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Abstract

By starting from a natural class of robust estimators for generalized linear
models based on the notion of quasi-likelihood, we define robust deviances
that can be used for stepwise model selection as in the classical framework.
We derive the asymptotic distribution of tests based on robust deviances and
we investigate the stability of their asymptotic level under contamination. The
binomial and Poisson models are treated in detail. Two applications to real
data and a sensitivity analysis show that the inference obtained by means of
the new techniques is more reliable than that obtained by classical estimation

and testing procedures.



1 Introduction

Generalized linear models (McCullagh and Nelder, 1989) are a powerful and popular
technique for modeling a large variety of data. In particular, generalized linear
models allow to model the relationship between the predictors and a function of the
mean of the response for continuous and discrete response variables. The response
variables Y;, for ¢ = 1,...,n are supposed to come from a distribution belonging to

the exponential family, such that E[Y;] = p; and V[Y;] = V(u;) for i =1,...,n and

nlzg(M/L):Xz—‘IB’ 7;:17‘"77?’7 (1)

where 3 € IR? is the vector of parameters, x; € IR”, and ¢(.) is the link function.

The non-robustness of the maximum likelihood estimator for 3 has been studied
extensively in the literature: cf. for instance the early work of Pregibon (1982) on
logistic regression, Stefanski, Carroll, and Ruppert (1986), Kiinsch, Stefanski, and
Carroll (1989), Morgenthaler (1992), and Ruckstuhl and Welsh (1999). In more
recent work, Preisser and Qaqish (1999) consider a class of robust estimators in the
general framework of generalized estimating equations.

The quasi-likelihood estimator of the parameter of model (1) (see Wedderburn,
1974, McCullagh and Nelder, 1989, and Heyde, 1997) shares the same non-robustness
properties. This estimator is the solution of the system of estimating equations

> g0t = Hphi=o ©)

(3

where p; = % i, and Q(y;, ;) is the quasi-likelihood function. The solution of (2) is
an M-estimator (see Huber, 1981, and Hampel, Ronchetti, Rousseeuw, and Stahel,
1986) defined by the score function @(yi,ui) = (Z(}(_—,ff))ﬂi Its influence function

(Hampel, 1974 and Hampel et al., 1986) is proportional to ¢ and is unbounded.
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Therefore, large deviations of the response from its mean or outlying points in the
explanatory variables x; can have a large influence on the estimator. Thus, the
quasi-likelihood estimator — as well as the maximum likelihood estimator — is not
robust. Several robust alternatives have been proposed in the literature; see the
references given above.

However, in spite of the fair amount of existing literature, robust inference for
generalized linear models seems to be very limited. Moreover, only the logistic
regression situation is usually considered in detail, and the problem of developing
robust alternatives to classical tests is not addressed globally for the whole class of
generalized linear models.

In this paper we propose a robust approach to inference based on robust de-
viances which are natural generalizations of quasi-likelihood functions. Our robust
deviances are based on the same class of robust estimators as that proposed by
Preisser and Qaqish (1999) in the more general setup of generalized estimating
equations. Although these estimators are not optimally robust, they form a class
of M-estimators easy to deal with, and which admits handy inference not only for
logistic regression but for the whole class of generalized linear models.

One could argue that two alternative approaches could be considered. A first
possibility would be to view variable selection as a parametric hypothesis and to
use Wald, score or likelihood ratio tests for which robust versions are available; see
e.g. Heritier and Ronchetti (1994) and Markatou and He (1994). While this would
in principle be feasible, Wald and score tests do not seem to be used much in the
classical analysis of generalized linear models. Moreover, robust likelihood ratio tests
cannot be proposed in this case, because the optimal robust score function does

not admit an analytic primitive function and numerical integration in the space



of parameters for computing such a primitive is generally unfeasible. A second
approach would be to rely on the robust model selection based on Akaike Criterion,
Mallows’ C), or similar techniques; see e.g. Ronchetti and Staudte (1994), Sommer
and Huggins (1996) and Ronchetti (1997) for a review. This approach has the
advantage to perform a full model search. However, when the number of variables
is moderate to large such a full search is impossible and a stepwise selection is the
only feasible alternative.

For these reasons and in view of the importance of the notion of deviance for
model building in generalized linear models, we propose robust deviances based on
generalizations of quasi-likelihood functions. The general structure of the classical
approach by quasi-likelihood is preserved, which offers the advantage of having ro-
bust tools playing the same role as deviances, ANOVA tables, stepwise procedures,
and so on.

The paper is organized as follows. In the next section we discuss robust estima-
tors of a generalized linear model based on quasi-likelihood. As an illustration, we
focus in particular on the estimation of binomial and Poisson models. In Section 3,
we discuss inference and propose a family of test statistics for model selection. We
derive their asymptotic distribution through the development of an asymptotically
equivalent quadratic form and we study their robustness properties through the in-
fluence function. Section 4 presents some computational aspects and Section 5 gives

two applications. Finally, in Section 6 we discuss some potential research directions.



