
Automatic Test Suite Evolution

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Mehdi Mirzaaghaei

under the supervision of

Mauro Pezzè

November 2012

Dissertation Committee

Walter Binder University of Lugano, Switzerland
Cesare Pautasso University of Lugano, Switzerland
Darko Marinov University of Illinois at Urbana-Champaign, USA
Paolo Tonella Fondazione Bruno Kessler, Trento, Italy

Dissertation accepted on 9 November 2012

Research Advisor PhD Program Director

Mauro Pezzè Antonio Carzaniga

i

I certify that except where due acknowledgement has been given, the work
presented in this dissertation is that of the author alone; the work has not been
submitted previously, in whole or in part, to qualify for any other academic
award; and the content of the dissertation is the result of work which has been
carried out since the official commencement date of the approved research pro-
gram.

Mehdi Mirzaaghaei
Lugano, 9 November 2012

ii

To Shima

iii

iv

Abstract

Software testing is one of the most common approaches to verify software sys-
tems. Despite of many automated techniques proposed in the literature, test
cases are often generated manually. When a software system evolves during de-
velopment and maintenance to accommodate requirement changes, bug fixes,
or functionality extensions, test cases may become obsolete, and software devel-
opers need to evolve them to verify the new version of the software system. Due
to time pressure and effort required to evolve test cases, software developers do
not update test cases often and many test cases become quickly obsolete. As a
consequence, the effectiveness of the test suites drops over time.

In this thesis, we propose a new technique for automating test suite evolu-
tion aiming to reduce both the developers effort and the costs of software evolu-
tion. To understand the evolution of test cases, we conducted an empirical study
on real-world software systems to gain an insight on how software developers
evolve the test cases. Our study shows that many test cases of software systems
are similar. These similarities lead developers to follow common activities for
repairing and generating test cases by using some common processes. Based on
this observation, we identify some of Test Reuse Patterns that can be applied to
fix many test cases and generate new test cases.

In this thesis we define five Test Reuse Patterns: change of method declara-
tion, extension of class hierarchy, implementation of interface, introduction of
overloaded methods, and introduction of overridden methods. We propose a
framework for generating and repairing test cases for evolving software by au-
tomating Test Reuse Patterns. The framework, called Test Care Assistant (TCA),
repairs test cases that do not compile after the code changes and generates test
cases when new classes or methods are added to the software. We evaluated
TCA on several open-source projects, and the results suggest that TCA can be suc-
cessfully adopted in software testing process to help software developers evolve
the test cases with less effort and time. The empirical evaluation of the frame-
work shows that TCA can be successfully applied in many cases and that the
effectiveness of the test cases generated and repaired by TCA is comparable with

v

vi

the effectiveness of the test cases written manually by software developers and
generated automatically by existing techniques.

This dissertation makes several contributes to the state of the art. First, it
introduces Test Reuse Patterns, Second, it proposes a framework, TCA, that ex-
ploits the Test Reuse Patterns to repair and evolve test cases in the software,
Third, it performs an empirical study of software evolution conducted on differ-
ent test suite repositories, Fourth, it implements the TCA prototype, and Finally
it performs an empirical evaluation of the applicability and effectiveness of the
approach on open-source projects.

Acknowledgements

First, I would like to thank my advisor, Mauro Pezzè. Your expertise and sug-
gestions contributed significantly to this work. I am grateful for giving me the
freedom to explore the things that I considered worthy to investigate and your
encouragement for my academic growth. I learned a lot from your mature way
of thinking. Your support and advice were priceless.

I wish to thank Fabrizio Pastore which advised me much beyond his time
as a post-doctoral fellow at University of Lugano. The collaboration with him
taught me more than he might think. The many discussions we had influenced
significantly the research presented in this thesis. Grazie, Fabrizio!

Special thanks to Walter Binder, Cesare Pautasso, Darko Marinov, and Paolo
Tonella for accepting to serve as scientific committee members of my work as
well as your detailed feedback on the dissertation proposal. I really appreciate
your time and thanks for taking me seriously.

Many thanks to Mehdi Jazayeri for being available for any discussion during
my PhD studies and for showing interest in my research in all the stages of
my work. I would like to thank other faculty members of University of Lugano
specially Carlo Ghezzi, Marc Langheinrich, Michal Young, Fernando Pedone, and
Antonio Carzaniga for investing a part of your precious time to teach me new
things.

Extensive discussions with Darko Marinov and Danny Dig greatly improved
the empirical studies of this thesis. During my visit of Darko’s group, I enjoyed
discussing my PhD thesis with people in UIUC: Thanks Darko, Danny, Vilas,
Milos, Qingzhou, Adrian, Mohsen, Samira, Cosmin, Steve, and Brett.

Thanks to all the graduate students in University of Lugano that I had fun and
shared my endeavor with: Amir, Alessandra, Alessio, Alex, Andrea, Cyrus, Gia-
como, Giovanni, Jochen, Konstantin, Marcello, Marco, Mattia, Mauro, Mircea,
Mostafa, Navid, Nemanja, Nicolas, Nicolò, Paolo, Parisa, Parvaz, Roman, and
Saeed: I am thankful for your company.

I am always grateful for support of my family specially my parents. Thanks
for your unconditional love, trust, and support. I am proud to be your son. I am

vii

viii

very luck to have the support of two lovely sisters and my brothers-in-law which
gave me hope throughout my PhD. I am also thankful for all the encouragement
of my parents-in-law.

The last but not the least, a big thank you goes to Shima, for sharing with
me an unforgettable time in Lugano. Thank you for your love, encouragement,
and patience. Without you I could not have concluded this thesis.

Mehdi Mirzaaghaei
November 9, 2012

Contents

Contents ix

List of Figures xiii

List of Tables xv

Listings xv

1 Introduction 1
1.1 Research Hypothesis and Contributions 3
1.2 Scope of Research . 4
1.3 Structure of the Dissertation . 5

2 State of The Art 7
2.1 Test Case Generation . 7

2.1.1 Random Test Case Generation 7
2.1.2 Symbolic and Concolic Execution 9
2.1.3 Search-Based Test Generation 10
2.1.4 Model-Based Testing . 11
2.1.5 Heuristic-Based Approaches 12

2.2 Regression Testing . 13
2.2.1 Regression Test Selection . 13
2.2.2 Test Suite Prioritization . 13
2.2.3 Test Suite Augmentation . 14
2.2.4 Test Suite Minimization . 14

2.3 Test Suite Repair . 15
2.3.1 Repairing GUI Test Cases . 16
2.3.2 Repairing Test Oracles . 17
2.3.3 Refactoring Techniques . 18

ix

x Contents

3 Test Evolution 19
3.1 TestCareAssistant . 20
3.2 Test Reuse Patterns . 21

3.2.1 Change of Method Declaration 22
3.2.2 Extension of Class Hierarchy 25
3.2.3 Implementation of Interface 27
3.2.4 Introduction of Overloaded Method 29
3.2.5 Introduction of Overridden Method 30

4 Test Suite Repair 33
4.1 Motivating Example . 33
4.2 Automatic Test Repair . 37
4.3 Analyze the Change . 38
4.4 Determine the Initialization Values 38

4.4.1 Input Parameters . 39
4.4.2 Variables Following Modified Method 42

4.5 Repair Test Case . 45
4.5.1 Update Variable Definitions 45
4.5.2 Initialize New Variables . 46

5 Test Suite Adaptation 49
5.1 Motivating Example . 49
5.2 Overview of Test Adaptation Process 51
5.3 Identify and Copy Candidate Test Cases 52

5.3.1 Classes Added to a Hierarchy 52
5.3.2 Interface Implementations . 56
5.3.3 Overloaded Methods . 56
5.3.4 Overridden Methods . 58

5.4 Adapt Candidate Test Cases . 59
5.4.1 Update References to New Element 59
5.4.2 Adapt Compilation Errors . 60
5.4.3 Adapt Oracles . 64
5.4.4 Repair Runtime Failures . 65

5.5 Removing Redundant Test Cases . 66

6 Prototype Implementation 67
6.1 The Test Repair Toolsuite . 67
6.2 The Test Evolution Toolsuite . 70

xi Contents

7 Evaluation 73
7.1 Evaluation Methodology . 73
7.2 Case Study Subjects . 75
7.3 Applicability of Test Reuse Patterns . 77

7.3.1 Change of Method Declaration 77
7.3.2 Extension of Hierarchy and Implementation of Interface . 78
7.3.3 Introduction of Overriding and Overloading Methods . . . 80

7.4 Effectiveness of Change of Method Declaration 80
7.5 Effectiveness of Generating Tests for New Classes 82

7.5.1 Code Coverage . 83
7.5.2 Conciseness . 85

7.6 Effectiveness of Generating Tests for New Methods 86
7.6.1 Code Coverage . 86
7.6.2 Conciseness . 87

7.7 Discussion . 88
7.7.1 Availability of Test Cases to Reuse 88
7.7.2 Using Mock Objects . 90

8 Conclusion 93
8.1 Contributions . 94
8.2 Future Research Directions . 96

Bibliography 99

xii Contents

Figures

3.1 Test Care Assistant (TCA) . 20
3.2 Comparing Similar Test Pairs in CopticChronology of JodaTime . 22
3.3 Similar Test Pairs in Empirical Studies 23
3.4 A Portion of Class Hierarchy in JodaTime Version 1.2 27

4.1 Parameter Type Change . 34
4.2 Parameter Add Example . 35
4.3 Parameter Remove Example . 36
4.4 Return Type Change Example . 36
4.5 The TCA approach to repair test cases 37
4.6 The ini t i t ial izepre algorithm. 40
4.7 The ini t i t ial izepost algorithm. 43

5.1 A test case written by developers for class CopticChronology . . 50
5.2 A generated test case by TCA for class EthiopicChronology 51
5.3 The process that generates test cases for new elements 53
5.4 The algorithm to Identify candidate test cases 54
5.5 The algorithm that computes class similarity 55
5.6 The algorithm that Identifies the tests for Overloaded Methods . . 57
5.7 The algorithm that identifies the tests for overridden methods . . 58
5.8 An example of constructor call adaptation. 61
5.9 Algorithm to Find Similar Constructor 62
5.10 Algorithm to Calculate Similarity of Constructors 62
5.11 Algorithm to Find Similar Method . 65
5.12 An example of method invocations repair 66

6.1 A screenshopt of the TCA Eclipse plugin 68
6.2 TCA Test Repair Screenshot . 68
6.3 The architecture of TCA Test Repair 69
6.4 The architecture of the TCA Test Adaptation Toolsuite 71

xiii

xiv Figures

Tables

7.1 Subject Programs . 75
7.2 Applicability of TCA on open source projects 78
7.3 Amount of changes supported by TCA across projects 78
7.4 Applicability on Test Generation for Class Hierarchies and Interface 79
7.5 Applicability of TCA on Override/Overload Test Reuse Pattern . . . 80
7.6 Effectiveness of Generating Repairs 81
7.7 Effectiveness of Finding Initialization Values 82
7.8 Effectiveness of Test Generation for "extension of class hierarchy" . 83
7.9 Effectiveness on Test Generation for "implementation of interface" 84
7.10 Average number of test cases "extension of class hierarchy" 85
7.11 Average number of test cases for "implementation of interface" . . . 86
7.12 Effectiveness on "introduction of overloaded method" 87
7.13 Effectiveness on "introduction of overridden method" 87
7.14 Average number of tests with "introduction of overloaded method" 88
7.15 Average number of tests with "introduction of overridden method" . 88

xv

xvi Tables

Listings

3.1 Method Report.addRule in PMD 1.0 24
3.2 Method Report.addRule in PMD 1.1 24
3.3 Test case for method Report.addRule in PMD 1.0 24
3.4 Test case of Listing 3.3 repaired to work with PMD 1.1 24
3.5 Two Test Methods in test suite of EthiopicChronology 26
3.6 Two Test Methods in test suite of CopticChronology 26
3.7 A Test Method in test suite of FastScatterPlot 28
3.8 A Test Method in test suite of CompassPlot 28
3.9 Test Method calling getInstance() 29
3.10 Test Method calling getInstance(DateTimeZone) 29
3.11 Test Method of class CategoryTextAnnotation 30
3.12 Test Method of class CategoryPointerAnnotation 30
7.1 A test case for class EthipicChronology by EvoSuite. 84
7.2 Class ISO8601GregorianCalendarConverter 89
7.3 Test Case of developers for class ASTVariableDeclaratorId . . . 90
7.4 A TCA test case that uses mock objects 91
7.5 A manually repaired test case of TCA 91

xvii

xviii Listings

Chapter 1

Introduction

Software testing is the most common practice for validating and verifying soft-
ware systems. During development, software developers write test cases to
check the compliance of the developed applications with their specifications.
Due to the complexity of software systems, software testing is an expensive ac-
tivity, and the cost and complexity of software testing increases when software
evolves to reflect changes in the system [PY07].

Testing activities include test case design, execution, and maintenance, which
are often performed manually by software developers during the evolution of the
system, when software components are added, removed, or changed. After mod-
ifying the system, developers re-execute existing test cases to identify regressions
in the functionality, repair the existing test cases if they have been broken by the
changes performed, and develop and execute new test cases to verify the new
functionality. Evolution of test cases is particularly common because of the wide
adoption of agile software development processes such as Scrum [SB02], which
are characterized by frequent changes of requirements and functionality and at
the same time by the early definition of test cases, which consequently should be
adapted quite often during the lifespan of a software system. In this dissertation,
we use the term test evolution to refer to the activities performed to keep the test
cases up to date while software evolves, including test repair and generation of
new test cases.

The process of evolving test cases is often performed manually by software
developers, with the consequence of an increase in the software costs. Manual
adaptation of test cases is also time consuming: software developers rewrite the
test cases according to changes in the API or in the software specifications, or
they add new test cases to cover new functionality.

Researchers developed several techniques to reduce the efforts of test case

1

2

generation and evolution. Many techniques generate test cases by using ap-
proaches like symbolic [Kin76], concolic [GKS05, SMA05], or random execu-
tion [PE07]. These techniques are effective, but come with some limitations:
(1) they automatically generate test cases that are difficult to understand for
software developers, (2) they do not leverage domain information, (3) they can-
not identify the necessary setup actions to run the test cases, (4) they generate
many invalid test inputs that are not desirable for the developers, and (5) they
do not provide oracles with the generated test cases. Therefore, the software
developers need to inspect and understand the generated test cases to complete
and execute them [JLDM09]. Model-based testing generates both test inputs
and oracles from software specifications, and thus does not require developers
to modify or complete the generated test cases [DNSVT07]. Unfortunately soft-
ware engineers usually define specifications only for few components, often the
critical ones, thus the applicability of model-based techniques remains limited
in practice. In practice, although there are several test generation techniques
available, but software developers still largely rely on manual definition and
implementation of the test cases [XKK+10].

The goal of this dissertation is to define a framework to automate test suite
evolution. Our framework uses exiting test cases to evolve test suites by repair-
ing obsolete test cases and generating new test cases while software evolves.
We argue that existing test cases encapsulate domain knowledge and thus can
be reused to generate test setup actions, inputs, and oracles without requiring
complete specifications. We reuse existing test cases and automatically adapt
both test inputs and test oracles to reduce developers effort thus alleviating the
limitations of current test case generation techniques.

We manually inspected different versions of several open-source systems and
found out that software developers often reuse and adapt existing test cases
rather than writing the test cases from scratch, to evolve test suites. We identi-
fied frequent actions for adapting test cases that developers commonly apply to
correct and generate test cases, hereafter Test Reuse Patterns, and we relied on
the identified actions to define algorithms for evolving test cases as a solution to
support software developers in the evolution of test cases.

