogram of inputs and output signals.

start of frame __J |

start of line M 1
data_e _X X X X ... X X X X
. X ¢ X X_Z ... X X X X
. X X X X ... X X X XZ
data_7 _X X X XZ ... X X X X
outputs

pixel counter x _X [X 8 X 6 X ... X 9 X 8 X 16X
pixel counter Y —X —X

new pixels M M ! . M M 1

Figure 16: Chronogram of PIXEL COUNTERS. Taking as input data lines and frame signals, it delivers two counters
to know where in the frame the incoming pixels are and when they are ready to be read. Clock is not represented as
it is much faster than those signals.

On each new batch of pixels, the x-counter increments itself by step of data lines number (in this case 8) and on
every start of line the y-counter does the same. Due to this sensibility to the signal, this second counter starts on 1
instead 0 as x-counter.

Another way to do could be to increment the counter in y-axis when the x-axis reaches the end of a line.

This has the main disadvantage not to be anymore resynchronized with the incoming flux by start of line.

Finally, new pixels indicate when a batch is ready to be read in the input buffers to be read by following blocks.
A start of frame reset all counters and flag to 0.

The code is available in appendix D.8.

15.3 ROI tracker
This block provides indication of when the incoming pixels contains some of the ones from the ROI to track and
when the last ROI pixel is arrived. Those information’s are encoded in signals in ROI and last pixel.

The two other signals (offset x and overlap) are employed to get the right pixels in each batch.
Figure 17 and 18 show the different situations of how a ROI could be positioned within the received pixels.
Next paragraphs detail the tasks of the implemented processes.

current batch | next batch

N

—
offset x ROI

Figure 17: First situation, ROI is fully contained by a batch of pixels for each of its line. In this case, the offset x is
defined as the number of the first pixel to match with ROL

u E Page 18 on 29

Video processing on SoC LF
VGA processing 26.08.2019

COMPUTEOFFSETS In the case shown in figure 17, each line of the ROI is fully contained by a batch of pixels.
It means that an offset in x (and y but this axis is much more intuitive as it increments itself on each new line as
soon as a ROI is detected until its end) must be computed to accumulate the right values further in the logic (see
subsection 15.4).

Processing those offsets is the task of the process COMPUTEOFFSETS.

current batch next batch

offset y

N\
AN

I 1 ! N

offset x Iovlerlap

ROI

Figure 18: Second situation, ROI is partially over a second batch of pixels. It means that for the current batch all
pixels after the offset must be taken into account in accumulator but also a few from the next batch. The remaining
amount is given by overlap value.

A difference exists between offset x and offset y. The first one is used by other blocks (see subsection 15.4) but offset
y is only an internal signal used by the ROI tracker processes.

DETECTOVERLAP The second case shown in figure 18, the current batch in now on the second ROI line and
overlapping over two batches.

At this moment, the process DETECTOVERLAP is useful to indicate that an overlap is occuring and gives its size. To
be exact, a signal overlap is set to the right value if this situation occurs, else it stays at 0.

Again, those information’s are used further in the logic in the pixel tracker.

DETECTROI and DETECTROIEND The two remaining processes are pretty similar. They intend to detect the
first, respectively the last, pixel of the ROI.

The code is available in appendix D.10.

15.4 Pixel Tracker

This block in generated once for each data line and is dedicated to check if its specific pixel value is to transmit to
the accumulator. Figure 19 shows a simplified schematized view of how each pixel is read by the trackers. The
enable signals comes from a trivial logic which use offset x, inRoi and overlap signals from ROI TRACKER.

accumulator
(3)
current © B data_0
batch
enable 0
s ..
0 B data_7
enable 7

Figure 19: The logic functionality of the pixel tracker is a logic switch which transmits either the pixel value or a 0
if it is not a ROL

u B Page 19 on 29

Video processing on SoC LF
Libraries 26.08.2019

current 7
batch

ROI

Figure 20: In this situation, the current batch contains three pixels in a ROL 5 to 7 shown in dark grey. It means that
the enable from trackers 5 to 7 are activated.

Figure 20 show an example of how the trackers transmit or not the pixels values to the accumulator.

The code is available in appendix D.9.

15.5 Accumulator

The accumulator is in charge of taking the buffered pixels values and sums them up into another buffer.
The maximal value that could occurs is defined as in equation 1.

accumulatoryayimal = ROI%., - pixelpygepmn = 8° - 2'® = 222 — 22bits (1)

Practically, the pixel value is encoded on 10 bits which are then stored in 16 bits values. Hence, it limits the maximal
value to 16 bits as shown in equation 2.

accumulatorygyimal = ROIfize - pixelpirgepin = 82.210 =216 _; 16bits 2)

Based on a FOR LOOP architecture which generates an accumulation of each input buffer in a variable, it will, after
those operations, confronts the accumulated value to the given threshold.
Comparison is quite simple, either the ROI is in normal or reversed and hence, the final result is a binary response.

ACCUMULATOR This process accumulates the value of its input data line each time a new batch of pixels is ready.
The previous blocks (pixel trackers), transmit to the accumulator a 0 by default or the pixel value if it is a pixel from
a ROL

Hence, this process is trivial as it could always accumulate all its inputs. In facts, it is some expanded logic with a
FOR LOOP.

CHECKTHRESHOLD When an end of processing is thrown, the process compares the accumulated value to the
given threshold. ROI mode (inverted or normal) are also considerated.

The code is available in appendix D.7.

16 Libraries

All codes used in this work originating from the libraries defined by LIBRARY IEEE, especially STD_LOGIC_1164
and NUMERIC_STD.

In parallel, a package was written to define some constants and data types. The package is available in appendix
D.12.

u E Page 20 on 29

Video processing on SoC LF
Basic processing 26.08.2019

Part V

Test benches

Three tests benches were conceived. One for basic processing, one for final tests and one to unit test the accumulator.

17 Basic processing

A simplified test bench is implemented to perform a proof of concept.
It generates a picture on only one data line, feeding a single ROI tracker and have been used it to validate a proof of
concept.

17.1 Objectives

This test bench was designed to fulfill these objectives:
* Generating some data to simulate a frame and feeding of the tested block
* Be comfortable with the VGA signals

* Creating a base for more complicated test benches

17.2 Implementation

It was based on a state machine which drives a counter to generate data in the form of a greyscale.

new frame

Figure 21: Frame generation is driven by a state machine which draws lines until reaching the desired amount.

GENERATEDATA The data are generated by a counter and boundaries are defined by generics, as well as the step
between two pixels.

Practically, the greyscale is a 10 bits ramp. The pixels are counted line by line and a second counter stops the
generation when their requested number is reached.

In parallel of this, a few parameters and signals are generated such as ROI attributes (position in x/y, threshold and
mode) and frame signals (start of frame and start of line) as shown in figure 22.

Written code is available in appendix D.2.

ﬂ B Page 21 on 29

Video processing on SoC LF

VGA processing 26.08.2019
begin frame [
__ inputs
outputs
start of frame [
start of line [[1 1

data_@ —/I/l/

Figure 22: The basic test bench generates a 10 bits ramp over one data line, the frame signals and set ROI parameters
(not shown).

18 VGA processing

18.1 Data generation for global test

To validate this version, the developed test bench must be reworked a bit to concord with the following changes:
* Data are splitted on 8 parallels lines

* Each data is a pixel, meaning that each time a new batch of pixels comes, 8 new pixels are coming in series
with the last ones

Main changes where done on the way of generating data. Counters counts 8 by 8 (whether the number of data lines)
and each line is incremented to match with its relative position in the batch.
Figure 23 show the 8 data lines of this test bench iteration.

begin frame [
__ inputs
outputs
start of frame [
start of line [[1 1

datao —__ — | —— | —
data_1 ____ _— | — L —"
data 2 ________ __— 1 —1—
data 3 __~ — | —— | —"
data4a ____ — | — L —"
data 5 __ _— L —L—
data6 ___~_— | —" | —
data7 _—__ — L — L —"

Figure 23: The test bench for VGA format generates a 10 bits ramps for each 8 data lines, the frame signals and set
ROI parameters (not shown).

The code written is available in appendix D.3.

ﬂ B Page 22 on 29

Video processing on SoC LF
VGA processing 26.08.2019

18.2 Unit tests

Not all blocks are individually tested as it takes a lot of time to conceive the tests or it is not useful as their behaviour
is trivial and thus verified in global tests.

Ideally, it would be better to tests each block individually but as time was a constraint, choice was made not to
implement the tests.

18.2.1 Accumulator
To make tests easier and faster, the accumulator was tested independently with a dedicated test bench.
The criteria needed to declared a test as successful are described below:

e transmitting a given ID

* comparing the accumulated value with the threshold

¢ and telling when the result is valid

Transmitting a given ID is a copy of ROI ID to the output. It is later used to sort all the individual results from each
compute ROI blocks.

Testing this block alone asks a certain amount of tests given by formula 3 which must be summed with following
behaviours:

* when a start of frame occurs, accumulator must reset

* an end of processing leads to confronting the accumulator value against the threshold and so on an indication
on output by a binary result. A valid tell when the result is ready.

Those two behaviours can be tested in only one situation.

base = mode - threshold =2-3 =06 3)

Thus, six tests would be performed to validate each case and one more to check both behaviours.

Implementation Consisting of seven cases covering each possibility, the pattern is simple and repetitive.
Parameters have been set accordingly to the test case and a loop drive the accumulation. When it ends, the end of
processing signal is thrown to test the last accumulator stage, the check against the threshold.

The code is available in appendix D.4.

u E Page 23 on 29

Video processing on SoC LF
Results 26.08.2019

Part VI
Tests

To validate the system, several tests were performed using the test benches described in part V.

Testing each possibility involves a lot of individuals tests. As a reminder, the main tested characteristics were the
following:

e various sizes, from 1 to 8

¢ both modes, normal and inverted

* median value above, under and equal to the threshold
* position near frame borders

* overlap of ROI on multiple incoming pixels batches

Modifying the lines in the listing 1 allows to test the system with the given parameters presented in the abstract
bellow.
set parameters

roi_x <= to_unsigned (632, roi_x ’length);

roi_y <= to_unsigned (471, roi_y ’length);

roi_mode <= ’0’;

roi_size <= to_unsigned (8, roi_size 'length);

roi_threshold <= to_unsigned (1000, roi_threshold ’*length);

Listing 1: The five lines to edit to test multiple ROI positions. Value are an arbitrary example.

The amount of combinations is given by formula 4. Each label encodes the number of possibilities.

combinations = size -mode - threshold - overlap - position =8-2-3-2-4 =384)

As said in subsection 18.2.1, a unit test performed on the accumulator reduces greatly the amount of tests to do, as
shown in formula 5 it eliminate cases.

combinations = size - overlap - position =8 -2-4 = 64 5)

Then, only a certain amount of theses combinations must be performed. Remaining tasks would be to test ROI
properties (size, position and overlap) but many are redundant.

By example, testing the position near border is in no way related to the ROI size. Indeed, the border could lead to
strange behaviour if a ROI is exactly placed on the last pixel, but this appears independantly of the ROI size.

The real amount of test is brought down to 20 (see formula 6).

combinations = size - overlap + position = 8 -2+4 =20 (6)

19 Results

For readability reasons, the whole results table is available in appendix D.5.
All tests have been successfully passed. Overall, the results show that with different initial conditions, the system
reacted positively and in an expected manner.

u B Page 24 on 29

Video processing on SoC LF
System improvements 26.08.2019

Part VII

Further work and improvements

20 Remaining tasks

20.1 Implementation

The whole system must be converted and integrated into the Zynq to be fed by a real video flux (whether it is
originating from a camera or computer).

Due to a discussion with Mr. Corthay it has been decided that integrating the whole system into the Zynq hardware
was not necessary as it does not show a real interest in this work.

21 System improvements

21.1 Accumulator

The accumulator is a simple FOR LOOP over the incoming pixel batch leading to a cascade of accumulator as shown
in figure 24.

The problem is that the path to get to the final result is as long as the number of values to add (complexity O(n)
where 7 is the number of values to sum).

VALY
3/

Van)
T

|| 65‘9 accumulated

value

Figure 24: A cascade accumulator work with a serie of additionner.

Balanced tree A possible improvement could be an implementation of a balanced tree.
It is interesting as it reduces the number of additions to log () where 7 is the number of value to sum.
Figure 25 show its architecture.

21.2 Test bench

The implementation of the tests benches was a bit rudimentary and showed little flexibility.
A real improvement could be to use the current state-machine based system and drive it with a few parameters such
as:

new frame requests a new frame generation, could be paired with a few parameters such as image type (white/black,
pattern (greyscale, noise))

roi set ROI parameters

Then an automatized result validation could be applied to test many combinations without a manual check.

ﬂ E Page 25 on 29

Video processing on SoC LF

Others improvements 26.08.2019
I N
b4
|| fan
AV
I I
b4
|| 63_) accumulated
ES value
R %
|| fan
A
I I o
7 N4

Figure 25: A balanced tree reduce the length of the path needed to do the full operation and bring parallelisation to
the operations.

