
Ma
hine Super Intelligen
e

Doctoral Dissertation submitted to the

Faculty of Informatics of the University of Lugano

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Shane Legg

under the supervision of

Marcus Hutter

June 2008

Dissertation Committee

Prof. Dr. Marcus Hutter Australian National University, Australia

Prof. Dr. Jürgen Schmidhuber IDSIA, Switzerland

Technical University of Munich, Germany

Prof. Dr. Fernando Pedone University of Lugano, Switzerland

Prof. Dr. Matthias Hauswirth University of Lugano, Switzerland

Prof. Dr. Marco Wiering Utrecht University, The Netherlands

Dissertation accepted on 17 June 2008

Supervisor PhD program director

Marcus Hutter Fabio Crestani

i

I certify that except where due acknowledgement has been given, the work

presented in this thesis is that of the author alone; the work has not been sub-

mitted previously, in whole or in part, to qualify for any other academic award;

and the content of the thesis is the result of work which has been carried out

since the official commencement date of the approved research program.

Shane Legg

Lugano, 17 June 2008

ii

Mystics exult in mystery and want

it to stay mysterious. Scientists

exult in mystery for a different

reason: it gives them something to

do.

Richard Dawkins

iii

iv

Abstra
t

This thesis concerns the optimal behaviour of agents in unknown computable

environments, also known as universal artificial intelligence. These theoretical

agents are able to learn to perform optimally in many types of environments.

Although they are able to optimally use prior information about the environ-

ment if it is available, in many cases they also learn to perform optimally in

the absence of such information. Moreover, these agents can be proven to up-

per bound the performance of general purpose computable agents. Clearly such

agents are extremely powerful and general, hence the name universal artificial

intelligence.

That such agents can be mathematically defined at all might come as a sur-

prise to some. Surely then artificial intelligence has been solved? Not quite. The

problem is that the theory behind these universal agents assumes infinite compu-

tational resources. Although this greatly simplifies the mathematical definitions

and analysis, it also means that these models cannot be directly implemented

as artificial intelligence algorithms. Efforts have been made to scale these ideas

down, however as yet none of these methods have produced practical algorithms

that have been adopted by the mainstream. The main use of universal artificial

intelligence theory thus far has been as a theoretical tool with which to mathe-

matically study the properties of machine super intelligence.

The foundations of universal intelligence date back to the origins of philoso-

phy and inductive inference. Universal artificial intelligence proper started with

the work of Ray J. Solomonoff in the 1960’s. Solomonoff was considering the

problem of predicting binary sequences. What he discovered was a formulation

for an inductive inference system that can be proven to very rapidly learn to op-

timally predict any sequence that has a computable probability distribution. Not

only is this theory astonishingly powerful, it also brings together and elegantly

formalises key philosophical principles behind inductive inference. Furthermore,

by considering special cases of Solomonoff’s model, one can recover well known

statistical principles such as maximum likelihood, minimum description length

and maximum entropy. This makes Solomonoff’s model a kind of grand unified

theory of inductive inference. Indeed, if it were not for its incomputability, the

v

vi

problem of induction might be considered solved. Whatever practical concerns

one may have about Solomonoff’s model, most would agree that it is nonetheless

a beautiful blend of mathematics and philosophy.

The main theoretical limitation of Solomonoff induction is that it only addresses

the problem of passive inductive learning, in particular sequence prediction.

Whether the agent’s predictions are correct or not has no effect on the future

observed sequence. Thus the agent is passive in the sense that it is unable to

influence the future. An example of this might be predicting the movement of

the planets across the sky, or maybe the stock market, assuming that one is not

wealthy enough to influence the market.

In the more general active case the agent is able to take actions which may

affect the observed future. For example, an agent playing chess not only ob-

serves the other player, it is also able to make moves itself in order to increase

its chances of winning the game. This is a very general setting in which seem-

ingly any kind of goal directed problem can be framed. It is not necessary to

assume, as is typically done in game theory, that the environment, in this case

other player, plays optimally. We also do not assume that the behaviour of the

environment is Markovian, as is typically done in control theory and reinforce-

ment learning.

In the late 1990’s Marcus Hutter extended Solomonoff’s passive induction

model to the active case by combining it with sequential decision theory. This

produced a theory of universal agents, and in particular a universal agent for a

very general class of interactive environments, known as the AIXI agent. Hutter

was able to prove that the behaviour of universal agents converges to optimal

in any setting where this is at all possible for a general agent, and that these

agents are Pareto optimal in the sense that no agent can perform as well in

all environments and strictly better in at least one. These are the strongest

known results for a completely general purpose agent. Given that AIXI has such

generality and extreme performance characteristics, it can be considered to be a

theoretical model of a super intelligent agent.

Unfortunately, even stronger results showing that AIXI converges to optimal

behaviour rapidly, similar to Solomonoff’s convergence result, have been shown

to be impossible in some settings, and remain open questions in others. Indeed,

many questions about universal artificial intelligence remain open. In part this is

because the area is quite new with few people working in it, and partly because

proving results about universal intelligent agents seems to be difficult.

The goal of this thesis is to explore some of the open issues surrounding

universal artificial intelligence. In particular: In which settings the behaviour of

universal agents converges to optimal, the way in which AIXI theory relates to

the concept and definition of intelligence, the limitations that computable agents

vii

face when trying to approximate theoretical super intelligent agents such as AIXI,

and finally some of the big picture implications of super intelligent machines and

whether this is a topic that deserves greater study.

viii

A
knowledgements

First and foremost I would like to thank my supervisor Marcus Hutter. Getting a

PhD is a somewhat long process and I have appreciated his guidance throughout

this endeavour. I am especially grateful for the way in which he has always

gone through my work carefully and provided detailed feedback on where there

was room for improvement. Not every graduate student receives such careful

appraisal and guidance during this long voyage.

Essentially all of the research contained in this thesis was carried out at the

Dalle Molle Institute for Artificial Intelligence (IDSIA) near Lugano, Switzerland.

It has been a pleasure to work with such a talented group of people over the last

4 years. In particular I would like to thank Alexey Chernov for encouraging me

to develop a few short proofs on the limits of computational prediction systems

into a full length paper. For me, that was a turning point in my thesis.

A special thanks goes to my reading group: Jeff Rose, Cyrus Hall, Giovanni

Luca Ciampaglia, Katerina Barone-Adesi, Tom Schaul and Daan Wierstra. They

went through most of my thesis finding typos and places where things were not

well explained. The thesis is no doubt far more intelligible due to their efforts.

Special thanks also to my mother Gail Legg for further proof reading efforts.

My research has benefited from interaction with many other colleagues, both

at IDSIA and other research centres, in particular Jürgen Schmidhuber, Jan

Poland, Daniil Ryabko, Faustino Gomez, Matteo Gagliolo, Frederick Ducatelle,

Alex Graves, Bram Bakker, Viktor Zhumatiy and Laurent Orseau. I would also

like to thank the institute secretary, Cinzia Daldini, for her amazing ability to

find solutions to all manner of issues. It made coming to work at IDSIA and

living in Switzerland a breeze. Finally, thanks to etomchek for designing the

beautiful electric sheep on the front cover, and releasing it under the creative

commons licence. I always wanted a sheep on the cover of my PhD thesis.

This research was funded by the Swiss National Science Foundation under

grants 2100-67712.0 and 200020-107616. Many funding agencies are not will-

ing to support such blue-sky research. Their backing has been greatly appreci-

ated.

ix

x

Contents

Contents xiii

Preface xv

Thesis outline . xv

Prerequisite knowledge . xviii

1 Nature and Measurement of Intelligence 1

1.1 Theories of intelligence . 3

1.2 Definitions of human intelligence . 5

1.3 Definitions of machine intelligence 10

1.4 Intelligence testing . 12

1.5 Human intelligence tests . 14

1.6 Animal intelligence tests . 16

1.7 Machine intelligence tests . 17

1.8 Conclusion . 24

2 Universal Artificial Intelligence 25

2.1 Inductive inference . 25

2.2 Bayes’ rule . 28

2.3 Binary sequence prediction . 30

2.4 Solomonoff’s prior and Kolmogorov complexity 33

2.5 Solomonoff-Levin prior . 35

2.6 Universal inference . 39

2.7 Solomonoff induction . 41

2.8 Agent-environment model . 42

2.9 Optimal informed agents . 47

2.10 Universal AIXI agent . 50

3 Taxonomy of Environments 57

3.1 Passive environments . 58

3.2 Active environments . 61

xi

xii CONTENTS

3.3 Some common problem classes . 65

3.4 Ergodic MDPs . 67

3.5 Environments that admit self-optimising agents 70

3.6 Conclusion . 73

4 Universal Intelligence Measure 75

4.1 A formal definition of machine intelligence 76

4.2 Universal intelligence of various agents 83

4.3 Properties of universal intelligence 88

4.4 Response to common criticisms . 92

4.5 Conclusion . 99

5 Limits of Computational Agents 101

5.1 Preliminaries . 102

5.2 Prediction of computable sequences 104

5.3 Prediction of simple computable sequences 106

5.4 Complexity of prediction . 108

5.5 Hard to predict sequences . 109

5.6 The limits of mathematical analysis 111

5.7 Conclusion . 113

6 Temporal Difference Updating without a Learning Rate 117

6.1 Temporal difference learning . 118

6.2 Derivation . 120

6.3 Estimating a small Markov process 124

6.4 A larger Markov process . 126

6.5 Random Markov process . 127

6.6 Non-stationary Markov process . 128

6.7 Windy Gridworld . 129

6.8 Conclusion . 132

7 Discussion 135

7.1 Are super intelligent machines possible? 137

7.2 How could intelligent machines be developed? 139

7.3 Is building intelligent machines a good idea? 146

Notation and Conventions 149

Ergodic MDPs admit self-optimising agents 153

.1 Basic definitions . 153

.2 Analysis of stationary Markov chains 156

.3 An optimal stationary policy . 163

xiii Contents

.4 Convergence of expected average value 166

Definitions of Intelligence 169

.5 Collective definitions . 169

.6 Psychologist definitions . 171

.7 AI researcher definitions . 175

Bibliography 177

xiv Contents

Prefa
e

Thesis outline

Much of the work presented in this thesis comes from prior publications. In some

cases whole chapters are heavily based on prior publications, in other cases prior

work is only mentioned in passing. Furthermore, while I wrote the text of the

thesis, naturally not all of the ideas and work presented are my own. Besides the

presented background material, many of the results and ideas in this thesis have

been developed through collaboration with various colleagues, in particular my

supervisor Marcus Hutter. This section outlines the contents of the thesis and

also provides some guidance on the nature of my contribution to each chapter.

1) Nature and Measurement of Intelligen
e. Chapter 1 begins the thesis with

the most fundamental question of all: What is intelligence? Amazingly, books

and papers on artificial intelligence rarely delve into what intelligence actually

is, or what artificial intelligence is trying to achieve. When they do address the

topic they usually just mention the Turing test and that the concept of intelli-

gence is poorly defined, before moving on to algorithms that presumably have

this mysterious quality. As this thesis concerns theoretical models of systems that

we claim to be extremely intelligent, we must first explore the different tests and

definitions of intelligence that have been proposed for humans, animals and ma-

chines. We draw from these an informal definition of intelligence that we will

use throughout the rest of the thesis.

This overview of the theory, definition and testing of intelligence is my own

work. This chapter is based on [Legg and Hutter, 2007c], in particular the parts

which built upon [Legg and Hutter, 2007b,a].

2) Universal Arti�
ial Intelligen
e. At present AIXI is not widely known in aca-

demic circles, though it has captured the imagination of a community interested

in new approaches to general purpose artificial intelligence, so called artificial

general intelligence (AGI). However even within this community, it is clear that

xv

xvi

there is some confusion about AIXI and universal artificial intelligence. This may

be attributable in part to the fact that current expositions of AIXI are difficult for

non-mathematicians to digest. As such, a less technical introduction to the sub-

ject would be helpful. Not only should this help clear up some misconceptions, it

may also serve as an appetiser for the more technical treatments that have been

published by Hutter. Chapter 2 provides such an introduction. It starts with the

basics of inductive inference and slowly builds up to the AIXI agent and its key

theoretical properties.

This introduction to universal artificial intelligence has not been published

before, though small parts of it were derived from [Hutter et al., 2007] and [Legg,

1997]. Section 2.6 is largely based on the material in [Hutter, 2007b], and the

sections that follow this on [Hutter, 2005].

3) Optimality of AIXI. Hutter has proven that universal agents converge to op-

timal behaviour in any environment where this is possible for a general agent.

He further showed that the result holds for certain types of Markov decision

processes, and claimed that this should generalise to related classes of envi-

ronments. Formally defining these environments and identifying the additional

conditions for the convergence result to hold was left as an open problem. In-

deed, it seems that nobody has ever documented the many abstract environment

classes that are studied and formally shown how they are related to each other.

In Chapter 3 we create such a taxonomy and identify the environment classes

in which universal agents are able to learn to behave optimally. The diversity of

these classes of environments adds weight to our claim that AIXI is super intelli-

gent.

Most of the classes of environments are well known, though their exact for-

malisations as presented are my own. The proofs of the relationships between

them and the resulting taxonomy of environment classes is my work. This chap-

ter is largely based on [Legg and Hutter, 2004].

4) Universal Intelligen
e Measure. If AIXI really is an optimally intelligent ma-

chine, this suggests that we may be able to turn the problem around and use

universal artificial intelligence theory to formally define a universal measure of

machine intelligence. In Chapter 4 we take the informal definition of intelli-

gence from Chapter 1 and abstract and formalise it using ideas from the theory

of universal artificial intelligence in Chapter 2. The result is an alternate charac-

terisation of Hutter’s intelligence order relation. This gives us a formal definition

of machine intelligence that we then compare with other formal definitions and

tests of machine intelligence that have been proposed.

The specific formulation of the universal intelligence measure is of my own

xvii

creation. The chapter is largely based on [Legg and Hutter, 2007c], in particular

the parts of this paper which build upon [Legg and Hutter, 2005b, 2006].

5) Limits of Computational Agents. One of the key reasons for studying in-

computable but elegant theoretical models, such as Solomonoff induction and

AIXI, is that it is hoped that these will someday guide us towards powerful com-

putable models of artificial intelligence. Although there have been a number of

attempts at converting these universal theories into practical methods, the re-

sulting methods have all been a mere shadow of their original founding theory.

Is this because we have not yet seen how to properly convert these theories into

practical algorithms, or are there more fundamental limitations at work?

Chapter 5 explores this question mathematically. Specifically, it looks at the

existence and nature of computable agents which are powerful and extremely

general. The results reveal a number of fundamental constraints on any endeav-

our to construct very general artificial intelligence algorithms.

The elementary results at the start of the chapter are already well known,

nevertheless the proofs given are my own. The more significant results towards

the end are entirely original and are my own work. The chapter is based pri-

marily on [Legg, 2006b] which built upon the results in [Legg, 2006a]. The

core results also appear with other related work in the book chapter [Legg et al.,

2008].

6) Fundamental Temporal Di�eren
e Learning. Although deriving practical

theories based on universal artificial intelligence is problematic, there still exist

many opportunities for theory to contribute to the development of new learning

techniques, albeit on a somewhat less grand scale. In Chapter 6 we derive an

equation for temporal difference learning from statistical principles. We start

with the variational principle and then bootstrap to produce an update-rule for

discounted state value estimates. The resulting equation is similar to the stan-

dard equation for temporal difference learning with eligibility traces, so called

TD(λ), however it lacks the parameter that specifies the learning rate. In the

place of this free parameter there is now an equation for the learning rate that

is specific to each state transition. We experimentally test this new learning rule

against TD(λ). Finally, we make some preliminary investigations into how to

extend our new temporal difference algorithm to reinforcement learning.

The derivation of the temporal difference learning rate comes from a collec-

tion of unpublished derivations by Hutter. I went through this collect of hand-

written notes, checked the proofs and took out what seemed to be the most

promising candidate for a new learning rule. The presented proof has some

reworking for improved presentation. The implementation and testing of this

xviii

update-rule is my own work, as is the extension to reinforcement learning by

merging it with Sarsa(λ) and Q(λ). These results were published in [Hutter and

Legg, 2007].

7) Dis
ussion The concluding discussion on the future development of machine

intelligence is my own. This has not been published before.

Appendix A A description of the mathematical notation used.

Appendix B A convergence proof for ergodic MDPs needed for key results in

Chapter 2

Appendix C This collection of definitions of intelligence, seemly the largest in

existence, is my own work. This section of the appendix was based on [Legg and

Hutter, 2007a].

Some of my other publications which are only mentioned in passing in this

thesis include [Smith et al., 1994; Legg, 1996; Cleary et al., 1996; Calude et al.,

2000; Legg et al., 2004; Legg and Hutter, 2005a; Hutter and Legg, 2006]. Cover-

age of the research in this thesis in the popular scientific press includes New Sci-

entist magazine [Graham-Rowe, 2005], Le Monde de l’intelligence [Fiévet, 2005],
as well as numerous blog and online newspaper articles.

Prerequisite knowledge

The thesis aims to be fairly self contained, however some knowledge of mathe-

matics, statistics and theoretical computer science is assumed. From mathemat-

ics the reader should be familiar with linear algebra, calculus, basic set theory

and logic. From statistics, basic probability theory and elementary distributions

such as the uniform and binomial distributions. A knowledge of measure theory

would be beneficial, but is not essential. From theoretical computer science a

knowledge of the basics such as Turing computation, universal Turing machines,

incomputability and the halting problem are needed. The mathematical notation

and conventions adopted are described in Appendix 7.3. The reader may want

to consult this before beginning Chapter 2 as this is where the mathematical

material begins.

Lugano, Switzerland, June 2008 Shane Legg

Chapter 1

Nature and Measurement of Intelligen
e

“Innumerable tests are available for measuring intelligence, yet no

one is quite certain of what intelligence is, or even just what it is that

the available tests are measuring.” Gregory [1998]

What is intelligence? It is a concept that we use in our daily lives that seems

to have a fairly concrete, though perhaps naive, meaning. We say that our friend

who got an A in his calculus test is very intelligent, or perhaps our cat who has

learnt to go into hiding at the first mention of the word “vet”. Although this

intuitive notion of intelligence presents us with no difficulties, if we attempt to

dig deeper and define it in precise terms we find the concept to be very diffi-

cult to nail down. Perhaps the ability to learn quickly is central to intelligence?

Or perhaps the total sum of one’s knowledge is more important? Perhaps com-

munication and the ability to use language play a central role? What about

“thinking” or the ability to perform abstract reasoning? How about the ability

to be creative and solve problems? Intelligence involves a perplexing mixture of

concepts, many of which are equally difficult to define.

Psychologists have been grappling with these issues ever since humans first

became fascinated with the nature of the mind. Debates have raged back and

forth concerning the correct definition of intelligence and how best to measure

the intelligence of individuals. These debates have in many instances been very

heated as what is at stake is not merely a scientific definition, but a fundamen-

tal issue of how we measure and value humans: Is one employee smarter than

another? Are men on average more intelligent than women? Are white peo-

ple smarter than black people? As a result intelligence tests, and their creators,

have on occasion been the subject of intense public scrutiny. Simply determin-

ing whether a test, perhaps quite unintentionally, is partly a reflection of the

race, gender, culture or social class of its creator is a subtle, complex and of-

ten politically charged issue [Gould, 1981; Herrnstein and Murray, 1996]. Not

1

2

surprisingly, many have concluded that it is wise to stay well clear of this topic.

In reality the situation is not as bad as it is sometimes made out to be. Al-

though the details of the definition are debated, in broad terms a fair degree

of consensus has been achieved about the scientific definition of human intelli-

gence and how to measure it [Gottfredson, 1997b; Sternberg and Berg, 1986].
Indeed it is widely recognised that when standard intelligence tests are correctly

applied and interpreted, they all measure approximately the same thing [Got-

tfredson, 1997b]. Furthermore, what they measure is both stable over time in

individuals and has significant predictive power, in particular for future aca-

demic performance and other mentally demanding pursuits. The issues that

continue to draw debate are questions such as whether the tests test only a part

or a particular type of intelligence, or whether they are somehow biased towards

a particular group or set of mental skills. Great effort has gone into dealing with

these issues, but they are difficult problems with no easy solutions.

Somewhat disconnected from this exists a parallel debate over the nature

of intelligence in the context of machines. While the debate is less politically

charged, in some ways the central issues are even more difficult. Machines can

have physical forms, sensors, actuators, means of communication, information

processing abilities and exist in environments that are totally unlike those that

we experience. This makes the concept of “machine intelligence” particularly

difficult to get a handle on. In some cases, a machine may have properties that

are similar to human intelligence, and so it might be reasonable to describe the

machine as also being intelligent. In other situations this view is far too limited

and anthropocentric. Ideally we would like to be able to measure the intelligence

of a wide range of systems: humans, dogs, flies, robots or even disembodied

systems such as chat-bots, expert systems, classification systems and prediction

algorithms [Johnson, 1992; Albus, 1991].
One response to this problem might be to develop specific kinds of tests for

specific kinds of entities, just as intelligence tests for children differ to intelli-

gence tests for adults. While this works well when testing humans of different

ages, it comes undone when we need to measure the intelligence of entities

which are profoundly different to each other in terms of their cognitive capaci-

ties, speed, senses, environments in which they operate, and so on. To measure

the intelligence of such diverse systems in a meaningful way we must step back

from the specifics of particular systems and establish fundamentally what it is

that we are really trying to measure.

The difficulty of forming a highly general notion of intelligence is readily ap-

parent. Consider, for example, that memory and numerical computation tasks

were once regarded as defining hallmarks of human intelligence. We now know

that these tasks are absolutely trivial for a machine and do not test its intel-

3 1.1 Theories of intelligen
e

ligence in any meaningful sense. Indeed, even the mentally demanding task

of playing chess can now be largely reduced to brute force search [Hsu et al.,

1995]. What else may in time be possible with relatively simple algorithms run-

ning on powerful machines is hard to say. What we can be sure of is that, as

technology advances, our concept of intelligence will continue to evolve with it.

How then are we to develop a concept of intelligence that is applicable to all

kinds of systems? Any proposed definition must encompass the essence of hu-

man intelligence, as well as other possibilities, in a consistent way. It should not

be limited to any particular set of senses, environments or goals, nor should it be

limited to any specific kind of hardware, such as silicon or biological neurons. It

should be based on principles which are fundamental and thus unlikely to alter

over time. Furthermore, the definition of intelligence should ideally be formally

expressed, objective, and practically realisable as an effective test. Before at-

tempting to construct such a formal definition in Chapter 4, in this chapter we

will first survey existing definitions, tests and theories of intelligence. We are

particularly interested in common themes and general perspectives on intelli-

gence that could be applicable to many kinds of systems, including machines.

1.1 Theories of intelligen
e

A central question in the study of intelligence concerns whether intelligence

should be viewed as one ability, or many. On one side of the debate are the the-

ories that view intelligence as consisting of many different components and that

identifying these components is important to understanding intelligence. Differ-

ent theories propose different ways to do this. One of the first was Thurstone’s

“multiple-factors” theory which considers seven “primary mental abilities”: ver-

bal comprehension, word fluency, number facility, spatial visualisation, asso-

ciative memory, perceptual speed and reasoning [Thurstone, 1938]. Another

approach is Sternberg’s “Triarchic Mind” which breaks intelligence down into

analytical intelligence, creative intelligence, and practical intelligence [Stern-

berg, 1985], however this model is now considered outdated, even by Sternberg

himself.

Taking the number of components to an extreme is Guilford’s “Structure of

Intellect” theory. Under this theory there are three fundamental dimensions:

contents, operations, and products. Together these give rise to 120 different cat-

egories [Guilford, 1967]. In later work this increased to 150 categories. This

theory has been criticised due to the fact that measuring such precise combina-

tions of cognitive capacities in individuals seems to be infeasible and thus it is

difficult to experimentally study such a fine-grained model of intelligence.

A recently popular approach is Gardner’s “multiple intelligences” where he

4 1.1 Theories of intelligen
e

argues that the components of human intelligence are sufficiently separate that

they are actually different “intelligences”[Gardner, 1993]. Based on the struc-

ture of the human brain he identifies these intelligences to be linguistic, musi-

cal, logical-mathematical, spatial, bodily kinaesthetic, intra-personal and inter-

personal intelligence. Although Gardner’s theory of multiple intelligences has

certainly captured the imagination of the public, it remains to be seen to what

degree it will have a lasting impact in professional circles.

At the other end of the spectrum is the work of Spearman and those that have

followed in his approach. Here intelligence is seen as a very general mental abil-

ity that underlies and contributes to all other mental abilities. As evidence they

point to the fact that an individual’s performance levels in reasoning, association,

linguistic, spatial thinking, pattern identification etc. are positively correlated.

Spearman called this positive statistical correlation between different mental

abilities the “g-factor”, where g stands for “general intelligence”[Spearman,

1927]. Because standard IQ tests measure a range of key cognitive abilities,

from a collection of scores on different cognitive tasks we can estimate an indi-

vidual’s g-factor. Some who consider the generality of intelligence to be primary

take the g-factor to be the very definition of intelligence [Gottfredson, 2002].

A well known refinement to the g-factor theory due to Cattell is to distinguish

between “fluid intelligence”, which is a very general and flexible innate abil-

ity to deal with problems and complexity, and “crystallized intelligence”, which

measures the knowledge and abilities that an individual has acquired over time

[Cattell, 1987]. For example, while an adolescent may have a similar level of

fluid intelligence to that of an adult, their level of crystallized intelligence is

typically lower due to less life experience [Horn, 1970]. Although it is diffi-

cult to determine to what extent these two influence each other, the distinction

is an important one because it captures two distinct notions of what the word

“intelligence” means.

As the g-factor is simply the statistical correlation between difference kinds

of mental abilities, it is not fundamentally inconsistent with the view that intel-

ligence can have multiple aspects or dimensions. Thus a synthesis of the two

perspectives is possible by viewing intelligence as a hierarchy with the g-factor

at its apex and increasing levels of specialisation for the different aspects of in-

telligence forming branches [Carroll, 1993]. For example, an individual might

have a high g-factor, which contributes to all of their cognitive abilities, but

also have an especially well developed musical sense. This hierarchical view of

intelligence is now quite popular [Neisser et al., 1996].

5 1.2 De�nitions of human intelligen
e

1.2 De�nitions of human intelligen
e

“Viewed narrowly, there seem to be almost as many definitions of

intelligence as there were experts asked to define it." R. J. Sternberg

quoted in [Gregory, 1998]

In this section and the next we will overview a range of definitions of in-

telligence that have been given by psychologists. For an even more extensive

collection of definitions of intelligence, indeed the largest collection that we are

aware of, see Appendix .4 or visit our online collection [Legg and Hutter, 2007a].
Although definitions differ, there are many reoccurring features; in some cases

these are explicitly stated, while in others they are more implicit. We start by

considering ten definitions that take a similar perspective:

“It seems to us that in intelligence there is a fundamental faculty, the

alteration or the lack of which, is of the utmost importance for practi-

cal life. This faculty is judgement, otherwise called good sense, prac-

tical sense, initiative, the faculty of adapting oneself to circumstances.”

Binet and Simon [1905]

“The capacity to learn or to profit by experience.” Dearborn quoted in [Stern-

berg, 2000]

“Ability to adapt oneself adequately to relatively new situations in life.”

Pinter quoted in [Sternberg, 2000]

“A person possesses intelligence insofar as he has learned, or can learn, to

adjust himself to his environment.” Colvin quoted in [Sternberg, 2000]

“We shall use the term ‘intelligence’ to mean the ability of an organism to

solve new problems . . . ” Bingham [1937]

“A global concept that involves an individual’s ability to act purposefully,

think rationally, and deal effectively with the environment.” Wechsler

[1958]

“Individuals differ from one another in their ability to understand complex

ideas, to adapt effectively to the environment, to learn from experience,

to engage in various forms of reasoning, to overcome obstacles by taking

thought.” American Psychological Association [Neisser et al., 1996]

“. . . I prefer to refer to it as ‘successful intelligence.’ And the reason is that

the emphasis is on the use of your intelligence to achieve success in your

6 1.2 De�nitions of human intelligen
e

life. So I define it as your skill in achieving whatever it is you want to attain

in your life within your sociocultural context — meaning that people have

different goals for themselves, and for some it’s to get very good grades in

school and to do well on tests, and for others it might be to become a very

good basketball player or actress or musician.” Sternberg [2003]

“Intelligence is part of the internal environment that shows through at

the interface between person and external environment as a function of

cognitive task demands.” R. E. Snow quoted in [Slatter, 2001]

“. . . certain set of cognitive capacities that enable an individual to adapt

and thrive in any given environment they find themselves in, and those

cognitive capacities include things like memory and retrieval, and problem

solving and so forth. There’s a cluster of cognitive abilities that lead to

successful adaptation to a wide range of environments.” Simonton [2003]

Perhaps the most elementary common feature of these definitions is that

intelligence is seen as a property of an individual who is interacting with an ex-

ternal environment, problem or situation. Indeed, at least this much is common

to practically all proposed definitions of intelligence.

Another common feature is that an individual’s intelligence is related to their

ability to succeed or profit. This implies the existence of some kind of objective

or goal. What the goal is, is not specified, indeed individuals’ goals may be

varied. The important thing is that the individual is able to carefully choose

their actions in a way that leads to them accomplishing their goals. The greater

this capacity to succeed with respect to various goals, the greater the individual’s

intelligence.

The strong emphasis on learning, adaption and experience in these defini-

tions implies that the environment is not fully known to the individual and may

contain new situations that could not have been anticipated in advance. Thus

intelligence is not the ability to deal with a fully known environment, but rather

the ability to deal with some range of possibilities which cannot be wholly antic-

ipated. What is important then is that the individual is able to quickly learn and

adapt so as to perform as well as possible over a wide range of environments,

situations, tasks and problems. Collectively we will refer to these as “environ-

ments”, similar to some of the definitions above.

Bringing these key features together gives us what we believe to be the

essence of intelligence in its most general form:

Intelligence measures an agent’s ability to achieve goals in a wide range

of environments.

7 1.2 De�nitions of human intelligen
e

We take this to be our informal working definition of intelligence for this thesis.

The remainder of this section considers a range of other definitions that are

not as strongly connected to our adopted definition. Usually it is not that they

are entirely incompatible with our definition, but rather they stress different

aspects of intelligence. The following definition is an especially interesting def-

inition as it was given as part of a group statement signed by 52 experts in the

field. As such it obviously represents a fairly mainstream perspective:

“Intelligence is a very general mental capability that, among other things,

involves the ability to reason, plan, solve problems, think abstractly, com-

prehend complex ideas, learn quickly and learn from experience.” Got-

tfredson [1997b]

Reasoning, planning, solving problems, abstract thinking, learning from ex-

perience and so on, these are all mental abilities that allow us to successfully

achieve goals. If we were missing any one of these capacities, we would clearly

be less able to successfully deal with such a wide range of environments. Thus,

these capacities are implicit in our definition also. The difference is that our defi-

nition does not attempt to specify what capabilities might be needed, something

which is clearly very difficult and would depend on the particular tasks that the

agent must deal with. Our approach is to consider intelligence to be the effect

of capacities such as those listed above. It is not the result of having any spe-

cific set of capacities. Indeed, intelligence could also be the effect of many other

capacities, some of which humans may not have. In summary, our definition is

not in conflict with the above definition, rather it is that our definition is more

abstract and general.

“. . . in its lowest terms intelligence is present where the individual ani-

mal, or human being, is aware, however dimly, of the relevance of his

behaviour to an objective. Many definitions of what is indefinable have

been attempted by psychologists, of which the least unsatisfactory are 1.

the capacity to meet novel situations, or to learn to do so, by new adap-

tive responses and 2. the ability to perform tests or tasks, involving the

grasping of relationships, the degree of intelligence being proportional to

the complexity, or the abstractness, or both, of the relationship.” Drever

[1952]

This definition has many similarities to ours. Firstly, it emphasises the agent’s

ability to choose its actions so as to achieve an objective, or in our terminology,

a goal. It then goes on to stress the agent’s ability to deal with situations which

have not been encountered before. In our terminology, this is the ability to deal

8 1.2 De�nitions of human intelligen
e

with a wide range of environments. Finally, this definition highlights the agent’s

ability to perform tests or tasks, something which is entirely consistent with our

performance orientated perspective of intelligence.

“Intelligence is not a single, unitary ability, but rather a composite of sev-

eral functions. The term denotes that combination of abilities required for

survival and advancement within a particular culture.” Anastasi [1992]

This definition does not specify exactly which capacities are important, only

that they should enable the individual to survive and advance with the culture.

As such this is a more abstract “success” orientated definition of intelligence,

like ours. Naturally, culture is a part of the agent’s environment, though only

complex environments with other agents would have true culture.

“The ability to carry on abstract thinking.” L. M. Terman quoted in [Stern-

berg, 2000]

This is not really much of a definition as it simply shifts the problem of defin-

ing intelligence to the problem of defining abstract thinking. The same is true

of many other definitions that refer to things such as imagination, creativity or

consciousness. The following definition has a similar problem:

“The capacity for knowledge, and knowledge possessed.” Henmon [1921]

What exactly constitutes “knowledge”, as opposed to perhaps data or infor-

mation? For example, does a library contain a lot of knowledge, and if so, is it

intelligent? Or perhaps the internet? Modern concepts of the word knowledge

stress the fact that the information has to be in some sense properly contextu-

alised so that it has meaning. Defining this more precisely appears to be difficult

however. Because this definition of intelligence dates from 1921, perhaps it re-

flects pre-information age thinking when computers with vast storage capacities

did not exist.

Nonetheless, our definition of intelligence is not entirely inconsistent with

the above definition in that an individual may be required to know many things,

or have a significant capacity for knowledge, in order to perform well in some

environments. However, our definition is narrower in that knowledge, or the

capacity for knowledge, is not by itself sufficient. We require that the knowledge

can be used effectively. Indeed, unless information can be effectively utilised for

various purposes, it seems reasonable to consider it to be merely “data”, rather

than “knowledge”.

“The capacity to acquire capacity.” H. Woodrow quoted in [Sternberg,

2000]

9 1.2 De�nitions of human intelligen
e

The definition of Woodrow is typical of those that emphasise not the current

ability of the individual, but rather the individual’s ability to expand and develop

new abilities. This is a fundamental point of divergence for many views on

intelligence. Consider the following question: Is a young child as intelligent as

an adult? From one perspective, children are very intelligent because they can

learn and adapt to new situations quickly. On the other hand, a child is unable

to do many things due to a lack of knowledge and experience and thus will make

mistakes an adult would know to avoid. These need not just be physical acts,

they could also be more subtle things like errors in reasoning as their mind, while

very malleable, has not yet matured. In which case, perhaps their intelligence is

currently low, but will increase with time and experience?

Fundamentally, this difference in perspective is a question of time scale: Must

an agent be able to tackle some task immediately, or perhaps after a short period

of time during which learning can take place, or perhaps it only matters that

they can eventually learn to deal with the problem? Being able to deal with a

difficult problem immediately is a matter of experience, rather than intelligence.

While being able to deal with it in the very long run might not require much

intelligence at all, for example, simply trying a vast number of possible solutions

might eventually produce the desired results. Intelligence then seems to be the

ability to adapt and learn as quickly as possible given the constraints imposed

by the problem at hand.

“Intelligence is a general factor that runs through all types of performance.”

A. Jensen

At first this might not look like a definition of intelligence, but it makes an

important point: Intelligence is not really the ability to do anything in particular,

rather it is a very general ability that affects many kinds of performance. Con-

versely, by measuring many different kinds of performance we can estimate an

individual’s intelligence. This is consistent with our definition’s emphasis on the

agent’s ability to perform well in many environments.

“Intelligence is what is measured by intelligence tests.” Boring [1923]

Boring’s famous definition of intelligence takes this idea a step further. If

intelligence is not the ability to do anything in particular, but rather an abstract

ability that indirectly affects performance in many tasks, then perhaps it is most

concretely described as the ability to do the kind of abstract problems that ap-

pear in intelligence tests? In which case, Boring’s definition is not as facetious

as it first appears. This definition also highlights the fact that the concept of in-

telligence, and how it is measured, are intimately related. In the context of this

paper we refer to these as definitions of intelligence, and tests of intelligence,

respectively, although in some cases the distinction is not sharp.

10 1.3 De�nitions of ma
hine intelligen
e

1.3 De�nitions of ma
hine intelligen
e

The following sample of informal definitions of machine intelligence capture a

range of perspectives. There also exist several formal definitions and tests of

machine intelligence, however we will deal with those in Chapter 4. We begin

with five definitions that have clear connections to our informal definition:

“. . . the mental ability to sustain successful life.” K. Warwick quoted in [Aso-

han, 2003]

“. . . doing well at a broad range of tasks is an empirical definition of ‘intelligence’ ”

Masum et al. [2002]

“Intelligence is the computational part of the ability to achieve goals in the

world. Varying kinds and degrees of intelligence occur in people, many

animals and some machines.” McCarthy [2004]

“Any system . . . that generates adaptive behaviour to meet goals in a range

of environments can be said to be intelligent.” Fogel [1995]

“. . . the ability of a system to act appropriately in an uncertain environ-

ment, where appropriate action is that which increases the probability of

success, and success is the achievement of behavioral subgoals that sup-

port the system’s ultimate goal.” Albus [1991]

The position taken by Albus is especially similar to ours. Although the quote

above does not explicitly mention the need to be able to perform well in a wide

range of environments, at a later point in the same paper he mentions the need

to be able to succeed in a “large variety of circumstances”.

“Intelligent systems are expected to work, and work well, in many different

environments. Their property of intelligence allows them to maximize the

probability of success even if full knowledge of the situation is not avail-

able. Functioning of intelligent systems cannot be considered separately

from the environment and the concrete situation including the goal.” Gud-

win [2000]

While this definition is consistent with the position we have taken, when

trying to actually test the intelligence of an agent Gudwin does not believe that

a “black box” behaviour based approach is sufficient, rather his approach is to

look at the “. . . architectural details of structures, organizations, processes and

algorithms used in the construction of the intelligent systems,” [Gudwin, 2000].
Our perspective is simply to not care whether an agent looks intelligent on the

inside. If it is able to perform well in a wide range of environments, that is all

that matters.

11 1.3 De�nitions of ma
hine intelligen
e

“We define two perspectives on artificial system intelligence: (1) native in-

telligence, expressed in the specified complexity inherent in the informa-

tion content of the system, and (2) performance intelligence, expressed in

the successful (i.e., goal-achieving) performance of the system in a com-

plicated environment.” Horst [2002]

Here we see two distinct notions of intelligence, a performance based one

and an information content one. This is similar to the distinction between fluid

intelligence and crystallized intelligence made by the psychologist Cattell (see

Section 1.1). The performance based notion of intelligence is similar to our

definition with the exception that performance is measured in a complex en-

vironment rather than across a wide range of environments. This perspective

appears in some other definitions also,

“. . . the ability to solve hard problems.” Minsky [1985]

“Achieving complex goals in complex environments” Goertzel [2006]

The emphasis on complex goals and environments is not really so different

to our “wide range of environments” in that any agent which could not achieve

simple goals in simple environments presumably would not be considered in-

telligent. One might argue that the ability to achieve truly complex goals in

complex environments requires the ability to achieve simple ones, in which case

the two perspectives are equivalent.

Some definitions emphasise not just the ability to perform well, but also the

need for efficiency:

“[An intelligent agent does what] is appropriate for its circumstances and

its goal, it is flexible to changing environments and changing goals, it

learns from experience, and it makes appropriate choices given perceptual

limitations and finite computation.” Poole et al. [1998]

“. . . in any real situation behavior appropriate to the ends of the system

and adaptive to the demands of the environment can occur, within some

limits of speed and complexity.” Newell and Simon [1976]

“Intelligence is the ability to use optimally limited resources – including

time – to achieve goals.” Kurzweil [2000]

“Intelligence is the ability for an information processing agent to adapt to

its environment with insufficient knowledge and resources.” Wang [1995]

12 1.4 Intelligen
e testing

We consider the addition of resource limitations to the definition of intel-

ligence to be either superfluous, or wrong. In the first case, if limited com-

putational resources are a fundamental and unavoidable part of reality, which

certainly seems to be the case, then their addition to the definition of intelligence

is unnecessary. Perhaps the first three definitions above fall into this category.

On the other hand, if limited resources are not a fundamental restriction, for

example a new model of computation was discovered that was vastly more pow-

erful than the current model, then it would be odd to claim that the unbelievably

powerful machines that would then result were not intelligent. Normally we do

not judge the intelligence of something relative to the resources it uses. For ex-

ample, if a rat had human level learning and problem solving abilities, we would

not think of the rat as being more intelligent than a human due to the fact that

its brain was much smaller.

While we do not consider efficiency to be a part of the definition of intelli-

gence, this is not to say that considering the efficiency of agents is unimportant.

Indeed, a key goal of artificial intelligence is to find algorithms which have the

greatest efficiency of intelligence, that is, which achieve the most intelligence

per unit of computational resources consumed.

1.4 Intelligen
e testing

Having explored what intelligence is, we now turn to how it is measured. Con-

trary to popular public opinion, most psychologists believe that standard psy-

chometric tests of intelligence, such as IQ tests, reliably measure something im-

portant in humans [Neisser et al., 1996; Gottfredson, 1997a]. In fact, standard

intelligence tests are among the most statistically stable and reliable psychologi-

cal tests. Furthermore, it is well known that these scores are a good predictor of

various things, such as academic performance. The question then is not whether

these tests are useful or measure something meaningful, but rather whether

what they measure is indeed “intelligence”. Some experts believe that they do,

while others think that they only succeed in measuring certain aspects of, or

types of, intelligence.

There are many properties that a good test of intelligence should have. One

important property is that the test should be repeatable, in the sense that it

consistently returns about the same score for a given individual. For example,

the test subject should not be able to significantly improve their performance if

tested again a short time later. Statistical variability can also be a problem in

short tests. Longer tests help in this regard, however they are naturally more

costly to administer.

Another important reliability factor is the bias that might be introduced by

13 1.4 Intelligen
e testing

the individual administering the test. Purely written tests avoid this problem

as there is minimal interaction between the tested individual and the tester.

However, this lack of interaction also has disadvantages as it may mean that

other sources of bias, such as cultural differences, language problems or even

something as simple as poor eyesight, might not be properly identified. Thus,

even with a written test the individual being tested should first be examined by

an expert in order to ensure that the test is appropriate.

Cultural bias in particular is a difficult problem, and tests should be designed

to minimise this problem where possible, or at least detect potential bias prob-

lems when they occur. One way to do this is to test each ability in multiple ways,

for example both verbally and visually. While language is an obvious potential

source of cultural bias, more subtle forms of bias are difficult to detect and rem-

edy. For example, different cultures emphasise different cognitive abilities and

thus it is difficult, perhaps impossible, to compare intelligence scores in a way

that is truly objective. Indeed, this choice of emphasis is a key issue for any

intelligence test, it depends on the perspective taken on what intelligence is.

An intelligence test should be valid in the sense that it appears to be test-

ing what it claims it is testing for. One way to check this is to show that the

test produces results consistent with other manifestations of intelligence. A test

should also have predictive power, for example the ability to predict future aca-

demic performance, or performance in other cognitively demanding tasks. This

ensures that what is being measured is somehow meaningful, beyond just the

ability to answer the questions in the test. Standard intelligence tests are thor-

oughly tested for years on the above criteria, and many others, before they are

ready for wide spread use.

Finally, when testing large numbers of individuals, for example when testing

army recruits, the cost of administering the test becomes important. In these

cases less accurate but more economical test procedures may be used, such as

purely written tests without any direct interaction between the individuals being

tested and a psychologist.

Standard intelligence tests, such as those described in the next section, are

all examples of “static tests”. By this we mean that they test an individual’s

knowledge and ability to solve one-off problems. They do not directly measure

the ability to learn and adapt over time. If an individual was good at learning

and adapting then we might expect this to be reflected in their total knowledge

and thus be picked up in a static test. However, it could be that an individual has

a great capacity to learn, but that this is not reflected in their knowledge due to

limited education. In which case, if we consider the capacity to learn and adapt

to be a defining characteristic of intelligence, rather than the sum of knowledge,

then to class an individual as unintelligent due to limited access to education

14 1.5 Human intelligen
e tests

would be a mistake.

What is needed is a more direct test of an individual’s ability to learn and

adapt: a so called “dynamic test”[Sternberg and Grigorenko, 2002] (for related

work see also Johnson-Laird and Wason, 1977). In a dynamic test the individual

interacts over a period of time with the tester, who now becomes a kind of

teacher. The tester’s task is to present the test subject with a series of problems.

After each attempt at solving a problem, the tester provides feedback to the

individual who then has to adapt their behaviour accordingly in order to solve

the next problem.

Although dynamic tests could in theory be very powerful, they are not yet

well established due to a number of difficulties. One of the drawbacks is that

they require a much greater degree of interaction between the test subject and

the tester. This makes dynamic testing more costly to perform and increases the

danger of tester bias.

1.5 Human intelligen
e tests

The first modern style intelligence test was developed by the French psychologist

Alfred Binet in 1905. Binet believed that intelligence was best studied by look-

ing at relatively complex mental tasks, unlike earlier tests developed by Francis

Galton which focused on reaction times, auditory discrimination ability, physical

coordination and so on. Binet’s test consisted of 30 short tasks related to every-

day problems such as: naming parts of the body, comparing lengths and weights,

counting coins, remembering digits and definitions of words. For each task cate-

gory there were a number of problems of increasing difficulty. The child’s results

were obtained by normalising their raw score against peers of the same age. Ini-

tially his test was designed to measure the mental performance of children with

learning problems [Binet and Simon, 1905]. Later versions were also developed

for normal children [Binet, 1911]. It was found that Binet’s test results were a

good predictor of children’s academic performance.

Lewis Terman of Stanford University developed a version of Binet’s test in

English. As the age norms for French children did not correspond well with

American children, he revised Binet’s test in various ways, in particular he in-

creased the upper age limit. This resulted in the now famous Stanford-Binet test

[Terman and Merrill, 1950]. This test formed the basis of a number of other in-

telligence tests, such as the Army Alpha and Army Beta tests which were used to

classify recruits. Since its development, the Stanford-Binet has been periodically

revised, with updated versions being widely used today.

David Wechsler believed that the original Binet tests were too focused on

verbal skills and thus disadvantaged certain otherwise intelligent individuals,

15 1.5 Human intelligen
e tests

for example the deaf or people who did not speak the test language as a first

language. To address this problem, he proposed that tests should contain a

combination of both verbal and nonverbal problems. He also believed that in

addition to an overall IQ score, a profile should be produced showing the perfor-

mance of the individual in the various areas tested. Borrowing significantly from

the Stanford-Binet, the US army Alpha test, and others, he developed a range

of tests targeting specific age groups from preschoolers up to adults [Wechsler,

1958]. Due in part to problems with revisions of the Stanford-Binet test in the

1960’s and 1970’s, Wechsler’s tests became the standard. They continue to be

well respected and widely used.

Modern versions of the Wechsler and the Stanford-Binet have a similar ba-

sic structure [Kaufman, 2000]. Both test the individual in a number of verbal

and non-verbal ways. In the case of a Stanford-Binet the test is broken up into

five key areas: fluid reasoning, knowledge, quantitative reasoning, visual-spatial

processing, and working memory. In the case of the Wechsler Adult Intelligence

Scale (WAIS-III), the verbal tests include areas such as knowledge, basic arith-

metic, comprehension, vocabulary, and short term memory. Non-verbal tests

include picture completion, spatial perception, problem solving, symbol search

and object assembly.

As part of an effort to make intelligence tests more culture neutral John

Raven developed the progressive matrices test [Raven, 2000]. In this test each

problem consists of a short sequence of basic shapes. For example, a circle in a

box, then a circle with a cross in the middle followed by a circle with a triangle

inside. The test subject then has to select from a second list the image that best

continues the pattern. Simple problems have simple patterns, while difficult

problems have more subtle and complex patterns. In each case, the simplest

pattern that can explain the observed sequence is the one that correctly predicts

its continuation. Thus, not only is the ability to recognise patterns tested, but

also the ability to evaluate the complexity of different explanations and then

correctly apply the philosophical principle of Occam’s razor (see Section 2.1).

This will play a key role for us in later chapters.

Today several different versions of the Raven test exist designed for different

age groups and ability levels. As the tests depend strongly on the ability to iden-

tify abstract patterns, rather than knowledge, they are considered to be some

of the most “g-loaded” intelligence tests available (see Section 1.1). The Raven

tests remain in common use today, particularly when it is thought that culture

or language bias could be an issue. The universality of abstract sequence predic-

tion tests makes them potentially useful in the context of machine intelligence,

indeed we will see that some tests of machine intelligence take this approach.

The intelligence quotient, or IQ, was originally introduced by Stern [1912].

16 1.6 Animal intelligen
e tests

It was computed by taking the age of a child as estimated by their performance

in an intelligence test, and then dividing this by their true biological age and

multiplying by 100. Thus a 10 year old child whose mental performance was

equal to that of a normal 12 year old, had an IQ of 120. As the concept of men-

tal age has now been discredited, and was never applicable to adults anyway,

modern IQ scores are simply normalised to a Gaussian distribution with a mean

of 100. The standard deviation used varies: in the United States 15 is commonly

used, while in Europe 25 is common. For children the normalising Gaussian is

based on peers of the same age.

Whatever normalising distribution is used, by definition an individual’s IQ

is always an indication of their cognitive performance relative to some larger

group. Clearly this would be problematic in the context of machines where the

performance of some machines could be many orders of magnitude greater than

others. Furthermore, the distribution of machine performance would be contin-

ually changing due to advancing technology. Thus, for machine intelligence, an

absolute measure is more meaningful than a traditional IQ type of measure.

For an overview of the history of intelligence testing and the structure of

modern tests, see [Kaufman, 2000].

1.6 Animal intelligen
e tests

Testing the intelligence of animals is of particular interest to us as it moves

beyond strictly human focused concepts of intelligence and testing methods.