2 Robust Estimation Based on Quasi-likelihood

2.1 General Definition

We consider a general class of M-estimators of Mallows’s type, where the influence
of deviations on y and on x are bounded separately. The estimator is the solution

of the estimating equations:
i=1

where 9(y, 1) = v(y, w () — a(B), a(B) = £ 0 Elv(ys, po) ()t with the
expectation taken with respect to the conditional distribution of y|x, v(-,-), w(x)
are weight functions defined below, and u; = w;(8) = g *(x/'3). The constant
a(B) ensures the Fisher consistency of the estimator. The estimating equation (3)
for generalized linear models is a special case of equation (1) p. 575 for generalized

estimating equations in Preisser and Qaqish (1999), where our function v(y, u)w(x)

is (in their notation) V! (u)w(x,y, B)(y — u) and a(B) = o/ V" (u) ¢

T

Let y = (y1,...,yn)" and g = (p1,...,4,)". The estimating equation (3)

corresponds to the minimization of the quantity
p) = Z Qe (Yi, 112, (4)
i=1

with respect to B, where the functions @ (y;, pt;) can be written as

Qur (Yis i) = / v(yi, w(x;)dt — — Z/ v(y;, t)w(x;)]dt, (5)

with § such that v(y;, 5) = 0, and # such that E[v(y;,t)] = 0. Note that differences
of deviances, as the test statistic (8), are independent of § and .
The structure of (3) is suggested by the classical quasi-likelihood equations. The

estimator defined by equation (3) is an M-estimator characterized by the score func-
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tion ¥ (yi, i) = v(ys, pi)w(x;) i — a(B). Its influence function is then IF(y; 4, F') =
M+, F)~1p(y, 1), where M(¢p, F) = —E[%i/)(y,u)]; cf. Hampel et al. (1986).
Moreover, the estimator has an asymptotic normal distribution with asymptotic
variance ) = M (v, F)7'Q(v, F)M (¢, F)~', where Q(, F) = E[v(y, u)v(y, u)T].
It is then clear that the choice of a bounded function 1) ensures robustness by putting
a bound on the influence function. Therefore, a bounded function v(y, i) is intro-
duced to control deviations in the y-space, and leverage points are down-weighted by
the weights w(x). Simple choices for v(-,) and w(-) suggested by robust estimators
in linear models are v(y;, p;) = iﬁc(ﬁ)m (see (6) below) and w(x;) = /1 —h;
where h; is the i-th diagonal element of the hat matrix H = X (X7X)"1X?. More
sophisticated choices for w(-) are available (see Staudte and Sheather, 1990, p. 258,
for a discussion in linear regression or Carroll and Welsh, 1988). Weights defined
on H do not have high breakdown properties, and from this point of view, other
choices of w(x;) are more suitable. For example, w(x;) can be chosen as the inverse
of the Mahalanobis distance defined through a high breakdown estimate of the cen-
ter and of the covariance matrix of the x; (see, for example, the minimum volume
ellipsoid estimator or the minimum covariance determinant estimator in Rousseeuw
and Leroy, 1987, p. 258 ff.). Finally notice that the choice of v(y;, p;) = % and
w(x;) = 1 for all i, recovers the classical quasi-likelihood estimator, so that for a
judicious choice of v(y;, ;) and of the weights w(x;), the function Q(y, @) can be
seen as the robust counterpart of the classical quasi-likelihood function.

The form of this estimator is attractive because the estimating equation (3)

corresponds to the minimization of (4) and this leads to a natural definition of

robust deviance; see Section 3.1.



2.2 Robust Estimation for Binomial and Poisson Models

We consider here the particular case of (3), defined by v(y;, jt;) = e(rs) rm—

V2 (i)
where r; = Vyf/;(“;_) are the Pearson residuals and ). is the Huber function defined
by

r | [< e
be(r) = (6)

csign(r) |r|>c
We call the estimator defined in this way, the Mallows quasi-likelihood estimator.

It solves the set of estimating equations

n

L
; [?/fc(ﬁ)w(xi)mm —a(B)| =0, (7)
where a(8) = 2> | E[@ch(ri)]w(xi)mu;. Using the same notation as in the

linear regression case, when w(x;) = 1 we call this estimator Huber quasi-likelihood
estimator.

The tuning constant c is typically chosen to ensure a given level of asymptotic
efficiency. In Section 3.2 we propose an alternative procedure for the choice of
the tuning constant. a(8) is a correction term to ensure Fisher consistency; see
Hampel et al. (1986) for general parametric models and He and Simpson (1993),
Section 4.1, for power series distributions. Note that a(83) can be computed explicitly
for binomial and Poisson models and does not require numerical integration; cf.
Appendix A. The matrices M (¢, ') and Q(1,, F') can also be easily computed for

the Mallows quasi-likelihood estimator:

Q.. F) = ~XTAX — a(B)a(B)",

n

where A is a diagonal matrix with elements a; = E[1).(r;)*]w?(x;) V(lu,-) (g‘;@?)% and

1
M(’lpc?F) - EXTBXa



where B is a diagonal matrix with elements b; = E[wc(ri)a%i log h(y;|x;, ;)] mw(xz)(g’; )2,

and h(-) is the conditional density or probability of y;|x;. We refer to Appendix B for
further details and for the computation of these matrices for binomial and Poisson

models.