The Test Reuse Patterns are the basis for the definition of algorithms that gen-
erate test cases by automating the activities captured by the reuse patterns. For
example, to generate test cases for classes that extend a class hierarchy, soft-
ware developers usually apply the following test adaptation pattern: copy the
test cases of another class in the hierarchy, replace the instances of the original
class with the instances of the new one, replace old test inputs with new valid
test inputs for new class, and update test oracles. A concrete example of this Test

3 1.1 Research Hypothesis and Contributions

Reuse Pattern which is called "extension of class hierarchy" is shown in Listings 3.5
and 3.6. Our approach automates these activities to generate test cases similar
to the test cases that the developer manually writes.

The availability of test cases for the software under test is a prerequisite for
the automatic generation of new test cases with our proposed approach. We
expect that the developers generate a set of test cases for the original version
of the system either manually or with automated test generation tools. Then,
software developers can apply the framework proposed in this dissertation to
generate test cases for added or modified functionality during the evolution of
the system. While agile software development practices such as test-driven de-
velopment urge the developers to write test cases before the code, the test cases
are not maintained properly in practical development environments.

We evaluated our framework on a set of open-source case studies written in
Java. We compared the test cases produced by our technique with the test cases
written by the developers of those projects and with the test cases automatically
generated by some of best known state-of-the-art test generation tools such as
Randoop [PLEB07], CodePro [Cod12], and EvoSuite [FA11a].

The results of our experiments suggest that our framework can generate and
repair many test cases comparable with test cases written by the developers
and generated by the state-of-the-art test case generation techniques. Moreover,
the test cases generated by our framework are as readable as the ones written
by software developers, thus they result tend to be more understandable and
concise than the ones automatically generated by test case generators.

1.1 Research Hypothesis and Contributions

The main hypothesis that motivates our work is:

Existing test suites contain domain knowledge that can be automati-
cally reused to generate new test cases and repair existing test cases

The first part of the hypothesis describes the main intuition of this disserta-
tion, which is that existing test cases are a good source of information to gen-
erate test cases for exercising evolving software, but reusing existing test cases
is neither well exploited in the current test case maintenance techniques nor
fully investigated in the literature. While best software development practices
do not recommend using anti-patterns such as code clones, in paratactical devel-
opment environments, the developers clone the code to extend the functionality
of software systems [JS09, GJS08]. We can reuse the knowledge of developers

4 1.2 Scope of Research

encoded in the existing test cases to test modified and extended part of software
systems. This intuition comes from the observation of similarities of the new
test cases generated for the modified software and the changes in the original
test cases. When the developers write new test cases for extended functionality
or repair existing test cases, they reuse the test cases available for the former
version of the software.

This dissertation contributes to the state-of-the-art by:

• Identifying a set of reuse patterns for test cases, i.e., activities commonly
performed by software developers to generate test cases by reusing and
adapting existing ones [Mir11, MPP10, MPP12].

• Defining a framework to automatically generate test cases for evolving soft-
ware systems based on the identified Test Reuse Patterns. The underlying
idea is to reuse existing test cases as the source of information to generate
test cases for functionality modified and added to the system during its
evolution [MPP11].

• Providing experimental evidence of the effectiveness of the approach in
repairing over 138 test cases and generating test cases for over 700 classes
and 2400 methods in 5 open-source projects. The evaluation shows that
TCA can be effectively used in software maintenance processes and reduce
the efforts of the developers by allowing to evolve test cases automati-
cally [MP11, MPP12].

1.2 Scope of Research

In this dissertation we consider white-box test suite generation and evolution
which implies availability of the internal structure of the software, i.e., its source
code. We focus on fine grained changes in software systems and consider changes
in the structure of source code. Our technique applies during the development
and maintenance phases of the software development lifecycle and we assume
that software developers generate test cases while developing software (we call
the test cases generated in this stage as developer test cases).

We use programs written in Java as proof of concept; however, our approach
is applicable in general to any typed object-oriented language. We consider unit
test cases written for a class under test, and we use JUnit1 as test automation
framework.

1http://www.junit.org

5 1.3 Structure of the Dissertation

The approach presented in Chapter 4 relies on static def-use analysis of the
classes under test, and operates at byte code level. The approach generates test
cases in Junit format by modifying the source code of the test case that should
be available to the tool. The approach presented in Chapter 5 uses both the AST
of the classes under test and test cases to generate test cases from existing test
cases, thus requires the AST of the classes and the source code of the test cases,
but not the source code of the dependent libraries of the systems under test.

1.3 Structure of the Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 overviews several techniques related to test suite evolution. We
define a taxonomy that we use to classify techniques that generate and
maintain test suites. We discuss the state-of-the-art techniques on auto-
matic test case generation, augmentation, and repair.

• Chapter 3 introduces the test repair and adaptation framework that we
call Test Care Assistant, TCA, which automates test suite evolution by using
a set of test reuse patterns. We define a catalogue of test reuse patterns for
test suite repair and adaptation, and illustrate each pattern with examples
taken from open-source projects.

• Chapter 4 explains the details of the algorithms developed for the TCA
framework to repair test cases. TCA repairs compilation errors induced
by parameter type change, parameter addition, parameter deletion, and
return type change.

• Chapter 5 introduces the details of the algorithms that we developed for
generating test cases by adapting existing test cases, following different
Test Reuse Patterns. The chapter discusses the algorithms for four Test Reuse
Patterns that apply when adding a class to a hierarchy, implementing new
interfaces, overriding methods, and overloading methods. TCA follows a
similar process to generate test cases for all the identified Test Reuse Pat-
terns.

• Chapter 6 presents a prototype implementation of TCA that we developed
as an Eclipse plugin. Our prototype tool supports the developers in re-
pairing and generating test cases for evolving software. We explain the

6 1.3 Structure of the Dissertation

underlying implementation details and the technology that we used in the
prototype.

• Chapter 7 presents the empirical results of the experiments that we con-
ducted on several case studies by applying our prototype on open-source
projects. This chapter compares the TCA framework with the competing
state-of-the-art techniques.

• Chapter 8 concludes this dissertation by discussing our approach, summa-
rizing our contributions, and outlining future research directions of this
research work.

Chapter 2

State of The Art

During the lifetime of a software system, software developers maintain test
suites by generating test cases for new functionality and by repairing the test
cases that become obsolete due to changes in the specification of the existing
components.

Many researchers focus on the reduction of test maintenance costs by defin-
ing techniques to automatically generate and repair test cases or prevent prob-
lems caused by changes in existing components, which typically occur after sys-
tem refactoring. This Chapter overviews the state-of-the-art and highlights the
limitations of current approaches. In particular, this chapter first overviews the
current approaches to automatically generate test cases, then introduces the
techniques that reduce cost of test maintenance such as test suit repair and re-
gression testing, and finally presents approaches that propose new test processes
and test maintenance techniques.

2.1 Test Case Generation

We classify the techniques that automatically generate test cases in five main
categories: random testing, symbolic execution, search-based, model-based, and
heuristic-based techniques.

2.1.1 Random Test Case Generation

Random test case generation produces test inputs by randomly sampling the
input space. Random testing generates test cases very efficiently, is simple to
implement, and scales in large software systems [CLOM08, GKS05, CKMT10].
Pure random test generation tends to produce many illegal test cases and can

7

8 2.1 Test Case Generation

hardly generate test cases that exercise particular behaviors. To improve the ef-
fectiveness of random testing, researchers have extended the approach in several
ways.

Pacheco et al. [PE07, PLEB07, REP+11] propose directed random testing
that explores the input space by selecting random inputs that do not cause the
software to raise exceptions. Directed random teasing uses a feedback directed
approach to generate a sequence of method calls that creates and mutates ob-
jects, plus an assertion about the result of a final method call. Directed random
testing builds a test by randomly selecting a method or a constructor, using pre-
viously computed values as inputs. Directed random testing only builds legal
sequences of method calls, and uses the feedback obtained from executing the
sequence as it is being constructed, to guide the search toward sequences that
yield new and legal object states. The implemented technique is called Randoop
and works with applications written in Java [PE07] and .Net [PLB08], and is ex-
tensively evaluated on large applications. Randoop has been recently extended
to generate maintainable test cases [REP+11].

Andrews et al. [AML10, ALM07, AM09] use genetic algorithms to improve
the effectiveness of random testing. They generate a pure randomized test suite
for the software under test and place them in a pool of objects. They design a
genetic algorithm to find the best objects from the pool with the goal of opti-
mizing test coverage. The results of their evaluation suggests that the technique
reduces the size of randomized test suite while achieving the same coverage.
Designing the genetic algorithm and tuning it requires some prior knowledge
and the approach is not yet applied to large scale software systems.

Chen et al.[CKMT10, CM07, CM05] propose another way of trimming ran-
dom inputs by systematically guiding random generated candidates to cover
contiguous areas that are empirically identified as likely to be faulty. The ap-
proach uses adaptive mechanisms to improve the failure-detection effectiveness
of random testing. Adaptive approaches systematically guide or filter randomly
generated candidates to take advantage of the likely presence of failure pat-
terns. Empirical studies identify faulty areas of software systems on numerical
input domain and guide the input generator to exercise those software sections.
For instance, the algorithm guides random test generator to generate inputs that
lead to division by zero. The effectiveness of the approach is shown on small
numerical programs. Despite of extensive discussions, the scalability of the ap-
proach remains challenging.

Ciupa et al. [CLOM08] use another approach to prune generated random
inputs. The approach generates candidate inputs randomly and at every step
selects the test inputs that are more distant from the already generated inputs.

9 2.1 Test Case Generation

The distance is measured as the elementary distance between the direct values of
the objects, a distance between the types of the objects, and recursive distances
between the fields of the objects. This way they make sure the generated test
cases evenly test the whole program.

Although random approaches are argued as effective as systematic approaches,
random approaches still face challenges in practice to generate sequences for
achieving target states [VPP06a, DN84]. The reason is that the probability of
randomly generating test cases that reach some specific target states is very low.
When the source code and the specifications are unavailable or incomplete, ran-
dom testing may be the only practical choice. Random testing has been used ex-
tensively both as a testing method itself, and as a core part of other testing meth-
ods. Random test generation techniques do not deal with evolution in software
systems. However a recent work tried to generate maintainable test inputs that
can be used when the software is evolving in an industrial settings [REP+11].

2.1.2 Symbolic and Concolic Execution

Symbolic execution [Kin76] is a technique that uses the program code to derive
a general representation of its behavior. The program is executed on symbolic
rather than concrete inputs, and a set of constraints on the symbolic inputs is
collected along an execution trace. A constraint solver is then used to gener-
ate test inputs that satisfy the symbolic constraints. The resulting test inputs
are guaranteed to force the program execution along the path chosen by the
symbolic execution. There are many techniques that use symbolic execution to
generate test cases for methods and classes in object-oriented software. For ex-
ample, researchers [Kin76, GKS05, PMB+08, SRRE08, TBV07, VPK04] identify
the inputs that cover the feasible elements of a program by solving the path
conditions of the program paths (typically using an automatic theorem prover).
Unfortunately for large and complex systems, it is computationally intractable
to precisely maintain and solve the constraints required for generating test cases
with symbolic execution.

To overcome some limitations of symbolic execution, researchers proposed
dynamic symbolic execution (a.k.a concolic execution) that combines symbolic
with concrete execution [God07, GKS05, MS07, SMA05, TDH08]. The approach
differs from the traditional symbolic execution because it executes a program
on concrete inputs while simultaneously recording symbolic path constraints.
Which branch to take is then determined by concrete values. By adjusting the

10 2.1 Test Case Generation

path constraints, usually by negating one of its branch conditions, standard con-
straint solving techniques [dMB08] can produce new concrete values that force
the program execution down a different program path. Pex is one of the most
popular symbolic execution engines developed at Microsoft Research for ana-
lyzing .NET code. It uses the Z3 constraint solver [dMB08], which provides
decision procedures for most constraints encountered in the .NET intermedi-
ate language as well as constraints involving low-level pointers and memory
references. CUTE [SMA05] and DART [GKS05] are some other techniques
that use concolic execution to reduce some of the constraint solving limitations
by combining path constraints evaluation with random generation of test in-
puts [GKS05, SMA05, CLOM08, AML10].

Bounded exhaustive testing reduces some of the limitations of test input gen-
eration techniques by requiring specifications of the valid test inputs from devel-
opers and by exhaustively generating inputs that satisfy these conditions in a
subset of input domain [CYK+05, SYC+04, GGJ+10, BKM02]. However, target
sequences involving classes from real-world applications often require longer
sequences beyond the small bound handled by bounded-exhaustive approaches.

2.1.3 Search-Based Test Generation

Search-Based Software Testing (SBST) has recently attracted a lot of attentions
in research community. SBST uses meta-heuristic algorithms1 to automate the
generation of test inputs that meet a test adequacy criterion. Branch cover-
age is one of the most widely-studied test adequacy criteria in SBST [McM05].
Search based techniques that are used in the area of test data generation utilize
hill climbing, simulated annealing, and evolutionary algorithms (like genetic al-
gorithms). Hill climbing is a local search algorithm that tries to improve one
solution by exploring the neighborhood of a first solution. Hill climbing is fast,
but can achieve sub optimal results, also called local optima. Simulate anneal-
ing improves on hill climbing by exploring new and potentially better solutions
by randomly choosing new points thus avoiding local optimum. However it
might take an infinite amount of time to reach global optimum because the al-
gorithm recursively backtracks if global optimum is not reached. Evolutionary
approaches [HM10, BM10, IX08, LMH10, Ton04] maintain a population of so-
lutions and produce better generation of solutions by combining the maintained
solutions. Specifically, they accept an initial set of sequences and evolve those

1meta-heaurisitic algorithms optimize a problem by iteratively improving a candidate solution
with regard to a quality measure

11 2.1 Test Case Generation

sequences to produce new sequences that can generate desired object states.
Harman and McMinn further investigated some global search techniques used
in evolutionary approaches [McM04, HM10]. Here we briefly discuss some of
these test generation techniques.

Tonella proposes a test case generation technique based on genetic algorithm
to automatically produce test cases for the unit testing of classes [Ton04]. Test
cases include information on which objects to create, which methods to invoke,
and which values to use as inputs. The proposed algorithm mutates the inputs
aiming to maximize a given coverage measure.

Fraser and Arcuri propose a search based technique, and accompanying tool
called EvoSuite, that automatically generates test cases with assertions for classes
written in Java code [FA11b, FA11a]. They combined static data flow analysis
and genetic algorithm that generates and optimizes whole test suites towards
satisfying a coverage criterion. Optimizing with respect to a whole test suite cov-
erage criterion rather than individual coverage goals alleviate the problem that
derive from the infeasibility of individual coverage goals. For the produced test
suites, EvoSuite suggests possible oracles by adding small and effective sets of
assertions that concisely summarizes the correct behavior; these assertions allow
developers detect deviations from expected behavior and capture the correct be-
havior to protect against future defects breaking this behavior, i.e., regressions.
Evosuite obtains reduced sets of assertions by generating a set of oracles and
reducing them by their mutation killing scores. The assertions of the test case
can only be used for regression testing since it extracted from code but not from
specification.

2.1.4 Model-Based Testing

Model-Based Testing (MBT) relies on explicit behavioral models that encode the
intended behaviors of a software under test and the behavior of its environment.
Test cases are generated from one of these models or their combinations, then
executed on the software unit or system under test. The use of explicit models is
motivated by the observation that traditionally, the process of deriving test cases
tends to be unstructured, not reproducible, not documented, lacking detailed
test design, and dependent on the ingenuity of single engineers. The idea is that
artifacts that explicitly encode the intended specification of software under test
and possibly environment behaviors can help mitigate these problems.