Difficult problems in human intelligence testing, such as bias due to language

differences or physical handicap, become even more difficult if we try to compare

animals with different perceptual and cognitive capacities. Even within a single

species measurement is difficult as it is not always obvious how to conduct the

tests, or even what should be tested for. Furthermore, as humans devise the tests,

there is a persistent danger that the tests may be biased in terms of our sensory,

motor, and motivational systems [Macphail, 1985]. For example, it is known

that rats can learn some types of relationships much more easily through smell

rather than other senses [Slotnick and Katz, 1974]. Furthermore, while an IQ

test for children might in some sense be validated by its ability to predict future

academic or other success, it is not always clear how to validate an intelligence

test for animals: if survival or the total number of offspring was a measure of

success, then bacteria would be the most intelligent life on earth!

As is often the case when we try to generalise concepts, abstraction is nec-

essary. When attempting to measure the intelligence of lower animals it is nec-

essary to focus on simple things like short and long term memory, the forming

of associations, the ability to generalise simple patterns and make predictions,

17 1.7 Ma
hine intelligen
e tests

simple counting and basic communication. It is only with relatively intelligent

social animals, such as birds and apes, that more sophisticated properties such

as deception, imitation and the ability to recognise oneself are relevant. For sim-

pler animals, the focus is more on the animal’s essential information processing

capacity. For example, the work on measuring the capacity of ants to remember

patterns [Reznikova and Ryabko, 1986].
One interesting difficulty when testing animal intelligence is that we are un-

able to directly explain to the animal what its goal is. Instead, we have to guide

the animal towards a problem by carefully rewarding selected behaviours with

something like food. In general, when testing machine intelligence we face a

similar problem in that we cannot assume that a machine will have a sufficient

level of language comprehension to be able to understand commands. A simple

solution is to use basic “rewards” to guide behaviour, as we do with animals. Al-

though this approach is extremely general, one difficulty is that solving the task,

and simply learning what the task is, become confounded and thus the results

need to be interpreted carefully [Zentall, 1997].
For good overviews of animal intelligence research see [Zentall, 2000], [Her-

man and Pack, 1994] or [Reznikova, 2007].

1.7 Ma
hine intelligen
e tests

This section surveys proposed tests of machine intelligence. Given that the mea-

surement of machine intelligence is fundamental to the field of artificial intelli-

gence, it is remarkable that few researchers are aware of research in this area

beyond the Turing test and some of its variants. Indeed, to the best of our

knowledge the survey presented in this section (derived from Legg and Hutter,

2007b) is the only general survey of tests of machine intelligence that has been

published!

Turing test and derivatives. The classic approach to determining whether a

machine is intelligent is the so called Turing test [Turing, 1950] which has been

extensively debated over the last 50 years [Saygin et al., 2000]. Turing realised

how difficult it would be to directly define intelligence and thus attempted to

side step the issue by setting up his now famous imitation game: if human

judges cannot effectively discriminate between a computer and a human through

teletyped conversation then we must conclude that the computer is intelligent.

Though simple and clever, the test has attracted much criticism. Block and

Searle argue that passing the test is not sufficient to establish intelligence [Block,

1981; Searle, 1980; Eisner, 1991]. Essentially they both argue that a machine

could appear to be intelligent without having any “real intelligence”, perhaps by

18 1.7 Ma
hine intelligen
e tests

using a very large table of answers to questions. While such a machine would be

impossible in practice, due to the vast size of the table required, it is not logically

impossible. Thus, an unintelligent machine could, at least in theory, consistently

pass the Turing test. Some consider this to bring the validity of the test into

question.

In response to these challenges, even more demanding versions of the Tur-

ing test have been proposed such as the total Turing test in which the machine

must respond to all forms of input that a human could, rather than just tele-

typed text [Harnad, 1989]. For example, the machine should have sensorimotor

capabilities. Going further, the truly total Turing test demands the performance

of not just one

machine, but of the whole “race” of machines over an extended period of

time [Schweizer, 1998]. Another extension is the inverted Turing test in which

the machine takes the place of a judge and must be able to distinguish between

humans and machines [Watt, 1996]. Dowe argues that the Turing test should

be extended by ensuring that the agent has a compressed representation of the

domain area, thus ruling out look-up table counter arguments [Dowe and Hajek,

1998]. Of course these attacks on the Turing test can be applied to any test

of intelligence that considers only a system’s external behaviour, that is, most

intelligence tests.

A more common criticism is that passing the Turing test is not necessary

to establish intelligence. Usually this argument is based on the fact that the

test requires the machine to have a highly detailed model of human knowledge

and patterns of thought, making it a test of humanness rather than intelligence

[French, 1990; Ford and Hayes, 1998]. Indeed, even small things like pretend-

ing to be unable to perform complex arithmetic quickly and faking human typing

errors become important, something which clearly goes against the purpose of

the test.

The Turing test has other problems as well. Current AI systems are a long

way from being able to pass an unrestricted Turing test. From a practical point of

view this means that the full Turing test is unable to offer much guidance to our

work. Indeed, even though the Turing test is the most famous test of machine

intelligence, almost no current research in artificial intelligence is specifically di-

rected towards passing it. Simply restricting the domain of conversation in the

Turing test to make the test easier, as is done in the Loebner competition [Loeb-

ner, 1990], is not sufficient. With restricted conversation possibilities the most

successful Loebner entrants are even more focused on faking human fallibility,

rather than anything resembling intelligence [Hutchens, 1996]. Finally, the Tur-

ing test returns different results depending on who the human judges are. Its

unreliability has in some cases lead to clearly unintelligent machines being clas-

19 1.7 Ma
hine intelligen
e tests

sified as human, and at least one instance of a human actually failing a Turing

test. When queried about the latter, one of the judges explained that “no hu-

man being would have that amount of knowledge about Shakespeare”[Shieber,

1994].

Compression tests. Mahoney has proposed a particularly simple solution to the

binary pass or fail problem with the Turing test: replace the Turing test with a

text compression test [Mahoney, 1999]. In essence this is somewhat similar to

a “Cloze test” where an individual’s comprehension and knowledge in a domain

is estimated by having them guess missing words from a passage of text.

While simple text compression can be performed with symbol frequencies,

the resulting compression is relatively poor. By using more complex models that

capture higher level features such as aspects of grammar, the best compressors

are able to compress text to about 1.5 bits per character for English. How-

ever humans, which can also make use of general world knowledge, the logical

structure of the argument etc., are able to reduce this down to about 1 bit per

character. Thus the compression statistic provides an easily computed measure

of how complete a machine’s models of language, reasoning and domain knowl-

edge are, relative to a human.

To see the connection to the Turing test, consider a compression test based on

a very large corpus of dialogue. If a compressor could perform extremely well on

such a test, this is mathematically equivalent to being able to determine which

sentences are probable at a give point in a dialogue, and which are not (for the

equivalence of compression and prediction see Bell et al., 1990). Thus, as failing

a Turing test occurs when a machine (or person!) generates a sentence which

would be improbable for a human, extremely good performance on dialogue

compression implies the ability to pass a Turing test.

A recent development in this area is the Hutter Prize [Hutter, 2006]. In this

test the corpus is a 100 MB extract from Wikipedia. The idea is that this should

represent a reasonable sample of world knowledge and thus any compressor that

can perform very well on this test must have a good model of not just English,

but also world knowledge in general.

One criticism of compression tests is that it is not clear whether a powerful

compressor would easily translate into a general purpose artificial intelligence.

Also, while a young child has a significant amount of elementary knowledge

about how to interact with the world, this knowledge would be of little use when

trying to compress an encyclopedia full of abstract “adult knowledge” about the

world.

20 1.7 Ma
hine intelligen
e tests

Linguisti

omplexity. A more linguistic approach is taken by the HAL project

at the company Artificial Intelligence NV [Treister-Goren and Hutchens, 2001].
They propose to measure a system’s level of conversational ability by using tech-

niques developed to measure the linguistic ability of children. These methods

examine things such as vocabulary size, length of utterances, response types,

syntactic complexity and so on. This would allow systems to be “. . . assigned an

age or a maturity level beside their binary Turing test assessment of ‘intelligent’

or ‘not intelligent’ ”[Treister-Goren et al., 2000]. As they consider communi-

cation to be the basis of intelligence, and the Turing test to be a valid test of

machine intelligence, in their view the best way to develop intelligence is to re-

trace the way in which human linguistic development occurs. Although they do

not explicitly refer to their linguistic measure as a test of intelligence, because it

measures progress towards what they consider to be a valid intelligence test, it

acts as one.

Multiple
ognitive abilities. A broader developmental approach is being taken

by IBM’s Joshua Blue project [Alvarado et al., 2002]. In this project they mea-

sure the performance of their system by considering a broad range of linguistic,

social, association and learning tests. Their goal is to first pass what they call

a toddler Turing test, that is, to develop an AI system that can pass as a young

child in a similar set up to the Turing test.

Another company pursuing a similar developmental approach based on mea-

suring system performance through a broad range of cognitive tests is the a2i2

project at Adaptive AI [Voss, 2005]. Rather than toddler level intelligence, their

current goal is to work toward a level of cognitive performance similar to that

of a small mammal. The idea being that even a small mammal has many of the

key cognitive abilities required for human level intelligence working together in

an integrated way.

Competitive games. The Turing Ratio method of Masum et al. has more em-

phasis on tasks and games rather than cognitive tests. Similar to our own defi-

nition, they propose that “. . . doing well at a broad range of tasks is an empirical

definition of ‘intelligence’."[Masum et al., 2002] To quantify this they seek to

identify tasks that measure important abilities, admit a series of strategies that

are qualitatively different, and are reproducible and relevant over an extended

period of time. They suggest a system of measuring performance through pair-

wise comparisons between AI systems that is similar to that used to rate play-

ers in the international chess rating system. The key difficulty however, which

the authors acknowledge is an open challenge, is to work out what these tasks

should be, and to quantify just how broad, important and relevant each is. In

21 1.7 Ma
hine intelligen
e tests

our view these are some of the most central problems that must be solved when

attempting to construct an intelligence test. Thus we consider this approach to

be incomplete in its current state.

Colle
tion of psy
hometri
 tests. An approach called Psychometric AI tries to

address the problem of what to test for in a pragmatic way. In the view of

Bringsjord and Schimanski, “Some agent is intelligent if and only if it excels at all

established, validated tests of [human] intelligence.”[Bringsjord and Schiman-

ski, 2003] They later broaden this to also include “tests of artistic and literary

creativity, mechanical ability, and so on.” With this as their goal, their research is

focused on building robots that can perform well on standard psychometric tests

designed for humans, such as the Wechsler Adult Intelligence Scale and Raven

Progressive Matrices (see Section 1.5).

As effective as these tests are for humans, we believe that they are unlikely

to be adequate for measuring machine intelligence. For a start they are highly

anthropocentric. Another problem is that they embody basic assumptions about

the test subject that are likely to be violated by computers. For example, consider

the fundamental assumption that the test subject is not simply a collection of

specialised algorithms designed only for answering common IQ test questions.

While this is obviously true of a human, or even an ape, it may not be true of

a computer. The computer could be nothing more than a collection of specific

algorithms designed to identify patterns in shapes, predict number sequences,

write poems on a given subject or solve verbal analogy problems — all things

that AI researchers have worked on. Such a machine might be able to obtain

a respectable IQ score [Sanghi and Dowe, 2003], even though outside of these

specific test problems it would be next to useless. If we try to correct for these

limitations by expanding beyond standard tests, as Bringsjord and Schimanski

seem to suggest, this once again opens up the difficulty of exactly what, and

what not, to test for. Thus we consider Psychometric AI, at least as it is currently

formulated, to only partially address this central question.

C-Test. One perspective among psychologists is that intelligence is “the abil-

ity to deal with complexity”[Gottfredson, 1997a]. Thus, in a test of intelligence,

the most difficult questions are the ones that are the most complex because these

will, by definition, require the most intelligence to solve. It follows then that if

we could formally define and measure the complexity of test problems using

complexity theory we could construct a formal test of intelligence. The possibil-

ity of doing this was perhaps first suggested by Chaitin [1982]. While this path

requires numerous difficulties to be dealt with, we believe that it is the most nat-

ural and offers many advantages: it is formally motivated and precisely defined,

22 1.7 Ma
hine intelligen
e tests

and potentially could be used to measure the performance of both computers

and biological systems on the same scale without the problem of bias towards

any particular species or culture.

The C-Test consists of a number of sequence prediction and abduction prob-

lems similar to those that appear in many standard IQ tests [Hernández-Orallo,

2000b]. This test has been successfully applied to humans with interesting

results showing a positive correlation between individual’s IQ test scores and

C-Test scores [Hernández-Orallo and Minaya-Collado, 1998; Hernández-Orallo,

2000a]. Similar to standard IQ tests, the C-Test always ensures that each ques-

tion has an unambiguous answer in the sense that there is always one hypothesis

that is consistent with the observed pattern that has significantly lower complex-

ity than the alternatives. Other than making the test easier to score, it has the

added advantage of reducing the test’s sensitivity to changes in the reference

machine used to define the complexity measure.

The key difference to sequence problems that appear in standard intelligence

tests is that the questions are based on a formally expressed measure of complex-

ity. As Kolmogorov complexity is not computable (see Section 2.5), the C-Test

instead uses Levin’s related K t complexity [Levin, 1973]. In order to retain the

invariance property of Kolmogorov complexity, Levin complexity requires the

additional assumption that the universal Turing machines are able to simulate

each other in linear time, for example, pointer machines. As far as we know, this

is the only formal definition of intelligence that has so far produced a usable test

of intelligence.

To illustrate the C-Test, below are some example problems taken from [Hernández-

Orallo and Minaya-Collado, 1998]. Beside each question is its complexity, natu-

rally more complex patterns are also more difficult:

Sequence Prediction Test

Complexity Sequence Answer

9 a, d, g, j, _ , . . . m

12 a, a, z, c, y, e, x, _ , . . . g

14 c, a, b, d, b, c, c, e, c, d, _ , . . . d

Sequence Abduction Test

Complexity Sequence Answer

8 a, _ , a, z, a, y, a, . . . a

10 a, x, _ , v, w, t, u, . . . y

13 a, y, w, _ , w, u, w, u, s, . . . y

Our main criticism of the C-Test is that it does not require the agent to be

23 1.7 Ma
hine intelligen
e tests

able to deal with problems that require interacting with an environment. For

example, an agent could have a very high C-Test score due to being a very

good sequence predictor, and yet be unable to deal with more general kinds

of problems. This falls short of what is required by our informal definition of

intelligence, that is, the ability to achieve goals in a wide range of environments.

Smith's Test. Another complexity based formal definition of intelligence that

appeared recently in an unpublished report is due to Smith [2006]. His ap-

proach has a number of connections to our work, indeed Smith states that his

work is largely a “. . . rediscovery of recent work by Marcus Hutter”. Perhaps this

is over stating the similarities because while there are some connections, there

are also many important differences.

The basic structure of Smith’s definition is that an agent faces a series of

problems that are generated by an algorithm. In each iteration the agent must

try to produce the correct response to the problem that it has been given. The

problem generator then responds with a score of how good the agent’s answer

was. If the agent so desires it can submit another answer to the same problem.

At some point the agent requests the problem generator to move onto the next

problem and the score that the agent received for its last answer to the current

problem is then added to its cumulative score. Each interaction cycle counts as

one time step and the agent’s intelligence is then its total cumulative score con-

sidered as a function of time. In order to keep things feasible, the problems must

all be in the complexity class P, that is, decision problems which can be solved

by a deterministic Turing machine using a polynomial amount of computation

time.

We have three main criticisms of Smith’s definition. Firstly, while for practical

reasons it might make sense to restrict problems to be in P, we do not see why this

practical restriction should be a part of the very definition of intelligence. If some

breakthrough meant that agents could solve difficult problems in not just P but

sometimes also in the larger complexity class NP, then surely these new agents

would be more intelligent? We had similar objections to informal definitions of

machine intelligence that included efficiency requirements in Section 1.3.

Our second criticism is similar to that of the C-Test. Although there is some

interaction between the agent and the environment, this interaction is rather

limited. The problem-answer format of the test is too limited to fully test an

agent’s capabilities.

The final criticism is that while the definition is somewhat formally defined,

it still leaves open the important question of what exactly the individual tests

should be. Smith suggests that researchers should dream up tests and then

contribute them to some common pool of tests. As such, this intelligence test is

24 1.8 Con
lusion

not fully specified.

1.8 Con
lusion

Although this chapter provides only a short treatment of the complex topic of

intelligence, for a work on artificial intelligence to devote more than a few para-

graphs to the topic is rare. We believe that this is a mistake: if artificial in-

telligence research is ever to produce systems with real intelligence, questions

of what intelligence actually means and how to measure it in machines need

to be taken seriously. At present practically nobody is doing this. The reason,

it appears, is that the definition and measurement of intelligence are viewed

as being too difficult. We accept that the topic is difficult, however we do not

accept that the topic is so difficult as to be hopeless and best avoided. As we

have seen in our survey of definitions, there are many commonalities across the

various proposals. This leads to our informal definition of intelligence that we

argue captures the essence of these. Furthermore, although intelligence tests for

humans are widely treated with suspicion by the public, by various metrics these

tests have proven to be very effective and reliable when correctly applied. This

gives us hope that useful tests of machine intelligence may also be possible. At

present only a handful of researchers are working on these problems, mostly in

obscurity. No doubt these fundamental issues will someday return to the fore

when the field is more advanced.

Chapter 2

Universal Arti�
ial Intelligen
e

Having reviewed what intelligence is and how it is measured, we now turn our

attention to artificial systems that appear to be intelligent, at least in theory. The

problem is that although machines and algorithms are becoming progressively

more powerful, as yet no existing system can be said to have true intelligence

— they simply lack the power, and in particular the breadth, to really be called

intelligent. However, among theoretical models which are free of practical con-

cerns such as computational resource limitations, intelligent machines can be

defined and analysed. In this chapter we introduce a very powerful theoretical

model: Hutter’s universal artificial intelligence agent, known as AIXI.

A full treatment of this topic requires a significant amount of technical math-

ematics. The goal here is to explain the foundations of the topic and some of

the key results in the area in a relatively easy to understand fashion. For the full

details, including precise mathematical definitions, proofs and connections to

other fields, see [Hutter, 2005], or for a more condensed presentation [Hutter,

2007a]. At this point the reader may wish to browse Appendix 7.3 that describes

the mathematical notation and conventions used in this thesis.

2.1 Indu
tive inferen
e

Inductive inference is the process by which one observes the world and then in-

fers the causes behind what has been observed. This is a key process by which

we try to understand the universe and so naturally examples of it abound. In-

deed much of science can be viewed as a process of inductively inferring natural

causes. For example, at a microscopic level, one may fire sub-atomic particles

into a gas chamber, observe the patterns they trace out, and then try to infer

what the underlying principles are that govern these events. At a larger scale

one may observe that global temperatures are changing along with other atmo-

25

26 2.1 Indu
tive inferen
e

spheric conditions, and from this information attempt to infer what processes

may be driving climate change.

Science is not the only domain where inductive inference is important. A

businessman may observe stock prices over time and then attempt to infer a

model of this process in order to predict the market. A parent may return home

from work to discover a chair propped against the refrigerator with the cookie

jar on top a little emptier. Whether we are a detective trying to catch a thief, a

scientist trying to discover a new physical law, or a businessman attempting to

understand a recent change in demand, we are all in the process of collecting

information and trying to infer the underlying causes.

Formally we can abstract the inductive inference problem as follows: An

agent has observed some data D := x1, x2, . . . x t and has a set of hypotheses

H := h1, h2, . . ., some of which may be good models of the unknown process µ

that is generating D. The task is to decide which hypothesis, or hypotheses inH

are the most likely to accurately reflect µ. For example, x1, x2, . . . might be the

market value of a stock over time andH might consist of a set of mathematical

models of the stock price. Once we have identified which model or models

are likely to accurately describe the price behaviour, we may want to use this

information to predict future stock prices. Typically this is the case: Often our

goal is not just to understand our observations, but also to be able to predict

future observations. It is in prediction that good models become truly useful.

Inductive inference has a long history in philosophy. An early thinker on the

subject was the Greek philosopher Epicurus (342? B.C. – 270 B.C.) who noted

that there typically exist many hypotheses which are consistent with all of the

available data. Logically then, we cannot use the data to rule out any of these

hypotheses; they must all be kept as potential explanations. This is known as

Epicurus’ principle of multiple explanations and is often stated as,

Keep all hypotheses that are consistent with the data.

To illustrate this, consider the cookie jar example again and place yourself

in the position of the parent returning home from work. Having observed the

chair by the refrigerator and missing cookies, one seemingly likely hypothesis is

that your daughter has pushed the chair over to the refrigerator, climbed on top

of it, and then removed some cookies. Another hypothesis is that a hungry but

unusually short thief picked the lock on the back door, saw the cookie jar and

decided to move the chair over to the refrigerator in order to get some cookies.

Although this seems much less likely, you cannot completely rule out this pos-

sibility, or even more elaborate explanations, based solely on the scene in the

kitchen. Philosophically this leaves you in the uncomfortable situation of having

to consider all sorts of strange explanations as being theoretically possible given

the information available. The need to keep these hypotheses would become

27 2.1 Indu
tive inferen
e

clear if you were then to walk into the living room and notice that your new

television and other expensive items were also missing — suddenly the unlikely

seems more plausible.

Although we may accept that all hypotheses which are consistent with the

observed facts should be considered at least possible, it is intuitively clear that

some hypotheses are much more likely than others. For example, if you had pre-

viously observed similar techniques being employed by your daughter to access

the cookie jar, but had never been burgled, it would be natural to consider that

the small thief in question was of your own flesh and blood, rather than a career

criminal. However, you are basing this judgement on your experience prior to

returning home. What if you really had very little prior knowledge? How then

should you judge the relative likelihood of different hypotheses?

2.1.1 Example. Consider the following sequence:

1, 3, 5, 7

What process do you think is generating these numbers? What do you predict

will come next?

An obvious hypothesis is that these are the positive odd numbers. If this is

true then the next number is going to be 9. A more complex hypotheses is that

the sequence is being generated by the equation 2n−1+(n−1)(n−2)(n−3)(n−

4) for n ∈ N. In this case the next number would be 33. Even when people are

aware that this equation generates a sequence consistent with the digits above,

most would not consider it to be very likely at all. 3

The philosophical principle behind this intuition was first clearly stated by

the English logician and Franciscan friar, William of Ockham (1285 – 1349, also

spelt Occam). He argued that when inferring a cause one should not include

in the explanation anything that is not strictly required to explain the obser-

vations. Or as originally stated, “entia non sunt multiplicanda praeter necessi-

tatem”, which translates as “entities should not be multiplied beyond necessity”.

A more modern and perhaps clearer expression is,

Among all hypotheses consistent with the observations, the simplest is

the most likely.

This philosophical principle is known as Occam’s razor as it allows one to cut

away unnecessary baggage from explanations. If we consider the number pre-

diction problem again, it is clear that the principle of Occam’s razor agrees with

our intuition: the simple hypothesis seemed to be more likely, a priori, than

the complex hypothesis. As we saw in the previous chapter, the ability to apply

Occam’s razor is a standard feature of intelligence tests.

28 2.2 Bayes' rule

2.2 Bayes' rule

Although fundamental, the principles of Epicurus and Occam by themselves are

insufficient to provide us with a mechanism for performing inductive inference.

A major step forward in this direction came from the English mathematician and

Presbyterian minister, Thomas Bayes (1702 – 1761).

In inductive inference we seek to find the most likely hypothesis, or hypothe-

ses, given the data. Expressed in terms of probability, we seek to find h ∈ H

such that the probability of h given D, written P(h|D), is high. From the defini-

tion of conditional probability, P(h|D) := P(h∩ D)/P(D). Rearranging this we

get P(h|D)P(D) = P(h∩D) = P(D|h)P(h), from which it follows that,

P(h|D) =
P(D|h)P(h)

P(D)
=

P(D|h)P(h)
∑

h′∈H
P(D|h′)P(h′)

.

This equation is known as Bayes’ rule. It allows one to compute the probability of

different hypotheses h ∈ H given the observed data D, and a distribution P(h)

over H . The probability of the observed data, P(D), is known as the evidence.

P(h) is known as the prior distribution as it is the distribution over the space of

hypotheses before taking into account the observed data. The distribution P(h|D)

is known as the posterior distribution as it is the distribution after taking the data

into account. Thus in essence, Bayes’ rule takes some beliefs that we may have

about the world and updates these according to some observed data. In the

above formulation we have assumed that the set of hypotheses H is countable.

For uncountable sets the sum is replaced by an integral.

Despite its elegance and simplicity, Bayesian inference is controversial. To

this day professional statisticians can be roughly divided into Bayesians who

accept the rule, and classical statisticians who do not. The debate is a subtle

and complex one and there are many different positions within each of the two

camps. At the core of the debate is the very notion of what probability means,

and in particular what the prior probability P(h) means.

How can one talk about the probability of a hypothesis before seeing any

data? Even if this prior probability is meaningful, how can one know what its

value is? We need to take this question seriously because in Bayes’ rule the

choice of prior affects the relative values of P(h|D) for each h, and thus influ-

ences the inference results. Indeed, if Bayesians are free to choose the prior over

H , how can they claim to have objective results?

Bayesians respond to this in a number of ways. Firstly, they point out that

the problem is generally small, in the sense that with a reasonable prior and

quantity of data, the posterior distribution P(h|D) depends almost entirely on D

rather than the chosen prior P(h). In fact on any sizable data set, not only does

29 2.2 Bayes' rule

the choice of prior not especially matter, but Bayesian and classical statistical

methods typically produce similar results, as one would expect. It is only with

relatively small data sets or complex models that the choice of prior becomes an

issue.

If classical statistical methods could avoid the problem of prior bias when

dealing with small data sets then this would be a significant argument in their

favour. However Bayesians argue that all systems of inductive inference that

obey some basic consistency principles define, either explicitly or implicitly, a

prior distribution over hypotheses. Thus, methods from classical statistics make

assumptions that are in effect equivalent to defining a prior. The difference is

that in Bayesian statistics these assumptions take the form of an explicit prior

distribution. In other words, it is not that prior bias in Bayesian statistics is nec-

essarily any better or worse than in classical statistics, it is simply more trans-

parent.

In practical terms, if priors cannot be avoided, one strategy to reduce the po-

tential for prior selection abuse is to use well known priors whenever possible.

To this end many standard prior distributions have been developed. The key

desirable property is that a prior should not strongly influence the posterior dis-

tribution and thus unduly affect the inference results. This means that the prior

should express a high degree of impartiality by treating the various hypotheses

somewhat equally. For example, when the set H is finite, an obvious choice is

to assign equal prior probability to each hypothesis, formally, P(h) := 1

|H |
for

all h ∈ H . Things become more problematic in infinite hypothesis spaces as it

is then mathematically impossible to assign an equal finite probability to each

of the hypotheses in H , and still have P(H) = 1. Some Bayesians abandon

this condition and use so called improper priors which are not true probability

distributions. For the classical statistician, such a radical departure from the def-

inition of probability does not really solve the problem of the unknown prior,

rather it suggests that something is fundamentally amiss.

Instead of mathematical tricks or other workarounds, what Bayesians would

ideally like is to solve the unknown prior problem once and for all by having

a universal prior distribution. Only then would the Bayesian approach be truly

complete. The principles of Epicurus and Occam provide some hints on how this

might be done. From Epicurus, whenever a hypothesis is consistent with the

data, that is P(D|h) > 0, we should keep this hypothesis by having P(h|D) > 0.

From Bayes’ rule this requires that ∀h ∈ H : P(h) > 0. From Occam we see

that P(h) should decrease with the complexity of h, and thus we need a way to

measure the complexity of hypotheses. However before continuing with this, we

first consider the inference problem from another perspective.

30 2.3 Binary sequen
e predi
tion

2.3 Binary sequen
e predi
tion

An alternate characterisation of inductive inference can be made in terms of bi-

nary sequence prediction. One reason this is useful is that binary sequences and

strings provide a more natural setting in which to deal with issues of computabil-

ity. The problem can be formulated as follows: There is an unknown probability

distribution µ over the space of binary sequences B∞. From this distribution a

sequence ω is drawn one bit at a time. At time t ∈ N we have observed the

initial string ω1:t := ω1ω2 . . .ωt , and our task is to predict what the next bit in

the sequence will be, that is, ωt+1. To do this we select a model, or models, from

a set of potential models that explain the observed sequence so far and that, we

hope, will be good at predicting future bits in the sequence.

In terms of inductive inference the observed initial binary string ω1:t is the

observed data D, and our set of potential models of the data is the set of hy-

pothesesH . We would like to find a model ν ∈H , or models, that are as close

as possible to the unknown true model of the data µ, in the sense that ν will

allow us to predict future bits in the sequence as accurately as possible.

We begin by clarifying what we mean by a probability distribution. In math-

ematical statistics a probability distribution is known as a probability measure as

it belongs to the class of functions known as measures. Over the space of binary

strings these can be defined as follows:

2.3.1 Definition. A probability measure is a function ν : B∗→ [0, 1] such that,

ν(ε) = 1,

∀x ∈ B∗ ν(x) = ν(x0) + ν(x1).

In this thesis we will interpret ν(x) to mean the probability that a binary

sequence sampled according to the distribution ν begins with the string x ∈ B∗.
As all strings and sequences begin with the null string ε, by definition, the first

condition above simply says that the ν probability that a sequence belongs to the

set of all sequences is 1. The second condition says that the ν probability that

a sequence begins with string x0, plus the ν probability that it begins with x1,

is equal to the ν probability that it begins with x . This makes sense given that

all sequences that begin with x must have either a 0 or a 1 as their next bit and

so we would expect the probabilities of these sets of sequences to add up. This

style of notation for measures will be convenient for our purposes, however it

is somewhat unusual. To see how it relates to conventional measure theory see

Appendix 7.3.

Sequence prediction forms a large part of this thesis and thus we will often

be interested in what comes next in a sequence given an initial string. More

31 2.3 Binary sequen
e predi
tion

precisely, if a sequence ω has been sampled from the distribution µ, and ω be-

gins with the string y ∈ B∗, what is the probability that the next bits from ω

will be the string x ∈ B∗? For this will we adopt the following notation for

the conditional probability, µ(y x) := µ(y x)/µ(y). The benefit of this notation

will become apparent later when we need to deal with complex interaction se-

quences. Not only does it preserve the order in which the sequence occurs, it

also allows for more compact expressions when we need to condition on only

certain parts of a sequence.

As noted earlier in this section, sequence prediction can be viewed as an

inductive inference problem. Thus, we can use Bayes’ rule to estimate how

likely some model ν ∈H is given the observed sequence ω1:t:

P
�

ν
�

�ω1:t

�

=
P(ω

1:t
|ν)P(ν)

P(ω
1:t
)

=
ν(ω

1:t
)P(ν)

∑

̺∈H ̺(ω1:t
)P(̺)

.

2.3.2 Example. Consider the problem of inferring whether a coin is a normal

fair coin based on a sample of coin flips. To simplify things, assume that the coin

is either heads on both sides, tails on both sides, or a normal fair coin. Further

assume that t = 4 and we have the observed data D = head,head,head,head.

In terms of binary sequence prediction, the outcome of t coin tosses can be

expressed as a string ω1:t ∈ B
t , with each tail being represented as a 0 bit, and

each head as a 1 bit. Thus we have ω1:4 = 1111.

LetH be the set of models consisting of the distributions νp(ω1:t
) := pr(1−

p)t−r , where p ∈
¦

0, 1

2
, 1
©

and r :=
∑t

i=1
ωi is the number of observed heads. As

there are just three models inH , assume a uniform prior, that is, ∀p ∈
¦

0, 1

2
, 1
©

let P(νp) := 1

3
. Now from Bayes’ rule,

P(ν 1

2
|ω1:4 = 1111) =

1

3

�

1

2

�4 �

1− 1

2

�0

1

3

h

04(1− 0)0+
�

1

2

�4 �

1− 1

2

�0
+ 14(1− 1)0

i =
1

17
.

Similarly, P(ν0|ω1:4 = 1111) = 0 and P(ν1|ω1:4 = 1111) = 16

17
. Thus the results

clearly point towards the coin being double headed, as we would expect having

just observed four heads in a row. 3

More complex examples could involve data collected from medical measure-

ments, music or weather satellite images. Good models would then have to

describe biological processes, music styles, or the dynamics of weather systems

respectively. In each case the binary string representing D could be simply the

string of bits as they would appear in a computer file. However, finding a good

prior over such spaces is not trivial. Furthermore, actually computing Bayes’ rule

32 2.3 Binary sequen
e predi
tion

and finding the most likely models, as we did in the example above, can become

very computationally difficult and may need to be approximated. In any case,

Bayes’ rule at least tells us how to solve the induction problem in theory, so long

as we have a prior distribution.

Rather than just estimating which model or models are the most likely, we

may be interested in actually predicting the sequence. One possibility is to cal-

culate the probability that the next bit is a 1 based on the most likely model. The

full Bayesian approach, however, is to consider each possible model ν ∈ H and

weight the prediction made by each according to how confident we are about

each model, i.e. P(ν |ω1:t). This gives us the mixture model predictor,

P(ω1:t1) =
∑

ν∈H

P(ν |ω1:t)ν(ω1:t1)

=
∑

ν∈H

ν(ω
1:t
)P(ν)

P(ω
1:t
)

ν(ω
1:t

1)

ν(ω
1:t
)
=

P(ω
1:t

1)

P(ω
1:t
)

.

As we can see, the Bayes mixture predictor reduces to the definition of condi-

tional probability. This has removed the prior over H , and in its place we now

have the related prior over D, in this setting the space of binary sequences. The

fact that we can use one prior to define the other means that the two unknown

priors are in fact two perspectives on the same fundamental problem of specify-

ing our prior knowledge.

2.3.3 Example. Continuing Example 2.3.2, we can compute the prior distribu-

tion over sequences from the prior distribution overH ,

P(ω
1:t
) =

∑

ν∈H

ν(ω
1:t
)P(ν)

=
1

3

�

0t(1− 0)t−r +

�

1

2

�t �

1−
1

2

�t−r

+ 1t(1− 1)t−r

�

=
1

3

�
�

1

2

�2t−r

+δt r

�

.

where r :=
∑t

i=1
ωi is the number of observed heads, and the Kronecker delta

symbol δab is defined to be 1 if a = b, and 0 otherwise. Thus, given that ω1:4 =

1111, according to the mixture model the probability that the next bit is a 1 is,

P(11111) =

1

3

h
�

1

2

�2(5)−5
+δ5,5

i

1

3

h
�

1

2

�2(4)−4
+δ4,4

i =

�

1

2

�5
+ 1

�

1

2

�4
+ 1
=

33

34
.

3

33 2.4 Solomono�'s prior and Kolmogorov
omplexity

2.4 Solomono�'s prior and Kolmogorov
omplexity

In the 1960’s Ray J. Solomonoff (1926–) investigated the problem of inductive

inference from the perspective of binary sequence prediction [Solomonoff, 1964,

1978]. He was interested in a very general form of the problem, specifically,

learning to predict a binary sequence that has been sampled from an arbitrary

unknown computable distribution. Solomonoff defined his prior distribution

over sequences as follows: The prior probability that a sequence begins with a

string x ∈ B∗ is the probability that a universal Turing machine running a ran-

domly generated program computes a sequence that begins with x . By randomly

generated, we mean that the bits of the program have a uniform distribution, for

example, they could come from flipping a fair coin. Formally,

2.4.1 Definition. The Solomonoff prior probability that a sequence begins with

the string x ∈ B∗ is,

M(x) :=
∑

p:U (p)=x∗

2−ℓ(p),

where U (p) = x∗ means that the universal Turing machine U computes an

output sequence that begins with x ∈ B∗ when it runs the program p.

Note that the 2−ℓ(p) term in this definition comes from the fact that the prob-

ability of p under a uniform distribution halves for each additional bit.

We will assume that U is a prefix universal Turing machine. This means that

no valid program for U is a prefix of any other. More precisely, if p, q ∈ B∗ are

valid programs onU , then there does not exist a string x ∈ B∗ such that p = qx .

Prefix universal Turing machines have technical properties that we will need and

so throughout this thesis we will assume thatU is of this type. Technically,U is

actually a type of prefix universal Turing machine known as a monotone universal

Turing machine (see Section 5.1). For the moment we can safely gloss over these

details.

2.4.2 Example. Rather than a classic universal Turing machine running a

program specified by a binary string on an input tape, it is often more intuitive

to think in terms of a program written in a high level programing language that

is being executed on a real computer. Indeed, if a computer had infinite memory

and never broke down it would be technically equivalent to a universal Turing

machine. Consider a short program in C that prints a binary sequence of all 1’s:

main(){while(1)printf("1");}

As far as C programs go, this is nearly as simple as they get. This is not surprising

given that the output is also very simple. If we want a program that generates

34 2.4 Solomono�'s prior and Kolmogorov
omplexity

a more complex sequence, such as an infinite sequence of successive digits of

the mathematical constant π = 3.141592 . . ., such a program would be at least

ten times as long. It follows then that the probability of randomly generating

a program that outputs all 1’s is far higher than the probability of randomly

generating a program that computes π. Thus, Solomonoff’s prior assigns much

higher probability to the sequences of all 1’s than to the sequence for π. More

complex sequences would require still larger programs and thus have even lower

prior probability. 3

Although Solomonoff’s definition requires nothing more than random bits

being fed into a universal Turing machine, we can see that the resulting distri-

bution over sequences neatly formalises Occam’s razor. Specifically, sets of se-

quences that have short programs, and are thus in some sense simple, are given

higher prior probability than sets of sequences that have only long programs.

The idea that the complexity of a sequence is related to the length of the

shortest program that generates the sequence motivates the following definition:

2.4.3 Definition. The Kolmogorov complexity of a sequence ω ∈ B∞ is,

K(ω) := min
p∈B∗
{ℓ(p) : U (p) =ω},

where U is a prefix universal Turing machine. If no such p exists, we define

K(ω) =∞. For a string x ∈ B∗, we define K(x) to be the length of the shortest

program that outputs x and then halts.

Kolmogorov complexity has many powerful theoretical properties and is a

central ingredient in the theory of universal artificial intelligence. Its most im-

portant property is that the complexity it assigns to strings and sequences does

not depend too much on the choice of the universal Turing machine U . This

comes from the fact that universal Turing machines are universal in the sense

that they are able to simulate each other with a constant number of additional

input bits. Thus, if we change U above to some other universal Turing machine

U
′, the minimal value of ℓ(p) and thus K(x), can only change by a bounded

number of bits. This bound depends on U and U ′, but not on x .

The biggest problem with Kolmogorov complexity is that the value of K is

not in general computable. It can only be approximated from above. The rea-

son for this is that in general we cannot find the shortest program to compute

a string x on U due to the halting problem. Intuitively, there might exist a

very short program p∗ such that U (p∗) = x , however we do not know this be-

cause p∗ takes such a long time to run. Nevertheless, in theoretical applications

the simplicity and theoretical power of Kolmogorov complexity often outweighs

35 2.5 Solomono�-Levin prior

this computability problem. In practical applications Kolmogorov complexity is

approximated, for example by using a compression algorithm to estimate the

length of the shortest program [Cilibrasi and Vitányi, 2005].

2.5 Solomono�-Levin prior

Besides the prior described in the previous section, Solomonoff also suggested

to define a universal prior by taking a mixture of distributions [Solomonoff,

1964]. In the 1970’s this alternate approach was generalised and further devel-

oped [Zvonkin and Levin, 1970; Levin, 1974]. As Leonid Levin (1948–) played

an important role in this, here we will refer to this as the Solomonoff-Levin prior.

It is closely related to the universal prior in the previous section: they lie within

a multiplicative constant of each other and share key technical properties.

Although taking mixtures is perhaps less intuitive, it has the advantage of

making important theoretical properties of the prior more transparent. It also

gives an explicit prior over both the hypothesis space and the space of sequences.

The topic is quite technical, however it is worth spending some time on as it lies

at the heart of universal artificial intelligence.

The hypotheses we have been working with up to now have all been proba-

bility measures. These can be generalised as follows:

2.5.1 Definition. A semi-measure is a function ν : B∗→ [0, 1] such that,

ν(ε)≤ 1,

∀x ∈ B∗ ν(x)≥ ν(x0) + ν(x1).

Intuitively one may think of a semi-measure that is not a probability measure

as being a kind of defective probability measure whose probabilities do not quite

add up as they should. This defect can be fixed in the sense that a semi-measure

can be built up to be a probability measure by appropriately normalising things.

Intuitively, a function is enumerable if it can be progressively approximated

from below. More formally, f : X → R is enumerable if there exists a computable

function g : X ×N→ Q such that ∀x ∈ X ,∀i ∈ N : gi+1(x)≥ gi(x) and ∀x ∈ X :

limi→∞ gi(x) = f (x). Enumerability is weaker than computability because for

any x ∈ X we only ever have the lower bound gi(x) on the value of f (x). Thus

we can never know for sure how far our bound is from the true value of f (x),

that is, we do not know how large f (x)− gi(x) might be.

If a similar condition holds, but with the approximation function converging

to f from above rather than below, we say that f is coenumerable. One exam-

ple of such a function is the Kolmogorov complexity function K in the previous

36 2.5 Solomono�-Levin prior

section. If a function is both enumerable and coenumerable, then we have both

upper and lower bounds and thus can compute the value of f to any required

accuracy. In this case we simply say that f is a real valued computable func-

tion. Clearly then, the enumerable functions are a super set of the computable

functions.

Our task is to construct a prior distribution over the enumerable semi-measures.

To do this we need to formalise Occam’s razor, and for that we need to define a

way to measure the complexity of enumerable semi-measures. Solomonoff mea-

sured the complexity of sequences according to the length of their programs,

here we can do something similar.

By definition, all enumerable functions can be approximated from below by

a computable function. Thus, it is not too hard to prove that the set of enumer-

able functions can be indexed by a Turing machine, and that this can be further

restricted to just the set of enumerable semi-measures. More precisely, there

exists a Turing machine T that for any enumerable semi-measure µ there exists

an index i ∈ N such that ∀x ∈ B∗ : µ(x) = νi(x) := limk→∞ T (i, k, x) with T

increasing in k. In effect, the index i is a description of µ in that once we know i

we can approximate the value of µ from below for any x by using the Turing ma-

chine T . As k increases, these approximations increase towards the true value of

µ(x). For details on how all this is done see Section 4.5 of [Li and Vitányi, 1997]
or [Legg, 1997]. The main thing we will need is the computable enumeration of

enumerable semi-measures itself, which we will denote by Me := ν1,ν2,ν3,

As all probability measures are semi-measures by definition, and all computable

functions are enumerable, it follows that the set of enumerable semi-measures

is a super set of the set of computable probability measures. We write Mc to

denote an enumeration of just the computable measures.

Note the two uses of the word “enumerable” above. When we say that a set

can be enumerated, what we mean is that there exists a way to step though all

the elements in this set. When we say that an individual function is enumerable,

such as a semi-measure, what we mean is that it can be approximated from be-

low by a series of computable functions. Some authors avoid this dual usage by

referring to enumerable functions as lower semi-computable. In this terminology,

what Me provides is a computable enumeration of the lower semi-computable

semi-measures. In any case, it is still a mouthful!

We can now return to the question of how to measure the complexity of an

enumerable semi-measure. As noted above, for νi ∈ Me the index i is in effect

a description of νi. At this point, it might seem that the natural thing to do is

to take the value of an enumerable semi-measure’s index to be its complexity.

The problem, however, is that some extremely large index values, such as 21000,

contain a lot less information than far smaller index values which are not as

37 2.5 Solomono�-Levin prior

easily described: for example, an index whose binary representation is a string

of 100 random bits. The solution is that we must measure not the value, but

the information content of the index in order to measure the complexity of the

enumerable semi-measure it describes. We do this by taking the Kolmogorov

complexity of the index. That is, we define the complexity of an enumerable

semi-measure to be the length of the shortest program that computes its index.

Formally,

2.5.2 Definition. The Kolmogorov complexity of µ ∈Me is,

K(µ) := min
p∈B∗
{ℓ(p) : U (p) = i },

where µ is the i th element in the recursive enumeration of all enumerable semi-

measuresMe, and U is a prefix universal Turing machine.

In essence this is just an extension of the Kolmogorov complexity function for

strings and sequences (Definition 2.4.3), to enumerable semi-measures. Indeed,

all the key theoretical properties of the complexity function remain the same.

We can again see echos of Solomonoff’s prior for sequences in that enumerable

semi-measures that can be described by short programs are considered to be

simple, while ones that require long programs are complex.

Having defined a suitable complexity measure for enumerable semi-measures,

we can now construct a prior distribution over Me in a way that is similar to

what Solomonoff did. As each enumerable semi-measure µ has some shortest

program p ∈ B∗ that specifies its index, we can set the prior probability of µ to

be the probability of randomly generating p by flipping a coin to get each bit.

Formally:

2.5.3 Definition. The algorithmic prior probability of µ ∈Me is,

PMe
(µ) := 2−K(µ).

As K is coenumerable, from the definition above we can see that PMe
is enu-

merable. Thus, this distribution can only be approximated from below.

With K as the definition of hypothesis complexity, PMe
clearly respects Oc-

cam’s razor as each hypothesis µ ∈ Me is assigned a prior probability that is

a decreasing function of its complexity. Furthermore, every enumerable semi-

measure has some shortest program that specifies its index and so ∀µ ∈ Me :

K(µ) > 0 and thus ∀µ ∈Me : PMe
(µ) > 0. It follows then that for an induction

system based on Bayes’ rule and the prior PMe
, the value of P(ν |D) will be non-

zero whenever D is consistent with ν , that is, P(D|ν)> 0. Such systems will not

38 2.5 Solomono�-Levin prior

discard hypotheses that are consistent with the data and thus respect Epicurus’

principle of multiple explanations.

With a prior over our hypothesis space Me, we can now take a mixture to

define a prior over the space of sequences, just as we did in Example 2.3.3:

2.5.4 Definition. The Solomonoff-Levin prior probability of a binary sequence

beginning with the string x ∈ B∗ is,

ξ(x) :=
∑

ν∈Me

PMe
(ν) ν(x).

Clearly this distribution respects Occam’s razor as sets of sequences which

have high probability under some simple distribution ν , will also have high prob-

ability under ξ, and vice versa.

It is easy to see that the presence of just one semi-measure in the above

mixture is sufficient to cause ξ to also be a semi-measure, rather than a prob-

ability measure. Furthermore, it can be proven that ξ is enumerable but not

computable. Thus, we have that ξ ∈ Me. The fact that ξ is not a probability

measure is not too much of a problem because, as mentioned earlier, it is pos-

sible to normalise a semi-measure to convert it into a probability measure. In

situations where we need a universal probability measure the normalised ver-

sion of ξ is useful. Its main drawback is that it is no longer enumerable, and

thus no longer a member of Me. In most theoretical applications it is usual to

work with the plain ξ as defined above.

A fundamental result is that the two priors are strongly related:

2.5.5 Theorem. The Solomonoff prior M and Solomonoff-Levin prior ξ lie within

a multiplicative constant of each other. That is, M
×

= ξ.

Due to this relation, in many theoretical applications the differences between

the two priors are unimportant. Indeed, it is their shared property of dominance

that is the key to their theoretical power:

2.5.6 Definition. For some set of semi-measures M , we say that ν ∈ M is

dominant if ∀̺ ∈ M there exists a constant c̺ > 0 such that ∀x : c̺ ν(x) ≥

̺(x). Or more compactly, ∀̺ ∈M : ν ≥
×

̺.

It is easy to see that ξ is dominant over the set of enumerable semi-measures

from its construction: for x ∈ B∗ we have ξ(x) ≥ PMe
(µ)µ(x) = 2−K(µ)µ(x).

It follows then that ∀µ ∈ Me,∀x ∈ B∗ : 2K(µ)ξ(x) ≥ µ(x). As M
×

= ξ, we see

that M is also dominant. We call distributions that are dominant over large

spaces, such asMe, universal priors. This is due to their extreme generality and

performance as prior distributions, something that we will explore in the next

two sections: firstly in the context of Bayesian theory in general, and then in the

context of sequence prediction.

39 2.6 Universal inferen
e

2.6 Universal inferen
e

As we saw in Section 2.2, Bayes’ rule partially solves the induction problem

by providing an equation for updating beliefs. This is only a partial solution

because it leaves open two important issues: how do we choose the class of

hypotheses H , and what prior distribution PH should we use over this class?

Various principles and methods have been proposed to solve these problems,

however they tend to run into trouble, especially for large H . In this section

we will look at how taking the universal prior PMe
over the hypothesis spaceMe

theoretically solves these problems.

When approaching an inductive inference problem from a Bayesian perspec-

tive, the first step is to define H . The most obvious consideration is that H

should be large enough to contain the correct hypothesis, or at least a suffi-

ciently close one. Being forced to expand our initial H due to new evidence is

problematic as both the redistribution of the prior probabilities, and the way in

which H is extended, can bias the induction process. In order to avoid these

problems, we should make sure that H is large enough to contain a good hy-

pothesis to start with. One solution is to simply choose H to be very large,

as we did in the previous section where we set H = Me. As this contains all

computable stochastic hypotheses, a larger hypothesis space should never be

required.

Having selected H , the next problem is to define a good prior distribution

over this space. Essentially, a prior distribution PH over a space of hypotheses

H is an expression of how likely we think different hypotheses are before tak-

ing the data into account. If this prior knowledge is easily quantifiable we can

use it to construct a prior. In the case of PMe
this simply means taking the con-

ditional form of the Kolmogorov complexity function and conditioning on this

prior information.

More often, however, we either have insufficient prior information to con-

struct a prior, or we simply wish the data to ‘speak for itself’. The latter case is

important when we want to present our findings to others who may not share

our prior beliefs. The standard solution is to select a prior that is in some sense

neutral about the relative likelihood of different hypotheses. This is known as

the indifference principle. It is what we applied in the coin estimation problem

in Example 2.3.2 when we set P(νp) := |H |−1 = 1

3
. That is, we simply assumed

that a priori all hypotheses were equally likely.