22 Others improvements

22.1 ROI

By improving the system, one should be able to process rectangle ROI. This could allow a fine placement (and less
pixels to monitor) of ROI along the border who could be seen as near linear as shown in figure 26.

Figure 26: A rectangle ROI to get a better fit on the edge.

22.2 Using DMA

To make faster data transfer without overloading the system, the DMA could be used to transfer frames between the
tracking system and the processor in the case where the processor needs to receive a video flux.

This consideration should be taken into account when the current system will be integrated into a higher-level
architecture.

H B Page 26 on 29

Video processing on SoC LF
26.08.2019

Part VIII

Conclusion

As described in part I, this diploma work was defined by the following goals:
1. Put together a Zynq design environment

2. Develop a system where the PS can stream data to a component in the PL. which does a very simple task and
stream back to the PS

3. Develop a more complex component implementing an image processing task in real-time
4. Investigate the possibilities of DMA for the image transfers

Globally, the defined goals and their evolution were reached.
Design environment The design environment is functional, ready to use and portable via its VM.

Stream from PS to PL and back Streaming data between PL and PS has been modified into an interaction
between both parts.

A user interface taking form of LEDs and buttons is connected to the PL and the PS reacts to this interface.
Hence, the interaction is located in the register read/write operations.

Real time image processing The system is capable of receiving a video flux and analysing the comportment of a
given ROLI.

Further work The real-time operations are fully functional in simulation but needs to be synthetized and tested
on hardware.

As setting up a whole system is a time consuming task, it has been decided not to implement this feature in this
work. See subsection 20.1 to get more details.

A better implementation of the accumulator could give better performance as it shortens the longest path, see
subsection 21.1 for more information.

Designing and implementing a higher-level architecture to handle more ROI per frame by generating the needed
amount of computing blocks is the next main step.

Finally, implementing a bunch of automatized test benches must be done to validate faster the improvements done.

Loic FRACHEBOUD

Sion, le 26.08.2019

ﬂ B Page 27 on 29

Video processing on SoC LF

26.08.2019

Part IX

Bibliography

[1]

2]
3]

(6]
[7]

[8]

(9]

(10]

(11]
(12]
(13]
(14]

(15]
(16]
(17]

(18]

Hardware/FPGARackZyngADDAV1 - UIT. URL: http://wiki.hevs.ch/uit/index.php5/
Hardware/FPGARackZyngADDAV1 (visited on 05/13/2019).

snickerdoodle | krtkl. URL: https://krtkl.com/snickerdoodle/ (visited on 05/13/2019).
Jann Kumann. TE0720 TRM - Public Docs - Trenz Electronic Wiki. Sept. 2018. URL: https:
//wiki.trenz-electronic.de/display/PD/TE0720+TRM (visited on 05/16/2019).

Jann Kumann. TE0726 - ZynqBerry - Public Docs - Trenz Electronic Wiki. Wiki. Sept. 2018.
URL: https://wiki.trenz-electronic.de/display/PD/TEQ726+-+ZyngBerry (visited on
05/13/2019).

Shahul Akthar. Block RAM and Distributed RAM in Xilinz FPGA. en-US. Oct. 2014. URL:

https : //allaboutfpga . com/block-ram-and-distributed-ram-in-xilinx - fpga/
(visited on 05/16,/2019).

KRTKL. krtkl wiki - boards specifications. Sept. 2018. URL: https://wiki . krtkl . com/
index.php?title=Main_Page (visited on 05/16/2019).

Getting Started with the ZyngBerry - Motley Electronic Topics - eewiki. URL: https://
www . digikey . com/eewiki/display/Motley/Getting+Started+with+the+ZynqBerry#
GettingStartedwiththeZyngBerry-HardwareDesign (visited on 05/21/2019).

Pre-Harvest: Getting Started with the Zynqberry in Vivado 2018.2. en-US. URL: https://
www . knitronics.com/the-zyngberry-patch/getting-started-with-the-zyngberry-
in-vivado-2018-2 (visited on 05/24/2019).

Altera. “Understanding Metastability in FPGAs”. en. In: (), p. 6.

Eduardo Sanchez. VGA video signal generation. en. URL: http://1slwww.epfl.ch/pages/
teaching/cours_lsl/ca_es/VGA.pdf (visited on 07/19/2019).

Vivado Design Suite User Guide: Using Tcl Scripting (UG894). en. 2018. (Visited on 08/07/2019).
“Graphical Editors User Manual”. en. In: (2008), p. 482.
“HDL Designer Series User Manual”. en. In: (2008), p. 602.

Peter J Ashenden. Designer’s Guide to VHDL. eng. Morgan Kaufmann, 2008. 1sBN: 0-12-
088785-1.

Camera Module - Raspberry Pi Documentation. URL: https : //www . raspberrypi . org/
documentation/hardware/camera/ (visited on 08/20/2019).

IMX219PQ | Sony Semiconductor Solutions. en. URL: https://www.sony-semicon.co.jp/
new_pro/april_2014/imx219_e.html (visited on 08/20/2019).

Eye color. en. Page Version ID: 910825107. Aug. 2019. URL: https://en.wikipedia.org/
w/index.php?title=Eye_color&oldid=910825107 (visited on 08/22/2019).

The World’s Population By Eye Color Percentages. en. URL: https://www.worldatlas.
com/articles/which-eye-color-is-the-most-common-in-the-world.html (visited on

08/22/2019).

aBEd

B Page 28 on 29

Video processing on SoC LF
Datasheet 26.08.2019

Part X

Appendix

A Datasheet

To keep a light bibliography, used datasheet are listed here.
Xilinx provide the following documentation to use their environment:

e Zyng-7000 SoC Data Sheet: Overview, DS190 (v1.11.1) July 2, 2018
* Zyng-7000 All Programmable SoC Software Developers Guide, UG821 (v12.0) September 30, 2015
* The Zynq Book, 1st Edition, produced in association with Xilinx by the University of Strathclyde, Glasgow

Others are available at http://www.xilinx.com/products/silicon-devices/soc/zyng-7000.html#docum
entation

u E Page 29 on 29

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#documentation
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#documentation

Video processing on SoC LF
Specifications and initial analysis 26.08.2019

B Specifications and initial analysis

A document generated at the project genesis to analyse the given specifications and how the project is dissolved in
various tasks.

u E Page 30 on 29

Hes

School of
Engineering U

Video processing on SoC

Bachelor thesis

SPECIFICATIONS AND INITIAL ANALYSIS

Abstract

The aim of the diploma work is to develop the base for an image processing task on a Xilinx Zynq SoC. In this
system, the ARM Cortex-A9 based Processing System (PS) will stream images to the Programmable Logic (PL)
which will perform an image processing task on the fly.

Student : Loic FRACHEBOUD

Teacher : Francois CORTHAY

Expert : Pascal FAURE

From : HES-SO Valais-Wallis
V2.0

13.06.2019

Contents

1 Design environment
1.1 Environment Setup o ot i e e e e e e e e e e e e e

2 Basic processing

2.1 Systemarchitecture e e e

2.2 Feedback flux e
3 Real time image processing

3.1 Specifications e e e

3.2 Principle of detection L e e

4 Further steps

5 Planning

w

~ &

Video processing on SoC LF
13.06.2019

Introduction

This document intend to detail requirements of bachelor thesis. It is a compenent of the main report and does not
constitute a whole independant document itself.
Please refer to the report for any missing information.

Objectives

Basis goals are defined by thesis description:
1. Put together a Zynq design environment

2. Develop a system where the PS can stream data to a component in the PL wich does a very simple task and
stream back to the PS

3. Develop a more complex component implementing an image processing task in real-time
4. Investigate the possibilities of Direct Memory Access (DMA) for the image transfers

From this each goal is decomposed in a few tasks to get an idea of how the project will take place.

ﬂ B Page 1 on 6

Video processing on SoC LF
Design environment 13.06.2019

Decomposition

1 Design environment

The first objective is to define a design environment and it begin by defining the development board.
During the thesis introduction meeting three boards were suggested:

» FPGARackZynq', a board from HEVS developped by Charles Papon
« Snickerdoodle?, a really compact board
* ZyngBerry?, a board with a Raspberry Pi form-factor

All three are based on a Zynq 7000 serie, placing them on a similar performance basis.
Differences appears in peripherals and support but nothing really big.

After a discussion with Mr. Faure, the ZynqBerry with a 7Z007s available at school will be sufficient.

1.1 Environment setup
The work will be done within a VM. It allocate a nice portability of the project and a light working environment in
term of just having what is needed.
It will be composed mainly as following:
1. Ubuntu
2. Vivado
3. HDL Designer
4. Atom, git and such useful tools

The exact list of tools will be defined on setup and especially while working with it.

Uhttp://wiki.hevs.ch/uit/index.php5/Hardware/FPGARackZyngADDAV1
2https://krtkl.com/snickerdoodle/
3 https://wiki.trenz-electronic.de/display/PD/TE0726+-+ZyngBerry

H B Page 2 on 6

Video processing on SoC LF
Basic processing 13.06.2019

2 Basic processing

This will be decomposed in a few milestones:
A. Setup a simple stream from the PS to the PL
B. In the PL, forward the stream back to the PS

C. Do a simple operation on the stream before sending back

2.1 System architecture

The first step takes as input a top level design from Mr. Faure wich gives a few IP to fastly get a working design as
shown in figure 1.

This define an architecture where the PS stream a data flux to the PL and require to specificate how and in wich
format the data is transmitted.

DDR
Processing,
\\
SoC \
"""""'"""""""""""""""""'T """""""""""""""""""""" \ """"""""""""
PS PL \
ARM DDR 5 DMA
Control I::l B
A
r <— T 1T k—
!
/ N
ARM / \
1 1 \
| —
I’ | S— \\
! h\ \\
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I,,,,,,,,‘,,,,3,,,\,,,,,,,,,,,,,,,,,,
/ \ \
/ \ \
AXI HP' *AXI GPIO (Burst) *Buffer

Figure 1: System architecture, the block named Processing contain more IPs and especially the one in which my
system will take place.

Then from the PL point of view, the stream must be recovered and forwarded back to the ARM. This validate the
communication between PS and PL.

Finally, a simple operation such as bit inversion will be performed on the stream.

2.2 Feedback flux

To give a feedback, a slower flux must be given back to the PS.

This could consitute a nice work to do at this moment because the data flows are proved working with really simple
operation.

Generating this feedback consist in reducing the framerate on a lower value.

This value could be a fixed parameter or dynamically processed from the original framerate to obtain the wanted
one.

H B Page 3 on 6

Video processing on SoC LF
Real time image processing 13.06.2019

3 Real time image processing

Later a more complex operation on the stream will be performed.
A. Start by a simple operation in real time
B. Develop a more complex processing to perform image processing

Working in real time with image processing is the main objective.
To reach it, real time operations must be implemented. At this point, odds are high that the simple operation
implemented previously is working in real-time.

Finally an image processing operation will be conceived to be applied on the stream.
Working in real-time here ask to do all needed operations in a limited time-frame, the one between two images.

N N I I

T T T T
e m— |
compute time

Figure 2: Each frame processing must be done within the time between two frames.

3.1 Specifications

Video The video flux is in VGA format (640/480 pixels), up to 500[fps], grayscale 8-10 bits on the LSB of a 16
bits value.

Some informations are available in registers, others are given as hard parameters. This will be more preciselly
defined when the architecture will be in my hands.

ROI On this flux, up to 32 ROI could be placed. One ROI is defined as a square of 3 to 8 pixels wide (see figure
3), a flag who indicates its mode (inverted or not, explained below) and a X/Y position inside the VGA frame. A
ROl in it’s normal operation works in normal mode. It means that the detection is based on a dark base deviating
towards clear tones. The inverted mode is it’s exact opponent. The ROl is trigged by a deviation from clear to dark
tones. The application of both modes is given below.

3 px] @ 8 px

Figure 3: One ROl is a square between 3 to 8 pixels wide.

Later it could be nice to improve the system to be able to process rectangle ROI. This to allow a fine placement (and
less pixels to monitor) of ROI along the border who could be seen as near linear as shown in figure 4.

Figure 4: A rectangle ROI to get a better fit on the edge.

Be aware that the system must handle a ROI of only 1 pixel even if this is not encounter in working conditions. This
is a tested specification.

u ﬂ Page 4 on 6

Video processing on SoC LF
Real time image processing 13.06.2019

Sample image The figure 5 gives a visual indication of how it looks like.

In the center, the circle is the target to follow. If it moves, this has to be indicated. The circle is really dark, close to
full black.

To detect movements, ROI are placed inside the target along the border. So when one ROI median value tends to
move away of black, it indicates that the target is moving.

Validation of a movement needs a minimum amount of ROI trigged, given as a parameter.

Secondary, to be sure that the ROIs in the dark are valids, a few inverted ones are placed outside the target. As this
area is well lit, if they are not bright it means that a problem occurs (invalid video flux for example) and it must be
indicated as well.

