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Abstract

We propose a multivariate nonparametric technique for generating reliable short-

term historical yield curve scenarios and confidence intervals. The approach is based

on a Functional Gradient Descent (FGD) estimation of the conditional mean vector

and covariance matrix of a multivariate interest rate series. It is computationally

feasible in large dimensions and it can account for non-linearities in the dependence

of interest rates at all available maturities. Based on FGD we apply filtered historical

simulation to compute reliable out-of-sample yield curve scenarios and confidence

intervals. We back-test our methodology on daily USD bond data for forecasting

horizons from 1 to 10 days. Based on several statistical performance measures we

find significant evidence of a higher predictive power of our method when compared

to scenarios generating techniques based on (i) factor analysis, (ii) a multivariate

CCC-GARCH model, or (iii) an exponential smoothing covariances estimator as in

the RiskMetricsTM approach.

Key words: Conditional mean and variance estimation; Filtered Historical Sim-

ulation; Functional Gradient Descent; Term structure; Multivariate CCC-GARCH

models
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Introduction

The quality and the effectiveness of interest rate risk management depends on the ability

to generate relevant forward looking yield curve scenarios that properly represent the

future. Based on such scenarios, future distributions of interest rate dependent portfolio

exposures and associated risk measures like VaR or Expected Shortfall can be ultimately

derived from the future distributions of the underlying interest rates. In this paper we

propose a new procedure to construct reliable out of sample yield curve scenarios and

interval estimates for interest rate short-term risk management purposes.

One broadly used approach to the estimation of interest rate scenarios and associ-

ated risk measures is based on the historical/Monte Carlo simulation of the standardized

residuals in a yield curve model with state dependent conditional means and volatilities;

see for instance Barone-Adesi et al. (1998) and Barone-Adesi et al. (1999), for an in-

troduction to the filtered historical simulation method and Jamshidian and Zhu (1997)

and Reimers and Zerbs (1999) for the Monte Carlo method applied to generating term

structure scenarios. While in a pure Monte Carlo setting parametric assumptions on the

conditional distribution of standardized residuals have to be introduced, the historical

simulation method is nonparametric and can incorporate a quite broad variety of his-

torical distributional patterns. Since we do not want to rely on parametric assumptions

on the distribution of interest rates we apply in the paper this last method to compute

out-of-sample interest rate scenarios.

A necessary ingredient of the filtered historical simulation method is a dynamic model

for conditional means and/or volatilities of the joint interest rate dynamics. Conditioned

on an estimate of the model parameters, standardized interest rate residuals can be boot-

strapped to generate out-of-sample scenarios for interest rates at different maturities.

From such scenarios, confidence intervals for the prices of interest rate dependent securi-

ties can be easily derived.

The estimation of a dynamic model for the joint interest rate dynamics is a challenging

task because term structures are typically high dimensional objects. Moreover, in many

relevant applications it can be necessary to model not only the term structure dynamics
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but also those of further important risk factors like for instance exchange rates. To

overcome this problem, several authors have proposed some form of dimension reduction

technique to reduce the estimation problem to an acceptable dimension. Examples of

such methodologies are presented and discussed, among others, in Engle et al. (1990),

Loretan (1997), Rodrigues (1997) and Alexander (2001). An even simpler approach to

the problem is adopted by the RiskMetricsTM approach, which applies a multivariate

exponential smoothing variance estimator to estimate conditional variances.

This paper proposes a multivariate nonparametric technique based on Functional Gra-

dient Descent (FGD, Audrino and Bühlmann, 2003) to generate out-of-sample historical

yield curve scenarios. FGD is strictly related with boosting (a multiple prediction and ag-

gregation scheme for classification proposed in the 90’s by Freund and Schapire, 1996): in

fact, FGD yields a general representation of boosting algorithms. Starting with Breiman

(1999), who has shown that boosting can be viewed as an optimization algorithm in func-

tion space, many other studies brought boosting from classification to other settings (see

Bühlmann, 2003, for a detailed review). In our particular case, we apply boosting to

multivariate nonlinear time series analysis by exploiting its FGD representation.

One advantage of FGD is that it is able to improve exactly at those individual compo-

nents where some initial estimates are poorest. FGD takes a simple parametric model as

a first approximation and modifies it in a non-parametric way to improve a pre-specified

goodness-of-fit statistic. This strategy is similar to the SNP approach proposed by Gal-

lant and Tauchen (1989) and extensively refined since then. The main difference between

our and the SNP approach is that FGD is computationally feasible in large dimensions

and allows us to estimate jointly the whole term structure dynamics, from the very short

maturity segments (i.e. the overnight maturity) up to its very long end (i.e. 10 to 30

years maturity rates).1 In contrast, the estimation of the SNP model would have seri-

ous troubles in dealing with a large cross section of yields and would have to resort to

some type of variance reduction technique. In our study, we also compare the results

provided by FGD with those of a model based on a three factor analysis of the yield curve

dynamics. Our findings show that the additional yield curve information incorporated

by the FGD approach can not be neglected and produces significantly better results, at
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least for the application considered in this paper. Moreover, the non parametric nature

of our approach can account for non-linearities in the dependence of interest rates at all

available maturities. As we show below, this last feature is important in order to produce

satisfactory one day ahead forecasts for interest rates in the short maturity spectrum and

to predict accurately longer term maturities interest rates over horizons longer than one

day.

Based on the estimated FGD dynamics we apply filtered historical simulation to USD

bond data and compute short-term out-of-sample yield curve scenarios for horizons from

one to ten days. We back-test the out-of-sample accuracy of our method and compare

it to the one of filtered historical simulation techniques based on (i) a factor analysis of

the yield curve dynamics, (ii) a multivariate AR-CCC-GARCH (Bollerslev, 1990) model

and (iii) a multivariate exponential smoothing variance estimator as in the RiskMetricsTM

approach. In particular, in (i) we estimate a three-factor model for interest rates, where

the factor dynamics are driven by a 3-dimensional multivariate GARCH process extending

the Diebold and Li (2004) approach in order to account for time-varying factor volatilities.

Based on several out-of-sample performance measures and formal statistical tests, we

find empirical evidence of a higher predictive potential of FGD-based scenarios generat-

ing techniques. More specifically, we observe that approaches based on factor analysis

or an exponential smoothing covariance matrix estimator deliver very inaccurate interval

forecasts, both with respect to the expected number of back-test exceedances and the

expected durations between consecutive exceedances. This finding should not, however,

be interpreted as a generic disdain for factor models. Such models are at the core of mod-

ern financial theory and are well-known to be very useful, for instance for medium-term

prediction of yield curve movements using macroeconomic factor variables; see, among

others, Ang and Piazzesi (2003) and Diebold et al. (2005). Our results indicate, how-

ever, that structural simplifications implied by a factor analysis allowing for conditional

heteroskedasticity might be too strong to predict accurately short-term yield curve move-

ments with filtered historical simulation or related resampling procedures.

The improvement of FGD upon the CCC-based approach is smaller than the one

for the factor analysis and the RiskMetricsTM approaches, but it is statistically signifi-
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cant. Furthermore, the FGD-approach provides out of sample confidence intervals with

a smoother behavior over time. On the contrary, the CCC-GARCH based confidence

intervals can be often very unstable over time, especially when estimating the out-of-

sample interest rates quantiles at the confidence levels typically used in risk management

applications.

The paper is organizes as follows. Section 1 presents the basic model and the FGD

estimation procedure needed to estimate it. A short description of the filtered historical

simulation procedure is also included. Section 2 presents our application to daily USD

yield curve data and the results of our back-tests. Section 3 concludes and summarizes.

1 The yield curve scenarios generating methodology

This section introduces first our multivariate model for the conditional mean and volatil-

ities of the joint yield curve dynamics. In a second step, the FGD estimation procedure

is presented, together with a computationally feasible algorithm that can be applied to

estimate the model. Finally, the filtered historical simulation approach relevant for our

setting is briefly reviewed.

1.1 The general model

We consider a multivariate time series R = {rt}t∈Z, rt = (rt,t+T1 , .., rt+Td
)′, of spot interest

rates for a given set of fixed times to maturity T1 < . . . < Td. Therefore, rt is the

yield curve at time t. Denote by X = {xt}t∈Z, xt = rt − rt−1, the corresponding time

series of interest rate changes. It is assumed that R is a strongly stationary process.2

Denoting by Ft−1 the information available up to time t − 1, we model the dynamics

of the conditional mean µt = E (xt|Ft−1) and the conditional variance Vt = (xt|Ft−1)

by modeling explicitly the joint yield curve dynamics for all available maturities. No

dimension reduction technique is used in the whole procedure. The basic idea is to extend

the classical constant conditional correlation (CCC)–GARCH model firstly introduced by

Bollerslev (1990) in order to take into account possible nonparametric nonlinearities in

the functional dependence of µt and Vt on variables in the conditioning information set
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Ft−1.

We start from a time series process of the form

xt = µt + Σtzt, (1.1)

under the following assumptions:

(A1) (Innovations) {zt}t∈ is a sequence of i.i.d. multivariate innovations with zero mean

and covariance matrix (zt|Ft−1) = Id.

(A2) (CCC construction) The conditional covariance matrix Vt = ΣtΣ
′
t is almost surely

positive definite for all t. A typical element of Vt is given as

vt,ij = ρt,ij(vt,iivt,jj)
1/2 ,

where i, j = 1, .., d. The parameter ρt,ij = Corr(xt,Ti
, xt,Tj

|Ft−1) is the conditional

correlation between the coordinates i and j of the process X . It is assumed in the

sequel that ρt,ij is constant over time: ρt,ij = ρij for some scalars −1 ≤ ρij ≤ 1.