The indifference principle works well for small discrete H , however if we

extend the concept to even small continuous parametrised classes by defining a

probability density function in terms of the volume ofH , problems start to arise.

Consider again the coin problem, however this time allow the bias of the coin to

be θ ∈ [0, 1]. By the indifference principle the prior is the uniform probability

40 2.6 Universal inferen
e

density P(νθ) = 1. Now consider what happens if we look at this coin estimation

problem in a different way, where the parameter of interest is actually θ ′ :=
p
θ .

Obviously, if we take a uniform prior over θ ′ this is not equivalent to taking a

uniform prior over θ . In other words, the way in which we view a problem, and

thus the way in which we parametrise it, affects the prior probabilities assigned

by a ‘uniform prior’. Obviously this is not as neutral and objective as we would

like.

Consider how the algorithmic prior probability PMe
behaves under a simple

reparametrisation. Let H := {νθ ∈ Mc : θ ∈ Θ} be a set of probability mea-

sures indexed by a parameter θ ∈ Θ, and define θ ′ := f (θ) where f is a com-

putable bijection. It is an elementary fact of Kolmogorov complexity theory that

K(f (θ)) <
+

K(θ) + K(f), and similarly K(f −1(θ ′)) <
+

K(θ ′) + K(f), from which

it follows that K(θ)
+

= K(θ ′). With a straight forward extension, the same ar-

gument can be applied to the Kolmogorov complexity of the indexed measures,

resulting in K(νθ)
+

= K(νθ ′). From Definition 2.5.3 we then see that,

PMe
(νθ) := 2−K(νθ)

×

= 2−K(νθ ′) =: PMe
(νθ ′).

That is, for any bijective reparametrisation f the algorithmic prior probability

assigned to parametrised hypotheses is invariant up to a multiplicative constant.

If f is simple this constant is small and thus quickly washes out in the posterior

distribution, leaving the inference results essentially unaffected by the change.

A more difficult version of the above problem occurs when the transforma-

tion is non-bijective. For example, define the new parameter θ ′ := (θ − 1

2
)2.

Now θ = 1

4
and θ = 3

4
both correspond to the same value of θ ′. Unlike

in the bijective case, non-bijective transformations also cause problems for fi-

nite discrete hypothesis spaces. For example, we might have three hypotheses,

H3 := {heads biased, tails biased, fair}. Alternatively, we could regroup

to have just two hypotheses, H2 := {biased, fair}. Both H3 and H2 cover the

full range of possibilities for the coin. However, a uniform prior overH3 assigns

a prior probability of 1

3
to the coin being fair, while a uniform prior over H2

assigns a prior probability of just 1

2
to the same thing.

The standard Bayesian approach is to try to find a symmetry group for the

problem and a prior that is invariant under group transformations. However,

in some cases there may be no obvious symmetry, and even if there is the re-

sulting prior may be improper, meaning that the area under the distribution is

no longer 1. Invariance under group transformations is a highly desirable but

difficult property to attain. Remarkably, under simple group transformations

PMe
can be proven to be invariant, again up to a small multiplicative constant.

For a proof of this, as well as further powerful properties of the universial prior

distribution, see the paper that this section is based on [Hutter, 2007b].

41 2.7 Solomono� indu
tion

2.7 Solomono� indu
tion

Given a prior distribution ξ over B∞, it is straightforward to predict the con-

tinuation of a binary sequence using the same approach as we used in Sec-

tion 2.3. Given prior distribution ξ and the observed string ω1:t ∈ B
∞ from a

sequence ω ∈ B∞ that has been sampled from an unknown computable distri-

bution µ ∈Mc, our estimate of the probability that the next bit will be 0 is,

ξ(ω1:t0) =
ξ(ω

1:t
0)

ξ(ω
1:t
)

.

Is this predictor based on ξ any good? By definition, the best possible predic-

tor would be based on the unknown true distribution µ thatω has been sampled

from. That is, the true probability that the next bit is a 0 given an observed initial

string ω1:t is,

µ(ω1:t0) =
µ(ω

1:t
0)

µ(ω
1:t
)

.

As this predictor is optimal by construction, it can be used to quantify the relative

performance of the predictor based on ξ. For example, consider the expected

squared error in the estimated probability that the t th bit will be a 0:

St =
∑

x∈Bt−1

µ(x)
�

ξ(x0)−µ(x0)
�2

.

If ξ is a good predictor, then its predictions should be close to those made by the

optimal predictor µ, and thus St will be small.

Solomonoff 1978 was able to prove the following remarkable convergence

theorem:

2.7.1 Theorem. For any computable probability measure µ ∈Mc,

∞
∑

t=1

St ≤
ln 2

2
K(µ).

That is, the total of all the prediction errors over the length of the infinite

sequence ω is bounded by a constant. This implies rapid convergence for any

unknown hypothesis that can be described by a computable distribution (for a

precise analysis see Hutter, 2007b). This set includes all computable hypotheses

over binary strings, which is essentially the set of all well defined hypotheses. If

it were not for the fact that the universal prior ξ is not computable, Solomonoff

induction would be the ultimate all purpose universal predictor.

42 2.8 Agent-environment model

Although we will not present Solomonoff’s proof, the following highlights

the key step required to obtaining the convergence result. For any probability

measure µ the following relation can be proven,

n
∑

t=1

St ≤
1

2

∑

x∈Bn

µ(x) ln
µ(x)

ξ(x)
.

This in fact holds for any semi-measure ξ, thus no special properties of the

universal distribution have been used up to this point in the proof. Now, by the

universal dominance property of ξ, we know that ∀x ∈ B∗ : ξ(x) ≥ 2−K(µ)µ(x).

Substituting this into the above equation,

n
∑

t=1

St ≤
1

2

∑

x∈Bn

µ(x) ln
µ(x)

2−K(µ)µ(x)
=

ln 2

2
K(µ)

∑

x∈Bn

µ(x) =
ln 2

2
K(µ).

As this holds for all n ∈ N, the result follows. It is this application of dominance

to obtain powerful convergence results that lies at the heart of Solomonoff in-

duction, and indeed universal artificial intelligence in general.

Although Solomonoff induction is not computable and is thus impractical, it

nevertheless has many connections to practical principles and methods that are

used for inductive inference. Clearly, if we define a computable prior rather than

ξ, we recover normal Bayesian inference. If we define our prior to be uniform,

for example by assuming that all models have the same complexity, then the re-

sult is maximum a posteriori (MAP) estimation, which in turn is related to maxi-

mum likelihood (ML) estimation. Relations can also be established to Minimum

Message Length (MML), Minimum Description Length (MDL), and Maximum

entropy (ME) based prediction (see Chapter 5 of Li and Vitányi, 1997). Thus,

although Solomonoff induction does not yield a prediction algorithm itself, it

does provide a theoretical framework that can be used to understand various

practical inductive inference methods. It is a kind of ideal, but unattainable,

model of optimal inductive inference.

2.8 Agent-environment model

Up to this point we have only considered the inductive inference problem, either

in terms of inferring hypotheses, or predicting the continuation of a sequence.

In both cases the agents were passive in the sense that they were unable to take

actions that affect the future. Obviously this greatly limits them. More powerful

is the class of active agents which not only observe their environment, they are

also able to take actions that may affect the environment. Such agents are able to

43 2.8 Agent-environment model

agent environment

reward

observation

action

Figure 2.1: The agent and the environment interact by sending action, observa-

tion and reward signals to each other.

explore and achieve goals in their environment. We will need to consider active

agents in order to satisfy our definition of intelligence, that is, the ability to

achieve goals in a wide range of environments. Solomonoff induction, although

extremely powerful for sequence prediction, operates in too limited a setting.

2.8.1 Example. Consider an agent that plays chess. It is not sufficient for

the agent to merely observe the other player. The agent actually has to decide

which moves to make, so as to win the game. Of course an important part of

this will be to carefully observe the other player, infer the strategy they are using,

and then predict which moves they are likely to make in the future. Clearly then,

inductive inference still plays an important role in the active case. Now, however,

the agent has to somehow take this inferred knowledge and use it to develop a

strategy of moves that will likely lead to winning the game. This second part

may not be easy. Indeed, even if the agent knew the other player’s strategy in

detail, it might take considerable effort to find a way to overcome the other

player’s strategy and win the game. 3

The framework in which we describe active agents is what we call the agent-

environment model. The model consists of two entities called the agent and the

environment. The agent receives input information from the environment, which

we will refer to as perceptions, and sends output information back to the environ-

ment, which we call actions. The environment on the other hand receives actions

from the agent as input and generates perceptions as output. Each perception

consists of an observation component and a reward component. Observations

are just regular information, however rewards have a special significance be-

cause the goal of the agent is to try to gain as much reward as possible from the

environment. The basic structure of this agent-environment interaction model

is illustrated in Figure 2.1.

44 2.8 Agent-environment model

The only way that the agent can influence the environment, and thus the

rewards it receives, is through its action signals. Thus a good agent is one that

carefully selects its actions so as to cause the environment to generate as much

reward as possible. Presumably such an agent will make good use of any useful

information contained in past rewards, actions and observations. For example,

the agent might find that certain actions tend to produce rewards while others

do not. In more complex environments the relationship between the agent’s

actions, what it observes and the rewards it receives might be very difficult to

discover.

The agent-environment model is the framework used in the area of artificial

intelligence known as reinforcement learning. It is equivalent to the controller-

plant framework used in control theory, where the controller takes the place of

the agent, and the plant is the environment that must be controlled. With a little

imagination, a huge variety of problems can be expressed in this framework:

everything from playing a game of chess, to landing an aeroplane, to writing

an award winning novel. Furthermore, the model says nothing about how the

agent or the environment work, it only describes their role within the framework

and thus many different environments and agents are possible.

2.8.2 Example. (Two coins game) To illustrate the agent-model consider the

following game. In each cycle two 50¢ coins are tossed. Before the coins settle

the player must guess at the number of heads that will result: either 0, 1, or 2.

If the guess is correct the player gets to keep both coins and then two new coins

are produced and the game repeats. If the guess is incorrect the player does not

receive any coins, and the game is repeated.

In terms of the agent-environment model, the player is the agent and the

system that produces all the coins, tosses them and distributes the reward when

appropriate, is the environment. The agent’s actions are its guesses at the num-

ber of heads in each iteration of the game: 0, 1 or 2. The observation is the state

of the coins when they settle, and the reward is either $0 or $1.

It is easy to see that for unbiased coins the most likely outcome is 1 head

and thus the optimal strategy for the agent is to always guess 1. However, if the

coins are significantly biased it might be optimal to guess either 0 or 2 heads

depending on the bias. 3

Having introduced the framework, we now formalise it. The agent sends

information to the environment by sending symbols from some finite alphabet

of symbols, for example, {left,right,up,down}. We call this set the action

space and denote it byA . Similarly, the environment sends signals to the agent

with symbols from an alphabet called the perception space, which we denote X .

The reward space, denoted by R , is always a subset of the rational unit interval

45 2.8 Agent-environment model

[0, 1] ∩Q. Restricting to ration numbers is a technical detail to ensure that the

information contained in each perception is finite. Every perception consists

of two separate parts: an observation and a reward. For example, we might

have X := {(
old, 0.0), (warm, 1.0), (hot, 0.3)} where the first part describes

what the agent observes (
old, warm or hot) and the second part describes the

reward (0.0, 1.0 or 0.3).

To denote symbols being sent we use the lower case variable names a, o and

r for actions, observations and rewards respectively. We index these in the order

in which they occur, thus a1 is the agent’s first action, a2 is the second action and

so on. The agent and the environment take turns at sending symbols, starting

with the agent. This produces a history of actions, observations and rewards

which can be written, a1o1r1a2o2r2a3o3r3 As we refer to interaction histories

a lot, we need to be able to represent these compactly. Firstly, we introduce the

symbol x ∈ X to stand for a perception that consists of an observation and a

reward. That is, ∀k : xk := okrk. Our second trick is to squeeze symbols together

and then index them as blocks of symbols. For the complete interaction history

up to and including cycle t, we can write ax1:t := a1 x1a2 x2a3 . . . at x t . For the

history before cycle t we use ax<t := ax1:t−1.

Before this section all our strings and sequences have been binary, now we

have strings and sequences from potentially larger alphabets, such as A and

X . Either we can encode symbols from these alphabets as uniquely identifiable

binary strings, or we can extend our previous definitions of strings, measures

etc. to larger alphabets in the obvious way. In some results technical problems

can arise, for example, it takes some work to extend Theorem 2.7.1 to arbitrary

alphabets [Hutter, 2001]. Here we can safely ignore these technical issues and

simply extend our previous definitions to general alphabets.

Formally, the agent is a function, denoted by π, which takes the current his-

tory as input and chooses the next action as output. We do not want to restrict

the agent in any way, in particular we do not require that it is deterministic. A

convenient way of representing the agent then is as a probability measure over

actions conditioned on the complete interaction history. Thus, π(ax1a
2
) is the

probability of action a2 in the second cycle, given that the current history is ax1.

A deterministic agent is simply one that always assigns a probability of 1 to a

single action for any given history. As the history that the agent can use to se-

lect its action expands indefinitely, the agent need not be Markovian. Indeed,

how the agent produces its distribution over actions for any given history is left

open. In practical artificial intelligence the agent will of course be a machine

and so π will be a computable function. In general however, the system gen-

erating the probabilities for different actions could be just about anything: An

algorithm that generates probabilities according to successive digits of
p

e, an

46 2.8 Agent-environment model

incomputable function, or even a human pushing buttons on a keyboard.

We define the environment, denoted by µ, in a similar way. Specifically, for

all k ∈ N the probability of xk, given the current interaction history ax<kak, is

given by the conditional probability measure µ(ax<kax
k
).

Technically, neither µ nor π completely define a measure over the space of

interaction sequences. They only define the conditional probability of certain

symbols given an interaction history: π defines the conditional probability over

the actions, and µ of the perceptions. However, taken together they do define a

measure over the interaction sequences that we will denote π
µ
. Specifically, we

can chain together the conditional probabilities defined by π and µ to work out

the probability of any interaction. For example,

π
µ
(ax

1:2
) := π(a

1
)µ(ax

1
)π(ax1a

2
)µ(ax1ax

2
).

When we need to take an expectation over interaction sequences this is the mea-

sure we will use. However in most other cases we will only need the conditional

probabilities defined by π or µ.

2.8.3 Example. To illustrate this formalism, consider again the Two Coins Game

introduced in Example 2.8.2. Let X := {0, 1, 2}× {0, 1} be the perception space

representing the number of heads after tossing the two coins and the value of the

received reward. Likewise letA := {0, 1, 2} be the action space representing the

agent’s guess at the number of heads that will occur. Assuming two fair coins,

and recalling that xk := okrk, we can represent this environment by defining

∀k ∈ N:

µ(ax<kax
k
) :=



















































1

4
if ak = 0∧ ok = 0∧ rk = 1,

3

4
if ak = 0∧ ok 6= 0∧ rk = 0,

1

2
if ak = 1∧ ok = 1∧ rk = 1,

1

2
if ak = 1∧ ok 6= 1∧ rk = 0,

1

4
if ak = 2∧ ok = 2∧ rk = 1,

3

4
if ak = 2∧ ok 6= 2∧ rk = 0,

0 otherwise.

An agent that performs well in this environment would be,

π(ax<ka
k
) :=

�

1 for ak = 1,

0 otherwise.

That is, always guess that one head will be the result of the two coins being

tossed. A more complex agent might keep count of how many heads occur in

47 2.9 Optimal informed agents

each cycle and then adapt its strategy if it seems that the coins are sufficiently

biased. For example, a Bayesian agent might use techniques similar to those

used to predict coin flips in Examples 2.3.2 and 2.3.3. 3

2.9 Optimal informed agents

In the agent-environment model, the agent’s goal is to receive as much reward

as possible. Unfortunately, this is not sufficiently precise as there may be many

possible reward sequences in a given environment and it is not clear which is

preferred.

2.9.1 Example. Consider the following two agents: Agent π1 immediately finds

a way to get a reward of 0.5 and does so in every cycle. Thus, after 100 cycles it

has received a total reward of 50. Agent π2, however, spends the first 90 cycles

trying to find the best possible way to receive reward in each cycle. During this

time it gets an average reward of 0.1 in each cycle. At cycle 90 it works out

the optimal behaviour and then receives a reward of 1 in every cycle thereafter.

Thus, after 100 cycles it has received a total reward of 90 × 0.1 + 10 = 19.

In terms of the total reward received after 100 cycles, π1 is superior to π2.

However, after 1,000 cycles this has reversed as π1 has a total reward of 500,

while π2 has a total reward of 919. 3

Which of these two agents is the better one? The answer depends on how

we value reward at different points in the future. In some situations we may

want our agent to perform well quickly, and thus place more value on short

term rewards. In others, we might only care that it eventually reaches a level

of performance that is as high as possible, and thus place relatively high value

on rewards far into the future. Before we can define an optimal agent, we first

need to formally express our temporal preferences.

A general approach is to weight, or discount, each reward in a way that

depends on which cycle it occurs in. Let γ1,γ2, . . . be the discounts we apply

to the reward in each successive cycle, where ∀i : γi ≥ 0, and
∑

∞

i=1
γi < ∞ in

order to avoid infinite weighted sums. Now define the expected future discounted

reward for agent π interacting with environment µ given interaction history ax<t

to be,

Vπµ
γ
(ax<t) := E

∞
∑

i=t

γi ri

�

�

� ax<t

!

= lim
m→∞

∑

ax t:m

(γt rt + · · ·+ γmrm)
π
µ
(ax<t ax

t:m
).

48 2.9 Optimal informed agents

As the sum is monotonically increasing in m, and finitely upper bounded, the

limit always exists. For t = 1 we drop the interaction history from the notation

and simply write Vπµ
γ

.

One of the most common ways to set the discount parameters is to decrease

them geometrically into the future. That is, set ∀i : γi := αi for some discount

rate α ∈ (0, 1). By increasing α towards 1 we weight long term rewards more

heavily, conversely by reducing it we weight them less so. Thus, the parameter

α controls how short term greedy, or long term farsighted, the agent should be.

2.9.2 Example. Consider again the two agents from Example 2.9.1. As the

rewards are deterministic for π1 we can drop the expectation,

Vπ
1µ

γ
=

∞
∑

i=1

αi0.5= 0.5A,

where A := α

1−α
is from the standard formulae for geometric series. On the other

hand for agent π2,

Vπ
2µ

γ
=

90
∑

i=1

αi0.1+

∞
∑

i=91

αi = 0.1A(1−α90) + Aα90.

Equating the two and then solving, we find that π2 has higher expected future

discounted reward than π1 when α > 90
p

4/9≈ 0.991. 3

A major advantage of geometric discounting is that it is mathematically con-

venient to work with. Indeed, it is what we will use in Chapter 6 for our re-

inforcement learning algorithm. In the present context, however, we want to

keep the development fairly general and thus we will leave the structure of

γ unspecified. An even more general approach is to consider the space of all

bounded enumerable discount sequences. We will take this approach when for-

mally defining intelligence in Chapter 4 as it will allow us to completely remove

γ from the model. Here we will follow the more conventional approach to AIXI

and simply take γ to be a free parameter.

Having formalised the agent’s temporal preference in terms of γ, we can now

define the optimal agent:

2.9.3 Definition. The optimal agent for an environment µ and discounting γ is

the agent πµ that has maximal expected future discounted reward. Formally,

πµ := argmax
π

Vπµ
γ

.

49 2.9 Optimal informed agents

The superscript µ emphasises the fact that the agent is optimal with respect

to the specific environment µ. This optimality is possible because the agent was

constructed using µ. In a sense the agent knows what its environment is before

it has even interacted with it. This is similar to Section 2.7 where the optimal

sequence predictor was defined using the distribution that was generating the

sequence to be predicted.

To understand how the optimal agent πµ behaves in each cycle, we first

express the value function in a recursive form for an arbitrary agent π. From the

definition of V ,

Vπµ
γ
(ax<t) = lim

m→∞

∑

ax t:m

(γt rt + · · ·+ γmrm)
π
µ
(ax<t ax

t:m
)

=
∑

ax t

�

lim
m→∞

∑

ax t+1:m

�

γt rt + · · ·+ γmrm

�

π
µ
(ax1:t ax

t+1:m
)

�

π
µ
(ax<t ax

t
)

=
∑

ax t

h

γt rt + Vπµ
γ
(ax1:t)

i

π
µ
(ax<t ax

t
). (2.1)

In the first step we broke cycle t off both the sum and π
µ
. As these do not

involve m, we pushed them outside the square brackets and moved the limit

inside. In the second step we broke off the first discounted reward and dropped

the sum for this term as it was redundant. The remaining discounted rewards

are just V with t advanced by one, thus producing the desired recursion in V .

This is essentially a discrete time form of the Bellman equation commonly

used in control theory, finance, reinforcement learning and other fields con-

cerned with optimising dynamic systems [Bellman, 1957; Sutton and Barto,

1998]. Usually it is assumed that the environment is Markovian and thus only

a limited history needs to be taken into account. Here, however, we include

the entire interaction history and thus are able to avoid these restrictions on the

environment. Again, this is to keep the model as general as possible.

Consider now how at is chosen by the optimal agent πµ. By definition, the

optimal action is the one that maximises V . Therefore πµ(ax<t at
) = 1 for the

expected future discounted reward maximising action, and zero otherwise (ties

can be broken arbitrarily). Thus, after expanding Equation (2.1) with π replaced

by πµ, we can replace
∑

at
and πµ(ax<t at

) with simply a maximum over the

50 2.10 Universal AIXI agent

possible actions,

Vπ
µµ

γ
(ax<t) =

∑

at

∑

x t

h

γt rt + Vπ
µµ

γ
(ax1:t)

i

πµ(ax<t at
)µ(ax<t ax

t
)

= max
at

∑

x t

h

γt rt + Vπ
µµ

γ
(ax1:t)

i

µ(ax<t ax
t
)

= max
at

∑

x t

· · ·max
am

∑

xm

h

γt rt+· · ·+γmrm+Vπ
µµ

γ
(ax1:m)

i

µ(ax<t ax
t:m
)

In the last step we have simply unfolded the recursion in V for the first m cycles.

As m→∞ the term Vπ
µµ

γ
(ax1:m)→ 0. Thus, if we take the limit m→∞ above

we can drop V without affecting the result. It follows then that the action taken

by the optimal policy πµ in the t th cycle is,

aπ
µ

t
:= argmax

at

lim
m→∞

∑

x t

max
at+1

∑

x t+1

· · · max
am

∑

xm

�

γt rt + · · ·+ γmrm

�

µ(ax<t ax
t:m
).

If there is more than one maximising action in cycle t, we simply select one of

these in an arbitrary way.

Intuitively, in the above equation we can see that the optimal agent takes

the distribution µ, and in effect does a brute force search through all possible

futures looking for the action in the current cycle that maximises the expected

future discounted reward. The agent knows that the environment will always re-

spond according to the distribution µ, thus in each cycle it takes the expectation

by summing over all the possible observations x and weighting these by their

probability according to µ. Furthermore, as the agent always follows an optimal

strategy, its own future actions are just a series of value maximising actions.

2.10 Universal AIXI agent

Although the agent πµ performs optimally in environment µ, this does not meet

the requirements for intelligence according to our definition adopted in Chap-

ter 1. What we require is a general agent that works well in many different en-

vironments. Such an agent must learn about its environment by interacting with

it, and then modify its behaviour accordingly in order to optimise performance.

Only then will the agent have the kind of adaptability to different environments

that we require of an intelligent agent.

This problem with the optimal agent πµ is similar to the one we encountered

in Section 2.7. There the optimal sequence predictor was based on the distri-

bution µ that was actually generating the sequence. Of course, for inductive

inference µ is unknown and must be inferred by observing the sequence. Thus,

51 2.10 Universal AIXI agent

basing a predictor on µ might be “optimal” in terms of prediction performance,

but it is in some sense cheating. Moreover, it is certainly not general as the

predictor is designed for just one environment.

Solomonoff’s solution was to replace the unknown µ in the optimal predictor

with a universal prior distribution, such as ξ. This produced an extremely pow-

erful universal predictor that rapidly converged to optimal predictions whenever

the distribution µ was computable (Theorem 2.7.1). In this way Solomonoff

solved, at least in theory, the problem of predicting sequences from unknown

distributions. Hutter’s innovation was to do essentially the same trick for active

agents: he took the optimal active agent πµ, described in the previous section,

and replaced the unknown µ with a generalised universal prior distribution ξ.

This produced πξ, also known as AIXI, which will be described in this section.

In order to construct πξ, the first thing to do is to generalise ξ in Defini-

tion 2.5.4 from sequences to active environments. As we saw earlier, an active

environment µ is an enumerable semi-measure conditioned, in chronological

order, on a sequence of actions from an agent. The presence of these actions

causes no problems, indeed the development of a universal distribution over ac-

tive environments is virtually identical to what we did for sequence prediction

in Section 2.5.

It can be shown that the space of all enumerable chronological semi-measures

can be effectively enumerated. Let E := {µ1,µ2, . . .} be such an enumeration.

Define the Kolmogorov complexity of one of these environments to be the length

of the shortest program that computes the environment’s index: just as we did

for distributions over sequences in Definition 2.5.2. This gives us the universal

prior probability of a chronological environment ν ∈ E,

PE(ν) := 2−K(ν).

From this prior over environments we can construct a prior over the agent’s

observations in a given interaction history by taking a mixture over the environ-

ments,

ξ(ax
1:n
) :=

∑

ν∈E

2−K(ν) ν(ax
1:n
).

It is easy to see that ξ is enumerable because 2−K(ν) is enumerable, as is each

ν in the sum. Furthermore, this sum of chronological semi-measures is itself

a chronological semi-measure. Thus, we see that ξ ∈ E. As was the case for

sequences, the dominance property for ξ can easily be seen by taking one ele-

ment from the sum corresponding to the semi-measure to be dominated. Note

that we are reusing the symbol ξ. Whether we are talking about ξ defined over

sequences, or over chronological environments, will always be clear from the

context.

52 2.10 Universal AIXI agent

To construct the AIXI agent πξ, simply take πµ and replace µ with ξ,

aπ
ξ

t
:= arg max

at

lim
m→∞

∑

x t

max
at+1

∑

x t+1

· · · max
am

∑

xm

�

γt rt + · · ·+ γmrm

�

ξ(ax<t ax
t:m
).

This gives us an agent that does not depend on the unknown µ. Replacing the

true distribution µ in the optimal agent πµ with the universal prior distribution ξ

is essentially the same as what we did in Section 2.7 when defining Solomonoff’s

universal predictor. Of course now we are working in the more general setting

of chronological environments rather than just sequences.

Given that Solomonoff prediction works so well for sequence prediction, we

might expect the agent πξ defined above to be similarly powerful in chrono-

logical environments. To some extent this is the case, however analysing the

performance of universal agents in chronological environments turns out to be

significantly more complex.

Perhaps the most elementary question concerns whether our generalised ξ

converges to the true environment µ. It turns out that convergence results can be

proven, including a result similar to Solomonoff’s convergence result generalised

to interaction histories. More precisely, it can be proven that the total µ-expected

squared difference between µ and ξ is finite for interaction histories sampled

from πµ interacting with a computable environment µ. Unfortunately, when the

interaction history comes from µ interacting with πξ, rather than πµ, we run into

trouble. This problem is well illustrated by the Heaven and Hell environment

from Section 5.3.2 of [Hutter, 2005]:

2.10.1 Example. (Heaven and Hell) Imagine an environment where in the

first cycle the agent is faced with two unmarked doors, one of which must be

opened. One of these doors leads to “heaven” where the agent receives plentiful

rewards, and the other leads to “hell” where the agent never gets any reward.

Once a door is chosen there is no way to go back, the agent is stuck in either

heaven or hell forever.

This is no problem for πµ as it knows µ and so it knows which door to take to

get to heaven. Thus it always achieves maximal future discounted reward. The

agent πξ, on the other hand, must learn through experience. Of course once it

has the necessary experience to make the right choice, it may already be too late.

All πξ can do is to guess which door to take and hope for the best. Obviously

the expected performance of πξ will be far below that of πµ. 3

This example does not expose a design flaw in πξ, in the sense that no gen-

eral agent is able to consistently behave optimally in such environments. For

example, consider an environment µ′ with the two doors switched. Agent πµ

would always go to hell in this environment. We could define an agent πµ
′

53 2.10 Universal AIXI agent

which would be optimal in µ′, however it would always go to hell in µ. Clearly,

no agent could behave optimally in both environments without being told what

the true environment was in advance. Matching the performance of optimal

agents in each of their respective environments is thus an impossible task for

any one agent. As such, we need to think carefully about what it is that we want

to prove if we are to show that πξ is indeed a very powerful and general agent.

We have already seen in Section 2.7 that the above problem does not occur

in the sequence prediction setting. This is because in sequence prediction an

agent’s predictions do not affect the future observed sequence and thus mistakes

have no consequences beyond the current cycle. This allows Solomonoff’s pre-

diction system to be able to learn to perform optimally across the entire space of

computable sequence prediction problems. Such optimising behaviour is possi-

ble in certain other classes of environments. What this suggests then is that we

should focus on classes of environments, such as sequence prediction, in which

it is at least possible for a general agent to learn to behave optimally.

We begin by generalising the AIXI model to different classes of environments.

Let E be a non-strict subset of the enumeration E of all enumerable chronological

semi-measures. Define the mixture distribution over E ,

ζ(ax
1:n
) :=

∑

ν∈E

2−K(ν) ν(ax
1:n
).

Now define the agent πζ based on ζ, just as we defined πξ based on ξ. Note that

while πξ is a single agent, the agent πζ depends on which class of environments

E we are considering. If E = E then ζ = ξ and so πζ = πξ. In this sense πζ

generalises πξ.

Perhaps the most elementary property that an optimal general agent must

have is that there should not exist any other agent that is strictly superior. More

precisely:

2.10.2 Definition. An agent π is Pareto optimal if there is no other agent ρ

such that ∀µ ∈ E ,

Vρµ
γ
(ax<t) ≥ Vπµ

γ
(ax<t) ∀ax<t ,

with strict inequality for at least one µ.

Note that Pareto optimality does not rule out the possibility that some other

agent exists which performs better in some environment in E . It simply means

that no other agent exists which is at least as good in all environments in E , and

strictly better in at least one. For the agent πζ the following optimality result

can be proven (Section 5.5 of Hutter, 2005):

2.10.3 Theorem. For any E ⊆ E, the agent πζ is Pareto optimal.

54 2.10 Universal AIXI agent

As this holds for any E , it also holds for E = E. Thus, the AIXI agent πξ is a

Pareto optimal agent over the space of environments E. Note that for any space

of environments E many Pareto optimal agents may exist.

A stronger result can be proven showing that πζ is also balanced Pareto opti-

mal [Hutter, 2005]. Essentially, this means that any increase in performance in

some environment due to switching to another agent, is compensated for by an

equal or greater decrease in performance in some other environment.

While these Pareto optimality results are very general, they only succeed

in showing that πζ is superior, or at least equal, to other general agents over

the same class of environments. The result does not rule out the possibility

that all general agents, including πζ, typically perform poorly. What we need

is to show that πζ does indeed learn to perform well in many environments.

The complication, as we saw in Example 2.10.1 above, is that in some types

of environments it is impossible for general agents to perform well. Thus we

somehow need to characterise those types of environments in which it is at least

possible for a general agent to perform well. Furthermore, even when optimal

performance is possible for a general agent, we cannot expect such an agent to

perform optimally immediately. We need a performance measure that gives the

agent time to learn about the structure of µ though interaction. One way to

formalise the concept of optimal performance after a period of learning is the

following:

2.10.4 Definition. An agent π is said to be self-optimising in an environment µ

if,
1

Γt

Vπµ
γ
(ax<t) →

1

Γt

Vπ
µµ

γ
(ȧẋ<t)

with µ probability 1 as t → ∞. Here ax<t is an interaction history sampled

from π interacting with µ, and ȧẋ<t is an interaction history sampled from πµ

interacting with µ. The normalisation factor, defined Γt :=
∑

∞

i=t
γi, is the total

discount remaining at time t.

Essentially this says that with high probability the performance of the agent

π converges to the performance of the optimal agent. The normalisation is

necessary because the un-normalised expected future discounted reward always

converges to zero. Thus without it convergence would trivially hold for any

agent.

We say that π is self-optimising for the set of environments E if it is self-

optimising for every environment in E . Furthermore, we say that a set of en-

vironments E admits self-optimising agents if there exists an agent π that is self-

optimising for E . We also extend the result to non-stationary agents by saying

55 2.10 Universal AIXI agent

that a series of agents π1,π2, . . . is self-optimising if the above result holds with

π replaced by πt . That is, in the t th cycle agent πt is applied.

The following powerful self-optimising result can be proven [Hutter, 2005]:

2.10.5 Theorem. If there exists a sequence of self-optimising agents πm for a class

of environments E , then the agent πζ is also self-optimising for E .

Intuitively, this result says that the performance of πζ will converge to opti-

mal performance in any class of environments where this is possible for a sin-

gle agent, even if the agent is non-stationary. This is the minimal requirement

possible, in the sense that if no self-optimising agent existed for some class of

environments, then trivially πζ cannot be self-optimising in the class either.

Although this is a strong optimality result, it does have two limitations.

Firstly, while the result shows that πξ converges to optimal performance when-

ever this is possible in a class of environments, it does not tell us how fast the

convergence is. In Solomonoff’s convergence theorem we saw that the conver-

gence of the universal predictor was extremely rapid. Ideally we would like a

similar result for active environments. Unfortunately, such a result is impossible

in general:

2.10.6 Example. (Needle in a haystack) Imagine an environment with N

buttons, one of which generates a reward of 1 in every cycle when pressed,

and all the rest produce no reward. The location of the correct button would

take roughly log2 N bits to encode, thus for most values of N we have K(µ) =

O(log2 N). As πξ is not informed prior to the start of the game as to which

button generates reward, the best it can do is to press the buttons one at a

time. Thus the expected number of incorrect choices that πζ will make is

O(N) = O
�

2K(µ)
�

. 3

Compare this to Theorem 2.7.1 for sequence prediction which bounds the

total squared difference in prediction error by O(K(µ)). Here in the active case

the best possible bound for any general agent is exponentially worse at O
�

2K(µ)
�

.

This is not a design flaw in πξ as the above limit applies to any general agent.

Clearly then, bounds showing rapid convergence are not possible in general.

We can only hope to prove convergence speed bounds for specific classes of

environments. Unfortunately, results in this direction currently exist only in very

simple settings.

This is a significant weakness in the theory of universal agents. Until further

results are proven it is hard to say just how fast, or slow, convergence to optimal

behaviour is in different classes of environments. As it appears that results in

this direction will be difficult, a more elementary result is to establish which

56 2.10 Universal AIXI agent

classes of environments at least admit self-optimising agents, and under what

conditions. Once we have established this, by Theorem 2.10.5 it would then

follow that πζ is also self-optimising in these environments. If we can show this

for many classes of environments, it then follows that πζ is able to perform well

in a wide range of environments, at least in the limit.

Although the required analysis is not particularly difficult for many of the

basic classes of environments, sorting out all the definitions, the relationships

between them and the conditions under which they admit self-optimising agents

is lengthy and requires some care. This is the subject of the next chapter.

Chapter 3

Taxonomy of Environments

In the previous chapter we introduced the AIXI agent πξ, and its generalisation

to arbitrary spaces of environments, πζ. Of particular importance was Theo-

rem 2.10.5 which roughly said: For any class of environments for which there

exists a self-optimising agent, the agent πζ defined over this class is also self-

optimising. Thus, in order to understand the performance of πζ across a wide

range of environments, we need to understand which classes of environments

admit self-optimising agents, and which do not. In this chapter we present a

partial answer to this question by showing that many well known classes of en-

vironments admit self-optimising agents under reasonable conditions.

We begin by formalising some common classes of environments. To do this

we examine the environments’ measures and in particular the way in which

they condition on the interaction history. In this way we characterise and relate

many well known classes of environments, such as Bernoulli schemes, Markov

chains, and Markov decision processes (MDPs). Some interesting new classes of

environments naturally arise from the analysis. We then take some important

classes of problems studied in artificial intelligence, such as sequence prediction

and classification, and express these too in terms of the structure of their mea-

sures. This formalisation in terms of chronological measures reveals that many

classes of environments are special cases of other classes, that is, a hierarchy of

classes of environments exists. Studying this more closely we see that many of

these classes are in fact reducible to the class of ergodic MDPs. Putting all these

relationships together produces a taxonomy of classes of environments.

It is known that certain machine learning algorithms, such as Q-learning,

are self-optimising in the class of ergodic MDPs. As many of the classes in our

taxonomy are reducible to ergodic MDPs, it follows that these classes also admit

self-optimising agents. Thus, from Theorem 2.10.5, we see that πζ converges to

optimal behaviour in these classes of environments. In this way, we clarify our

earlier claim that universal agents can learn to behave optimally in a wide range

57

58 3.1 Passive environments

of environments, as required by our definition of intelligence.

3.1 Passive environments

The first class of environments we will consider is the class of passive environ-

ments. Loosely speaking, such environments are not affected by the agent’s ac-

tions. We will be more interested in the active environments to be described in

later sections.

3.1.1 Definition. A Bernoulli scheme is an environment (A ,X ,µ) such that

∀ax1:k,

µ(ax<kax
k
) = µ(x

k
).

As the random variables x1, x2, . . . are independent and identically distributed

(i.i.d.), one may think of a Bernoulli scheme as being an i.i.d. process.

The above definition involves some slight abuse of notation. Essentially, what

we are showing is that an equivalent measure with the same name (on the right

hand side) can be defined over a reduced parameter space by dropping the pa-

rameters that have no effect on the value of the original measure (on the left

hand side). In other words, the equation above indicates that the distribution µ

over xk can be defined in a way that it is completely independent of the history

ax<kak.

Note also that we have written (A ,X ,µ) in order to specify the action and

perception spaces associated with the measure. This will be necessary in this

chapter as we will often need to consider relationships between environments

that differ in their action and perception spaces.

3.1.2 Example. Many simple stochastic processes can be described as Bernoulli

schemes. Imagine a game where a 6 sided die is thrown repetitively. The agent

receives a reward of 1 whenever a 6 is thrown, and 0 otherwise. There are no

actions that the agent can take. Formally, A := {ε}, O := {1, 2, 3, 4, 5, 6} and

R := B. The measure is defined ∀ax1:k,

µ(x
k
) :=

¨

1

6
for xk = okrk ∈ {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 1)},

0 otherwise.

3

Other than perhaps a constant environment, Bernoulli schemes are about the

simplest environments possible. Despite their simplicity, they are important in

59 3.1 Passive environments

statistics where sets of i.i.d. random variables play an important role. For exam-

ple, sampling from a population should ideally produce individuals that are both

independent of each other, and come from the same underlying distribution.

A natural generalisation of Bernoulli schemes is to allow the next perception

to depend on the previous observation. This gives us a richer class of environ-

ments where the distribution over perceptions can change with time:

3.1.3 Definition. A Markov chain is an environment (A ,X ,µ) that is a

Bernoulli scheme ∀ax1, and ∀ax1:k with k > 1,

µ(ax<kax
k
) = µ(ok−1 x

k
).

For a Markov chain the last observation completely defines the system’s state

and so these outputs are usually referred to as states. In more general classes

of environments this is not the case, so for consistency we will use our usual

terminology of observations and perceptions. Note that we treat the first cycle

as a special case as there is no previous perception to condition on. By requiring

the system to be a Bernoulli scheme in the first cycle we ensure that the first

action has no effect.

3.1.4 Example. Imagine a game where we have a ring shaped playing board

that has been divided into 20 different cells. There is a pebble that starts in cell

1 and moves around the board as follows: On each turn a standard six sided

die is thrown to decide how many positions the pebble will be moved clockwise

around the board. In cells 5 and 15 the agent receives a reward of 1. Otherwise

the reward is 0.

We can model this system as a Markov chain. LetA := {ε}, O := {0, 1, 2, . . . , 19},

R := B. For k = 1 the pebble is in cell 1 and thus ∀ax1,

µ(x
1
) :=

�

1 for o1 = 1 ∧ r1 = 0,

0 otherwise.

Now define ∀ax1:k with k > 1,

µ(ok−1 x
k
) :=







1

6
for ok ∈

�

(ok−1+ 1)mod 20, . . . , (ok−1+ 6)mod 20
	

∧ rk = δ5,ok
+δ15,ok

,

0 otherwise.

In this game there is a 1

6
chance of obtaining reward if the pebble is currently in

one of the six cells before either cell 5 or cell 15. 3

60 3.1 Passive environments

From the definitions of Bernoulli schemes and Markov chains it is clear that

in both of these classes an agent is “passive”, in the sense that its actions have no

effect on the environment’s behaviour. The difference between the two classes

is the size of the history that is relevant to determining the next perception.

Increasing the length of this history to the full history of observations gives us

the most general class of completely passive environments:

3.1.5 Definition. A Totally Passive Environment is an environment (A ,X ,µ)

such that ∀ax1:k,

µ(ax<kax
k
) = µ(o<k x

k
).

By construction, this class of environments is a super set of the classes of en-

vironments defined thus far. We could define a more limited version of this class

where the next perception only depends on the last n observations, rather than

the full history. However, such an environment is mathematically equivalent to

a standard Markov chain where for each history of length n we create a unique

observation in an enlarged observation space. In this new space the environment

can then be represented by a first order Markov chain. This reduction technique

will be used in a more general setting to prove Lemma 3.2.6.

While totally passive environments are useful in modelling some systems, in

terms of artificial intelligence they are relatively uninteresting because the agent

cannot do anything. We can relax this constraint just a little by only requiring

that the agent cannot affect future observations:

3.1.6 Definition. A Passive Environment is an environment (A ,X ,µ) such

that ∀ax<kao
k
,

µ(ax<kao
k
) = µ(o<ko

k
).

Note that there are no restrictions on the rewards; the environment is free to

reward or punish the agent in any way. Totally passive environments are clearly

a special case of passive environments. For more on AIXI in passive environments

see Section 5.3.2 of [Hutter, 2005].
Another important special case is the class of problems where the agent is

rewarded for correctly predicting a sequence that it cannot influence:

3.1.7 Definition. A Sequence Prediction Problem is a passive environment

(A ,X ,µ) such that ∀ax1:k,

µ(ax<kaor
k
) = µ(aor

k
).

61 3.2 A
tive environments

That is, the reward in each cycle depends entirely on the action and the

observation that immediately follows it. As sequence prediction environments

are passive the observations do not depend on the agent’s actions, however there

is no limit on how long the relevant observation history can be. The above

definition makes precise what we meant in previous chapters where sequence

prediction problems were referred to as being “passive”. For more on how AIXI

deals with sequence prediction problems see Section 6.2 of [Hutter, 2005].

3.1.8 Example. LetA = O := {0, 1, . . . , 9}. Define ∀ax1:k,

µ(o<ko
k
) :=

�

1 if ok the kth digit in 3.141592 . . . ,

0 otherwise,

and

µ(aor
k
) :=

¨

1 if rk = 1− 1

9
|ok − ak|,

0 otherwise.

Thus, in order to maximise reward, the agent must generate successive digits

of the mathematical constant π. A correct digit gets a reward of 1, while an

incorrect digit gets a lesser reward proportional to the difference between the

correct digit and the guess. 3

3.2 A
tive environments

The simplest active environment is one where the next perception xk depends

on only the last action ak:

3.2.1 Definition. A Bandit is an environment (A ,X ,µ) such that ∀ax1:k,

µ(ax<kax
k
) = µ(ax

k
).

This class of environments is named after the bandit machines found in casi-

nos around the world, although the relation to real bandit machines is tenuous.

Bandit environments are weaker than Markov chains as future perceptions do

not depend on past observations. However, they do have the ability to react

to the last action, and so in this respect they are more powerful. Even though

bandit problems are conceptually simple, solving them optimally is surprisingly

involved [Berry and Fristedt, 1985; Gittins, 1989].

3.2.2 Example. Imagine a machine that has n different levers, or arms, that

the agent can pull. Each arm has a different but fixed probability of generating

a reward. For this example, let the reward be either 0 or 1. The agent’s task is

62 3.2 A
tive environments

to figure out which arm to pull so that it maximises its expected reward. One

approach might be to spend time pulling different arms and collecting statistics

in order to estimate which produces the most reward.

We can formally define this bandit as follows: Let O := {ε}, R := B and

let A := {1, 2, 3, . . . , n} represent the n different arms that the agent can pull.

Let β1,β2, . . . ,βn be the respective probabilities of obtaining a reward of 1 after

pulling the corresponding arm. Now define ∀ax1:k,

µ(ax
k
) :=

�

βak
for rk = 1,

1− βak
for rk = 0.

3

A natural extension to the class of bandits is to allow the next perception to

depend on both the last observation and the last action. This produces a much

more powerful class of environments that has been intensively studied and has

many theoretical and practical applications:

3.2.3 Definition. A (stationary) Markov Decision Process (MDP) is an

environment (A ,X ,µ) that is a Bernoulli scheme ∀ax1, and ∀ax1:k with k > 1,

µ(ax<kax
k
) = µ(ok−1ax

k
).

Usually MDPs are defined in such a way that the agent does not act before the

first perception. However, in our definition the first cycle is a Bernoulli scheme

and so the first action has no effect anyway. Aside from this detail, our definition

is equivalent to the standard definition [Bellman, 1957]. It is immediately clear

that this class generalises Bernoulli schemes, bandits and Markov chains.

What we have defined above is a stationary MDP. This is because the proba-

bility of a perception given the current action and the last perception does not

change, that is, it is independent of k. In some definitions the measure µ is al-

lowed to vary over time. These non-stationary MDPs can be modelled as POMDPs,

which will be defined shortly.

3.2.4 Example. Consider again the simple Markov chain in Example 3.1.4.

This can be extended to an MDP by allowing the agent to decide whether to

move clockwise or anticlockwise around the board. Let O := {0, 1, . . . , 19} and

R := B as before, but now A := {�,�} as the agent can select which direction

to move in. For k = 1 the pebble is in cell 1 and thus ∀ax1,

µ(ax
1
) :=

�

1 for o1 = 1 ∧ r1 = 0,

0 otherwise.

63 3.2 A
tive environments

Now define ∀ax1:k with k > 1,

µ(ok−1ax
k
) :=















1

6
for ok ∈

�

(ok−1+ 1)mod 20, . . . , (ok−1+ 6)mod 20
	

∧ rk = δ5,ok
+δ15,ok

∧ ak =�,
1

6
for ok ∈

�

(ok−1− 1)mod 20, . . . , (ok−1− 6)mod 20
	

∧ rk = δ5,ok
+δ15,ok

∧ ak =�,

0 otherwise.

3

A natural way to generalise the class of MDPs is to allow the next perception

to depend on the last n observations and actions:

3.2.5 Definition. A (stationary) n
th order Markov Decision Process is an

environment (A ,X ,µ) that is a Bernoulli scheme ∀ax1, and ∀ax1:k with k > 1,

µ(ax<kax
k
) = µ(ok−maok−m+1:k−1ax

k
),

where m :=min{n, k}.

Immediately from the definition we can see that a standard MDP is an nth

order MDP where n = 1. The added complication of the variable m is to allow

for the situation where the current history length k is less than n.

It might appear that nth order MDPs are more general than standard MDPs,

however it turns out that any nth order MDP can be converted into an equivalent

MDP. This is done by extending the observation space and appropriately modi-

fying the measure. The proof follows the same pattern as the reduction of nth

order Markov chains to standard Markov chains, except that now we have to

deal with the complication of having actions in the history.

3.2.6 Lemma. nth order MDPs can be reduced to MDPs.

Proof. Let (A ,X = O ×R ,µ) be an nth order MDP. To prove the result we will

define an equivalent first order MDP (A ,Z =Q ×R , µ̃). We begin by defining

the new observation space,

Q :=

n
⋃

i=1

O × (A ×O)i−1.

Every interaction history that the nth order MDP conditions on is thus uniquely

represented in Q. Although it complicates things, we need to include histories

of length less than n to accommodate the first n− 1 cycles of the system.

64 3.2 A
tive environments

Next we define a measure µ̃ over the perception space Z , that is equivalent

to the measure µ over the perception space X . We begin by dealing with the

first interaction cycle: ∀az1 ∈A ×Z define,

µ̃(az
1
) :=

�

µ(az
1
) for z1 ∈ X ,

0 otherwise.

This makes the processes equivalent in the first cycle.

Next, for interaction cycles k > 1, define ∀qk−1azk ∈ Q ×A ×Z ,

µ̃(qk−1az
k
) :=







µ(ok−maok−m+1:k−1ax
k
) if qk−1 = ok−maok−m+1:k−1

∧ zk = qkrk

∧ qk = ok−m+1aok−m+2:k−1aok,

0 otherwise.

That is, if the transition qk−1azk is possible when represented in the original

environment, then this transition is given the same probability by µ̃ in the new

environment. Any transition qk−1azk which is impossible in the original envi-

ronment, for example because the two histories represented by qk−1 and qk are

inconsistent, is given a transition probability of zero by µ̃. Thus, the two envi-

ronments have equivalent structure and dynamics. 2

As the proof illustrates, writing down the equation for a higher order MDP

and working with it is cumbersome. Thus, the above result is useful as it means

that we only have to deal with first order MDPs in our analysis. Nevertheless,

conceptually it is often more natural to think of certain problems as being nth

order MDPs.