640 px

Target | I:'

ROI . p
Normal mode "«

ROI
inverted mode

O [:] 480 px

Figure 5: The final image processing is based on the following of thoses ROL. It intend to track the movements of
the circular target by looking at the median luminousity of the previously placed ROL.

What to detect The figure 6 shows how the movement is detected. A red ROI indicates a trigged one.

(a) When moving a little, ROI are detecting it (in red are (b) If the target is moving too much, the threshold is over
the triggered ones) but the threshold is not overpassed (in and yet the system must halt.

this example there is not enough ROI triggered to indicate

a movement).

Figure 6: Example of how the target movements are detected. In dotted the target centered position is indicated.

1’ E Page 5 on 6

Video processing on SoC LF
Planning 13.06.2019

3.2 Principle of detection

An invalid ROl is defined by a too high median’s value (or too low if it’s in inverted mode). Mathematically this is
translated as the sum of all pixels within the ROI frame, divided by the number of pixels.

A monitoring system will then take as input the median value of all ROI and if their number exceed the threshold, it
will be indicated.

4 Further steps

An investigation of images transfers via DMA could lead to a more efficient usage of ressources. This need to be
thinked when the system is proved.

5 Planning

A fast planning is extrapolated of this analysis. A much more detailled will be generated and available with the
report.

Preparing the whole system and analysing it is planned on 5 weeks.

Working with the flux and doing the simple loop is estimated on 2 weeks.

Finally, implementing the real-time operation must take 7 weeks as it constitute the central task.

Loic FRACHEBOUD

Sion, le 13.06.2019

ﬂ B Page 6 on 6

Video processing on SoC LF
VM setup 26.08.2019

C VM setup

ﬂ E Page 39 on 29

Preparing a design environment

Begin by installing an Ubuntu as a VM. Disk space must be at least 50[GB] (Vivado is quite big).
Continue with a few useful tools such as git and Atom.

A shared folder between Windows and Ubuntu could be nice. When needed it could mounted
with the third command below (automount disabled to keep portability as high as possible with
very little configuration when runned by another HW).

mkdir ~/shared
sudo adduser bachelor vboxsf
sudo mount -t vboxsf vm_share ~/shared

Install HDL Designer

Follow http://mondzeu.ch/wikis/EDA/index.php?title=Install HDL Designer

HDS_2018.1_ix1.exe is given by M. Corthay
Library files weren't copied

HDL Designer is called directly in

/usr/opt/HDS_2018.1/bin/hdl_designer

A few things were added to /etc/profile

EDA tools
#
export PATH=$PATH:/usr/opt/HDS_2018.1/bin:/usr/opt/Modelsim/modeltech/bin

export
LM_LICENSE_FILE=$LM_LICENSE_FILE:27001@mentorlm.hevs.ch:2100@xilinx1lm.hevs.ch

Configure HDL Designer

A project is created based on one of the 6th semester lab. A few configurations occurs in the
*.bash files.

First take the /Scripts and /Syntax folder from one of them and the project_name.bash file
Granting a 775 access is needed (full power to the owner and the group (Read-Write-Execute) but
only RE to other) for the project folder and the /Scripts.

Rename all to the desired name and especially replace all old occurence of the old project name
in the project_name.hdp file located in project_name/Prefs . This file make the link between

folders and libraries.

Be aware that if HDL Designer installation folder is different of HDS, it must be changed in
hd1l_designer.bash file located in /Scripts. This could be improved in the long-run by setting a
variable who define the folder exact name for the entire script.

Install ModelSim

Follow http://mondzeu.ch/wikis/EDA/index.php?title=Install Modelsim

A difference occurs at the "Install after HDL designer" step. I've done the following instead.
sudo ./install.aol/mgc_install &
Testing ModelSim was done from the /bin directory

sudo ./usr/opt/Modelsim/modeltech/bin/vsim &

If one of the PATH variable is not found, export it.
Install Vivado

The installation take place with Design Edition in /usr/opt/Xilinx without packages for Zynq
Ultrascale.

Vivado need Gtk package:

sudo apt install libcanberra-gtk-module

And must be launch as root

sudo -H /usr/opt/Xilinx/Vivado/2018.3/bin/vivado

Configure a Vivado project

Those two following links give a nice overview on how start and work with the environment :

https://www.knitronics.com/the-zyngberry-patch/getting-started-with-the-zyngberry-in-vivado-20
18-2

https://www.digikey.com/eewiki/display/Motley/Getting+Started+with+the+ZynqgBerry

Basically consisting of downloading board files and creating a project based on this board.

Steps for the first run

Being by following the DigiKey tutorial (with a Z7007s chip in my case) until Standalone Software
Design. Here jump to the Knitronics tutorial.

Then some code lines must be commented out in main.c (301-311 in my case), edit DDR base
address to 0x0 on line 35 of xparameters.h (pointed by line 296). Optional but recommended
for debugging, the lines 291-294.

Line 383 is replaced by :

BootModeRegister &= JTAG_MODE;

After, the tutorial recommend a few modification in the Hello World program but | won't use it, so
justignore it and fly back to the DigiKey one on Application Code.

Take the application code and replace all the content of main.c with it.
This tutorial then give a few instruction on UART (Modify BSP settings), as it's not used, ignore it.

Set the run configurations as explained just above the given application code and especially, set
Run ps7_init and Run ps7_post_config as sometimes the system is held in reset.

From there, it must apply a dynamic PWM in the sense of a variable going forth and back from 0
to 100% on the GPIO7, visible on oscilloscope.

Steps for a new iteration

e Apply again the configuration file to ZYNQ PS block and keep desired peripherals (in this
case UART 1, MIO 48-49)

e Run synthesis, implementation and generate bitstream

e Export Hardware (file -> export -> export HW) with bitstream

e Launch SDK

e Run configuration which do a full system reset

MediaWiki

Follow http://mondzeu.ch/wikis/mediaWiki under Installing to have a full install procedure.

The folder in wich the Wiki will be installed must be editable by user.

chown -R bachelor:users www

Then the index.html must be loaded before the PHP one. This is configurable in
lighttpd.conf.

Appendix

Resize partition

As the program need around 40[GB] | had to resize the VM. | choose 100[GB] to have a bit of
spare space.

cd C:\Program Files\ Oracle\VirtualBox
VBoxManage modifiyhd "C:\Users\loic.frachebo\VirtualBox
VMs\bachelor\bachelor.vdi" --resize 100000

A GParted VM has been set to resize the partition. This second VM take the *.vdi from the first
one as a SATA device.

Then just run GParted, extend the partition and apply.

Video processing on SoC

Codes

LF
26.08.2019

D Codes

D.1 LEDs and buttons application

Copyright (C) 2009 — 2014 Xilinx, Inc. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy

of thi
in the
to use
copies

s software and associated documentation files (the "Software"), to deal
Software without restriction , including without limitation the rights
, copy, modify, merge, publish, distribute , sublicense , and/or sell

of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

Use of the Software is limited solely to applications:

nning on a Xilinx device, or

(b) that interact with a Xilinx device through a bus or interconnect.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
XILINX BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY ,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

Except

as contained in this notice, the name of the Xilinx shall not be used

in advertising or otherwise to promote the sale, use or other dealings in
this Software without prior written authorization from Xilinx.

*
*
F
*
sk
*
3k
*
*
F
*
ES
3
*
(a) ru
*
*
*
S
*
%
*
E
*
*
F
*
3k
*
%

3 #include

#include
#include

/%

helloworld.c: simple test application

o

This application configures UART 16550 to baud rate 9600.
% PS7 UART (Zynq) is not initialized by this application, since
bootrom/bsp configures it to baud rate 115200

*

k3

| UART TYPE BAUD RATE |

*

* uartns550 9600

* uartlite Configurable only in HW design

® ps7_uart 115200 (configured by bootrom/bsp)
%/

#include <stdio.h>

#include "platform.h"

#include "xil_printf.h"

#include "xgpio.h"

> #include "sleep.h"

"xtmrctr.h"
"xscugic.h"
"xil_exception.h"

// Timer variables

#define TMR_INTR_ID XPAR_FABRIC_AXI_TIMER_O_INTERRUPT_INTR
#define PWM_CONFIG ((1<<9) | (1<<2) | (1<<1))

#define TMRO_RELOAD 20000

#define TMRI_RELOAD 10000

int status;

u32 control_reg;

5 u32 pwm;

HEEEBR

Page 43 on 29

66

106
107
108
109
110
11

112
113
114
115
116
117
118

119

125
126
127
128
129

130

132

134

135

Video processing on SoC

LF

Codes 26.08.2019
s8 step = 4;
// Structures

XTmrCtr Timer;
XTmrCtr_Config *TimerConPtr;
XScuGic Intc;
XScuGic_Config #IntcConPtr;

I/

User interface variables

#define LED_CHANNEL 2
#define PUSH_BTN_CHANNEL 1

#define LIN 0x01
#define L2N 0x01
#define L3N 0x02
#define L4N 0x03
#define LSN 0x04

3 #define L6N 0x05

#define L7N 0x06
#define L8N 0x07

/1

all the PWM code is directly from Digikey example

void TimerOCallback (void =Inst)

{

}

// Set duty cycle
pwm += step;
if (pwm >= TMRO_RELOAD || pwm == 0)
{
step = —step;

}

// Load duty cycle into Timer 1
XTmrCtr_SetResetValue(&Timer, 1, pwm);

// Clear interrupt flag (bit 8 in the Control & Status reg)

control_reg = XTmrCtr_GetControlStatusReg (TimerConPtr —>BaseAddress, 0)I(1<<8);

XTmrCtr_SetControlStatusReg (TimerConPtr—>BaseAddress, 0, control_reg);

void TimerSetup(void)

{

// Initialize timer
TimerConPtr = XTmrCtr_LookupConfig (XPAR_AXI_TIMER_O_DEVICE_ID) ;
XTmrCtr_Cfglnitialize(&Timer, TimerConPtr, TimerConPtr—>BaseAddress);

// Configure timers for PWM usage

control_reg = XTmrCtr_GetControlStatusReg (TimerConPtr —>BaseAddress, 0)
| PWM_CONFIG;

XTmrCtr_SetControlStatusReg (TimerConPtr—>BaseAddress, 0, control_reg);
control_reg = XTmrCtr_GetControlStatusReg (TimerConPtr —>BaseAddress, 1)
| PWM_CONFIG;

XTmrCtr_SetControlStatusReg (TimerConPtr—>BaseAddress, 1, control_reg);

// Set starting values for timers
XTmrCtr_SetResetValue(&Timer, 0, TMRO_RELOAD) ;
XTmrCtr_SetResetValue(&Timer, 1, TMRI_RELOAD) ;

// Assign function TimerOCallback to be called when interrupt occurs
XTmrCtr_SetHandler(&Timer, (XTmrCtr_Handler) TimerOCallback , &Timer);

// Enable interrupts for Timer O only
XTmrCtr_Enablelntr (TimerConPtr—>BaseAddress, 0);

int IntcSetup(void)

{

// Enable exceptions in the ARM
Xil_ExceptionEnable () ;

// Configure Interrupt Controller
IntcConPtr = XScuGic_LookupConfig (XPAR_PS7_SCUGIC_0_DEVICE_ID) ;

status = XScuGic_Cfglnitialize(&Intc , IntcConPtr, IntcConPtr —>CpuBaseAddress);

HEEEBR

Page 44 on 29

Video processing on SoC LF
Codes 26.08.2019

136 if (status != XST_SUCCESS)
137 {

138 return XST FAILURE;

139 }

141 // Connect to hardware
142 Xil_ExceptionRegisterHandler (XIL_EXCEPTION_ID_INT,

143 (Xil_ExceptionHandler) XScuGic_InterruptHandler , &Intc);
144 XScuGic_Connect(&Intc , TMR_INTR_ID,
145 (Xil_ExceptionHandler) TimerOCallback , &Timer) ;

146 XScuGic_Enable(&Intc , TMR_INTR_ID) ;
147 return XST_SUCCESS;
148}

150 int main ()
151 {

152 init_platform () ;

154 // PWM stuff

155 TimerSetup () ;

156 IntcSetup () ;

15 print ("Hello World '\n\r");

158 XTmrCtr_Start(&Timer, 0);

159 XTmrCtr_Start(&Timer, 1);

160 print ("Timers started .\n\r");

162 // leds and buttons stuff
163 XGpio user_interface;

164 u32 buttons = 0;

165 u32 slave_leds = 0;

167 // Initialize GPIO
168 XGpio_Initialize(&user_interface , XPAR_AXI_GPIO_0_DEVICE_ID) ;

170 while (1) {

171 // constantly read buttons and write their status into LEDs register
172 buttons = XGpio_DiscreteRead(&user_interface , PUSH BTN_CHANNEL) ;

173 XGpio_DiscreteWrite(&user_interface , LED_ CHANNEL, buttons);

174 }

175

176 cleanup_platform () ;

177 return 0;

Listing 2: Program written to handle LEDs and buttons, based on what was done in the hands-on (see subsection
9.2)

a B Page 45 on 29

Video processing on SoC
Codes

LF
26.08.2019

D.2 Test bench basic

i ARCHITECTURE test OF loopback_tester IS

constant clockFrequency: real := 66.0E6;
4 constant clockPeriod: time := (1.0/clockFrequency) * 1 sec;
5 constant pixelPeriod: time := (3.0/clockFrequency) * 1 sec;
6 signal sClock: std_uLogic = ’17;
7 signal sData_0: unsigned(grayscaleBitNb—1 downto 0) := (others => ’07);
8 signal sSOL: std_uLogic := ’0’;
9 signal sSOF: std_uLogic := ’0’;
10 signal counterEn: std_uLogic := ’0’;
1" signal lineCounter: integer := O0;
12 signal frameDone: std_uLogic; — indicate the end of a frame generation
13 signal beginFrame: std_uLogic; — used to start a frame generation
14 signal lineDone: std_uLogic; — indicate that a line is in generation
15 signal counter: unsigned(paramBitNb—1 downto 0);
16 signal pixelXcounter: unsigned(dataBitNb—1 downto 0);
.
18
19 — State Machine
20
21 — possible states
2 type STATE_TYPE is (
23 idle ,
2 start_frame ,
25 start_line ,
26 doing_line
27)
28
29 — Declare current and next state signals
30 signal current_state STATE_TYPE;
31 signal next_state STATE_TYPE;
32
13 begin
34
35 — clock and reset
36 sClock <= not sClock after clockPeriod/2;

37 clock <= transport sClock after clockPeriod*9/10;

38 reset <= ’1°, 0’ after 2xclockPeriod;

39

40

41 — enable peripheral
42 en <= ’0’, ’1° after 400 ns;

43

4 — set to generate frames

45 beginFrame <= ’0’, ’1’ after 600 ns;—, °0° after 800 ns;

4 — todo work on a system to request the generation of n pictures
.