Recall that by construction we have ρii = 1.

(A3) (Functional form for conditional variances) The conditional variances have a non-

parametric functional form given by

vt,ii = σ2
t,i = (xt,Ti

|Ft−1) = Fi({rt−j,Tk
: j = 1, 2, . . . ; k = 1, . . . , d})

where Fi is a function taking values in +.

(A4) (Functional form for conditional means) The conditional mean µt has a nonpara-

metric functional form given by

µt = (µt,1, . . . , µt,d)
′
,

µt,i = Gi({rt−j,Tk
: j = 1, 2, . . . ; k = 1, . . . , d})

where Gi is a function taking values in .

Assumption (A1) is standard, for instance when working with multivariate time series

models of the GARCH family. For estimation purposes a specific pseudo log likelihood
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for zt (for instance a multivariate normal one) is introduced; see Section 1.2 below. Under

Assumption (A2), the conditional covariance matrix Vt of model (1.1) is of the form

Vt = ΣtΣ
′
t = DtRDt,

where Dt = diag(σt,1, . . . , σt,d) and R = [ρij]
d
i,j=1 is the matrix consisting of all (con-

stant) correlations between the coordinates of the process X . The nonparametric func-

tional forms (A3)-(A4) permit a rich specification of conditional means, variances and

(indirectly) conditional covariances. For instance, cross-dependencies across the different

interest rates can be modeled. Similarly, a mean reversion or a nonlinearity in conditional

means can be easily accounted for, as well as functional forms for conditional volatilities

that are dependent on the level of current and past interest rates. Several models in

the literature are included in the above setting. For instance, the standard parametric

CCC-GARCH model is nested by (1.1). Similarly, multivariate AR-CCC-GARCH models

where conditional means µt,i incorporate mean reversion in the standard way are special

cases of the above setting. Finally, also multivariate CCC-GARCH–type models with

asymmetric volatilities are nested by the above specification.

By Assumption (A2) model (1.1) avoids an explicit time varying conditional correla-

tions structure. Models with time varying correlations have been recently advocated by

Engle and Sheppard (2001), among others, in a parametric Dynamic Conditional Cor-

relations (DCC) multivariate GARCH setting. In contrast to DCC–type models, the

dynamics (1.1) is based through (A3), (A4) on a nonparametric functional form for con-

ditional means and volatilities. This feature of the model can already account for quite

flexible (nonparametric) structures in the associated time varying conditional covariances.

This is an important distinction of model (1.1) from parametric DCC-GARCH-type mod-

els, which assume a more restrictive parametric GARCH-type dynamics for conditional

variances and correlations. In our back-testing exercise on real data, we estimate all mod-

els using a rolling window. As shown, e.g., in Audrino and Barone-Adesi (2005) in an

application to market risk measurement for stocks, this empirical approach in connection

with FGD takes into account in a simple and effective way a possibly time-varying correla-

tion structure: Qualitatively, a classical AR-DCC-GARCH estimation and a FGD-CCC-

GARCH estimation yield similar results from the perspective of correlations forecasting.
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As an additional check, we perform in Section 2.1 Tse (2000) test for the constant corre-

lation hypothesis in the FGD residuals. The results of this test suggest the presence of

a modest time variation of these conditional correlations, which can be sufficiently well

taken into account for forecasting purposes by our rolling estimation procedure.

A nonparametric estimation of multivariate models of the form (1.1) in full general-

ity is an unfeasible task, because of the course of dimensionality problem which arises

when the dimension d is not a very low one. A computationally tractable, but still

very general, version of the nonparametric model (1.1) can be formulated and estimated

within the Functional Gradient Descent (FGD) framework (Friedman et al., 2000, and

Friedman, 2001). This methodology is a general representation of classical boosting al-

gorithms. Since Breiman (1999) result that boosting can be viewed as an optimization

algorithm in function space, the FGD representation of boosting has been applied also to

settings different from classification. Applications to the estimation of multivariate equity

dynamics (see Audrino and Barone-Adesi, 2005 and Audrino and Bühlmann, 2003) have

demonstrated that boosting via FGD is a powerful methodology which allows to construct

accurate estimates for the multivariate conditional mean and covariance matrix functions

also in very large dimensional applications.

In this paper, we apply the FGD technique to estimate the joint yield curve dynamics,

from the very short maturity segments (i.e. the overnight maturity) up to its very long

end (i.e. 10 to 30 years maturity rates). Unlike several studies on the estimation and

the prediction of the yield curve, this approach avoids relying on dimension reduction

techniques like Principal Components or Factor Analysis (PCA and FA, respectively).

We feel that in the context of short-term yield curve scenarios generation for risk man-

agement our approach has several advantages. First, we do not need to rely on restrictive

assumptions necessary to apply consistently PCA or FA in a general time series context

based on stochastic conditional means and volatilities (see for instance Mardia, 1971, for

an exposition of PCA and FA). Second, we can estimate the joint yield curve dynamics

also over its very short term maturity spectrum, where the high variability of short-term

interest rates can make the application of dimension reduction techniques cumbersome.

Third, the joint term structure dynamics estimated by FGD are directly interpretable
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in terms of observable interest rate variables and can be naturally related to the prices

of further interest rates derivatives, as for instance forward rates. By contrast, in many

applications of PCA or FA the estimated factors are typically interpreted ex post as some

abstract shift-, slope- or curvature factors in the spot yield curve. These factors cannot

be however naturally reconverted into forward rate factors without introducing implic-

itly strong restrictions in the estimated forward curve dynamics (see for instance Lekkos,

2000, for a discussion of this point). Finally, our full multivariate FGD approach allows

us to account also for (possibly nonlinear) short-term feed-back effects of shocks in the

very short end of the yield curve on conditional means and variances of medium and long

term interest rates.

Compared to FA, the FGD approach delivers estimated dynamics that might be less

economically interpretable, especially when factors can be naturally identified with some

macroeconomic fundamental variables. However, our focus in this paper is on providing

accurate short-term yield curve predictions for risk management, rather than on estimat-

ing an economically interpretable model of the yield curve.

The next section introduces the FGD modeling approach in a version of model (1.1)

under the Assumptions (A1)–(A4).

1.2 Conditional mean and variance estimation using FGD

The main idea of FGD is to compute estimates Ĝi(·) and F̂i(·) for the nonparametric

functions Gi(·) and Fi(·), i = 1, .., d, which minimize a joint negative pseudo log likelihood

λ under some constraints on the form of Ĝi(·) and F̂i(·). More specifically, given an initial

estimate Ĝi0(·) and F̂i0(·), i = 1, .., d – computed for instance from a parametric AR-

CCC-GARCH model – estimates Ĝi(·) and F̂i(·) are obtained as additive nonparametric

expansions around Ĝi0(·) and F̂i0(·). Such nonparametric expansions are based on some

simple estimates of the gradient of the loss function λ in a neighborhood of the initial

estimates Ĝi0(·) and F̂i0(·). These simple estimates are estimated using a pre-specified

statistical procedure S, called base learner. For example, the learner could be a regression

tree, a projection pursuit regressor, a neural net or a B-spline basis; see also Friedman et

al. (2000), Friedman (2001), Audrino and Barone-Adesi (2005), Audrino and Bühlmann
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(2003) and Bühlmann and Yu (2003) for more details. How to fit the simple estimates

from the data is part of the learner. In our study, we derive the estimates using least

squares.

From the simple estimates of the gradient of the loss function λ, FGD determines

Ĝi(·) and F̂i(·) as additive nonparametric expansions of Ĝi0(·) and F̂i0(·) which minimize

the joint negative pseudo log likelihood λ. Therefore, FGD aims at producing estimates

which improve locally the pseudo log like likelihood of some initial estimates Ĝi0(·) and

F̂i0(·) by means on nonparametric additive expansions Ĝi(·) and F̂i(·).
In the estimation of Ĝi(·) and F̂i(·), we restrict the dimensionality of the predictor vari-

ables to p past lags. In other words, we estimate the nonparametric additive expansions

Ĝi(·) and F̂i(·) based on the last p multivariate observations. However, the conditional

variance functions still depend on the whole history of the multivariate time series, be-

cause the initial estimates F̂i0(·) are obtained from a simple multivariate GARCH-type

model.3 The restriction of using only p lagged multivariate observations to define Ĝi(·)
and F̂i(·) is not really a strong one in our case, because typically a moderate number of

lags is sufficient to model the cross-dependence between variables in the conditional mean

and variance dynamics of our interest rate series. At the same time, the auto-dependence

in the conditional mean and variance of our interest rate series is already taken into

account by an infinite lag-polynomial in the definition of Ĝi0(·) and F̂i0(·).
Conditionally on the first p observations, the negative pseudo log likelihood implied

by a ”nominal” Gaussian distribution assumption for zt in (1.1) is given by:

−
n∑

t=p+1

log
(
(2π)−d/2det(Vt)

−1/2 exp(−ξT
t V −1

t ξt/2)
)

=
n∑

t=p+1

(
log(det(Dt)) +

1

2
(D−1

t ξt)
′
R−1(D−1

t ξt)

)
+ n′d log(2π)/2 + n′ log(det(R))/2

(1.2)

where ξt = xt−µt, Dt is a diagonal matrix with elements
√

vt,ii and n′ = n−p. Therefore,
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a natural conditional loss function for our FGD estimation procedure is

λR(x,G,F) = log(det(D(F)) +
1

2
(D(F)−1(x−G))

′
R−1(D(F)−1(x−G))

+
1

2
log(det(R)) +

d

2
log(2π),

D(F) = diag(
√

F1, . . . ,
√

Fd),

x−G = (x1 −G1, . . . , xd −Gd)
′
, (1.3)

where the terms d log(2π)/2 and log(det(R))/2 are constants that do not affect the opti-

mization.