Rather than increasing the history that the measure conditions on, another

extension is to assume that the agent cannot properly observe the MDP’s outputs:

3.2.7 Definition. A Partially Observable Markov Decision Process (POMDP)

is an environment (A ,X = O ×R ,µ) defined as follows: Let (A , X̃ = Õ ×R , µ̃)

be an MDP called the core MDP. Let φ : X̃ ×X → [0, 1] be a conditional proba-

bility measure of the form φ(x̃ x) which expresses the probability of perceiving

x when the core MDP outputs x̃ . Define ∀ax1:k ∈ (A ×X)
k,

µ(ax
1:k
) :=

∑

x̃1:k∈X̃
k

µ̃(ax̃
1
)φ(x̃1 x

1
) µ̃(õ1ax̃

2
)φ(x̃2 x

2
) · · · µ̃(õk−1ax̃

k
)φ(x̃k x

k
).

The nature of POMDPs is perhaps best illustrated by example.

65 3.3 Some
ommon problem
lasses

3.2.8 Example. Let the core MDP (A , X̃ , µ̃) be the MDP defined in Exam-

ple 3.2.4. Now imagine that the agent cannot reliably observe which cell the peb-

ble is in. To do this, let X := X̃ and define the observation function ∀ x̃ , x ∈ X ,

φ(x̃ x) :=

(

61

100
if x̃ = x ,

1

100
otherwise.

Thus, with probability 0.61 the agent observes the true output of the core MDP.

The rest of the time it observes some other randomly chosen output. The prob-

abilities add up as |X | = |O | × |R| = 20× 2 = 40. Thus, x can take 39 values

other than x̃ . 3

The fact that POMDPs generalise MDPs can be seen by letting X = X̃ and

φ(x̃ x) := δ x̃ ,x , in which case it follows that µ = µ̃. That is, the POMDP reduces

to being its core MDP. Furthermore, as nth order MDPs can be reduced to first

order MDPs, it follows that POMDPs also generalise higher order MDPs.

To see that POMDPs can define non-stationary MDPs, consider a POMDP where

X is a strict subset of X̃ . Now use this extra internal information in the core

MDP to keep a parameter that varies over time and that affects the core MDP’s

behaviour. To the external agent who cannot observe this extra information, it

appears that the environment is non-stationary.

Both theoretically and practically this class of environments is difficult to

work with. However, it does encompass a huge variety of possibilities, including

all of the environments considered in this chapter, and many real world prob-

lems.

3.3 Some
ommon problem
lasses

Many of the problems considered in artificial intelligence can be expressed as

classes of environments using our measure notation. In this section we will

formalise some of them.

3.3.1 Definition. A Function Maximisation Problem is an environment

(A ,X ,µ) such that O = R and for some objective function f : A → R we

have ∀ax1:k,

µ(ax<kax
k
) :=

�

1 if ok = f (ak) ∧ rk =max{o1, . . . , ok},

0 otherwise.

Essentially, the agent’s actions are interpreted as input to some function,

and in each cycle the result of the function is returned as an observation. We

66 3.3 Some
ommon problem
lasses

do not simply return the current value of the function as the reward as this

discourages the agent from exploring once a good value has been found. Rather

we return the reward associated with the best value found so far. Obviously,

maximisation problems with different ranges, or minimisation problems, can be

expressed by applying a simple transformation to the original objective function.

For more on how AIXI deals with various types of function optimisation problems

see Section 6.4 of [Hutter, 2005].

3.3.2 Example. Let f (a) := 1− (a− 1

4
)2. To maximise reward the agent must

generate the action that maximises f , that is, a = 1

4
. 3

Artificial intelligence often considers environments that consist of some kind

of a game that is repetitively played by the agent. Games such as chess, various

card games, tic-tac-toe and others belong to this class, so long as at the end of

each match a new match is started. This can be formalised as follows:

3.3.3 Definition. A Repeated Strategic Game is an environment (A ,X ,µ)

where ∃l ∈ N such that ∀ax1:k,

µ(ax<kax
k
) = µ(aolm:k−1ax

k
)

where m := ⌊k/l⌋ is the number of the episode when in cycle k, and l is the

episode length.

Clearly, Bernoulli schemes and bandits are repeated strategic games. If we

want to allow games to finish before the episode finishes we can pad the re-

maining cycles, and perhaps also reward the system for padded cycles following

a victory in order to encourage rapid wins. For more on how AIXI deals with

strategic games see Section 6.3 of [Hutter, 2005].
Another common type of problem considered in artificial intelligence is clas-

sification. A classification problem consists of a domain space W and a set of

classes Z and some function f :W →Z . The agent must try to learn this map-

ping based on examples. When given cases where the class is missing it has to

correctly guess the class in order to obtain reward. More formally:

3.3.4 Definition. A Classification Problem is an environment (A ,X ,µ) set

up as follows. LetW and Z be two sets called the attribute space and the class

space respectively. Z includes a special symbol “?” used to indicate whether the

agent needs to guess the class. Let O ⊂W ×Z and let f :W →Z \{“?”} where

∀ax1:k such that xk−1 = wzrk−1 and xk = wzrk,

µ(ax<kaw
k
) = µ(w

k
),

67 3.4 Ergodi
 MDPs

and for α ∈ (0, 1),

µ(wz
k
) =







α if zk = f (wk),

1−α if zk = “?”,

0 otherwise,

and

µ(zk−1akr
k
) =







1 zk−1 = “?”∧ ak = f (wk−1)∧ rk = 1,

1 zk−1 6= “?”∧ rk = 0,

0 otherwise.

The first condition says that the distribution of the points in the attribute

space is independent of the system’s history. In other words, this part of xk is

a Bernoulli scheme. The second condition says that in each cycle the system

must either provide a training instance or ask for the agent to classify based on

the attribute vector. The parameter α controls how often the agent is asked to

guess the class. The third condition says that reward is given when the system

asks for a classification and the agent guesses it correctly. It is easy to see that

classification problems are passive MDPs.

3.3.5 Example. Let each element of W be a vector of medical measurements

for a patient, and Z some list of diseases. When provided with a list of patients’

statistics and their diseases, the agent’s job is to learn a function that determines

which disease is present given a patient’s medical data. 3

For more on how AIXI deals with supervised learning problems see Sec-

tion 6.5 of [Hutter, 2005].

3.4 Ergodi
 MDPs

Intuitively, a Markov chain is ergodic if the current observation cannot impose

any long term constraints on future observations. Given that the reward in a

Markov chain only depends on the last observation, being ergodic also implies

that the current observation does not place any long term constraints on future

rewards either. Although the ergodic property is typically studied in the context

of Markov chains, in this section we will extend the notion to MDPs. To illustrate

the idea, we begin by considering some Markov chains that are not ergodic.

3.4.1 Example. Imagine a Markov chain with O := {A, B, C}. The chain

starts with observation A and then transitions to either B or C . In all subsequent

68 3.4 Ergodi
 MDPs

cycles the observation remains the same. Thus, once observation B has been

generated, observation C will never occur. This is a long term constraint on

future observations, and thus the Markov chain is not ergodic. 3

It is as if the agent has gone through a one-way door into a part of the

environment that it can never return from. This is similar to the Heaven and Hell

environment in Example 2.10.1, except that in the above example the agent was

unable to choose where to go as the environment was passive. Consider now a

slightly more subtle example of non-ergodic behaviour.

3.4.2 Example. Imagine a Markov chain with O := {A, B}. The environment

starts with observation A and then in the first cycle transitions to B. In the

following cycle it transitions back to state A, and then in the next it returns to B.

In this way the system alternates between the two observations.

This environment might seem ergodic as both possible observations continue

to occur forever and so the agent clearly has not become confined to just one

part of the environment. However, if the current observation is A, it must be the

case that two time steps into the future the observation will again be A. In fact,

for any even number of time steps into the future the observation will always

be A. As this is a long term constraint on future observations the environment is

not ergodic. 3

The above example can be modified so that it is ergodic: after outputting ob-

servation A make it so that there is a 0.1 probability of generating this again, and

a 0.9 probability of outputting B. Thus, no matter what the current observation

is, after three time steps the environment could output either observation.

We now formalise the proceeding concepts. We say that two observations

communicate if it is possible to go from one observation to the other and return

after some finite number of steps. A communicating class is a set of observa-

tions that all communicate with each other, and do not communicate with any

observations outside this set. If all observations of the Markov chain belong to

the same communicating class, we say that the Markov chain is irreducible. An

observation has period k if any return to the observation must occur in some

multiple of k time steps and k is the largest number with this property. For ex-

ample, if it is only possible to return to an observation in an even number of

steps, then this observation has period 2. If an observation has period 1 then it

is aperiodic, and if all observations are aperiodic we say that the Markov chain

is aperiodic. We can now formally define what it means for a Markov chain to

be ergodic:

3.4.3 Definition. A Markov chain environment (A ,X ,µ) is ergodic if and only

if it is irreducible and aperiodic.

69 3.4 Ergodi
 MDPs

Consider again the two examples above. The technical reason the Markov

chain in Example 3.4.1 was not ergodic was because the observations A and B

were not communicating and thus the Markov chain was not irreducible. In

Example 3.4.2 the problem was that both observations had period 2 and thus

the Markov chain was not aperiodic.

To extend the concept of being ergodic to cover MDPs consider again the

relationship between Markov chains and MDPs. Let µ be an MDP environment,

and π an agent that is conditioned on only the last observation. That is, ∀ax<kak

with k > 1 we have,

π(ax<ka
k
) = π(ok−1a

k
).

Now consider the measure π
µ

that describes how the above environment and

agent interact. In each cycle we have,

π
µ
(ax<kax

k
) :=

∑

ak∈A

π(ok−1a
k
)µ(ok−1ax

k
)

= π
µ
(ok−1 x

k
).

Thus, if π has the form above and is fixed, the distribution over the next per-

ception depends on only the last observation. That is, π
µ

defines a Markov chain.

In other words, an MDP can be thought of as a Markov chain with the addition

of actions that allow an agent to influence future observations. We can remove

this by taking an appropriate agent and building it into the MDP. The resulting

system no long has free actions to be chosen, and reverts back to being a Markov

chain.

Using this relationship, we can now define ergodic MDPs in the natural way:

3.4.4 Definition. An MDP environment (A ,X ,µ) is ergodic if and only if there

exists an agent (A ,X ,π) such that π
µ

defines an ergodic Markov chain.

As higher order MDPs are reducible to MDPs, we will say that a higher order

MDP is ergodic if it is reducible to an ergodic MDP.

Consider again the Heaven and Hell environment defined in Example 2.10.1.

After the first interaction cycle the agent is always in either heaven or hell. Fur-

thermore, no matter what the agent does, it cannot switch between being in

heaven or being in hell, it is stuck in its current location for all eternity. Thus,

no matter what agent we select we cannot create a Markov chain such that the

observations of being in heaven communicate with the observations of being in

hell, and so this MDP environment is not ergodic.

The importance of ergodic MDPs for us will be their relationship to learning.

In an MDP environment only the current observation and action have any impact

on future perceptions. When the MDP is ergodic, the current observation also has

70 3.5 Environments that admit self-optimising agents

no long term impact on future perceptions that cannot be overcome by taking

the right actions. This means that in an ergodic MDP environment no matter

what mistakes an agent might make, there is always a way to recover from

these. Obviously this is a significant property for learning agents, and indeed

the following important result can be proven:

3.4.5 Theorem. Ergodic MDPs admit self-optimising agents.

For references and other details see Appendix 7.3. As ergodic MDPs admit

self-optimising agents it follows by Theorem 2.10.5 that the universal agent πζ

defined over the class of ergodic MDPs is also self-optimising. What remains

to be shown is that many important classes of environments are in fact special

cases of ergodic MDPs. This is the topic of the next section.

3.5 Environments that admit self-optimising agents

In this section we will prove that some of the environments we have defined are

in fact ergodic MDPs. Thus, by the results in the last section, πζ is self-optimising

in these environments. Before we begin we first need to introduce one extra

property: we need to assume that environments are accessible, meaning that

there are no observations that have zero probability of ever being observed.

3.5.1 Definition. A chronological environment (A ,X ,µ) is accessible if

∀ok,∃ax<kak such that µ(ax<kako
k
)> 0.

It is reasonable to assume this because if it is impossible to find any finite

interaction history that gives some observation a non-zero probability then we

can simply remove it from the observation space. This produces an equivalent

environment that is accessible. In particular, this does not interfere with the

property that ergodic MDPs admit self-optimising agents. These unused extra

observations play no role.

3.5.2 Lemma. Bernoulli schemes are ergodic MDPs.

Proof. Consider a Bernoulli scheme (A ,X ,µ). From the definition of a

Bernoulli scheme we immediately see that they are a special case of the MDP

definition. As the environment is accessible, ∀ok, ∃ax<kak : µ(ax<kako
k
) > 0.

Applying the definition of a Bernoulli scheme, this reduces to ∀ok : µ(o
k
) > 0.

Thus, as the next observation does not depend on observations prior to ok−1, nor

does it depend on the actions or rewards, the agent and environment together

define a Markov chain. As all observations are possible at every point in time

71 3.5 Environments that admit self-optimising agents

it follows that all observations belong to the same communicating class and are

aperiodic. That is, the Markov chain is ergodic. 2

Note that the above result holds independent of the agent as the environment

is passive. The same is true for classification problems:

3.5.3 Lemma. Classification problems are ergodic MDPs.

Proof. From Definition 3.3.4 we see that the distribution over the attribute

space W is not dependent on the interaction history, and the distribution over

the class space Z depends only on the attribute in the current cycle and so

it too is independent of anything in prior cycles. More formally, ∀ax<kakok :

µ(ax<kako
k
) = µ(w

k
)µ(wkz

k
) where ok := wkzk. Thus the distribution over

observations is completely independent of prior cycles.

Again from the definition of classification problems we see that the distribu-

tion over rewards depends on only the observation in the previous interaction

cycle and the action in the current cycle. It follows then that in each cycle the

perception (consisting of an attribute, class and reward) depends on only the

action in the current cycle and the observation in the previous cycle. Thus, clas-

sification problems are MDPs.

As the environment is accessible, ∀ok, ∃ax<kak : µ(ax<kako
k
) > 0. Because

the distribution over observations is independent of previous interaction cycles

this immediately reduces to ∀ok : µ(o
k
) > 0 and so the environment is er-

godic. 2

As classification problems are passive, in the above proof it was again possi-

ble to construct an ergodic Markov chain without specifying the agent. In active

environments, such as bandits, we must define an appropriate agent:

3.5.4 Lemma. Bandits are ergodic MDPs.

Proof. Consider a bandit (A ,X ,µ). By definition it is trivially an MDP. As the

environment is accessible ∀ok,∃ax<kak : µ(ax<kao
k
)> 0. Applying the definition

of a Bandit this reduces to,

∀ok,∃ak : µ(ao
k
)> 0. (3.1)

Next we need to show that there exists an agent under which the agent

interacting with the environment defines an ergodic Markov chain. If we define

an agent ∀ak : π(a
k
) := 1

|A |
it follows that ∀ax<kaok,

π
µ
(ax<kao

k
) :=

∑

ak∈A

π(a
k
)µ(ao

k
) =

1

|A |

∑

ak∈A

µ(ao
k
) =: π

µ
(o

k
).

72 3.5 Environments that admit self-optimising agents

From Equation 3.1 it then follows that for each ok at least one of the terms in

the above sum is non-zero. Thus, ∀ok : π
µ
(o

k
)> 0 and so π

µ
is an ergodic Markov

chain and therefore µ is an ergodic MDP. 2

Unfortunately, repeated strategic games are not ergodic MDPs. The problem

is that there may be observations which can only occur at certain points in each

episode, for example at the start or the end. Clearly then one cannot define an

agent such that these observations have period 1, making it impossible to con-

struct an ergodic Markov chain. Nevertheless, through a change of action and

perception spaces a repeated strategic game can be converted into an equivalent

system which is a bandit. Bandits, as we saw above, are ergodic MDPs. For our

purposes such a conversion is sufficient as it allows these environments to admit

self-optimising agents.

3.5.5 Lemma. Repeated strategic games are reducible to ergodic MDPs.

Proof. Let (A ,X ,µ) be a repeated strategic game with episode length l. Now

define a new action space Ã :=A l . In this new action space every combination

of actions that an agent can take in a single episode of the game is represented

by a single action. Similarly, define a new perception space that represents each

episode, X̃ := X l , and now define a chronological measure µ̃ over the new

spaces such that ∀ãx̃1:k,

µ̃(ãx̃<k ãx̃
k
) = µ̃(ãx̃

k
) := µ(ax

(k−1)l+1:(k−1)l+l
).

By construction the environment (Ã, X̃ , µ̃) is a bandit and thus by Lemma 3.5.4

it is an ergodic MDP. 2

The above results show that Bernoulli schemes, classification problems, ban-

dits and repeated strategic games are either ergodic MDPs or can be reduced to

one. As such, they all admit self-optimising policies and thus an appropriately

defined universal agent πζ is self-optimising in these classes of environments.

As the rewards received in totally passive environments are independent of the

agent’s behaviour, these trivially admit self-optimising agents, indeed all agents

are equally “optimal”. What about function optimisation and sequence predic-

tion problems?

Unfortunately, the above approach does not work for function optimisation

problems as we have defined them. The problem is that they are not MDPs as

the reward signal depends on more than just the current action and the last

observation. They can be modelled as a POMDP by including the last reward in

the core MDP and making this unobservable. In any case, this is not a problem

because any agent that enumerates the action space will eventually hit upon

73 3.6 Con
lusion

the optimal action and thus is self-optimising. What this highlights is that being

self-optimising only tells us something about performance in the limit, it says

nothing about how quickly an agent will learn to perform well.

Sequence prediction problems are more problematic. In general, no agent

can be self-optimising over the class of all sequence prediction problems. To see

this, simply consider that for any prediction agent there exists a sequence where

the next observation is always the observation which the agent predicted would

be the least likely (for a formal statement of this see Lemma 5.2.4). This is true

even for incomputable agents. If we restrict the sequences to have computable

distributions, but still allow the agent to be incomputable, then we have seen

that Solomonoff’s predictor has a bounded total expected prediction error. As

the prediction error converges to zero, the reward converges to optimal and

so Solomonoff’s predictor is self-optimising. Given that the universal agent was

built upon the same foundations as Solomonoff’s predictor, we might then expect

the same result to hold. At present nobody has been able to prove this, though

it is conjectured to be true. Currently the best bound is exponentially worse

and holds only for deterministic computable sequence prediction (Section 6.2.2

of Hutter, 2005). For our purposes an exponentially worse bound is still finite

and thus it follows that a universal agent defined over the space of computable

sequences is self-optimising.

3.6 Con
lusion

In this chapter we have defined a range of classes of environments and shown

that many of these are either special cases of other more general classes, or

are at least reducible to more elementary classes through a change of action

and perception spaces. This hierarchy of classes defines a kind of taxonomy of

environments. To the best of our knowledge this analysis has not been done be-

fore. Figure 3.1 summarises these relationships. The most general and powerful

classes of environments are at the top and the most limited and specific classes

at the bottom. As we can see, all of the more concrete classes at the bottom of

the hierarchy admit self-optimising agents. By Theorem 2.10.5 it then follows

that a universal agent defined over one of these classes is also self-optimising.

This supports our earlier claim that universal agents are able to perform well in

a wide range of environments, as required by our informal definition of intelli-

gence.

74 3.6 Con
lusion

Figure 3.1: Taxonomy of environments. Downward arrows indicate that the

class below is a special case of the class above. Dotted horizontal lines indicate

that two classes of environments are reducible to each other. The greyed area

contains the classes of environments that admit self-optimising agents, that is,

the environments in which a universal agent will learn to behave optimally.

Chapter 4

Universal Intelligen
e Measure

“. . . we need a definition of intelligence that is applicable to ma-

chines as well as humans or even dogs. Further, it would be helpful

to have a relative measure of intelligence, that would enable us to

judge one program more or less intelligent than another, rather than

identify some absolute criterion. Then it will be possible to assess

whether progress is being made . . . ” Johnson [1992]

In Chapter 1 we explored the concept of intelligence and proposed an in-

formal definition of intelligence. In Chapter 2 we introduced universal agents,

and in Chapter 3 we detailed some of the classes of environments in which their

behaviour converges to optimal. This shows that universal agents are highly in-

telligent with respect to the definition of intelligence that we have adopted. One

could argue that the universal agent defined over the space of all enumerable

chronological environments, that is AIXI, is in some sense an optimal machine

intelligence.

In this chapter we turn this idea on its head: Instead of using the theory

of universal artificial intelligence to define powerful agents, we use it instead to

formally define intelligence itself. One approach is to take AIXI and to mathemat-

ically define a performance measure under which AIXI is the maximal agent by

construction. This is the approach taken by the Intelligence Order Relation (see

Section 5.1.4 in Hutter, 2005). Although this produces a very general relation

for comparing the relative performance of agents, in order to justify calling this a

formal definition of “intelligence” one must carefully examine the way in which

intelligence is defined, and then show how this relates to the equation.

In this chapter we bridge this gap by proceeding in the opposite direction.

We begin with our informal definition of intelligence from Chapter 1 that was

based on a range of standard definitions given by psychologists and artificial in-

telligence researchers. We then formalise this definition, borrowing ideas from

75

76 4.1 A formal de�nition of ma
hine intelligen
e

reinforcement learning, Kolmogorov complexity, Solomonoff induction and uni-

versal artificial intelligence theory as necessary. The result is an equation for

intelligence that is strongly related to existing definitions, and with respect to

which highly intelligent agents can be proven to have powerful optimality prop-

erties. We then look at some of this definition’s properties and compare it to

other tests and definitions of machine intelligence.

4.1 A formal de�nition of ma
hine intelligen
e

Consider again our informal definition of intelligence:

Intelligence measures an agent’s ability to achieve goals in a wide range

of environments.

This definition contains three essential components: An agent, environments

and goals. Clearly, the agent and the environment must be able to interact

with each other, specifically, the agent needs to be able to send signals to the

environment and also receive signals being sent from the environment. Similarly,

the environment must be able to send and receive signals. In our terminology

we will adopt the agent’s perspective on these communications and refer to the

signals sent from the agent to the environment as actions, and the signals sent

from the environment to the agent as perceptions.

Our definition of an agent’s intelligence also requires there to be some kind

of goal for the agent to try to achieve. Perhaps an agent could be intelligent, in

an abstract sense, without having any objective to apply its intelligence to. Or

perhaps the agent has no desire to exercise its intelligence in a way that affects

its environment. In either case, the agent’s intelligence would be unobservable

and, more importantly, of no practical consequence. Intelligence then, at least

the concrete kind that interests us, comes into effect when the agent has an

objective or goal that it actively pursues by interacting with its environment.

The existence of a goal raises the problem of how the agent knows what the

goal is. One possibility would be for the goal to be known in advance and for

this knowledge to be built into the agent. The problem with this is that it limits

each agent to just one goal. We need to allow agents that are more flexible,

specifically, we need to be able to inform the agent of what the goal is. For

humans this is easily done using language. In general however, the possession

of a sufficiently high level of language is too strong an assumption to make

about the agent. Indeed, even for something as intelligent as a dog or a cat,

direct explanation is not very effective.

Fortunately there is another possibility which is, in some sense, a blend of the

above two. We define an additional communication channel with the simplest

77 4.1 A formal de�nition of ma
hine intelligen
e

possible semantics: a signal that indicates how good the agent’s current situation

is. We will call this signal the reward. The agent simply has to maximise the

amount of reward it receives, which is a function of the goal. In a complex

setting the agent might be rewarded for winning a game or solving a puzzle. If

the agent is to succeed in its environment, that is, receive a lot of reward, it must

learn about the structure of the environment and in particular what it needs to

do in order to get reward.

This system of an agent interacting with an environment and trying to achieve

some goal is the reinforcement learning agent-environment framework from

Section 2.8. That this framework fits well with our informal definition of in-

telligence is not surprising given how simple and general it is. Indeed, it is not

only used in artificial intelligence, in control theory it is known as the plant-

controller framework. For example, the plant could be a nuclear power plant,

and the controller a system designed to keep the reactor within safe operating

guidelines. Even the way in which you might train your dog to perform tricks by

rewarding certain behaviours fits into this very general framework.

As in Section 2.8, we will include the reward signal as a part of the perception

generated by the environment. The perceptions also contain a non-reward part,

which we will refer to as observations. The goal is implicitly defined by the

environment as this is what controls when rewards are generated. Thus, in the

framework as we have defined it, to test an agent in any given way it is sufficient

to fully define the environment.

Unfortunately, maximising reward is not sufficient to define how the agent

should behave over time. We have to define some kind of a temporal preference

that describes how much the agent should value near term rewards verses re-

wards further into the future. As we saw in Section 2.9, a general approach is

to weight, or discount, each reward in a way that depends on which cycle it oc-

curs in. Let γ1,γ2, . . . be the discounts we apply to the reward in each successive

cycle, where ∀i : γi ≥ 0, and
∑

∞

i=1
γi < ∞ in order to avoid infinite weighted

sums. Now define the expected future discounted reward for agent π interacting

with environment µ to be,

Vπµ
γ

:= E

∞
∑

i=t

γi ri

!

.

It is this value function that incorporates our temporal preferences that the

agent must optimise. Although this is very general, the discounting parame-

ters γ1,γ2, . . . are nevertheless free parameters. In order to make our formal

measure unique we want to remove these parameters, and of course we must do

so in a way that is still completely general.

78 4.1 A formal de�nition of ma
hine intelligen
e

If we look at the value function above, we see that discounting plays two

roles. Firstly, it normalises rewards received so that their sum is always finite.

Secondly, it weights the rewards at different points in the future which in effect

defines a temporal preference. A direct way to solve both of these problems,

without needing an external parameter, is to simply require the total reward

returned by the environment to be bounded. Without loss of generality, we set

the bound to be 1. We denote this set of reward-summable environments by E.
For any µ ∈ E, it follows that the expected value of the sum of rewards is also

finite and thus discounting is no longer required,

Vπ
µ

:= E

∞
∑

i=1

ri

!

≤ 1.

One way of viewing this is that the rewards returned by the environment now

have the temporal preference already factored in. Indeed, because every reward

summable environment is included, in effect every possible temporal preference

is represented in the space of environments. The cost is that this is an additional

condition that we place on the space of environments. Previously we required

that each reward signal was in a subset of [0, 1]∩Q, now we have the additional

constraint that the reward sum is always bounded.

Next we need to quantify what we mean by “goals in a wide range of envi-

ronments.” As we have argued previously, intelligence is not simply the ability to

perform well at a narrowly defined task; it is much broader. An intelligent agent

is able to adapt and learn to deal with many different situations, kinds of prob-

lems and types of environments. In our informal definition this was described

as the agent’s general ability to perform well in a “wide range of environments.”

This flexibility is a defining characteristic and one of the most important dif-

ferences between humans and many current AI systems: while Gary Kasparov

would still be a formidable player if we were to change the rules of chess, IBM’s

Deep Blue chess super computer would be rendered useless without significant

human intervention.

As we want our definition to be as broad and encompassing as possible, the

space of environments used should be as large as possible. As the environment

is a probability measure with a certain structure, an obvious possibility would be

to consider the space of all probability measures of this form. Unfortunately, this

extremely broad class of environments causes serious problems. As the space of

all probability measures is uncountably infinite, some environments cannot be

described in a finite way and so are incomputable. This would make it impos-

sible, by definition, to test an agent in such an environment using a computer.

Further, most environments would be infinitely complex and have little structure

for the agent to learn from.

79 4.1 A formal de�nition of ma
hine intelligen
e

The solution is to require the environmental probability measures to be com-

putable. Not only is this condition necessary if we are to have an effective mea-

sure of intelligence, it is also not as restrictive as it might first appear. There

are still an infinite number of environments with no upper bound on their maxi-

mal complexity. Also, although the measures that describe the environments are

computable, this does not mean that the environments are deterministic. For ex-

ample, although a typical sequence of 1’s and 0’s generated by flipping a coin is

not computable, the probability measure that describes this distribution is com-

putable and thus it is included in our space of possible environments. Indeed,

there is currently no evidence that the physical universe cannot be simulated

by a Turing machine in the above sense (for further discussion of this point see

Section 4.4). This appears to be the largest reasonable space of environments.

We have now formalised all the elements of our informal definition. The next

problem is how to bring these together in order to define an overall measure of

performance; we need to find a way to combine an agent’s performance in many

different environments into a single overall measure. As there are an infinite

number of environments, we cannot simply take a uniform distribution over

them. Mathematically, we must weight some environments higher than others.

But how?

Consider the agent’s perspective on this situation: there exists a probabil-

ity measure that describes the true environment, however this measure is not

known to the agent. The only information the agent has are some past observa-

tions of the environment. From these, the agent can construct a list of probability

measures that are consistent with the observations. We call these potential ex-

planations of the true environment hypotheses. As the number of observations

increases, the set of hypotheses shrinks and hopefully the remaining hypotheses

become increasingly accurate at modelling the environment.

The problem is that in any given situation there will likely be a large number

of hypotheses that are consistent with the current set of observations. The agent

must keep these in accordance with Epicurus’ principle of multiple explanations,

as we saw in Section 2.1. Because they are all consistent with the current obser-

vations, if the agent is going to estimate which hypotheses are the most likely to

be correct it must resort to something other than this observational information.

This is a frequently occurring problem in inductive inference for which the most

common approach is to invoke the principle of Occam’s razor, which we also met

in Section 2.1:

Given multiple hypotheses that are consistent with the data, the sim-

plest should be preferred.

This is generally considered the rational and intelligent thing to do [Wallace,

2005]. Indeed, as noted in Section 1.5, standard IQ tests implicitly test an in-

80 4.1 A formal de�nition of ma
hine intelligen
e

dividual’s ability to use Occam’s razor. In some cases we may even consider the

correct use of Occam’s razor to be a more important demonstration of intelli-

gence than achieving a successful outcome. Consider, for example, the following

game:

4.1.1 Example. (Dumb luck game) A questioner lays twenty $10 notes out

on a table before you and then points to the first one and asks “Yes or No?”.

If you answer “Yes” he hands you the money. If you answer “No” he takes it

from the table and puts it in his pocket. He then points to the next $10 note

on the table and asks the same question. Although you, as an intelligent agent,

might experiment with answering both “Yes” and “No” a few times, by the 13th

round you would have decided that the best choice seems to be “Yes” each time.

However what you do not know is that if you answer “Yes” in the 13th round

then the questioner will pull out a gun and shoot you! Thus, although answering

“Yes” in the 13th round is the most intelligent choice, given what you know, it

is not the most successful one. An exceptionally dim individual may have failed

to notice the obvious relationship between answers and getting the money, and

thus might answer “No” in the 13th round, thereby saving his life due to what

could truly be called “dumb luck”. 3

What is important then, is not that an intelligent agent succeeds in any given

situation, but rather that it takes actions that we would expect to be the most

likely ones to lead to success. Given adequate experience this might be clear,

however experience is often not sufficient and one must fall back on good prior

assumptions about the world, such as Occam’s razor. It is important then that

we test the agents in such a way that they are, at least on average, rewarded for

correctly applying Occam’s razor, even if in some cases this leads to failure.

Note that this does not necessarily mean always following the simplest hy-

pothesis that is consistent with the observations. It is just that simpler hypothe-

ses are considered to be more likely to be correct. Thus, if there is a simple

hypothesis suggesting one thing, and a large number of slightly more complex

hypotheses suggesting something else, the latter may be considered the most

likely.

There is another subtlety that needs to be pointed out. Often intelligence is

thought of as the ability to deal with complexity. Or in the words of one psy-

chologist, “. . . [intelligence] is the ability to deal with cognitive complexity —

in particular, with complex information processing.”[Gottfredson, 1997a] It is

tempting then to equate the difficultly of an environment with its complexity.

Unfortunately, things are not so straightforward. Consider the following envi-

ronment:

81 4.1 A formal de�nition of ma
hine intelligen
e

4.1.2 Example. Imagine a very complex environment with a rich set of rela-

tionships between the agent’s actions and observations. The measure that de-

scribes this will have a high complexity. However, also imagine that the reward

signal is always maximal no matter what the agent does. Thus, although this is

a very complex environment in which the agent is unlikely to be able to predict

what it will observe next, it is also an easy environment in the sense that all

agents are optimal, even very simple ones that do nothing at all. The environ-

ment contains a lot of structure that is irrelevant to the goal that the agent is

trying to achieve. 3

From this perspective, a problem is thought of as being difficult if the simplest

good solution to the problem is complex. Easy problems on the other hand are

those that have simple solutions. This is a very natural way to think about the

difficulty of problems, or in our terminology, environments.

Fortunately, this distinction does not affect our use of Occam’s razor. This is

because Occam’s razor assigns to each hypothesis a prior probability of it being

the correct model according to its complexity. It says nothing about how relevant

or useful that hypothesis might be to the agent’s goals. For example, according

to Occam’s razor a simple environment that always gives the agent maximal

reward would be more likely than a complex environment that also always gives

the agent maximal reward, even though the two environments are equally easy

to succeed in. Of course from an agent’s perspective, an incorrect hypothesis

that fails to model much of the environment may be a good one if the parts of

the environment that the hypothesis fails to model are not relevant to receiving

reward. Nevertheless, if we want to reward agents on average for correctly using

Occam’s razor, we must weight the environments according to their complexity,

not their difficulty.

Although we have chosen to follow a fairly strict interpretation of Occam’s

razor, the idea of weighting according to the complexity of the simplest good

solution may have some merit. For example, if we weight the different “experts”

in a prediction with expert advice algorithm according to their complexity, we are

in effect applying this alternate principle. In practice, this can work well.

Our remaining problem now is to measure the complexity of environments.

This is a problem that we have already solved for sequences in Section 2.5, and

then generalised to active environments in Section 2.10: for any environment

µ ∈ E we define its complexity to be K(µ), that is, its Kolmogorov complexity

which is essentially just the length of the shortest program that describes µ.

Bringing all these pieces together, we can now define our formal measure of

intelligence:

4.1.3 Definition. The universal intelligence of an agent π is its expected per-

formance with respect to the universal distribution 2−K(µ) over the space of all

82 4.1 A formal de�nition of ma
hine intelligen
e

computable reward-summable environments E, that is,

Υ(π) :=
∑

µ∈E

2−K(µ) Vπ
µ
= Vπ

ξ
.

The final equality above follows from the linearity of V and the definition of ξ

as a weighted mixture of environments. It shows that the universal intelligence

of an agent is simply its expected performance with respect to the universal

distribution.

Consider how this equation corresponds to our informal definition. We need

to measure an agent’s ability to achieve goals in a wide range of environments.

Clearly present in the equation is the agent π, the environment µ and, implicit

in the environment, a goal. The agent’s “ability to achieve” is represented by

the value function Vπ
µ

. By a “wide range of environments” we have taken the

space of all computable reward-summable environments, where these environ-

ments have been characterised as computable chronological measures in the set

E. Occam’s razor is given by the term 2−K(µ) which weights the agent’s perfor-

mance in each environment in a way that decreases according to its complexity.

The definition is very general in terms of which sensors or actuators the agent

might have, as all information exchanged between the agent and the environ-

ment takes place over very general communication channels. Finally, the formal

definition places no limits on the internal workings of the agent. Thus, we can

apply the definition to any system that is able to receive and generate informa-

tion with a view to achieving goals.

The main drawback is that the Kolmogorov complexity function K is not

computable and can only be approximated. This is acceptable as our aim has

simply been to define the concept of intelligence in the most general, powerful

and elegant way. In future research we will explore ways to approximate this

ideal with a practical test. Naturally, the process of estimation will introduce

weaknesses and flaws that the current definition does not have. For example,

while the definition considers the general performance of an agent over all com-

putable environments with bounded reward sum, in practice a test could only

ever estimate this by testing the agent on a finite sample of environments.

This situation is similar to the definition of randomness for sequences: In-

formally, an infinite sequence is said to be Martin-Löf random when it has no

significant regularity [Martin-Löf, 1966]. This lack of regularity is equivalent

to saying that the sequence cannot be compressed in any significant way, and

thus we can characterise randomness using Kolmogorov complexity. Naturally,

we cannot test a sequence for every possible regularity, which is equivalent to

saying that we cannot compute its Kolmogorov complexity. We can however test

sequences for randomness by checking them for a large number of statistical

83 4.2 Universal intelligen
e of various agents

regularities; indeed, this is what is done in practice. Of course, just because a

sequence passes all our tests does not mean that it must be random. There could

always be some deeper structure to the sequence that our tests were not able to

detect. All we can say is that the sequence seems random with respect to our

ability to detect patterns.

Some might argue that the definition of something should not just capture

the concept, it should also be practical. For example, the definition of intelli-

gence should be such that intelligence can be easily measured. The above ex-

ample, however, illustrates why this approach is sometimes flawed: if we were

to define randomness with respect to a particular set of tests, then one could

specifically construct a sequence that followed a regular pattern in such a way

that it passed all of our randomness tests. This would completely undermine

our definition of randomness. A better approach is to define the concept in the

strongest and cleanest way possible, and then to accept that our ability to test

for this ideal has limitations. In other words, our task is to find better and more

effective tests, not to redefine what it is that we are testing for. This is the atti-

tude we have taken here, though in this thesis our focus is on the first part, that

is, establishing a strong theoretical definition of machine intelligence.

4.2 Universal intelligen
e of various agents

In order to gain some intuition for our definition of intelligence, in this section

we will consider a range of different agents and their relative degrees of univer-

sal intelligence.

A random agent. The agent with the lowest intelligence, at least among those

that are not actively trying to perform badly, would be one that makes uniformly

random actions. We will call this πrand. Although this is clearly a weak agent,

we cannot simply conclude that the value of Vπ
r a n d

µ
will always be low as some

environments will generate high reward no matter what the agent does. Nev-

ertheless, in general such an agent will not be very successful as it will fail to

exploit any regularities in the environment, even trivial ones. It follows then

that the values of Vπ
r a n d

µ
will typically be low compared to other agents, and thus

Υ(πrand) will be low. Conversely, if Υ(πrand) is very low, then the equation for

Υ implies that for simple environments, and many complex environments, the

value of Vπ
r a n d

µ
must also be relatively low. This kind of poor performance in

general is what we would expect of an unintelligent agent.

84 4.2 Universal intelligen
e of various agents

A very spe
ialised agent. From the equation for Υ, we see that an agent could

have very low universal intelligence but still perform extremely well at a few

very specific and complex tasks. Consider, for example, IBM’s Deep Blue chess

supercomputer, which we will represent by πdblue. When µ
hess describes the

game of chess, Vπ
d b l u e

µ
 h e s s is very high. However 2−K(µ
 h e s s) is small, and for µ 6=

µ
hess the value function will be low as πdblue only plays chess. Therefore, the

value of Υ(πdblue) will be very low. Intuitively, this is because Deep Blue is too

inflexible and narrow to have general intelligence. Current artificial intelligence

systems fall into this category: powerful in some domain, but not general and

adaptable enough to be truly intelligent.

Interestingly, universal intelligence becomes somewhat counter intuitive when

we use it to compare very specialised agents. Consider an agent πsimple which

is only able to learn to predict sequences of the form 0000 . . . and 1111

Obviously this agent will fail in most environments and thus will have a low uni-

versal intelligence, as we would expect. However, environments of this form will

have short programs and thus are much more likely than environments which

describe, for example, chess. As πdblue can only play chess, it cannot learn to

predict these simple sequences, it follows then that Υ(πdblue) < Υ(πsimple).

Intuitively we would expect the reverse to be true.

What this shows is that the universal intelligence measure strongly empha-

sises the ability to solve simple problems. If any system cannot do this, even if

it can do something relatively complex like play chess, then it is considered to

have very little intelligence. Of course extreme cases such the one above only

occur with artificial constructions such as chess playing machines. Any human

able to play chess would easily be able to learn to predict trivial patterns such as

0000

With the above in mind, it is interesting to consider the progress of artificial

intelligence as a field from the perspective of universal intelligence. In the early

days of artificial intelligence there was a lot of emphasis on developing machines

that were able to do simple reasoning and pattern matching etc. Extending the

power of these general systems was difficult and over time the field become

increasingly concerned with very narrow systems that were able to solve quite

specific problems. This has lead some people to complain that while we now

have impressive systems for some specific things, we have not progressed much

towards true intelligence, meaning artificial general intelligence. Indeed, from

the perspective of universal intelligence, by focusing on increasingly specialised

systems we have in fact have gone backwards.

A general but simple agent. Imagine an agent that performs very basic learning

by building up a table of observation and action pairs and keeping statistics

85 4.2 Universal intelligen
e of various agents

on the rewards that follow. Each time an observation that it has seen before

occurs, the agent takes the action with highest estimated expected reward in

the next cycle with 0.9 probability, or a random action with 0.1 probability. We

will call this agent πbasi
. It is clear that many environments, both complex

and very simple, will have at least some structure that such an agent would

take advantage of. Thus, for almost all µ we will have Vπ
b a s i

µ
> Vπ

r a n d

µ
and so

Υ(πbasi
)> Υ(πrand). Intuitively, this is what we would expect as πbasi
, while

very simplistic, is surely more intelligent than πrand.

Similarly, as πdblue will fail to take advantage of even trivial regularities in

some of the most basic environments, Υ(πbasi
)> Υ(πdblue). This is reasonable

as our aim is to measure a machine’s level of general intelligence. Thus an agent

that can take advantage of basic regularities in a wide range of environments

should rate more highly than a specialised machine that fails outside of a very

limited domain.

A simple agent with more history. The first order structure of πbasi
, while

very general, will miss many simple exploitable regularities. Consider the fol-

lowing environment µalt. Let A = {up,down} and O = {ǫ}. In cycle k the

environment generates a reward of 2−k each time the agent’s action is different

to its previous action. Otherwise the reward is 0. We can define this environment

formally,

µalt(ax<kax
k
) :=







1 if ak 6= ak−1 ∧ rk = 2−k,

1 if ak = ak−1 ∧ rk = 0,

0 otherwise.

Clearly the optimal strategy for an agent is simply to alternate between the ac-

tions up and down. Even though this is very simple, this strategy requires the

agent to correlate its current action with its previous action, something that

πbasi
 cannot do. Note that we set the reward in cycle k to be 2k in order to

satisfy our bounded reward sum condition.

A natural extension of πbasi
 is to use a longer history of actions, observa-

tions and rewards in its internal table. Let π2ba
k be the agent that builds a table

of statistics for the expected reward conditioned on the last two actions, rewards

and observations. It is immediately clear that π2ba
k will exploit the structure of

the µalt environment. Furthermore, by definition π2ba
k is a generalisation of

πbasi
 and thus it will adapt to any regularity that πbasi
 can adapt to. It fol-

lows then that in general Vπ
2 b a
 k

µ
> Vπ

b a s i

µ
and so Υ(π2ba
k) > Υ(πbasi
), as we

would expect. In the same way we can extend the history that the agent utilises

back further and produce even more powerful agents that are able to adapt to

86 4.2 Universal intelligen
e of various agents

bottom

top

a = rest

r = 2

a = climb

r = 0.0

a = rest or climb

r = 2 -k

-k-4

Figure 4.1: A simple game in which the agent climbs a playground slide and

slides back down again. A shortsighted agent will always just rest at the bottom

of the slide.

more lengthy temporal structures and which will have still higher universal in-

telligence.

A simple forward looking agent. In some environments simply trying to max-

imise the next reward is not sufficient, the agent must also take into account the

rewards that are likely to follow further into the future, that is, the agent must

plan ahead. Consider the following environment µslide. LetA = {rest,
limb}

and O = {ǫ}. Imagine there is a slide such as you would see in a playground.

The agent can rest at the bottom of the slide, for which it receives a reward of

2−k−4. The alternative is to climb the slide, which gives a reward of 0. Once at

the top of the slide the agent always slides back down no matter what action is

taken; this gives a reward of 2−k. This deterministic environment is illustrated

in Figure 4.1.

Because climbing receives a reward of 0, while resting receives a reward

of 2−k−4, a very shortsighted agent that only tries to maximise the reward in

the next cycle will choose to stay at the bottom of the slide. Both πbasi
 and

π2ba
k have this problem, even though they also take random actions with 0.1

probability and so will occasionally climb the slide by chance. Clearly this is not

optimal in terms of total reward over time.

We can extend the π2ba
k agent again by defining a new agent π2forward that

with 0.9 probability chooses its next action to maximise not just the next reward,

but r̂k+ r̂k+1, where r̂k and r̂k+1 are the agent’s estimates of the next two rewards.

As the estimate of r̂k+1 will potentially depend not only on ak, but also on ak+1,

the agent assumes that ak+1 is chosen to simply maximise the estimated reward

r̂k+1.

87 4.2 Universal intelligen
e of various agents

The π2ba
k agent can see that by missing out on the resting reward of 2−k−4

for one cycle and climbing, a greater reward of 2−k will be had when sliding

back down the slide in the following cycle. Note that the value of the time index

k will have increased by the time the agent gets to slide down, however this is

not enough to change the optimal course of action.

By definition π2forward generalises π2ba
k in a way that more closely reflects

the value function V and thus in general Vπ
2 f o r w a r d

µ
> Vπ

2 b a
 k

µ
. It then follows that

Υ(π2forward) > Υ(π2ba
k) as we would intuitively expect for this more powerful

agent.

In a similar way agents of increasing complexity and adaptability can be de-

fined which will have still greater intelligence. However, with more complex

agents it is usually difficult to see whether one agent has more universal intelli-

gence than another. Nevertheless, the simple examples above illustrate how the

more flexible and powerful an agent is, the higher V typically is and thus the

higher its universal intelligence.

A very intelligent agent. A very intelligent agent would perform well in sim-

ple environments, and reasonably well compared to most other agents in more

complex environments. From the equation for universal intelligence this would

clearly produce a high value for Υ. Conversely, if Υ was high then the equation

for Υ implies that the agent must perform well in most simple environments and

reasonably well in many complex ones also. Thus, the agent is able to achieve

goals in a wide range of environments, as required by our informal definition of

intelligence.

A super intelligent agent. Consider what would be required to maximise the

value of Υ. By definition, a “perfect” agent would always pick the action which

had greatest expected future reward. To do this, for every environment µ ∈

E the agent must take into account how likely it is that it is facing µ, given

the interaction history so far and the prior probability of µ, that is, 2−K(µ). It

would then consider all possible future interactions that might occur, how likely

they are, and from this select the action in the current cycle that maximises the

expected future reward.

Essentially, this is the AIXI agent described in Section 2.10. The only dif-

ference is that AIXI was defined using discount parameters, while universal in-

telligence avoided these by requiring the total reward from environments to be

bounded. If we remove discounting for AIXI and define it to work over reward

bounded environments, then the universal intelligence measure is in some sense

the dual of the universal agent AIXI. It follows that agents with very high univer-

88 4.3 Properties of universal intelligen
e

sal intelligence have powerful performance characteristics.

With our modified AIXI being the most intelligent agent by construction, we

can define the upper bound on universal intelligence to be,

Ῡ := max
π
Υ(π) = Υ

�

πξ
�

.

This upper bounds the intelligence of all future machines, no matter how pow-

erful their hardware and algorithms might be.

A human. For simple environments, a human should be able to identify their

structure and exploit this to maximise reward. However, for more complex en-

vironments it is hard to know how well a human would perform. Much of the

human brain is set up to process certain kinds of structured information from

the human sense organs, and thus is quite specialised, at least compared to the

extremely general setting considered here. Perhaps the amount of universal ma-

chine intelligence that a human has is not that high compared to some machine

learning algorithms? It is difficult to know without experimental results.

4.3 Properties of universal intelligen
e

What we have presented is a definition of machine intelligence. It is not a prac-

tical test of machine intelligence, indeed the value of Υ is not computable due

to the use of Kolmogorov complexity. Although some of the criteria by which we

judge practical tests of intelligence are not relevant to a pure definition of intel-

ligence, many of the desirable properties are similar. Thus, to understand the

strengths and weaknesses of our definition, consider again the desirable proper-

ties for a test of intelligence from Section 1.4.

Valid. The most important property of any proposed formal definition of intel-

ligence is that it does indeed describe something that can reasonably be called

intelligence. Essentially, this is the core argument of this chapter so far: we have

taken a mainstream informal definition and step by step formalised it. Thus, so

long as our informal definition is acceptable, and our formalisation argument

holds, the result can reasonably be described as a formal definition of intelli-

gence.

As we saw in the previous section, universal intelligence orders the power

and adaptability of simple agents in a natural way. Furthermore, a high value of

Υ implies that the agent performs well on most simple and moderately complex

environments. Such an agent would be an impressively powerful and flexible

89 4.3 Properties of universal intelligen
e

piece of technology, with many potential uses. Clearly then, universal intelli-

gence is inherently meaningful, independent of whether or not one considers it

to be a measure of intelligence.

Informative. Υ(π) assigns to agent π a real value that is independent of the

performance of other possible agents. Thus we can make direct comparisons

between many different agents on a single scale. This property is useful if we

want to use this measure to study new algorithms or modifications to existing

algorithms. In comparison, some other tests return only comparative results, i.e.

that one algorithm is better than another, or even just a binary pass or fail.

Wide range. As we saw in the previous section, universal intelligence is able to

order the intelligence of even the most basic agents such as πrand, πbasi
, π2ba
k

and π2forward. At the other extreme we have the theoretical super intelligent

agent AIXI which has maximal Υ value. Thus, universal intelligence spans triv-

ial learning algorithms right up to incomputable super intelligent agents. This

seems to be the widest range possible for a measure of machine intelligence.

General. As the agent’s performance on all well defined environments is fac-

tored into its Υ value, a broader performance metric is difficult to imagine.

Indeed, a well defined measure of intelligence that is broader than universal in-

telligence would seem to contradict the Church-Turing thesis as it would imply

that we could effectively measure an agent’s performance for some well defined

problem that was outside of the space of computable measures.

Dynami
. Universal intelligence includes environments in which the agent has

to learn and adapt its behaviour over time in order to maximise reward. As such,

it is a so called “dynamic intelligence test” that allows rich interaction between

the agent being tested and its environment (see Section 1.4). In comparison,

most other intelligence tests are “static”, in the sense that they only require the

agent to solve isolated one-off problems. Such tests cannot directly measure an

agent’s ability to learn and adapt over time.