There is a lot of research work done in the area of model based testing that
use different artifacts of software development process such as UML diagrams,
finite state machines, Z specifications [Jac90]. Model based testing approaches

12 2.1 Test Case Generation

evaluate the test generation effectiveness by a variety of criteria such as struc-
tural model coverage, data coverage, requirement-based coverage, fault based
coverage. Despite the availability of many model based techniques, only few
techniques find industrial applications and are extensively evaluated. The mod-
els used for generating test cases are often not integrated within the software
development process [Utt05] and extra work is required to extract the models
and keep them updated while software evolves. Moreover, model based tech-
niques require knowledge about the modeling language, the coverage criteria,
the generated output format, and the supporting tools which make the use of
MBT difficult in real world scenarios [DNSVT07, CPU07, Muc07, FAW07].

2.1.5 Heuristic-Based Approaches

Recently, researchers propose to reuse application code to generate new test
cases toward improving test coverage [TXT+09, dPX+06, VPP06b]. The goal of
these techniques is to reduce the number of invalid test cases generated with
automatic techniques without affecting their effectiveness. These techniques
identify and remove invalid inputs by extracting method call sequences that are
not present in the source code of other software systems that use the software
module under test.

MSeqGen [TXT+09] and Seeker [TXT+11] mine client code bases and ex-
tract frequent patterns as implicit programming rules that are used to assist in
generating test cases. Such approaches can be sensitive to the specific client
code, thus the results depend on the quality of client code base provided by the
code search engine.

DyGen [TdHTW10] generates test cases by mining dynamic traces recorded
during program execution. DyGen uses symbolic execution to find test cases
that cover new paths that are not already covered by the existing test cases.
DyGen achieves better coverage than seeding test cases, however, there are no
information available on the overheads on running, recording, and symbolically
executing programs under tests.

Although heuristic-based approaches can reduce the number of generated
test cases while improving code coverage, their applicability remains limited.
These techniques still generate test cases that are often difficult to be under-
stood, thus forcing software developers to spend time in understanding the gen-
erated test cases.

Automatic test case generation techniques often do not identify the setup
actions necessary to execute the test cases, and tend to generate a huge amount
of test inputs without distinguishing among valid and invalid inputs thus causing

13 2.2 Regression Testing

invalid failures. Since the automatically generated test inputs are too complex to
be understood by software developers, practical applicability of these techniques
is limited to regression testing or detection of unexpected exception conditions.

2.2 Regression Testing

Regression testing is the activity of testing software after it has been modified to
gain confidence that (1) newly added and changed code behaves correctly and
(2) unmodified code does not misbehave because of the modifications [HO08].
The problem of deriving regression test cases includes some subproblems: test
selection, test prioritization, test augmentation, and test minimization.

2.2.1 Regression Test Selection

When a software changes, the developers need to know which test cases to up-
date and which test cases to generate. The process of selecting the test cases
to be executed on the new version is called regression test selection. Although
executing all test cases is a possibility, it can result in a waste of testing re-
sources because of executing unnecessary test cases. An analysis of the changes
between original and modified software can select a subset of test cases to re-
run on the modified software. Regression test selection techniques identify the
part of software that need to be retested by creating a representation of the
changes. Some techniques use source code representations, referring to enti-
ties such as statements [VF97], branches [RH97], control and data dependen-
cies [HR90, GHS96, Bin97], functions and non-executable components [CRV94,
NMS+11], and program paths [Bal98a] or traces [RGJ06]. Other techniques
use representations based on software artifacts other than the source code, such
as UML diagrams [BLH09, BLO03], architectural models [MDR06], and pro-
gram spectra [XN05]. There are similar techniques on different types of lan-
guages, such as object-oriented languages [HJL+01, HMF92, OSH04, RRST05]
and aspect-oriented languages [XR07], and for different types of programs, such
as graphical user interfaces (GUI) [MNX05, MS03, Bin97, Mem04, Mem04] and
component-based systems [ZRWS06].

2.2.2 Test Suite Prioritization

After selecting a subset of test cases to be re-executed, the number of test cases
might still be infeasible for available resources and timings. In this case, it can

14 2.2 Regression Testing

be useful to order the test cases according to some criteria. This activity is
called test case prioritization. The criteria can refer to the code coverage or
the estimated fault detection ability. These techniques use various kinds of in-
formation about original and modified software such as requirements [HS05],
source code [ST02, JH03], models of the software [KTH05, CPU02], time to
run test cases [WSKR06], and interactions among events [BM07]. Some re-
search exploits techniques such as evolutionary algorithms to determine the test
case ordering [LHH07]. Jonatan et al. [JLM11] propose a technique to prioritize
regression test suite of multi threaded software.

2.2.3 Test Suite Augmentation

The test cases written for original software may not be enough to adequately ex-
ercise modified or new functionality. In these situations, some test cases need to
be created and added to the test suite. This activity is called test suite augmenta-
tion. Like regression test selection, test suite augmentation techniques also gen-
erate some models of original and modified software and assess the differences
between them to identify the characteristics of test cases to be added. The char-
acteristics of test cases can be extracted with data-flow [LM90, Tah92], control-
flow [RH97, LS92], and both data-flow and control-flow techniques [RH94,
Bal98b, Bal98a, GHS96]. More recent techniques use symbolic execution re-
lated to the changes as a way to compute and characterize differential behavior
in original and modified software [XR09, XKK+10, ASC+06, SCA+08]. Xu et
al. generate test cases that cover execution paths of the modified software not
covered by existing test cases [XR09, XKK+10]. They first identify the test
cases affected by the changes in the software, then run the existing test cases
to determine the branches not covered during test execution. They use concolic
execution to cover remaining branches by negating the path conditions.

Similarly, Santelices et. al. propose an algorithm that indicates which ex-
ecution paths should be covered by new test cases of the application to verify
the behavior of the modified software [SCA+08, ASC+06]. They use symbolic
execution to determine which inputs generate different outputs in two consec-
utive versions of the software, then suggest the test requirements to cover the
modified execution paths.

2.2.4 Test Suite Minimization

Adding test cases to the test suite improves the effectiveness and supports the
evolution of test suites along software evolution, but the size of the test suites

15 2.3 Test Suite Repair

grows incrementally, resulting in insufficient resources to run and maintain the
test cases. To address this issue, some techniques identify and remove test cases
that are redundant, for example, if they exercise the same behaviors in the
software. This activity is called test suite minimization. Researchers have ex-
tensively investigated the problem of test-suite minimization by identifying test
cases that are redundant according to some criteria and removing them. Re-
searchers have proposed techniques that operate directly on programs source
code [HGS93, JH03] and use coverage information to identify redundancy. Sev-
eral researchers have investigated limitation of test suite minimization with dif-
ferent results [MM07, RHOH98, WHLB97]. They argue that although mini-
mizing test suite significantly reduce the size of a test suite, but also reduces
fault-detection ability of the test suite.

Regression testing approaches work only in the case of modifications of ex-
isting methods, but do not handle the changes that derive from introduction of
new components to the system. Among subproblems of regression testing de-
scribed above, this dissertation is closer to test augmentation techniques with
two essential differences: (1) test augmentation techniques cover alternative
paths introduced in the modified software, while this dissertation focuses on
the addition of new functionality to the software systems, (2) test augmentation
techniques use test case generation techniques to cover alternative paths while
this dissertation focuses on generating test cases by reusing existing test cases
and adapting them for new functionality.

2.3 Test Suite Repair

When software evolves, some of the test cases that are designed to test the
original software become obsolete. Obsolete test cases are test cases that ei-
ther cannot be executed, or execute, but do not check the functionality of the
modified software. After each modification, the developers need to examine the
obsolete test cases to make them compatible with the modified software or fix
the bug. This process is called test suite repair. Currently most test cases are
repaired manually by the developers. Since the developers are not rewarded
to update test cases, they often simply remove obsolete test cases from the test
suites, thus reducing the effectiveness of test suite [REP+11]. Therefore, during
software evolution, the test suites become less and less effective. This shows the
importance of automatically repairing test cases.

16 2.3 Test Suite Repair

Some researchers focused on repairing obsolete test cases for GUI applica-
tions, while others focused on repairing the oracles of test cases. We are not
aware of any technique that deal with interface changes in general unit test
cases.

2.3.1 Repairing GUI Test Cases

In the context of GUI testing, software developers create test scripts using capture-
and-replay tools [HZ93]. Such scripts may become invalid due to even simple
modification of the interfaces of the system, such as graphical widgets and pro-
gramming APIs.

Several techniques have been proposed to correct GUI test cases broken by
changes in the system. Memon et al. propose a technique that repairs obsolete
GUI test cases by representing changes with Event Flow Graphs (EFGs) [Mem08,
MNX05, MS03]. An EFG models all possible event sequences that may be exe-
cuted on a GUI. An EFG contains nodes (that represent events) and edges. An
edge from node x to y means that the event represented by y may be performed
immediately after the event represented by node x . Memon et al. developed an
automated tool, called GUI ripper, that traverses the GUI by opening the win-
dows and extracting all the widgets, properties, and values. GUI ripper gen-
erates partial test sets. Test designers should review the generated EFGs, and
produce the missing parts of EFGs by means of classic capture and replay tools.

Fu et al. propose a technique to repair GUI-based test cases for specific
scripting languages like JavaScript [XGF08, FGX09]. The technique models GUI
of both original and modified software by navigating the GUI screens under test
and uses an automated tool, called GUI Modeler, to obtain information about the
structure of the GUI and the properties of individual objects. The GUI Modeler
outputs GUI trees for the original and the modified software. The comparator
with the help of test engineer determines the modified objects in GUI trees. The
Script Analyzer analyzes test scripts, utilizing modified objects, to determine
possible failures in test scripts. Test engineers review the potential failures and
modify the original test script for the GUIs of the original version so that it can
test modified GUI of the software. This technique relies on the intervention of
the users who ultimately recommend the possible repair to the user based on
the information provided by the generated models. The required effort highly
depends on the expertise level of the user and the size of the software under
test.

All the above approaches, repair the test cases after they become obsolete.
On the contrary, Daniel et al. propose a technique to record changes in the GUI

17 2.3 Test Suite Repair

of applications and later apply them to test cases. In fact this technique tend to
record the process of modifying the GUI by the developers. This process is called
the refactoring of application GUI [DLM+11]. The approach is preliminary, but
can significantly improve the GUI test suite repair if suitably implemented.

The approaches presented in this section are specifically designed for GUI
test cases, and can not be easily generalized to other classes of software systems.
This dissertation focuses on repairing general purpose test cases.

2.3.2 Repairing Test Oracles

When changes cause the failure of the assertions in existing test cases, devel-
opers should inspect the failures. The failures are either caused by regressions,
or by changes in the intended system behavior. In the former, the developers
must revise the application code to make the test cases pass. In the latter, the
developers must repair the broken test cases or remove them from the test suite.
Repairing broken test cases is time consuming, therefore, automating oracle re-
pair can help developers keep the test cases up to date at a lower cost.

Daniel et al. propose a technique, called ReAssert, that suggests repairs for
failing unit test cases while retaining their power to detect regressions [DJDM09].
When test cases fail their assertions, ReAssert suggests changes to the test case
that cause the tests to pass. If the suggested repairs match the developers’ in-
tentions, ReAssert repairs the test case with little overhead. The ReAssert repair
process starts when the user chooses a set of failing test cases to repair by fol-
lowing multiple strategies. For each test, ReAssert iteratively attempts to repair
the code until the test case passes, no strategies apply, or the iteration limit
is reached. To repair a single failure in a test case, ReAssert first instruments
the test classes to record values of method arguments for failing assertions. It
then re-executes the test and catches the failure exception that contains both the
stack trace and the recorded values [DGM10]. Next, ReAssert traverses the stack
trace to find the code to repair by examining the structure of the code and the
recorded values. It finally recompiles the code changes and repeats these steps
if the test has another failure.

A recent empirical study shows that in practice the techniques that focus
on repairing oracles such as ReAssert can only target a small subset of broken
test cases [PSO12]. Moreover, the suggestions proposed by ReAssert must be
validated by software developers. Since ReAssert modifies test cases to make
them pass, it could erroneously mask a failure. Another practical limitation

18 2.3 Test Suite Repair

is that ReAssert only repairs test oracles while it cannot fix test inputs, thus
developers still need to manually update test inputs.

2.3.3 Refactoring Techniques

Refactoring techniques are designed to restructure a software system without
altering the external behavior, while improving internal structure of the code
[Opd92]. In the context of test case maintenance, the behavior of the test case
may be altered when software evolves.

Since current integrated development environments support test case cre-
ation and the test cases are maintained in the same project as the source code,
refactoring tools can access the test cases as well as source code for any changes
in the interface of the system. Therefore, automatic refactoring techniques can
be partially used to repair test cases although they are not specifically designed
for test maintenance [MT04]. Refactoring techniques can prevent simple er-
rors by automating some of the possible refactoring activities like moving or
renaming methods, modifying class hierarchies [SS04], or improving concur-
rency [DME09] and reentrancy [WST09]. Unfortunately, common refactor-
ing practices like adding new parameters to methods [XS06] are only par-
tially automated by existing tools and techniques. Some tools, for example,
ReBa [DNMJ08] and Eclipse2, avoid compilation errors caused by parameter
changes only when the modified parameters can be replaced by default values,
thus software developers still need to adjust test cases manually. This disser-
tation provides a framework to improve the test repair from simple program
refactoring to full test suite repair.

In this Chapter we provide an overview of the state-of-the-art techniques re-
lated to this dissertation in three main categories of test generation, test repair,
and regression testing. We discuss the advantages and shortcomings of these
techniques as well as the differences between current techniques and our pro-
posed technique.

2www.eclipse.org

Chapter 3

Test Evolution

Software developers need to update test suites whenever they change or ex-
tend software functionality. To save maintenance effort, software developers
reuse and adapt existing test cases instead of rewriting them from scratch. For
example, to write test cases of a class that extends a class hierarchy, software
developers often reuse and adapt the test cases of another class in the same
hierarchy. Software developers behave similarly when they need to repair test
cases broken by API changes. When a change in a method declaration like the
change of a parameter type causes compilation errors in the test cases, software
developers identify the values to initialize the modified parameter by inspecting
the original and the modified methods.

By investigating different versions of open-source software systems, we iden-
tified several Test Reuse Patterns that the developers apply to repair and reuse
existing test cases. In our analysis we manually inspected the test cases written
by software developers during the evolution of several software systems. We put
particular attention in identifying similarities among test cases for classes that
implement the same interfaces or extend the same classes as well as test cases
for modified methods. The inspection led us to identify several Test Reuse Pat-
terns applied by software developers when they repair test cases after changes in
method declarations, extend a class hierarchy, implement an interface, overload
a method, and override a method.

This chapter provides an overview of our novel approach to evolve the test
suite automatically during software evolution. We present the overall building
blocks of our framework and describe the usage scenario, then we provide a
catalog of Test Reuse Patterns.

19

20 3.1 TestCareAssistant

3.1 TestCareAssistant

To support the evolution of software systems, we propose a framework, Test Care
Assistant (TCA), that automates the generation and maintenance of test cases by
applying algorithms that implement common Test Reuse Patterns. Figure 3.1
shows the overall structure of TCA framework. TCA receives as input the original
and the modified software plus the test cases for the original software version.
As a result TCA generates the test cases for the modified software. To this end,
TCA implements the algorithms designed for automation of Test Reuse Patterns.
The algorithms for repairing and adapting test cases share the same structure
with slight customization for each specific Test Reuse Pattern.