3 Robust Inference

3.1 Model Selection Based on Robust Deviances

The function Qu(y, p) defined in (4) and (5) allows to develop robust tools for
inference and model selection based on robust quasi-deviances.
Denote by a = (a(Tl), a@))T the partition of a vector a into (p — ¢) and ¢ compo-

nents and the corresponding partition of a matrix A by

All Al?
A21 A22

where A;; € RP-9XP=0) 4., e RP~9%9 A, € R*P~9D and A,y € R
To evaluate the adequacy of a model, we define a robust goodness-of-fit measure
— called robust quasi-deviance — based on the notion of robust quasi-likelihood

function, i.e.

Dou(y, 1) = =2Qui(y, ) = 2> Qui(yi, 1),
=1

where () is defined by (4) and (5).

Don(y, i) describes the quality of a fit and will be used to define a statistic
for model selection. Let us consider the model M, with p parameters. Suppose
that the corresponding set of parameters is 8 = (31,...,0,)" = (ﬁa),,@(Tz))T. We

are interested in testing the null hypothesis Hy : By = 0. This is equivalent to
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consider a nested model M,_, C M, with (p — ¢) parameters, and testing whether
the sub-model M,,_, holds.

We estimate the vector of parameters by solving (3) for the complete model, and
we obtain an estimator B of 3. Under the null hypothesis, the same procedure yields
an estimator 3 of (B(1),0). We write f1 and f1 for the estimated linear predictors
associated to the estimate B and B respectively. Then, we define a robust measure

of discrepancy between two nested models by
Aou = [DQM(Y7 p) — Douml(y, ﬂ)}
= 2[2@1\4(%7%) - Z QM(yi,ﬂz‘)], (8)
i=1 i=1

where the function Qs (y;, ;) is defined by (5).

The statistic (8) is in fact a generalization of the quasi-deviance test for general-

yi—t
V(¢)

ized linear models, which is recovered by taking Qs (v, i) = fy‘j ‘ dt. Moreover,
when the link function is the identity (linear regression), (8) becomes the 7-test
statistic defined in Hampel et al. (1986), Chapter 7.

The same forms for the functions v(y;, p;) and w(x;) as in the estimation problem
can be considered here. In particular, a Mallows quasi-deviance statistic can be
defined by taking v(y;, i) = ¥e(r:)/VY?(1s).

The following Proposition establishes the asymptotic distribution of the test
statistic (8). We assume the conditions for the existence, consistency, and asymp-
totic normality of M-estimators as given by (A.1)-(A.9) in Heritier and Ronchetti
(1994), p. 902. These conditions have been studied by Huber (1967, 1981), Clarke

(1986) and Bednarski (1993).

Proposition 1 Under conditions (A.1)-(A.9) in Heritier and Ronchetti (1994),
[C1], [C2] of Appendiz C, and under Hy : B = 0, the test statistic Ay defined
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by (8) equals
nL C(¢, F)Ly + 0p(1) = nR] )M (¢), F)as1Rn2) + 04(1), (9)

where C(v, F) = M~ (1, F)=M*(ap, F), /nL,, is normally distributed N'(0,Q(¢v, F)),
M, F)oan = M(3h, F)ag — M(3p, F),M (3, F);y M (3, F)r2, and /nR,, is nor-
mally distributed N'(0, M~ (¢, F)Q(¢, F)M (¢, F)).

Moreover, Agnr s asymptotically distributed as

zq: diNi27
=1

where Ny, ..., N, are independent standard normal variables, dy,...,d, are the g
positive eigenvalues of the matriz Q(v, F') (M_l(zb, F)—M* (4, F)), and M~ (), F)
is such that M* (¢, F);y = M, F)7} and M* (¢, F)yy = 0, M (¢, F)y = 0,
M* (1, F)gy = 0.

The proof is given in Appendix D. A similar result can be obtained for the dis-
tribution of Agy under contiguous alternatives B, = n~2A. In such a case
Ao is asymptotically distributed as Zgzl(dil/QNi + STA)?, where S is such that
SST = My and ST(M (v, Fg,)Q(v), Fg, )M (v, Fjg,))22S = D and D is the

diagonal matrix with elements dy,...,d,.

3.2 Robustness Properties and Choice of the Tuning Con-

stant

The robustness properties of the test based on (8) can be investigated by showing
that a small amount of contamination at a point z has bounded influence on the

asymptotic level and power of the test. This ensures the local stability of the test.
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The global reliability (or robustness against large deviations) could be measured by
the breakdown point as defined in He, Simpson, and Portnoy (1990). However, we
focus here on small deviations which are probably the main concern at the inference
stage of a statistical analysis.

We consider the sequence of e-contaminations

. ﬁ)Fﬁo + %G, (10)

where G is an arbitrary distribution (see Heritier and Ronchetti, 1994) and investi-

F.,=(1

gate the asymptotic level of the test under (10).