Unbiased. In a standard intelligence test, an individual’s performance is judged

on specific kinds of problems, and then these scores are combined to produce an

overall result. Thus the outcome of the test depends on which types of problems

it uses, and how each score is weighted to produce the end result. Unfortunately,

how we do this is a product of many things, including our culture, values and

the theoretical perspective on intelligence that we have taken. For example,

90 4.3 Properties of universal intelligen
e

while one intelligence test might contain many logical puzzle problems, another

might be more linguistic in emphasis, while another stresses visual reasoning.

Modern intelligence tests like the Stanford-Binet try to minimise this problem

by covering the most important areas of human reasoning both verbally and

non-verbally. This helps but it is still very anthropocentric as we are only testing

those abilities that we think are important for human intelligence.

For an intelligence measure for machines we have to base the test on some-

thing more general and principled: universal Turing computation. As all pro-

posed models of computation have thus far been equivalent in their expressive

power, the concept of computation appears to be a fundamental theoretical prop-

erty rather than the product of any specific culture. Thus, by weighting different

environments depending on their Kolmogorov complexity, and considering the

space of all computable environments, we have avoided having to define intelli-

gence with respect to any particular culture, species etc.

Unfortunately, we have not entirely removed the problem. The environmen-

tal distribution 2−K(µ) that we have used is invariant, up to a multiplicative con-

stant, to changes in the reference machine U . Although this affords us some

protection, the relative intelligence of agents can change if we change our refer-

ence machine. One approach to this problem is to limit the complexity of the ref-

erence machine, for example by limiting its state-symbol complexity. We expect

that for highly intelligent machines that can deal with a wide range of environ-

ments of varying complexity, the effect of changing from one simple reference

machine to another will be minor. For simple agents, such as those considered in

Section 4.2, the ordering of their machine intelligence was also not particularly

sensitive to natural choices of reference machine. Recently attempts have been

made to make algorithmic probability completely unique by identifying which

universal Turing machines are, in some sense, the most simple [Müller, 2006].
Unfortunately however, an elegant solution to this problem has not yet been

found.

An alternate solution, suggested by Peter Dayan (personal communication),

would be to allow the agent to maintain state between different test environ-

ments. This would mitigate any bias introduced as intelligent agents would then

be able to adapt to the test’s reference machine.

Fundamental. Universal intelligence is based on Turing computation, informa-

tion and complexity. These are fundamental universal concepts that are unlikely

to change in the future with changes in technology. It also means that universal

intelligence is in no way anthropocentric.

91 4.3 Properties of universal intelligen
e

Formal and obje
tive. As universal intelligence is expressed as a mathematical

equation, there is little space for ambiguity in the definition. In particular, it in

no way depends on any subjective criteria, unlike some other intelligence tests

and definitions.

Fully de�ned. For a fixed reference machine, the universal intelligence mea-

sure is fully defined. In comparison, some tests of machine intelligence have

aspects which are currently unspecified and in need of further research.

Impra
ti
al. In its current form the definition cannot be directly turned into

a test of intelligence as the Kolmogorov complexity function is not computable.

Thus, in its pure form, we can only use it to analyse the nature of intelligence

and to theoretically examine the intelligence of mathematically defined learning

algorithms.

In order to use universal intelligence more generally we will need to con-

struct a workable test that approximates an agent’s Υ value. The equation for Υ

suggests how we might approach this problem. Essentially, an agent’s universal

intelligence is a weighted sum of its performance over the space of all environ-

ments. Thus, we could randomly generate programs that describe environmen-

tal probability measures and then test the agent’s performance against each of

these environments. After sampling sufficiently many environments, the agent’s

approximate universal intelligence could be estimated by weighting its score in

each environment according to the complexity of the environment as given by

the length of its program. Another possibility might be to try to approximate the

sum by enumerating environmental programs from short to long, as the short

ones will make by far the greatest contribution to the sum. However, in this case

we will need to be able to reset the state of the agent so that it cannot cheat by

learning our environmental enumeration method. In any case, various practical

challenges will need to be addressed before universal intelligence can be used

to construct an effective intelligence test. As this would be a significant project

in its own right, here we focus on the theoretical issues surrounding universal

intelligence.

De�nition rather than a test. As it is not practical in its current form, universal

intelligence is more of a formal definition of intelligence than a test of intelli-

gence. Some proposals we have reviewed aim to be just tests of intelligence,

others aim to be definitions, and in some cases they are intended to be both.

Often the exact classification of a proposal as a test or definition, or both, is

somewhat subjective.

92 4.4 Response to
ommon
riti
isms

Intelligence Test

Va
lid

In
fo

rm
at

iv
e

W
id

e
Ran

ge

G
en

er
al

D
yn

am
ic

U
nb

ia
se

d

Fu
nd

am
en

ta
l

Fo
rm

al
&

O
bj

.

Fu
lly

D
efi

ne
d

Pr
ac

tic
al

Te
st

vs
. D

ef
.

Turing Test • · · · • · · · • • T

Total Turing Test • · · · • · · · • · T

Inverted Turing Test • • · · • · · · • • T

Toddler Turing Test • · · · • · · · · • T

Linguistic Complexity • • · · · · • · • T

Text Compression Test • • · • • T

Turing Ratio • ? ? ? ? · ? T/D
Psychometric AI • ? • · • • • T/D
Smith’s Test • • · ? · • T/D
C-Test • • · T/D
Universal Intelligence · D

Table 4.1: In the table means “yes”, • means “debatable”, · means “no”, and ?

means unknown. When something is rated as unknown it is because the test in

question is not sufficiently specified.

Having covered the key properties of the universal intelligence measure, we

now compare these properties with the properties of the other proposed tests

and definitions of machine intelligence surveyed in Section 1.7. Although we

have attempted to be as fair as possible, some of our judgements will of course

be debatable. Nevertheless, we hope that it provides a rough overview of the

relative strengths and weaknesses of the proposals. The summary comparison

appears in Table 4.1.

4.4 Response to
ommon
riti
isms

Attempting to mathematically define intelligence is very ambitious and so, not

surprisingly, the reactions we get can be interesting. Having presented the

essence of this work as posters at several conferences, and also as a 30 minute

talk, we now have some idea of what the typical responses are. Most people

start out sceptical but end up generally enthusiastic, even if they still have a

few reservations. This positive feedback has helped motivate us to continue this

direction of research. In this section, however, we will attempt to cover some of

the more common criticisms.

93 4.4 Response to
ommon
riti
isms

It's obviously false, there's nothing in your de�nition, just a few equations.

Perhaps the most common criticism is also the most vacuous one: It’s obviously

wrong! These people seem to believe that defining intelligence with an equation

is clearly impossible, and thus there must be very large and obvious flaws in our

work. Not surprisingly, these people are also the least likely to want to spend

10 minutes having the material explained to them. Unfortunately, none of these

people have been able to communicate why the work is so obviously flawed in

any concrete way — despite in one instance chasing the poor fellow out of the

conference centre and down the street begging for an explanation. If anyone

would like to properly explain their position to us in the future, we promise not

to chase you down the street!

It's obviously
orre
t, indeed everybody already knows this. Curiously, the

second most common criticism is the exact opposite: The work is obviously

right, and indeed it is already well known. Digging deeper, the heart of this

criticism comes from the perception that we have not done much more than just

describe reinforcement learning. If you already accept that the reinforcement

learning framework is the most general and flexible way to describe artificial

intelligence, and not everybody does, then by mixing in Occam’s razor and a

dash of complexity theory the equation for universal intelligence follows in a

fairly straightforward way. While this is true, the way in which these things

have been brought together is new. Furthermore, simply coming up with an

equation is not enough, one must argue that what the equation describes is in

fact intelligence in a sense that is reasonable for machines.

We have addressed this question in three main ways: Firstly, in Chapter 1 we

explored many expert definitions of intelligence. Based on these, we adopted

our own informal definition of intelligence in Section 1.2. In the present chapter

this informal definition was piece by piece formalised leading to the equation

for Υ. This chain of argument ties our equation for intelligence to existing infor-

mal definitions and ideas on the nature of intelligence. Secondly, in Sections 4.2

and 4.3 we showed that the equation has properties that are consistent with

a definition of intelligence. Finally, in Section 4.2 it was shown that universal

intelligence is strongly connected to the theory of universally optimal learning

agents, in particular AIXI. From this it follows that machines with very high uni-

versal intelligence have a wide range of powerful optimality properties. Clearly

then, what we have done goes far beyond merely restating reinforcement learn-

ing theory.

Assuming that the environment is
omputable is too strong. It is certainly

possible that the physical universe is not computable, in the sense that the prob-

94 4.4 Response to
ommon
riti
isms

ability distribution over future events cannot, even in theory, be simulated to

an arbitrary precision by a computable process. Some people take this position

on various philosophical grounds, such as the need for freewill. However, in

standard physics there is no law of the universe that is not computable in the

above sense. Nor is there any evidence showing that such a physical law must

exist. This includes quantum theory and chaotic systems, both of which can

be extremely difficult to compute for some physical systems, but are not funda-

mentally incomputable theories. In the case of quantum computers, they can

compute with lower time complexity than classical Turing machines, however

they are unable to compute anything that a classical Turing machine cannot,

when given enough time. Thus, as there is no hard evidence of incomputable

processes in the universe, our assumption that the agent’s environment has a

computable distribution is certainly not unreasonable.

If a physical process was ever discovered that was not Turing computable,

then this would likely result in a new extended model of computation. Just as

we have based universal intelligence on the Turing model of computation, it

might be possible to construct a new definition of universal intelligence based

on this new model in a natural way.

Finally, even if the universe is not computable, and we do not update our for-

mal definition of intelligence to take this into account, the fact that everything in

physics so far is computable means that a computable approximation to our uni-

verse would still be extremely accurate over a huge range of situations. In which

case, an agent that could deal with a wide range of computable environments

would most likely still function well within such a universe.

Assuming that environments return bounded sum rewards is unrealisti
. If an

environment µ is an artificial game, like chess, then it seems fairly natural for

µ to meet any requirements in its definition, such as having a bounded reward

sum. However, if we think of the environment µ as being the universe in which

the agent lives, then it seems unreasonable to expect that it should be required

to respect such a bound.

Strictly speaking, reward is an interpretation of the state of the environment.

In this case the environment is the universe, and clearly the universe does not

have any notion of reward for particular agents. In humans this interpretation

is internal, for example, the pain that is experienced when you touch something

hot. In this case, should it be a part of the agent rather than the environment?

If we gave the agent complete control over rewards then our framework would

become meaningless: the perfect agent could simply give itself constant maxi-

mum reward. Perhaps the analogous situation for humans would be taking the

“perfect” drug.

95 4.4 Response to
ommon
riti
isms

A more accurate framework would consist of an agent, an environment and a

separate goal system that interpreted the state of the environment and rewarded

the agent appropriately. In such a set up the bounded rewards restriction would

be a part of the goal system and thus the above problem would not occur. How-

ever, for our current purposes, it is sufficient just to fold this goal mechanism

into the environment and add an easily implemented constraint to how the en-

vironment may generate rewards. One simple way to bound an environment’s

total rewards would be to use geometric discounting as discussed in Section 2.9.

How do you respond to Blo
k's �Blo
khead� argument? The approach we have

taken is unabashedly functional. Theoretically, we desired to have a formal,

simple and very general definition. This is easier to do if we abstract over the

internal workings of the agent and define intelligence only in terms of external

communications. Practically, what matters is how well something works. By

definition, if an agent has a high value of Υ, then it must work well over a wide

range of environments.

Block attacks this perspective by describing a machine that appears to be in-

telligent as it is able to pass the Turing test, but is in fact no more than just a big

look-up table of questions and answers (Block, 1981, for a related argument see

Gunderson, 1971). Although such a look-up table would be unfeasibly large, the

fact that a finite machine could in theory consistently pass the Turing test, seem-

ingly without any real intelligence, intuitively seems odd. Our formal measure

of machine intelligence could be challenged in the same way, as could any test

of intelligence that relies only on an agent’s external behaviour.

Our response to this is very simple: if an agent has a very high value ofΥ then

it is, by definition, able to successfully operate in a wide range of environments.

We simply do not care whether the agent is efficient, due to some very clever

algorithm, or absurdly inefficient, for example by using an unfeasibly gigantic

look-up table of precomputed answers. The important point for us is that the

machine has an amazing ability to solve a huge range of problems in a wide

variety of environments.

How do you respond to Searle's �Chinese room� argument? Searle’s Chinese

room argument attacks our functional position in a similar way by arguing that

a system may appear to be intelligent without really understanding anything

[Searle, 1980]. From our perspective, whether or not an agent understands

what it is doing is only important to the extent that it affects the measurable

performance of the agent. If the performance is identical, as Searle seems to

suggest, then whether or not the room with Searle inside understands the mean-

ing of what is going on is of no practical concern; indeed, it is not even clear

96 4.4 Response to
ommon
riti
isms

to us how to define understanding if its presence has no measurable effects. So

long as the system as a whole has the powerful properties required for universal

machine intelligence, then we have the kind of extremely general and powerful

machine that we desire. On the other hand, if understanding does have a mea-

surable impact on an agent’s performance in some situations, then it is of interest

to us. In which case, because Υ measures performance in all well defined sit-

uations, it follows that Υ is in part a measure of how much understanding an

agent has.

But you don't deal with
ons
iousness (or
reativity, imagination, freewill,

emotion, love, soul, et
.) We apply the same argument to consciousness, emo-

tions, freewill, creativity, the soul and other such things. Our goal is to build

powerful and flexible machines and thus these somewhat vague properties are

only relevant to our goal to the extent to which they have some measurable ef-

fect on performance in some well defined environment. If no such measurable

effect exists, then they are not relevant to our objective. Of course this is not

the same as saying that these things do not exist. The question is whether they

are relevant or not. We would consider understanding, imagination and creativ-

ity, appropriately defined, to have a significant impact on an agent’s ability to

adapt to challenging environments. Perhaps the same is also true of emotions,

freewill and other qualities. If one accepts that these properties affect an agent’s

performance, then universal intelligence is in part a test for these properties.

Intelligen
e is fundamentally an anthropo
entri

on
ept. As artificial intelli-

gence researchers our goal is not to create an “artificial human”. We are inter-

ested in making machines that are able to process information in powerful ways

in order to achieve many kinds of goals and solve many kinds of problems. As

such, a limited anthropocentric concept of intelligence is not interesting to us.

Or at least, if such a definition were to be adopted, it would simply mean that we

are interested in something more general and powerful than this human focused

concept of “intelligence”.

Perhaps this is similar to the development of heavier than air flight. One of

the most outspoken sceptics of this was the American astronomer Simon New-

comb. Interestingly, even after planes were regularly “flying” he refused to ac-

cept defeat. He accepted that planes existed and moved around at great speed

up in the air, however he did not accept that what they were doing was “flying”.

To his mind, what birds did was quite different. Of course, the rest of the popu-

lation simply generalised and adapted their concept of flying to reflect the new

technology.

We believe that with more progress in artificial intelligence the same thing

97 4.4 Response to
ommon
riti
isms

will eventually happen to the everyday concept of intelligence. At present, most

people think of intelligence in human terms simply because this is the only kind

of powerful intelligence they have ever encountered. Indeed, from the perspec-

tive of evolutionary psychology, it appears that we may have evolved to expect

other intelligent agents to think and act like ourselves.

Universal intelligen
e does not agree with some everyday intuitions about the

nature of intelligen
e. Everyday intuitions are not a good guide. People in-

formally use the word “intelligence” to mean a variety of different things, and

even a single person will use the word in multiple ways that are not consistent

with each other. Thus, although our definition should clearly be related to the

everyday concept, it is not necessarily desirable, or even possible, for a precise

and self-consistent definition to always agree with everyday usage.

Consider a word that has both an everyday meaning and a precise technical

meaning. When someone says “It’s a beautiful spring day, I am full of energy

and could run up a mountain”, what they mean by the word ‘energy’ is related

to the concept of energy in physics, i.e. they need energy in the technical sense

to get up the mountain. However, the definition of energy from physics does not

entirely capture what they mean. This does not imply that there is something

wrong with the concept of energy in physics. We expect the same in artificial

intelligence: people will continue to use the word “intelligence” in an informal

way, however in order to do research we will need to adopt a more precise

definition that may be slightly different.

An agent may be intelligent even if it doesn't a
hieve anything in any envi-

ronments. Consider, for example, that you are quietly sitting in a dark room

thinking about a problem you are trying to solve. Even though you are not

achieving anything in your environment, some would argue that you are still

intelligent due to your internal process of thought. Or imagine perhaps the fa-

mous physicist Stephen Hawking disconnected from his motorised wheelchair

and talking computer. Although his ability to achieve goals in the environment

would be limited, he is still no doubt highly intelligent. A related problem is that

an agent may simply lack the motivation to exhibit intelligent behaviour, such as

a child who wants to get an IQ test out of the way as soon as possibly in order

to go outside and play. In both of these cases the agent’s intelligence seems to

be divorced from the intelligence observable in its behaviour.

The above highlights the fact that when informally considering the measure-

ment of intelligence we need to be careful about exactly how the measurement

is done. Obviously, it only makes sense to measure an individual’s intelligence if

certain essential requirements are met: a purely written test for a blind person

98 4.4 Response to
ommon
riti
isms

is senseless, as are the results of a test where the test subject has no interest in

performing well. Informally, we just assume that the test has been conducted in

an appropriate way. When we say that an agent is intelligent, what we actually

mean is that there exists some reasonable setup such that the agent exhibits a

high level of intelligence: a blind person may require an oral test, and a disinter-

ested child some kind of a bribe. Clearly then, if we want to be precise about the

measured intelligence of an agent we must specify these details about exactly

how the test was conducted.

When we say that an agent has low intelligence, what we mean is that there

does not exist any reasonable test setup such that the agent exhibits intelligent

behaviour. Some take the position that an entity could be intelligent even if it

has no measurable intelligence under any test setup. However, such an agent’s

“intelligence” would be rather meaningless as it would be a property that has

no measurable effects or consequences. Even the philosophical “brain in a vat”

could in theory be interfaced to in order to measure its universal intelligence.

Su
h an agent is not intelligent be
ause it
annot
hoose its goals. In the setup

we have defined the agent cannot decide what its primary goal is. It simply tries

to maximise the reward signal defined by the environment. In the context of

machines this is probably a good idea: we want to be the ones defining what

the machine’s primary objective is. However, this does not address the question

as to whether such a machine should really be called intelligent, or whether it

is just a very powerful and general optimiser. Intelligent humans, after all, can

choose their own goals in life. But is this really true?

Obviously we can decide that we want to become a successful scientist, a

teacher, or maybe a rock star. So we certainly have some choice in our goals.

But are these things our primary motivations? If we want to be a successful

scientist or a rock star, perhaps this is due to a deeper biological drive to attain

high status because this increases our chances of reproductive success. Perhaps

the desire to become a teacher stems from a biological drive to care for children,

again because having this drive tends to increase our probability of passing on

our genes and memes to future generations. Our interest in mating with an

attractive member of the opposite sex, avoiding intense physical pain or the

pleasure of eating energy rich foods, all of these things have clear biological mo-

tivations. Even a suicide bomber who kills himself and thus destroys his future

reproductive potential may be driven by an out-of-control biological motivation

that tries to increase his societal status in an effort to improve his chances of

reproductive success.

These ideas appear in areas such as evolutionary psychology and, it must

be said, attract a fair amount of controversy. Here we will not attempt to de-

99 4.5 Con
lusion

fend them. We simply note that they offer one explanation as to how we are

able to choose our goals in life, while at the same time having relatively fixed

fundamental motivations.

Universal intelligen
e is impossible due to the No-Free-Lun
h theorem. Some,

such as Edmonds [2006], argue that universal definitions of intelligence are

impossible due to Wolpert’s so called “No Free Lunch” theorem [Wolpert and

Macready, 1997]. However this theorem, or any of the standard variants on it,

cannot be applied to universal intelligence for the simple reason that we have

not taken a uniform distribution over the space of environments. Instead we

have used a highly non-uniform distribution based on Occam’s razor.

It is conceivable that there might exist some more general kind of “No Free

Lunch” theorem for agents that limits their maximal intelligence according to

our definition. Clearly any such result would have to apply only to computable

agents given that the incomputable AIXI agent faces no such limit. If such a

result were true, it would suggest that our definition of intelligence is perhaps

too broad in its scope. Currently we know of no such result (c.f. Chapter 5).

4.5 Con
lusion

Given the obvious significance of formal definitions of intelligence for research,

and calls for more direct measures of machine intelligence to replace the prob-

lematic Turing test and other imitation based tests [Johnson, 1992], little work

has been done in this area. In this chapter we have attempted to tackle this

problem by taking an informal definition of intelligence modelled on expert def-

initions of human intelligence, and then formalising it. We believe that the

resulting mathematical definition captures the concept of machine intelligence

in a very powerful and elegant way. Furthermore, we have seen that agents

which are extremely intelligent with respect to this definition, such as AIXI, can

be proven to have powerful optimality properties.

The central challenge for future work on universal intelligence is to convert

this theoretical definition of machine intelligence into a workable test. The ba-

sic structure of such a test is already apparent from the equation for Υ: the

test would work by evaluating the performance of an agent on a large sample

of simulated environments, and then combine the agent’s performance in each

environment into an overall intelligence value. This would be done by weight-

ing the agent’s performance in each environment according the environment’s

complexity.

A theoretical challenge that will need to be dealt with is to find a suitable

replacement for the incomputable Kolmogorov complexity function. One solu-

100 4.5 Con
lusion

tion could be to use K t complexity [Levin, 1973], another might be to use the

Speed prior [Schmidhuber, 2002]. Both of these consider the complexity of an

algorithm to be determined by both its minimal description length and running

time, thus forcing the complexity measures to be computable. Taking computa-

tion time into account also makes reasonable intuitive sense because we would

not usually consider a very short algorithm that takes an enormous amount of

time to run to be a particularly simple one. The fact that such an approach can

be made to work is evidenced by the C-Test (see Section 1.7).

Chapter 5

Limits of Computational Agents

One of the reasons for studying mathematical models such as AIXI is to gain

insights that may be useful for designing practical artificial intelligence agents.

The question then arises as to how useful all this incomputable theory really is.

In this chapter we will explore this question by looking at the theoretical limita-

tions faced by computable sequence predictors that attempt to approximate the

power and generality of Solomonoff induction. As sequence prediction lies at

the heart of reinforcement learning, any limitations found here will carry over

to general computable agents.

As we saw in Chapter 2, sequence prediction and compression are intimately

related. Indeed, they are two different ways of looking at the same problem.

Intuitively, if you can accurately predict what is coming next you do not need to

use much information to encode what the data actually is, and vice versa. For

sequence predictors based on the Minimum Description Length (MDL) principle

[Rissanen, 1996] or the Minimum Message Length (MML) principle [Wallace and

Boulton, 1968], this connection is especially evident as they predict by attempt-

ing to find the shortest possible description, or model, of the data. Not surpris-

ingly then, they can be viewed as computable approximations of Solomonoff in-

duction (Section 5.5 of Li and Vitányi, 1997). Furthermore, in order to produce

a working sequence predictor these methods can easily be combined with gen-

eral purpose data compressors, such as the Lempel-Ziv algorithm [Feder et al.,

1992] or Context Tree Weighting [Willems et al., 1995]. Unfortunately, while

useful in practice, these real world compressors have their limitations: they are

able to find some kinds of computable regularities in sequences, but not oth-

ers. As such, predictors based on them fall short of the power and generality

of Solomonoff induction. Furthermore, even with ideal compression MDL and

MML based predictors can take exponentially longer than Solomonoff induction

to learn as they use only the shortest description of the data, rather than the set

of all possible descriptions [Poland and Hutter, 2004].

101

102 5.1 Preliminaries

Can we do better than this? Do universal and computable predictors for

computable sequences exist? Unfortunately, it is easy to see that they do not:

simply consider a sequence where the next bit is always the opposite of what the

predictor predicts. This is essentially the same as what Dawid noted when he

found that for any statistical forecasting system there exist sequences for which

the predictor is not calibrated, and thus cannot be learnt [Dawid, 1985]. How-

ever, he does not deal with the complexity of the sequences themselves, nor does

he make a precise statement in terms of a specific measure of complexity. The

impossibility of forecasting has since been developed in considerably more depth

by V’yugin [1998], in particular he proves that there is an efficient randomised

procedure producing sequences that cannot be predicted, with high probability,

by computable forecasting systems.

In this chapter we study the prediction of computable sequences from the

perspective of Kolmogorov complexity. The central question we look at is the

prediction of sequences which have bounded Kolmogorov complexity. This leads

us to a new notion of complexity: Rather than the length of the shortest program

able to generate a given sequence, in other words standard Kolmogorov com-

plexity, we take the length of the shortest program able to learn to predict the

sequence. This new complexity measure has the same fundamental invariance

property as Kolmogorov complexity, and certain strong relationships between

the two measures are proven. Nevertheless, in some cases the two can diverge

significantly. For example, although a long random string that indefinitely re-

peats has a very high Kolmogorov complexity, this sequence also has a relatively

simple structure that even a simple predictor can learn to predict.

We then prove that some sequences can only be predicted by very complex

predictors. This implies that very general prediction algorithms, in particular

those that can learn to predict all sequences up to a given Kolmogorov complex-

ity, must themselves be complex. This puts an end to our hope of there being

an extremely general and yet relatively simple prediction algorithm. We then

use this fact to prove that although very powerful prediction algorithms exist,

they cannot be mathematically discovered due to Gödel incompleteness. This

significantly constrains our ability to design and analyse powerful prediction al-

gorithms, and indeed powerful artificial intelligence algorithms in general.

5.1 Preliminaries

For the basic notation for strings and sequences see Appendix 7.3. In this chapter

we will sometimes need to encode a natural number as a string. Using simple

encoding techniques it can be shown that there exists a computable injective

function f : N → B∗ where no string in the range of f is a prefix of any other,

103 5.1 Preliminaries

and ∀n ∈ N : ℓ(f (n))≤ log2 n+ 2 log2 log2 n+ 1= O(log n).

Of particular interest to us will be the class of sequences which can be gen-

erated by an algorithm executed on the following type of machine:

5.1.1 Definition. A monotone universal Turing machine U is defined as a

universal Turing machine with one unidirectional input tape, one unidirectional

output tape, and some bidirectional work tapes. Input tapes are read only, out-

put tapes are write only, unidirectional tapes are those where the head can only

move from left to right. All tapes are binary (no blank symbol) and the work

tapes are initially filled with zeros. We say thatU outputs/computes a sequence

ω on input p, and write U (p) =ω, if U reads all of p but no more as it contin-

ues to write ω to the output tape.

We fixU and defineU (p, x) by simply using a standard coding technique to

encode a program p along with a string x ∈ B∗ as a single input string forU . For

simplicity of notation we will often write p(x) to mean the function computed

by the program p when executed on U along with the input string x , that is,

p(x) is short hand for U (p, x).

5.1.2 Definition. A sequence ω ∈ B∞ is a computable binary sequence if

there exists a program q ∈ B∗ that writes ω to a one-way output tape when run

on a monotone universal Turing machine U , that is, ∃q ∈ B∗ : U (q) = ω. We

denote the set of all computable sequences by C .

A similar definition for strings is not necessary as all strings have finite length

and are therefore trivially computable: all an algorithm has to do is to copy the

desired string to the output tape and then halt.

5.1.3 Definition. A computable binary predictor is a program p ∈ B∗ that on

a universal Turing machine U computes a total function B∗→ B.

Having x1:n as input, the objective of a predictor is for its output, called its

prediction, to match the next symbol in the sequence. Formally we express this

by writing p(x1:n) = xn+1.

Note that this is different to earlier chapters where a predictor generated a

distribution over the possible symbols that might occur next, rather than out-

putting the predicted symbol. What we consider here is a special case of proba-

bilistic prediction as it is equivalent to a probabilistic predictor that in each cycle

always assigns probability 1 to some symbol.

As the algorithmic prediction of incomputable sequences, such as the halting

sequence, is impossible by definition, we only consider the problem of predicting

computable sequences. To simplify things we will assume that the predictor

104 5.2 Predi
tion of
omputable sequen
es

has an unlimited supply of computation time and storage. We will also make

the assumption that the predictor has unlimited data to learn from, that is, we

are only concerned with whether or not a predictor can learn to predict in the

following sense:

5.1.4 Definition. We say that a predictor p can learn to predict a sequence

ω := x1 x2 . . . ∈ B∞ if there exists m ∈ N such that ∀n≥ m : p(x1:n) = xn+1.

The existence of m in the above definition need not be constructive, that is,

we might not know when the predictor will stop making prediction errors for

a given sequence, just that this will occur eventually. This is essentially “next

value” prediction as characterised by Barzdin [1972], which follows the notion

of identifiability in the limit for languages from Gold [1967].

5.1.5 Definition. Let P (ω) be the set of all predictors able to learn to predict

ω. Similarly for sets of sequences S ⊂ B∞, define P (S) :=
⋂

ω∈S
P (ω).

A standard measure of complexity for sequences is the length of the shortest

program which generates the sequence:

5.1.6 Definition. For any sequence ω ∈ B∞ the Kolmogorov complexity of

the sequence is,

K(ω) := min
q∈B∗
{ℓ(q) :U (q) =ω },

whereU is a monotone universal Turing machine. If no such q exists, we define

K(ω) :=∞.

In essentially the same way we can define the Kolmogorov complexity of a

string x ∈ Bn, written K(x), by requiring that U (q) halts after generating x on

the output tape.

It can be shown that Kolmogorov complexity depends on our choice of uni-

versal Turing machineU , but only up to an additive constant that is independent

of ω. This is due to the fact that a universal Turing machine can simulate any

other universal Turing machine with a fixed length program. For more expla-

nation see Section 2.4, or for an extensive treatment of Kolmogorov complexity

and some of its applications see [Li and Vitányi, 1997] or [Calude, 2002].

5.2 Predi
tion of
omputable sequen
es

The most elementary result is that every computable sequence can be predicted

by at least one predictor, and that this predictor need not be significantly more

complex than the sequence to be predicted.

105 5.2 Predi
tion of
omputable sequen
es

5.2.1 Lemma. ∀ω ∈ C ,∃p ∈ P (ω) : K(p)<
+

K(ω).

Proof. As the sequenceω is computable, there must exist at least one algorithm

that generates ω. Let q be the shortest such algorithm and construct an algo-

rithm p that “predicts”ω as follows: Firstly the algorithm p reads x1:n to find the

value of n, then it runs q to generate x1:n+1 and returns xn+1 as its prediction.

Clearly p perfectly predictsω and ℓ(p)< ℓ(q)+ c, for some small constant c that

is independent of ω and q. 2

Not only can any computable sequence be predicted, there also exist very

simple predictors able to predict arbitrarily complex sequences:

5.2.2 Lemma. There exists a predictor p such that ∀n ∈ N,∃ω ∈ C : p ∈ P (ω)

and K(ω)> n.

Proof. Take a string x such that K(x) = ℓ(x) ≥ 2n, and from this define a

sequence ω := x0000 Clearly K(ω) > n and yet a simple predictor p that

always predicts 0 can learn to predict ω. 2

The predictor used in the above proof is very simple and can only “learn”

sequences that end with all 0’s, albeit where the initial string can have arbitrarily

high Kolmogorov complexity. It may seem that this is due to sequences that are

initially complex but where the “tail complexity”, defined lim infi→∞ K(ωi:∞), is

zero. This is not the case:

5.2.3 Lemma. There exists a predictor p such that ∀n ∈ N,∃ω ∈ C : p ∈ P (ω)

and lim infi→∞ K(ωi:∞)> n.

Proof. A predictor p for eventually periodic sequences can be defined as fol-

lows: On input ω1:k the predictor goes through the ordered pairs (1, 1), (1, 2),

(2, 1), (1, 3), (2, 2), (3, 1), (1, 4), . . . checking for each pair (a, b) whether the

string ω1:k consists of an initial string of length a followed by a repeating string

of length b. On the first match that is found p predicts that the repeating string

continues, and then p halts. If a+ b > k before a match is found, then p outputs

a fixed symbol and halts. Clearly K(p) is a small constant and p will learn to

predict any sequence that is eventually periodic.

For any (m, n) ∈ N2, let ω := x(y∗) where x ∈ Bm, and y ∈ Bn is a random

string, that is, K(y) = n. As ω is eventually periodic p ∈ P (ω) and also we see

that lim infi→∞ K(ωi:∞) =min{K(ωm+1:∞), K(ωm+2:∞), . . . , K(ωm+n:∞)}.

For any k ∈ {1, . . . , n} let q∗
k

be the shortest program that can generate

ωm+k:∞. We can define a halting program q′
k

that outputs y where this program

consists of q∗
k
, n and k. Thus, ℓ(q′

k
) = ℓ(q∗

k
) +O(log n) = K(ωk:∞) +O(log n). As

106 5.3 Predi
tion of simple
omputable sequen
es

n = K(y) ≤ ℓ(q′
k
), we see that K(ωk:∞) > n−O(log n). As n and k are arbitrary

the result follows. 2

Using a more sophisticated version of this proof it can be shown that there

exist predictors that can learn to predict arbitrary regular or primitive recursive

sequences. Thus we might wonder whether there exists a computable predictor

able to learn to predict all computable sequences. Unfortunately, no universal

predictor exists, indeed for every predictor there exists a sequence which it can-

not predict at all:

5.2.4 Lemma. For any predictor p there constructively exists a sequence ω :=

x1 x2 . . . ∈ C such that ∀n ∈ N : p(x1:n) 6= xn+1 and K(ω)<
+

K(p).

Proof. For any computable predictor p there constructively exists a computable

sequence ω = x1 x2 x3 . . . computed by an algorithm q defined as follows: Set

x1 = 1− p(λ), then x2 = 1− p(x1), then x3 = 1− p(x1:2) and so on. Clearly

ω ∈ C and ∀n ∈ N : p(x1:n) = 1− xn+1.

Let p∗ be the shortest program that computes the same function as p and de-

fine a sequence generation algorithm q∗ based on p∗ using the procedure above.

By construction, ℓ(q∗) = ℓ(p∗)+ c for some constant c that is independent of p∗.

Because q∗ generatesω, it follows that K(ω)≤ ℓ(q∗). By definition K(p) = ℓ(p∗)

and so K(ω)<
+

K(p). 2

Allowing the predictor to be probabilistic, as we did in previous chapters,

does not fundamentally avoid the problem of Lemma 5.2.4. In each step, rather

than generating the opposite to what will be predicted by p, instead q attempts to

generate the symbol that p is least likely to predict given x1:n. To do this q must

simulate p in order to estimate the probability that p(x1:n) = 1. With sufficient

simulation effort, q can estimate this probability to any desired accuracy for any

x1:n. This produces a computable sequence ω such that ∀n ∈ N the probability

that p(x1:n) = xn+1 is not significantly greater than 1

2
, that is, the performance

of p is no better than a predictor that makes completely random predictions. As

probabilistic prediction complicates things without avoiding this problem, in this

chapter we will consider only deterministic predictors. This will also allow us to

see the root of this problem as clearly as possible.

With the preliminaries covered, we now move on to the central problem:

predicting sequences of limited Kolmogorov complexity.

5.3 Predi
tion of simple
omputable sequen
es

As the computable prediction of any computable sequence is impossible, a weaker

goal is to be able to predict all “simple” computable sequences.

107 5.3 Predi
tion of simple
omputable sequen
es

5.3.1 Definition. For n ∈ N, let Cn := {ω ∈ C : K(ω) ≤ n}. Further, let

Pn := P (Cn) be the set of predictors able to learn to predict all sequences in

Cn.

Firstly, we establish that prediction algorithms exist that can learn to predict

all sequences up to a given complexity, and that these predictors need not be

significantly more complex than the sequences they can predict:

5.3.2 Lemma. ∀n ∈ N,∃p ∈ Pn : K(p)<
+

n+O(log n).

Proof. Let h ∈ N be the number of programs of length n or less which generate

infinite sequences. Build the value of h into a prediction algorithm p constructed

as follows:

In the kth prediction cycle run in parallel all programs of length n or less until

h of these programs have each produced k+ 1 symbols of output. Next predict

according to the k + 1th symbol of the generated string whose first k symbols

is consistent with the observed string. If more than one generated string is

consistent with the observed sequence, pick the one which was generated by the

program that occurs first in a lexicographical ordering of the programs. If no

generated output is consistent, give up and output a fixed symbol.

For sufficiently large k, only the h programs which produce infinite sequences

will produce output strings of length k+1. As this set of sequences is finite, they

can be uniquely identified by finite initial strings. Thus, for sufficiently large

k, the predictor p will correctly predict any computable sequence ω for which

K(ω)≤ n, that is, p ∈ Pn.

As there are 2n+1
− 1 possible strings of length n or less, h < 2n+1 and thus

we can encode h with log2 h+ 2 log2 log2 h = n+ 1+ 2 log2(n+ 1) bits. Thus,

K(p)< n+1+2 log2(n+1)+ c for some constant c that is independent of n. 2

Can we do better than this? Lemmas 5.2.2 and 5.2.3 show us that there

exist predictors able to predict at least some sequences vastly more complex

than themselves. This suggests that there might exist simple predictors able to

predict arbitrary sequences up to a high complexity. Formally, could there exist

p ∈ Pn where n ≫ K(p)? Unfortunately, these simple but powerful predictors

are not possible:

5.3.3 Theorem. ∀n ∈ N : p ∈ Pn⇒ K(p)>
+

n.

Proof. For any n ∈ N let p ∈ Pn, that is, ∀ω ∈ Cn : p ∈ P (ω). By Lemma 5.2.4

we know that ∃ω′ ∈ C : p /∈ P (ω′) . As p /∈ P (ω′) it must be the case that

ω′ /∈ Cn, that is, K(ω′)≥ n. From Lemma 5.2.4 we also know that K(p)>
+

K(ω′)

and so the result follows. 2

108 5.4 Complexity of predi
tion

Intuitively the reason for this is as follows: Lemma 5.2.4 guarantees that

every simple predictor fails for at least one simple sequence. Thus, if we want

a predictor that can learn to predict all sequences up to a moderate level of

complexity, then clearly the predictor cannot be simple. Likewise, if we want a

predictor that can predict all sequences up to a high level of complexity, then the

predictor itself must be very complex. Even though we have made the generous

assumption of unlimited computational resources and data to learn from, only

very complex algorithms can be truly powerful predictors.

These results easily generalise to notions of complexity that take computation

time into consideration. As sequences are infinite, the appropriate measure of

time is the time needed to generate or predict the next symbol in the sequence.

Under any reasonable measure of time complexity, the operation of inverting a

single output from a binary valued function can be performed with little cost. If

C is any complexity measure with this property, it is trivial to see that the proof

of Lemma 5.2.4 still holds for C . From this, an analogue of Theorem 5.3.3 for C

easily follows.

With similar arguments these results also generalise, in a straightforward

way, to complexity measures that take space or other computational resources

into account. Thus, the fact that extremely powerful predictors must be very

complex, holds under any measure of complexity for which inverting a single bit

is inexpensive.

5.4 Complexity of predi
tion

Another way of viewing these results is in terms of an alternate notion of se-

quence complexity defined as the size of the smallest predictor able to learn

to predict the sequence. This allows us to express the results of the previous

sections more concisely. Formally, for any sequence ω define the complexity

measure,

K̇(ω) := min
p∈B∗
{ℓ(p) : p ∈ P (ω) },

and K̇(ω) := ∞ if P (ω) = ∅. Thus, if K̇(ω) is high then the sequence ω is

complex in the sense that only complex prediction algorithms are able to learn

to predict it. It can easily be seen that this notion of complexity has the same

invariance to the choice of reference universal Turing machine as the standard

Kolmogorov complexity measure.

It may be tempting to conjecture that this definition simply describes what

might be called the “tail complexity” of a sequence, that is, K̇(ω) is equal to

lim infi→∞ K(ωi:∞). This is not the case. In the proof of Lemma 5.2.3 we saw

that there exists a single predictor capable of learning to predict any sequence

109 5.5 Hard to predi
t sequen
es

that consists of a repeating string, and thus for these sequences K̇ is bounded. It

was further shown that there exist sequences of this form with arbitrarily high

tail complexity. Clearly then tail complexity and K̇ cannot be equal in general.

Using K̇ we can now rewrite a number of our previous results much more

succinctly. From Lemma 5.2.1 it immediately follows that,

∀ω : 0 ≤ K̇(ω) <
+

K(ω).

From Lemma 5.2.2 we know that ∃c ∈ N,∀n ∈ N,∃ω ∈ C such that K̇(ω) < c

and K(ω) > n, that is, K̇ can attain the lower bound above within a small

constant, no matter how large the value of K is. The sequences for which the

upper bound on K̇ is tight are interesting as they are the ones which demand

complex predictors. We prove the existence of these sequences and look at some

of their properties in the next section.

The complexity measure K̇ can also be generalised to sets of sequences, for

S ⊂ B∞ define K̇(S) := minp {ℓ(p) : p ∈ P (S) }. This allows us to rewrite

Lemma 5.3.2 and Theorem 5.3.3 as simply,

∀n ∈ N : n <
+

K̇(Cn) <
+

n+O(log n).

This is just a restatement of the fact that the simplest predictor capable of

predicting all sequences up to a Kolmogorov complexity of n, has itself a Kol-

mogorov complexity of roughly n.

Perhaps the most surprising thing about K̇ complexity is that this very natural

definition of the complexity of a sequence, as viewed from the perspective of

prediction, does not appear to have been studied before.

5.5 Hard to predi
t sequen
es

We have already seen that some individual sequences, such as the repeating

string used in the proof of Lemma 5.2.3, can have arbitrarily high Kolmogorov

complexity but nevertheless can be predicted by trivial algorithms. Thus, al-

though these sequences contain a lot of information in the Kolmogorov sense, in

a deeper sense their structure is very simple and easily learnt.

What interests us in this section is the other extreme: individual sequences

that can only be predicted by complex predictors. As we are concerned with

prediction in the limit, this extra complexity in the predictor must be some kind

of special information which cannot be learnt through observing the sequence.

Our first task is to show that these hard to predict sequences exist.

5.5.1 Theorem. ∀n ∈ N,∃ω ∈ C : n <
+

K̇(ω) <
+

K(ω) <
+

n+O(log n).

110 5.5 Hard to predi
t sequen
es

Proof. For any n ∈ N, let Qn ⊂ B
<n be the set of programs shorter than n that

are predictors, and let x1:k ∈ B
k be the observed initial string from the sequence

ω that is to be predicted. Now construct a meta-predictor p̂:

By dovetailing the computations, run in parallel every program of length

less than n on every string in B≤k. Each time a program is found to halt on

all of these input strings, add the program to a set of “candidate prediction

algorithms”, called Q̃k
n
. As each element of Qn is a valid predictor, and thus halts

for all input strings in B∗ by definition, for every n and k it eventually will be the

case that |Q̃k
n
|= |Qn|. At this point the simulation to approximate Qn terminates.

It is clear that for sufficiently large values of k all of the valid predictors, and

only the valid predictors, will halt with a single symbol of output on all tested

input strings. That is, ∃r ∈ N,∀k > r : Q̃k
n
=Qn.

The second part of the p̂ algorithm uses these candidate prediction algo-

rithms to make a prediction. For p ∈ Q̃k
n

define dk(p) :=
∑k−1

i=1
|p(x1:i)− x i+1|.

Informally, dk(p) is the number of prediction errors made by p so far. Compute

this for all p ∈ Q̃k
n

and then let p∗
k
∈ Q̃k

n
be the program with minimal dk(p).

If there is more than one such program, break the tie by letting p∗
k

be the lexi-

cographically first of these. Finally, p̂ computes the value of p∗
k
(x1:k) and then

returns this as its prediction and halts.

By Lemma 5.2.4, there exists ω′ ∈ C such that p̂ makes a prediction error

for every k when trying to predict ω′. Thus, in each cycle at least one of the

finitely many predictors with minimal dk makes a prediction error and so ∀p ∈

Qn : dk(p) → ∞ as k → ∞. Therefore, ∄p ∈ Qn : p ∈ P (ω′), that is, no

program of length less than n can learn to predict ω′ and so n≤ K̇(ω′). Further,

from Lemma 5.2.1 we know that K̇(ω′) <
+

K(ω′), and from Lemma 5.2.4 again,

K(ω′)<
+

K(p̂).

Examining the algorithm for p̂, we see that it contains some fixed length

program code and an encoding of |Qn|, where |Qn| < 2n
− 1. Thus, using a

standard encoding method for integers, K(p̂) <
+

n+ O(log n). Chaining these,

n<
+

K̇(ω′)<
+

K(ω′)<
+

K(p̂)<
+

n+O(log n), which proves the theorem. 2

This establishes the existence of sequences with arbitrarily high K̇ complexity

which also have a similar level of Kolmogorov complexity. Next we establish

a fundamental property of high K̇ complexity sequences: they are extremely

difficult to compute.

For an algorithm q that generates ω ∈ C , define tq(n) to be the number of

computation steps performed by q before the nth symbol of ω is written to the

output tape. For example, if q is a simple algorithm that outputs the sequence

010101 . . ., then clearly tq(n) = O(n) and so ω can be computed quickly. The

following theorem proves that if a sequence can be computed in a reasonable

amount of time, then the sequence must have a low K̇ complexity:

111 5.6 The limits of mathemati
al analysis

5.5.2 Lemma. ∀ω ∈ C , if ∃q :U (q) =ω and ∃r ∈ N,∀n > r : tq(n) < 2n, then

K̇(ω)
+

= 0.

Proof. Construct a prediction algorithm p̃ as follows:

On input x1:n, run all programs of length n or less, each for 2n+1 steps. In

a set Wn collect together all generated strings which are at least n+ 1 symbols

long and where the first n symbols match the observed string x1:n. Now order

the strings in Wn according to a lexicographical ordering of their generating

programs. If Wn = ∅, then just return a prediction of 1 and halt. If |Wn|> 1 then

return the n+ 1th symbol from the first sequence in the above ordering.

Assume that ∃q :U (q) =ω such that ∃r ∈ N,∀n > r : tq(n) < 2n. If q is not

unique, take q to be the lexicographically first of these. Clearly ∀n> r the initial

string from ω generated by q will be in the set Wn. As there is no lexicographi-

cally lower program which can generate ω within the time constraint tq(n)< 2n

for all n > r, for sufficiently large n the predictor p̃ must converge on using q

for each prediction and thus p̃ ∈ P (ω). As ℓ(p̃) is clearly a fixed constant that

is independent of ω, it follows then that K̇(ω)< ℓ(p̃)
+

= 0. 2

We could replace the 2n bound in the above result with any monotonically

growing computable function, for example, 22n

. In any case, this does not

change the fundamental result that sequences which have a high K̇ complexity

are practically impossible to compute. However, from our theoretical perspec-

tive, these sequences present no problem as they can be predicted, albeit with

immense difficulty.

5.6 The limits of mathemati
al analysis

One way to interpret the results of the previous sections is in terms of con-

structive theories of prediction. Essentially, a constructive theory of prediction

expressed in some sufficiently rich formal system F, is in effect a description of

a prediction algorithm with respect to a universal Turing machine which imple-

ments the required parts of F. Thus, from Theorems 5.3.3 and 5.5.1, it follows

that if we want to have a predictor that can learn to predict all sequences up to

a high level of Kolmogorov complexity, or even just predict individual sequences

which have high K̇ complexity, the constructive theory of prediction that we base

our predictor on must be very complex. Elegant and highly general constructive

theories of prediction simply do not exist, even if we assume unlimited compu-

tational resources. This is in marked contrast to Solomonoff’s highly elegant but

non-constructive theory of prediction.

112 5.6 The limits of mathemati
al analysis

Naturally, highly complex theories of prediction will be very difficult to math-

ematically analyse, if not practically impossible. Thus, at some point the devel-

opment of very general prediction algorithms must become mainly an exper-

imental endeavour due to the difficulty of working with the required theory.

Interestingly, an even stronger result can be proven showing that beyond some

point the mathematical analysis is in fact impossible, even in theory:

5.6.1 Theorem. In any consistent formal axiomatic system F that is sufficiently

rich to express statements of the form “p ∈ Pn”, there exists m ∈ N such that for all

n > m and for all predictors p ∈ Pn the true statement “p ∈ Pn” cannot be proven

in F.

In other words, even though we have proven that very powerful sequence

prediction algorithms exist, beyond a certain complexity it is impossible to find

any of these algorithms using mathematics. The proof has a similar structure to

Chaitin’s information theoretic proof [Chaitin, 1982] of Gödel’s incompleteness

theorem for formal axiomatic systems [Gödel, 1931].

Proof. For each n ∈ N let Tn be the set of statements expressed in the formal

system F of the form “p ∈ Pn”, where p is filled in with the complete description

of some algorithm in each case. As the set of programs is denumerable, Tn is

also denumerable and each element of Tn has finite length. From Lemma 5.3.2

and Theorem 5.3.3 it follows that each Tn contains infinitely many statements

of the form “p ∈ Pn” which are true.

Fix n and create a search algorithm s that enumerates all proofs in the formal

system F searching for a proof of a statement in the set Tn. As the set Tn is

recursive, s can always recognise a proof of a statement in Tn. If s finds any such

proof, it outputs the corresponding program p and then halts.

By way of contradiction, assume that s halts, that is, a proof of a theorem

in Tn is found and p such that p ∈ Pn is generated as output. The size of

the algorithm s is a constant (a description of the formal system F and some

proof enumeration code) as well as an O(log n) term needed to describe n. It

follows then that K(p)<
+

O(log n). However, from Theorem 5.3.3 we know that

K(p) >
+

n. Thus, for sufficiently large n, we have a contradiction and so our

assumption of the existence of a proof must be false. That is, for sufficiently

large n and for all p ∈ Pn, the true statement “p ∈ Pn” cannot be proven within

the formal system F. 2

The exact value of m depends on our choice of formal system F and which

reference machine U we measure complexity with respect to. However, for

reasonable choices of F and U the value of m would be in the order of 1000.

That is, the bound m is certainly not so large as to be vacuous.