48

19 — set parameters

50 roi_x <= to_unsigned (3, paramBitNb);

51 roi_y <= to_unsigned (3, paramBitNb);
52 roi_size <= to_unsigned (3, paramBitNb);
53 roi_threshold <= to_unsigned (900, paramBitNb);

— send a picture

59 — State Machine

60

61 — Process name clocked_proc

©2 — Description state s flip —flop handling
63

64 clocked_proc process (sClock, reset)

65 begin

66 if (reset = ’1°) then

67 current_state <= idle;

68 elsif rising_edge (sClock) then

HEEEBR

Page 46 on 29

Video processing on SoC LF

Codes 26.08.2019
69 current_state <= next_state;
70 end if;
71 end process clocked_proc;
72
74 — Process name : nextstate_proc
75— Description : determine the next state according to
76 — 1) actual state

77 — 2) incomming events

79 nextstate_proc : process(current_state , beginFrame,b frameDone, lineDone)
80 begin

81 case current_state is

82 when idle =>

83 — wait until start of frame

84 if beginFrame = ’1° then

85 next_state <= start_frame;

86 end if;

87

88 — start a frame and so begin by a line
89 when start_frame =>

90 next_state <= start_line;

91

9 — start a line (send SOL) and wait completion in doing_line
93 when start_line =>

94 next_state <= doing_line;

95

9% — wait for the end of a line

97 when doing_line =>

98 if frameDone then

99 next_state <= idle;

101 elsif lineDone then

102 — create one more line if needed and last one terminated
103 next_state <= start_line;

104

105 end if;

106 — else continue generation

108 when others =>
109 next_state <= idle;
110 end case;

11 end process nextstate_proc;

114 — Process name : output_in_proc
15— Description : action on state entry
16

17 output_in_proc : process(current_state , lineCounter)
18 begin

19 — Default Assignment

120 frameDone <= ’0’;

121 sSOF <= ’0’;

122 sSOL <= ’07’;

123

124 — Combined Actions

125 case current_state 1is

126 when idle =>

127 — do nothing

128

129 when start_frame =>

130 — start counter and send star of frame signal
131 sSOF <= ’17;

132

133 when start_line =>

134 — send start of line signal

135 counterEn <= ’17;

136 sSOL <= ’17;

137

138 when doing_line =>

ﬂ E Page 47 on 29

Video processing on SoC LF
Codes 26.08.2019

— checking if more lines are needed
if lineCounter = imageHeigth — 1 then
frameDone <= ’17;
counterEn <= ’0’;
end if;

when others =>
null ;
end case;
end process output_in_proc;

— Process name : generateData

— Description : counter driven by state machine to generate data
generateData : process(sClock)

begin

if rising_edge (sClock) then
lineDone <= ’07;

— if counter is enabled, increment output on a lower speed than clock
if counterEn = ’1° then
counter <= counter + 1;

— there is no synchronization signal, so duration must be known
if counter = dataDuration — 1 then

counter <= (others => ’0’);

pixelXcounter <= pixelXcounter + 1;

sData_0 <= sData_0 + grayscaleStep;

— upper limit is not 1023 as step is not a divisor
if pixelXcounter = imageWidth — 1 then
— one line is drawn
lineDone <= ’17;
lineCounter <= lineCounter + 1;
sData_0 <= (others => ’0’);
pixelXcounter <= (others => '07);
end if;
end if;

— if not counting, reset signals
else
sData_0 <= (others => ’0’);
counter <= (others => ’07);
pixelXcounter <= (others => ’07);
lineCounter <= 0;
end if;
end if;
end process;
— output signals
data_0 <= resize (sData_0, dataBitNb);
start_of_frame <= sSOF;
start_of_line <= sSOL;

END ARCHITECTURE test ;

Listing 3: Test bench written to test basic functionalities

ﬂ E Page 48 on 29

Video processing on SoC
Codes

LF
26.08.2019

D.3 Test bench VGA

— VHDL Entity ImageProcessing_test.loopback_tester.interface

3 — Created:
— by — bachelor.bachelor (bachelor—vm)
— at — 11:33:30 08/13/19

— Generated by Mentor Graphics’ HDL Designer (TM) 2018.1 (Build 12)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.ALL;

LIBRARY ImageProcessing;

USE ImageProcessing . general .ALL;

ENTITY loopback_tester IS

GENERIC (
dataBitNb positive
paramBitNb positive
imageWidth positive
imageHeigth positive
grayscaleStep positive
dataDuration positive
nbrinputData positive

DE

PORT (
id : IN
result : IN
valid : IN
clock . OUT
data_0O : OuT
data_1 : OuUT
data_2 : OuUT
data_3 : OuUT
data_4 : OuUT
data_>5 : OuUT
data_6 . OuUT
data_7 : OuUT
en : OUT
reset : OUT
roi_mode . OuUT
roi_size : OuUT
roi_threshold : OuUT
roi_x . OuUT
roi_y . OuUT

start_of_frame : OUT
start_of_line : OUT
DK

— Declarations

END loopback_tester ;

40;
30;
25;

unsigned (dataBitNb—1 DOWNIO
std_ulogic;
std_ulogic;
std_ulogic;
unsigned (dataBitNb—1 DOWNIO
unsigned (dataBitNb—1 DOWNIO
unsigned (dataBitNb—1 DOWNIO
unsigned (dataBitNb—1 DOWNIO
unsigned (dataBitNb—1 DOWNIO
unsigned (dataBitNb—1 DOWNIO
unsigned (dataBitNb—1 DOWNIO
unsigned (dataBitNb—1 DOWNIO
std_ulogic;
std_ulogic;
std_ulogic;

unsigned (paramBitNb—1 DOWNIO 0);
unsigned (paramBitNb—1 DOWNIO 0) ;
unsigned (paramBitNb—1 DOWNIO 0) ;
unsigned (paramBitNb—1 DOWNIO 0) ;

std_ulogic;
std_ulogic

Listing 4: Test bench entity

ARCHITECTURE test OF loopback_tester IS

constant clockFrequency: real := 66.0E6;

constant clockPeriod: time
constant pixelPeriod: time

signal sClock: std_uLogic = ’17;
signal sData_0: unsigned(data_0 range) := (others => ’07)
signal sData_2: unsigned(data_1 range) := (others => ’0’)

signal sData_1: unsigned(data_2 ’range)
signal sData_3: unsigned(data_3 'range)
signal sData_4: unsigned(data_4 'range)
signal sData_5: unsigned(data_5 'range)

(others => ’0’)
(others => ’07)
(others => ’0’)
(others => ’07)

signal sData_6: unsigned(data_6 range) := (others => ’0’)

0);

0);
0);
0);
0);
0);
0);
0);
0);

:= (1.0/clockFrequency) = 1 sec;
:= (3.0/clockFrequency) = 1 sec;

HEEEBR

Page 49 on 29

66

Video processing on SoC LF
Codes 26.08.2019

signal sData_7: unsigned(data_7 *range) := (others => ’0’);

signal sSOL: std_uLogic := ’0°;

signal sSOF: std_uLogic := ’0’;

signal counterEn: std_uLogic := ’0°;

signal lineCounter: integer := O0;

signal frameDone: std_uLogic; — indicate the end of a frame generation

signal beginFrame: std_uLogic; — used to start a frame generation

signal lineDone: std_uLogic; — indicate that a line is in generation

signal counter: unsigned(paramBitNb—1 downto 0);
signal pixelXcounter: unsigned(dataBitNb—1 downto 0);

— State Machine

— possible states
type STATE_TYPE is (
idle ,
start_frame ,
start_line ,
doing_line
)5
— Declare current and next state signals
signal current_state : STATE_TYPE;
signal next_state : STATE_TYPE;

begin

— clock and reset
sClock <= not sClock after clockPeriod/2;
clock <= transport sClock after clockPeriod=9/10;
reset <= ’1°, 0’ after 2xclockPeriod;

— enable peripheral
en <= ’0’, ’1’ after 400 ns;

— set to generate frames
beginFrame <= ’0’, ’1’ after 600 ns;—, °0° after 800 ns;
— todo work on a system to request the generation of n pictures

— set parameters

roi_x <= to_unsigned (632, roi_x 'length);

roi_y <= to_unsigned (471, roi_y ’length);

roi_mode <= ’0’;

roi_size <= to_unsigned (8, roi_size 'length);
roi_threshold <= to_unsigned (1000, roi_threshold *length);

— send a picture

— State Machine

— Process name : clocked_proc

5

— Description : state ’s flip—flop handling

clocked_proc : process(sClock, reset)
begin
if (reset = ’1’) then

current_state <= idle;
elsif rising_edge (sClock) then
current_state <= next_state;
end if;
end process clocked_proc;

— Process name : nextstate_proc
— Description : determine the next state according to

HEEEBR

Page 50 on 29

Video processing on SoC
Codes

LF
26.08.2019

— 1) actual state

— 2) incomming events
nextstate_proc
begin
case current_state is
when idle =>
— wait until start of frame
if beginFrame = ’1’ then

next_state <=
end if;

start_frame ;

a frame and so begin by a line
=>
start_line ;

start
when start_frame
next_state <=
—— start a line (send SOL) and wait
when start_line =>
next_state <= doing_line;
— wait for the end of a line
when doing_line =>
if frameDone then
next_state <= idle;

elsif lineDone then
create one more line
next_state <= start_line;

end if;
— else continue generation

when others =>
next_state <=

end case;
end process

idle ;

nextstate_proc;

completion

if needed and

process (current_state , beginFrame, frameDone,

last one

lineDone)

in doing_line

terminated

Process name
— Description

output_in_proc
action on state entry

output_in_proc
begin
— Default Assignment

process (current_state ,

frameDone <= ’0°;
sSOF <= ’0’;
sSOL <= ’0’;

— Combined Actions
case current_state is
when idle =>

— do nothing

when start_frame =>
— start counter and send star of frame
sSOF <= ’17;
when start_line =>
— send start of line signal
counterEn <= ’17;
sSOL <= ’1°7;
when doing_line =>
— checking if more lines are needed
if lineCounter = imageHeigth — 1 then
frameDone <= ’1°7;
counterEn <= ’07;

end if;

when others =>

lineCounter)

signal

HEEEBR

Page 51 on 29

185

186

188

189

215

218
219

220

Video processing on SoC

Codes

LF
26.08.2019

null ;
end case;

end process output_in_proc;

— Process name

— Description

C

generateData
ounter driven by state machine to generate data

generateData
begin

if rising_edge (sClock)

process (sClock)

lineDone <=

aov;

— if counter
if counterEn =
counter <=

— there

i

if counter
counter <= (others
pixelXcounter <= pixelXcounter + nbrlnputData;
sData_0

sData_

1

sData_2
sData_3
sData_4
sData_5
sData_6
sData_7

— upper

— and

this

counter + 1;

S

<=

1

is enabled,

1’ then

then

increment output on a lower speed than clock

no synchronization signal, so duration
dataDuration — 1 then

sData_0

= sData_0

sData_0
sData_0
sData_0
sData_0
sData_0

= sData_0

imit is not
counter

if pixelXcounter =
ine is drawn

— one

1

lineDone <= ’17;
lineCounter <= lineCounter + 1;
— re8el
sData_0
sData_1
sData_2
sData_3
sData_4
sData_5
sData_6
sData_7

end if
end if;