Proposition 2 Consider a parametric model Fg, and the null hypothesis Hy :
B2 = 0. Denote by F™ the empirical distribution and by U, the functional U(F(”))
such that U(Fg,) = 0, IF(z; U, Fg,) is bounded and

\/E(Un - U(Fe,n)) ~ N(Oa Z) (11)

uniformly over the e-contamination Fe,. Let a(F') be the level of the test based on
the quadratic form nUL AU,, when the underlying distribution is F. The nominal
level is o Fg,) = ay.

Then, under the e-contamination F,,, we have

lim a(Fe,) = oy +

n—oo

2T - diag (P ( / IF(2;U, FBO)dG(z)> ( / IF(z;U,FBO)dG(z)>TPT> +o(e?),

,,,,,

is the c.d.f. of the random variable > 0 d;ix3(E2), M—aq s the (1 — ap)-quantile of
7_dix3(0), P is an orthogonal matriz such that P'DP = $A, and D is the di-
agonal matriz with elements dy, . ..,d,, the eigenvalues of ¥ A. Moreover, diag(R)

indicates the vector with components the diagonal elements of the matriz R.
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If the influence function of the functional U is bounded, then the asymptotic level
under contamination is also bounded. The proof of this proposition is presented
in Appendix E. A similar result can be obtained for the power, showing that the
asymptotic power is stable under contamination.

Note that this proposition generalizes the result of Proposition 4 in Heritier and
Ronchetti (1994), which can be recovered by taking A = A\; = d(¢) and A = I,

The general result of Proposition 2 can be applied to the robust quasi-likelihood
test statistic (8) and in the special case of a point mass contamination G(z) = A,.

This gives the following Corollary.

Corollary 1 Under conditions (A.1)-(A.9) in Heritier and Ronchetti (1994), and
for any M-estimator 3(2) with bounded influence function, the asymptotic level of the

robust quasi-likelihood test statistic (8) under a point mass contamination is given

by

lim o(F.,) =a +

n—oo

ek’ - diag (P IF(Z;B(Q), FBO)IF(Z;B(Q), FﬁO)T PT) + o(€?),

where P is an orthogonal matriz such that PTDP = QMo 1, Q is the asymptotic
variance of B defined in Section 2.1, and D is the diagonal matrix with elements

dy,...,d, defined in Proposition 1.

The result is obtained by applying Proposition 2 with G(z) = A,, U = B(Q),
Y = Qg9, A = My 1, and by using the Fréchet differentiability of 6(2); see Heritier
and Ronchetti (1994).

Hence, a bounded influence M-estimator @(2) ensures a bound on the asymptotic

level of the robust quasi-likelihood test under contamination.
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We can now undertake a complete robust analysis of a generalized linear model:
the estimation of parameters can be performed via M-estimation according to (3),
and the test statistic (8) allows us to make inference and model choice.

The function v(y;, ;) which appears in the definition of Qs (y;, i), is often tuned
by a constant; cf. for instance (6). As suggested in Ronchetti and Trojani (2001), we
can consider the problem from the point of view of inference and choose the constant
that controls the maximal bias on the asymptotic level of the test in a neighborhood
of the model. To serve this last purpose, one can use the Corollary above. The
maximal level a of the robust quasi-likelihood test statistic in a neighborhood of the

model of radius € is given by
a = ag + (B, Fa,)*x" diag <P11TPT>, (12)

where 7(/3(2)7 Fﬁo) = SUup, ||IF(Z7B(2)7 Fﬁg)” and 1 = (17 R 1)T
By (12), we can write

1 a— o
b=~ 1
€ \/K',T diag(P117PT)’ (13)

where b is the bound on the influence function of the estimator [3(2). Then, for a
fixed amount of contamination € and by imposing a maximal error on the level of the
test a— g, one can determine the bound b on the influence function of the estimator,
and hence the tuning constant by solving b = 7(3(2), Fg,) = 7. with respect to c.
For example, if ¢ = 1 we have P = 1, diag(P117PT) = 1, and k = 0.1145, see
Ronchetti and Trojani (2001). In practice, the supremum on z = (y, x) is taken as
the maximum over the sample of the supremum on y|x. Note also that the solution
depends on the unknown parameter 3,; our experience shows that it does not vary

much for different values of 3, so that one can safely plug-in a reasonable (robust)

estimate. This is valid for a single test. However, in a stepwise procedure (as in

12



Section 5) several tests are performed, and one would have to choose a different
value of ¢ for each test. Since this is unreasonable from a practical point of view,
we suggest to choose a global value of ¢ by solving b = sup, ||IF(z; 8, Fg,)||, based
on the fact that (B, Fis,) = sup, [IF(2: Bay, Fa, )| < || sup, IF(z: 3, Fi,)I|.