As highlighted by the subscript R, the loss function λR depends on the unknown

constant correlation matrix R. At any step of our FGD optimization procedure, the

updated optimal values of R, G, F will be constructed by a two step procedure. For a

given initial correlation matrix R, updated estimates for all Gi’s and Fi’s are obtained

by minimizing λR with respect to G, F. In a second step, given the updated estimates

Ĝ and F̂ the correlation matrix is updated using the empirical moments of the resulting

standardized multivariate residuals. Therefore, given estimates Ĝ = (Ĝ1, . . . , Ĝd) and

F̂ = (F̂1, . . . , F̂d), we compute the standardized residuals

ε̂t,i =
(
xt,i − Ĝi(rt−1, . . .)

)
/F̂i(rt−1, . . .)

1/2, t = p + 1, . . . , n

to obtain the empirical correlation matrix

R̂ = (n− p)−1

n∑
t=p+1

ε̂tε̂
T
t , ε̂t = (ε̂t,1, . . . , ε̂t,d)

′, (1.4)

as an updated estimate of R.4

The optimization of λR with respect to G, F is performed by calculating the partial

derivatives of the loss function λR with respect to all Gi’s and Fi’s. In our setting, they

are given for any i = 1, . . . , d, by

∂λR(x,G,F)

∂Gi

= −
d∑

j=1

γij(xj −Gj)

F
1/2
i F

1/2
j

, (1.5)

and
∂λR(x,G,F)

∂Fi

=
1

2

( 1

Fi

−
d∑

j=1

γij(xi −Gi)(xj −Gj)

F
3/2
i F

1/2
j

)
, (1.6)
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respectively, where [γij]
d
i,j=1 = R−1. This step of the optimization suggests the name

Functional Gradient Descent. Indeed, given initial estimates Ĝi0(·) and F̂i0(·), i = 1, .., d,

the above gradients are used by FGD to define a set of simple additive expansions of the

functions Ĝi0(·) and F̂i0(·). Such expansions improve the optimization criterion precisely

in the directions of steepest descent of the loss function λR. Moreover, since they define

a nonparametric estimate of G and F the resulting optimization is a functional one.

Details on the FGD algorithm used in the paper are presented below. In Step 2 of the

algorithm the above gradients are fitted by means of a base learner S. In Step 3 and 4,

the estimated gradients are used to define a set of additive expansions Ĝi0(·) and F̂i0(·)
which improve the optimization criterion precisely in the directions of steepest descent of

λ.

Algorithm: Estimation of the conditional means and volatilities

Step 1 (initialization). Choose appropriate starting function Ĝi,0(·) and F̂i,0(·) and define

for i = 1, .., d and t = p + 1, .., n:

Ĝi,0(t) = Ĝi,0(rt−1, rt−2, . . .)

F̂i,0(t) = F̂i,0(rt−1, rt−2, . . .).

Compute R̂0 as in (1.4) using Ĝ0 and F̂0. Set m = 1. Natural starting functions in our

application are univariate AR-GARCH estimates for the single components, i = 1, . . . , d,

of the process X . In particular, the conditional mean of interest rate changes in the

initializing estimate depends on past multivariate interest rate levels in its autoregressive

structure. The GARCH structure of the chosen initializing variance functions implies

FGD variance estimates that are functions of the whole process history and not of only a

finite number of process lags.

Step 2 (projection of component gradients to base learner). For every component i =

1, . . . , d, perform the following steps.

(I) (mean) Compute the negative gradient

Ut,i = −∂λR̂m−1
(xt,G, F̂m−1(t))

∂Gi

|G=Ĝm−1(t), t = p + 1, . . . , n.
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This is explicitly given in (1.5). Then, fit the negative gradient vector Ui = (Up+1,i, . . . , Un,i)
′

with a base learner S, using the first p time-lagged predictor variables (i.e. rt−1
t−p =

(rt−1, .., rt−p)
′ is the predictor for Ut,i):

ĝm,i(·) = SX(Ui)(·),

where SX(Ui)(x) denotes the predicted value at x from the base learner S using the

response vector Ui and a predictor variable X (say). In our application, we use as predictor

variables the first two lags of multivariate interest rate levels, i.e. p = 2. In fact, we found

in our empirical analysis that adding more than two lagged multivariate interest rate

levels as predictor variables does not improve the results.5

(II) (variance) Compute the negative gradient

Wt,i = −∂λR̂m−1
(xt, Ĝm−1(t),F)

∂Fi

|F=F̂m−1(t), t = p + 1, . . . , n.

This is explicitly given in (1.6). Then, analogously to (I) fit the negative gradient vector

Wi = (Wp+1,i, . . . , Wn,i)
′ with the base learner S, using again the first p time-lagged

predictor variables

f̂m,i(·) = SX(Wi)(·).

For the same reasons given above, we use again as predictor variables the first two lags

of the multivariate interest rate levels.

Step 3 (line search). For every j = 1, . . . , d, perform a one-dimensional optimization for

the step-length,

ŵ
(me)
m,i = argminw

n∑
t=p+1

λR̂m−1
(xt, Ĝm−1(t) + wĝm,i(r

t−1
t−p), F̂m−1(t)),

ŵ
(vol)
m,i = argminw

n∑
t=p+1

λR̂m−1
(xt, Ĝm−1(t), F̂m−1(t) + wf̂m,i(r

t−1
t−p)) ,

where Ĝm−1(t) + wĝm,i(·) and F̂m−1(t) + wf̂m,i(·) are defined as the functions which are

constructed by adding in the i−th component only.6

Step 4 (up-date). Select the best component j ∈ {1, . . . , d} for the conditional mean and
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variance, respectively, as

i∗(me)
m = argmini

n∑
t=p+1

λR̂m−1
(xt, Ĝm−1(t) + ŵ

(me)
m,i ĝm,i(r

t−1
t−p), F̂m−1(t))

i∗(vol)
m = argmini

n∑
t=p+1

λR̂m−1
(xt, Ĝm−1(t), F̂m−1(t) + ŵ

(vol)
m,i f̂m,i(r

t−1
t−p)).

If the improvement in minimizing the empirical criterion (1.2) for the component i
∗(me)
m

in the conditional mean is larger than the one for the component i
∗(vol)
m in the conditional

variance, then up-date as

Ĝm(·) = Ĝm−1(·) + ŵ
(me)

m,i
∗(me)
m

ĝ
m,i

∗(me)
m

(·),
F̂m(·) = F̂m−1(·)

and set j∗m = 1. Else, up-date as

Ĝm(·) = Ĝm−1(·),
F̂m(·) = F̂m−1(·) + ŵ

(vol)

m,i
∗(vol)
m

f̂
m,i

∗(vol)
m

(·)

and set j∗m = 2. Then, compute the new estimate R̂m according to (1.4) using Ĝm and

F̂m.

Step 5 (iteration). Increase m by one and iterate Steps 2–4 up to an optimal level m = M .

The optimal level M is determined by means of a cross-validation procedure discussed in

more detail in Remark 4 below. The resulting functions ĜM , F̂M are our FGD estimates

for conditional means and volatilities. More formally, they are given by:

ĜM(·) = Ĝ0(·) +
M∑

m=1

ŵ
(me)

m,i
∗(me)
m

ĝ
m,i

∗(me)
m

(·)I{j∗m=1}

F̂M(·) = F̂0(·) +
M∑

m=1

ŵ
(vol)

m,i
∗(vol)
m

f̂
m,i

∗(vol)
m

(·)I{j∗m=2}.

Remark 1. The base learner S in Step 2 determines the FGD estimates ĜM(·) and F̂M(·)
via the predicted values of the gradients Ui and Wi, i = 1, .., d, implied by the objective
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function λ. This base learner should be a “weak” one - not involving a too large number

of parameters to be estimated - in order to avoid an immediate overfitted estimate at

the first iteration of the algorithm. The complexity of the FGD estimates ĜM(·) and

F̂M(·) is increased by adding further nonparametric terms at every step of the above

iterations. In our application, these additional terms are nonparametric functions of the

first two lags of multivariate interest rate levels. However, since the starting point F̂0(·)
of our FGD construction is a GARCH-type variance function, estimated FGD conditional

variances depend on the whole process history. We use decision trees as base learners,

because particularly in high dimensions they perform a very effective variable selection

by exploiting only a few explanatory variables as optimal predictors. However, this is not

an exclusive choice: other base learners could be applied and compared based on some

form of cross-validation criterion.

When using decision trees as base learners, the additive term functions gm,i(·) and

fm,i(·) introduced in the steps 2 and 3 of the FGD algorithm are explicitly given by:

gm,i(r
t−1
t−p) =

L∑

k=1

a
(k)
m,iI[rt−1

t−p∈R(k)
m,i]

,

fm,i(r
t−1
t−p) =

L∑

k=1

b
(k)
m,iI[rt−1

t−p∈C(k)
m,i]

,

where a
(k)
m,i (b

(k)
m,i) are some constant location parameters and L is the number of end nodes

in the decision tree. The cells R(k)
m,i (C(k)

m,i) are constructed by fitting with Least Squares a

regression tree to the negative gradient vectors Ui (Wi), i = 1, .., d, in step 2 of the FGD

algorithm.