— if not

else
sData_0
sData_1
sData_2
sData_3
sData_4
sData_5
sData_6
sData_7
counter

end if;
end if;
end process;

B

counting ,

<=
<=
<=
<=
<=
<=
<=
<=
<=

(

(

— output signals
data_0 <= sData_0;

data for

=>

+

+
+
+
+
+
+
+

counts

0°);

grayscaleStep=nbrInputData;
grayscaleStep+nbrinputData
grayscaleStep=nbrInputData
grayscaleStep=nbrInputData
grayscaleStep=nbrinputData
grayscaleStep+nbrInputData
grayscaleStep=nbrinputData
grayscaleStep=nbrInputData

+ + + 4+ + + +

must be known

1023 as step is not a divisor

imageWidth then

next one

<= (others => ’0’);

<= to_unsigned (1, sData_0’length);
<= to_unsigned (2, sData_0’length);
<= to_unsigned (3, sData_0’length);
<= to_unsigned (4, sData_0’length);
<= to_unsigned (5, sData_0’length);
<= to_unsigned (6, sData_0’length);
<= to_unsigned (7, sData_0’length);
pixelXcounter <= (others => ’07);

reset

others =>
to_unsigned (1, sData_0’length);
to_unsigned (2, sData_0’length);
to_unsigned (3, sData_0’length);
to_unsigned (4, sData_0’length);
to_unsigned (5, sData_0’length);
to_unsigned (6, sData_0’length);
to_unsigned (7, sData_0’length);
others =>
pixelXcounter <= (others => ’07);
lineCounter <= 0;

signals

07

0°);

8 by 8 so ends on imageWidth

HEEEBR

Page 52 on 29

Video processing on SoC LF
Codes 26.08.2019

224 data_1 <= sData_1;
225 data_2 <= sData_2;
226 data_3 <= sData_3;
27 data_4 <= sData_4;
228 data_5 <= sData_5;
229 data_6 <= sData_6;
230 data_7 <= sData_7;
231 start_of_frame <= sSOF;
32 start_of_line <= sSOL;

. END ARCHITECTURE test ;
Listing 5: Test bench written to test system with a VGA frame format

u B Page 53 on 29

Video processing on SoC
Codes

LF
26.08.2019

D.4 Test bench accumulator

— VHDL Entity ImageProcessing_test.accumulator_tb.symbol

3 — Created:

IS

51

— by — francois.corthay .UNKNOWN (WEA30906)
— at — 14:48:16 25.02.2019

— Generated by Mentor Graphics’ HDL Designer (TM) 2018.1 (Build 12)

ENTITY accumulator_tb IS
— Declarations

END accumulator_tb ;

Listing 6: Test bench entity for accumulator

— VHDL Architecture ImageProcessing_test.accumulator_tester.tb

— Created:
— by — bachelor.bachelor (bachelor—vm)
— at — 15:52:14 08/13/19

— using Mentor Graphics HDL Designer (TM) 2018.1 (Build 12)
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.ALL;

LIBRARY ImageProcessing;
USE ImageProcessing.general .ALL;

ENTITY accumulator_tester IS

GENERIC (
constant dataBitNb: positive := 16;
constant paramBitNb: positive := 16;
constant grayscaleBitNb: positive := 10;
constant nbrlnputData: positive := 8;
constant maxRoiSize: positive := 8
)8
PORT(
id : IN unsigned (dataBitNb—1 DOWNIO 0);
result . IN std_ulogic;
valid . IN std_ulogic;
endOfProcessing : OUT std_logic;
newPixels : OuT std_ulogic;
roi_id : OUT unsigned (dataBitNb—1 DOWNIO 0);
roi_mode : OuUT std_ulogic;
roi_threshold : OUT unsigned (paramBitNb—1 DOWNIO 0);
start_of_frame : OUT std_ulogic;
value : OuUT data_array
DE
— Declarations
END accumulator_tester ;
3 ARCHITECTURE tb OF accumulator_tester IS
constant t_pulse: time := 30 ns;
constant t_data: time := 100 ns;
constant t_reset: time := 50 ns;
constant t_betweenTests: time := 200 ns;
BEGIN
— test general behaviour
process

HEEEBR

Page 54 on 29

Video processing on SoC
Codes

LF
26.08.2019

begin
wait for t_reset;

start_of_frame <= ’0’, 1’ after 10 ns, 0’ after t_pulse;

— test a value under threshold , normal mode
roi_id <= to_unsigned (16, roi_id ’length);

roi_mode <= ’0’;
roi_threshold <= to_unsigned (100,
endOfProcessing <= ’07;

— generate values to accumulate ,

roi_threshold *length);

expected accumulation is

— first batch is used to see if accumulator reset on SOF

for i in 0 to maxRoiSize—1 loop

for j in O to nbrInputData—1 loop

value (j) <= to_unsigned(j=*10,
end loop;

value(j)’length);

newPixels <= ’1’, 0’ after t_pulse;

wait for t_data;
end loop;

endOfProcessing <= ’1’, 0’ after

t_pulse;

7!

*

10

7

— test normal mode, accumulation is
= — above threshold

— — under threshold

— — equal to threshold

set at 2240

wait for t_betweenTests;

start_of_frame <= ’0’, 1’ after 10 ns, 0’ after t_pulse;
roi_id <= to_unsigned (16, roi_id ’length);

roi_mode <= ’0’;

roi_threshold <= to_unsigned (100,
endOfProcessing <= ’0’;

— make accumulation

wait for t_data;

for i in 0 to maxRoiSize—1 loop

roi_threshold *length);

newPixels <= ’1’, 0’ after t_pulse;

wait for t_data;
end loop;
endOfProcessing <= ’1°, 0’ after

wait for t_betweenTests;

t_pulse;

start_of_frame <= ’0’, 1’ after 10 ns, 0’ after t_pulse;

roi_threshold <= to_unsigned (3000,
endOfProcessing <= ’07;

— make accumulation

wait for t_data;

for i in 0 to maxRoiSize—1 loop

roi_threshold *length);

newPixels <= ’1’, 0’ after t_pulse;

wait for t_data;
end loop;
endOfProcessing <= ’1’, 0’ after

wait for t_betweenTests;

t_pulse;

start_of_frame <= ’0’, 1’ after 10 ns, 0’ after t_pulse;

roi_threshold <= to_unsigned (2240,
endOfProcessing <= ’07;

— make accumulation

wait for t_data;

for i in 0 to maxRoiSize—1 loop

roi_threshold *length);

newPixels <= ’1’, 0’ after t_pulse;

wait for t_data;
end loop;
endOfProcessing <= ’1’, 0’ after

t_pulse;

— test inverted mode, accumulation

is set at 1960

HEEEBR

Page 55 on 29

Video processing on SoC LF
Codes 26.08.2019

122 — — above threshold

123 — — under threshold

24— — equal to threshold

125

126 wait for t_betweenTests;

127 roi_mode <= ’17;

128 start_of_frame <= ’0’, 1’ after 10 ns, 0’ after t_pulse;

129 roi_threshold <= to_unsigned (100, roi_threshold ’*length);

130 endOfProcessing <= ’0’;

131 — make accumulation

132 wait for t_data;

133 for i in 0 to maxRoiSize—1 loop

134 newPixels <= ’1’, 0’ after t_pulse;

135 wait for t_data;

136 end loop;

137 endOfProcessing <= ’1’, ’0° after t_pulse;
138

139

140 wait for t_betweenTests;

141 start_of_frame <= ’0’, 1’ after 10 ns, ’0’ after t_pulse;
142 roi_threshold <= to_unsigned (3000, roi_threshold ’length);
143 endOfProcessing <= ’0’;

144 — make accumulation

145 wait for t_data;

146 for i in 0 to maxRoiSize—1 loop

147 newPixels <= ’1’, 0’ after t_pulse;

148 wait for t_data;

149 end loop;

150 endOfProcessing <= ’1°, ’0’ after t_pulse;

151

152

153 wait for t_betweenTests;

154 start_of_frame <= ’0’, 1’ after 10 ns, 0’ after t_pulse;
155 roi_threshold <= to_unsigned (2240, roi_threshold ’length);
156 endOfProcessing <= ’0’;

157 — make accumulation

158 wait for t_data;

159 for i in 0 to maxRoiSize—1 loop

160 newPixels <= ’1’, 0’ after t_pulse;

161 wait for t_data;

162 end loop;

163 endOfProcessing <= ’1’, ’0’ after t_pulse;

164

165 — END SIMULATION

166 wait for t_betweenTests;

167 assert false

168 report "End of simulation"

169 severity failure;

170 wait ;

172 end process;
173

174 END ARCHITECTURE tb ;

Listing 7: Test bench written to test the accumulator

HEEEBR

Page 56 on 29

Video processing on SoC LF
Codes 26.08.2019

D.5 Tests results

ﬂ E Page 57 on 29

roi expected observed passed note
X y [Isize mode threshold overlap accumulated value result valid| accumulated value result valid
10| 10] 3 normal 1000|no 99 1 1 99 1 1]yes under threshold, must return valid
10 10] 3 normal 10|no 99 0 1 99 0 1]yes above threshold, must return invalid
10| 10 3 normal 99|no 99 0 1 99 0 1]lyes equal to threshold, must return invalid
10| 10 3 inverted 1000{no 99 0 1 99 0 1]lyes under threshold, must return invalid
10| 10 3 inverted 10|no 99 1 1 99 1 1]lyes above threshold, must return valid
10| 10] 3 inverted 99[no 99 0 1 99 0 Olyes equal to threshold, must return invalid
10| 10y 1 normal 100|not applicable 10 1 1 10 1 1]lyes
10{ 10] 1 normal 1|not applicable 10 0 1 10 0 1]yes
10{ 10] 1 normal 10|not applicable 10 0 1 10 0 1]yes
10| 10] 1 inverted 1|not applicable 10 1 1 10 1 1]yes
10| 10] 1 inverted 10|not applicable 10 0 1 10 0 1]yes
10| 10] 1 inverted 100|not applicable 10 0 1 10 0 1|yes
10 10] 2 inverted 100|no 42 0 1 42 0 1]yes not testing all case as 1 and 3 are ok, assuming between is too
10| 10| 4 normal 100|no 184 0 1 184 0 1lyes
10| 10 5 normal 1000{no 300 1 1 300 1 1lyes
9| 10 6 normal 1000{no 414 1 1 414 1 1lyes
9] 10 7 normal 1000{no 588 1 1 588 1 1lyes
16| 10 8 normal 1000{no 1248 0 1 1248 0 1lyes
12| 10] 8 normal 1000|yes 992 1 1 992 1 1]yes Good repartition to next pixel batch
12| 10] 7 normal 1000|yes 735 1 1 735 1 1]yes
13| 10] 7 normal 1000|yes 784 1 1 784 1 1]yes
14| 10] 7 normal 1000|yes 833 1 1 833 1 1]yes
151 10] 7 normal 1000(yes 882 1 1 882 1 1]lyes
16| 10 7 normal 1000|yes 931 1 1 931 1 1lyes
17| 10 7 normal 1000|yes 980 1 1 980 1 1lyes
0| O] 8 normal 1000|yes 224 1 1 224 1 1]yes Okay when in 0/0
0{471] 8 normal 1000|yes 224 1 1 224 1 1]lyes Okay for next corner
632 O] 8 normal 1000|yes 40672 0 1 40672 0 1]lyes Okay for next corner
632(471] 8 normal 1000|yes 40672 0 1 40672 0 1]lyes Okay for last corner

Video processing on SoC

LF

Codes 26.08.2019
D.6 Compute ROI
— VHDL Architecture ImageProcessing.compute_roi.behaviour
— Created:
— by — bachelor.bachelor (bachelor—vm)
— at — 11:23:14 07/19/19
— using Mentor Graphics HDL Designer (TM) 2018.1 (Build 12)
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std. all;
ENTITY compute_roi IS
GENERIC (
dataBitNb : positive := 16;
paramBitNb : positive := 16;
imageWidth : positive := 640;
imageHeigth : positive := 480;
grayscaleBitNb : positive := 10;
grayscaleMax : positive := 1024;
grayscaleStep : positive := 1;
dataDuration : positive := 8
DE
PORT(
clock . IN std_ulogic;
data_0O . IN unsigned (dataBitNb—1 DOWNIO 0);
data_1 . IN unsigned (dataBitNb—1 DOWNIO 0);
data_2 . IN unsigned (dataBitNb—1 DOWNIO 0);
data_3 . IN unsigned (dataBitNb—1 DOWNIO 0);
data_4 . IN unsigned (dataBitNb—1 DOWNIO 0);
data_>5 . IN unsigned (dataBitNb—1 DOWNIO 0) ;
data_6 : IN unsigned (dataBitNb—1 DOWNIO 0);
data_7 . IN unsigned (dataBitNb—1 DOWNIO 0);
en . IN std_ulogic;
reset . IN std_ulogic;
roi_size : IN unsigned (paramBitNb—1 DOWNIO 0);
roi_threshold : IN unsigned (paramBitNb—1 DOWNIO 0) ;
roi_mode . IN std_ulogic;
roi_x : IN unsigned (paramBitNb—1 DOWNIO 0) ;
roi_y : IN unsigned (paramBitNb—1 DOWNIO 0) ;
start_of_frame : IN std_ulogic;
start_of_line . IN std_ulogic;
id . OUT unsigned (dataBitNb—1 DOWNIO 0);
result . OuT std_ulogic;
valid . OuT std_ulogic
DE
— Declarations
END ENTITY compute_roi;
ARCHITECTURE behaviour OF compute_roi IS
— counters
signal counter: unsigned(dataBitNb—1 downto 0); — way too big, must only count until
dataDuration
signal pixelCounter_x: unsigned(dataBitNb—1 downto 0); — count pixels in X
signal pixelCounter_y: unsigned(dataBitNb—1 downto 0); — count pixels in Y

signal pixelCounter_x_old: unsigned(dataBitNb—1 downto 0);