113 5.7 Con
lusion

5.7 Con
lusion

We have shown that there does not exist an elegant constructive theory of pre-

diction for computable sequences, even if we assume unbounded computational

resources, unbounded data and learning time, and place moderate bounds on

the Kolmogorov complexity of the sequences to be predicted. Very powerful com-

putable predictors are therefore necessarily complex. We have further shown

that the source of this problem is the existence of computable sequences which

are extremely expensive to compute. While we have proven that very power-

ful prediction algorithms which can learn to predict these sequences exist, we

have also proven that, unfortunately, mathematical analysis cannot be used to

discover these algorithms due to Gödel incompleteness.

These results can be extended to more general settings, specifically to those

problems which are equivalent to, or depend on, sequence prediction. Consider,

for example, a reinforcement learning agent interacting with an environment, as

described in Chapters 2 and 3. In each interaction cycle the agent must choose

its actions so as to maximise the future rewards that it receives from the envi-

ronment. Of course the agent cannot know for certain if some action will lead to

rewards in the future. Whether explicitly or implicitly, it must somehow predict

these. Thus, at the heart of reinforcement learning lies a prediction problem,

and so the results for computable predictors presented in this paper also apply

to computable reinforcement learners. More specifically, from Theorem 5.3.3

it follows that very powerful computable reinforcement learners are necessarily

complex, and from Theorem 5.6.1 it follows that it is impossible to discover any

of these extremely powerful reinforcement learning algorithms mathematically.

These relationships are illustrated in Figure 5.1.

It is reasonable to ask whether the assumptions we have made in our model

need to be changed. If we increase the power of the predictors further, for exam-

ple by providing them with some kind of an oracle, this would make the predic-

tors even more unrealistic than they currently are. This goes against our goal of

finding an elegant, powerful and general prediction theory that is more realistic

in its assumptions than Solomonoff’s incomputable model. On the other hand, if

we weaken our assumptions about the predictors’ resources to make them more

realistic, we are in effect taking a subset of our current class of predictors. As

such, all the same limitations and problems will still apply, as well as some new

ones.

It seems then that the way forward is to further restrict the problem space.

One possibility would be to bound the amount of computation time needed to

generate the next symbol in the sequence. However, if we do this without re-

stricting the predictors’ resources then the simple predictor from Lemma 5.5.2

easily learns to predict any such sequence and thus the problem of prediction in

114 5.7 Con
lusion

the limit has become trivial. Another possibility might be to bound the memory

of the machine used to generate the sequence, however this makes the generator

a finite state machine and thus bounds its computation time, again making the

problem trivial.

Perhaps the only reasonable solution would be to add additional restrictions

to both the algorithms which generate the sequences to be predicted, and to the

predictors. We may also want to consider not just learnability in the limit, but

also how quickly the predictor is able to learn. Of course we are then facing a

much more difficult analysis problem.

115 5.7 Con
lusion

Figure 5.1: Theorem 5.3.3 rules out simple but powerful artificial intelligence al-

gorithms, as indicated by the greyed out region in the upper left. Theorem 5.6.1

upper bounds how powerful an algorithm can be before it can no longer be

proven to be a powerful algorithm. This is indicated by the horizontal line sep-

arating the region of provable algorithms from the region of Gödel incomplete-

ness.

116 5.7 Con
lusion

Chapter 6

Temporal Di�eren
e Updating without

a Learning Rate

In Chapters 2 and 3 we saw how universal agents are able to learn to behave

optimally across a wide range of environments. Unfortunately, these agents are

incomputable as they are based on incomputable universal prior distributions.

Thus, in order to use the theory of universal artificial intelligence to design and

build practical algorithms, we must first find a way to scale the theory down. In

Chapter 5 we investigated some of the constraints faced when attempting this.

What we uncovered was a number of fundamental negative results. In short,

computable predictors capable of predicting all sequences up to a moderate Kol-

mogorov complexity are both highly complex and mathematically impossible to

find due to Gödel incompleteness. The only way out of this bind, it seems, is to

move to a more sophisticated measure of complexity that takes not only informa-

tion content into account, but also time and space. Unfortunately, the theory of

resource bounded complexity is notoriously difficult to work with and has many

unsolved fundamental questions. Furthermore, even if the universal prior dis-

tribution could be replaced by a suitable computable prior, perhaps something

like the Speed prior [Schmidhuber, 2002], there still remains the fact that AIXI’s

search through possible futures requires computation time that is exponential in

the depth of the look ahead (see the equation for AIXI in Section 2.10).

Despite these difficulties, several attempts at scaling AIXI down have been

made. The most theoretically founded of these is AIXIt l (Chapter 7 of Hutter,

2005). In this model, proof search is used to limit the size and computation

time of the algorithm. Unfortunately, although technically computable, the re-

sulting agent still requires impossibly vast computational resources. Another

more drastic scaling down of AIXI did produce a usable algorithm [Poland and

Hutter, 2006]. Here the problem domain was limited to games that could be

described by 2× 2 matrices, and the look ahead was bounded to 8 interaction

117

118 6.1 Temporal di�eren
e learning

cycles. The resulting algorithm was able to learn simple game theoretic inter-

action strategies. While this proves that some kind of scaling down of AIXI is

possible, the problem space of 2 × 2 matrix games falls well short of what is

needed for a useful artificial intelligence algorithm.

In this chapter we present what started out as another attempt to scale AIXI

down. As we have seen in previous chapters, at the core of the reinforcement

learning problem lies the problem of estimating the expected future discounted

reward. We begin by expressing this estimation problem as a loss function, more

specifically, as the squared difference between the empirical future discounted

reward and our estimate. We then derive an equation for this estimator by min-

imising the loss function. Although the resulting learning equations no longer

bear much resemblance to AIXI, they do strongly resemble the standard equation

for temporal difference learning with eligibility traces, also known as the TD(λ)

algorithm. Interestingly, while the standard algorithm has a free learning rate

parameter, in our new equation there is none. In its place there is an equation

that automatically sets the learning rate in a way that is specific to each state

transition. We have experimentally tested this new learning rule against TD(λ)

and found that it offers superior performance in various settings. We have also

extended the algorithm to reinforcement learning and again found encouraging

results. This chapter covers the derivation of this algorithm and our experimen-

tal results.

Note that while the notation used in this chapter is fairly standard for the

temporal difference learning literature, it is a little different to what we used

to define AIXI. For example, we now talk of states rather than observations, and

index the value function in a new way.

6.1 Temporal di�eren
e learning

In the field of reinforcement learning, perhaps the most popular way to esti-

mate the future discounted reward of states is the method of temporal difference

learning. It is unclear who exactly introduced this first, however the first explicit

version of temporal difference as a learning rule appears to be Witten [1977].
The idea is as follows: The expected future discounted reward of a state s is,

V s := E
¦

rk + γrk+1+ γ
2rk+2+ · · · |sk = s

©

,

where the rewards rk, rk+1, . . . are geometrically discounted into the future by

γ < 1. From this definition it follows that,

V s = E
¦

rk + γV sk+1
|sk = s

©

. (6.1)

119 6.1 Temporal di�eren
e learning

Our task, at time t, is to compute an estimate V t
s

of V s for each state s.

The only information we have to base this estimate on is the current history

of state transitions, s1, s2, . . . , st , and the current history of observed rewards,

r1, r2, . . . , rt . Equation (6.1) suggests that at time t + 1 the value of rt + γVst+1

provides us with information on what V t
s

should be: if it is higher than V t
st

then

perhaps this estimate should be increased, and vice versa. This intuition gives

us the following estimation heuristic for state st ,

V t+1
st

:= V t
st
+α

�

rt + γV t
st+1
− V t

st

�

,

where α is a parameter that controls the rate of learning. This type of temporal

difference learning is known as TD(0).

One shortcoming of this method is that at each time step the value of only the

last state st is updated. States before the last state are also affected by changes in

the last state’s value and thus these could be updated too. This is what happens

with so called temporal difference learning with eligibility traces, where a history,

or trace, is kept of which states have been recently visited. Under this method,

when we update the value of a state we also go back through the trace updating

the earlier states as well. Formally, for any state s its eligibility trace is computed

by,

E t
s

:=

�

γλE t−1
s

if s 6= st ,

γλE t−1
s
+ 1 if s = st ,

where λ is used to control the rate at which the eligibility trace is discounted.

The temporal difference update is then, for all states s,

V t+1
s

:= V t
s
+αE t

s

�

r + γV t
st+1
− V t

st

�

. (6.2)

This more powerful version of temporal different learning is known as TD(λ)

[Sutton, 1988]. The complete algorithm appears in Algorithm 1.

Although it has been successfully applied to many simple problems, plain

TD(λ) has a number of drawbacks. One of these is that the learning rate param-

eter α has to be experimentally tuned by hand. Indeed, even this is not always

enough, for optimal performance some monotonically decreasing function has

to be experimentally found that decreases the learning rate over time at the right

rate. If the learning rate decreases too quickly, the system may become stuck at

a level of sub-optimal performance, if it decreases too slowly then convergence

will be unnecessarily late. The main contribution of this chapter is to solve this

problem by deriving a temporal difference rule from statistical principles that

automatically sets its learning rate.

Perhaps the closest work to ours is the LSTD(λ) algorithm [Bradtke and

Barto, 1996; Boyan, 1999; Lagoudakis and Parr, 2003]. LSTD(λ) is concerned

120 6.2 Derivation

Algorithm 1 TD(λ)

Initialise V (s) arbitrarily and E(s) = 0 for all s

Initialise s

repeat

Make state transition and observe r, s′

∆← r + γV (s′)− V (s)

E(s)← E(s) + 1

for all s do

V (s)← V (s) +αE(s)∆

E(s)← γλE(s)

end for

s← s′

until end of run

with finding a least-squares linear function approximation to the true value func-

tion. The unknown expected rewards and transition probabilities are replaced

by empirical averages up to current time t. In contrast, we consider finite state

spaces and no function approximation. We derive a least-squares estimate of the

empirical values including future rewards by bootstrapping. The computation

time for our update is linear in the number of states, like TD(λ), while LSTD is

quadratic (even in the case of state-indicator features and no function approxi-

mation). Indeed our algorithm exactly coincides with TD/Q/Sarsa(λ) but with a

novel learning rate derived from statistical principles. LSTD has not yet been de-

veloped for general λ and γ. Our algorithm and LSTD both get rid of the learning

rate and the necessity to initialise V . Since LSTD has primarily been developed

for linear function approximation and has a much more expensive update rule,

we focused our experimental comparison to the algorithms for which we deter-

mined the learning rate (finite state space, linear time TD/Q/Sarsa algorithms).

It remains to be seen how our approach generalises to (linear) function approx-

imation.

6.2 Derivation

The empirical future discounted reward of a state sk is the sum of actual rewards

following from state sk in time steps k, k + 1, . . ., where the rewards are dis-

counted as they go into the future. Formally, the empirical value of state sk at

time k for k = 1, ..., t is,

vk :=

∞
∑

u=k

γu−kru, (6.3)

121 6.2 Derivation

where the future rewards ru are geometrically discounted by γ < 1. In practice

the exact value of vk is always unknown to us as it depends not only on rewards

that have been already observed, but also on unknown future rewards. Note

that if sm = sn for m 6= n, that is, we have visited the same state twice at dif-

ferent times m and n, this does not imply that vn = vm as the observed rewards

following the state visit may be different each time.

Our goal is that for each state s the estimate V t
s

should be as close as pos-

sible to the true expected future discounted reward V s. Thus, for each state s

we would like Vs to be close to vk for all k such that s = sk. Furthermore, in

non-stationary environments we would like to discount old evidence by some

parameter λ ∈ (0, 1]. Formally, we want to minimise the loss function,

L :=
1

2

t
∑

k=1

λt−k
�

vk − V t
sk

�2
. (6.4)

For stationary environments we may simply set λ = 1 a priori.

As we wish to minimise this loss, we take the partial derivative with respect

to the value estimate of each state and set to zero,

∂ L

∂ V t
s

= −

t
∑

k=1

λt−k
�

vk − V t
sk

�

δsks = V t
s

t
∑

k=1

λt−kδsks −

t
∑

k=1

λt−kδsksvk = 0,

where we could change V t
sk

into V t
s

due to the presence of the Kronecker δsks,

defined δx y := 1 if x = y , and 0 otherwise. By defining a discounted state visit

counter N t
s

:=
∑t

k=1
λt−kδsks we get

V t
s

N t
s
=

t
∑

k=1

λt−kδsksvk. (6.5)

Since vk depends on future rewards rk, Equation (6.5) can not be used in its

current form. Next we note that vk has a self-consistency property with respect

to the rewards. Specifically, the tail of the future discounted reward sum for

each state depends on the empirical value at time t in the following way,

vk =

t−1
∑

u=k

γu−kru+ γ
t−kvt .

Substituting this into Equation (6.5) and exchanging the order of the double

122 6.2 Derivation

sum,

V t
s

N t
s
=

t−1
∑

u=1

u
∑

k=1

λt−kδsksγ
u−kru+

t
∑

k=1

λt−kδsksγ
t−kvt

=

t−1
∑

u=1

λt−u

u
∑

k=1

(λγ)u−kδsksru+

t
∑

k=1

(λγ)t−kδsksvt

= Rt
s
+ E t

s
vt ,

where E t
s

:=
∑t

k=1
(λγ)t−kδsks is the eligibility trace of state s, and Rt

s
:=
∑t−1

u=1
λt−uEu

s
ru

is the discounted reward with eligibility.

E t
s

and Rt
s

depend only on quantities known at time t. The only unknown

quantity is vt , which we have to replace with our current estimate of this value

at time t, which is V t
st

. In other words, we bootstrap our estimates. This gives

us,

V t
s

N t
s
= Rt

s
+ E t

s
V t

st
. (6.6)

For state s = st , this simplifies to

V t
st
=

Rt
st

N t
st
− E t

st

.

Substituting this back into Equation (6.6) we obtain,

V t
s

N t
s
= Rt

s
+ E t

s

Rt
st

N t
st
− E t

st

. (6.7)

This gives us an explicit expression for our V estimates. However, from an al-

gorithmic perspective an incremental update rule is more convenient. To derive

this we make use of the relations,

N t+1
s
= λN t

s
+δst+1s, N 0

s
= 0,

E t+1
s
= λγE t

s
+δst+1s, E0

s
= 0,

Rt+1
s
= λRt

s
+λE t

s
rt , R0

s
= 0,

Inserting these into Equation (6.7) with t replaced by t + 1,

V t+1
s

N t+1
s

= Rt+1
s
+ E t+1

s

Rt+1
st+1

N t+1
st+1
− E t+1

st+1

= λRt
s
+λE t

s
rt + E t+1

s

Rt
st+1
+ E t

st+1
rt

N t
st+1
− γE t

st+1

.

123 6.2 Derivation

By solving Equation (6.6) for Rt
s

and substituting back in,

V t+1
s

N t+1
s
= λ
�

V t
s

N t
s
− E t

s
V t

st

�

+λE t
s
rt + E t+1

s

N t
st+1

V t
st+1
− E t

st+1
V t

st
+ E t

st+1
rt

N t
st+1
− γE t

st+1

=
�

λN t
s
+δst+1s

�

V t
s
−δst+1sV

t
s
−λE t

s
V t

st
+λE t

s
rt

+ E t+1
s

N t
st+1

V t
st+1
− E t

st+1
V t

st
+ E t

st+1
rt

N t
st+1
− γE t

st+1

.

Dividing through by N t+1
s
(= λN t

s
+δst+1s),

V t+1
s
= V t

s
+
−δst+1sV

t
s
−λE t

s
V t

st
+λE t

s
rt

λN t
s
+δst+1s

+
(λγE t

s
+δst+1s)(N

t
st+1

V t
st+1
− E t

st+1
V t

st
+ E t

st+1
rt)

(N t
st+1
− γE t

st+1
)(λN t

s
+δst+1s)

.

Making the first denominator the same as the second, then expanding the

numerator,

V t+1
s
= V t

s
+
λE t

s
rt N

t
st+1
−λE t

s
V t

st
N t

st+1
−δst+1sV

t
s

N t
st+1
−λγE t

st+1
E t

s
rt

(N t
st+1
− γE t

st+1
)(λN t

s
+δst+1s)

+
λγE t

st+1
E t

s
V t

st
+ γE t

st+1
V t

s
δst+1s +λγE t

s
N t

st+1
V t

st+1
−λγE t

s
E t

st+1
V t

st

(N t
st+1
− γE t

st+1
)(λN t

s
+δst+1s)

+
λγE t

s
E t

st+1
rt +δst+1sN

t
st+1

V t
st+1
−δst+1sE

t
st+1

V t
st
+δst+1sE

t
st+1

rt

(N t
st+1
− γE t

st+1
)(λN t

s
+δst+1s)

.

After cancelling equal terms (keeping in mind that in every term with a Kro-

necker δx y factor we may assume that x = y as the term is always zero other-

wise), and factoring out E t
s

the right hand side becomes,

V t
s
+

E t
s

�

λrt N
t
st+1
−λV t

st
N t

st+1
+ γV t

s
δst+1s+λγN t

st+1
V t

st+1
−δst+1sV

t
st
+δst+1srt

�

(N t
st+1
− γE t

st+1
)(λN t

s
+δst+1s)

Finally, by factoring out λN t
st+1
+δst+1s we obtain our update rule,

V t+1
s
= V t

s
+ E t

s
βt(s, st+1)

�

rt + γV t
st+1
− V t

st

�

, (6.8)

124 6.3 Estimating a small Markov pro
ess

where the learning rate is given by,

βt(s, st+1) :=
1

N t
st+1
− γE t

st+1

N t
st+1

N t
s

. (6.9)

Examining Equation (6.8), we find the usual update equation for tempo-

ral difference learning with eligibility traces (see Equation (6.2)), however the

learning rate α has now been replaced by βt(s, st+1). This learning rate was

derived by minimising the squared loss between the estimated and true state

value. In the derivation we have exploited the fact that the latter must be

self-consistent and then bootstrapped to get Equation (6.6). This gives us an

equation for the learning rate for each state transition at time t, as opposed to

the standard temporal difference learning where the learning rate α is either a

fixed free parameter for all transitions, or is decreased over time by some mono-

tonically decreasing function. In either case, the learning rate is not automatic

and must be experimentally tuned for good performance. The above derivation

appears to theoretically solve this problem.

The first term in βt seems to provide some type of normalisation to the learn-

ing rate, though the intuition behind this is not clear to us. The meaning of

second term however can be understood as follows: N t
s

measures how often we

have visited state s in the recent past. Therefore, if N t
s
≪ N t

st+1
then state s has

a value estimate based on relatively few samples, while state st+1 has a value

estimate based on relatively many samples. In such a situation, the second term

in βt boosts the learning rate so that V t+1
s

moves more aggressively towards the

presumably more accurate rt + γV t
st+1

. In the opposite situation when st+1 is a

less visited state, we see that the reverse occurs and the learning rate is reduced

in order to maintain the existing value of Vs.

6.3 Estimating a small Markov pro
ess

For our first test we consider a small Markov process with 21 states. In each

step the state number is either incremented or decremented by one with equal

probability, unless the system is in state 0 or 20 in which case it always transi-

tions to state 10 in the following step. When the state transitions from 0 to 10

a reward of 1.0 is generated, and for a transition from 20 to 10 a reward of -1.0

is generated. All other transitions have a reward of 0. We set the discount value

γ= 0.9 and then computed the true discounted value of each state by running a

brute force Monte Carlo simulation.

For our first test we ran our algorithm 10 times on the above Markov chain

and computed the root mean squared error in the value estimate across the

125 6.3 Estimating a small Markov pro
ess

0.0 0.2 0.4 0.6 0.8 1.0
Time x1e+4

0.00

0.05

0.10

0.15

0.20

0.25

0.30
R

M
S
E

HL(1.0)
TD(0.7) a = 0.07
TD(0.7) a = 0.13

Figure 6.1: 21 state Markov process,

average performance over 10 runs.

0.0 0.2 0.4 0.6 0.8 1.0
Time x1e+4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
M

S
E

HL(1.0)
TD(0.7) a = 0.07
TD(0.7) a = 0.13

Figure 6.1: 21 state Markov process,

average performance over 100 runs.

states at each time step averaged across each run. The optimal value of λ for

our algorithm, which we will call HL(λ), was 1.0. This was to be expected

given that the environment is stationary and thus discounting old experience is

not helpful. Setting this parameter correctly was important, for example if we

reduced the value of λ to 0.98 performance became poor.

For TD(λ) the optimal value of λ was about 0.7. This algorithm was much

less sensitive to the setting of λ. The other important parameter for TD(λ) was

the learning rate α. We tested a variety of values, the effect of which is illustrated

by the two values α= 0.07 and α= 0.13 on Figure 6.1.

When α was high, TD(λ) learnt more quickly, as we would expect, but then

became unstable as the learning rate was too high for fine tuning the value es-

timates. With the lower learning rate of 0.07, TD(λ) learnt more slowly, but

eventually achieved a more accurate value estimate before becoming stuck. In

fact rather than just becoming stuck, what we see is that the error reaches a

minimum at around t = 4,000 and then actually becomes worse for the remain-

der of the run. This is a well known undesirable characteristic of TD(λ) (see for

example Section 6.2 of Sutton and Barto, 1998). With a fixed learning rate we

also see that the variability in the error estimate does not improve towards the

end of the run.

In comparison, HL(λ) had very fast learning initially, combined with a more

accurate final estimate of the discounted state values, and the mean squared

error in the second half of the experiment was very stable. This is significant

given that TD(λ) required two parameters to be tuned for good performance,

while HL(λ) had just λ which could be set a priori to 1.0.

Figure 6.1 shows the same experiment averaged over 100 runs. This obscures

126 6.4 A larger Markov pro
ess

the better stability of HL(λ), but more clearly illustrates its faster learning and

better convergence.

6.4 A larger Markov pro
ess

In order to understand how well HL(λ) scales as the number of states increases,

we ran the previous experiment again but with 51 states. As the movement

through the states is almost entirely a random walk with reward on just two

transitions, estimating the value function on this Markov chain is significantly

more difficult than before, even though the total number of states has not grown

all that much. In the new experiment the return state was still in the middle of

the chain, i.e. state 25. As most of the state space was a long way from the

rewards, we increased the γ value to 0.99 so that states in the middle of the

chain would not have values too close to 0. The true discounted value of each

state was again computed by running a brute force Monte Carlo simulation.

We ran our algorithm 10 times on the above Markov chain and computed the

root mean squared error in the value estimate across the states at each time step

averaged across each run. The optimal value of λ for HL(λ) was 1.0, which was

to be expected given that the environment is stationary and thus discounting old

experience is not helpful.

For TD(λ) we tried various different learning rates and values of λ. We could

find no settings where TD(λ) was competitive with HL(λ). If the learning rate α

was set too high the system would learn as fast as HL(λ) briefly before becoming

stuck. With a lower learning rate the final performance was improved, however

the initial performance was now much worse than HL(λ). The results of these

tests appear in Figure 6.2.

Similar tests were performed with larger and smaller Markov chains, and

with different values of γ. HL(λ) was consistently superior to TD(λ) across these

tests. One wonders whether this may be due to the fact that the implicit learning

rate that HL(λ) uses is not fixed. To test this we explored the performance

of a number of different learning rate functions on the 51 state Markov chain

described above. We found that functions of the form κ

t
always performed poorly,

however good performance was possible by setting κ correctly for functions of

the form κ
p

t
and κ

3pt
. As the results were much closer, we averaged over 300

runs. These results appear in Figure 6.2.

With a variable learning rate TD(λ) is performing much better, however we

were still unable to find an equation that reduced the learning rate in such a way

that TD(λ) would outperform HL(λ). This is evidence that HL(λ) is adapting the

learning rate optimally without the need for manual equation tuning.

127 6.5 Random Markov pro
ess

0.0 0.5 1.0 1.5 2.0
Time x1e+4

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
R

M
S
E

HL(1.0)
TD(0.9) a = 0.1
TD(0.9) a = 0.2

Figure 6.2: 51 state Markov process av-

eraged over 10 runs. The parameter a

is the learning rate α.

0.0 0.5 1.0 1.5 2.0
Time x1e+4

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
M

S
E

HL(1.0)
TD(0.9) a = 8.0/sqrt(t)

TD(0.9) a = 2.0/cbrt(t)

Figure 6.2: 51 state Markov process av-

eraged over 300 runs.

6.5 Random Markov pro
ess

To test on a Markov process with a more complex transition structure, we cre-

ated a random 50 state Markov process. We did this by creating a 50 by 50

transition matrix where each element was set to 0 with probability 0.9, and a

uniformly random number in the interval [0, 1] otherwise. We then scaled each

row to sum to 1. Then to transition between states we interpret the i th row as

a probability distribution over which state follows state i. To compute the re-

ward associated with each transition we created a random matrix as above, but

without normalising. We set γ = 0.9 and then ran a brute force Monte Carlo

simulation to compute the true discounted value of each state.

The λ parameter for HL(λ) was simply set to 1.0 as the environment is sta-

tionary. For TD we experimented with a range of parameter settings and learning

rate decrease functions. We found that a fixed learning rate of α= 0.2, and a de-

creasing rate of 1.5
3pt

performed reasonable well, but never as well as HL(λ). The

results were generated by averaging over 10 runs, and are shown in Figure 6.3.

Although the structure of this Markov process is quite different to that used in

the previous experiment, the results are again similar: HL(λ) preforms as well

or better than TD(λ) from the beginning to the end of the run. Furthermore,

stability in the error towards the end of the run is better with HL(λ) and no

manual learning tuning was required for these performance gains.

128 6.6 Non-stationary Markov pro
ess

0 1000 2000 3000 4000 5000
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
R

M
S
E

HL(1.0)
TD(0.9) a = 0.2
TD(0.9) a = 1.5/cbrt(t)

Figure 6.3: Random 50 state Markov

process. The parameter a is the learn-

ing rate α.

0.0 0.5 1.0 1.5 2.0
Time x1e+4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
M

S
E

HL(0.9995)
TD(0.8) a = 0.05
TD(0.9) a = 0.05

Figure 6.3: 21 state non-stationary

Markov process.

6.6 Non-stationary Markov pro
ess

The λ parameter in HL(λ), introduced in Equation (6.4), reduces the impor-

tance of old observations when computing the state value estimates. When the

environment is stationary this is not useful and so we can set λ = 1.0, however

in a non-stationary environment we need to reduce this value so that the state

values adapt properly to changes in the environment. The more rapidly the en-

vironment is changing, the lower we need to make λ in order to more rapidly

forget old observations.

To test HL(λ) in such a setting we reverted back to the 21 state Markov

chain from Section 6.3 in order to speed up convergence. We used this Markov

chain for the first 5,000 time steps. At that point, we changed the reward when

transitioning from the last state to the middle state from -1.0 to be 0.5. At

time 10,000 we then switched back to the original Markov chain, and so on

alternating between the models of the environment every 5,000 steps. At each

switch, we also changed the target state values that the algorithm was trying

to estimate to match the current configuration of the environment. For this

experiment we set γ= 0.9.

As expected, the optimal value of λ for HL(λ) fell from 1 down to about

0.9995. This is about what we would expect given that each phase is 5,000

steps long. For TD(λ) the optimal value of λ was around 0.8 and the optimum

learning rate was around 0.05. As we would expect, for both algorithms when

we pushed λ above its optimal value this caused poor performance in the periods

following each switch in the environment (these bad parameter settings are not

129 6.7 Windy Gridworld

Algorithm 2 HLS(λ)

Initialise Q(s, a) = 0, N(s, a) = 1 and E(s, a) = 0 for all s, a

Initialise s and a

repeat

Take action a, observed r, s′

Choose a′ by using ε-greedy selection on Q(s′, ·)

∆← r + γQ(s′, a′)−Q(s, a)

E(s, a)← E(s, a) + 1

N(s, a)← N(s, a) + 1

for all s, a do

β((s, a), (s′, a′))← 1

N(s′,a′)−γE(s′,a′)

N(s′,a′)

N(s,a)

end for

for all s, a do

Q(s, a)←Q(s, a) + β
�

(s, a), (s′, a′)
�

E(s, a)∆

E(s, a)← γλE(s, a)

N(s, a)← λN(s, a)

end for

s← s′; a← a′

until end of run

shown in the results). On the other hand, setting λ too low produced initially

fast adaption to each environment switch, but poor performance after that until

the next environment change. To get accurate statistics we averaged over 200

runs. The results of these tests appear in Figure 6.3.

For some reason HL(0.9995) learns faster than TD(0.8) in the first half of the

first cycle, but only equally fast at the start of each following cycle. Furthermore,

its performance in the second half of the first cycle is poor. We are not sure why

this is happening. We could improve the initial speed at which HL(λ) learnt in

the last three cycles by reducing λ, however that comes at a performance cost in

terms of the lowest mean squared error attained at the end of each cycle. In any

case, in this non-stationary situation HL(λ) again performed well in general.

6.7 Windy Gridworld

Reinforcement learning algorithms such as Watkins’ version of Q(λ) [Watkins,

1989] and Sarsa(λ) [Rummery and Niranjan, 1994; Rummery, 1995] are based

on temporal difference updates. This suggests that new reinforcement learning

algorithms based on HL(λ) should be possible.

For our first experiment we took the standard Sarsa(λ) algorithm and mod-

130 6.7 Windy Gridworld

ified it in the obvious way to use an HL temporal difference update. In the

presentation of this algorithm we have changed notation slightly to make things

more consistent with that typical in reinforcement learning. Specifically, we have

dropped the t super script as this is implicit in the algorithm specification, and

have defined Q(s, a) := V(s,a), E(s, a) := E(s,a) and N(s, a) := N(s,a). Our new re-

inforcement learning algorithm, which we call HLS(λ) is given in Algorithm 2.

Essentially the only changes to the standard Sarsa(λ) algorithm have been to

add code to compute the visit counter N(s, a), add a loop to compute the β

values, and replace α with β in the temporal difference update.

To test HLS(λ) against standard Sarsa(λ) we used the Windy Gridworld en-

vironment described on page 146 of [Sutton and Barto, 1998]. This world is

a grid of 7 by 10 squares that the agent can move through by going either up,

down, left or right. If the agent attempts to move off the grid it simply stays

where it is. The agent starts in the 4th row of the 1st column and receives a

reward of 1 when it finds its way to the 4th row of the 8th column. To make

things more difficult, there is a “wind” blowing the agent up 1 row in columns 4,

5, 6, and 9, and a strong wind of 2 rows in columns 7 and 8. This is illustrated

in Figure 6.4. Unlike in the original version, we have set up this problem to be a

continuing discounted task with an automatic transition from the goal state back

to the start state. This is because we have not yet derived an episodic version of

our learning rule.

We set γ = 0.99 and in each run computed the empirical future discounted

reward at each point in time. As this value oscillated we also ran a moving

average through these values with a window length of 50. Each run lasted for

50,000 time steps as this allowed us to see at what level each learning algorithm

topped out. These results appear on the left of Figure 6.5 and were averaged

over 500 runs to get accurate statistics.

Despite putting considerable effort into tuning the parameters of Sarsa(λ),

we were unable to achieve a final future discounted reward above 5.0. The

settings shown on the graph represent the best final value we could achieve.

In comparison HLS(λ) easily beat this result at the end of the run, while being

slightly slower than Sarsa(λ) at the start. By setting λ = 0.99 we were able to

achieve the same performance as Sarsa(λ) at the start of the run, however the

performance at the end of the run was then only slightly better than Sarsa(λ).

This combination of superior performance and fewer parameters to tune suggest

that the benefits of HL(λ) carry over into the reinforcement learning setting. In

terms of computational cost, HL(λ) was about 1.7 times slower than Sarsa(λ)

per time step due to the cost of computing the β values.

Another popular reinforcement learning algorithm is Watkins’ Q(λ). Similar

to Sarsa(λ) above, we simply inserted the HL(λ) temporal difference update

131 6.7 Windy Gridworld

Figure 6.4: [Windy Gridworld] S marks the start state and G the goal state, at

which the agent jumps back to S with a reward of 1. Small arrows indicate an

upward wind of one row per time step. The large arrows indicate a wind of two

rows per time step.

132 6.8 Con
lusion

0 10000 20000 30000 40000 50000
Time

0

1

2

3

4

5

6
F
u
tu

re
 D

is
c
o
u
n
te

d
 R

e
w

a
rd

HLS(0.995) e = 0.003
Sarsa(0.5) a = 0.4 e = 0.005

0 10000 20000 30000 40000 50000
Time

0

1

2

3

4

5

6

F
u
tu

re
 D

is
c
o
u
n
te

d
 R

e
w

a
rd

HLQ(0.99) e = 0.01
Q(0.75) a = 0.99 e = 0.01

Figure 6.5: Windy Gridworld performance tests. The left graph shows HLS(λ)

vs. Sarsa(λ), while the right graph shows HLQ(λ) vs. Q(λ). In both tests the

algorithm based on HL learning performed best. e represents the exploration

parameter ε, and a represents the learning rate α. For both tests the perfor-

mance was averaged over 500 runs.

into the usual Q(λ) algorithm in the obvious way. We call this new algorithm

HLQ(λ) and it is given in Algorithm 3. The test environment was exactly the

same as we used with Sarsa(λ) above.

The results this time were more competitive and appear on the right hand

side of Figure 6.5. Nevertheless, despite spending a considerable amount of

time fine tuning the parameters of Q(λ), we were unable to beat HLQ(λ). As

the performance advantage was relatively modest, the main benefit of HLQ(λ)

was that it achieved this level of performance without having to manually tune

a learning rate.

6.8 Con
lusion

We have derived a new equation for setting the learning rate in temporal dif-

ference learning with eligibility traces. The equation replaces the free learning

rate parameter α, which is normally experimentally tuned by hand. In every

setting tested, be it stationary Markov chains, non-stationary Markov chains or

reinforcement learning, our new method produced superior results.

To further our theoretical understanding, the next step would be to try to

prove that the method converges to correct estimates. This can be done for

TD(λ) under certain assumptions on how the learning rate decreases over time [Dayan,

1992; Peng, 1993]. Hopefully, something similar can be proven for our new

method. In terms of experimental results, it would be interesting to try different

133 6.8 Con
lusion

Algorithm 3 HLQ(λ)

Initialise Q(s, a) = 0, N(s, a) = 1 and E(s, a) = 0 for all s, a

Initialise s and a

repeat

Take action a, observed r, s′

Choose a′ by using ε-greedy selection on Q(s′, ·)

a∗← arg maxb Q(s′, b)

∆← r + γQ(s′, a∗)−Q(s, a)

E(s, a)← E(s, a) + 1

N(s, a)← N(s, a) + 1

for all s, a do

β((s, a), (s′, a′))← 1

N(s′,a′)−γE(s′,a′)

N(s′,a′)

N(s,a)

end for

for all s, a do

Q(s, a)←Q(s, a) + β
�

(s, a), (s′, a′)
�

E(s, a)∆

N(s, a)← λN(s, a)

if a′ = a∗ then

E(s, a)← γλE(s, a)

else

E(s, a)← 0

end if

end for

s← s′; a← a′

until end of run

types of reinforcement learning problems and to more clearly identify where the

ability to set the learning rate differently for different state transition pairs helps

performance.

Many extensions to the algorithm should also be possible. One would be to

generalise the learning rule to episodic tasks, another would be to merge our

update rule with Peng’s version of Q(λ) [Peng and Williams, 1996], as we have

done with Sarsa(λ) and Watkins’ version of Q(λ). Finally, it would be useful to

extend the algorithm to work with function approximation methods so that it

could deal with larger state spaces.

134 6.8 Con
lusion

Chapter 7

Dis
ussion

The title of this thesis is deliberately provocative. It asks the reader to consider

not just intelligent machines, but the possibility of machines that are super in-

telligent. Many find this idea difficult to take seriously. Among researchers the

topic is almost taboo: it belongs in science fiction. The most intelligent computer

in the world, they assure the public, is perhaps as smart as an ant, and that’s on

a good day. True machine intelligence, if it is ever developed, lies in the distant

future.

This was not always the case. In the 1960’s pioneering artificial intelligence

researchers had initial successes in a range of areas. Emboldened, they predicted

that more powerful systems were not far off, and that truly intelligent machines

might follow. As the researcher Herbert Simon wrote in 1965, “machines will

be capable, within twenty years, of doing any work a man can do.” (quoted

in Crevier, 1993) The field was alight with ambition and, not surprisingly, at-

tracted plenty of attention.

Over the decade that followed a series of high profile failures brought this

dream crashing back to earth. Although progress was being made, it was far

slower than many had expected. Naturally the public, and more importantly the

funding agencies, wanted to know where the intelligent machines were. The

cuts that ensued marked the beginning of the so called ‘AI winter’, although us-

age of this label varies considerably [Crevier, 1993; Russell and Norvig, 1995].
During the early 80’s there was a brief reprieve as expert systems became popu-

lar, however by the late 80’s these too had failed to live up to expectations. Over

time some areas distanced themselves from the label ‘artificial intelligence’, em-

phasising that their work was more practical and limited in scope. Any talk of

building machines with human level intelligence was frowned upon.

Since the early 90’s steady progress has slowly begun to reinvigorate the

field, particularly since the late 90’s. More powerful algorithms coupled with

dramatically improved hardware has produced countless advances in robotics,

135

136

speech recognition, natural language processing, image processing, clustering,

classification, prediction, various types of optimisation, and many other areas.

As a result the reputation of artificial intelligence has started to recover and

funding has improved, leading some to believe that the ‘AI spring’ may have

finally arrived [Havenstein, 2005].

With the mood becoming more positive, the grand dream of artificial in-

telligence is starting to make a come back. A number of books predicting the

arrival of advanced artificial intelligence have been published and major confer-

ences have held workshops on ‘Human level AI’. Small conferences on ‘Artificial

General Intelligence’ and on the safety issues surrounding powerful machine

intelligence have also appeared. Perhaps over the next few years these ideas

will become more mainstream, however for now they are at the fringe. Most

researchers remain very sceptical about the idea of truly intelligent machines

within their lifetime.

One goal of this thesis is to promote the idea that intelligent machines, even

super intelligent machines, is a topic that is both important and one that can

be scientifically studied, even if just theoretically for now. In Chapters 2 and 3

we described Hutter’s model of an intelligent machine and examined some of

its remarkable properties. In Chapter 4 we saw how this model can be used to

construct a general measure of machine intelligence that formalises many of the

standard perspectives on the nature of intelligence outlined in Chapter 1. In

Chapter 5 we then examined some of the theoretical limitations faced by power-

ful artificial intelligence algorithms. Thus, although highly intelligent machines

do not exist yet, theoretical tools are starting to emerge to allow us to study

their properties. While this thesis makes some contributions to this effort, many

fundamental questions remain open (see for example the open problems listed

in Hutter, 2005).

None of this theoretical work would be of much importance if intelligent

machines were impossible in practice, or exceedingly unlikely in any reasonable

time frame. In this last chapter we will argue that this is not the case. Our goal

is not to conclusively argue that this will happen, or exactly when it will happen,

but simply to argue that the possibility cannot be completely discounted. This is

important because if a super intelligent machine ever did exist the implications

for humanity would be immense. Thus, if there is even a small probability that

intelligent machines could be developed in the foreseeable future, it is important

that we start to think seriously about the nature of these machines and what the

implications might be.

137 7.1 Are super intelligent ma
hines possible?

7.1 Are super intelligent ma
hines possible?

Many people outside of the field are deeply sceptical about the idea that ma-

chines, mere physical objects of our construction, could ever have anything re-

sembling real intelligence: machines can only ever be strictly logical; they can-

not do anything they were not programed to do; and they certainly could not be

superior to their own creator — that would be a paradox! However, as anybody

working in the field knows, these common beliefs are baseless myths. Artificial

intelligence algorithms regularly find solutions to problems using heuristics and

forms of reasoning that are not strictly logical. They discover powerful new de-

signs for problems that the system’s programmers had never thought of [Koza

et al., 2003]. They also learn to play games such as chess [Hsu et al., 1995]
and backgammon [Tesauro, 1995] at levels superior to that of any human, let

alone the researchers who designed and created the system. Indeed, in the case

of checkers, computers are now literally unbeatable as they can play a provably

perfect game [Schaeffer et al., 2007].
The persistence of these beliefs seems to be due to a number of things. One

is that algorithms from artificial intelligence are not consumer products: they

are hidden in the magic of sophisticated technology. For example, when hand

writing the address on a card most people do not know that it will likely be read

by a computer rather than a human at the sorting office. People do not think

about the learning algorithms that are monitoring their credit card transactions

looking for fraud, filtering spam to their email address, automatically trading

their retirement savings on international markets, monitoring their behaviour

on the internet in order to decide which ads should appear on web pages they

view, or even just the vision processing algorithms that graded the apples at

the supermarket. The steady progress that artificial intelligence algorithms are

making is out of sight, and thus generally out of mind.

Another common objection is that we humans have something mysterious

and special that makes us tick, something that machines, by definition, do not

have. Perhaps some type of non-physical consciousness or feelings, qualia, or

‘quantum field’ etc. Of course it is impossible to rule out mysterious possibili-

ties until an intelligent machine has been constructed without needing anything

particularly mysterious. Nonetheless, we should view such objections for what

they are: a form of vitalism. Throughout history, whenever science could not

explain some unusual phenomenon, many people readily assumed that God or

magic was at work. Even distinguished scientists have fallen into this, only to

be embarrassed once more sceptical and curious scientists worked out what was

actually going on. Things ranging from the motion of whole galaxies to the

behaviour of sub-atomic particles are now known to follow extremely precise

physical laws. To conjecture that our brains are somehow special and different

138 7.1 Are super intelligent ma
hines possible?

in some strange way is to speculate based on nothing but our own feelings of

specialness.

If the human brain is merely a ‘meat machine’, as some have put it, it is

certainly not the most powerful intelligence possible. To start with, there is the

issue of scale: a typical adult human brain weights about 1.4 kg and consumes

just 25 watts of power [Kandel et al., 2000]. This is ideal for a mobile intelli-

gence, however an artificial intelligence need not be mobile and thus could be

orders of magnitude larger and more energy intensive. At present a large su-

percomputer can fill a room twice the size of a basketball court and consume

10 megawatts of power. With a few billion dollars much larger machines could

be built. Google, for example, is currently constructing a data centre next to

a power station in Oregon that will cover two football fields and have cooling

towers four stories high [Markoff and Hansell, 2005]. Biology never had the

option of building brains on such an enormous scale.

Another point is that brains use fairly large and slow components. Consider

one of the simpler of these, axons: essentially the wiring of the nervous system.

These are typically around 1 micrometre wide, carry spike signals at up to 75

metres per second at a frequency of at most a few hundred hertz [Kandel et al.,

2000]. Compare these characteristics with those of a wire that carries signals

on a microchip. Currently these are 45 nanometres wide, propagate signals at

300 million metres per second and can easily operate at 4 billion hertz. Some

might debate whether an electrochemical spike travelling down an axon is so

directly comparable to an electrical pulse travelling down a wire, however it is

well established that at least the primary role of an axon is simply to carry this

information. Given that present day technology produces wires which are 20

times thinner, propagate signals 4 million times faster and operate at 20 million

times the frequency, it is hard to believe that the performance of axons could not

be improved by at least a few orders of magnitude.

Of course, the above assumes that the brain’s design is what we should repli-

cate. Perhaps the brain’s algorithm is close to optimal for some things, but it

certainly is not optimal for all problems. Even the most outstanding savants

cannot store information anywhere near as quickly, accurately and in the quan-

tities that are possible for a computer. Also savants’ impressive ability to perform

fast mental calculations is insignificant next to even a basic calculator. Brains are

poorly designed for such feats. A machine, however, would have no such limi-

tations: it could employ a range of specialised algorithms for different types of

problems. Concepts like education become obsolete when knowledge and un-

derstanding can simply be copied from one intelligent machine to another. It is

easy to think up many more advantages.

Most likely improvements over brains are possible in algorithms, hardware

139 7.2 How
ould intelligent ma
hines be developed?

and scale. This is not to take away from the amazing system that the brain is,

something that we are still unable to match in many ways. All we wish to point

out is that if the brain is essentially just a machine, which appears to be the case,

then it certainly is not the most intelligent machine that could exist. This idea is

reasonable once you think about it: machines can easily carry more, fly higher,

move faster and see further than even the most able animals in each of these

categories. Why would human intelligence be any different? Of course, just

because systems with greater than human intelligence are possible in principle,

this does not mean that we will be able to build one. Designing and constructing

such an advanced machine could be beyond our capabilities.

7.2 How
ould intelligent ma
hines be developed?

There are many ways in which machine intelligence might be developed. Un-

fortunately, it is difficult to estimate how likely any of these approaches are to

succeed. In this section we speculate on a few of them.

Theoreti
al approa
hes

The approach most closely related to this thesis would be to take the AIXI model

and find a way to usefully scale it down. A number of attempts to do this have

been made: the HL(λ) algorithm presented in Chapter 6, the AIXIt l algorithm

(Chapter 7 of Hutter, 2005), the AIXI based algorithm for repeated matrix games

[Poland and Hutter, 2006] and Fitness Uniform Optimisation [Hutter and Legg,

2006] all originate in efforts to scale down AIXI. Although not deriving from AIXI,

the Shortest and Fastest algorithm in [Hutter, 2002a], the Speed prior [Schmid-

huber, 2002], the Optimal Ordered Problem Solver [Schmidhuber, 2004], and

the Gödel Machine [Schmidhuber, 2005] come from a related background in al-

gorithmic probability and Kolmogorov complexity theory. While each of these

has their strengths, as yet none come close to bringing the power of theoretical

models such as AIXI into reality.

The key question is how to make a general and powerful artificial intelli-

gence like AIXI work efficiently. The results of Chapter 5 offer some hints on the

direction that such a project might take. For certain, the prediction of general

computable sequences is out of the question (Lemma 5.2.4), as is the prediction

of all computable sequences whose Kolmogorov complexity is below some mod-

erate bound. Otherwise serious problems arise with the necessary complexity of

the prediction algorithms (Theorem 5.3.3), and even worse Gödel incomplete-

ness (Theorem 5.6.1). Nevertheless, we know that certain types of complex

sequences can be predicted by relatively simple algorithms (Lemma 5.2.3), and

140 7.2 How
ould intelligent ma
hines be developed?

that many theoretical problems go away when even weak bounds are placed

on the computation time of the sequences to be predicted (Lemma 5.5.2). Thus,

what we need to aim for is the ability to efficiently predict computable sequences

that have certain computational resource bounds. How best to characterise such

sequences is an open problem, let alone how to efficiently learn to predict them.

Perhaps any breakthrough is more likely to come from the opposite direction:

somebody discovers a theoretically elegant and very powerful algorithm that is

able to efficiently predict many kinds of sequences. The structure of this algo-

rithm and how easily it can model different sequences will then implicitly define

a natural measure of resource bounded sequence complexity.

When a breakthrough in this area might occur is impossible to predict, and

the same is true of other theoretical approaches. Perhaps with the right theo-

retical insight Bayesian networks, prediction with expert advice, artificial neural

networks, reasoning engines, or any one of a dozen other techniques will sud-

denly advance in a dramatic way. Although some progress in all of these areas

is a near certainty, true breakthroughs by their very nature are rare and highly

unpredictable. Furthermore, even if a huge breakthrough did occur, whether ex-

isting computer hardware would be sufficient to support the creation of highly

intelligent machines would depend on the nature of this new algorithm. In sum-

mary, although we cannot rule out the possibility of a large breakthrough leading

to intelligent machines, there is little we can do to estimate how likely this is.

Brain simulation

Rather than taking abstract theories like AIXI and trying to scale them down to

make them practical, another approach is to proceed in the opposite direction:

start by studying the details of how real biological brains work and then try to

abstract from this a design for an artificial intelligence. Although this idea is

simple in principle, studying and understanding the brain is very challenging.

One of the most basic problems is that it is currently impossible to observe a

brain in action with sufficient spatial and temporal resolution to really see how

it works. Methods to study the brain include: PET scans, fMRI scans, arrays of

probes, marking neurons with chemicals which cause them to fluoresce when

they fire, placing extracted neural tissue on microchips that can sense when

neurons fire, and the use of staining and microscopy to study the anatomical

structure of the brain. The problem is that none of these methods allows a

researcher to take a sizable area of a brain and simultaneously observe exactly

which neurons are firing, precisely when they fire, what type of neurons they

are, which other neurons they are connected to, the types of these connections,

how these connections change over short intervals of time, and so on. Instead,

141 7.2 How
ould intelligent ma
hines be developed?

researchers have at their disposal a range of methods, each of which provides

only a limited view of what is going on. Indeed, what is known about the brain

is largely dictated by the strengths and weaknesses of the different methods of

study.

Another major problem is the sheer complexity of the system. A human brain

consists of hundreds of billions of neurons, and hundreds of trillions of synapses.

There are over a hundred different types of neurons, different synapses employ

different combinations of neurotransmitters, connection patterns vary from one

part of the brain to another, and so on (see any standard text book, for exam-

ple Kandel et al., 2000). When looking at slices of brain tissue where a small

percentage of neurons and their dendritic trees have been stained, the brain’s

wiring starts to look about as comprehensible as an ocean of tangled spaghetti.

Even worse, all these elements interact with each other in highly dynamic ways.

Via some kind of a miracle, from this monstrous cacophony emerges the human

mind. With so much complexity, even if the perfect brain scanning technology

existed it might still be very difficult to understand how the brain actually works.

Given the scale of these difficulties, is building a brain simulation feasible?

Perhaps the first point to note is that building a working simulation of something

does not require understanding everything about how the system works. What

is required is that the basic units which comprise the system can be faithfully re-

produced and connected together. If this is done properly, the resulting dynamics

will be the same as the dynamics in the real system — even if we do not fully

understand what these higher level dynamics are, or why they are important to

the system’s overall functioning. Indeed, simulations are often constructed for

the very purpose of better understanding a system’s emergent dynamics once its

low level dynamics are understood. Thus, rather than needing to understand all

the mysteries of how the brain works, in order to build a functional simulation it

is sufficient to understand the nature and organisation of the brain’s elementary

units: neurons, dendrites, axons, synapses etc. There is already a large body of

knowledge about how these basic units work and how they are wired together in

various parts of the brain. Literally thousands of researchers around the world

are refining and developing this knowledge.