4 Computational Aspects

The solution of equation (3) can be obtained numerically by a Newton-Raphson
procedure or by a Fisher scoring procedure. In the latter case, the algorithm is
also known as the influence algorithm; cf. for instance Hampel et al. (1986), p. 263.
However, there is a potential problem with multiple roots of equation (3). In this
case, we recommend to use a bootstrap root search as proposed in Markatou, Basu,
and Lindsay (1998), p. 743-744, based on the objective function Qs defined in (4)
as a selection rule; see also Hanfelt and Liang (1995).

The test statistic Agy of equation (8), can be computed directly. It involves
n one-dimensional integrations, which are performed numerically. Our experience
shows that it works well for binomial and Poisson models. To avoid these numerical
integrations — especially in the case when n is large — one can consider using the
asymptotic quadratic forms of Proposition 1 given by (9) which are asymptotically
equivalent to the test statistic Agp. A systematic study on the comparison of (8)
with the asymptotic equivalent quadratic forms (9) is left for further work. Moreover,
critical regions or p-values for the test statistic Agys are easy to obtain. In fact, linear
combinations of x? variables have been well studied in the literature. Algorithms
for the computation of these p-values have been proposed among others by Davies

(1980) and by Farebrother (1990). Analytical approximations of these distributions
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were studied by Pearson (1959) and Imhof (1961).
S-PLUS (MathSoft, Seattle) routines for estimation and inference based on ro-

bust quasi-likelihood are collected in a library and are available from the authors.

5 Applications

5.1 Binomial models

In this section, we analyze the damaged carrots dataset. It is taken from Phelps
(1982) and is discussed by Williams (1987) and used in McCullagh and Nelder
(1989) to illustrate techniques for checking for isolated departures from the model,
because of the presence of an outlier in the y-space. The data are issued from a soil
experiment and give the proportion of carrots showing insect damage in a trial with
three blocks and eight dose levels of insecticide. The logarithm of the dose ranges
from 1.52 to 2.36 in an equally spaced grid. The sample size is 24.

We assume a binomial model with logit link

log (mL—M) = Bo + (1 log(dose) + [oblock2 + (3blockl,

where o = E[Y] = E[number of damaged carrots], blocki, ¢ = 1,2 are indicators
variables taking the value of 1 if measures are taken in block ¢ and 0 otherwise.

Different techniques — plot of deviance residuals, plot of Pearson residuals and
Cook’s distance — show that there is a single large outlier, namely observation 14
(dose level 6 and block2). On the other hand, this observation does not appear
as a leverage point because its h; value is small.

In the following we compare the classical and the robust analysis. The classical

estimates are obtained by maximum likelihood. The robust estimates are based on

14



the Huber quasi-likelihood estimator defined by (7) with w(x;) = 1 for all i. The
tuning constant of the Huber function is chosen to be 1.2, which is obtained by the
procedure described at the end of Section 3.2 with o — ag = 0.02, ¢ = 0.04 and
k= 0.1145.

[Table 1 about here.]

Table 1 shows the effect of observation 14: it seems to increase the value of (3,
corresponding to the variable block2. The robust technique automatically takes
into account the particularity of observation 14: in the estimation procedure, most
of the observations receive a weight equal to 1, or at least greater than 0.70, whereas
observation 14 receives a weight equal to 0.26.

Also, the effect of observation 14 is clear on the value of the deviance. This
seems dangerous because the deviance is used for assessing the significance of the
variables used for modeling the response. This is confirmed by Table 2, where the

results of a classical and robust stepwise procedure are compared.
[Table 2 about here.|

The classical analysis shows that all the variables, added sequentially, are highly
significant on the basis of their deviance value. Model selection via a robust step-
wise procedure based on the Huber quasi-deviance defined by equation (8) with
v(yi, i) = e(rs)/VY?(1;) and ¢ = 1.2 shows that the variable block1 is not signif-

icant.

5.2 Poisson models

We use a dataset issued from a study of the diversity of arboreal marsupials in the

Montane ash forest (Australia). This dataset was collected in view of the man-
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agement of hardwood forest to take conservation and recreation values, as well as
wood production, into account. The study is fully described in Lindenmayer et al.
(1990, 1991). The number of different species of arboreal marsupials (possum) was
observed on 151 different 3ha sites with uniform vegetation. For each site the fol-
lowing measures were recorded: number of shrubs, number of cut stumps from past
logging operations, number of stags (hollow-bearing trees), a bark index reflecting
the quantity of decorticating bark, a habitat score indicating the suitability of nest-
ing and foraging habitat for Leadbeater’s possum, the basal area of acacia species,
the species of eucalypt with the greatest stand basal area (Fucalyptus regnans, Fu-
calyptus delegatensis, Eucalyptus nitens), and the aspect of the site. The problem is
to model the relationship between diversity and these other variables.