— flags

signal receiving: std_uLogic;
signal pixellnRoiFound: std_uLogic;
signal accumulate: std_uLogic;
signal lastPixel: std_uLogic;

— buffers and variables

HEEEBR

Page 59 on 29

Video processing on SoC LF

Codes 26.08.2019
68 signal currentPixelValue: unsigned(dataBitNb—1 downto 0); — store value for accumulator
69 signal accumulator: unsigned(dataBitNb—1 downto 0) := (others => ’0’);
70
71 — coordinates
7 — offsets to ROI x/y position
73 signal roi_offset_x: unsigned(paramBitNb—1 downto 0);

74 signal roi_offset_y: unsigned(paramBitNb—1 downto 0);

76 — encode the number of input data lines
77 constant nbrlnputData: positive := 8

78

79

80 — State Machine

81

&2 — possible states

83 type STATE_TYPE is (

84 idle ,

85 search_pixels ,

86 accumulate_value ,

87 finished

88)

89

9o — Declare current and next state signals

91 signal current_state : STATE_TYPE;
92 signal next_state : STATE_TYPE;

o« BEGIN

95

96

97 — State Machine

98

99 — Process name : clocked_proc

5

w0 ~— Description : state ’s flip—flop handling

102 clocked_proc : process(clock, reset)
103 begin

104 if reset = ’1° then

105 current_state <= idle;

106 elsif rising_edge (clock) then

107 current_state <= next_state;

108 end if;

109 end process clocked_proc;

112 — Process name : nextstate_proc

113 — Description : determine the next state according to

114 — 1) actual state

115 — 2) incomming events

116

117 nextstate_proc : process(current_state , start_of_frame , lastPixel , pixellnRoiFound)
18 begin

119 case current_state is

120 — when a new frame occurs, begin the analysis

121 when idle =>

122 if start_of_frame then

123 next_state <= search_pixels;

124 end if;

125

126 — search is only ended by the arriving of a new frame
127 when search_pixels =>

128 if pixellnRoiFound then

129 next_state <= accumulate_value;

130 end if;

131

132 — tell the accumulator to add a new value, if it was the last, finish
133 when accumulate_value =>

134 if lastPixel then

135 next_state <= finished;

136 else

137 next_state <= search_pixels;

ﬂ E Page 60 on 29

Video processing on SoC LF

Codes 26.08.2019
138 end if;
139
140 when others =>
141 next_state <= idle;
142 end case;
143 end process nextstate_proc;
144
145
146 — Process name : Output_in_proc
47— Description : action on state entry
148
149 output_in_proc : process(current_state)
150 begin
151 — Default Assignment
152 valid <= ’0’;
153 accumulate <= 07;
154
155 — Combined Actions
156 case current_state 1is
157 when idle =>
158 — do nothing
159
160 — search desired pixels by starting counters
161 when search_pixels =>
162 receiving <= ’17;
163
164 when accumulate_value =>
165 accumulate <= 17,
166
167 — indicate to output that output data are valids
168 when finished =>
169 receiving <= ’0°;
170 valid <= ’17;
171 when others =>
172 null ;
173 end case;

174 end process output_in_proc;

177 — Process name : countlnputFlow

178 — Description : counts incomming bit flow for synchronization
179

180 countInputFlow : process(clock, reset)

181 begin

182 if reset = ’1’ then

183 counter <= (others => ’07);

184

185 elsif rising_edge(clock) then

186 if receiving = ’1’ and counter < dataDuration — 1 then
187 counter <= counter + 1;

188 else

189 counter <= (others => ’07);

190 end if;

191 end if;

192 end process countlnputFlow ;

195 ~— Process name : countPixelX

196 ~—— Description : count pixels x to further know if the actual pixel is in ROI
197

198 countPixelX : process(counter, reset, start_of_frame , start_of_line)

199 begin

200 — reset counters in case of a reset or a new frame incomming or sync to SOL
201 if reset = "1’ or start_of_frame = 1’ or start_of_line = ’1’ then

202 pixelCounter_x <= (others => ’0’);

203 end if;

204

205 — triggering on half duration allow to read value time—centered

206 if counter = dataDuration/2 then

207 — increment x counter as pixels come | per input data line

ﬂ E Page 61 on 29

Video processing on SoC LF

Codes 26.08.2019
208 pixelCounter_x <= pixelCounter_x + nbrInputData; — maybe —1, need simul. to validate
209 end if;

210 end process countPixelX;

211

212

213 — Process name : countPixelY

24— Description : count pixels y to further know if the actual pixel is in ROI
215

216 countPixelY : process(reset, start_of_frame , start_of_line)

217 begin

218 — reset counters in case of a reset or a new frame incomming
219 if reset = ’1° or start_of_frame = ’1’ then

220 pixelCounter_y <= (others => ’0’);

21 end if;

223 — if a new line occurs, increment y counter and reset X counter
224 if start_of_line = ’1° then

225 pixelCounter_y <= pixelCounter_y + 1;

226 end if;

227 end process countPixelY ;

228

229

230 — Process name : detectPixel

231 — Description : sync process who check if actual pixel is in ROI and the last
233 detectPixel : process(reset, clock)

234 — local aliases to keep an easyto read code

235 variable pixel_0: unsigned(dataBitNb—1 downto 0) := 0;

236 variable pixel_7: unsigned(dataBitNb—1 downto 0) := O0;

237 variable currentRoi_x: unsigned(paramBitNb—1 downto 0) := 0;
238 variable currentRoi_y: unsigned(paramBitNb—1 downto 0) := 0;
239

240 begin

241 if reset = "1’ then

242 pixellnRoiFound <= ’0’;

243 lastPixel <= ’0’;

244 pixel_0 <= (others => ’07);

245 pixel_7 <= (others => ’07);

246

247 elsif rising_edge (clock) then

248 — if new pixels are incomming

249 if pixelCounter_x_old /= pixelCounter_x then

250 — update pixels coordinates and local aliases

251 pixel_0 <= pixelCounter_x — nbrlnputData;

252 pixel_7 <= pixelCounter_x;

253 currentRoi_x <= roi_x + roi_offset_x;

254 currentRoi_y <= roi_y + roi_offset_y;

255

256 — if current pixels

257 if pixel_0 <= currentRoi_x and pixel_7 > currentRoi_x then
258 — y—axis verification

259 if pixelCounter_y >= roi_y and pixelCounter_y < roi_y + roi_size then
260 — copy value in buffer and indicate it

261 currentPixelValue <= data_0;

262 pixelInRoiFound <= ’1°;

263 roi_offset_x <= roi_offset_x + 1;

264 else

265 end if;

266 else

267 end if;

268

269 pixelCounter_x_old <= pixelCounter_x;

270

271 — reset flag as the actual is already indicated (or not at all in ROI)
272 else

273 pixelInRoiFound <= ’0’;

274 end if;

275

276 — detect if all ROI pixel’s values are accumulated

277 if pixelCounter_x = roi_x + roi_size — 1 and pixelCounter_y = roi_y + roi_size — 1 then

ﬂ E Page 62 on 29

Video processing on SoC LF
Codes 26.08.2019
278 lastPixel <= ’17;
279 else
280 lastPixel <= ’07;
281 end if;
282 end if;

284 end process detectPixel;

287 — Process name : accumulate_proc

288 — Description : accumulate values when current is in scope
289

290 accumulate_proc : process(accumulate, start_of_frame)

291 begin

202 — current pixel value is valid only if the flag raised
293 if accumulate = 1’ then

294 accumulator <= accumulator + currentPixelValue;

295

296 — reset accumulator on new frame

297 elsif start_of_frame = ’1’° then

298 accumulator <= (others => ’07);

299 end if;

300

301 end process accumulate_proc;

302

303

304 — Process name : checkValue

35, — Description : confront accumulator when all ROI pixel ’s values
306

307 checkValue : process(pixellnRoiFound , currentPixelValue , lastPixel)
308 begin

309

310 if lastPixel = ’1° then

311 if accumulator < roi_threshold then

312 result <= ’17;

313

314 else

315 result <= ’0;

316 end if;

317 end if;

8 end process checkValue;
319

320 END ARCHITECTURE behaviour;

Listing 8: Entity and architecture of compute ROI

HEEEBR

Page 63 on 29

s

66

Video processing on SoC

LF

Codes 26.08.2019
D.7 Accumulator
— VHDL Architecture ImageProcessing.accumulator.behaviour
— Created:
— by — bachelor.bachelor (bachelor—vm)
—— at — 13:04:23 08/08/19
— using Mentor Graphics HDL Designer (TM) 2018.1 (Build 12)
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.ALL;
LIBRARY ImageProcessing;
USE ImageProcessing.general .ALL;
ENTITY accumulator IS
GENERIC (
constant dataBitNb: positive := 16;
constant paramBitNb: positive := 16;
constant grayscaleBitNb: positive := 10;
constant nbrInputData: positive := 8
)
PORT (
endOfProcessing : IN std_logic;
newPixels : IN std_ulogic;
roi_id : IN unsigned (dataBitNb—1 DOWNIO 0) ;
roi_mode : IN std_ulogic;
roi_threshold : IN unsigned (paramBitNb—1 DOWNIO 0) ;
start_of_frame . IN std_ulogic;
value . IN data_array ;
id . OuT unsigned (dataBitNb—1 DOWNIO 0) ;
result : OUT std_ulogic;
valid : OuT std_ulogic
)
— Declarations
END accumulator ;
ARCHITECTURE behaviour OF accumulator IS
— the maximal value is defined as roi_size”2 % grayscale max value
signal accumulatedValue: unsigned(grayscaleBitNb + 6 — 1 downto 0);
signal sResult: std_ulogic;
signal sValid: std_ulogic;
BEGIN
— Process name : accumulator
— Description : accumulate the actual values from pixels
accumulator : process(newPixels, start_of_frame , value)
— used to accumulate vales before giving the value to the nex process
variable internalAccumulator: unsigned (accumulatedValue *range) := (others => ’0’);

begin
— reset the accumulator on new frame
if start_of_frame = ’1’° then
internal Accumulator := (others => ’07);
— each time a new pixel is detected , accumulate bufferised
elsif newPixels = "1’ then
for i in O to nbrInputData—1 loop
internalAccumulator := internalAccumulator + value(i);
end loop;
else
end if;

— write on output
accumulatedValue <= internalAccumulator;

values

HEEEBR

Page 64 on 29

Video processing on SoC LF
Codes 26.08.2019

end process accumulator;

— Process name : checkThreshold
— Description : confront accuulator against given threshold
checkThreshold : process(endOfProcessing , accumulatedValue, roi_mode,
roi_threshold)
begin
if endOfProcessing = 1’ then
if (accumulatedValue < roi_threshold and roi_mode = ’0’) or
(accumulatedValue > roi_threshold and roi_mode = ’1’) then

sResult <= ’17;
sValid <= ’17;
clse
sResult <= 0’
sValid <= ’1°7;
end if;
else
sResult <= 07
sValid <= ’07;
end if;
end process checkThreshold;

— outputs

id <= roi_id;
result <= sResult;
valid <= sValid;

END ARCHITECTURE behaviour;

Listing 9: Entity and architecture of accumulator

u B Page 65 on 29

Video processing on SoC LF
Codes 26.08.2019

D.8 Pixels counter

o

> — VHDL Architecture ImageProcessing.pixelsCounter.behaviour
4+ — Created:

5 — by — bachelor.bachelor (bachelor—vm)

6 — at — 11:24:22 08/05/19

8 — using Mentor Graphics HDL Designer (TM) 2018.1 (Build 12)
10 LIBRARY ieee;

1 USE ieee.std_logic_1164.all;

12 USE ieee.numeric_std.ALL;

1+ ENTITY pixelsCounter IS

15 GENERIC (

16 constant dataBitNb: positive := 16;

17 constant dataDuration: positive := 8;

18 constant nbrlnputData: positive := 8

o)3

20 PORT (

21 clock . IN std_ulogic;

2 en : IN std_ulogic;

23 receiving . IN std_logic;

2 reset : IN std_ulogic;

25 start_of_frame : IN std_ulogic;

2 start_of_line : IN std_ulogic;

27 newPixels : OUT std_ulogic;

28 pixelCounter_x : OUT unsigned (dataBitNb—1 DOWNIO 0);
29 pixelCounter_y : OUT unsigned (dataBitNb—1 DOWNIO 0)
30)

31

» — Declarations

3+ END pixelsCounter ;

37 ARCHITECTURE behaviour OF pixelsCounter IS

8 — counters

9 signal counter: unsigned(dataBitNb—1 downto 0);

w signal sPixelCounter_x: unsigned(pixelCounter_x ’'range); — count pixels in X
41 signal sPixelCounter_y: unsigned(pixelCounter_y ’range); — count pixels in Y

2 signal pixelCounter_x_old: unsigned(pixelCounter_x ’range);

4 — flags

45 signal sNewPixels: std_ulogic;

46 BEGIN

.