Automates

Algorithm

Test reuse Pattern

Reads(Input)/
Generates(Output)

Extension of Class
Hierarchy

Implementation of
Interface

Introduction of
Overridden Method

Introduction of
Overloaded Method

Change of Method
Declaration

Test Care Assistant
(TCA)

Modified
SoftwareOriginal Test Suite

Original
Software

Modified Test Suite

Figure 3.1. Test Care Assistant (TCA)

TCA generates test cases by reusing and adapting existing test cases written
for other classes. This characteristic makes the test cases easier to understand,
thus software developers can easily modify the generated test cases if neces-
sary. In fact, the test cases adapted by TCA can serve as a starting point for the
developers to write the test cases for modified software.

21 3.2 Test Reuse Patterns

TCA can either repair existing test cases or generate new test cases. It repairs
test cases that are affected by changes in the method declarations. In particular it
can handle changes in the return type, changes in the parameter type, parameter
addition and removal of parameters. TCA does not consider the types of changes
in method declarations that are already addressed by existing techniques, like
method renaming or parameter swapping. It generates test cases for extension of
class hierarchy, implementation of interface, introduction of overloaded method,
and introduction of overridden method. In all these cases, the new code shares
some elements with the source code of the existing software elements. We expect
that TCA will be applicable to other type of changes where there are shared
interfaces between the extended and the existing functionality. TCA cannot work
when the new functionality does not share any interface element with existing
modules.

3.2 Test Reuse Patterns

Software developers often reuse existing test cases to test new and modified
functionality of software systems. We use the term Test Reuse Pattern to indicate
common practices adopted by software developers to the activity of reusing and
adapting test cases.

To identify Test Reuse Patterns applied by software developers to write new
test cases from existing ones, we analyzed test cases belonging to open-source
systems: JFreeChart1, PMD2, and JodaTime3. The goal of our analysis is to
identify typical activities performed by developers when they reuse existing test
cases to write new ones. In more detail, we identify pairs of similar test cases
which help us to understand when software developers write similar test cases
by reusing and adapting existing test cases. Our analysis identified both the test
cases that the developers write by reusing existing test cases, and the test cases
that the developers write from scratch. Our final goal was to identify general
test reuse patterns.

We compare all the possible pairs of test methods in the projects using a tool
called RefactoringCrawler [DCMJ06]. RefactoringCrawler has been originally
designed to detect refactoring in evolving software. We modified its kernel to
extract and display the differences of similar test method pairs in a comparison
dialog box as the one is shown in Figure 3.2. We then manually identified the

1http://www.jfree.org
2http:/pmd.sourceforge.net
3http://jodatime.sourceforge.net

22 3.2 Test Reuse Patterns

similarities and differences of test pairs.

Figure 3.2. Comparing Similar Test Pairs in CopticChronology of JodaTime

We categorized the modified test suite as unchanged, removed, changed, and
added. We used fully qualified names of methods to identify these categories.
We then compared the changed and added test cases in modified software with
original test cases. Figure 3.3 shows an abstract view of these categories.

By comparing the structure of test pairs we detected recurrent Test Reuse
Patterns that are applied for different kinds of changes: method declaration
changes, extension of class hierarchies, implementation of interfaces, introduc-
tion of new overloading methods, and introduction of overriding methods. In
the following sections we describe each Test Reuse Pattern.

3.2.1 Change of Method Declaration

Software developers often change method declaration when they refactor a soft-
ware system. As a consequence, they need to update existing test cases. The
test cases that execute the modified method do not compile anymore and the
developer need to fix the compilation error. Our experiments show that, apart
from simple refactoring like rename of method, most of the changes that cause
compilation errors are changes in the method declarations. The changes that
cause compilation error in method declaration are:

• Parameter Type Change

• Parameter Addition

• Parameter Removal

23 3.2 Test Reuse Patterns

1

Original
Software

Modified
Software

unchanged
/removed

addedOriginal
Test Suite

Modified
Test Suite

Similar Pairs

changed

Figure 3.3. Similar Test Pairs in Empirical Studies

• Return Type Change

We illustrate this Test Reuse Pattern by considering an example4 taken from
PMD5 a well known open-source program that checks static properties of Java
applications.

Listings 3.1 and 3.2 show how PMD developers modified the declaration of
method Report.addRule during the development of version 1.1 of PMD: they
changed the type of the second parameter from String to Context.

One of the consequences of the change is the compilation errors in the 13
test cases that use the modified method. Listing 3.3 shows one of the broken
test cases. The change in the method declaration caused a compilation error
on line 4 because the test is passing variable filename, which is of type String,
the second parameter of method Report.addRule, but method Report.addRule

requires a parameter of type Context in version 1.1 of PMD.
Listing 3.4 shows the repair for the test case of Listing 3.3: the developers in-

stantiated a new object of type Context and used the value of variable filename
to initialize the new object ctx (line 3). This way PMD developers preserved the

4We slightly modified the example to make it easier to understand.
5http://pmd.sourceforge.net

24 3.2 Test Reuse Patterns

behavior of the test; a random String or the empty String would not properly
test the functionality of method because the name should correspond with the
name of an existing file.

1 public void addRule(int line, String file){
2 this.line = line;
3 this.name = file;
4 }

Listing 3.1. Method Report.addRule in PMD 1.0

1 public void addRule(int line, Context ctx){
2 this.line = line;
3 this.name = ctx.getFilename();
4 }

Listing 3.2. Method Report.addRule in PMD 1.1

1 public void testBasic() {
2 Report r= new Report();
3 String filename="foo";
4 r.addRule(5, filename);
5 assertTrue(!r.isEmpty());
6 }

Listing 3.3. Test case for method Report.addRule in PMD 1.0

1 public void testBasic() {
2 Report r= new Report();
3 Context ctx= new Context("foo");
4 r.addRule(5, ctx);
5 assertTrue(!r.isEmpty());
6 }

Listing 3.4. Test case of Listing 3.3 repaired to work with PMD 1.1

Although test maintenance activities such as the change of PMD test case
testBasic could be straightforward, the number of test cases to be repaired can
be very large. Developers often do not have time to update all the test cases
along with the modified classes, thus many test cases become obsolete. While
software systems evolve, many obsolete test cases diverge from the system and
become hard to repair, thus developers need to rewrite new test cases [BWK05].
The change of method Report.addRule is an example of a fairly common sit-
uation. Existing automated solutions such as automated refactoring techniques
cannot handle this simple problem because file "foo" should exist.

25 3.2 Test Reuse Patterns

IDEs like Eclipse provide simple solutions that might help software devel-
opers. In fact the refactoring menu of Eclipse provides the Introduce Parameter
Object action that allows developers to automatically replace a parameter with
a new type introduced by the developer [FBB+99]. This menu action automates
the boxing of the object and automatically modifies also the test cases to gener-
ate a test like the one in Listing 3.4 thus preventing the compilation error.

Unfortunately the simple repair provided by Eclipse does not work in multi-
ple cases:

• It is not applicable when a parameter should be replaced with an existing
type;

• It does not allow developers to introduce types that require the invocation
of a setter to encapsulate the value in the object (the only possible behavior
is to pass the original value as argument of the constructor);

• It is not applicable to multiple methods (once applied to a method it gen-
erates the new type and thus cannot be applied to other methods);

• It is not applicable when developers need to manually modify the method
declaration;

• It is not applicable when test cases are developed as side projects (this is a
general limitation of many automated refactoring techniques).

The PMD case study described in this section is a typical example of an appli-
cation that cannot be successfully maintained using simple techniques like the
ones implemented by IDEs: the class Context has not been introduced with the
refactoring of version 1.1 but was already used in version 1.0, furthermore the
refactoring has been applied to two overloaded versions of addRule.

3.2.2 Extension of Class Hierarchy

In object oriented systems developers often extend software functionality by
adding classes to hierarchies. Whenever a new class is introduced, develop-
ers write test cases to verify the functionality of the new class. To save testing
effort, software developers reuse existing test cases and adapt test inputs and
oracles to the specification of the new class. This practice is successful when
the new class shares some behaviors with its siblings and parent classes. There-
fore, existing test cases that verify sibling and parent classes can be success-
fully reused to test the new class. We discovered that the test cases designed

26 3.2 Test Reuse Patterns

for similar siblings and sub-siblings can be reused as a template to derive the
test cases for new class. We illustrate this Test Reuse Pattern with the example
shown in Figure 3.4, which is a portion of class hierarchies in JodaTime ver-
sion 1.2. To write test cases for class EthiopicChronology, test cases of classes
CopticChronology and IslamicChronology can be reused as the candidate test
cases (because classes BasicFixedMonthChronology and BasicChronology are
abstract). This choice depends on the fact that all the classes in a hierarchy
might share a common behavior thus their test cases can be used to write new
test cases for the classes in the hierarchy. For example, developers use the test
cases written for CopticChronology (Listing 3.6) to write test cases for class
EthiopicChronology, shown in Listing 3.5. The structure of test cases is often
similar except class references. Other than that, some input and oracle values
are different because each Chronology employs specific algorithms to calculate
date and time.

Software developers use their domain knowledge to identify the most similar
siblings and sub-siblings of the class under test. Then, they copy the test case for
that class, and finally modify the test inputs and outputs to fit the specifications
of the new class.

1 public void testEpoch() {
2 ETHIOPIC_UTC = EthiopicChronology.getInstanceUTC();
3 JULIAN_UTC = JulianChronology.getInstanceUTC();
4 DateTime epoch = new DateTime(1, 1, 1, 0, 0, 0, 0,

ETHIOPIC_UTC);
5 assertEquals(new DateTime(8, 8, 29, 0, 0, 0, 0, JULIAN_UTC),

epoch.withChronology(JULIAN_UTC));
6 }
7

8 public void testEra() {
9 ETHIOPIC_UTC = EthiopicChronology.getInstanceUTC();

10 assertEquals(1, EthiopicChronology.EE);
11 try {
12 new DateTime(-1, 13, 5, 0, 0, 0, 0, ETHIOPIC_UTC);
13 fail();
14 } catch (IllegalArgumentException ex) {}
15 }

Listing 3.5. Two Test Methods in test suite of EthiopicChronology

1 public void testEpoch() {
2 COPTIC_UTC = CopticChronology.getInstanceUTC();
3 JULIAN_UTC = JulianChronology.getInstanceUTC();

27 3.2 Test Reuse Patterns

4 DateTime epoch = new DateTime(1, 1, 1, 0, 0, 0, 0,
COPTIC_UTC);

5 assertEquals(new DateTime(284, 8, 29, 0, 0, 0, 0, JULIAN_UTC
), epoch.withChronology(JULIAN_UTC));

6 }
7

8 public void testEra() {
9 COPTIC_UTC = CopticChronology.getInstanceUTC();

10 assertEquals(1, CopticChronology.AM);
11 try {
12 new DateTime(-1, 13, 5, 0, 0, 0, 0, COPTIC_UTC);
13 fail();
14 } catch (IllegalArgumentException ex) {}
15 }

Listing 3.6. Two Test Methods in test suite of CopticChronology

BasicChronology

BasicFixedMonthChronology

CopticChronology EthiopicChronology

IslamicChronology

Figure 3.4. A Portion of Class Hierarchy in JodaTime Version 1.2

3.2.3 Implementation of Interface

The test cases developed to verify two classes that implement the same interface
usually share a common behavior and differ only in terms of input values and
oracles. Software developers often write test cases for new classes by reusing
the test cases of classes that implement the same interfaces of new class. Since
reused test cases are not originally designed for the new class, the test case
might show some incompatibility problems such as invalid inputs. The develop-
ers use their domain knowledge to adapt inputs and oracles for new class and
augment/remove some of the the test cases.

We illustrate this Test Reuse Pattern using an example taken from the open-
source project JFreeChart version 1.013. Classes FastScatterPlot and Compass

Plot implement the Cloneable and Serializable interfaces. The body of the

28 3.2 Test Reuse Patterns

test cases for FastScatterPlot and CompassPlot is written by JFreeChart de-
velopers is the same except for some inputs and oracles. Listing 3.7 shows a
test method written for FastScatterPlot and the corresponding test case for
class CompassPlot is shown in Listing 3.8. The templates of these two classes
are similar. The main difference is that the constructor of CompassPlot needs
a parameter as input. Developers can identify the inputs and oracles that must
be modified by replacing some values used in the original test cases with values
taken from the specification of the new class. This Test Reuse Pattern is often
performed by developers to reuse and adapt existing test cases to write new test
cases instead of writing them from scratch.

1 public void testCloning() {
2 FastScatterPlot p1 = new FastScatterPlot();
3 FastScatterPlot p2 = null;
4 try {
5 p2 = (FastScatterPlot) p1.clone();
6 }
7 catch (CloneNotSupportedException e) {
8 e.printStackTrace();
9 }

10 assertTrue(p1 != p2);
11 assertTrue(p1.getClass() == p2.getClass());
12 assertTrue(p1.equals(p2));
13 }

Listing 3.7. A Test Method in test suite of FastScatterPlot

1 public void testCloning() {
2 CompassPlot p1 = new CompassPlot(new DefaultValueDataset

(15.0));
3 CompassPlot p2 = null;
4 try {
5 p2 = (CompassPlot) p1.clone();
6 }
7 catch (CloneNotSupportedException e) {
8 e.printStackTrace();
9 }

10 assertTrue(p1 != p2);
11 assertTrue(p1.getClass() == p2.getClass());
12 assertTrue(p1.equals(p2));
13 }

Listing 3.8. A Test Method in test suite of CompassPlot

29 3.2 Test Reuse Patterns

3.2.4 Introduction of Overloaded Method

The overloaded methods of a class share their names, but present different num-
ber and/or type of parameters. Software developers reuse the test cases devel-
oped for an overloaded method, usually the first one developed, to write the
test cases for the other overloaded methods by modifying the input parameters
according to the signature6 of the new method, and by altering the oracles ac-
cording to the implementation of the new method.

We illustrate this Test Reuse Pattern using an example taken from the project
JodaTime version 1.1. The method getInstance() in class BuddhistChronology,
has been overloaded by the method getInstance(DateTimeZone). Listing 3.9
shows the test case written for method getInstance(), while Listing 3.10 shows
the test method written for overloaded method. As the two test methods suggest,
the developer used the same template to write the test case for the overloading
method. The test cases written for the overloading method match the test cases
for the overloaded one except for the inputs of the parameters and few ora-
cles. There are some new method calls are added to the test case for overloaded
method to exercise different values for new parameter DateTimeZone.

1 public void testFactory() {
2 assertEquals(LONDON, BuddhistChronology.getInstance().

getZone());
3 assertSame(BuddhistChronology.class, BuddhistChronology.

getInstance().getClass());
4 }

Listing 3.9. Test Method calling getInstance()

1 public void testFactory_Zone() {
2 assertEquals(TOKYO, BuddhistChronology.getInstance(TOKYO).

getZone());
3 assertEquals(PARIS, BuddhistChronology.getInstance(PARIS).

getZone());
4 assertEquals(LONDON, BuddhistChronology.getInstance(null).

getZone());
5 assertSame(BuddhistChronology.class, BuddhistChronology.

getInstance(TOKYO).getClass());
6 }

Listing 3.10. Test Method calling getInstance(DateTimeZone)

6Method Signature is defined by the name, plus the number and the type of parameters

30 3.2 Test Reuse Patterns

3.2.5 Introduction of Overridden Method

When developers override a method, they write a new method with the same
signature of a method defined in a parent class. Software developers reuse the
test cases developed for the method of the parent class to test the new method:
they change the oracles to verify the expected behavior of the child class, for
example by inspecting the value of a field modified in the overridden method,
and alter the method inputs if the input domain of the overloading method has
been changed.