Weisberg and Welsh (1993) used these data to investigate by nonparametric
techniques the shape of the link function. Their conclusion was that the canonical
link fits this dataset well. Therefore, we consider a Poisson generalized linear models

with log-link to describe diversity as a function of
shrubs + stumps + stags + bark + habitat + acacia + eucalyptus + aspect,

where eucalyptus is a factor with three levels and aspect is a factor with four
levels. Hence, the model involves the estimation of a parameter of dimension 12.
The robust estimation of parameters via a Mallows quasi-likelihood estimator
defined by (7) with tuning constant ¢ = 1.6 and weights w(x;) = /1 — h; gives
the result of Table 3. In the same table, we report within parentheses the results
obtained by means of classical quasi-likelihood. It has to be noticed that 4 observa-
tions, namely observations 59, 110, 133, 139, receive a weight with respect to their
residual between 0.68 and 0.88. This shows that these 4 observations are potentially

influential not only for the estimation procedure, but also for inference and model
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selection. As one can see from Table 3, based on the asymptotic confidence intervals,
many explanatory variables do not enter significantly in the model, and a reduction

of the number of variables in the model is necessary.
[Table 3 about here.]

We applied a forward stepwise procedure based on quasi-likelihood and on the
robust version of it. Starting from the null model where only the constant term is
fitted, we tested whether it is appropriate to add the next explanatory variable. We
chose to retain a variable if the p-value was smaller than 5%. Table 4 shows the
p-value obtained at each step of the procedure. Bold p-values indicate the variables

which have been retained in the model.
[Table 4 about here.]

As one can see from the table, the models chosen by the classical and the robust
analysis are essentially the same, even if the p-values involved are sometimes quite
different. The variable habitat is at the border of the decision rule and external
consideration may be used to judge if it has to be kept in the model. It has to be
noticed that the correlation between habitat and acacia is high (0.54) and one of

these variables can be dropped.

[Table 5 about here.]

In the robust final fit, observations 59, 110, 133, 139 receive a weights with
respect to their residuals between 0.68 and 0.86, as it was already the case in the
full model. On the other hand, with respect to the influence of position, the only

observations receiving a weight less than 0.9 is the first one. There were three other
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observations which seemed to be potentially dangerous in the model containing the
whole set of variables. Probably, this outlyingness was due to some explanatory
variables, which were not retained in the final model.

For the final model as presented in Table 5, we investigate the sensitivity of Mal-
lows quasi-likelihood tests compared to classical tests by considering the following
procedure: we let the response of the observation receiving the lowest weight in the
estimation of the final model, namely observation 110, span the range of values from
0 to 6. These values cover the range of the response in the sample. In each situa-
tion, we test the null hypothesis that the coefficient corresponding to the variable

habitat is equal to 0. The p-values of these tests are represented in Figure 1.
[Figure 1 about here.|

The p-value of the robust test (¢ = 1.6) is stable, irrespective to the response
value taken by observation 110. This p-value ranges from 2.6 to 3.3%. On the other
hand, the p-value of the classical test (¢ = 00), varies much more: from 2.3 to 6.5%,
giving rise to a different model choice, if the decision rule is set at 5%. Moreover, by
letting observation 110 take arbitrarily large values, the p-value of the robust test is

bounded, whereas the p-value of the classical test continues to increase.

6 Conclusion

In this paper we proposed a natural class of robust testing procedures for generalized
linear models. They are a valuable complement to classical techniques and are more
reliable in the presence of outlying points and other deviations from the assumed
model. Further research includes the extension of these procedures to generalized

estimating equations and to nonparametric models like generalized additive models.
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A Fisher consistency correction

We derive the constant

for binomial and Poisson models, which reduces to the computation of E [wc( Yi i )} .

V/2(py)
Let us define j; = [ — cV'Y2(w;)], and jo = | + V2 (1) ].

The binomial model states that Y; ~ B(m;,p;), so that E[Y;] = u; = m;p; and
V[Y;] = pi™—*. Then we have

Yi—pwivy_ N J= i \prv g
E[¢C(W/2—W)] - jzz_:OOwC(Vl/Z(Mi))P(YZ = ) ieomay
= C(P(Yz‘ > g+ 1) =P < jl))
t gy PO ST -1)-PGHH1SYi< ),

with Y; ~ B(m; —1,p;).
The Poisson model states that Y; ~ P(u;), and hence E[Y;] = V(u;) = p;. Then,

Elolgimge)) = 3 vy PO = DMz
= ¢(P(Y; > ja+1) = P(Yi <)) + ‘/1//;72(/%) [P(Yi = j1) = P(Y; = ja)].

B Asymptotic variance

We first determine the matrix Q(2,., F') in the particular situation of Mallows quasi-
likelihood estimator. Using its definition, we have

QY. F) = E[(wc(r)w(x)w%(u)u’ —a(B)) (lﬁc(r)w(x)vl/%w)// — a(ﬁ))T]

= SXTAX —a(B)a(B)"
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where A is the diagonal matrix with elements a; = E[th.(r;)2|w?(x;) o= (2£4)2, since

V(wi) \ On;
i = (g’;?)xi. In the same manner, writing s(y,x, 3) = % log h(y;|x;, p;), we derive
the expression of M (v, F),
1
M(¢ca F) = E [(¢C(T)w(X)Tﬂl - a(,@))s(y, X, IB)T]
V2 ()

_ 1 - 0 1 /T

= - ; E WJC(TJ@_M log h(yi|Xz‘7 Mz)} mw(xi)ﬂiﬂi

= lXTBX,

n

where B is the diagonal matrix with elements b; = E[1).(r;) 8%1_ log h(y;|x;, )] Ww(X’)(gZZ )2.