Another important point, at least for people interested in developing artificial

intelligence, is that much of the brain’s complexity is not relevant. A significant

part of the human brain is a jumble of different subsystems that take care of

basic instinctive things like breathing, heart beat, blood pressure, reproduction,

hunger, thirst, rhythms such as sleeping and body temperature, fight or flight

response and so on. Even one of the largest parts of the brain, the cerebellum

which is involved in movement and precision timing, is not needed for an artifi-

cial intelligence: individuals without one are still intellectually and emotionally

142 7.2 How
ould intelligent ma
hines be developed?

able. The key, it seems, lies in understanding the neocortex, and its interaction

with two smaller structures, namely, the thalamus and the hippocampus. It is

known that the neocortex is the part of the brain that is primarily responsible for

processing vision, sound, touch, proprioception, understanding and generating

language, planning, spatial reasoning, coordinating and executing movement,

and logical thought [Fuster, 2003]. Clearly then, the key to artificial intelligence

via brain simulation lies in understanding the neocortex and related structures.

As different regions of the neocortex perform different functions, one might

expect that they would have significantly different anatomical structures. Amaz-

ingly, this is not the case. Essentially the whole neocortex has the same six layer

structure, or up to 12 layers depending on how you count them. Each layer is

characterised by the types of neurons present, where axons from neurons in the

layer project to, and where axons come from that form synapses on the den-

dritic trees of these neurons. Besides some thickening and thinning of the layers

in different regions, and the fact that primary visual cortex actually has an extra

layer, this six layer structure is consistent across the whole neocortex [Fuster,

2003; Abeles, 1991]. What this suggests is that the same information process-

ing mechanism is being applied across the neocortex, and that the variations

in function across different regions are actually adaptations to the information

passing through each region [Creutzfeldt, 1977; Mountcastle, 1978].

A number of results back up this hypothesis. One is that with increased use

the region of cortex responsible for performing some action tends to expand, in

the sense that neighbouring cortex is recruited. In extreme cases, such as the

congenitally blind, the unused areas of visual cortex start to perform other roles,

such as helping touch processing for reading braille. In a more dramatic exam-

ple, the brain of a ferret was physically altered at birth so that visual neocortex

received auditory input and vice versa. Each region of neocortex then learnt to

process the input it was receiving [Melchner et al., 2000]. Similar experiments

with rats have produced consistent results.

If the hypothesis of a single underlying learning and adaptation dynamic

across the neocortex is correct, then the key to understanding much of the in-

tellectual capacity of the brain lies in understanding how these six layers work,

and the way in which they interact with the thalamus and hippocampus. In

recent years this approach to artificial intelligence has been popularised by Jeff

Hawkins 2004, though most of these ideas have been known in neuroscience

for some time. The main vehicle for Hawkins’ artificial intelligence work is his

company Numenta, with related neuroscience research being carried out at the

Redwood Center for Theoretical Neuroscience, also founded by Hawkins. They

are certainly not alone in trying to understand the cortex, indeed it is one of

the largest areas of neuroscience research with whole journals dedicated to the

143 7.2 How
ould intelligent ma
hines be developed?

topic.

One group of researchers whose work may be useful to brain modelling is

currently cutting a cortical column into 30 nanometre slices and then scanning

these using both electron and light based microscopes. As this produces enor-

mous quantities of data, machine learning algorithms are being developed to

automatically identify the structures in these images. Over the next few years

this process should produce an extremely detailed three dimensional anatomical

model of the cortex [Singer, 2007].
A group with more of a simulation emphasis is the BlueBrain project based

at EPFL. Using information on the structure and behaviour of cortical columns

collected from a wide range of sources, they have built a computer model of

a column that they run on an IBM BlueGene supercomputer. To calibrate their

model they use segments of rat cortex which they stimulate in different ways

and then compare the resulting dynamics with what their model predicts. They

now claim to have succeeded in accurately modelling the dynamics of a cortical

column, and are working on ways to expand this model to be able to simulate

groups of columns working together [Graham-Rowe, 2007]. Their goal is to

eventually be able to simulate an entire human neocortex.

Another group working at the IBM Almaden Research Lab recently announced

that they had simulated a mouse scale neocortex, also on an IBM BlueGene su-

percomputer. Their model consisted of 8 million neurons and 50 billion synapses

and ran at one seventh real time speed. They claim that this simulation produced

dynamical properties consistent with what is observed in a real mouse brain, in-

cluding EEG like waves [Ananthanarayanan and Modha, 2007]. Their aim is

also to scale up to a human sized neocortex as more powerful supercomput-

ers become available in the coming years. Unlike the BlueBrain project, their

core goals are less neuroscience orientated: as their model starts to do more

interesting things, their aim is to extract from this useful algorithms for artificial

intelligence.

Obviously these simulations are pushing the limits of what is known about

the cortex, and also what is possible with current computer technology. Never-

theless, the fact that these simulations are being attempted at all illustrates how

the gap between the power of supercomputers and brains is perhaps not as large

as some people think. At present the world’s fastest machine is the IBM Road-

runner supercomputer at the US department of defence which has an official

LAPACK benchmark performance of 1015 floating point operations per second

(FLOPS). Machines capable of 1016 FLOPS are being designed and should ap-

pear in a few years. No doubt these will be superseded by even more powerful

machines.

To put these numbers in perspective, a human cortex has on the order of 1010

144 7.2 How
ould intelligent ma
hines be developed?

neurons and 1014 synapses [Koch, 1999]. Given that neurons can fire on the

order of 100 Hz, this gives a crude estimate of the computational capacity of the

brain: 1016 operations per second [Moravec, 1998; Kurzweil, 2000]. Of course,

until a simulation succeeds in producing intelligence, nobody knows for sure

how much computer power will be needed. Researchers working in molecular

neuroscience tend to think it is much more, while some working in theoretical

neuroscience think it could be less. If the estimate of 1016 FLOPS is in fact 100

times too low, then we will have to wait 10 years before a sufficiently powerful

computer exists.

Evolution

Another approach that is becoming more attractive with increasing computer

power is artificial evolution. After all, natural evolution produced the human

brain so we know that the approach does work — at least as a planet wide phe-

nomenon over billions of years! No computer in the foreseeable future could

hope to simulate evolution on such a scale. Fortunately, evolving an artificial

intelligence via an evolutionary algorithm is a much smaller problem. To begin

with, it is not necessary to start from scratch the way nature did. Of the approxi-

mately 4 billion years since simple cellular life first came into existence, about 3

billion years of this time was required just to get to the level of multicellular life.

Only then could more complex organisms start to evolve. We can short circuit

this by building a virtual body for the agent. Of course, evolving an intelligence

for a complex body might be too difficult, thus we may want to begin with trying

to evolve a simple intelligence for a simple body in a simple environment, and

then scale up. In any case, all the evolutionary algorithm has to do is to work on

the design of the agent’s intelligence: much of the remaining complexity can be

taken care of by us.

Another important point is that natural evolution does not seek to maximise

intelligence: its effect is to optimise agents’ ability to spread their genes. Intelli-

gence is a secondary feature that is more useful in some ecological niches than

others. In artificial evolution this does not need to be the case. So long as we

can define and measure intelligence in a sufficiently general way, we can use this

to evaluate the fitness of individuals. With evolution explicitly directed towards

maximising intelligence, progress towards more intelligent agents should be far

more rapid.

The universal intelligence measure described in Chapter 4 lays the founda-

tion for such a measure. Essentially, what the universal intelligence measure

says is that we should test agents initially over extremely trivial pattern recogni-

tion and interaction problems as these are the most important. As agents learn

145 7.2 How
ould intelligent ma
hines be developed?

to solve these, we should slowly include more complex problems, always en-

suring that agents are still able to solve the simple problems that came before.

This ensures that the agents’ abilities remain very general as they develop. As

the universal intelligence measure is still a theoretical definition, some further

work would be needed to figure out how best to convert it into a practical test

for evolving agents.

The importance of having a good fitness function cannot be stressed enough:

with a fitness function that is reliable, smooth and has a gradient that gener-

ally points in the right direction, even high dimensional optimisation problems

can become relatively easy. With an unreliable or deceptive fitness function

seemingly simple problems can become practically unsolvable. It is currently

unknown how well universal intelligence would work as a fitness function for

evolving agents with general intelligence.

Another major issue concerns the model that we use for the agents’ intel-

ligence: should the agents be neural networks, programs in some language,

or some other kind of object? In theory any Turing equivalent representation

should do, however in practice the choice of representation is important as it

has the effect of biasing the space of possibilities towards certain types of agents.

Often choosing the right representation is critical to making artificial evolution

work. For an intelligent agent there are many possible systems of representa-

tion, each with their respective proponents. Unfortunately, nobody really knows

which of these is the best. About the only thing we know for sure is that nature

was able to evolve intelligence working with networks of spiking neurons. On

the other hand, with a computer system perhaps something closer to a tradi-

tional programing language would be more efficient.

One important problem faced in large scale artificial evolution is diversity

control. Essentially, if you apply too much selection pressure the population

tends to collapse around a small group of individuals that are all related to the

fittest individual. At this point evolution becomes stuck due to a lack of genetic

diversity. If you reduce the selection pressure this helps, however now the speed

at which the population fitness rises is reduced. Even with no selection pressure

at all population diversity tends to collapse over time due to the phenomenon

of genetic drift. For problems where the evolving individuals are fairly simple

this can easily be dealt with by creating a distance metric to evaluate how sim-

ilar individuals are to each other. This can then be used to ensure that similar

individuals tend not to mate with each other, or have reduced fitness (see for

example Goldberg and Richardson, 1987; Jong, 1975). In more complex prob-

lems, however, it can become very difficult to judge how similar two individuals

really are. For example, two neural networks may compute the same function,

but have completely different weights and topologies. Indeed, due to Rice’s the-

146 7.3 Is building intelligent ma
hines a good idea?

orem it is impossible in general to decide whether two algorithms compute the

same function.

One solution is to use diversity control methods that do not rely on compar-

ing the genotypes of the individuals, but rather by comparing properties of their

phenotypes. A simple example of this is Fitness Uniform Optimisation where

the evolutionary algorithm tries to increase the diversity in the population by

increasing the diversity of fitness [Hutter and Legg, 2006]. In the case of the

Fitness Uniform Selection Scheme (FUSS) this is achieved through selection pres-

sure [Hutter, 2002b; Legg et al., 2004], while for the Fitness Uniform Deletion

Scheme it is achieved by deletion [Legg and Hutter, 2005a]. Although these

methods have not yet been applied to the evolution of programs or neural net-

works, they have proven to be effective on a number of deceptive optimisation

problems.

Another possibility might be to mix biologically and theoretically derived

designs with evolution. For example, as a starting point take a model of the

neocortex based on biological studies, such as those in the previous section,

and then apply artificial evolution to modify and tune the model. Although we

might not get the initial design right due to limitations in our understanding of

the cortex, it is reasonable to suppose that in the space of all neural networks

this initial design is relatively close to the correct design, or a related design

that also works. Starting with individuals that are reasonably close to the target

makes the optimisation problem that evolution has to solve orders of magnitude

easier.

Even if each of the above suggestions succeeded in reducing the difficulty of

evolving intelligence by several orders of magnitude, perhaps the biggest prob-

lem is still computer power. Advancing technology over the coming decades

will help, but this could still be too little. Perhaps the closest we could come

to nature’s planet scale evolution would be to construct a world wide network

of machines donating computation time. After all, more than 2 million years of

computer time have so far been donated to the Search for Extraterrestrial Intel-

ligence (SETI), why not something similar to search for artificial intelligence?

7.3 Is building intelligent ma
hines a good idea?

It is impossible to know whether any of the approaches discussed in the pre-

vious section, or other approaches, will succeed in producing truly intelligent

machines. But this is not the point we want to make: the point is that it is not

obvious that they will all fail. This is important, because the impact of this event

would be huge. Following the first credible demonstration of true general intel-

ligence in a machine, for sure a much larger and more powerful machine will

147 7.3 Is building intelligent ma
hines a good idea?

be constructed shortly thereafter. This leads to what I. J. Good referred to as an

intelligence explosion:

“Let an ultraintelligent machine be defined as a machine that can

far surpass all the intellectual activities of any man however clever.

Since the design of machines is one of these intellectual activities, an

ultraintelligent machine could design even better machines; there

would then unquestionably be an ‘intelligence explosion,’ and the

intelligence of man would be left far behind. Thus the first ultrain-

telligent machine is the last invention that man need ever make.”

[Good, 1965]

The defining characteristic of our species is intelligence. It is not by superior

size, strength or speed that we dominate life on earth, but by our intelligence. If

our intelligence were to be significantly surpassed, it is difficult to imagine what

the consequences of this might be. It would certainly be a source of enormous

power, and with enormous power comes enormous responsibility.

Machine intelligence could bring unprecedented wealth and opportunity if

used constructively and safely. Alternatively, it could bring about some kind of

a nightmare scenario. The latter possibility is certainly well known, being a

staple of science fiction. Positive fictional depictions are rare, probably because

casting the machines as villains is a convenient plot device. Outside of works

of fiction, however, the implications of powerful machine intelligence are rarely

encountered. Indeed, the whole subject of truly intelligent machines is generally

avoided by academics, as noted at the start of this chapter.

If one accepts that the impact of truly intelligent machines is likely to be

profound, and that there is at least a small probability of this happening in the

foreseeable future, it is only prudent to try to prepare for this in advance. If

we wait until it seems very likely that intelligent machines will soon appear, it

will be too late to thoroughly discuss and contemplate the issues involved. His-

torically technology has advanced in leaps and bounds, while social and ethical

considerations have developed more slowly, often only as a reaction to the prob-

lems created by a technology after it arrived. Even what now seem to be obvious

moral principles, such as gender and racial equality, were debated for centuries

and are still not accepted in many parts of the world. Given that the implications

of powerful machine intelligence are likely to be complex, we cannot expect to

find good answers quickly. We need to be seriously working on these things now.

A small but growing number of forward thinking individuals and organisa-

tions are thinking about these issues. Perhaps the premier organisation dedi-

cated to the safe and beneficial development of powerful artificial intelligence is

the Singularity Institute for Artificial Intelligence (SIAI). In 2007 SIAI organised a

148 7.3 Is building intelligent ma
hines a good idea?

conference that attracted well known speakers including Rodney Brooks (direc-

tor of the computer science and AI laboratory at MIT), Barney Pell (AI researcher

and CEO of Powerset), Wendell Wallach (bioethics lecturer at Yale), Sam Adams

(IBM distinguished engineer), Paul Saffo (lecturer at Sanford), Peter Norvig (di-

rector of research at Google), Peter Thiel (founder of Clarium Capital and co-

founder of Paypal) and Ray Kurzweil (futurologist, inventor and entrepreneur).

Although this event was one of the first of its kind, the calibre of these speakers

makes it clear that issues surrounding the development of advanced artificial

intelligence are starting to be taken seriously. Other notable people who have

spoken and written about the potential dangers of advanced artificial intelli-

gence in recent years include Bill Joy (co-founder of Sun Microsystems), Nick

Bostrom (director of the Future of Humanity Institute at Oxford), and Sir Mar-

tin Rees (professor at Cambridge and president of the Royal Society). Hopefully

this trend will continue.

At the SIAI itself the principle research fellow is Eliezer Yudkowsky. He has

written a number of documents that deal mostly with safety and ethical issues

surrounding the development of powerful artificial intelligence, as well as ideas

on how he thinks so called ‘Friendly AI’ should be developed. Although these can

be accessed through the SIAI website, none of his writings have yet appeared in

mainstream peer reviewed journals. As AIXI is currently the only comprehensive

mathematical theory of machine super intelligence, SIAI follows this work with

interest and lists [Hutter, 2007a] among their core readings. PhD candidate Nick

Hay, who is associated with SIAI, is examining whether AIXI theory can be used

to study the safety of intelligent machines. Hopefully the gentle introduction to

AIXI in Chapter 2 will encourage more people to explore some of these research

directions.

In 1887 Lord Acton famously wrote, “Power tends to corrupt, and absolute

power corrupts absolutely.” It is not that power itself is inherently good or evil,

rather it grants the ability to be so: power amplifies intention. Although Acton’s

quote has a ring of truth to it, perhaps it is excessively pessimistic about human

nature. In any case, if there is ever to be something approaching absolute power,

a super intelligent machine would come close. By definition, it would be capable

of achieving a vast range of goals in a wide range of environments. If we care-

fully prepare for this possibility in advance, not only might we overt disaster, we

might bring about an age of prosperity unlike anything seen before.

Notation and Conventions

When defining a symbol or equation we use := to stress that the item on the left

is newly defined. When we just need to assert that two things are equal we use

the plain = symbol. Not equal is 6=, and approximately equal ≈. By x ≫ y we

mean that x is much greater than y , and similarly for≪.

The cardinality of a set S is written |S|. The empty set is written ∅, subset

with the possbility of equality ⊆, and proper subset ⊂. The natural numbers

are denoted N := {1, 2, . . .}, naturals with 0 included N0 := {0, 1, 2, 3, . . .}, the

integers Z := {. . .− 2,−1, 0, 1, 2, . . .}, the rational numbers Q := { n

m
: n, m ∈ Z},

and the real numbers R. We use standard notation for intervals on the real line.

Specifically, we define [x , y] := {z ∈ R : x ≤ z ≤ y}, and (x , y) := {z ∈ R : x <

z < y}. Intervals such as (0, 1] have the obvious meaning.

loga x is the logarithm of x base a. ln x := loge x where e = 2.71828

When the specific base used makes no difference we simply write log x . The

factorial of n, written n!, is defined 0!= 1 and n! := n(n−1)(n−2) · · ·1 for n ∈ N.

The binomial is written
�n

r

�

:= n!

(n−r)!r!
. Although 00 is technically indeterminate,

in derivations we follow the standard convention and take its value to be 1. The

Kronecker delta symbol δab is defined to be 1 if a = b, and 0 otherwise.

An alphabet is a finite set of elements which are called symbols. For example,

{a, b, c, . . . , z} is an alphabet, as is {up,down,left,right}. Mostly we use the

binary alphabet B := {0, 1}, in which context the symbols are known as bits. A

binary string is a finite ordered n-tuple of bits. This is denoted x := x1 x2 . . . xn

where ∀i ∈ {1, . . . , n} : x i ∈ B, or more succinctly, x ∈ Bn. The 0-tuple is

denoted ε and is called the null string. The expression B≤n represents the set

of binary strings of length n or less, and B∗ :=
⋃

n∈NB
n is the set of all binary

strings. A substring of a string x is itself a string defined x j:k := x j x j+1 . . . xk

where 1 ≤ j ≤ k ≤ n. Concatenation is indicated by juxtaposition, for example,

if x = x1 x2 ∈ B
2 and y = y1 y2 y3 ∈ B

3, then x y = x1 x2 y1 y2 y3. In some

cases we will also concatenate constants, for example if x ∈ B∗ then x101 is the

string x with 101 added on the end. By ℓ(x) we mean the length of the string

x , for example, if x ∈ Bn then ℓ(x x) = 2ℓ(x) = 2n, and for k < n we have

ℓ(x j:k) = k− j + 1.

149

150

Unlike strings which always have finite length, a binary sequence ω is an

infinite list of bits, for example ω := x1 x2 x3 . . . ∈ B∞. For a sequence ω ∈ B∞

we might be interested in the prediction of the (t+1)th bit, denoted ωt+1, given

that we have so far observed only the finite initial string ω1:t ∈ B
t . Obviously a

string cannot be concatenated onto the end of a sequence as a sequence has no

end, however a sequence can be concateded onto the end of a string.

Our notation and usage of measure theory in this thesis is non-standard as

it makes working with strings and sequences easier. Although the usage is ex-

plained in the text, for the mathematically inclined the relationship to standard

measure theory is as follows: For a given sample space Ω, a probability measure

ν is a type of [0, 1] valued function defined over a set of subsets of Ω, known

as a σ-algebra. For prediction we need to measure the probability of sets of

sequences that begin with a given string, thus we need a σ-algebra that con-

tains these sets, the so called cylinder sets defined, Γx := {xω : ω ∈ B∞} for

x ∈ B∗. Such a σ-algebra can easily be constructed by considering the smallest

σ-algebra that contains the cylinder sets. In this thesis we do not need to be

able to measure arbitrary sets within this σ-algebra and thus we adopt a simpli-

fied notation for measures by defining ν(x) to be shorthand for ν(Γx). In other

words, ν(x) is the probability that a binary sequence sampled according to the

distribution ν begins with the string x ∈ B∗. This shorthand does not get us

into trouble as it can be proven that measures defined on the set B∗ correspond

uniquely to measures defined on the full σ-algebra [Calude, 2002]. As we are

often interested in the probability that a string x ∈ B∗ follows a string y ∈ B∗

in a sequence sampled according to some distribution µ, we further define the

shorthand notation µ(y x) := µ(y x)/µ(y).

Probability distributions, measures and semi-measures are usually denoted

by a lowercase greek letter, for example, µ,ν ,̺. For an unnamed probabilty

distribution over a random variable X , we write P(X). Eµ(X) is the expected

value of X with respect to µ. When µ is the true distribution we can omit this

from the notation for expectations.

Throughout the thesis we refer to an agent, usually denoted by the condi-

tional measure π, that is interacting with some kind of an environment, usually

denoted by the conditional measure µ. This interaction occurs by having ac-

tion symbols from the alphabet A being sent by the agent to the environment,

and perception symbols from the alphabet X being sent back in the other di-

rection. Each perception consists of an observation from the alphabet O and a

reward from the alphabet R . When referring to the full measure defined by π

interacting with µ we use the symbol π
µ
.

To denote symbols being sent we use the lower case variable names a, o, r

and x for actions, observations, rewards and perceptions respectively. We index

151

these in the order in which they occur, thus a1 is the agent’s first action, a2 is the

second action and so on. The agent and the environment take turns at sending

symbols, starting with the agent. This produces a history of actions, observa-

tions and rewards which can be written, a1o1r1a2o2r2a3o3r3 As we refer to

interaction histories a lot, we need to be able to represent these compactly. One

trick that we use is to squeeze symbols together and then index them as blocks

of symbols. Thus for the complete interaction history up to and including cycle

t, we can write ax1:t := a1 x1a2 x2a3 . . . at x t . For the history before cycle t we

use ax<t := ax1:t−1. Note that x t := ot rt .

Some of our results will have the property of holding within an additive

constant that is independent of the variables in the expression. We indicate this

by placing a small plus above the equality or inequality symbol. For example,

f <
+

g means that ∃c ∈ R,∀x : f (x) < g(x) + c. If f <
+

g <
+

f , we write

f
+

= g. When using standard “big O” notation this is superfluous as expressions

are already understood to hold within an independent constant, however we

will sometimes still use it for consistency of notation. Similarly, we define f ≤
×

g

to mean that ∃c ∈ R,∀x : f (x)≤ c · g(x), and if f ≤
×

g ≤
×

f we write f
×

= g.

152

Ergodi
 MDPs admit self-optimising

agents

A number of results similar to Theorem 3.4.5 exist, such as the proof that with

probability 1 the Q-learning algorithm converges to optimal in an ergodic MDP

environment [Watkins and Dayan, 1992]. Unfortunately, in order to establish

the necessary chain of results we need something a little different: we require

the convergence to hold for any history and with an effective horizon that goes

to infinity. For a precise statement of the theorem, necessary technical condi-

tions and proof, see Theorem 5.38 in [Hutter, 2005]. Although Hutter’s proof

is straight forward, it assumes a certain continuity condition on value functions

based on estimated transition probabilities for ergodic MDPs. This is left as a

(large!) exercise for the reader (Problem 5.12 in Hutter, 2005). In this ap-

pendix we follow the plan of attack suggested in Problem 5.12 to prove the

missing continuity result, namely, Theorem .4.3 that appears at the end of this

section.

.1 Basi
 de�nitions

For definitions of agents, environments, ergodic and many other things used,

see Chapters 2 and 3. Rather than just talking about agents, as we do in the

rest of this thesis, here we will use the slightly more refined notion of a policy.

Essentially, a policy is some rule or mode of operation that an agent has. For

example, when navigating a maze an agent’s policy might be to always turn left

at each intersection. The distinction is useful when we wish to consider agents

which have multiple different modes of operation. That is, an agent which fol-

lows some policy for a while and then, perhaps due to certain conditions such

as a lack of success, switches to a different policy.

The proofs in this section will make extensive use of results from linear alge-

bra. The mathematical notation used is fairly standard: we will represent real

valued matrices with capital letters, for example A ∈ Rn×m. By Ai j we mean the

153

154 .1 Basi
 de�nitions

single scalar element of A on the i th row and j th column. By A∗ j we mean the j th

column of A and similarly for Ai∗. We represent vectors with a bold lowercase

variable, for example a ∈ Rn. Similar to the case for matrices, by ai we mean the

i th element of a. In some situations a matrix or vector may already have other

indexes, in this case we place square brackets around it and then index so as

to avoid confusion. For example, [bπ]i is the i th element of the vector bπ. We

represent the classical adjoint of a matrix A by adj(A) and the determinant by

det(A).

In order to express the Markov chains as matrices, we need to be able to

index the actions and perceptions with natural numbers. This could be achieved

by a simple numbering scheme; here we will just assume that this has already

been done. That is, without loss of generality we assume that X := {1, . . . , n1}

and A := {1, . . . , n2} for n1, n2 ∈ N. The difficulty with this is that each percep-

tion x is still associated with an observation o and a reward r. To recover the

reward associated with x we write r(x) ∈ R , and similarly for o(x) ∈ O . Both

R and O are finite, as always, but otherwise unspecified.

Let π be a stationary policy such that ∀ax<kak : π(ax<ka
k
) = π(o(x)k−1a

k
).

That is, under the policy π the distribution of actions depends on only the last

observation in a way that is independent of k. It follows that the equation for

the kth perception xk given history ax<k is,

π(ax<ka
k
)µ(ax<kax

k
) = π(o(xk−1)ak

)µ(o(xk−1)ax
k
).

Thus, for a given µ and π the next perception xk depends on only the previous

observation o(x)k−1 in a way that is independent of k, that is, π and µ together

form a stationary Markov chain. Given that everything is stationary, we can drop

the index k and write x , a and x ′ for the perception, action and the following

perception.

From the definition of an MDP it is clear that we can represent a (stationary)

MDP as a three dimensional Cartesian tensor D ∈ Rn1×n2×n1 defined ∀x , a, x ′,

Dxax ′ := µ(o(x)ax ′).

Note that the only part of x that plays a part in defining the structure of D is

the associated observation o(x), as required by our definition of an MDP. The

reward associated with x , that is r(x), has no role.

We can now express the interaction of the policy and the environment as a

square stochastic matrix T ∈ Rn1×n1 defined,

Tx x ′ :=
∑

a∈A

π(o(x)a)µ(o(x)ax ′) =
∑

a∈A

π(o(x)a)Dxax ′ . (1)

It should be noted that this characterisation of the interaction between µ

and π as a stochastic matrix T is only possible if µ is a stationary MDP and π

155 .1 Basi
 de�nitions

is a stationary policy. Fortunately this is all we will need for optimality, though

we will briefly have to consider non-stationary policies in Section .3 in order

to prove this. It is worth keeping in mind that when we see a matrix T this

represents the complete system of an agent and environment interacting, rather

than just an environment. That is, it represents the interaction measure π
µ
.

Define a matrix Rxa ∈ R
n1×n2 to be the expected reward when choosing action

a after perception x . Further define the column vector rπ ∈ R
n1 where,

[rπ]x := E(Rxa|x) =
∑

a∈A

π(xa)Rxa.

The advantage of expressing everything in matrix notation is that the full

range of linear algebra techniques is now easy to work with. For example, the

probability of transiting between any two perceptions can be easily computed by

taking powers of T : if we have a perception i then the probability that exactly

m cycles later the perception will be j, is given by [T m]i j.

.1.1 Definition. For an environment µ and a policy π the expected average

value in cycles k to m given history ax<k is defined to be,

V
πµ

km
(ax<k) :=

1

m

∑

axk:m

π
µ
(ax<kax

k:m
)

m
∑

i=k

r(x i).

Additionally we define the expected long run average value to be,

V
πµ

k∞
(ax<k) := lim

m→∞
V
πµ

km
(ax<k),

when this limit exists.

When k = 1 there is no history, that is, ax<k = ε, the null string. In this case we

simplify the notation slightly by defining V
πµ

1m := V
πµ

1m (ε). Similarly for V
πµ

1∞ .

In matrix notation we can express the expected long run average value for

each initial perception x1 ∈ X = {1, . . . , n1} as a vector of value functions,

V
πµ

1∞ =









V
πµ

1∞(1)
...

V
πµ

1∞(n1)









=

lim
m→∞

1

m

m−1
∑

k=0

T k

!

rπ, (2)

if the limit exists.

.1.2 Definition. For an environment µ the optimal policy, denoted πµ, is

defined as:

πµ := argmax
π

V
πµ

1∞ ,

where the maximum is taken over all policies, including non-stationary ones.

156 .2 Analysis of stationary Markov
hains

In some sense the optimal policy is the ideal policy. However, the optimal

policy is usually only optimal with respect to the specific environment for which

it was defined. If we do not know the specific details of the environment that

the policy will face in advance, the best we can do is to have a policy which will

adapt to the environment based on experience. In such a situation the policy is

unlikely to be optimal as it will probably make some non-optimal actions as it

learns about the environment it faces. In this situation the following concept is

useful:

.1.3 Definition. We say that a policy π is self-optimising in an environment

µ if its expected average value converges to the optimal expected average value

as m→∞, that is,

V
πµ

1m −→ V
πµµ

1m .

Intuitively this means that the expected performance of the policy in the

long run is as good as an optimal policy which was designed with complete

knowledge of the environment in advance. Classes of environments which admit

self-optimising policies are important because they are environments in which it

is possible for general purpose policies to adapt their behaviour until eventually

their actions become optimal.

.2 Analysis of stationary Markov
hains

In this section we will establish some of the properties of Markov chains that

we will require. Our first lemma shows that the key term (I − αT)−1 can be

expanded using a Taylor series. The proof of this lemma and the following

lemma and theorem are based on the proof of Proposition 1.1 from Section 4.1

of [Bertsekas, 1995].

.2.1 Lemma. For a stochastic matrix T ∈ Rn×n and scalar α ∈ (0, 1) there exist

stochastic matrices T ∗ ∈ Rn×n and H ∈ Rn×n such that

(I −αT)−1 = (1−α)−1T ∗+H +O(|1−α|)

where limα→1 O(|1−α|) = 0.

Proof. Define the n× n matrix,

M(α) := (1−α)(I −αT)−1.

Applying the matrix inversion formula we see that

M(α) = (1−α)
adj(I −αT)

det(I −αT)
,

157 .2 Analysis of stationary Markov
hains

where the determinant det(I − αT) is an nth order polynomial in α and the

classical adjoint adj(I − αT) is an n× n matrix of n−1th order polynomials in

α. Therefore M(α) can be expressed as an n× n matrix where each element is

either zero or a fraction of two polynomials in α that have no common factors.

We know that the denominator polynomials of M(α) cannot have 1 as a root

as this would imply that the corresponding element of M(α) → ∞ as α → 1.

This cannot happen because,

(1−α)−1M(α)rπ = (I −αT)−1rπ

where ∀i ∈ {1, . . . , n} :
�

�

�

(I −αT)−1rπ
�

i

�

� ≤ (1−α)−1 maxk

�

�[rπ]k
�

�. Clearly then

the absolute value of the elements of M(α)rπ are bounded by maxk

�

�[rπ]k
�

� for

α < 1. Therefore we can express the i j th element of M(α) as,

Mi j(α) =
γ(α−φ1) · · · (α−φp)

(α−ψ1) · · · (α−ψq)

where γ,φi,ψ j ∈ R for all i ∈ {1, . . . p} and j ∈ {1, . . . q}.

Using this expression we can take a Taylor expansion of M(α) about 1 as

follows. Firstly, define the matrix T ∗ ∈ Rn×n as,

T ∗ := lim
α→1

M(α)

and the matrix H ∈ Rn×n as

Hi j := −
∂

∂ α
Mi j(α)]

�

�

�

�

α=1

. (3)

That is, H is a matrix having as it i j th element the first derivative of −Mi j(α)

with respect to α evaluated at α= 1.

From the equation for a first order Taylor expansion,

M(α) = T ∗+ (1−α)H +O((1−α)2)

where O((1−α)2) is an α-dependent matrix such that

lim
α→1

O((1−α)2)

1−α
= 0.

Dividing through by (1−α) we get

(1−α)−1M(α) = (1−α)−1T ∗+ H +O(|1−α|)

where limα→1 O(|1 − α|) = 0. The result then follows as (I − αT)−1 = (1 −

α)−1M(α) by definition. 2

158 .2 Analysis of stationary Markov
hains

We will soon show that T ∗ as defined above plays a significant role in the

analysis. Before looking at this more closely, we will firstly prove some useful

identities.

.2.2 Lemma. It follows from the definitions of T ∗ and M(α) that,

T ∗ = T ∗T = T T ∗ = T ∗T ∗

and for k ∈ N
(T − T ∗)k = T k

− T ∗.

Proof. By subtracting the identity αI = α(I − αT)(I − αT)−1 from the identity

I = (I −αT)(I −αT)−1 we see that,

(1−α)I = (I −αT)(1−α)(I −αT)−1

and thus,

αT (1−α)(I −αT)−1 = (1−α)(I −αT)−1+ (α− 1)I .

Taking α→ 1 gives,

lim
α→1
αT · lim

α→1
(1−α)(I −αT)−1 = lim

α→1
(1−α)(I −αT)−1+ lim

α→1
(α− 1)I

which, using the definition of M(α), becomes,

T · lim
α→1

M(α) = lim
α→1

M(α).

Finally using the definition of T ∗ this reduces to just,

T T ∗ = T ∗.

Using essentially the same argument it can also be shown that T ∗T = T ∗. It then

immediately follows that ∀k ∈ N : T kT ∗ = T ∗T k = T ∗.

From the relation T T ∗ = T ∗ it follows that T ∗ − αT T ∗ = T ∗ − αT ∗ and so

(I −αT)T ∗ = (1−α)T ∗ and thus,

T ∗ = (1−α)(I −αT)−1T ∗.

Taking α→∞ gives,

lim
α→1

T ∗ = lim
α→1
(1−α)(I −αT)−1

· lim
α→1

T ∗,

159 .2 Analysis of stationary Markov
hains

which by the definition of T ∗ is just,

T ∗ = T ∗T ∗.

This establishes the first result.

The second result will be proven by induction. Trivially (T − T ∗)1 = T 1
− T ∗

which establishes the case k = 1. Now assume that the induction hypothesis

holds for the kth case and consider the (k+ 1)th case:

(T − T ∗)k+1 = (T − T ∗)k(T − T ∗)

= (T k
− T ∗)(T − T ∗)

= T k+1
− T kT ∗− T ∗T k + T ∗T ∗

= T k+1
− T ∗.

The second line follows from the induction assumption and the final line from

the results above. 2

We will use these simple relations frequently in the proofs that follow without

further comment. Now we can prove a key result about the structure of T ∗: it is

the limiting average distribution for the matrix T .

.2.3 Theorem. For a stochastic matrix T ∈ Rn×n and ∀m ∈ N,

T ∗ =
1

m

m−1
∑

k=0

T k +
1

m
(T m
− I)H.

where H ∈ Rn×n is the matrix that satisfies Lemma .2.1.

Proof. As T is a stochastic matrix, from Lemma .2.1 we see that there exist

matrices H ∈ Rn×n and T ∗ ∈ Rn×n such that,

H = (I −αT)−1
− (1−α)−1T ∗−O(|1−α|) (4)

where α ∈ (0, 1) and limα→1 O(|1−α|) = 0.

However from the geometric series equations it follows that,

(I −αT)−1
− (1−α)−1T ∗ =

∞
∑

k=0

αkT k
− T ∗

∞
∑

k=0

αk =

∞
∑

k=0

αk(T k
− T ∗)

= I − T ∗+

∞
∑

k=1

(α(T − T ∗))
k

= I − T ∗+
α(T − T ∗)

I −α(T − T ∗)

= (I −α(T − T ∗))−1
− T ∗.

160 .2 Analysis of stationary Markov
hains

Substituting this result into Equation (4) and taking α→ 1,

H = lim
α→1

�

(I −α(T − T ∗))−1
− T ∗−O(|1−α|)

�

= (I − T + T ∗)−1
− T ∗.

Multiplying by (I − T + T ∗) and then T ∗ we see that,

(I − T + T ∗)H = I − (I − T + T ∗)T ∗

H − T H − T ∗H = I − T ∗+ T T ∗− T ∗T ∗ = I − T ∗

T ∗H − T ∗H − T ∗H = T ∗− T ∗

T ∗H = 0.

It now also follows that H − T H = I − T ∗ and so T ∗+ H = I + T H.

Multiplying by T k on the left for k ∈ N0 now gives,

T ∗+ T kH = T k + T k+1H.

Summing over k = 0, 1, . . . , m−1 and cancelling equal terms and dividing through

by m produces,

mT ∗+

m−1
∑

k=0

T kH =

m−1
∑

k=0

T k +

m−1
∑

k=0

T k+1H

mT ∗+ H =

m−1
∑

k=0

T k + T mH

from which the result follows as m 6= 0. 2

This establishes bounds on the convergence of 1

m

∑m−1

k=0
T k to T ∗ that we will

need. As H is bounded, simply taking m→∞ yields the following:

.2.4 Corollary. For a stochastic matrix T ∈ Rn×n,

T ∗ = lim
m→∞

1

m

m−1
∑

k=0

T k.

By applying this result to Equation (2) we can now express the expected long

run average value very simply in terms of T ∗,

V
πµ

1∞ :=

lim
m→∞

1

m

m−1
∑

k=0

T k

!

rπ = T ∗rπ. (5)

Thus by the existence of T ∗ we can infer that the expected long run average

value also exists in this case.

161 .2 Analysis of stationary Markov
hains

.2.5 Corollary. Let µ be a stationary MDP environment and π a stationary policy.

∀m ∈ N,
�

�V
πµ

1∞ − V
πµ

1m

�

�= O

�

1

m

�

.

Proof. Let T ∈ Rn×n represent the Markov chain formed by the interaction of µ

and π. From Theorem .2.3 we see that ∀m ∈ N,

T ∗−
1

m

m−1
∑

k=0

T k =
1

m
(T m
− I)H.

Multiplying by rπ on the right gives

T ∗rπ−

1

m

m−1
∑

k=0

T k

!

rπ =
1

m
(T m
− I)Hrπ,

and thus the result follows as the elements of both T m and H are bounded. 2

Of course this result is not surprising as we would expect the expected aver-

age value to converge to its limit in a reasonable way when both the environment

and policy are stationary.

Finally let us note some technical results on the relationship between T and

T ∗.

.2.6 Lemma. For an ergodic stochastic matrix T ∈ Rn×n the row vectors of T ∗ are

all the same and define a stationary distribution under T .

This is a standard result in the theory of ergodic Markov chains. See for

example Chapter V of [Doob, 1953] or any book on discrete stochastic processes

for a proof.

The following result shows that the limiting matrix T ∗ is in some sense con-

tinuous with respect to small changes in T . This will be important because it

means that if we have an estimate of T that converges in the limit then our

estimate of T ∗ will also converge.

.2.7 Theorem. For an ergodic stochastic matrix T ∈ Rn×n the matrix T ∗ ∈ Rn×n

is continuous in T in the following sense: If T̂ ∈ Rn×n is a stochastic matrix where

maxi j

�

�Ti j − T̂i j

�

� is small, then ∃cT > 0 which depends on T, such that maxi j

�

�T ∗
i j
−

T̂ ∗
i j

�

�≤ cT maxi j

�

�Ti j − T̂i j

�

�.

162 .2 Analysis of stationary Markov
hains

Proof. For an ergodic square matrix T ∈ Rn×n the row vectors of T ∗ are all the

same and correspond to the stationary distribution row vector t∗ ∈ R1×n. That

is,

T ∗ =









t∗

...

t∗









(6)

where t∗T = t∗ and for all distribution vectors t ∈ R1×n we have tT ∗ = t∗. Thus

T has an eigenvalue of 1 with t∗ being the corresponding left eigenvector.

From linear algebra we know that ∀T ∈ Rn×n,

adj(I − T) (I − T) = det(I − T)I .

However as T has an eigenvalue of 1, det(I − T) = 0 and thus,

adj(I − T) T = adj(I − T),

or equivalently, ∀i ∈ {1, . . . , n},

[adj(I − T)]i∗T = [adj(I − T)]i∗.

Because {t∗} is a basis for the eigenspace corresponding to the eigenvalue 1,

[adj(I − T)]i∗ must be in this eigenspace. That is, ∀i ∈ {1, . . . , n}, ∃ci ∈ R:

[adj(I − T)]i∗ =
�

cof1i(I − T), . . . , cofni(I − T)
�

= cit
∗

where the cofactor is defined cof ji(I − T) := (−1) j+i det(minor ji(I − T)).

As T has an eigenvalue of 1 with geometric multiplicity 1 it follows that

I − T has an eigenvalue of 0 also with geometric multiplicity 1. Thus the nullity

of I − T is 1 and so rank(I − T) = n− 1. While we define the rank of a matrix

to be the dimension of its column or row space, it also can be defined as the

size of the largest non-zero minor and the two defintions can be proven to be

equivalent. As the adjoint is composed of order n − 1 minors it immediately

follows that adj(I − T) 6= 0 and thus ∃k, which depends on T , such that ck > 0.

As minor jk(I−T) is an (n−1)×(n−1) sub-matrix of (I−T) the determinant

of this is an order n−1 polynomial in the elements of T . Thus, by the continuity

of polynomials, ∃c′ > 0 such that for a sufficiently small ǫ > 0 change in any

element of T we will get at most a c′ǫ change in each cof jk(I − T). However we

know that t∗ = 1

ck

[adj(I − T)]k∗, and so an ǫ change in the elements of T results

in at most a c′

ck

ǫ change in the elements of t∗ and thus T ∗. Define cT := c′

ck

to

indicate that this constant depends on T and we are done. 2

163 .3 An optimal stationary poli
y

.3 An optimal stationary poli
y

We now turn our attention to optimal policies. While our analysis so far has only

dealt with stationary policies, in general optimal policies need not be stationary.

As non-stationary policies are more difficult to analyse our preference is to deal

with only stationary policies if possible. In this section we prove that for the class

of ergodic finite stationary MDP environments an optimal policy can indeed be

chosen so that it is stationary. This will simplify our analysis in later sections.

However, in order to show this result we will need to briefly consider policies

which are potentially non-stationary. The proofs in this section follow those of

Section 4.2 in [Bertsekas, 1995].
Let us assume that the policy π is deterministic but not necessarily stationary,

that is, π := {π1,π2, . . .}. Thus in the kth cycle we apply πk. Define pi(x) :=

arg maxy∈A πi(xa) to be the action chosen by policy π in cycle i. Clearly this is

unique for deterministic π.

In order to make some of the equations that follow more manageable we

need to define the following two mappings. For any function f : X → R and

deterministic policy π := {π1,π2, . . .} we define the mapping Bπk
for any k ∈ N

to be ∀x ∈ X ,

(Bπk
f)(x) := Rx pk(x)

+
∑

x ′∈X

µ(x pk(x) x ′) f (x ′).

Of interest will be the policy that simply selects the action which maximises this

expression in each cycle for any given x . For this we define for any function

f :X → R and ∀x ∈ X ,

(B f)(x) :=max
a∈A



Rxa +
∑

x ′∈X

µ(xax ′) f (x ′)



 .

Clearly this policy is stationary as the maximising a depends only on x and is

independent of which cycle the system is in. By (B2 f)(x) we mean (B(B f))(x)

and similarly higher powers such as (Bi f)(x) and (Bi
πk

f)(x). The equation B f =

f is the well known Bellman equation [Bellman, 1957].
An elementary property of the mappings Bπk

and B is their monotonicity in

the following sense.

.3.1 Lemma. For any f , f ′ : X → R such that ∀x ∈ X : f (x) ≤ f ′(x) and

for any possibly non-stationary deterministic policy π := {π1,π2, . . .}, we have

∀x ∈ X , ∀i, k ∈ N,

(Bi
πk

f)(x)≤ (Bi
πk

f ′)(x)

and

(Bi f)(x)≤ (Bi f ′)(x).

164 .3 An optimal stationary poli
y

Proof. Clearly the cases B1 and B1
πk

are true from their definitions. A simple

induction argument establishes the general result. 2

Define the column vector e := (1, . . . , 1)t ∈ Rn×1. Using these mappings

we can now prove that the optimal policy can be chosen stationary if certain

conditions hold.

.3.2 Theorem. Let µ be a finite stationary MDP environment. If λ ∈ R is a scalar

and h ∈ Rn×1 a column vector such that ∀x ∈ X ,

λ+ [h]x =max
a∈A



Rxa +
∑

x ′∈X

µ(xax ′)[h]x ′



 (7)

or equivalently,

λe+ h= Bh,

then

λ = V
∗µ

1∞ :=max
π

V
πµ

1∞ .

Furthermore, if a stationary policy πµ attains the maximum in Equation (7) for

each x then this policy is optimal, that is, V
πµµ

1∞ = λ.

Proof. We have λ ∈ R and h ∈ Rn×1 such that for any (possibly non-stationary)

policy π= {π1,π2, . . .} and cycle m ∈ N and ∀xm ∈ X ,

λ+ [h]xm
≥ Rxmpm(xm)

+
∑

xm+1∈X

µ(xm pm(xm) xm+1)[h]xm+1
.

Furthermore, if πm attains the maximum in Equation (7) for each xm ∈ X then

equality holds in the mth cycle and pm(xm) is optimal for this single cycle. The

main idea of this proof is to extend this result so that we get a policy which is

optimal across all cycles.

Using the mapping Bπm
we can express the above equation more compactly

as,

λe+ h≥ Bπm
h.

Applying now Bπm−1
to both sides and using the monotonicity property from

Lemma .3.1 we see that,

λe+ Bπm−1
h≥ Bπm−1

Bπm
h.

However we also know that λe+ h≥ Bπm−1
h and so it follows that,

2λe+ h≥ Bπm−1
Bπm

h.

165 .3 An optimal stationary poli
y

Repeating this m times we get

mλe+ h≥ Bπ1
Bπ2
· · ·Bπm

h,

where equality continues to hold in the case where πk attains the maximum in

Equation (7) in each cycle k ∈ {1, . . . , m}. When this is the case we see that π is

optimal for the cycles 1 to m.

From the definition of Bπk
we see that,

[Bπ1
Bπ2
· · ·Bπm

h]x1
= E

(

[h]xm+1
+

m
∑

k=1

Rxk pk(xk)

�

�

�

�

x1,π,µ

)

is the total expected reward over m cycles from the initial perception x1 to the

final perception xm+1 under policy π and environment µ. Thus ∀x1 ∈ X ,

mλ+ [h]x1
≥ E

(

[h]xm+1
+

m
∑

k=1

Rxk pk(xk)

�

�

�

�

x1,π,µ

)

where equality holds if πk attains the maximum in Equation (7) in each cycle.

Dividing by m, gives ∀x1 ∈ X ,

λ+
1

m
[h]x1

≥
1

m
E
¦

[h]xm+1
|x1,π,µ

©

+
1

m
E

(

m
∑

k=1

Rxk pk(xk)

�

�

�

�

x1,π,µ

)

. (8)

Taking m→∞ this reduces to ∀x1 ∈ X ,

λ≥ lim
m→∞

1

m
E

(

m
∑

k=1

Rxk pk(xk)

�

�

�

�

x1,π,µ

)

,

or equivalently,

λ≥ V
πµ

1∞ ,

where equality holds if πk attains the maximum in Equation (7) for each cycle.

When this is the case, π is optimal and thus V
πµ

1∞ =maxπ V
πµ

1∞ = λ. Furthermore,

we see that this optimal policy is stationary because in Equation (7) the action

a only depends on the current perception x and is independent of the cycle

number. We call this optimal stationary policy πµ. 2

The above result only guarantees the existence of an optimal stationary pol-

icy πµ for a stationary MDP environment µ in the case where there is a solution

to the Bellman equation λe+ h = Bh. Fortunately for ergodic MDPs it can be

shown that such a solution always exists (our definition of ergodicity implies

condition (2) of Proposition 2.6 in [Bertsekas, 1995] where the existence of a

solution is proven). It now follows that:

166 .4 Convergen
e of expe
ted average value

.3.3 Theorem. For any ergodic finite stationary MDP environment µ there exists

an optimal stationary policy πµ.

This is a useful result because the interaction between a stationary MDP en-

vironment and a stationary policy is much simpler to analyse than the non-

stationary case. We will refer back to this result a number of times when we

need to assert the existence of an optimal stationary policy.

One thing that we have not shown is that the optimal policy with respect

to a given MDP can be computed. Given that our MDP is finite and therefore

the number of possible stationary deterministic policies is also finite we might

expect that this problem should be solvable. Indeed, it can be shown that the

Policy Iteration algorithm is able to compute an optimal stationary policy in this

situation (see Section 4.3 of Bertsekas, 1995).

.4 Convergen
e of expe
ted average value

Our goal is to find a good policy for an unknown stationary MDP µ. Because

we do not know the structure of the MDP, that is µ, we create an estimate µ̂

and then find the optimal policy with respect to this estimate, which we will call

πµ̂. Our hope is that if our estimate µ̂ is sufficiently close to µ, then πµ̂ will

perform well compared to the true optimal policy πµ. Specifically we would like
�

�V
πµ̂µ

1∞ − V
πµµ

1∞

�

�= 0.

In the analysis that follows we will need to be careful about whether we are

talking about the true environment µ, our estimate of this µ̂, or various com-

binations of environments interacting with various policies. Sometimes policies

will be optimal with respect to the environment that they are interacting with,

sometimes they will only be optimal with respect to an estimate of the environ-

ment that they are actually interacting with, and in some cases the policy may

be arbitrary. Needless to say that care is required to avoid mixing things up.