1 public void testHashcode() {
2 CategoryTextAnnotation a1 = new CategoryTextAnnotation("Test"

,"Category", 1.0);
3 CategoryTextAnnotation a2 = new CategoryTextAnnotation("Test"

,"Category", 1.0);
4 assertTrue(a1.equals(a2));
5 int h1 = a1.hashCode();
6 int h2 = a2.hashCode();
7 assertEquals(h1, h2);
8 }

Listing 3.11. Test Method of class CategoryTextAnnotation

1 public void testHashcode() {
2 CategoryPointerAnnotation a1 = new CategoryPointerAnnotation(

"Label","A", 20.0, Math.PI);
3 CategoryPointerAnnotation a2 = new CategoryPointerAnnotation(

"Label","A", 20.0, Math.PI);
4 assertTrue(a1.equals(a2));
5 int h1 = a1.hashCode();
6 int h2 = a2.hashCode();
7 assertEquals(h1, h2);
8 }

Listing 3.12. Test Method of class CategoryPointerAnnotation

We illustrate this pattern with an example from the JFreechart project version
1.013: The method equals() is overridden in class CategoryPointerAnnotation
that extends class CategoryTextAnnotation. The test case written for method
equals() in class CategoryTextAnnotation, shown in Listing 3.11, can be
reused to test the overridden method in class CategoryPointerAnnotation,
shown in Listing 3.12. The test cases differ only in the input variables of con-
structor calls of the classes. The structure of the test cases written for the over-
ridden method is the same as base method except for some input values. The

31 3.2 Test Reuse Patterns

developers usually copy the test cases from base method and using their appli-
cation knowledge replace the new input values with old ones.

This chapter provides an overview of our framework which repairs not com-
piling test cases and adapts test cases for new version of the software. Our
analysis of empirical data collected from open-source projects, suggests that the
developers reuse existing test cases to test modified software and generate new
ones. We call these recurrent activities by the developers as Test Reuse Pattern.
We identify five Test Reuse Patterns including change of method declaration, ex-
tension of class hierarchy, implementation of interface, introduction of over-
loaded method, and introduction of overridden method. We discuss each Test
Reuse Pattern with an example taken from test case repository of open-source
projects.

32 3.2 Test Reuse Patterns

Chapter 4

Test Suite Repair

This chapter details the algorithm that automates the "Change of method decla-
ration" Test Reuse Pattern. This Test Reuse Pattern is triggered by the developers
who observe some compilation errors in the test cases while modifying method
declarations in the software. TCA proposes a possible fix for the test case by
applying the algorithm described in this section. The modified test case can be
validated by the developer and submitted to the repository. We refer to this
adaptation process as test repair since we remove compilation error when we
modify the test case.

We first present a simple motivating example then we describe the algorithm
by applying it step by step on the motivating example. To repair the test case that
does not compile correctly due to some method modifications, TCA first identifies
the type of changes that caused compilation error in method invocations. The
types of changes can be parameter type change, parameter removal, parameter
addition, and return type change. According to the type of change, TCA follows a
slightly different approach to repair the test case. In all types of changes,TCA ex-
tracts the usage of the modified parameters and finds the corresponding changes
in the usage locations. Then TCA identifies definition-use pairs to find the values
that preserve the behavior of the test cases. Finally, TCA applies the changes to
test cases and removes the compilation errors.

4.1 Motivating Example

In this section, we illustrate the kinds of changes that TCA can address with a
simple bank account management system which is used in literature [JOX10a,
JOX10b]. Figures 4.1 to 4.4 show four types of changes and illustrate how
developers repair the associated test cases to solve compilation errors.

33

34 4.1 Motivating Example

Figure 4.1 shows a change of parameter type: the type of the first parameter
of method deposit has changed from int to Money. In fact, the parameter cent
is encapsulated in the type Money. This change does not modify the functionality
of the method but is applied to refactor the method to improve its readability
and maintainability. In this case, the existing automated refactoring techniques
to repair test cases suffer from one or more of the following problems:

• They are not applicable when the parameter cents should be replaced
with an existing type Money;

• They do not allow developers to introduce type Money that requires the
invocation of a setter to encapsulate the cents value in the object;

• They are not applicable to multiple methods (once applied to a method it
generates the new type and thus cannot be applied to other methods);

• They are not applicable when developers need to manually modify the
method declaration;

• They are not applicable when test cases are developed as side projects (this
is a general limitation of many automated refactoring techniques).

public class BankAccount {
 private int balance;

 public void deposit(int cents, String currency){
 balance += cents * getChange(currency);
 }
}

1
2
3
4
5
6
7

 BankAccount account = new BankAccount();
 int amount = 500;
 account.deposit(amount,"EUR");
 assertEquals(500, account.getBalance());

public class BankAccount {
 private int balance;

 public void deposit(Money m, String currency){
 balance += m.centsValues * getChange(currency);
 }
}

1
2
3
4

Figure 4.1.1: Original Software Figure 4.1.2: Modified Software

Figure 4.1.4: Repaired Test CaseFigure 4.1.3: Original Test Case

 BankAccount account = new BankAccount();
 Money amount = Money(500);
 account.deposit(amount,"EUR");
 assertEquals(500, account.getBalance());

1
2
3
4

1
2
3
4
5
6
7

1: identify change type

2.1: identify variables to initialize

2.2: identify corresponding variable

2.3: identify runtime value

3.1: remove the compilation error

3.2: initialize variables

Figure: 4.1.5: Repair actions

Figure 4.1. Parameter Type Change

This change causes a compilation error in line 3 of the original test case
(Figure 4.1.3). The original test case invokes method deposit by passing an
integer parameter, while the new test case must pass an object of type Money

(line 3). Developers would repair the test case in Figure 4.1.3 by replacing the
int variable amount passed to method deposit with an object of type Money

35 4.1 Motivating Example

public class BankAccount {
 private int balance;
 private double dailyInterestRate = 0.00005;
 private int interestTerm=365;
 public double interest(){
 return balance*dailyInterestRate*interestTerm;
 }}

BankAccount account = new BankAccount();
account.deposit(500);
int interestEarned = account.interest();
assertEquals(9.125,interestEarned);

public class BankAccount {
 private int balance;
 private double dailyInterestRate = 0.00005;

 public double interest(int days){
 return balance*dailyInterestRate*days;
}}

BankAccount account = new BankAccount();
account.deposit(500);
int days = 365;
int interestEarned = account.interest(days);
assertEquals(9.125,interestEarned);

Figure 4.2.3: Original Test Case

Figure 4.2.1: Original Software Figure 4.2.2: Modified Software

Figure: 4.2.4: Repaired Test Case Figure: 4.2.5: Repair actions

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5

1
2
3
4

Figure 4.2. Parameter Add Example

(Figure 4.1.4). To preserve the test behavior, that is to obtain the same results
of the original software, developers must initialize the new object of type Money

with value 500.

Figure 4.2 shows the case of adding a parameter to method interest. Pa-
rameter days of type int is added to method interest. This change is high-
lighted in line 6 of Figures 4.2.1 and 4.2.2, and causes a compilation error in
line 3 of the original test case (Figure 4.2.3). This change is not only a simple
parameter addition but also a change in the structure of the class. In fact, the
field interestTerm is moved to the parameter of method interest. The devel-
oper would like to have more flexibility in calculating the interest of a certain
account by dynamically assigning values to the number of days in which inter-
est should be calculated. This change in the method declaration cannot be fully
applied by using the automated "introduce parameter" refactoring tools because
the refactoring raises compilation errors in many test cases due to the new in-
terface. The developers need to go through each compilation error in their test
workspace and manually fix the errors. Developers would repair the test cases by
passing value 365 to method interest because 365 is the value of the variable
interestTerm used in the original software (Figure 4.2.4).

Figure 4.3 shows an example of parameter removal. The parameter currency
of method deposit is removed, and the parameter currency is encapsulated in
the objects of type Money in the modified software as shown in Figure 4.3.2. In
fact, the parameter currency is wrapped into the class Money, and this results
in a compilation error in the test case of Figure 4.3.3. To repair the test case
and preserve its behavior, developers would remove the parameter from the call
of method deposit in Line 4 of test case (Figure 4.3.3), and initialize the field

36 4.1 Motivating Example

public class BankAccount {
 private int balance;

 public void deposit(Money mon, String currency){
 balance += mon.cents * change(currency);
 }
}

BankAccount account = new BankAccount();
Money amount = new Money(500);

account.deposit(amount,"EUR");
assertEquals(500, account.getBalance());

public class BankAccount {
 private int balance;

 public void deposit(Money mon){
 balance+=mon.cents*change(mon.getCurrency());
 }
}

BankAccount account = new BankAccount();
Money amount = new Money(500);
amount.setCurrency(“EUR”);
account.deposit(amount);
assertEquals(500, account.getBalance());

Figure 4.3.3: Original TestCase Figure 4.3.4: Repaired Test Case

Figure 4.3.1: Original Software Figure 4.3.2: Modified Software

1
2
3
4
5
6
7

1
2
3
4
5

1
2
3
4
5
6
7

1
2
3
4
5

Figure 4.3. Parameter Remove Example

public class BankAccount {
 private int balance;
 public void deposit(int cents){
 balance += cents;
 }
 public int getBalance(){
 return balance;
}}

BankAccount account = new BankAccount();
account.deposit(500);
int balance =account.getBalance();
assertEquals(500, balance);

public class BankAccount {
 private int balance;
 public void deposit(int cents){
 balance += cents;
 }
 public Money getBalance() {
 Money mon = new Money(balance);
 return mon;
}}

BankAccount account = new BankAccount();
account.deposit(amount);
Money money =account.getBalance();
assertEquals(500, money.getCentsValue());

Figure 4.4.1: Original Software

Figure 4.4.3: Original Test Case Figure 4.4.4: Repaired Test Case

Figure 4.4.2: Modified Software

1
2
3
4
5
6
7
8

1
2
3
4

1
2
3
4
5
6
7
8
9

1
2
3
4

Figure 4.4. Return Type Change Example

Money.currency to EUR, the value of the removed argument (Figure 4.3.4). The
field currency of class Money is initialized by calling the corresponding setter
(Line 3 of Figure 4.3.4).

Finally, Figure 4.4 shows an example of change in the return type. The
change causes a compilation error in line 3 of the test case in Figure 4.4.3. The
return type of method getBalance is changed from int to Money. The object
of type Money returned by the method encapsulates the value int returned by
the original software. To fix the compilation error, developers would substitute
the result of method getBalance with an invocation of method getCentsValue

on the object of type Money returned by getBalance. Method getCentsValue

returns the int representation of the money amount in the bank account, as
shown in Figure 4.4.4.

37 4.2 Automatic Test Repair

Variables following
modified method

Analyze the Change

Determine Initialization Values

Obsolete Test

Repair Test Case

Change Type

Original
Source Code

Modified
Source Code

Repaired Test Case

<Variable, Value> pairs

STEP 1

STEP 2

STEP 3

ChangeType==
”return type”

Otherwise

 Input
 parameters

Update variable definition

Initialize new variables

Figure 4.5. The TCA approach to repair test cases

4.2 Automatic Test Repair

TCA focuses on compilation errors that derive from changes in the declaration
of methods that occur when developers modify the type of the value returned
by the method, and the number or type of the input parameters of the method.
TCA does not target simple compilation errors caused by method renaming or
changes in the parameters order, because developers usually perform these mod-
ifications using refactoring tools that prevent compilation errors. TCA also ig-
nores modifications that do not raise any compilation errors in test cases, for
example the introduction of a return type i.e., changing the return type from
"void" to some actual type.

Figure 4.5 shows the three main activities that TCA iterates to repair the
compilation errors: analyze the change, determine the initialization values, and
repair the test case.

TCA relies on the static def-use analysis of the class under test and their de-
pendent entities, and uses dynamic instrumentation and execution to get run-
time values of certain variables. The complexity of the algorithms presented in

38 4.3 Analyze the Change

this section is of the same order of the complexity of the employed static and
dynamic analysis techniques (polynomial in the worst case).

The next three sections describe the activities in detail.

4.3 Analyze the Change

TCA starts by identifying both the changed elements (the modified parameters
and return values) and the type of change. TCA first identifies the methods that
need to be repaired using the information about the compilation errors. If the
compilation errors do not involve method invocations, TCA cannot fix the er-
rors and terminates. Otherwise, TCA identifies the type of changes by simply
diffing the declarations of the modified methods. In the current prototype, we
target Java programs, and we use JDiff1. From the differences between the
methods before and after the changes, TCA identifies the set of elementary ac-
tions that comprise the changes in terms of parameter additions, removals, type
changes, and return type changes. For instance, with the example of parameter
type change in Figure 4.1 as input, TCA determines that the type of the first input
parameter of method deposit has been changed from int to Money.

TCA proceeds with the test repair step if JDiff detects on of these type of
changes: return type change, parameter type change, parameter removal or
parameter add. TCA does not work in the presence of generics or reflection, due
to the limitations of the analysis techniques.

4.4 Determine the Initialization Values

After having identified the elementary change responsible for the compilation
error, TCA determines both the program variables that must be initialized to pre-
serve the behavior of the test case, and the proper initialization values. TCA
determines the program variables to initialize by comparing static data flow in-
formation of the original and the modified software, and identifies the proper
initialization values by dynamically analyzing the original software. The combi-
nation of static data flow and dynamic analysis produces a set of pairs 〈variable,
value〉 that indicate the proper initialization values for the variables.

For instance, the analysis of the example of parameter type change in Fig-
ure 4.1 produces the pair 〈mone y.centsValues, 500〉 that indicates that the field

1http://www.jdiff.org/

39 4.4 Determine the Initialization Values

centsValues of the parameter Money in the method deposit should be initial-
ized with 500 to preserve the behavior of the test case.

TCA adopts different analysis strategies according to the type of change iden-
tified in the first phase as it is shown in step 2 of Figure 4.5:

Input parameters: If the change involves input parameters (i.e., parameter
type change, parameter addition, parameter removal), the variables to be fixed
are declared before the method invocation. In fact, to resolve the compilation
error, TCA modifies the variable assigned right before the method call in the test
case. This process is described in Section 4.4.1.

Variables following modified method: If the change involves the return type of
a method (return type change), TCA modifies the return variable of the modified
method, and all the usages of the returned variable that appear after the method
invocation. This process is described in Section 4.4.2.

4.4.1 Input Parameters

TCA identifies the initialization values for the input parameters with the algo-
rithm ini t ial izepre presented in Figure 4.6. The algorithm identifies the vari-
ables to initialize, VarsToIni tpre, and their initialization values, in two different
ways according to the type of change (line 1).

In the cases of parameter addition or parameter type change, TCA first iden-
tifies the variables to initialize by inspecting the def-use chain of the modified
parameter, then TCA repairs the test by identifying the corresponding terms in
the original software that hold the initialization values (lines 2–15). In case of
parameter removal, TCA first identifies the removed input that was used in the
test case, then identifies the corresponding values in the original software that
should be initialized to preserve the behavior of the method (lines 17–28).

In both cases the algorithm ini t ial izepre uses the functions occurrencesO f ,
cor responding, and valueO f . We first describe these three utility functions
that are required to explain the ini t ial izepre algorithm.

Function occurrencesO f (v, S): computes the set of uses of variable v, includ-
ing the uses induced by the inspector methods in Software S. The function
occurrencesO f (v, S) is based on classic interprocedural data flow analy-
sis [HS94] and is not further described in this dissertation.