So, the determination of the asymptotic variance of a Mallows quasi-likelihood
estimator involves the computation of the diagonal terms of the matrices A and B.

We determine the three terms: a%ig*l(m), E[¢.(r;)?], and E[@bc(ri)a%i log h(y;|x;, ;)]
for binomial and Poisson models.

For the binomial model with logit link

O iy D)
on? ) = T exp ()
and
ﬂ%ﬁ%%%ﬂ—3@W§ﬁHPW>h+nw

V(Mz‘) .
+ (= 2P <Y <jo—1)+

+ PG +1SY <),

with Y ~ B(mi,m), Y ~ B(mz - 1,71'1‘) and }:/ ~ B(m, - 2,7'('1').
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B%i log h(y;|x;, pt;) being equal to ‘Y/(_H“), we have

0 Yi— i \Yi—
E[?/fc(ﬁ)g—mlogh(yﬂxmmﬂ = EWC(VUQ(Z)) V(MS} -
_ VC(/Z) [P(Yi <j) =P, <j—1)+PY;>js) —P(Y; > jo+ 1)] +

1 2 . = .
gy i~ VPG 1< Y <2 =)
(i — 2P S Vi < o — 1)+ p2P(ji + 1 < Vi < jg)].

For the Poisson model, we use the log-link n; = g(u;) = log(u;) which leads to

a%ig_l(m) = exp(n;). We also have

Yi — : .
EM(WT(Z)” =c*(P(Y; < j1) + P(Yi 2 j2 + 1))+
£ P PG~ 1Y < da =)+ (2P <Y < e )

v PP+ 1<Y, sz)]-

The score function equals 32 log h(y;|x;, ;) = Yicps _ Yicp

14 = T = Vg SO that
Yi—pi \Yi—
E e\T; lO h i | Xy g = E c =

(e ) 5,0, los hlwili. )] =E[v (VW(M)) 2 ]

= ¢(P(Yi=j) +P(Yi=132)) +
2 . . . .

+ Vg/z(m>/“bi (P(Yz‘ =jh—1)=PY;=71)-PYi=j2—1)+P(Y; = jQ)) +
+ wiP(i <Y < jo—1).

C Conditions for Robust Quasi-deviance Tests

[C1]: Denote by D, the set of all sample points z;, i = 1, ..., n for which the second-
order derivatives 0*°Q(zi, 3)/08;008k, i = 1,...,n; j,k = 1,...,p exist and

are continuous functions of B. It is assumed that lim,_, Pg(D,) = 1.
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[C2]: For any z € D,, any positive value ¢, and any 3, denote by 7,,(z,3;,0) the
least upper bound and by 7;x(z, B, ) the greatest lower bound of 9*Q (2, 3)/95;00%,
with respect to 8 in the 3 interval ||3; — B|| < 6.

Moreover, assume that for any sequence {d,} for which lim,, ., 6, =0,

Tim Ep[ni(2,8,0,)] = lim Eg[5u(2, 8,0,)] = Ea[0°Qui(z, 8)/05;00],

and that there exists a positive € such that the expectations Eg [njzk(z, 3, 5)}
and Eg [fy?k(z, 3, 6)} are bounded functions of 8 and ¢ for all 3 and § < e.

These conditions are obtained by replacing log f(z, 3) by Qu(z,3) in the corre-
sponding classical results for the likelihood ratio test; cf. Rao (1973), Wald (1943).

D Proof of Proposition 1

First, we derive the asymptotic equivalent quadratic form of Agas. The proof follows
the same lines as in the classical theory.
The first step of the proof consists in approximating Agys under conditions [C1]-
[C2] by
V(B —B)"M(y, F)v/n(B - B), (14)

via a Taylor expansion and by making use of Slutsky’s theorem. Then, under H, and
by the asymptotic properties of M-estimators which hold under conditions (A.1)-
(A.9) of Heritier and Ronchetti (1994), the following distribution equality holds

asymptotically

V(B — B) X V(M (p, F) — M* (s, F))L,, (15)
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where L, = 23" 4p(y;, ;) is such that /nL, ~ N(0,Q(¢, F)). Putting (15)
in (14), and taking into account the symmetry of M (v, F), we finally have, as
n — 0o,

Agm = nLIC(3, F)Ly,. (16)

(16) can be rewritten as
D
Aqur ~ 1Ry M (1, F)a2 1 Ryg2),

where M (1), F)ag1 = M(p, F)ay — M(2h, F)1oM (¢, F) ! M (1, F)19, and /nR,, is
distributed according to N (0, M~ (¢, F)Q(vp, F)M (¢, F)).
Finally, from (16) we conclude that

AQM ~ i diNZ-Z,
1=1

where d; are the ¢ positive eigenvalues of Q(v, F)C (v, F') and Ny,..., N, are in-
dependent standard normal variables. Thus, the distribution of Agys is a linear

combination of y? random variables with 1 degree of freedom.