48

19 — Process name : countlnputFlow

so. —— Description : counts incomming bit flow for synchronization
51

52 countInputFlow : process(clock, reset)

s3 begin

54 if reset = 1’ then

ss counter <= (others => 0’);

56

57 elsif rising_edge (clock) then

58 if receiving = 1’ and counter < dataDuration — 1 then
59 counter <= counter + 1;

60 else

61 counter <= (others => ’0);

62 end if;

63 end if;

64 end process countlnputFlow ;

66
¢ — Process name : countPixelX
s —— Description : count pixels x to further know if the actual pixel

ﬂ B Page 66 on 29

s in ROI

Video processing on SoC LF

Codes 26.08.2019
69
70 countPixelX : process(counter, start_of frame , start_of_line , receiving)
71 begin
72 — reset counters in case of a reset, a new frame incoming or sync to SOL
73 if start_of_frame = "1’ or start_of_line = ’1° or receiving = ’0’ then
74 sPixelCounter_x <= (others => ’07);
76 — triggering on half duration allow to read value time—centered
77 elsif counter = dataDuration/2 then
78 — increment x counter by nbrInputData as pixels come 1 per input line
79 sPixelCounter_x <= sPixelCounter_x + nbrInputData;
80 end if;
81 end process countPixelX;
82
83
84 — Process name : countPixelY
s~ — Description : count pixels y to further know if the actual pixel is in ROI
86
87 countPixelY : process(start_of_frame , start_of_line , receiving)
88 begin
89 — reset counters in case of a reset or a new frame incoming
90 if start_of_frame = "1’ or receiving = ’0’ then
91 sPixelCounter_y <= (others => ’07);
92
93 — if a new line occurs, increment y—counter and reset x—counter
94 elsif start_of_line = ’1’ then
95 sPixelCounter_y <= sPixelCounter_y + 1;
9% end if;
97 end process countPixelY ;
98
99
100 — Process name : detectPixel
101 — Description : sync process which check if new pixels are ready
102
103 detectPixel : process(reset, clock)
104 begin
105 if reset = 1’ or start_of_line = 1’ or start_of_frame = ’1° then
106 sNewPixels <= ’0’;

107 pixelCounter_x_old <= (others => ’07);

109 elsif rising_edge(clock) then
10 — if new pixels are incomming, indicate it
111 if pixelCounter_x_old /= pixelCounter_x then

12 sNewPixels <= ’1°;
113 pixelCounter_x_old <= pixelCounter_x;
114

115 — reset flag

116 else

17 sNewPixels <= ’07;
118 end if;

19 end if;

120

121 end process detectPixel;
122

123 — output signals

124 newPixels <= sNewPixels;
125 pixelCounter_x <= sPixelCounter_x;
126 pixelCounter_y <= sPixelCounter_y;

2 END ARCHITECTURE behaviour;

Listing 10: Entity and architecture of pixel counter

ﬂ E Page 67 on 29

~

66

Video processing on SoC

Codes

LF
26.08.2019

D.9 Pixel tracker

— VHDL Architecture ImageProcessing.roiTracker.behaviour

— Created:

— by — bachelor.bachelor (bachelor—vm)
—— at — 15:09:46 08/05/19

— using Mentor Graphics HDL Designer (TM) 2018.1

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.numeric_std.ALL;

ENTITY pixelTracker
GENERIC (

constant dataBitNb:
constant paramBitNb:

DE

PORT(
data_n
inRoi
newPixels
offset_x
overlap
roi_size
trackerId
value_n

IE
— Declarations

END pixelTracker ;

IS

IN
IN
IN
IN

IN
: IN
: OUT

positive := 1
positive :=

6;
16

(Build

12)

unsigned (dataBitNb—1 DOWNIO 0);
std_ulogic;
std_ulogic;
unsigned (paramBitNb—1 DOWNIO 0) ;
signed (paramBitNb—1 DOWNIO 0) ;

unsigned (paramBitNb—1 DOWNIO 0) ;
unsigned (paramBitNb—1 DOWNIO 0);
unsigned (dataBitNb—1 DOWNIO 0)

ARCHITECTURE behaviour OF pixelTracker IS

— internals

signal sValue: unsigned(value_n’range);

— flags
signal lastPixel:

> BEGIN

std_uLogic;

— Process name
— Description

detectPixel

process which check

if actual pix

el is

in ROI

detectPixel : process(newPixels,

data_n, overlap)

begin

— reset all between pixels

if newPixels =

0’ then

sValue <= (others =>

— do this only
elsif newPixels

0

inside a ROI
= ’1’ and
—— ensure a positive
if trackerld >= offset_x and overlap = 0 then

res

inRoi, offset_x,
DE
inRoi = ’1° then
ult as otherwise

it is

— test if the watched pixel could be in ROI

if trackerld — offset_x < roi_size then
sValue <= data_n;

else

end if;

elsif overlap /= 0 then
if overlap > signed(trackerId) then

sValue <=
else
sValue <=

data_n;

(others

=>

00

trackerId , roi_size ,

not a

interesting condition

HEEEBR

Page 68 on 29

Video processing on SoC
Codes

LF
26.08.2019

end if;

else
sValue <= (others => ’07);
end if;

else
sValue <= (others => ’07);
end if;

end process detectPixel;

— outputs
value_n <= sValue;

53 END ARCHITECTURE behaviour ;

Listing 11

: Entity and architecture of pixel tracker

HEEEBR

Page 69 on 29

P

66

Video processing on SoC LF
Codes 26.08.2019

D.10 ROI tracker

— VHDL Architecture ImageProcessing.roiTracker.behaviour

— Created:
— by — bachelor.bachelor (bachelor—vm)
—— at — 15:09:46 08/05/19

— using Mentor Graphics HDL Designer (TM) 2018.1 (Build 12)
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.ALL;

ENTITY roiTracker IS

GENERIC (
constant dataBitNb: positive := 16;
constant paramBitNb: positive := 16;
constant nbrlnputData: positive := 8
)5
PORT(
newPixels . IN std_ulogic;
pixelCounter_x : IN unsigned (dataBitNb—1 DOWNIO 0) ;
pixelCounter_y : IN unsigned (dataBitNb—1 DOWNIO 0) ;
roi_size : IN unsigned (paramBitNb—1 DOWNIO 0);
roi_x : IN unsigned (paramBitNb—1 DOWNIO 0) ;
roi_y : IN unsigned (paramBitNb—1 DOWNIO 0);
start_of_frame : IN std_ulogic;
start_of_line : IN std_ulogic;
inRoi . OuUT std_ulogic;
lastPixel . OuUT std_ulogic;
offset_x . OuUT unsigned (paramBitNb—1 DOWNIO 0);
overlap : OUT signed (paramBitNb—1 DOWNIO 0)
)8

— Declarations

END roiTracker ;

ARCHITECTURE behaviour OF roiTracker IS
— internals
signal sOffset_x: unsigned (offset_x ’range);
signal sOffset_y: unsigned (offset_x ’range);
signal sOverlap: signed(overlap 'range);
signal sLastPixel: std_ulogic;

BEGIN

— Process name : computeOffsets
— Description : process which check if actual pixels contains ROI beginning

computeOffsets : process(newPixels, start_of_frame , start_of_line , roi_x,
roi_y, roi_size , pixelCounter_x , pixelCounter_y , inRoi)
begin
— reset all between pixels
if start_of_frame = 1’ then
sOffset_x <= (others => ’0’);
sOffset_y <= (others => ’07);

elsif inRoi = ’1° then
— if current line match to a ROI, check further coordinates
if roi_y + sOffset_y = pixelCounter_y —1 then
— set offset_x depending of where the ROI is in the 8 current pixels
for i in O to nbrlnputData—1 loop
— check which pixel correspond to the one in the tracked data line
— minus 1 to pixelCounter_x as it counts pixels 8 by 8!
if roi_x = pixelCounter_x — 1 — i then
— assign the offset, counted from maximal down to 0
sOffset_x <= to_unsigned ((nbrInputData —1) — i, sOffset_x 'length);

ﬂ E Page 70 on 29

92

96

Video processing on SoC
Codes

LF
26.08.2019

else
end if;
end loop;
else
end if;
— on a new line, check if
elsif start_of_line = '1°
minus 2 as counter y

then
start

at

the y offset needs an

1

increment

if roi_y + sOffset_y = pixelCounter_y —2 and sOffset_y < roi_size —1 then

sOffset_y <= sOffset_y + 1;
else
end

else
end if;
end process

if;

computeOffsets ;

detectRoi
process which check

Process name
— Description

if current pixels

are in ROI

detectRoi
begin

process (pixelCounter_x ,

check if current pixels are in

if pixelCounter_y—1 >= roi_y and pixelCounter_y —1 < roi_y + roi_size
check wich batch contains ROI pixels

— if yes,

pixelCounter_y ,

the current line

roi_x,

roi_y, roi_size, overlap)

then

if pixelCounter_x > roi_x and pixelCounter_x — (nbrInputData —1) <= roi_x then

inRoi <= ’17;

elsif pixelCounter_x — (nbrInputData) = roi_x

inRoi <= ’17;

occurs
0 then

— if an overlap
elsif overlap /=
inRoi <= ’17;
if not in ROI, reset
else
inRoi
end if;

flag

<= 0’

— default ,
else
inRoi <=
end if;
end process

reset flags
07

detectRoi ;

then

Process name detectRoiEnd

— Description

process which check

if all

ROI pixels

are found

detectRoiEnd process (newPixels ,
pixelCounter_y , roi_x, roi_y,
begin

if

reset all
start_of_frame =
sLastPixel <= ’07;

between pixels
’1° then

1o
is

then
bigger than

elsif newPixels =
if x—counter

sLastPixel <= ’1°7;
end if;
else
sLastPixel <= ’07;
end if;

end process detectRoiEnd;

start_of_frame ,
roi_

roi

size)

position ,

means
if pixelCounter_x > roi_x + roi_size and pixelCounter_y =

pixelCounter_x ,

roi is over
roi_y + roi_size

that
then

HEEEBR

Page 71 on 29

142

143

144

145

146

148

149

Video processing on SoC
Codes

LF
26.08.2019

— Process name : detectOverlap

— Description : check if the ROI is between two consecutives pixels rows
detectOverlap : process(newPixels, pixelCounter_x , pixelCounter_y , roi_x,
)
begin
if newPixels = ’1° then

— do the check only when a line contains ROI
if pixelCounter_y—1 >= roi_y and pixelCounter_y—1 < roi_y + roi_size

roi_size , offset_x

— occurs only if offset is not null, then test the next batch of pixels !!!!! WARNING
could lead to problems when near borders
if offset_x /= 0 and pixelCounter_x — (nbrInputData —1) >= roi_x and pixelCounter_x —

2#(nbrlnputData —1) <= roi_x then
sOverlap <= signed(roi_size — (nbrInputData — offset_x));
else
sOverlap <= (others => ’0’);
end if;
else
sOverlap <= (others => ’0’);
end if;
else
sOverlap <= (others => ’07);
end if;
end process detectOverlap;

— outputs

offset_x <= sOffset_x;

overlap <= sOverlap;

lastPixel <= sLastPixel;
END ARCHITECTURE behaviour;

Listing 12: Entity and architecture of ROI tracker

HEEEBR

Page 72 on 29

43

66

Video processing on SoC
Codes

LF
26.08.2019

D.11 State machine

— VHDL Architecture ImageProcessing.stateMachine.behaviour

— Created:
— by — bachelor.bachelor (bachelor—vm)
— at — 13:44:34 08/05/19

— using Mentor Graphics HDL Designer (TM) 2018.1 (Build 12)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.ALL;

ENTITY stateMachine IS

PORT (
clock . IN std_ulogic;
en : IN std_ulogic;
lastPixel : IN std_ulogic;
reset : IN std_ulogic;
start_of_frame : IN std_ulogic;
endOfProcessing : OUT std_logic;
receiving : OUT std_logic