Remark 2. As mentioned, it is desirable to use sufficiently “weak” base learners in the

above FGD algorithm. A simple effective way to reduce the complexity of a base learner

is via shrinkage towards zero. In this case, the up-date Step 4 of the FGD algorithm can

be replaced by an updating step given by:

Ĝm(·) = Ĝm−1(·) + ν · ŵ(me)

m,i
∗(me)
m

ĝ
m,i

∗(me)
m

(·) or

F̂m(·) = F̂m−1(·) + ν · ŵ(vol)

m,i
∗(vol)
m

f̂
m,i

∗(vol)
m

(·), (1.7)

where ν ∈ [0, 1] is a shrinkage factor on a fixed grid, which can be determined by a
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cross-validation procedure. This approach reduces the variance of the base learner by

the factor ν2. The resulting location parameters ν · ŵ(vol)

m,i
∗(vol)
m

b̂
(k)

m,i
∗(vol)
m

, k = 1, . . . , L, of

the regression tree in the additive expansion for the conditional variances are constrained

to be nonnegative in order to guarantee positivity of the final FGD conditional variance

estimates.

Remark 3. The initialization Step 1 in the FGD algorithm is important, since FDG

aims at improving locally by means of nonparametric additive expansions the pseudo log

likelihood criterion of an initial model estimate. Therefore, one should start from adequate

initial estimates, in order to obtain a satisfactory performance. In our application, we

make use of the fit of a diagonal VAR(pi)-CCC-GARCH(1,1) model7 to initialize the FGD

algorithm by means of functions Gi,0, Fi,0, i = 1, .., d, given by

Gi,0(rt−1, rt−2, . . .) = µt,i =

pi∑

k=1

φk,ixt−k,Ti
,

Fi,0(rt−1, rt−2, . . .) = σ2
t,i = α0,i + α1,i(xt−1,Ti

− µt−1,i)
2 + βiσ

2
t−1,i,

where the autoregressive parameter pi is selected in order to optimize the Akaike’s Infor-

mation Criterion (AIC) for each individual series i. The choice of this particular criterion

does not affect the final results of our analysis. We obtain similar forecasting results

when using the consistent and more parsimonious Schwartz Bayesian Information crite-

rion (SBIC). This feature is related to the fact that both criteria yield reasonable starting

conditional mean functions for our FGD algorithm. These starting functions are slightly

modified (if necessary) during the main FGD estimation step. In addition, in most cases

we obtain the same lag parameter p for the univariate conditional mean and variance

dynamics when using the AIC or the SBIC criterion.

Our initial estimates depend on the whole history of the process in the GARCH–part

of the model. Therefore, the resulting FDG estimates also imply individual variance

structures that depend on the whole process history. Using a Gaussian pseudo likelihood

function, we estimate by pseudo maximum likelihood the initial model for each of the

d individual series, thereby neglecting in the first step the structure of the correlation

matrix R. This feature causes some loss in efficiency but has the advantage that the

model estimation remains fast and therefore computable also in very high dimensions d.
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Remark 4. The stopping criterion in Step 5 of the FGD algorithm is important. It can

be viewed as a regularization device that is particularly effective when fitting a complex

model. We determine the optimal step M of the algorithm by means of a cross validation

scheme. Given a sample size n, we split the sample into two subsamples of sample sizes

0.7 · n and 0.3 · n, respectively. The first subsample is used as training set, the second

as test set. The optimal step M in the algorithm is chosen as the step m that optimizes

the cross-validated log-likelihood based on these two subsamples. In our 12-dimensional

real data application, typical values of the optimal parameter M ranged from M = 10

to M = 20, which implies a number of estimated additive expansion terms in the FGD

estimates between 12 and 20.8

Consistency results for the above FGD estimation procedure based on convex risk

minimization criteria are available; see, among others, Bühlmann (2006), Mannor et al.

(2003), Zhang and Yu (2005), Zhang (2004) and Lugosi and Vayatis (2004). Most of these

works consider regression or classification trees as base learners. These FGD–consistency

proofs hold for additive expansions of the form (1.7), in which the terms of order m ≥ 1

are functions defined on a fix finite-dimensional domain. This is one of the reasons why in

our FGD we work with additive expansions in which the higher order terms are functions

of a finite number p of lags of our multivariate interest rate series.

1.3 Simulation of future yield curve scenarios

Based on the FGD estimates for the multivariate conditional mean vector µt and for

the covariance matrix Vt, we apply a filtered historical simulation procedure to generate

out-of-sample scenarios for the term structure of interest rates. This procedure is briefly

reviewed in the next section. The whole real data analysis presented in Section 2 is

obtained using S-PLUS. The main FGD software together with some worked examples is

available for free downloading at http://www.people.lu.usilu.net/audrinof.

We generate future scenarios for the time series R of interest rate changes (and con-

sequently the time series X of interest rate levels). To this end, we apply a multivariate

version of the filtered historical simulation procedure. Our historical simulation is based

on a model-based bootstrap of multivariate filtered historical residuals, implied by an FGD
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estimation of the yield curve dynamics. Using the bootstrapped residuals, we construct

out of sample scenarios for the term structure. The FGD model estimate is used as the

filter for the estimation of standardized multivariate residuals. Since our primary purpose

is short-term yield curve forecasting, we do not impose anywhere additional no-arbitrage

constraints on the simulated yield curve scenarios, which would be also very difficult to

impose, given the nonparametric nature of our approach.9

More details on the complete simulation methodology are as follows. In a first step,

we filter the multivariate standardized innovations zt with our model (1.1):

zt = (Σt)
−1(xt − µt),

Vt = ΣtΣ
T
t = DtRDt, t = 1, . . . , n,

where the individual conditional mean functions µt,i = Gi(·) and variance functions

σ2
t,i = Fi(·), i = 1, . . . , d are estimated by means of our FGD technique, as described

in detail by the algorithm of Section 1.2. Under Assumption (A1), the standardized

multivariate innovations are i.i.d. and can be therefore bootstrapped. The historical

standardized residuals are drawn randomly (with replacement) and are used to generate

pathways for future interest rate changes (and, consequently, for future interest rate lev-

els). Hence, we apply a model-based bootstrap (Efron and Tibshirani, 1993) where from

an i.i.d. resampling of the standardized multivariate residuals zt we recursively generate a

time series of interest rates using the structure and the fitted parameters of the estimated

optimal model (1.1).

Specifically, we draw randomly dates with corresponding standardized innovations

z∗1, z
∗
2, . . . , z

∗
x, (1.8)

where x is the time horizon at which we want to generate future scenarios (typically, from

1 up to 10 days). We then construct for each time to maturity Ti pathways for future

conditional means and (squared) volatilities and interest rate levels, from time n + 1 up

to time n + x (say), based on the model structure (1.1). More formally we compute the
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quantities

µ̂∗t+b,i = Ĝi({r∗t+b−s,k; s = 1, 2, . . . , p, k = 1, . . . , d}),
v̂∗t+b,ii = (σ̂∗t+b,i)

2 = F̂i({r∗t+b−s,k; s = 1, 2, . . . , p, k = 1, . . . , d}),
v̂∗t+b,ij = ρ̂ij

√
v̂∗t+b,iiv̂

∗
t+b,jj ,

x∗t+b,Ti
= µ̂∗t+b,i + (Σ̂∗

t+bẑ
∗
b)i,

r∗t+b,Ti
= r∗t+b−1,Ti

+ x∗t+b,Ti
, b = 1, . . . , x, i, j = 1, . . . , d, (1.9)

where all quantities denoted by “̂” are based on the model structure estimated by means

of the FGD algorithm in section 1.2.

The “empirical” distribution of simulated model-based interest rate levels at the cho-

sen future time point n + x for each series i = 1, . . . , d, is obtained by replicating the

above simulation procedure a large number of times, e.g. 2000 times. Note that all the

parameters estimated in the main FGD step are kept fixed during the 2000 replications.

Confidence bounds for the term structure of interest rates at the future time point n + x

for a confidence level q are finally estimated by the lower and upper 1−q
2

-quantiles of the

simulated “empirical” distribution of interest rates. In our exposition we focus for brevity

on confidence levels q = 0.90, 0.95, 0.99. However, any other quantile of the simulated

interest rates distribution could be estimated in the same way.

All the codes for our historical simulation procedure are written in S-PLUS and are

ran on a standard PC. The running time needed to get the final results is in the order of

a couple of hours and the running time of the main FGD estimation is in the order of a

few minutes.

2 Empirical Results

In this section we back-test on real data our FGD scenario generation technique for

forecasting horizons x = 1, 3, 5, 10 days and for three different confidence levels q =

0.90, 0.95, 0.99.

We compare the performance of our approach with three historical simulation pro-

cedures based on (i) a generalization of the three factor analysis for the yield curve dy-
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namics proposed in Diebold and Li (2004), (ii) the industry standard benchmark10 used

by RiskMetricsTM and (iii) a standard multivariate AR-CCC-GARCH model. The third

comparison is particularly useful, because it highlights the exact contribution of the FGD

technique in enhancing the accuracy of VaR predictions for the yield curve relatively

to a standard multivariate GARCH model. All models compared, including our FGD

proposal, are based on a constant conditional correlations assumption.

2.1 Data

We consider multivariate time series for the yield curves of daily interest rate levels rt,Ti

at twelve different maturities Ti. For the lowest maturity segments, i.e. overnight, 1

week, 2 weeks, 1 month, 2 months, 3 months, 6 months and 1 year, we make use of Euro

dollar interest rates. For the higher maturities, i.e. 2 years, 5 years, 10 years and 30

years, we make use of interest rates of US government bonds. The data span the time

period between January 1, 1996 and September 30, 2002, for a total of 1760 trading days,

and have been downloaded from Data Stream International. We split our sample in a

back-testing period used to test the predictive accuracy of our FGD methodology and

an in-sample estimation period used to initialize the model parameter estimates. The

back-testing period goes from January 3, 2000 to September 30, 2002, for a total of 716

trading days. In our back-testing exercise the model parameters are re-estimated every 20

working days, as new data become available for prediction purposes, using all multivariate

past observations in the estimation of the model dynamics. Note that this choice is not

restrictive. Qualitatively, the results are the same also when re-estimating parameters

every week. However, we found that re-estimating the parameters every month is a good

trade-off between flexibility and computational feasibility. The updated first and second

moment dynamics are then used to compute out of sample VaR predictions based on

historical simulation for the whole back-testing period.