40 4.4 Determine the Initialization Values

Require: C T change type
Require: C E changed element (parameter)
Require: S0 original software
Require: T0 test to repair
Require: S1 modified software
Ensure: a list of pairs 〈v1, value〉

1: if C T ∈ {Add, T ypeChange} then
2: VarsToIni tpre← identi f yVarsUsed(C E, S1)
3: for all v1 := VarsToIni tpre do
4: Occsv1← occurrencesO f (v1, S1)
5: i← 0
6: while occv0 =⊥ and i ≤ ‖Occsv1‖ do
7: occv1← Occsv1[i]
8: occv0← cor responding(S1, S0, occv1)
9: if occv0 6=⊥ then

10: valv0← valueO f (S0, occv0)
11: end if
12: i← i+ 1
13: end while
14: resul ts← resul ts+ 〈v1, valv0〉
15: end for
16: else
17: TermsUsedpre← identi f yVarsUsed(C E, S0)
18: for all v0 := TermsUsedpre do
19: Occsv0← occurrencesO f (v0, S0)
20: i← 0
21: while occv1 =⊥ and i ≤ ‖Occsv0‖ do
22: occv0← Occsv0[i]
23: occv1← cor responding(S0, S1, occv0)
24: valv0← valueO f (S0, occv0)
25: i← i+ 1
26: end while
27: resul ts← 〈v1, valv0〉
28: end for
29: end if

Figure 4.6. The ini t i t ial izepre algorithm.

41 4.4 Determine the Initialization Values

Function cor responding: maps the occurrence of a variable in one version of
the software to the occurrence of corresponding variable in another ver-
sion of the software. Function cor responding(Sx , Sy , occax) receives as
input the occurrence occax of a term a in the version Sx of the software,
and returns the occurrence occb y of the term b that corresponds to occax

in the version Sy . The occurrence occb y substitutes occax in the operation
modified from the original to the modified version of the software. For
example, in Line 5 of Figure 4.1, variable m.centsValues corresponds to
cents. TCA prototype implements the function cor responding by com-
bining the Unix diff algorithm, the Levenshtein distance [Lev65], and the
global strings alignment algorithm [NW70]. It applies the Unix diff al-
gorithm to the two versions Sx and Sy of the method that contains occa

to identify a line l y in the version Sy that corresponds to the line lx that
contains occax in the version Sx . If the Unix diff identifies multiple coun-
terparts for line lx , TCA selects the line most similar to lx according to
the Levenshtein distance. Given lx and l y , TCA identifies occax by apply-
ing the global alignment algorithm to lx and l y and finds the term that
corresponds to occax .

Function valueO f : computes the value assigned to a variable at runtime in
a specific version of software. Function valueO f (S0, occa0) combines dy-
namic tracing and interprocedural data flow analysis to compute the value
assigned to the occurrence occa0 of a variable in the original version S0 of
the software. TCA traces the runtime values of a variable by executing an
instrumented version of the original software. If the monitored variable
is a primitive variable, the trace records all the required information, if
the variable is an object (non-primitive type), TCA recursively visits the ob-
ject graph and records the values of the primitive fields of object. In both
cases, TCA uses the recorded values to initialize the variable. This approach
works well in most of the cases, but not when the test case compares refer-
ences. In the presence of references, TCA first tries to statically determine
if there is an alias within the test case. If TCA finds the alias, TCA uses the
alias to initialize the target variable, otherwise it combines dynamic trac-
ing with interprocedural data flow analysis to identify a suitable value for
initializing the target variable.

We now discuss the case of parameter addition or parameter type change (lines
2–15). TCA first identifies the set VarsToIni tpre of the variables to be initialized
by invoking the utility function identi f yVarsUsed() with the changed element,
C E, and the modified version of the code (S2 in line 2). If the changed element (a

42 4.4 Determine the Initialization Values

modified parameter, in this case) is primitive, identi f yVarsUsed() returns the
parameter itself, if the modified parameter is an object, identi f yVarsUsed()
returns the fields used within the modified method. We identify single fields be-
cause setting the state of an object may imply initializing different object fields
through the invocation of several methods, and TCA should consider only the
object attributes used in the modified method. identi f yVarsUsed() uses the
DaTeC data flow analyzer [GAM09] to identify all the uses of the modified pa-
rameter fields, and the Soot static analyzer [VRCG+99] to filter out the fields not
accessed within the call graph of the modified method. Soot data flow analyzer
accepts fully qualified name of class under test and performs static data flow
analysis on class under test and all dependent classes.

For each variable in the set VarsToIni tpre, TCA identifies the first occurrence
that has a corresponding occurrence in the original version of the software, and
detects the runtime value of the occurrence in the original version (lines 3–15).
The main cycle (lines 3–15) loops on the variables in the set, the inner cycle
(lines 6–13) loops on the occurrences of each variable until it either finds a
correspondence in the original software (occv0 6=⊥) or there are no correspon-
dences at all (occv0 =⊥ ∧ i > ‖occsv1‖). TCA uses function valueO f () to identify
the runtime value of occv0 (line 10).

In the case of parameter removal (lines 17–28), TCA first derives the set of
variables used in the original method, TermsUsedpre, that contains the values to
use for the repair. To this end, TCA invokes the function identi f yVarsUsed()
with the changed element and the original version of the code. Then, for each
variable in the set TermsUsedpre, TCA identifies the first occurrence that has a
corresponding occurrence in the modified version of the software, and detects
the runtime value of the occurrence in the original version (lines 18–28). The
main cycle loops on the variables in the set TermsUsedpre (lines 18–28), the
inner cycle loops on the occurrences of each variable until it either finds a corre-
spondence in the modified software (occv1 6=⊥) or there are no correspondences
at all (occv1 =⊥ ∧ i > ‖occsv1‖) (lines 21–26). TCA uses function valueOf() to
identify the runtime value of occv0 (line 27).

4.4.2 Variables Following Modified Method

When the modifications of the method affect the type of the returned value, TCA
needs to change definition of the returned value of the modified method with
the new type. Moreover, TCA should adapt the uses of the value returned by the
modified method. An example is given in Figure 4.4: The modified version of
method getBalance() does not return the balance as an integer value, but as an

43 4.4 Determine the Initialization Values

object of type Money (Line 6 in Figure 4.4.2) that contains the balance as a primi-
tive field. In the modified version, method Money.getCentsValue() returns the
integer representation of the balance, i.e., the same value returned by method
BankAccount.getBalance in the original version of the software. TCA finds
method Money.getCentsValue() by extracting the methods that define field
balance using DaTeC. TCA repairs the test case of Figure 4.4 by defining a new
variable of modified returned type (mon) and initializing the second parameter
of assertEquals in line 6 with the value returned by method getCentsValue()

invoked on the object mon returned by the modified method.

Require: C E changed element (return type)
Require: S0 original software
Require: T0 test to repair
Require: S1 modified software
Ensure: a pair 〈varToIni t, inspectorSequence〉

1: varToIni t ← identi f yVarToIni t(S0, T0)
2: retTerm← identi f yReturnedVar(S0, varToIni t)
3: RetTermDe f s← de f ini t ions(S0, retTerm)
4: i← 0
5: while occv1 =⊥ and i ≤ ‖RetTermDe f s‖ do
6: occv0← RetTermDe f s[i]
7: occv1← cor responding(S0, S1, occv0)
8: if occv0 6=⊥ then
9: occv1← identi f y Inspector(T0, S1, occv0)

10: end if
11: i← i+ 1
12: end while
13: return 〈varToIni t, occv1〉

Figure 4.7. The ini t i t ial izepost algorithm.

TCA repairs the test case of Figure 4.4 in two steps: First it declares a new
variable, money in this case, of the same type of the new returned value. Then,
it replaces all the uses of the value originally returned by the modified method
with the invocation of Money.getCentsValue. In practice it replaces the occur-
rences of variable balance with money.getCentsValue. In this case the sec-
ond parameter of assertEquals in line 6 with the value returned by method
getCentsValue() invoked on the object money returned by the modified method.

Figure 4.7 shows the algorithm ini t ial izepost which identifies the initializa-
tion values for the variables used after invocation of the modified method. The

44 4.4 Determine the Initialization Values

algorithm ini t ial izepost identifies the variable varToIni t initialized with the in-
vocation of the modified method, and updates any usage of the returned variable
in the test case. For example, in Figure 4.4, ini t ial izepost identifies balance as
the variable initialized by the invocation of the modified method, then deter-
mines that Money is an encapsulator of variable balance and replaces an in-
stance of Money with definition of balance. Moreover, ini t ial izepost replaces
any usages of balance with an appropriate variable in the modified test case (in
this example ini t ial izepost only finds one usage of parameter balance in Line 4
of Figure 4.4.3).

The algorithm ini t ial izepost first identifies varToIni t by invoking the func-
tion identi f yVarToIni t() (line 1). The variable varToIni t is simply the vari-
able defined with the value returned by the modified method. The algorithm
ini t ial izepost then invokes function identi f yReturnedVar() to identify the pro-
gram variable or constant, retTerm, returned by the modified method (line 2).
Function identi f yReturnedVar() identifies retTerm by executing an instru-
mented version of the program that keeps track of the return instruction exe-
cuted during the invocation of the modified method.

The algorithm ini t ial izepost then identifies the set RetTermDe f s that con-
tains the definition of variables with the same runtime value of retTerm (line 3).
The set RetTermDe f s contains both the definition de ft of the variable retTerm
and the definitions of those variables that are simple copies of de ft , if any.

Finally ini t ial izepost scans the set RetTermDe f s following the order of oc-
currence of the elements in the call tree of the modified method (lines 5 to 12).
For each variable occurrence occv0 that belongs to RetTermDe f s, ini t ial izepost

invokes function cor responding() to identify occv1, the occurrence of a variable
that corresponds to occv0. At runtime occv1 contains the same value of retTerm.
The algorithm ini t ial izepost then invokes the function identi f y Inspector() to
find the sequence of getter methods or fields that permits to retrieve the value
of occv1 in the test. Function identi f y Inspector() analyzes the object graph
of all the objects defined in the test case to determine if such sequence exists.
The algorithm ini t ial izepost iterates these operations till it finds a variable that
can be accessed within the test case, or until all the variable occurrences in
RetTermDe f s have been inspected.

When applied to the return type example of Figure 4.4, ini t ial izepost identi-
fies the return type change of method getBalance. The algorithm ini t ial izepost

determines return type change from int to Money. The algorithm ini t ial izepost

then determines that it should change the definition of returned variable from
int to Money and assign value balance to varToIni t. Moreover, the algo-
rithm identifies all the locations of usage of the variable returned by modified

45 4.5 Repair Test Case

method. In this case, ini t ial izepost determined only on usage location of vari-
able balance in the second argument of method assertEquals (Line 4 of Fig-
ure 4.4.3) and assign it to the variable occv0 in the algorithm. The variable
balance has a corresponding variable in the modified software, balance in line
2 of Figure 4.4.2 (variable occv1 in Line 7). Since the variable balance is en-
capsulated in the class Money, ini t ial izepost looks for the corresponding field in
class Money. The corresponding field is field Money.centsValue, which can be
defined by constructor and accessed directly. Therefore, ini t ial izepost returns
pair 〈balance, mon.centsValue〉 to be used by next step which applies fixes to
the test case.

4.5 Repair Test Case

In last phase, TCA repairs the test case by first updating the variable definitions to
fix the compilation errors, then by initializing the variables with proper values.
The next paragraphs describe these activities in details.

4.5.1 Update Variable Definitions

The variable definitions are updated depending on the kind of change that
causes the compilation error. In the case of parameter addition, TCA defines
a new variable of the same type as the new parameter and modifies the method
call by adding the new value for the new argument. In the example of parameter
add in Figure 4.2, TCA repairs the compilation error by defining the new variable
days of the same type of the introduced parameter (int), and using the variable
days as argument of the modified method.

In the case of parameter type change, TCA defines a new variable of the same
type of the modified parameter and passes it to the modified method in place
of the original variable. In the example of parameter type change in Figure 4.1,
TCA defines a new variable, amount, of type Money, the type of the modified
parameter in the modified version, and passes it as the first parameter of method
deposit. TCA also removes the declaration of amount, the variable passed in the
original version, because it is not used by other method calls.

In the case of parameter removal, TCA modifies the method call by removing
the argument that corresponds to the removed parameter. For example in the
example of parameter removal in Figure 4.3, TCA removes the second argument
of method deposit, the literal EUR.

In the case of return type change, TCA defines a new variable of the same

46 4.5 Repair Test Case

type of the new return type, and assigns it the value returned by the modified
method. If the new return type is void, TCA does not define any variable, and
replaces the original invocation of the modified method with a new variable.

4.5.2 Initialize New Variables

TCA initializes the introduced or modified variables in the test case in two dif-
ferent ways. In the case of parameter additions, parameters removal, and pa-
rameter type change, TCA changes the initialization of the variables in VarsTo-
Ini tprebefore the invocation of the modified method. In the case of return type
change TCA changes the initialization of the variable initialized with the value
returned by the modified method.

The variables in VarsToIni tpre can be primitive arguments of the method, or
fields belonging to objects declared in the test case. TCA initializes the primitive
arguments by simply assigning the values as computed in the phase "Determine
the initialization Values" by the algorithm ini t ial izepre. For instance in the ex-
ample parameter add, TCA assigns the value 365 to the variable days, the new
argument of the modified method.

If the fields to initialize belong to objects declared in the test case, TCA dis-
tinguishes between objects initialized in the original test and objects added by
TCA that need to be initialized. If the fields to initialize belong to an object al-
ready defined in the test case, TCA initializes the public fields by assigning the
values computed by ini t ial izepre and the private ones by invoking the corre-
sponding setter methods. If a field does not have an associated setter method,
TCA initializes the field by means of reflection [FF04].

Let us consider the problem of initializing the field Money.currency in the
example of parameter removal in Figure 4.3.3. The object money passed to the
method deposit is already defined before the invocation of method deposit,
and is referenced by variable amount. TCA initializes the field amount.currency

by invoking method amount.setCurrency (Figure 4.3.4). TCA uses the literal
EUR as argument of method setCurrency because this is the value returned by
ini t ial izepre.

If the fields to initialize belong to an object declared by TCA, TCA first in-
stantiates the object by using the constructor that initializes most of these fields,
then initializes the remaining fields as described in the previous paragraph. TCA
sets the value of each parameter p of the constructor, as follow. If p initializes
a field f that belongs to VarsToIni tpre, TCA uses the value returned by func-
tion ini t ial izepre as the value to be passed as an argument. If p is not used to
initialize a term in VarsToIni tpre, or if the function ini t ial izepre is not defined

47 4.5 Repair Test Case

for field f , TCA uses a default value2. The example parameter type change in
Figure 4.1 shows how TCA initializes a field of a newly introduced object. In this
example TCA must initialize money.centsValue, a field of the first parameter of
the modified method. Since the variable money has not been initialized in the
test case, TCA identifies the constructor Money(int value) to initialize the field
centsValue.

In the case of changes in the return type of a method m, TCA initializes the
variable that uses the value returned by m with the value identified by func-
tion ini t ial izepost . For instance, the test case of the example return type change
in Figure 4.4 does not compile after the change of the return type of method
getBalance. Figure 4.4.4 shows the repair performed by TCA that defines the
new variable money of type Money, the type returned by the modified method,
and assigns the value returned by the modified method to the variable money.
Then TCA initializes the second argument of assertEquals in line 4 of Fig-
ure 4.4.4 with the value money.getCentsValue() returned by ini t ial izepost .

2In the current prototype, TCA uses the following default values: 0 for numeric types, the
empty string for strings, and null for objects.

48 4.5 Repair Test Case

Chapter 5

Test Suite Adaptation

This chapter details the algorithms that automate the Test Reuse Patterns for
testing new functionality: extension of class hierarchies, implementation of in-
terfaces, introduction of overloading and overriding methods.

We first provide an example of a complex test case that can not be easily
generated by test generation tools. Then we detail our algorithm that adapts
test cases for evolving software.

5.1 Motivating Example

When developers add a new class to extend the functionality of a software sys-
tem, they need to also write new test cases. To write the test cases for the new
class, often developers reuse test cases already available for similar elements,
like sibling classes, that share some of functionality of the new class.