E Proof of Proposition 2

By using (11) and by standard results on the distribution of quadratic forms in nor-
mal variables, we can say that the statistic nUZ AU,, is asymptotically distributed
as Yo di3(&2), with &(e) = (&i(e), ..., & ()T = /nPU(F,,). Notice that the
distribution depends only on the £?(¢) (see Johnson and Kotz (1970), Chapter 29).

Moreover, up to O(1/n), we have that o(F.,) =1 — Hg, . a,(M—ae; A(€)), with
A(e) = diag(&(e)€(e)”) = ndiag (PU(F,,)U(F. )" PT).
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dy(M-ao; A(€)). Then, up to O(1/n), we have

.....

Q(F.) — g = b(e) — b(0) = eb(0) + ~H'(0) + o(e2).

2
But
b (0) = K7 - aﬁx — ok - diag (P[QU(FW)} U(Fp,)P") =0,
€ le=0 Oe =0
because U(Fg,) = 0.
We also have that
V'(0) = k- g—;)\ = k! - 2ndiag (P [%U(Fw)%U(Fe,n)T] €ZOPT)

— 2xT . diag (P </|F(Z;U,FBO)dG(Z)> </|F(z;U, FBO)dG(Z)>TpT>,

by using again the fact that U(Fj, ) = 0 and because %U(Fm) |€:0 = [IF(z; U, Fgo)\/iﬁdG(z)
(see Hampel et al., 1986, p. 83). This completes the proof.
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Figure 1: Sensitivity curves of the p-value for Mallows quasi-likelihood tests with
¢ = 1.6 (solid line) and ¢ = oo (dashed line).
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Max. likelihood | Huber quasi-likelihood
Intercept | 1.480 (0.66) 1.939 (0.70)
logdose -1.817 (0.34) -2.049 (0.37)
block2 0.843 (0.23) 0.685 (0.24)
blockl | 0.542 (0.23) 0.450 (0.24)

Table 1: Estimation of 3 by maximum likelihood and by the Huber quasi-likelihood
estimator with ¢ = 1.2. Standard errors are indicated within parentheses.
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Resid. Deviance | Resid. Huber quasi-deviance
NULL 83.34 60.46
logdose | 54.73 (0.000) 39.94 (0.000)
block2 45.59 (0.003) 35.21 (0.017)
block1 39.98 (0.018) 32.74 (0.085)

Table 2: Residual deviance and residual Huber quasi-deviance with ¢ = 1.2. p-values
are indicated within parentheses.
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Variable Coefficient Standard Error

Tntercept 20.8978  (-0.947) 0.2682 (0.265)
shrubs 0.0099 (0.012) 0.0222 (0.022)
stumps -0.2514 (-0.272) 0.2876 (0.286)
stags 0.0402  (0.040) 0.0113 (0.011)
bark 0.0400  (0.040) 0.0145 (0.014)
acacia 0.0178  (0.018) 0.0107 (0.011)
habitat 0.0714  (0.072) 0.0385 (0.038)
eucalyptus nitens 0 (0) - (-)
eucalyptus regnans -0.020 (-0.015) 0.1938 (0.192)
eucalyptus delegatensis  0.127 (0.115) 0.2738 (0.272)
aspect NW-NE 0 (0) - (-)
aspect NW-SE 0.0601  (0.067) 0.1913 (0.190)
aspect SE-SW 0.0949  (0.117) 0.1920 (0.190)
aspect SW-NW -0.5079 (-0.489) 0.2505 (0.247)

Table 3: Coeflicients estimation and corresponding standard errors for the Poisson
model with log-link of the possum dataset.
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Classical QL. Robust QL

shrubs 0.0871 0.3642
stumps 0.0646 0.2988
stags 0.0000 0.0000
bark 0.0035 0.0039
acacia 0.0002 0.0009
habitat 0.0500 0.0443
eucalyptus regnans 0.8754 0.8030
eucalyptus delegatensis 0.8591 0.8074
eucalyptus nitens 0.5681 0.6461
aspect NW-NE 0.8336 0.9100
aspect NW-SE 0.2612 0.3462
aspect SE-SW 0.1996 0.1646
aspect SW-NW 0.0012 0.0023

Table 4: p-values of a forward stepwise procedure for the Poisson model with log-link
of the possum dataset.
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Variable Coefficient Standard Error

Intercept ~0.7981 (-0.8213) 0.2030 (0.2000)
stags 0.0406  (0.0410) 0.0104 (0.0103)
bark 0.0410  (0.0406) 0.0126 (0.0125)
habitat 0.0143  (0.0136) 0.0098 (0.0097)
acacia 0.0776  (0.0782) 0.0371 (0.0367)
aspect SW-NW -0.6044 (-0.5968) 0.2121 (0.2086)

Table 5: Coefficients estimation and corresponding standard errors for the final
Poisson model with log-link of the possum dataset.
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