Table 1 presents summary statistics of the time series of interest rate changes in our

sample. Figure 1 plots the yield curves in our sample as a function of time and maturity.

TABLE 1 AND FIGURE 1 ABOUT HERE.
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Table 1 shows that the sample means of all interest rate changes in our sample are

negative, highlighting the fact that in our back-testing period the Fed reduced several

times the target interest rate. This effect is more pronounced for interest rates up to 2

years times to maturity and is clearly visible in Figure 1. In particular, we can expect a

back-test based on such a time span to be a quite hard test for a VaR prediction model.

Finally, the volatilities for interest rates up to 1 month time to maturity tend to be larger

than those of interest rates corresponding to further time to maturities. The Ljung-Box

statistics LB(20) testing for autocorrelations in the level of interest rate changes up to

the 20th order are strongly significant for maturities up to 1 year, showing evidence of

some autocorrelation at shorter times to maturity for the euro bonds interest rates in our

sample. For higher times to maturity they are not significant at the 5% confidence level.

The LB(20) statistics for testing the null hypothesis of no autocorrelation in the ab-

solute interest rate changes are all highly significant, supporting a volatility clustering

hypothesis. These results are not specific for the chosen order 20, but remain qualita-

tively the same also for other orders in the range 1 to 30. Finally, when analyzing the

sample correlations between interest rates of different maturities (not reported here) we

observe that, as expected, the time series of interest rate changes of different times to

maturities are positively correlated, with higher correlations for the longer times to ma-

turity; for example, the sample correlations of interest rate changes at 3 and 6 months

and at 2 and 5 years are 0.73 and 0.91, respectively.

To end this preliminary analysis, we perform the test for constant correlations in Tse

(2000) using our starting in-sample data.11 and get a value of the LMC statistic of 94.73,

which implies a p-value of 0.0118. Therefore, we obtain some evidence of a moderate

time variation in the conditional correlation matrix of our data. To account for a possible

variation in correlations, we apply a rolling window estimation to our CCC-FGD model.

This simple way of accounting for time varying correlations together with the FGD model

structure is already enough to produce the clearly higher forecasting power of our model.

Starting from these summary statistics, it is reasonable to model the joint yield curve

dynamics based on some multivariate GARCH-type model of the general form (1.1). We

apply the FGD technique of Section 1 and investigate the accuracy of its VaR predictions
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for short-term horizons typically used in risk management applications. In particular,

using FGD we can account for a possibly non-linear dependence between multivariate

interest rate series. Moreover, we do not need any dimension reduction technique like FA.

In fact, historical simulation combined with a FA of the joint yield curve dynamics provides

very poor, typically too conservative, VaR predictions in our study. This holds also for

forecasts of interest rates in the long term maturity spectrum. To investigate this issue

we estimated a three factor model on our yield curve data and computed the implied out-

of-sample VaR predictions using historical simulation. The three factor model we use is a

generalization of the model recently proposed by Diebold and Li (2004) where, in addition,

we allow for three-dimensional multivariate GARCH dynamics in the innovations to the

level, slope and curvature. We applied such FA to several subsets of times to maturity in

our sample, in order to control for the impact of the highly variable short-term interest

rates on the prediction results implied by such a FA. However, we always obtained poor,

typically too conservative, interest rate interval estimates.

As an illustration, Figure 2 presents the estimated one day ahead 95%-confidence inter-

vals for the 10-years maturity interest rate when using the FGD– (dot dashed curves) and

the FA–based (dotted curves) approaches. Similar findings arise for the other maturities.

FIGURE 2 ABOUT HERE.

In Figure 2 it appears clearly that the interval estimates provided by the FA-based

approach are very large and much broader than those obtained with the FGD–based

approach. For instance, at some dates – especially after periods of suddenly higher interest

rate volatility – the length of the intervals provided by the FA–methodology is almost 200

basis points (see for instance the intervals around March 1, 2001 and March 1, 2002).

Such confidence intervals lengths are too large for applied short-term risk management

purposes. Moreover, they are also too conservative. Indeed, in a formal back-testing

analysis not reported here the realized number of exceedances of confidence intervals

produced by the FA–based approach was most of the times significantly lower than the

one expected under the given confidence level. Intuitively, this conservative behavior

happens because the part of volatility dynamics that is not filtered by the FA-based
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approach inflates the variability of the filtered interest rates residuals in the resulting

historical simulation procedure: when bootstrapping such residuals to compute out-of-

sample interest rate confidence intervals their excess variability generates too conservative

interval estimates. Such effects arise also when applying FA to lower dimensional subsets

of the maturities available in our data set. Since the interest rate interval estimates and

the back-testing results implied by the FA-based approach are so poor, we do not discuss

them in more detail in the rest of the paper. The bad short-term forecasting power of FA

in combination with filtered historical simulation has not to be interpreted as a generic

disdain for factor models. In fact, such models are well-known to be very useful, for

instance for longer horizon yield curve prediction using macroeconomic based factors.

To end this section, we investigate whether the assumption of i.i.d. residuals needed in

the historical simulation is fulfilled. When performing Ljung-Box tests for autocorrelations

in the level and squares of residuals filtered using our FGD methodology up to 20th order

for several different time-windows, we found in most cases no significance at the 5%

confidence level and no significance overall at the 1% confidence level.

2.2 Yield curve confidence envelopes: some preliminary evi-

dence

We examine and compare the out-of-sample performance and the accuracy of ahead confi-

dence bounds for the yield curve, computed by means of three historical simulation-based

procedures: the industry standard benchmark used by RiskMetricsTM, one based on a

standard multivariate AR-CCC-GARCH model dynamics and, finally, one based on the

FGD approach. For any available time to maturity and any time in the back-testing

sample we compute by historical simulation confidence intervals on the value of the cor-

responding future interest rates. By plotting these confidence bounds as a function of

time to maturity we can obtain for each methodology a set of out-of-sample confidence

”envelopes” for the whole yield curve at any relevant date. Examples of such yield curve

confidence envelopes are presented in Figure 3, where we plot the realized yield curves

at some given dates, together with the 95%-confidence envelopes obtained by means of
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filtered historical simulation based on the RiskMetricsTM approach (the dotted lines in

Figure 3) and the FGD technique (the dash-dotted lines in Figure 3), respectively.

FIGURE 3 ABOUT HERE.

The term structure realizations presented in Figure 3 suggest at first sight that both

methodologies yield reasonable confidence envelopes. In particular, in almost all graphs

of Figure 3, the realized yield curves lie inside the corresponding 95%-confidence envelopes.

A small exceedance of the FGD-based envelope bounds is observed for instance in the term

structure on March 13, 2001, at weekly maturities. For the RiskMetricsTM approach one

relatively large exceedance is observed on January 5, 2001, at the two months maturity.

The FGD-based procedure seems to replicate better some particular shapes of the observed

yield curves, especially at the shorter times to maturity. In some cases the term structure

envelopes based on the RiskMetricsTM methodology appear to be too smooth as a function

of time to maturity (see again for instance the graph in Figure 3 for the term structure

on January 5, 2001).

In contrast to the results for the factor analysis, neither the RiskMetricsTM nor the

CCC–based confidence intervals seem to be systematically more or less conservative than

those under the FGD-methodology from an unconditional perspective. To illustrate

this point Figure 4 presents Box-Plots of the confidence interval lengths produced by

RiskMetricsTM and by FGD for the ten years maturity interest rates and at confidence

levels 95% and 99%.

FIGURE 4 ABOUT HERE.

From these graphs the median interval length under the RiskMetricsTM methodology

appears to be lower than under FGD at the 95% and the 99% confidence levels. At the

same time, the variability of the arising interval lengths for the RiskMetricsTM method-

ology is higher than for FGD, especially at the 95% confidence level. Such patterns are a

direct consequence of the different implicit dynamic structures of confidence intervals es-

timated by means of the RiskMetricsTM and the FGD approaches. A comparison related
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to the one in Figure 4 is presented in Figure 5, presenting Box-Plots of the one-day up to

10 days ahead 95% confidence interval lengths estimated for the 5 years maturity interest

rates by an AR-CCC-GARCH–based and a FGD-based methodology.

FIGURE 5 ABOUT HERE.

In Figure 5 we observe that the median interval lengths implied by an AR-CCC-GARCH

approach are all lower than those implied by FGD. In contrast to the comparison with

RiskMetricsTM in Figure 4, the AR-CCC-GARCH–based methodology implies also lower

interquartile ranges of interval lengths than FGD for the 5 years maturity interest rate

under scrutiny. However, the AR-CCC-GARCH–based approach also implies quite a

few extreme interval lengths that are much larger than the corresponding ones under

FGD (see for instance the top left panel in Figure 5). This is mainly a consequence of

the higher time instability of interval lengths computed by the AR-CCC-GARCH–based

methodology when large changes in interest rates occur; see also Section 2.5 below.