Classes belonging to the same hierarchy share common interfaces and behav-
iors, and differ only for some of the offered functionality. Software developers
take advantage of these characteristics to develop test cases that often share the
setup actions, for example the objects under tests are built by passing the same
parameters, present same invocation sequences, and use oracles that inspect the
same output values, but expect different results.

Figure 5.1 shows a test case for the class CopticChronology of the JodaTime
library. In the version 1.2, revision 911, of the Jodatime library, developers
added a class EthiopicChronology to the hierarchy of class BasicFixedMonth-
Chronology as a sibling of class CopticChronology. TCA can reuse the test case
for the class CopticChronology shown in Figure 5.1 to automatically generate
the test case for the class EthiopicChronology shown in Figure 5.2. The test
case iterates over all the days in the range 0 AC - 3000 AC, converts the day

49

50 5.1 Motivating Example

48 private static final Chronology COPTIC_UTC =
 CopticChronology.getInstanceUTC();
305 DateTime epoch = new DateTime(1, 1, 1, 0, 0, 0, 0, COPTIC_UTC);
306 long millis = epoch.getMillis();
307 long end = new DateTime(3000, 1, 1, 0, 0, 0, 0, ISO_UTC).getMillis();
 [..]
311 DateTimeField monthOfYear = COPTIC_UTC.monthOfYear();
 [..]
 while (millis < end) {
 [..]
324 int monthValue = monthOfYear.get(millis);
 [..]
328 if (monthValue < 1 || monthValue > 13)
329 fail("Bad month: " + millis);
 // test era
 [..]
334 assertEquals("AM", era.getAsText(millis));
 [..]
 // test leap year
342 assertEquals(yearValue % 4 == 3, year.isLeap(millis));

Figure 5.1. A test case written by developers for class CopticChronology

representation from the ISO calendar to the Ethiopic calendar, then checks if the
conversion is correct. This is a valid test case for the class EthiopicChronology
that properly combines different objects and methods. TCA derives the value
of the ethiopian month by retrieving the DateTimeField object that holds the
month value (monthOfYear in line 307) from a Chronology object configured
using an instance of class EthiopicChronology (epoch in line 301). The DateTimeField
object gives the month in the Ethiopic Chronology that corresponds to a given
timestamp (this conversion is done by invoking method get, line 320). Proper
checks must be added, for example for the values of months and leap years (lines
324 and 342).

Notice that a test case with random invocations of methods of class Ethiopic
Chronology would not be meaningful as the one generated by TCA. TCA can
derive a lot of the domain information required to build good test cases from
existing test cases, while competing techniques cannot.

51 5.2 Overview of Test Adaptation Process

 private static fnal Chronology ETHIOPIC_UTC =
 EthiopicChronology.getInstanceUTC();
 DateTime epoch = new DateTime(1, 1, 1, 0, 0, 0, 0, ETHIOPIC_UTC);
 long millis = epoch.getMillis();
 long end = new DateTime(3000, 1, 1, 0, 0, 0, 0, ISO_UTC).getMillis();
 [..]
 DateTimeField monthOfYear = ETHIOPIC_UTC.monthOfYear();
 assertEquals(EthiopicChronology.EE, epoch.getEra());
 [..]
 while (millis < end) {
 [..]
 int monthValue = monthOfYear.get(millis);
 [..]
 if (monthValue < 1 || monthValue > 13)
 fail("Bad month: " + millis);
 [..]
 assertEquals("EE", era.getAsText(millis));
 [..]
 // test leap year
 assertEquals(yearValue % 4 == 3, year.isLeap(millis));

 48

301
302
303

307
308

316

320

324
325

330

341
342

Figure 5.2. A test case for class EthiopicChronology that TCA generated by
adapting a test case of class CopticChronology.

5.2 Overview of Test Adaptation Process

The test adaptation process can generate test cases for a new class that extends
a hierarchy of classes, for a new class that implements an interface, for a new
method that overloads or overrides another method. In this section we use
the term element under test to indicate the class or the method that has been
recently added. To generate test cases for the element under test, TCA looks for
code elements that are similar to the element under test, copies, and adapts the
test cases of the similar elements to generate test cases for the new element.
Figure 5.3 illustrates the three main steps of the adaptation process:

1. Identify and Copy Candidate Test Cases: TCA inspects the source code of
the original software to identify code elements, either methods or classes,
that are similar to the element under test. TCA then identifies the candidate
test cases, i.e., the test cases that can be used to generate test cases for the
element under test. The candidate test cases are all the test cases written
to test the elements similar to the element under test.

2. Adapt Candidate Test Cases: Since candidate test cases are not written

52 5.3 Identify and Copy Candidate Test Cases

for the new element, most of them are not directly applicable to test the
new element, for example, they may suffer from compilation errors. In
this step, TCA adapts the test cases to the element under test by:

(a) Updating references to the new element

(b) Resolving compilation errors

(c) Adapting the oracle of the test cases

(d) Repairing runtime failures

3. Remove Redundant Test Cases: TCA removes redundant and unusable
test cases. TCA uses instruction coverage as a measure of removing redun-
dant test cases.

TCA follows this process for all the Test Reuse Patterns presented in this chap-
ter. In Sections 5.3 and 5.4, we detail the first two steps that are specific for each
pattern, while in Section 5.5 we present step 3.

5.3 Identify and Copy Candidate Test Cases

When a new element is added to a software system, TCA looks for candidate test
cases that can be adapted for the new element. TCA analyzes the source code to
identify the elements related to the element under test, and identifies the test
cases for the related elements. For example, if the new element is a new class
added to a hierarchy of classes, TCA identifies the sibling and sub-sibling classes
as the related elements, and considers the test cases written for these elements
as candidate test cases. Below we describe the process to identify the related
elements and select the candidate test cases for each Test Reuse Pattern:

5.3.1 Classes Added to a Hierarchy

When a new class is added to a hierarchy of classes, TCA automatically identi-
fies the related elements as the classes in the same hierarchy of the new class,
and selects all the test cases of these classes. The rationale behind this choice
is that the classes in a hierarchy might share a common behavior, thus their test
cases can be used to generate new test cases for the classes in the hierarchy. Fig-
ures 5.4 and 5.5 show the algorithms that identify and rank the best candidate
classes.

53 5.3 Identify and Copy Candidate Test Cases

Identify and copy candidate test cases

Adapt compilation errors

Adapt undefined fields/constants

Adapt missing constructors

Adapt missing methods

NewElement

Remove redundant tests

Candidate test cases

Classes TestCases

Test cases for new element

Test cases without compilation error

Test cases without oracle failure

Candidate test cases

STEP 1

STEP 2

STEP 3

Repair runtime failures

Adapt oracles

Update references to new element

Test cases with references to new element

Identify similar code elements

Identify corresponding test cases

Copy corresponding test cases

Figure 5.3. The process that generates test cases for new elements

The algorithm to generate candidate test cases shown in Figure 5.4 accepts
the source code of the software system, S, the source code of the test cases, T ,
and the class under test, CU T , as input, and returns a list of candidate classes in
the project workspace. The algorithm starts by identifying all the sibling and sub
sibling classes of the class under test. If the class does not have any associated
test case, TCA ignores that class. The method identi f yAl lSibl ingAndSubsibl ing
Classes in Line 1 extracts the parent classes1 of CU T and returns all the classes
in the hierarchy of the parent class (except the CU T itself). Once TCA has iden-
tified the candidate classes, it computes a similarity score for all the classes

1TCA recursively traverses the hierarchy of CU T up to the Object class in Java

54 5.3 Identify and Copy Candidate Test Cases

Require: S software code
Require: T test code
Require: CU T Class Under Test
Ensure: newCandidateTestC lasses a List of New Candidate Test Classes

1: candidateC lasses← identi f yAl lSibl ingAndSubsibl ingClasses(CU T)
2: Map < class, score > classesWithScore
3: for all class in candidateC lasses do
4: if hasTestClass(class,T) then
5: classesWithScore+← calculateSimilari t yScore(class, CU T)
6: end if
7: end for
8: candidateC lasses← Sor ter.sor t(classesWithScore)
9: for all class in candidateC lasses do

10: TestC lass← ex t ractTestC lass(class)
11: newTestC lass ← createC lassWithName(CU T.getName() + “Using”+

TestC lass.getName(), TestC lass)
12: newCandidateTestC lasses.add(newTestC lass)
13: end for
14: return newCandidateTestClasses

Figure 5.4. The algorithm that Identifies and selects the candidate test cases
for a New Class

and ranks them based on their scores. The tests of the classes are prioritized
according to the score of the related class (Lines 3-8). The algorithm to calcu-
late the score (method calculateSimilari t yScore in Line 5) is shown in Fig-
ure 5.5. TCA stores the classes and their scores in variable classesWithScore
(Line 8). TCA then extracts the test cases of each candidate class using the
method ex t ractTestC lass. This method identifies the class that contains the
test cases for a given class passed as input. The method ex t ractTestC lass
identifies the test classes using a heuristic based on the common naming of
Java test classes whose name contains the term "Test" either followed or pro-
ceeded by the name of the class under test. When looking for the test of a
class A, ex t ractTestC lass looks for a class named TestA or ATest. Next, TCA
copies and renames the candidate test classes (lines 9-12). TCA renames each
candidateTestC lass as follows:

<CUT>Using<TestClass>

55 5.3 Identify and Copy Candidate Test Cases

Require: CU T Class Under Test
Require: SimilarClass
Ensure: an integer specifying similarity of class and CU T

1: NumberO f SameF ields← 0
2: NumberO f SameMethods← 0
3: for all f ield in class.getF ields() do
4: for all cutF ield in CU T.getF ields() do
5: if field.getName() == cutField.getName() then
6: NumberO f SameF ields++
7: end if
8: end for
9: end for

10: for all method in class.getMethods() do
11: for all cutMethod in CU T.getMethods() do
12: if method.getName() == cutMethod.getName() then
13: NumberO f SameMethods++
14: end if
15: end for
16: end for
17: return NumberO f SameF ields+NumberO f SameMethods

Figure 5.5. The algorithm that computes class similarity

For example, Figure 3.4 shows the hierarchy of the class EthiopicChronol
og y . To generate test cases for the class EthiopicChronolog y , TCA selects the
test cases of the classes CopticChronology and IslamicChronology as candi-
date test cases (the classes BasicFixedMonthChronology and BasicChronology

are abstract and do not have any test case). TCA copies and renames the candi-
date test cases to prevent classpath conflicts. For instance, TCA generates a test
class with the name EthiopicChronologyUsingCopticChronologyTest that is
an exact copy of CopticChronologyTest.

The similarity of classes is calculated using the method calculateSimilari t y
Score that is shown in Figure 5.5. The algorithm requires two classes as in-
put and returns an integer value which quantifies the similarity of class and
CU T . The algorithm calculates the similarities between two classes as the num-
ber of fields and methods with the same name. The steps in lines 3-9 calcu-
late the similarity score for the fields of the two classes, and store them in
the variable NumberO f SameF ields. The steps in lines 10-16 calculate the
similarity score for the methods of the classes, and store them in the variable

56 5.3 Identify and Copy Candidate Test Cases

NumberO f SameMethods. Finally, the algorithm returns the similarity score.

5.3.2 Interface Implementations

To generate test cases for a new class that implements an interface, TCA follows
same algorithms depicted in Figures 5.4 and 5.5 with the difference that in Line
1 of Figure 5.4, TCA calls the method identi f y Inter f aceImplementations in-
stead of identi f yAl lSibil ingAndSubSibl ings. The method identi f y Inter f ace
Implementations identifies the classes that implement the same interface of the
new class and consider them as candidate classes. To this end, TCA extracts the
fully qualified names of the interfaces declared by new element, and traverses
all the classes to find classes implementing the same interfaces. Then, for each
of the similar elements, TCA identifies their test cases and copy them as test cases
of the new element. TCA renames each test class as follows:

<ClassUnderTest>Using<TestClassToAdapt>

where<ClassUnderTest> is the name of the class to test, and<TestClassToAdapt>
is the name of the test class that is copied.

5.3.3 Overloaded Methods

An overloaded method is a method that shares the name with other methods but
has different parameters. TCA generates test cases for a new overloaded method
following the algorithm shown in Figure 5.6. The algorithm requires the source
code of the software system, S, the source code of the test cases, T , and the
method under test, MU T as inputs, and returns a list of candidate test classes.
Candidate test classes contain the test cases that can be used to test the new
overloaded method.

The algorithm starts by identifying the overloaded methods, overloaded
Methods, by calling method identi f yOverloadedMethods in Line 1. The
method identi f yOverloadedMethods invokes the function identi f yAl lSibl
ingAndSubsibl ing to identify the classes in the same hierarchy of the modi-
fied class, then identifies all the methods with the same name of the MUT and
appends them to the list of overloaded methods.

For each overloaded method, TCA identifies all the test classes that test the
overloaded method by calling ex t ractTestC lasses (Line 4). The method ex t ract
TestC lasses returns all the test cases that invoke MU T in the test suite of the
project. The method ex t ractTestC lasses receives as input a method m and re-
turns a set of test cases that cover this method. The method ex t ractTestC lasses

57 5.3 Identify and Copy Candidate Test Cases

Require: S software code
Require: T test code
Require: MU T New Overloaded Method
Ensure: newCandidateTestC lasses a List of New Candidate Test Classes

1: overloadedMethods← identi f yOverloadedMethods(MU T)
2: for all method in overloadedMethods do
3: if hasTestMethod(method) then
4: testC lasses← ex t ractTestC lasses(method)
5: for all testC lass in testC lasses do
6: newTestC lass ← createTestC lass(“testOverload_” +

MU T.getC lass().getName()+MU T.getSignature()+“_Using_”+
testC lass.getName() + “_”+method.getSignature(), testC lass)

7: newCandidateTestC lasses.add(newTestC lass)
8: end for
9: end if

10: end for
11: return newCandidateTestC lasses

Figure 5.6. The algorithm that Identifies and selects candidate test cases for
Overloaded Methods

simply returns all the test cases that contain at least one invocation of the
method m.

Next, the algorithm iterates over all the test classes and generates new test
classes by calling the method createTestC lass (Line 6). For all the candidate
test methods that belong to the same test class, TCA copies the test methods
and the accompanying setUp and tearDown methods as a test class for the new
overloaded method. TCA names the test classes as follows:

testOverload_< ClassUnderTest > _< Signatureo f MU T >

Using< UsedTestC lass > _< Signatureo f OverloadedMethod >

Where ClassUnderTest is the class of new method, Signatureo f MU T is
the signature of the new method, UsedTestC lass is the test class that contains
the tests for testing the overloaded method, Signatureo f OverloadedMethod
is the signature of the overloaded method. TCA stores the references to the newly
generated test classes in newCandidateTestC lasses.

58 5.3 Identify and Copy Candidate Test Cases

5.3.4 Overridden Methods

An overridden method is a new method with the same signature of a method de-
fined in a parent class. TCA generates test cases for a new overridden method by
reusing the test cases of the base methods2 from parent class. More specifically,
TCA extracts the signature of the new overridden method and looks for methods
with the same signature in the parent class. If TCA finds some base methods in
the parent class, it looks for the test cases for the base methods, and consider
them as candidate test cases. The algorithm is shown in Figure 5.7.