DK

— Declarations

7 END stateMachine ;

ARCHITECTURE behaviour OF stateMachine IS

— State Machine

— possible states
type STATE TYPE is (
idle ,
search_pixels ,
finished

IE
— Declare current and next state signals
signal current_state : STATE_TYPE;

signal next_state : STATE TYPE;

BEGIN

— State Machine

— Process name : clocked_proc

5

— Description : state ’s flip—flop handling

clocked_proc : process(clock, reset)
begin
if reset = 1’ then

current_state <= idle;
elsif rising_edge (clock) then
current_state <= next_state;
end if;
end process clocked_proc;

— Process name : nextstate_proc

— Description : determine the next state according to
— 1) actual state

— 2) incomming events

nextstate_proc : process(current_state, start_of_frame ,
begin

lastPixel)

HEEEBR

Page 73 on 29

92

Video processing on SoC
Codes

LF
26.08.2019

case current_state 1is

— when a new frame occurs, begin the analysis

when idle =>
if start_of_frame then

next_state <= search_pixels;

end if;

— search is only ended by the arriving of a new frame

when search_pixels =>
if lastPixel then
next_state <= finished;
end if;

when finished =>
next_state <= idle;

when others =>
next_state <= idle;
end case;
end process nextstate_proc;

— Process name
— Description

output_in_proc
action on state

entry

output_in_proc
begin

— Default Assignment
endOfProcessing <= ’07;

— Combined Actions
case current_state 1is
when idle =>

— do nothing

process (current_state)

— search desired pixels by starting counters

when search_pixels =>
receiving <= '17;

— indicate to output that output data are valids

when finished =>
receiving <= ’0’;
endOfProcessing <= ’17;
when others =>
null ;
end case;
end process output_in_proc;

END ARCHITECTURE behaviour;
Listing 13

: Entity and architecture of state-machine

HEEEBR

Page 74 on 29

19
20

21

Video processing on SoC LF
Codes 26.08.2019

D.12 General package

— VHDL Package Header ImageProcessing. general

— Created:
— by — bachelor.bachelor (bachelor—vm)
— at — 16:00:08 08/08/19

— using Mentor Graphics HDL Designer (TM) 2018.1 (Build 12)
LIBRARY ieee;
USE ieee.std_logic_1164.all;

USE ieee.numeric_std. all;

PACKAGE general IS

constant dataBitNb: positive := 16;
constant paramBitNb: positive := 16;
constant nbrlnputData: positive := 8;

type data_array is array (nbrInputData—1 downto 0) of unsigned (dataBitNb—1 downto 0);
type param_array is array (nbrlnputData—1 downto 0) of unsigned (paramBitNb—1 downto 0);
END general;

Listing 14: Package written to define some type and constants

ﬂ E Page 75 on 29

Video processing on SoC LF
Schematics 26.08.2019

E Schematics

Here stands the three main schematics.

u B Page 76 on 29

LI BRA RY ImageProcessing;
USE ImageProcessing.general. ALL;

Declarations

Ports:
clock : std_ulogic
data_0 : unsgned(dataBitNb-1 DOW NT O 0)
data_1 : unsigned(dataBitNb-1 DOW NT O 0)
data_2 : unggned(dataBitNb-1 DOW NT O 0)
data_3 : undgned(dataBitNb-1 DOW NT O 0)
data_4 : unsigned(dataBitNb-1 DOW NT O 0)
data_5 : unsigned(dataBitNb-1 DOW NT O 0)
data_6 : unsigned(dataBitNb-1 DOW NT O 0)
data_7 : unsgned(dataBitNb-1 DOW NT O 0)
en : std_ulogic
reset : std_ulogic
roi_id : unsigned(dataBitNb-1 downto 0)

roi_mode : std_ulogic

ro_size : unsigned(paramBitNb-1 DOW NTO 0)
roi_threshold : unsigned(paramBitNb-1 DOW NT O 0)
roi_x : unsigned(paramBitNb-1 DOW NT O 0)
roi_y : unsgned(paramBitNb-1 DOW NTO 0)
start_of_frame : std_ulogic

start_of_line : std_ulogic

id : unsgned(dataBitNb-1 DOW NT O 0)
result std_ulogic
valid + std_ulogic
Pre User:
Diagram Signals:
SIGNAL data : data_array
SIGNAL endOfProcessing: std_logic
SIGNAL inRoi : std_ulogic
SIGNAL lastPixel : std_ulogic
SIGNAL newPixels : std_ulogic

SIGNAL offset x : unsigned(paramBitNb-1 DOW NT O 0)
SIGNAL offsety :unsgned(paramBitNb-1 DOW NTO 0)
SIGNAL overlap : signed(paramBitNb-1 DOW NT O 0)
SIGNAL pixelCouner_x : unsgned(dataBitNb-1 downto 0)

SIGNAL pixelCountr_y : unsgned(dataBitNb-1 downto 0)

SIGNAL receiing : std_logic
SIGNAL trackerld : param _array
SIGNAL value : data_array
data 0 [>——]
data 1 [>———pp] [0212(0) <=data 0;
. [data(1) <=data_1;
data 2 [P}
data(2) <= data_2;
data_3 [E——P} -
[data(3) <= data_3; data
data 4 E—— |data(a) <= data_4; p—0
data_s = ldata(5) <= data_5;
data_6 [|[data(6) <= data_6;
data_7 [p——p| |data(7) <=data_7;
L=
ebl
1

Printed by bachelor on 08/21/19 at 18:41:37

ImageProcessing/compute_roi/struct

start_of_frame
start_of _line

ImageProcessing

pixelsCouner
u_o

start_of_frame

lastPixel

ImageProcessing
stateMachine
u_1

g0:FOR i IN 0 TO nbrlnpuData-1 GENERA TE

» trackerld O

start of frame

start_of_line
newPixels

ixelCouner _x

endOfProcessing

start_of_frame
newPixels

roi_threshold
roi_mode
roi_id

ImageProcessing
roiT racker
u_2

result

valid

ImageProcessing
accumulator

u_4
dataBitNb =16 (positive)
paramBitNb =16 (postive)

grayscaleBitNb= 10 (positive)
nbrinpuData =8 (postive)

HES-SO Valais/Aallis

Project Vi deo processing on SoC

Sub-blocks architecture of ROl computation

[ROT computation

[TmageProcessing/ompute_roi/struct

[JARY
1 B rackerld(i) <= to_unsgned(i, trackerld (i)
5] lenaty
1
1
1
1
1
1
1
1
1
1
1
1
1
1 ImageProcessing
pixelT racker
1 U3 -
F$T-------------- Tltle
Tame Declarations Path:
Edited:

| by Toic fracheboudon 13 Aug 2019

Page 1 of 4

ImageProcessing_test/looplkack_tb/struct

Package Li st
LI BRA RY ieee;
USE ieeestd_logic_1164.all;
USE ieeenumeric_stdALL;

LIBRA RY ImageProcessing;
USE ImageProcessing general ALL;

Declarations
Ports:

Pre User
constantdataBitNb: positive
constant paramBitNb: positive
constantimageWidth: positive
constantimageHeigth: positive

constant grayscaleBitNb: positive
constant grayscaleMax: positive 024;
constant grayscaleStep: positive H
constantdataDuration: positive:= 8;
constant nbrinputData: positive:=8;
Diagram Signds:
SIGNAL clock : std_ulogic
SIGNAL data_0 : unsigne(dataBitNb-1 DOWNTO 0)
SIGNAL data_1 nsignel(dataBitNb-1 DOWNTO 0)
SIGNAL data 2 nsigned(dataBitNb-1 DOWNTO 0)
SIGNAL data_3 nsigned(dataBitNb-1 DOWNTO 0)
SIGNAL data_4 nsigned(dataBitNb-1 DOWNTO 0)
SIGNAL data 5 nsigned(dataBitNb-1 DOWNTO 0)
SIGNAL data_6 nsigned(dataBitNb-1 DOWNTO 0)
SIGNAL data_7 : unsigned(dataBitNb-1 DOWNTO 0)
SIGNAL en : std_ulogic ImageProcessing
SIGNAL id : unsignel(dataBitNb-1 DOWNTO 0) compute_roi
SIGNAL reset : std_ulogic 10
SIGNAL result : std_ulogic
SIGNAL roi_id : unsigned(dataBitNb-1 downto0) dataBitNb =16 (positive)
SIGNAL roi_mode : std_ulogic paramBitNb =16 (positive)
SIGNAL roi_size : unsigned(paramBitNb-1 DOWNTO 0) grayscaleBitNb =10 (positive)
SIGNAL roi_threshold : unsigned(paramBitNb-1 DOWNTO 0) dataDuration =8 (positive)
SIGNAL roi_x : unsignel(paramBitNb-1 DOWNTO 0) nbrinputData =8 (positive)

SIGNAL roi_y : unsigned(paramBitNb-1 DOWNTO 0)
SIGNAL start_of_frame: std_ulogic

SIGNAL start_of_line : std_ulogic

SIGNAL valid : std_ulogic

Project: | Vi deo processing on SoC

g he
£ o o
OOOOOOO0 OR
55| of , 8 gl e
dataBitNb =16 (positive) ~ o SEREERED x| = &| &S| € = -
paramBitNb =16 (positive) 3] - S| 5| SEEEEEEE 5‘ .al ‘6I '5‘ '6I > 2
imageWidth =640 (positive) CIRAR & &| <BEEEEEE ele eje e g =] ¢
imageHeigth =480 (positive)
grayscaleStep=1 (positive)
dataDuration =8 (positive)
nbrinputData =8 (positive)
ImageProcessing_st
looplack_tester
1"
HES-S0 Valais//Wallis
Title: [ROT computation test bench
Path: | <<—more-—>>
Edited: |byloic fracheboudon 13 Aug2019

Perform global tests on the block

Printed by bachelor on 08/21/19 at 18:43:38

Page1 of 1

ImageProcessing_test/accumulator_thb/struct

Package List

LIBRA RY ieee;
USE ieeestd_logic_1164.all;
USE ieeenumeric_std ALL;

LIBRA RY ImageProcessing;
US E ImageProcessing.general. ALL;

Declarations

Ports:

Pre User:
constant dataB itNb: positive := 16;
constant paamBitNb: positive := 16;
constant grayscaleBitNb: positive := 10;
constant nbrinpuData positive := 8;
constant maxR oiSize: positive := 8;

Diagram Signals:

SIGNAL endOfP rocessing : std_logic

SIGNAL id : unsigned(dataB itNb-1 DOW NT O 0)
SIGNAL newPixels : std_ulogic

SIGNAL result : std_ulogic

SIGNAL roi_id : unsigned(dataB itNb-1 DOW NT O 0)
SIGNAL roi_mode : std_ulogic

SIGNAL roi_threshold : unsigned(paamBitNb-1 DOWNT O 0)
SIGNAL start_of_frame : std_ulogic

SIGNAL valid : std_ulogic

SIGNAL value : data_array

Printed by bachelor on 08/21/19 at 18:44:09

dataBitNb =16 (positive)

paamBitNb =16 (positive)
grayscaleBitNb = 10 (positive)
nbrinpuData =8

(positive)

ImageProcessing
accumulator
10

Y

ImageProcessing_test

accumulator_tester

n

HE S-SO Valais/allis Project _]Video processing on SoC
_ Perform unit test on accumulator, which
Title: Accumulator test bench is a part of RO| computation block
Path: <<-—- more —>>
Edited: by loic fracheboudon 13 Aug 2019
Page1 of 1

	Acknowledgement
	Glossary
	Conventions
	Introduction
	I Objectives and analysis
	Decomposition
	Design environment
	Environment setup

	Basic operations
	Real time image processing
	Specifications
	Sample image
	roi
	What to detect

	Principle of detection
	Video

	Further steps
	Planning

	II Design environment
	Hardware
	Board choice

	Virtual Machine
	Setup
	Hands-on

	III Loopback
	Development basis
	Implementation
	Specifications
	Hardware design
	Software

	IV Real-time processing
	Analysis
	Processing goal
	Application
	How to
	Optimisations
	Computations

	Processing
	Description

	Proof of concept
	State machine
	Processes

	vga processing
	State machine
	Pixel counters
	roi tracker
	Pixel Tracker
	Accumulator

	Libraries

	V Test benches
	Basic processing
	Objectives
	Implementation

	vga processing
	Data generation for global test
	Unit tests
	Accumulator

	VI Tests
	Results

	VII Further work and improvements
	Remaining tasks
	Implementation

	System improvements
	Accumulator
	Test bench

	Others improvements
	roi
	Using dma

	VIII Conclusion
	IX Bibliography
	X Appendix
	Datasheet
	Specifications and initial analysis
	vm setup
	Codes
	leds and buttons application
	Test bench basic
	Test bench vga
	Test bench accumulator
	Tests results
	Compute roi
	Accumulator
	Pixels counter
	Pixel tracker
	roi tracker
	State machine
	General package

	Schematics