2.3 Back-testing one-day ahead confidence bounds

To compare more consistently and more precisely the effective performance or the above

VaR prediction methodologies it is necessary to perform some more formal statistical

back-tests. To test the predictive performance of confidence envelopes of the yield curve

we use two types of statistical tests, which are based on the frequency and the duration

of yield curve envelope exceedances, i.e. the actual interest rate observations rt,Ti
that

happen to fall outside the predicted confidence envelopes.

The first type of tests are standard overall frequency tests. Such tests test the hy-

pothesis that the expected number of exceedances is compatible with the given confidence

interval. For example, for a 95%-confidence envelope and a sample of 1000 back-testing

days, one should expect 50 exceedances at any give time to maturity. In Table 2 we report

for all methodologies under scrutiny the observed number of exceedances of one-day ahead

confidence bounds for each time to maturity Ti, from 1 month to 30 years, i.e. i = 4, .., 12.

For shorter times to maturity no methodology could provide accurate VaR estimation pro-

cedures in our sample. We report the observed number of exceedances at the confidence
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levels 0.9, 0.95, 0.99 for the FGD-based methodology (CCC-FGD), the RiskMetricsTM ap-

proach (RM) and the historical simulation methodology based on a standard multivariate

AR-CCC-GARCH dynamics (CCC). Under the null hypothesis, the observed number of

exceedances is binomially distributed with a standard deviation ranging from 8.027 (for

the 90%-confidence level) to 2.662 (for the 99%-confidence level). Back-testing results

marked by one and two asterisks, respectively, denote a significant difference from the

expected number of exceedances under the null hypothesis at the 5% and the 1% test

nominal level, respectively.

TABLE 2 ABOUT HERE.

From Table 2, we observe that the FGD-based historical simulation strategy is the one

that produces the lowest number of null hypothesis rejections when using overall frequency

tests. In particular, for the 95% and the 99%-confidence envelopes we remark that only

in one case a significant difference from the expected number of exceedances is observed.

The RiskMetricsTM approach yields very often confidence intervals that are too tight and

are therefore often violated a significantly larger number of times than expected under

the null hypothesis. Similarly, also a standard CCC-GARCH-based historical simulation

produces often too tight confidence intervals, especially for short and intermediate time

to maturities. Based on the results of pure overall frequency tests we conclude that

the joint non-linear dependence of the yield curve dynamics estimated by FGD improves

the accuracy of one day ahead interest rate confidence intervals computed by historical

simulation.

A second type of test that can be applied in our back-testing exercise is a likelihood-

ratio Weibull duration tests; see Christoffersen and Pelletier (2004). The basic idea of

these tests relies on the fact that if a model for constructing the VaR confidence intervals at

a confidence level q is correctly specified, then the conditional expected duration between

consecutive exceedances - i.e. the expected no-hit duration - is constant and equal to

1/q days. Such an hypothesis can be tested as follows12. Let Dj = tj − tj−i be the

no-hit duration for time tj, where tj denotes the day of exceedance number j. Then,

under the null hypothesis that the model is correctly specified, E(Dj) = 1/q days for any
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j = 1, 2, ... This hypothesis can be tested together with the independence hypothesis on

the process of no-hit durations against some specific dependence alternative. To this end,

we consider alternatives where the distribution of no-hit durations is a Weibull distribution

with density given by

fW (D; a, b) = abbDb−1 exp
(− (aD)b

)
,

where a, b > 0. The exponential distribution with parameter a then implies the only

memoryless (continuous) random distribution in this class, which emerges as the special

case b = 1. Thus, the null hypothesis of the likelihood-ratio Weibull duration test is

H0 : b = 1 and a = q, (2.1)

where b = 1 is implied under the null hypothesis of independence. Let {Cj : j = 1, . . . , n}
be the hit sequence of {0, 1} random variables that indicate if a no-hit duration Dj is

censored (Cj = 0) or if it is not (Cj = 1).13 For a given hit sequence and a given sequence

of no-hit durations D = {Dj : j = 1, .., n} the log-likelihood is given by

log L(D; θ) = (1−C1) log
(
S(D1)

)
+(1−Cn) log

(
S(Dn)

)
+

n∑
j=1

(
Cj log

(
fW (Dj)

))
, (2.2)

where in the case of a censored observation we merely know that no hit has been observed

between time 0 and D1 or between time
∑n−1

j=1 Dj and Dn, respectively. In this case, the

contribution to the likelihood is given by the survival function S(Dj) = exp
(− (aDj)

b
)
.

The standard likelihood-ratio test statistic for testing (2.1) is then given by

LR = −2
(
log L(D; â, b̂)− log L(D; q, 1)

)
, (2.3)

where â, b̂ are the maximum likelihood estimators of the parameters a, b. This statistic is

asymptotically chi-square distributed with two degrees of freedom.14

Results of the above likelihood-ratio Weibull duration tests for 1-day ahead yield

curve confidence bounds are reported in Table 3 for our FGD-based historical simulation

procedure (CCC-FGD), for the RiskMetricsTM one (RM) and for a multivariate AR-CCC-

GARCH model based approach (CCC).

TABLE 3 ABOUT HERE.
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As for the overall frequency tests an FGD-based historical simulation procedure is the

one that clearly produces the lowest number of rejections of the relevant null hypothesis.

Indeed, the only rejections are observed at the 95% confidence level for the one month and

the six months times to maturity. The RiskMetricsTM approach yields confidence bounds

which, especially for the 99% confidence level, are inconsistent with the hypothesis of

independent durations between consecutive exceedances. The AR-CCC-GARCH model

based approach produces 8 null hypothesis rejections at the different confidence levels,

especially for time to maturities up to one year. These findings confirm that the joint non-

linear dependence of the yield curve dynamics estimated by FGD improves the accuracy

of VaR confidence intervals computed by historical simulation.

2.4 Back-testing confidence bounds for longer forecasting hori-

zons

Accuracy of the above interest rates prediction methodologies for forecasting horizons

longer than one day is investigated next. In this context, we found that for times to ma-

turity up to about one year all historical simulation approaches under scrutiny produced

a poor predictive power and inaccurate confidence interval estimates, with confidence

bounds that were often violated several times in a row. A more detailed data inspection

showed that this is due principally to a sequence of multiple big interest rate shocks on the

Euro market (often with changes larger than 0.3%-0.4%) caused by several adjustments in

the Fed’s target rate during the second part of our back-testing period. In the sequel we

therefore focus on several days ahead interest rate predictions for longer terms to maturity

between two years and thirty years. We remark, however, that interest rates in the short

maturity spectrum still affect the forecasts of longer term interest rates, because they

typically influence the conditional mean vector and the conditional covariance matrix in

our estimated multivariate model for interest rate changes.

Results of overall frequency tests on the total number of exceedances at prediction

horizons of 3,5 and 10 days are summarized in Table 4 for the FGD-based approach

(CCC-FGD), the RiskMetricsTM approach (RM) and the approach based on a multivariate
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AR-CCC-GARCH model (CCC).

TABLE 4 ABOUT HERE.

To correct for the autocorrelation in the series of exceedances under overlapping measure-

ment intervals, we estimated the relevant standard errors using a Newey and West (1987)

covariance matrix estimator with truncation parameter x− 1, where x is the forecasting

horizon.

From Table 4 we see that also for longer forecasting horizons the FGD-based approach

produces clearly better back-testing results, with only one null hypothesis rejection at the

ten days forecasting horizon for the two years maturity interest rate. At the same time, the

RiskmetricsTM and the AR-CCC-GARCH methodologies provide a very bad back-testing

performance, with 17 and 20 null hypothesis rejections, respectively, across the different

forecasting horizons and confidence levels. These findings suggest that the joint non-linear

dependence of the yield curve dynamics estimated by FGD improves even more crucially

the VaR confidence intervals computed by historical simulation for longer forecasting

horizons. Indeed, in terms of the pure number of null hypothesis rejections a standard AR-

CCC-GARCH-based approach without FGD does not perform better in our study than a

very simple RiskmetricsTM approach. It is interesting to remark that the nonparametric

conditional mean and variance functions estimated by FGD for maturities from 2 to 30

years typically contain also lagged interest rates in the short-term spectrum of the yield

curve. Therefore, the inclusion of such lagged short-term interest rates as instruments

in a nonparametric FGD–approach enhances the quality of several days ahead interval

predictions for longer term interest rates. A comparable quality in the forecasting ability

of longer term interest rates could not be attained by means of (i) a three factor analysis

of the yield curve dynamics, (ii) a RiskmetricsTM–type approach or (iii) a parametric

AR-CCC-GARCH–based historical simulation procedure.

We conclude the section by discussing how our methodology will perform for longer

forecasting horizons. We performed the above analysis also for two-to-eight-weeks fore-

casting horizons and found that for horizons longer than four-five weeks all historical

simulation approaches under scrutiny produced inaccurate confidence interval estimates.
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Therefore, the FGD historical simulation procedure based on daily data presented above is

applicable for short term yield curve forecasting over horizons of about three weeks. This

is not a surprising results, especially also because the stability of the bootstrap procedure

in the historical simulation method can worsen dramatically as the horizon increases. A

simple way of obtaining historical simulation scenarios over longer horizons would be, e.g.,

to estimate the model on weekly-data and to modify the required bootstrap procedure

accordingly.

2.5 Confidence intervals for bond returns

An accurate yield curve scenarios generation technique can be used to compute the implied

confidence intervals and risk measures for, in principle, any interest rate derivative. To

this end, any generated yield curve scenario can be mapped into a corresponding derivative

price scenario, to obtain an historically simulated distribution of derivative prices. For

instance, such an historically simulated distribution of derivative prices can be used to

compute the VaR or the Expected Shortfall of a derivative return for different short-

term forecasting horizons. Such an exercise gives insight into the potential losses that

are associated with the underlying interest rate risk factors. For derivative prices that

depend on several interest rate points on the yield curve (for instance, a simple spread

portfolio) it is important to have a procedure generating accurate interest rates scenarios

at the same time for (i) several interest rate maturities and (ii) several quantiles of the

historical interest rate distribution.15 From the empirical results in the last sections, the

FGD–based historical simulation approach is the one which, among the methodologies

studied in the paper, better fulfills these two requirements.