As defined previously, let D ∈ RX×A×X represent the chronological system

µ and D̂ ∈ RX×A×X the chronological system µ̂. From Equation (1) we know

that the matrix T ∈ RX×X representing the Markov chain formed by a policy π

interacting with µ is defined by,

Tx x ′ :=
∑

a∈A

π(xa)Dxax ′ .

We can similarly define T̂ from π and D̂. It now follows that if D̂ is close to D, in

the sense that ǫ :=maxxax ′ |Dxax ′− D̂xax ′ | is small, then for any stationary policy

167 .4 Convergen
e of expe
ted average value

π the associated matrices T and T̂ are close:

max
x x ′

�

�Tx x ′ − T̂x x ′

�

� = max
x x ′

�

�

�

�

∑

a∈A

π(xa)
�

Dxax ′ − D̂xax ′
�

�

�

�

�

≤ max
x

�

�

�

�

∑

a∈A

π(xa)ǫ

�

�

�

�

= ǫ.

This is important as it means that we can take bounds on the accuracy of our

estimate of the true MDP and imply from this bounds on the accuracy of the

estimate T̂ for any stationary policy.

For any given stationary policy this bound also carries over to the associated

expected long run average value functions in a straightforward way:

.4.1 Lemma. For stationary finite MDPs such that ǫ := maxxax ′ |Dxax ′ − D̂xax ′ | it

follows that for any stationary policy π,

�

�

�V
πµ

1∞ − V
πµ̂

1∞

�

�

�= O(ǫ).

Proof. Let T and T̂ be the Markov chains defined by D and D̂ interacting with a

stationary policy π. By the argument above we see that maxx x ′ |Tx x ′ − T̂x x ′| ≤ ǫ.

Thus by Theorem .2.7 we know that there exists cT such that maxx x ′ |T
∗

x x ′
−

T̂ ∗
x x ′
| ≤ cTǫ, where cT depends on T . By Equation (5) we see that,

�

�

�V
πµ

1∞ − V
πµ̂

1∞

�

�

�=
�

�(T ∗− T̂ ∗)rπ
�

�= O(ǫ). (9)

2

From this lemma we can show that the optimal policies with respect to µ and

µ̂ are bounded:

.4.2 Theorem. For a stationary finite MDP such that ǫ := maxxax ′ |Dxax ′ − D̂xax ′ |

it follows that,
�

�

�V
πµµ

1∞ − V
πµ̂µ̂

1∞

�

�

�= O(ǫ),

where πµ and πµ̂ are optimal policies that are also stationary.

Proof. For any two functions f , f ′ : D → R such that ∀x ∈ D : | f (x)− f ′(x)| ≤ δ

it follows that |maxx∈D f (x) −maxx ′∈D f ′(x ′)| ≤ δ. From Lemma .4.1 it then

follows that,
�

�

�

�

max
π

V
πµ

1∞ −max
π′

V
π′µ̂

1∞

�

�

�

�

= O(ǫ)

168 .4 Convergen
e of expe
ted average value

where π and π′ belong to the set of stationary policies. However by Theorem

.3.3 we know that the optimal policies for µ and µ̂ can be chosen stationary and

thus the result follows. 2

We now have all the necessary results to show that if µ̂ is a good estimate of

µ then our policy πµ̂ that is based on µ̂ will perform near optimally with respect

to the true environment in the limit.

.4.3 Theorem. Let µ and µ̂ be two ergodic stationary finite MDP environments

that are close in the sense that ǫ := maxxax ′ |Dxax ′ − D̂xax ′ | is small. It can be

shown that for m ∈ N,

�

�

�V
πµ̂µ

1m − V
πµµ

1m

�

�

�= O

�

1

m

�

+O(ǫ)

where πµ is an optimal policy for the true distribution µ, and πµ̂ is an optimal

policy with respect to the estimate of the true distribution µ̂.

Proof.

From Theorem .3.3 we see that πµ̂ can be chosen stationary. From the trian-

gle inequality and the results of Corollary .2.5 (with π πµ̂), Lemma .4.1 (with

π πµ̂) and Theorem .4.2 we see that,

�

�

�V
πµ̂µ

1m − V
πµµ

1∞

�

�

� =

�

�

�V
πµ̂µ

1m − V
πµ̂µ

1∞ + V
πµ̂µ

1∞ − V
πµ̂µ̂

1∞ + V
πµ̂µ̂

1∞ − V
πµµ

1∞

�

�

�

≤

�

�

�V
πµ̂µ

1m − V
πµ̂µ

1∞

�

�

�+

�

�

�V
πµ̂µ

1∞ − V
πµ̂µ̂

1∞

�

�

�+

�

�

�V
πµ̂µ̂

1∞ − V
πµµ

1∞

�

�

�

= O

�

1

m

�

+O(ǫ).

Now from Corollary .2.5 (with π πµ) and the triangle inequality again,

�

�

�V
πµ̂µ

1m − V
πµµ

1m

�

�

� =

�

�

�V
πµ̂µ

1m − V
πµµ

1∞ + V
πµµ

1∞ − V
πµµ

1m

�

�

�

≤

�

�

�V
πµ̂µ

1m − V
πµµ

1∞

�

�

�+

�

�

�V
πµµ

1∞ − V
πµµ

1m

�

�

�= O

�

1

m

�

+O(ǫ).

2

De�nitions of Intelligen
e

“Viewed narrowly, there seem to be almost as many definitions of

intelligence as there were experts asked to define it." R. J. Sternberg

quoted in [Gregory, 1998]

Despite a long history of research and debate, there is still no standard def-

inition of intelligence. This has lead some to believe that intelligence may be

approximately described, but cannot be fully defined. We believe that this de-

gree of pessimism is too strong. Although there is no single standard definition,

if one surveys the many definitions that have been proposed, strong similarities

between many of the definitions quickly become obvious.

Here we take the opportunity to present the many informal definitions that

we have collected over the years. Naturally, compiling a complete list would be

impossible as many definitions of intelligence are buried deep inside articles and

books. Nevertheless, the 70 odd definitions presented below are, to the best of

our knowledge, the largest and most well referenced collection there is.

.5 Colle
tive de�nitions

In this section we present definitions that have been proposed by groups or

organisations. In many cases definitions of intelligence given in encyclopedias

have been either contributed by an individual psychologist or quote an earlier

definition given by a psychologist. In these cases we have chosen to attribute

the quote to the psychologist, and have placed it in the next section. In this

section we only list those definitions that either cannot be attributed to specific

individuals, or represent a collective definition agreed upon by many individuals.

As many dictionaries source their definitions from other dictionaries, we have

endeavoured to always list the original source.

1. “The ability to use memory, knowledge, experience, understanding, rea-

soning, imagination and judgement in order to solve problems and adapt

to new situations.” AllWords Dictionary, 2006

169

170 .5 Colle
tive de�nitions

2. “The capacity to acquire and apply knowledge.” The American Heritage

Dictionary, fourth edition, 2000

3. “Individuals differ from one another in their ability to understand complex

ideas, to adapt effectively to the environment, to learn from experience,

to engage in various forms of reasoning, to overcome obstacles by taking

thought.” American Psychological Association [Neisser et al., 1996]

4. “The ability to learn, understand and make judgments or have opinions

that are based on reason” Cambridge Advance Learner’s Dictionary, 2006

5. “Intelligence is a very general mental capability that, among other things,

involves the ability to reason, plan, solve problems, think abstractly, com-

prehend complex ideas, learn quickly and learn from experience.” Com-

mon statement with 52 expert signatories [Gottfredson, 1997b]

6. “The ability to learn facts and skills and apply them, especially when this

ability is highly developed.” Encarta World English Dictionary, 2006

7. “. . . ability to adapt effectively to the environment, either by making a

change in oneself or by changing the environment or finding a new one

. . . intelligence is not a single mental process, but rather a combination of

many mental processes directed toward effective adaptation to the envi-

ronment.” Encyclopedia Britannica, 2006

8. “the general mental ability involved in calculating, reasoning, perceiving

relationships and analogies, learning quickly, storing and retrieving infor-

mation, using language fluently, classifying, generalizing, and adjusting to

new situations.” Columbia Encyclopedia, sixth edition, 2006

9. “Capacity for learning, reasoning, understanding, and similar forms of

mental activity; aptitude in grasping truths, relationships, facts, meanings,

etc.” Random House Unabridged Dictionary, 2006

10. “The ability to learn, understand, and think about things.” Longman Dic-

tionary or Contemporary English, 2006

11. “: the ability to learn or understand or to deal with new or trying situations

: . . . the skilled use of reason (2) : the ability to apply knowledge to ma-

nipulate one’s environment or to think abstractly as measured by objective

criteria (as tests)” Merriam-Webster Online Dictionary, 2006

12. “The ability to acquire and apply knowledge and skills.” Compact Oxford

English Dictionary, 2006

171 .6 Psy
hologist de�nitions

13. “. . . the ability to adapt to the environment.” World Book Encyclopedia,

2006

14. “Intelligence is a property of mind that encompasses many related men-

tal abilities, such as the capacities to reason, plan, solve problems, think

abstractly, comprehend ideas and language, and learn.” Wikipedia, 4 Oc-

tober, 2006

15. “Capacity of mind, especially to understand principles, truths, facts or

meanings, acquire knowledge, and apply it to practise; the ability to learn

and comprehend.” Wiktionary, 4 October, 2006

16. “The ability to learn and understand or to deal with problems.” Word

Central Student Dictionary, 2006

17. “The ability to comprehend; to understand and profit from experience.”

Wordnet 2.1, 2006

18. “The capacity to learn, reason, and understand.” Wordsmyth Dictionary,

2006

.6 Psy
hologist de�nitions

This section contains definitions from psychologists. In some cases we have not

yet managed to locate the exact reference and would appreciate any help in

doing so.

1. “Intelligence is not a single, unitary ability, but rather a composite of sev-

eral functions. The term denotes that combination of abilities required for

survival and advancement within a particular culture.” Anastasi [1992]

2. “. . . that facet of mind underlying our capacity to think, to solve novel

problems, to reason and to have knowledge of the world." Anderson [2006]

3. “It seems to us that in intelligence there is a fundamental faculty, the

alteration or the lack of which, is of the utmost importance for practi-

cal life. This faculty is judgement, otherwise called good sense, practi-

cal sense, initiative, the faculty of adapting ones self to circumstances.”

Binet and Simon [1905]

4. “We shall use the term ‘intelligence’ to mean the ability of an organism to

solve new problems . . . ” Bingham [1937]

172 .6 Psy
hologist de�nitions

5. “Intelligence is what is measured by intelligence tests.” Boring [1923]

6. “. . . a quality that is intellectual and not emotional or moral: in measuring

it we try to rule out the effects of the child’s zeal, interest, industry, and

the like. Secondly, it denotes a general capacity, a capacity that enters into

everything the child says or does or thinks; any want of ‘intelligence’ will

therefore be revealed to some degree in almost all that he attempts;” Burt

[1957]

7. “A person possesses intelligence insofar as he has learned, or can learn,

to adjust himself to his environment.” S. S. Colvin quoted in [Sternberg,

2000]

8. “. . . the ability to plan and structure one’s behavior with an end in view.”

J. P. Das

9. “The capacity to learn or to profit by experience.” W. F. Dearborn quoted

in [Sternberg, 2000]

10. “. . . in its lowest terms intelligence is present where the individual ani-

mal, or human being, is aware, however dimly, of the relevance of his

behaviour to an objective. Many definitions of what is indefinable have

been attempted by psychologists, of which the least unsatisfactory are 1.

the capacity to meet novel situations, or to learn to do so, by new adap-

tive responses and 2. the ability to perform tests or tasks, involving the

grasping of relationships, the degree of intelligence being proportional to

the complexity, or the abstractness, or both, of the relationship.” Drever

[1952]

11. “Intelligence A: the biological substrate of mental ability, the brain’s neu-

roanatomy and physiology; Intelligence B: the manifestation of intelli-

gence A, and everything that influences its expression in real life behavior;

Intelligence C: the level of performance on psychometric tests of cognitive

ability.” H. J. Eysenck.

12. “Sensory capacity, capacity for perceptual recognition, quickness, range

or flexibility or association, facility and imagination, span of attention,

quickness or alertness in response.” F. N. Freeman quoted in [Sternberg,

2000]

13. “. . . adjustment or adaptation of the individual to his total environment, or

limited aspects thereof . . . the capacity to reorganize one’s behavior pat-

terns so as to act more effectively and more appropriately in novel situ-

ations . . . the ability to learn . . . the extent to which a person is educable

173 .6 Psy
hologist de�nitions

. . . the ability to carry on abstract thinking . . . the effective use of concepts

and symbols in dealing with a problem to be solved . . . ” W. Freeman

14. “An intelligence is the ability to solve problems, or to create products, that

are valued within one or more cultural settings.” Gardner [1993]

15. “. . . performing an operation on a specific type of content to produce a

particular product.” J. P. Guilford

16. “Sensation, perception, association, memory, imagination, discrimination,

judgement and reasoning.” N. E. Haggerty quoted in [Sternberg, 2000]

17. “The capacity for knowledge, and knowledge possessed.” Henmon [1921]

18. “. . . cognitive ability.” Herrnstein and Murray [1996]

19. “. . . the resultant of the process of acquiring, storing in memory, retriev-

ing, combining, comparing, and using in new contexts information and

conceptual skills.” Humphreys

20. “Intelligence is the ability to learn, exercise judgment, and be imaginative.”

J. Huarte

21. “Intelligence is a general factor that runs through all types of performance.”

A. Jensen

22. “Intelligence is assimilation to the extent that it incorporates all the given

data of experience within its framework . . . There can be no doubt either,

that mental life is also accommodation to the environment. Assimilation

can never be pure because by incorporating new elements into its earlier

schemata the intelligence constantly modifies the latter in order to adjust

them to new elements.” Piaget [1963]

23. “Ability to adapt oneself adequately to relatively new situations in life.”

R. Pinter quoted in [Sternberg, 2000]

24. “A biological mechanism by which the effects of a complexity of stimuli

are brought together and given a somewhat unified effect in behavior.” J.

Peterson quoted in [Sternberg, 2000]

25. “. . . certain set of cognitive capacities that enable an individual to adapt

and thrive in any given environment they find themselves in, and those

cognitive capacities include things like memory and retrieval, and problem

solving and so forth. There’s a cluster of cognitive abilities that lead to

successful adaptation to a wide range of environments.” Simonton [2003]

174 .6 Psy
hologist de�nitions

26. “Intelligence is part of the internal environment that shows through at

the interface between person and external environment as a function of

cognitive task demands.” R. E. Snow quoted in [Slatter, 2001]

27. “. . . I prefer to refer to it as ‘successful intelligence.’ And the reason is that

the emphasis is on the use of your intelligence to achieve success in your

life. So I define it as your skill in achieving whatever it is you want to attain

in your life within your sociocultural context — meaning that people have

different goals for themselves, and for some it’s to get very good grades in

school and to do well on tests, and for others it might be to become a very

good basketball player or actress or musician.” Sternberg [2003]

28. “. . . the ability to undertake activities that are characterized by (1) diffi-

culty, (2) complexity, (3) abstractness, (4) economy, (5) adaptedness to

goal, (6) social value, and (7) the emergence of originals, and to maintain

such activities under conditions that demand a concentration of energy

and a resistance to emotional forces.” Stoddard

29. “The ability to carry on abstract thinking.” L. M. Terman quoted in [Stern-

berg, 2000]

30. “Intelligence, considered as a mental trait, is the capacity to make impulses

focal at their early, unfinished stage of formation. Intelligence is therefore

the capacity for abstraction, which is an inhibitory process.” Thurstone

[1924]

31. “The capacity to inhibit an instinctive adjustment, the capacity to rede-

fine the inhibited instinctive adjustment in the light of imaginally experi-

enced trial and error, and the capacity to realise the modified instinctive

adjustment in overt behavior to the advantage of the individual as a social

animal.” L. L. Thurstone quoted in [Sternberg, 2000]

32. “A global concept that involves an individual’s ability to act purposefully,

think rationally, and deal effectively with the environment.” Wechsler

[1958]

33. “The capacity to acquire capacity.” H. Woodrow quoted in [Sternberg,

2000]

34. “. . . the term intelligence designates a complexly interrelated assemblage

of functions, no one of which is completely or accurately known in man

. . . ” Yerkes and Yerkes [1929]

175 .7 AI resear
her de�nitions

35. “. . . that faculty of mind by which order is perceived in a situation previ-

ously considered disordered.” R. W. Young quoted in [Kurzweil, 2000]

.7 AI resear
her de�nitions

This section lists definitions from researchers in artificial intelligence.

1. “. . . the ability of a system to act appropriately in an uncertain environ-

ment, where appropriate action is that which increases the probability of

success, and success is the achievement of behavioral subgoals that sup-

port the system’s ultimate goal.” Albus [1991]

2. “Any system . . . that generates adaptive behviour to meet goals in a range

of environments can be said to be intelligent.” Fogel [1995]

3. “Achieving complex goals in complex environments.” Goertzel [2006]

4. “Intelligent systems are expected to work, and work well, in many different

environments. Their property of intelligence allows them to maximize the

probability of success even if full knowledge of the situation is not avail-

able. Functioning of intelligent systems cannot be considered separately

from the environment and the concrete situation including the goal.” Gud-

win [2000]

5. “[Performance intelligence is] the successful (i.e., goal-achieving) perfor-

mance of the system in a complicated environment.” Horst [2002]

6. “Intelligence is the ability to use optimally limited resources – including

time – to achieve goals.” Kurzweil [2000]

7. “Intelligence is the power to rapidly find an adequate solution in what

appears a priori (to observers) to be an immense search space.” Lenat and

Feigenbaum [1991]

8. “Intelligence measures an agent’s ability to achieve goals in a wide range

of environments.” Legg and Hutter [2006]

9. “. . . doing well at a broad range of tasks is an empirical definition of ‘intelligence’ ”

Masum et al. [2002]

10. “Intelligence is the computational part of the ability to achieve goals in the

world. Varying kinds and degrees of intelligence occur in people, many

animals and some machines.” McCarthy [2004]

176 .7 AI resear
her de�nitions

11. “. . . the ability to solve hard problems.” Minsky [1985]

12. “Intelligence is the ability to process information properly in a complex

environment. The criteria of properness are not predefined and hence not

available beforehand. They are acquired as a result of the information

processing.” Nakashima [1999]

13. “. . . in any real situation behavior appropriate to the ends of the system

and adaptive to the demands of the environment can occur, within some

limits of speed and complexity.” Newell and Simon [1976]

14. “[An intelligent agent does what] is appropriate for its circumstances and

its goal, it is flexible to changing environments and changing goals, it

learns from experience, and it makes appropriate choices given perceptual

limitations and finite computation.” Poole et al. [1998]

15. “Intelligence means getting better over time.” Schank [1991]

16. “. . . the essential, domain-independent skills necessary for acquiring a wide

range of domain-specific knowledge – the ability to learn anything. Achiev-

ing this with ‘artificial general intelligence’ (AGI) requires a highly adap-

tive, general-purpose system that can autonomously acquire an extremely

wide range of specific knowledge and skills and can improve its own cog-

nitive ability through self-directed learning.” [Voss, 2005]

17. “Intelligence is the ability for an information processing system to adapt to

its environment with insufficient knowledge and resources.” Wang [1995]

18. “. . . the mental ability to sustain successful life.” K. Warwick quoted in [Aso-

han, 2003]

Bibliography

M. Abeles. Corticonics: Neural circuits of the cerebral cortex. Cambridge Univer-

sity Press, 1991.

J. S. Albus. Outline for a theory of intelligence. IEEE Trans. Systems, Man and

Cybernetics, 21(3):473–509, 1991.

N. Alvarado, S. Adams, S. Burbeck, and C. Latta. Beyond the Turing test: Perfor-

mance metrics for evaluating a computer simulation of the human mind. In

Performance Metrics for Intelligent Systems Workshop, Gaithersburg, MD, USA,

2002. North-Holland.

R. Ananthanarayanan and D. S. Modha. Anatomy of a cortical simulator. In

ACM/IEEE SC2007 Conference on High Performance Networking and Comput-

ing, Reno, NV, USA, 2007.

A. Anastasi. What counselors should know about the use and interpretation of

psychological tests. Journal of Counseling and Development, 70(5):610–615,

1992.

M. Anderson. Intelligence. MS Encarta online encyclopedia, 2006.

A. Asohan. Leading humanity forward. The Star, October 14, 2003.

J. M. Barzdin. Prognostication of automata and functions. Information Process-

ing, 71:81–84, 1972.

T. C. Bell, J. G. Cleary, and I. H. Witten. Text compression. Prentice Hall, 1990.

R. Bellman. Dynamic Programming. Princeton University Press, New Jersey,

1957.

D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of Experiments.

Chapman and Hall, London, 1985.

177

178 Bibliography

D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. (II). Athena

Scientific, Belmont, Massachusetts, 1995.

A. Binet. Les idees modernes sur les enfants. Flammarion, Paris, 1911.

A. Binet and T. Simon. Methodes nouvelles por le diagnostic du niveai intel-

lectuel des anormaux. L’Année Psychologique, 11:191–244, 1905.

W. V. Bingham. Aptitudes and aptitude testing. Harper & Brothers, New York,

1937.

N. Block. Psychologism and behaviorism. Philosophical Review, 90:5–43, 1981.

E. G. Boring. Intelligence as the tests test it. New Republic, 35:35–37, 1923.

J. A. Boyan. Least-squares temporal difference learning. In Proc. 16th Interna-

tional Conf. on Machine Learning, pages 49–56. Morgan Kaufmann, San Fran-

cisco, CA, 1999.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal dif-

ference learning. Machine Learning, 22:33–57, 1996.

S. Bringsjord and B. Schimanski. What is artificial intelligence? Psychometric AI

as an answer. Eighteenth International Joint Conference on Artificial Intelligence,

18:887–893, 2003.

C. L. Burt. The causes and treatments of backwardness. University of London

press, 1957.

C. S. Calude. Information and Randomness. Springer, Berlin, 2nd edition, 2002.

C. S. Calude, H. Jürgensen, and S. Legg. Solving finitely refutable mathemat-

ical problems. In C. S. Calude and G. Puaun, editors, Finite Versus Infinite:

Contributions to an Eternal Dilemma, pages 39–52. Springer-Verlag, London,

2000.

J. B. Carroll. Human cognitive abilities: A survey of factor-analytic studies. Cam-

bridge University Press, New York, 1993.

R. B. Cattell. Intelligence: Its Structure, Growth, and Action. Elsevier, New York,

1987.

G. J. Chaitin. Gödel’s theorem and information. International Journal of Theo-

retical Physics, 22:941–954, 1982.

179 Bibliography

R. Cilibrasi and P. M. B. Vitányi. Clustering by compression. IEEE Trans. Infor-

mation Theory, 51(4):1523–1545, 2005.

J. G. Cleary, S. Legg, and I. H. Witten. An MDL estimate of the significance of

rules. In Information, Statistics and Induction in Science, pages 43–45, 1996.

O. D. Creutzfeldt. Generality of the functional structure of the neocortex. Natur-

wissenschaften, 64:507–517, 1977.

D. Crevier. AI: The Tumultuous Search for Artificial Intelligence. BasicBooks, New

York, 1993.

A. P. Dawid. Comment on The impossibility of inductive inference. Journal of

the American Statistical Association, 80(390):340–341, 1985.

P. Dayan. The convergence of TD(λ) for general λ. Machine learning, 8:341–362,

1992.

J. L. Doob. Stochastic Processes. John Wiley & Sons, New York, 1953.

D. L. Dowe and A. R. Hajek. A non-behavioural, computational extension to

the Turing test. In International Conference on Computational Intelligence &

Multimedia Applications (ICCIMA ’98), pages 101–106, Gippsland, Australia,

1998.

J. Drever. A dictionary of psychology. Penguin Books, Harmondsworth, 1952.

B. Edmonds. The social embedding of intelligence – Towards producing a ma-

chine that could pass the turing test. In The Turing Test Sourcebook: Philosoph-

ical And Methodological Issues In The Quest For The Thinking Computer. Kluwer,

2006.

J. Eisner. Cognitive science and the search for intelligence. Invited paper pre-

sented to the Socratic Society, University of Cape Town, 1991.

M. Feder, N. Merhav, and M. Gutman. Universal prediction of individual se-

quences. IEEE Trans. on Information Theory, 38:1258–1270, 1992.

C. Fiévet. Mesurer l’intelligence d’une machine. In Le Monde de l’intelligence,

volume 1, pages 42–45, Paris, November 2005. Mondeo publishing.

D. B. Fogel. Review of computational intelligence: Imitating life. Proc. of the

IEEE, 83(11), 1995.

K. M. Ford and P. J. Hayes. On computational wings: Rethinking the goals of

artificial intelligence. Scientific American, Special Edition(4), 1998.

180 Bibliography

R. M. French. Subcognition and the limits of the Turing test. Mind, 99:53–65,

1990.

J. M. Fuster. Cortex and Mind: Unifying cognition. Oxford University Press, 2003.

H. Gardner. Frames of Mind: Theory of multiple intelligences. Fontana Press,

1993.

J. C. Gittins. Multi-Armed Bandit Allocation Indices. John Wiley & Sons, 1989.

K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und

verwandter Systeme I. Monatshefte für Matematik und Physik, 38:173–198,

1931. [English translation by E. Mendelsohn: “On undecidable propositions

of formal mathematical systems”. In M. Davis, editor, The undecidable, pages

39–71, New York, 1965. Raven Press, Hewlitt].

B. Goertzel. The Hidden Pattern. Brown Walker Press, 2006.

E. Mark Gold. Language identification in the limit. Information and Control, 10

(5):447–474, 1967.

D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multi-

modal function optimization. In Proc. 2nd International Conference on Genetic

Algorithms and their Applications, pages 41–49, Cambridge, MA, July 1987.

Lawrence Erlbaum Associates. ISBN 0-8058-0159-6.

I. J. Good. Speculations concerning the first ultraintelligent machine. Advances

in Computers, 6:31–88, 1965.

L. S. Gottfredson. g: Highly general and highly practical. In R. J. Sternberg and

E. L. Grigorenko, editors, The general factor of intelligence: How general is it?,

pages 331–380. Erlbaum, 2002.

L. S. Gottfredson. Why g matters: The complexity of everyday life. Intelligence,

24(1):79–132, 1997a.

L. S. Gottfredson. Mainstream science on intelligence: An editorial with 52

signatories, history, and bibliography. Intelligence, 24(1):13–23, 1997b.

S. J. Gould. The Mismeasure of Man. W. W. Norton & Company, 1981.

D. Graham-Rowe. Spotting the bots with brains. New Scientist magazine, 2512:

27, 13 August 2005.

D. Graham-Rowe. A working brain model. Technology Review, 2007. 28 Novem-

ber.

181 Bibliography

R. L. Gregory. The Oxford Companion to the Mind. Oxford University Press,

Oxford, UK, 1998.

R. R. Gudwin. Evaluating intelligence: A computational semiotics perspective.

In IEEE International conference on systems, man and cybernetics, pages 2080–

2085, Nashville, Tenessee, USA, 2000.

J. P. Guilford. The Nature of Human Intelligence. McGraw-Hill, New York, 1967.

K. Gunderson. Mentality and machines. Doubleday and company, Garden City,

New York, USA, 1971.

S. Harnad. Minds, machines and Searle. Journal of Theoretical and Experimental

Artificial Intelligence, 1:5–25, 1989.

Heather Havenstein. Spring comes to AI winter. Computer World, 2005. 14

February.

J. Hawkins and S. Blakeslee. On intelligence. Owl books, New York, 2004.

V. A. C. Henmon. The measurement of intelligence. School and Society, 13:

151–158, 1921.

L. M. Herman and A. A. Pack. Animal intelligence: Historical perspectives and

contemporary approaches. In R. Sternberg, editor, Encyclopedia of Human

Intelligence, pages 86–96. Macmillan, New York, 1994.

J. Hernández-Orallo. Beyond the Turing test. Journal of Logic, Language and

Information, 9(4):447–466, 2000a.

J. Hernández-Orallo. On the computational measurement of intelligence factors.

In Performance Metrics for Intelligent Systems Workshop, pages 1–8, Gaithers-

burg, MD, USA, 2000b.

J. Hernández-Orallo and N. Minaya-Collado. A formal definition of intelligence

based on an intensional variant of Kolmogorov complexity. In Proceedings

of the International Symposium of Engineering of Intelligent Systems (EIS’98),

pages 146–163. ICSC Press, 1998.

R. J. Herrnstein and C. Murray. The Bell Curve: Intelligence and Class Structure

in American Life. Free Press, 1996.

J. Horn. Organization of data on life-span development of human abilities. In

R. Goulet and P. B. Baltes, editors, Life-span developmental psychology: Research

and theory, New York, 1970. Academic Press.

182 Bibliography

J. Horst. A native intelligence metric for artificial systems. In Performance Metrics

for Intelligent Systems Workshop, Gaithersburg, MD, USA, 2002.

F. H. Hsu, M. S. Campbell, and A. J. Hoane. Deep Blue system overview. In Pro-

ceedings of the 1995 International Conference on Supercomputing, pages 240–

244, 1995.

J. L. Hutchens. How to pass the Turing test by cheating.

www.cs.umbc.edu/471/current/papers/hutchens.pdf, 1996.

M. Hutter. Convergence and error bounds for universal prediction

of nonbinary sequences. Proc. 12th Eurpean Conference on Ma-

chine Learning (ECML-2001), pages 239–250, December 2001. URL

http://arxiv.org/abs/cs.LG/0106036.

M. Hutter. The fastest and shortest algorithm for all well-defined problems. Inter-

national Journal of Foundations of Computer Science, 13(3):431–443, 2002a.

URL http://arxiv.org/abs/cs.CC/0206022.

M. Hutter. Fitness uniform selection to preserve genetic diversity.

In Proc. 2002 Congress on Evolutionary Computation (CEC-2002),

pages 783–788, Washington D.C, USA, May 2002b. IEEE. URL

http://arxiv.org/abs/cs.AI/0103015.

M. Hutter. Universal Artificial Intelligence: Sequential Decisions based

on Algorithmic Probability. Springer, Berlin, 2005. 300 pages,

http://www.hutter1.net/ai/uaibook.htm.

M. Hutter. The Human knowledge compression prize. http://prize.hutter1.net,

2006.

M. Hutter. Universal algorithmic intelligence: A mathematical top→down ap-

proach. In Artificial General Intelligence, pages 227–290. Springer, Berlin,

2007a. ISBN 3-540-23733-X. URL http://arxiv.org/abs/cs.AI/0701125.

M. Hutter. On universal prediction and Bayesian confirmation. Theoretical Com-

puter Science, 384(1):33–48, 2007b. ISSN 0304-3975. doi: 10.1016/j.tcs.

2007.05.016. URL http://arxiv.org/abs/0709.1516.

M. Hutter and S. Legg. Fitness uniform optimization. IEEE Transactions on Evo-

lutionary Computation, 10:568–589, 2006. doi: 10.1109/TEVC.2005.863127.

URL http://arxiv.org/abs/cs.NE/0610126.

M. Hutter, S. Legg, and P. M. B. Vitányi. Algorithmic probability. Scholarpedia,

2007.

http://arxiv.org/abs/cs.LG/0106036
http://arxiv.org/abs/cs.CC/0206022
http://arxiv.org/abs/cs.AI/0103015
http://arxiv.org/abs/cs.AI/0701125
http://arxiv.org/abs/0709.1516
http://arxiv.org/abs/cs.NE/0610126

183 Bibliography

Marcus Hutter and Shane Legg. Temporal difference updating without a learning

rate. In Neural Information Processing Systems (NIPS ’07), 2007.

W. L. Johnson. Needed: A new test of intelligence. SIGARTN: SIGART Newsletter

(ACM Special Interest Group on Artificial Intelligence), 3, 1992.

P. N. Johnson-Laird and P. C. Wason. A theoretical analysis of insight into a rea-

soning task. In P. N. Johnson-Laird and P. C. Wason, editors, Thinking: Readings

in cognitive science, pages 143–157. Cambridge University Press, 1977.

K. de Jong. An analysis of the behavior of a class of genetic adaptive systems.

Dissertation Abstracts International, 36(10), 1975.

Eric R. Kandel, James H. Schwartz, and T. M. Jessell. Principles of Neural Science.

McGraw-Hill, New York, 4nd edition, 2000.

A. S. Kaufman. Tests of intelligence. In R. J. Sternberg, editor, Handbook of

Intelligence. Cambridge University Press, 2000.

C. Koch. Biophysics of Computation: Information Processing in Single Neurons.

Oxford University Press, New York, 1999.

John R. Koza, Martin A. Keane, Matthew J. Streeter, William Mydlowec, Jessen

Yu, and Guido Lanza. Genetic Programming IV: Routine Human-Competitive

Machine Intelligence. Kluwer Academic, 2003.

R. Kurzweil. The age of spiritual machines: When computers exceed human intel-

ligence. Penguin, 2000.

M. G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine

Learning Research, 4:1107–1149, 2003. ISSN 1533-7928 (electronic); 1532-

4435 (paper).

S. Legg. Incompleteness and artificial intelligence. In Collegium Logicum of the

Kurt Gödel Society, Vienna, April 2006a.

S. Legg. Is there an elegant universal theory of prediction? In Proc. Algorithmic

Learning Theory (ALT 06), Barcelona, Spain, October 2006b.

S. Legg. Solomonoff induction. Technical Report CDMTCS-030, Centre of Dis-

crete Mathematics and Theoretical Computer Science, University of Auckland,

1997.

S. Legg. Minimum information estimation of linear regression models. In Infor-

mation, Statistics and Induction in Science, pages 103–111, 1996.

184 Bibliography

S. Legg and M. Hutter. A taxonomy for abstract environments. Technical Report

IDSIA-20-04, IDSIA, 2004.

S. Legg and M. Hutter. Fitness uniform deletion for robust optimization. In Proc.

Genetic and Evolutionary Computation Conference (GECCO’05), pages 1271–

1278, Washington, OR, 2005a. ACM SigEvo. ISBN 1-59593-010-8. URL

http://arxiv.org/abs/cs.NE/0504035.

S. Legg and M. Hutter. A universal measure of intelligence for artificial agents.

In Proc. 21st International Joint Conf. on Artificial Intelligence (IJCAI-2005),

pages 1509–1510, Edinburgh, 2005b.

S. Legg and M. Hutter. A formal measure of machine intelligence. In Annual

Machine Learning Conference of Belgium and The Netherlands (Benelearn’06),

pages 73–80, Ghent, 2006. URL http://arxiv.org/abs/cs.AI/0605024.

S. Legg and M. Hutter. A collection of definitions of intelligence. In B. Goertzel

and P. Wang, editors, Advances in Artificial General Intelligence: Concepts, Ar-

chitectures and Algorithms, volume 157 of Frontiers in Artificial Intelligence

and Applications, pages 17–24, Amsterdam, NL, 2007a. IOS Press. ISBN 978-

1-58603-758-1. URL http://arxiv.org/abs/0706.3639. Online version:

www.vetta.org/shane/intelligence.html.

S. Legg and M. Hutter. Tests of machine intelligence. In 50 Years of Artificial

Intelligence, volume 4850 of LNAI, pages 232–242, Monte Verità, Switzerland,

2007b. ISBN 978-3-540-77295-8. doi: 10.1007/978-3-540-77296-5_22.

S. Legg and M. Hutter. Universal intelligence: A definition of machine intelli-

gence. Minds and Machines, 17(4):391–444, December 2007c.

S. Legg, M. Hutter, and A. Kumar. Tournament versus fitness uniform se-

lection. In Proc. 2004 Congress on Evolutionary Computation (CEC’04),

pages 2144–2151, Portland, OR, 2004. IEEE. ISBN 0-7803-8515-2. URL

http://arxiv.org/abs/cs.LG/0403038.

S. Legg, J. Poland, and T. Zeugmann. On the limits of learning with computa-

tional models. In Knowledge Media Science, 2008. To appear.

D. Lenat and E. Feigenbaum. On the thresholds of knowledge. Artificial Intelli-

gence, 47:185–250, 1991.

L. A. Levin. Universal sequential search problems. Problems of Information Trans-

mission, 9:265–266, 1973.

http://arxiv.org/abs/cs.NE/0504035
http://arxiv.org/abs/cs.AI/0605024
http://arxiv.org/abs/0706.3639
http://arxiv.org/abs/cs.LG/0403038

185 Bibliography

L. A. Levin. Laws of information conservation (non-growth) and aspects of the

foundation of probability theory. Problems of Information Transmission, 10:

206–210, 1974.

M. Li and P. M. B. Vitányi. An introduction to Kolmogorov complexity and its

applications. Springer, 2nd edition, 1997.

H. G. Loebner. The Loebner prize — The first Turing test.

http://www.loebner.net/Prizef/loebner-prize.html, 1990.

E. M. Macphail. Vertebrate intelligence: The null hypothesis. In L. Weiskrantz,

editor, Animal Intelligence, pages 37–50. Clarendon, Oxford, 1985.

M. V. Mahoney. Text compression as a test for artificial intelligence. In AAAI/IAAI,

page 970, 1999.

J. Markoff and S. Hansell. Hiding in plain sight, google seeks more power. New

York Times, 2005. 14 June.

P. Martin-Löf. The definition of random sequences. Information and Control, 9

(6):602–619, 1966.

H. Masum, S. Christensen, and F. Oppacher. The Turing ratio: Metrics for open-

ended tasks. In GECCO 2002: Proceedings of the Genetic and Evolutionary

Computation Conference, pages 973–980, New York, 2002. Morgan Kaufmann

Publishers.

J. McCarthy. What is artificial intelligence?

www-formal.stanford.edu/jmc/whatisai/whatisai.html, 2004.

L. von Melchner, S. L. Pallas, and M. Sur. Visual behaviour mediated by retinal

projections directed to the auditory pathway. Nature, 404:871–876, 2000.

M. Minsky. The Society of Mind. Simon and Schuster, New York, 1985.

H. Moravec. When will computer hardware match the human brain? Journal of

Transhumanism, 1, 1998.

V. B. Mountcastle. An organizing principle for cerebral function: The unit model

and the distributed system. In The Mindful Brain. MIT Press, 1978.

M. Müller. Stationary algorithmic probability. Technical report, TU Berlin, Berlin,

2006. http://arXiv.org/abs/cs/0608095.

H. Nakashima. AI as complex information processing. Minds and machines, 9:

57–80, 1999.

186 Bibliography

U. Neisser, G. Boodoo, T. J. Bouchard, Jr., A. W. Boykin, N. Brody, S. J. Ceci, D. F.

Halpern, J. C. Loehlin, R. Perloff, R. J. Sternberg, and S. Urbina. Intelligence:

Knowns and unknowns. American Psychologist, 51(2):77–101, 1996.

A. Newell and H. A. Simon. Computer science as empirical enquiry: Symbols

and search. Communications of the ACM 19, 3:113–126, 1976.

J. Peng. Efficient Dynamic Programming-Based Learning for Control. PhD thesis,

Northeastern University, Boston, MA, 1993.

J. Peng and R. J. Williams. Increamental multi-step Q-learning. Machine Learn-

ing, 22:283–290, 1996.

J. Piaget. The psychology of intelligence. Routledge, New York, 1963.

J. Poland and M. Hutter. Convergence of discrete MDL for sequential prediction.

In Proc. 17th Annual Conf. on Learning Theory (COLT’04), volume 3120 of

LNAI, pages 300–314, Banff, 2004. Springer, Berlin. ISBN 3-540-22282-0.

URL http://arxiv.org/abs/cs.LG/0404057.

J. Poland and M. Hutter. Universal learning of repeated matrix games. In

Proc. 15th Annual Machine Learning Conf. of Belgium and The Netherlands

(Benelearn’06), pages 7–14, Ghent, 2006. ISBN 90 382 0948 7. URL

http://arxiv.org/abs/cs.LG/0508073.

D. Poole, A. Mackworth, and R. Goebel. Computational Intelligence: A logical

approach. Oxford University Press, New York, NY, USA, 1998.

J. Raven. The Raven’s progressive matrices: Change and stability over culture

and time. Cognitive Psychology, 41:1–­48, 2000.

Zh. I. Reznikova. Animal Intelligence. Cambridge University Press, 2007.

Zh. I. Reznikova and B.Ya. Ryabko. Analysis of the language of ants by

information-theoretic methods. Problems Inform. Transmission, 22:245–249,

1986.

J. J. Rissanen. Fisher Information and Stochastic Complexity. IEEE Trans. on

Information Theory, 42(1):40–47, January 1996.

G. A. Rummery. Problem solving with reinforcement learning. PhD thesis, Cam-

bridge University, 1995.

G. A. Rummery and M. Niranjan. On-line Q-learning using connectionist

systems. . Technial Report CUED/F-INFENG/TR 166, Engineering Depart-

ment, Cambridge University, 1994.

http://arxiv.org/abs/cs.LG/0404057
http://arxiv.org/abs/cs.LG/0508073

187 Bibliography

S. J. Russell and P. Norvig. Artificial Intelligence. A Mod-

ern Approach. Prentice-Hall, Englewood Cliffs, 1995. URL

http://www.cs.berkeley.edu/~russell/aima.html.

P. Sanghi and D. L. Dowe. A computer program capable of passing I.Q. tests. In

Proc. 4th ICCS International Conference on Cognitive Science (ICCS’03), pages

570–575, Sydney, NSW, Australia, 2003.

A. Saygin, I. Cicekli, and V. Akman. Turing test: 50 years later. Minds and

Machines, 10, 2000.

Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin

Müller, Robert Lake, Paul Lu, and Steve Sutphen. Checkers is solved. Sci-

ence, 2007. 19 July.

R. Schank. Where’s the AI? AI magazine, 12(4):38–49, 1991.

J. Schmidhuber. The Speed Prior: a new simplicity measure yielding near-

optimal computable predictions. In Proc. 15th Annual Conference on Compu-

tational Learning Theory (COLT 2002), Lecture Notes in Artificial Intelligence,

pages 216–228, Sydney, Australia, July 2002. Springer.

J. Schmidhuber. Gödel machines: Self-referential universal problem solvers

making provably optimal self-improvements. In Artificial General Intelligence.

Springer, in press, 2005.

J. Schmidhuber. Optimal ordered problem solver. Machine Learning, 54(3):

211–254, 2004.

P. Schweizer. The truly total Turing test. Minds and Machines, 8:263–272, 1998.

J. Searle. Minds, brains, and programs. Behavioral & Brain Sciences, 3:417–458,

1980.

S. Shieber. Lessons from a restricted Turing test. CACM: Communications of the

ACM, 37, 1994.

D. K. Simonton. An interview with Dr. Simonton. In J. A. Plucker, editor, Hu-

man intelligence: Historical influences, current controversies, teaching resources.

http://www.indiana.edu/∼ intell, 2003.

E. Singer. A wiring diagram of the brain. Technology Review, 2007. 19 November.

J. Slatter. Assessment of children: Cognitive applications. Jermone M. Satler

Publisher Inc., San Diego, 4th edition, 2001.

http://www.cs.berkeley.edu/~russell/aima.html

188 Bibliography

B. M. Slotnick and H. M. Katz. Olfactory learning-set formation in rats. Science,

185:796–798, 1974.

Tony C. Smith, Ian H. Witten, John G. Cleary, and Shane Legg. Objective evalu-

ation of inferred context-free grammars. In Australian and New Zealand Con-

ference on Intelligent Information Systems, pages 393–396, 1994.

W. D. Smith. Mathematical definition of “intelligence” (and consequences).

http://math.temple.edu/∼wds/homepage/works.html, 2006.

R. J. Solomonoff. A formal theory of inductive inference: Part 1 and 2. Inform.

Control, 7:1–22, 224–254, 1964.

R. J. Solomonoff. Complexity-based induction systems: comparisons and con-

vergence theorems. IEEE Trans. Information Theory, IT-24:422–432, 1978.

C. E. Spearman. The abilities of man, their nature and measurement. Macmillan,

New York, 1927.

W. L. Stern. Psychologischen Methoden der Intelligenz-Prüfung. Barth, Leipzig,

1912.

R. J. Sternberg, editor. Handbook of Intelligence. Cambridge University Press,

2000.

R. J. Sternberg. An interview with Dr. Sternberg. In J. A. Plucker, editor, Hu-

man intelligence: Historical influences, current controversies, teaching resources.

http://www.indiana.edu/∼ intell, 2003.

R. J. Sternberg. Beyond IQ: A triarchic theory of human intelligence. Cambridge

University Press, New York, 1985.

R. J. Sternberg and C. A. Berg. Quantitative integration: Definitions of intelli-

gence: A comparison of the 1921 and 1986 symposia. In R. J. Sternberg and

D. K. Detterman, editors, What is intelligence? Contemporary wiewpoints on its

nature and definition, pages 155–162, Norwood, NJ, 1986. Ablex.

R. J. Sternberg and E. L. Grigorenko, editors. Dynamic Testing: The nature and

measurement of learning potential. Cambridge University Press, 2002.

R. Sutton and A. Barto. Reinforcement learning: An introduction. Cambridge,

MA, MIT Press, 1998.

R. S. Sutton. Learning to predict by the methods of temporal differences. Ma-

chine Learning, 3:9–44, 1988.

189 Bibliography

L. M. Terman and M. A. Merrill. The Stanford-Binet Intelligence Scale. Houghton

Mifflin, Boston, 1950.

G. Tesauro. Temporal difference learning and TD-Gammon. Communications of

the ACM, 39(3):58–68, 1995.

L. L. Thurstone. The nature of intelligence. Routledge, London, 1924.

L. L. Thurstone. Primary mental abilities. University of Chicago Press, Chicago,

1938.

A. Treister-Goren and J. L. Hutchens. Creating AI: A unique interplay between

the development of learning algorithms and their education. In Proceeding of

the First International Workshop on Epigenetic Robotics, 2001.

A. Treister-Goren, J. Dunietz, and J. L. Hutchens. The developmental approach

to evaluating artificial intelligence – a proposal. In Performance Metrics for

Intelligence Systems, 2000.

A. M. Turing. Computing machinery and intelligence. Mind, October 1950.

P. Voss. Essentials of general intelligence: The direct path to AGI. In B. Go-

ertzel and C. Pennachin, editors, Artificial General Intelligence. Springer-Verlag,

2005.

V. V. V’yugin. Non-stochastic infinite and finite sequences. Theoretical computer

science, 207:363–382, 1998.

C. S. Wallace. Statistical and Inductive Inference by Minimum Message Length.

Springer, Berlin, 2005.

C. S. Wallace and D. M. Boulton. An information measure for classification.

Computer Jrnl., 11(2):185–194, August 1968.

P. Wang. On the working definition of intelligence. Technical Report 94, Center

for Research on Concepts and Cognition, Indiana University, 1995.

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292,

1992.

C.J.C.H Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,

Oxford, 1989.

S. Watt. Naive psychology and the inverted Turing test. Psycoloquy, 7(14), 1996.

190 Bibliography

D. Wechsler. The measurement and appraisal of adult intelligence. Williams &

Wilkinds, Baltimore, 4 edition, 1958.

F.M.J. Willems, Y.M. Shtarkov, and Tj.J. Tjalkens. The context-tree weighting

method: Basic properties. IEEE Transactions on Information Theory, 41(3):

653–664, 1995.

I. H. Witten. An adaptive optimal controller for discrete-time Markov environ-

ments. Information and Control, 34:286–295, 1977.

D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.

IEEE Trans. on Evolutionary Computation, 1(1):67–82, 1997.

R. M. Yerkes and A. W. Yerkes. The great apes: A study of anthropoid life. Yale

University Press, New Haven, 1929.

T. R. Zentall. Animal intelligence. In R. J. Sternberg, editor, Handbook of Intelli-

gence. Cambridge University Press, 2000.

T. R. Zentall. Animal memory: The role of instructions. Learning and Motivation,

28:248–267, 1997.

A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the develop-

ment of the concepts of information and randomness by means of the theory

of algorithms. Russian Mathematical Surveys, 25(6):83–124, 1970.

	Contents
	Preface
	Thesis outline
	Prerequisite knowledge

	Nature and Measurement of Intelligence
	Theories of intelligence
	Definitions of human intelligence
	Definitions of machine intelligence
	Intelligence testing
	Human intelligence tests
	Animal intelligence tests
	Machine intelligence tests
	Conclusion

	Universal Artificial Intelligence
	Inductive inference
	Bayes' rule
	Binary sequence prediction
	Solomonoff's prior and Kolmogorov complexity
	Solomonoff-Levin prior
	Universal inference
	Solomonoff induction
	Agent-environment model
	Optimal informed agents
	Universal AIXI agent

	Taxonomy of Environments
	Passive environments
	Active environments
	Some common problem classes
	Ergodic MDPs
	Environments that admit self-optimising agents
	Conclusion

	Universal Intelligence Measure
	A formal definition of machine intelligence
	Universal intelligence of various agents
	Properties of universal intelligence
	Response to common criticisms
	Conclusion

	Limits of Computational Agents
	Preliminaries
	Prediction of computable sequences
	Prediction of simple computable sequences
	Complexity of prediction
	Hard to predict sequences
	The limits of mathematical analysis
	Conclusion

	Temporal Difference Updating without a Learning Rate
	Temporal difference learning
	Derivation
	Estimating a small Markov process
	A larger Markov process
	Random Markov process
	Non-stationary Markov process
	Windy Gridworld
	Conclusion

	Discussion
	Are super intelligent machines possible?
	How could intelligent machines be developed?
	Is building intelligent machines a good idea?

	Notation and Conventions
	Ergodic MDPs admit self-optimising agents
	Basic definitions
	Analysis of stationary Markov chains
	An optimal stationary policy
	Convergence of expected average value

	Definitions of Intelligence
	Collective definitions
	Psychologist definitions
	AI researcher definitions

	Bibliography