To illustrate the computation of the loss distribution for a simple derivative in the

above historical simulation setting, consider the problem of computing three days ahead

confidence intervals for the returns of a simple 10 years maturity US Treasury Notes. From

the simulated 10 years interest rates we can easily compute the corresponding simulated

three days bond returns and, from their simulated distribution, compute the associate re-

turn confidence intervals. The resulting dynamic three days ahead 99%-confidence inter-

vals and the associated realized returns are presented in Figure 6 for (i) the RiskmetricsTM–
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type approach, (ii) the parametric AR-CCC-GARCH–based historical simulation proce-

dure and (iii) the technique based on FGD.

Figure 6 ABOUT HERE.

In the top panel of Figure 6 the comparison between the RiskmetricsTM and the FGD-

methodology shows that the first one tends to produce too liberal confidence intervals over

time, especially in the lowest estimated quantiles of bond returns. This pattern causes a

large number of realized losses that violate strongly and too often the estimated confidence

bounds (see for instance the time periods around January 2001, May 2001 and November

2001). The realized number of exceedances (19) is consistent with the results in Table 4

and is significantly too high. The FGD–based methodology, instead, produces on average

wider confidence bounds and less severe exceedances. The realized number of exceedances

(7) is consistent with the results in Table 4 and is not statistically significantly different

from the one expected under the null of a correct VaR prediction model.

The comparison between the AR-CCC-GARCH– and the FGD–based approaches is

presented in the bottom panel of Figure 6. As a general remark, we observe an approx-

imate tendency of both approaches to estimate confidence intervals with similar average

interval lengths. However, the confidence intervals estimated by the AR-CCC-GARCH–

based approach can happen to be too tight and are also more variable over time, especially

in periods of very variable interest rates and bond returns (see for instance the time period

between May 2001 and May 2002). Such a higher variability of the estimated confidence

interval lengths implies in some cases a too liberal confidence interval estimate and a

corresponding back-testing exceedance. The realized number of exceedances (14) is con-

sistent with the results in Table 4 and is statistically significantly different from the one

expected under the null of a correct VaR prediction model.

3 Conclusions

We proposed a multivariate nonparametric technique based on FGD and historical simu-

lation to generate more reliable scenarios and confidence intervals for the term structure of
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interest rates from historical data. The methodology is computationally feasible in large

dimensions and can account for a non-linear time series dependence of interest rate at all

available maturities. We back-tested our methodology on daily USD bond data and found

that its out-of-sample accuracy is higher than the one of further scenario generating tech-

nologies based on factor analysis with conditional heteroskedastic factors, a multivariate

AR-CCC-GARCH model, or the exponential smoothing covariance forecasting technique

used by the RiskMetricsTM approach. At forecasting horizons of one day, FGD provided

accurate multivariate VaR computations for time to maturities between one month and

thirty years. For longer horizons (i.e. ten days) accurate VaR predictions are obtained

for time to maturities between roughly one and thirty years.
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Notes

1The incorporation of a possibly high number of further risk factors can be easily

accomplished by FGD.

2In contrast to linear time series analysis, this assumption is a very standard one

for non-linear models of the yield curve dynamics. It is necessary, because the yield

levels enter in our model as predictor variables for the conditional mean and conditional

covariance matrix of interest rate changes.

3If needed, the same procedure might also be applied for the conditional means, for

example, by modeling the starting conditional mean estimates using an ARMA-type dy-

namics.

4Note that this kind of correlation targeting strategy to reduce the number of param-

eters to be estimated can not be used in a time-varying conditional correlation setting.

By contrast, if the conditional correlation matrix varies through time, starting estimates

for Rt can be constructed using standard two-stage procedures. Then, analogously to the

CCC case, new estimates for Rt can be constructed iteratively by using the correlation

dynamics specified in the different models. The computational costs, however, may not

be neglected.

5Moreover, such higher lagged predictors enter only few times in the explicit construc-

tion of the additive term functions gm,i(·) and fm,i(·) based on a regression tree least

squares fit.

6This line search guarantees that the negative log-likelihood is monotonically decreas-

ing in the number of iteration steps.

7See Bollerslev (1990) for more details.

8This cross-validation scheme has been shown to work well in empirical applications

of FGD; see again Audrino and Barone-Adesi (2005) and Audrino and Bühlmann (2003).

9In this sense, the estimated the model could presumably imply some small arbi-
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trage opportunities, which should be consistent, however, with the type of historical

no-arbitrage violations that might be present in rough (non-smoothed) interest rate data.

10RiskMetricsTM uses an EWMA conditional variance estimator of the form

Vt = (1− λ)ξt−1ξ
T
t−1 + λVt−1, λ = 0.94, (3.4)

where V0 can be fixed to be the sample covariance matrix or some presample data selection

used to initialize the smoother. This model is extremely easy to estimate since it contains

only one parameter of interest. One obvious drawback is that it forces all assets to have

the same smoothing coefficient λ = 0.94, irrespectively of the specific dynamic features of

a given interest rate.

11Repeating the test for other windows of data we got similar results.

12See also Kiefer, 1988 or Gourieroux, 2000 for a general introduction to duration

modeling.

13If the hit sequence {Cj j = 1, . . . , n} starts (ends) with 0 then D1 (Dn) is the number

of days until we get the first exceedance (number of days after the last exceedance) and

C1 = 0 (Cn = 0). If instead the hit sequence starts (ends) with a 1, then C1 = 1 and D1 is

simply the number of days until the second exceedance (then Cn = 1 and Dn = tn− tn−1).

14It is also possible to compute finite sample critical values for the above statistics by

means of Monte Carlo simulation. Our results do not change in an essential way when

doing that. We therefore further use standard asymptotic critical values.

15Clearly, not all interest rate derivatives will have a distribution of prices where upper

and lower quantiles are associated only with the upper and lower quantiles of the interest

rates affecting the derivative prices.
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Bühlmann, P., and Yu, B. (2003). Boosting with the L2 loss: regression and classifi-

cation. Journal of the American Statistical Association 98, 324-339.

Breiman, L. (1999). Prediction games & arcing algorithms. Neural Computation 11,

1493-1517.

Christoffersen, P. and Pelletier, D. (2004). Backtesting VaR: a duration based ap-

proach. Journal of Financial Econometrics, 2, 84-108.

Diebold, F.X. and Li, C. (2006). Forecasting the term structure of government bond

yields. Journal of Econometrics 130, 337-364.

Diebold, F.X., Piazzesi, M. and Rudebusch, G. (2005). Modeling bond yields in

finance and macroeconomics. American Economic Review 95, 415-420.

Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Chapman

& Hall, London.

Engle, R. F., Ng, V. K. and Rothschild, M. (1990). Asset pricing with a factor

ARCH covariance structure: empirical estimates from treasury bills. Journal of

Econometrics 54, 2075-2107.

Freund, Y. and Schapire, R.E. (1996). Experiments with a new boosting algorithm.

In Machine Learning: Proc. Thirteenth International Conference, pp. 148–156.

Morgan Kauffman, San Francisco.

Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine.

Annals of Statistics 29, 1189-1232.

Friedman, J.H., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression: a

statistical view of boosting. Annals of Statistics 28, 337-407 (with discussion).

Gallant, A.R. and Tauchen, G. (1989). Seminonparametric estimation of condition-

ally constrained heterogeneous processes: asset pricing applications. Economet-

rica 57, 1091-1120.

Gourieroux, C. (2000). Econometrics of qualitative dependent variables. Cambridge

University Press.

37



Engle, R.F. and Sheppard, N. (2001). Theoretical and empirical properties of dy-

namic conditional correlation multivariate GARCH. Working Paper, University

of California, San Diego.

Jamshidian, F. and Zhu, Y. (1997). Scenario simulation model: theory and method-

ology. Finance and Stochastics 1, 43-67.

Kiefer, N. (1988). Economic duration data and hazard functions. Journal of Economic

Literature 26, 646-679.

Lekkos, I. (2000). A critique of factor analysis of interest rates. The Journal of Deriva-

tives 8, 72-83.

Loretan, M. (1997). Generating market risk scenarios using principal component anal-

ysis: methodological and practical considerations. Manuscript, Federal Reserve

Board.

Lugosi, G. and Vayatis, N. (2004). On the bayes-risk consistency of regularized boost-

ing methods. The Annals of Statistics 31, No. 1, 30-55.

Mannor, S., Meir, R. and Zhang, T. (2003). Greedy algorithms for classification

– consistency, convergence rates, and adaptivity. Journal of Machine Learning

Research 4, 713-741.

Mardia, K. V. (1979). Multivariate Analysis. Academic Press, London.

Reimers, M. and Zerbs, M. (1999). A multi-factor statistical model for interest rates.

Algo Research Quarterly, Vol. 2, No. 3, 55-63.

Rodrigues, A. P. (1997). Term structure and volatility shocks. Manuscript, Federal

Reserve Board.

Tse, Y.K. (2000). A test for constant correlations in a multivariate GARCH model.

Journal of Econometrics 98, 107-127.

Zhang, T. (2004). Statistical behavior and consistency of classification methods based

on convex risk minimization. The Annals of Statistics 31, No. 1, 56-134.

Zhang, T. and Yu, B. (2005). Boosting with early stopping: convergence and consis-

tency. Annals of Statistics 33, 15381579.

38



Figure 1: Term structure data: the sample consists of 1760 daily observations between

January 1, 1996 and September 30, 2002 for twelve times to maturity Ti= overnight, 1

week, 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, 2 years, 5 years, 10 years,

30 years.
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Figure 2: Out-of-sample one day ahead 95% interest rate interval estimates for the 10–

year maturity bond. The straight line is the realized interest rate level. The two dotted

lines are the estimated upper and lower interest rate quantiles when using the FA–based

approach. The two dot dashed lines are the estimated upper and lower interest rate

quantiles when using the FGD–based approach.
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Maturity sample mean sample sdev min max LB(20) LB(20)

overnight −0.0022 0.1374 −2.3200 1.5312 236.76∗ 450.44∗

1 week −0.0022 0.0701 −0.7501 1.3437 149.26∗ 291.54∗

2 weeks −0.0022 0.0606 −0.8331 0.8437 64.098∗ 177.50∗

1 month −0.0022 0.0724 −0.9800 1.0200 148.78∗ 260.16∗

2 months −0.0022 0.0422 −0.5800 0.9376 61.023∗ 179.52∗

3 months −0.0022 0.0354 −0.5900 0.6250 75.219∗ 302.35∗

6 months −0.0021 0.0382 −0.5500 0.2000 61.514∗ 318.80∗

1 year −0.0020 0.0567 −0.5312 0.6650 31.589∗ 189.59∗

2 years −0.0020 0.0607 −0.5190 0.3240 30.034 294.27∗

5 years −0.0016 0.0623 −0.3720 0.3400 29.634 200.26∗

10 years −0.0011 0.0592 −0.2240 0.3340 26.079 137.92∗

30 years −0.0007 0.0492 −0.3240 0.2460 20.816 54.186∗

Table 1: Summary statistics on time series of interest rate changes (in %) at twelve

different maturities for the time period between January 1, 1996 and September 30, 2002,

for a total of 1760 observations. Sample sdev, LB(20) and LB(20) are the sample standard

deviations and the Ljung-Box statistics testing for autocorrelation in the time series of

interest rate changes and absolute interest rate changes, respectively, up to the 20th lag.

Asterisks indicate statistical significance at the 5% confidence level.
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Figure 3: Realized yield curves (solid line) and one day ahead 95%-confidence envelopes

using (i) the FGD–based setting (dot dashed lines) and (ii) the RiskMetricsTM approach

(dotted lines) in the estimation of conditional means and volatilities for the corresponding

historical simulation procedure. The plotted yield curve envelopes are for some selected

dates in the backtesting period from January 1, 2000, to September, 30, 2002. The matu-

rity index i = 1, .., 12 in the graphs corresponds to twelve ordered maturities: overnight,

1 week, 2 weeks, 1 month, 2 months, 3 months, 6 months, 1 year, 2 years, 5 years, 10

years, 30 years. 42



Figure 4: One day ahead confidence interval lengths for the 10–years maturity interest

rate under a 95% (left panel) and a 99% (right panel) confidence level. In each panel, the

right (left) Box Plot is for the RiskMetricsTM–based (the FGD–based) approach.
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Figure 5: One day (left top panel), three days (right top panel), five days (left bottom

panel) and ten days (left right panel) ahead confidence interval lengths for the 5–years

maturity interest rate under a 95% confidence level. In each panel, the right (left) Box

Plot is for the CCC-AR-GARCH–based (the FGD–based) approach.
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Figure 6: Three days ahead confidence intervals for the 10–years maturity zero bond

return under a 99% confidence level. In each panel the straight line is the realized bond

return. In the upper panel, the two dotted lines are the estimated upper and lower return

quantiles when using the RiskmetricsTM–based approach. The two dot dashed lines are

the estimated upper and lower return quantiles when using the FGD–based approach. In

the bottom panel, the two dotted lines are the estimated upper and lower return quantiles

when using the parametric AR-CCC-GARCH–based approach. The two dot dashed lines

in the bottom panel are again the estimated upper and lower return quantiles when using

the FGD–based approach.
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Maturity

Confidence level

90% 95% 99%

CCC-FGD RM CCC CCC-FGD RM CCC CCC-FGD RM CCC

Expected 71.6 35.8 7.16

1 month 61 49∗∗ 86∗ 26 39 31 5 25∗∗ 3

2 months 75 59 99∗∗ 37 43 55∗∗ 8 22∗∗ 8

3 months 76 55∗ 104∗∗ 40 42 57∗∗ 7 26∗∗ 15∗∗

6 months 77 74 88∗ 44 53∗∗ 47∗ 9 37∗∗ 13∗

1 year 84 69 106∗∗ 53∗∗ 47∗ 56∗∗ 10 31∗∗ 13∗

2 years 83 80 91∗ 39 50∗ 40 8 20∗∗ 4

5 years 87∗ 80 93∗∗ 39 49∗ 43 4 21∗∗ 6

10 years 91∗ 80 85 40 51∗∗ 43 7 22∗∗ 7

30 years 85 78 81 38 43 42 4 16∗∗ 6

Table 2: Overall frequency tests: exceedances for one-day ahead confidence bound fore-

casts recorded for times to maturity between one month and 30 years in the backtesting

period from January 3, 2000 to September 30, 2002 (for a total of 716 trading days).

The predictions are constructed using the FGD algorithm of Section 1 (CCC-FGD), the

RiskMetricsTM approach (RM) and a standard multivariate AR-CCC-GARCH model.

Results marked with one and two asterisks show significance at the 5% and the 1% con-

fidence levels, respectively, for binomial tests investigating differences from the expected

number of exceedances.
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Maturity

Confidence level

90% 95% 99%

FGD RM CCC FGD RM CCC FGD RM CCC

1 month 5.58 13.9∗∗ 4.02 8.52∗ 8.06∗ 1.32 2.06 29.8∗∗ 5.82

2 months 0.08 6.99∗ 9.81∗∗ 0.17 2.95 9.13∗ 0.13 17.5∗∗ 0.02

3 months 5.78 5.01 12.4∗∗ 2.02 0.72 10.6∗∗ 0.30 27.2∗∗ 6.27∗

6 months 0.47 1.85 3.31 1.36 7.30∗ 4.57 0.37 58.9∗∗ 2.91

1 year 7.05 0.19 13.8∗∗ 5.95 2.92 9.22∗∗ 0.61 40.9∗∗ 3.13

2 years 5.95 0.85 5.76 0.45 4.51 0.49 1.18 13.8∗∗ 3.14

5 years 3.12 1.13 6.14∗ 0.17 3.75 1.34 3.41 18.7∗∗ 1.39

10 years 4.46 0.80 2.77 0.57 5.06 1.31 1.85 18.4∗∗ 0.85

30 years 2.15 1.68 0.95 0.06 1.60 0.98 3.41 8.14∗ 1.36

Table 3: Likelihood-ratio Weibull duration tests: exceedances for one-day ahead confi-

dence bound forecasts recorded for the same maturities of Table 2 in the backtesting period

from January 3, 2000 to September 30, 2002 (for a total of 716 trading days). The pre-

dictions are constructed using the FGD algorithm of Section 1 (FGD), the RiskMetricsTM

approach (RM) and a standard multivariate AR-CCC-GARCH model (CCC). Results

marked with one and two asterisks show significance at the 5% and the 1% confidence

levels, respectively.
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3-day predictions

Maturity
Confidence level

90% 95% 99%

CCC-FGD RM CCC CCC-FGD RM CCC CCC-FGD RM CCC

Expected 71.6 35.8 7.16

2 years 86 91∗ 92∗ 40 57∗∗ 56∗∗ 11 26∗∗ 14∗

5 years 76 88 94∗ 41 62∗∗ 52∗ 11 23∗∗ 16∗

10 years 69 75 84 30 42 53∗ 7 19∗∗ 14∗

30 years 59 75 74 29 40 36 10 15∗ 9

5-day predictions

Maturity
Confidence level

90% 95% 99%

CCC-FGD RM CCC CCC-FGD RM CCC CCC-FGD RM CCC

2 years 82 96∗ 100∗ 43 58∗ 55∗ 16 27∗∗ 17∗

5 years 80 96∗ 104∗∗ 43 64∗∗ 58∗ 16 26∗∗ 17∗

10 years 65 81 87 32 39 48 7 15 9

30 years 64 80 78 42 44 50 8 13 11

10-day predictions

Maturity
Confidence level

90% 95% 99%

CCC-FGD RM CCC CCC-FGD RM CCC CCC-FGD RM CCC

2 years 86 99 108∗ 54 68∗ 65∗ 26∗ 35∗∗ 28∗

5 years 81 97 112∗ 46 63∗ 66∗ 21 36∗∗ 26∗

10 years 67 82 94 32 50 45 8 17 10

30 years 62 81 77 38 51 45 12 21 14

Table 4: Overall frequency tests: number of exceedances for 3-days (top panel), 5-days (middle
panel) and 10-days (bottom panel) ahead confidence bound forecasts recorded for maturities
between 2 and 30 years in the back-testing period from January 3, 2000 to September 30, 2002
(for a total of 716 trading days). The predictions are constructed using the FGD algorithm
of Section 1 (CCC-FGD), the risk RiskMetricsTM approach (RM) and a standard multivariate
AR-CCC-GARCH model (CCC). Results marked with one and two asterisks show significance
at the 5% and the 1% confidence level, respectively, for binomial tests investigating differences
from the expected number of exceedances. Standard errors have been computed by means of
a Newey and West (1987) covariance matrix estimator to correct for the autocorrelation in the
exceedances time series.
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