Require: S software code
Require: T test code
Require: MU T New Overridden Method
Ensure: newCandidateTestC lasses a List of New Candidate Test Classes

1: over riddenMethods← identi f yOver riddenMethods(MU T)
2: for all method in over riddenMethods do
3: if hasTestMethod(method) then
4: testC lasses← ex t ractTestC lasses(method)
5: for all testC lass in testC lasses do
6: newTestC lass ← createTestC lass(“testOver ride_” +

MU T.getC lass().getName() + method.getSignature() +
“_Using_”++method.getSignature(), testC lass)

7: newCandidateTestC lasses.add(newTestC lass)
8: end for
9: end if

10: end for
11: return newCandidateTestC lasses

Figure 5.7. The algorithm that identifies and selects the candidate test cases
for overridden methods

The algorithm first identifies overridden methods, over riddenMethods, by
calling method identi f yOver riddenMethods in Line 1. For each overridden
method, TCA calls ex t ractTestC lasses to extract the test classes associated with
the method (Line 4). Method ex t ractTestC lasses returns all the test cases
that invoke MU T in the project’s test suite. To extract the test cases, the algo-
rithm extracts test cases that invoke MU T at least once. Next, the algorithm
iterates over all test classes and generates new test classes by calling method
createTestC lass as it is shown in Line 6. For all candidate test methods that

2A base method is a method with the same signature of the new method in parent class

59 5.4 Adapt Candidate Test Cases

belong to the same test class, TCA copies test methods and accompanying setUp

and tearDown methods as a test class for new overridden method. TCA creates
candidate test cases to avoid conflict in the project using the following pattern:

testOver ride_< ClassUnderTest > _< Signatureo f MU T >

Using< UsedTestC lass > _< Signatureo f Over r riddenMethod >

ClassUnderTest is the class of MU T , Signatureo f MU T is the signature of
the new method, UsedTestC lass is the test class that contains the test for the
overridden method, Signatureo f Over riddenMethod is the signature of the
overridden method. Finally, TCA stores the references to newly generated test
classes in newCandidateTestC lasses.

5.4 Adapt Candidate Test Cases

With this step, TCA adapts the candidate test cases identified in the previous step
to test the new elements. For each candidate test case, TCA first updates all the
references to the element under test, then solves compatibility issues raised by
compilation errors, adapts the oracle of the test cases, and finally repairs runtime
failures raised while running the test cases.

5.4.1 Update References to New Element

TCA looks for all the references to the old element in the candidate test cases
and replaces them with the new element. Moreover, TCA imports the package
definitions required by each candidate test class.

For example, when applied to the test case for class EthiopicChronology

shown in Figure 5.2, TCA updates all the occurrences of the term CopticChrono

logy with the term EthiopicChronology. To improve the readability of the
new test cases, TCA updates also all the variable names that contain portions of
the names of the original class under test with portions of the name of the new
class under test (we split names according to the Java camel case convention).
In the example of Figure 5.2 TCA replaces COPTIC_UTC in lines 48 and 307 with
ETHIOPIC_UTC. TCA identifies the class under test using a simple heuristic based
on the standard naming of JUnit test cases for Java, i.e., it assumes that the name
of a test class is prefixed or followed by the keyword “Test”, and thus identifies

60 5.4 Adapt Candidate Test Cases

the class under test by removing the prefix/suffix “Test” from the name of the
candidate test class.

5.4.2 Adapt Compilation Errors

The generated test cases may lead to compilation errors because of undefined
fields, constants, constructors, or methods. TCA fixes these compilation errors by
applying the algorithms described in this section. According to our experience,
other types of compilation errors are not frequent in candidate test cases, thus,
TCA comments all other types of compilation errors. In the following subsections,
we describe how TCA addresses each incompatibility.

Adapt Undefined Fields and Constants

Test cases often contain references to constants or fields declared in the classes
under tests. TCA updates references to the constants and fields of the original
class under test by replacing them with references to the corresponding con-
stants and fields declared in the class under test. TCA identifies the corresponding
fields and constants by applying the algorithm cor responding(Sx , Sy , occax) to
find the corresponding terms as discussed in Section 4.4. For example, to adapt
the test case of Figure 5.2, TCA replaces the references to CopticChronology.AM

with references to EthiopicChronology.EE (see line 308), the corresponding
constants used to indicate the default era. Both calendars present a constant that
indicates the default era, but the name of this constant is different, because each
calendar uses a specific term to indicate era, AM stands for “Anno Martyrum”
while EE stands for “Ethiopian Era”.

Adapt Undefined Constructors

Candidate test cases may suffer from compilation errors due to undefined con-
structors. TCA finds corresponding constructors in the new element and adapts
the parameters for the new constructor.

Figure 5.9 shows the algorithm F indSimilarConst ructor that accepts two
arguments, the incompatible constructors of the similar class, consSimilarClass,
and the class under test, CU T , and returns the signature of the most similar
constructor belonging to CU T . First, the algorithm extracts the compatible con-
structors of CU T in Line 2 by calling the method f indCompatibleConst ructor
so f C lass. Since constructors that are present in the subclasses of CU T are also
compatible with the class instantiation, the method f indCompatibleConst ruct

61 5.4 Adapt Candidate Test Cases

orso f C lass finds the constructors that are present both in CU T and in its sub-
classes by exploring the project under test. Once TCA identified the candi-
date constructors, TCA calculates the similarity of each constructor with consSi
milarClass. Figure 5.10 details the method calculateSimilari t yScore in Line 4.
Next, the algorithm sorts the candidate constructors based on their similarity
scores (Line 6) and returns the most similar constructor.

The method calculateSimilari t yScore (shown in Figure 5.10) receives two
inputs: the constructors of the new class, const ructorNewClass, and the con-
structor of the similar class, const ructorSimilarClass. calculateSimilari t yScore
returns an integer value that quantifies the similarity of the two constructors
(Lines 4-6 and 7-9). The method isCompatible in Line 7 returns a boolean
value that indicates the compatibility of the parameter types of the two con-
structors. The compatibility condition indicates if the parameter of the similar
constructor can be replaced with the parameter of the new constructor. The al-
gorithm extracts all the subtypes and the implementing types of the parameter
in the new constructor, and considers the parameter of the similar constructor
as compatible only if the type of this parameter belongs also to the extracted
subtypes.

Figure 5.8 shows the excerpt of a test case for the class SVGOutput of Bar-
becue v1.5 that TCA generated by adapting the test cases for the class Graphics
Output. The constructor of the class GraphicsOutput used in the candidate test
case receives four objects of the following types Graphics2D, Font, Color and
Color. Class SVGOutput does not provide a constructor that receives the same
input types, thus the candidate test case causes a compilation error.

b)

a)

g = new GraphicsMock();
output = new SVGOutput(
 g,
 DefaultEnvironment.DEFAULT_FONT,
 fgColour, bgColour);
output = new SVGOutput(
 new JavadocEscapeWriter(EasyMock.createMock(Writer)),
 DefaultEnvironment.DEFAULT_FONT,
 fgColour, bgColour,
 0, "");

Figure 5.8. An example of constructor call adaptation.

To repair these errors, TCA replaces the original constructor calls with the
constructor of the class under test that is the most similar to the replaced con-

62 5.4 Adapt Candidate Test Cases

structor. TCA selects the constructor with the highest rank according to the
method calculateSimilarityScore described in Figure 5.10.

Require: consSimilarClass incompatible constructor of similar class
Require: CU T Class Under Test
Ensure: most similar constructor in Class Under Test

1: Map < const ructor, score > consScore
2: const ructors = f indCompatibleConst ructorso f C lass(CU T)
3: for all cons in const ructors do
4: consScore+← calculateSimilari t yScore(consSimilarClass, cons)
5: end for
6: candidateConst ructors← Sor ter.sor t(consScore)
7: return candidateConst ructors[0]

Figure 5.9. Algorithm to Find Similar Constructor

Require: const ructorSimilarClass constructor of similar class
Require: const ructorNewClass constructor of Class Under Test
Ensure: score similarity of two constructors

1: socre← 0
2: for all parSimilar in const ructorSimilarClass.getParameters() do
3: for all parNew in const ructorNewClass.getParameters() do
4: if parSimilar.getName() == parNew.getName() then
5: Score++
6: end if
7: if isCompatible(parSimilar.getT ype(), parNew.getT ype()) then
8: Score++
9: end if

10: end for
11: end for
12: return score

Figure 5.10. Algorithm to Calculate Similarity of Constructors

After finding a similar constructor, TCA looks for parameters shared by the
constructor used in the original test and the similar constructor. The matching is
done by iteratively looking for parameters of the two constructors with the same
type or name, with priority to the types. TCA reuses the compatible parameters
of the original test case by positioning them properly in the new constructor call.

63 5.4 Adapt Candidate Test Cases

In the case of mismatching parameters, TCA generates input values as follow.
If the parameter is primitive TCA uses some default values: “0” for numeric types
and bytes, the space character for the char type, the empty string for type String,
and an array with a default element for type array. If the required parameter is
an object, TCA uses either some constants of that type, or some factory methods
that return an object of that type. If none is found, TCA invokes a constructor
of the required type3. If the constructor requires object parameters, TCA creates
suitable stubs. Our Java implementation uses Easymock4. Figure 5.8.b shows
how TCA creates the first parameter of the SVGOutput constructor, which is of
type Writer: TCA invokes the constructor of the class JavadocEscapeWriter5,
with a stub created using Easymock.

Adapt Undefined Method

Sometimes method invocations cause compilation errors in candidate test cases.
When TCA identifies a call to a non-existing method, it looks for a similar method
in the class under test. It finds the most similar method by considering the
signatures of all the methods declared in the class under test. Once TCA identifies
the most similar method, TCA replaces the invocation of the original method with
the new one following the same steps adopted in the case of constructors: It adds
reusable parameters, and then looks for new parameters.

Figure 5.11 shows the algorithm f indSimilarMethod that finds the most
suitable method when either a parameter mismatch or an undefined method com-
pilation error occurs. The algorithm requires two inputs: the method signatures
of the similar class and of the class under test. The algorithm f indSimilarMethod
returns the most similar method in class under test. First, the algorithm finds
the public and protected methods of the class under test in Line 2, by calling
method f indPublicMethodso f C lass. The algorithm selects all the methods
with public and protected declaration, and returns them as result. Then, the
algorithm iterates over extracted methods and calculates the similarity score of
each method by calling calculateSimilari t yScore (described in Figure 5.10)
and stores them in a Map data structure called methScore (Lines 3-5). Next the
algorithm sorts the methods based on their scores (in Line 6).

In some cases, a class may have a method with the same goal but a differ-
ent name. To handle this situation the similarity score is calculated on the basis

3In the case of interfaces, it randomly picks up a constructor of the class that implements the
interface

4http://www.easymock.org/
5Class JavadocEscapeWriter implements interface Writer

64 5.4 Adapt Candidate Test Cases

of both the method name and the parameter types. TCA considers the fact that
methods belong to the same class may present different names but same goal,
for example method ini t ial ize(int) may have the same meaning of method
ini t(int). The algorithm computes the similarity score by calculating the av-
erage Levenshtein distance of the candidate methods with methSimilarClass.
The method getAverageLevenshteinDistance calculates the average Leven-
shtein distance, aveLD, based on the classic Levenshtein distance algorithm
[Lev65]. TCA starts from the most similar methods of the class under test and
returns the first method that has a smaller Levenshtein distance than aveLD
(Lines 7-12). In this way, TCA considers also the name of the methods to extract
the most similar one. For example, in Figure 5.12 the method yearsBetween

raises an undefined method compilation error since it is copied from the test
suite of the class Seconds. This test case has been generated by adapting the
test testFactory_yearsBetween_RInstant defined in class TestYears, which
tests class Years. The method that calculates the difference in terms of years be-
tween two dates, yearsBetween(DateTime,DateTime), declared in class Year,
is no longer present in class Seconds, the class under test. Class Seconds instead
implements the method secondsBetween(DateTime,DateTime) that calculates
the seconds between two dates. Since the goal of the test is to evaluate the
proper implementation of the diff functionality, the method secondsBetween

can be considered a suitable replacement candidate for the method yearsBetween

in the test for class Seconds. The Levenshtein distance between the names of
these two classes are less than the one of other methods, and so TCA selects this
method as the most similar one. If no method is found in Lines 7-12, TCA returns
the first item in the list of sorted candidate methods.

5.4.3 Adapt Oracles

Even if the candidate test cases are free from compilation errors at this stage,
some of them may present runtime errors. The generated test cases could be
affected by two kinds of execution problems: assertion failures and runtime
exceptions.

In case of failing assertions, TCA repairs the failure by adapting the assertion
to expect the actual behavior of the test case. To this end, TCA uses a state-of-
the-art tool called ReAssert that repairs oracles by modifying expected part of
the assertions.

To repair a single failure in a test, ReAssert first instruments the test classes
to record the values of the method arguments for the failing assertions. It then
re-executes the test and catches the failure exception that contains both the stack

65 5.4 Adapt Candidate Test Cases

Require: methSimilarClass incompatible method of similar class
Require: CU T Class Under Test
Ensure: most similar method in Class Under Test

1: Map < method, score > methScore
2: methods = f indPublicMethodso f C lass(CU T)
3: for all meth in methods do
4: methScore.put ← calculateSimilari t yScore(methSimilarClass, meth)
5: end for
6: candidates← Sor ter.sor tMethod(methScore)
7: aveLD = getAverageLevenshteinDistance(candidates, methSimilarClass)

8: for all meth in candidates do
9: if levenshteinDistance(meth.getName(), methSimilarClass)< aveLD

then
10: return meth
11: end if
12: end for
13: return candidates[0]

Figure 5.11. Algorithm to Find Similar Method

trace and the recorded values. It next traverses the stack trace to find the code to
repair and examines the structure of the code and the recorded values to change
the code properly. It finally recompiles the code changes and repeats these steps
if the test has another failure.

5.4.4 Repair Runtime Failures

Test cases that throw an exception are a special case of failing test cases. Ex-
ceptions may indicate an error in the implementation of the class, wrong test
inputs, or an invalid test case setup. Existing techniques like Randoop [PLEB07]
exclude test cases raising exception, however these test cases might exercise
faulty behaviors that should thus be inspected by software developers. When
the test case execution raises an exception, we rely on inspection by the devel-
opers to determine if the test cases should be removed or kept because they may
pinpoint a fault.

66 5.5 Removing Redundant Test Cases

DateTime start = new DateTime(2006, 6, 9, 12, 0, 0, 0, PARIS);
DateTime end1 = new DateTime(2009, 6, 9, 12, 0, 0, 0, PARIS);
assertEquals(3, Seconds.yearsBetween(start, end1).getYears());

DateTime start = new DateTime(2006, 6, 9, 12, 0, 0, 0, PARIS);
DateTime end1 = new DateTime(2009, 6, 9, 12, 0, 0, 0, PARIS);
assertEquals(3, Seconds.secondsBetween(start, end1).getSeconds());

Figure 5.12. An example of method invocations repair. TCA repairs the compi-
lation error caused by the invocation of method yearsBetween by invoking the
corresponding method, secondsBetween.

5.5 Removing Redundant Test Cases

TCA generates test cases reusing test cases written for different classes, thus
multiple test cases might cover the same software behavior. To prune duplicate
test cases, TCA adopts a simple heuristic that consists of executing the test cases
and measuring the instructions covered during execution6. TCA discards the
test cases that do not increase the instruction coverage, i.e., that do not cover
instructions not already covered.

TCA picks all the test cases generated for a specific element. Then, TCA ex-
ecutes each test case and records the instructions covered by test case on the
element under test. When TCA executes another test case, TCA compares the in-
struction covered by new test case with recorded instructions already covered.
If new test case is covering new instructions, TCA keeps new test case otherwise
ignores it. TCA performs this process for all the generated test cases and shows
the final results to the developers.

6The current prototype uses EclEmma, www.eclemma.org

Chapter 6

Prototype Implementation

To evaluate the effectiveness of our approach we developed a prototype imple-
mentation called also TestCareAssistant (TCA). The prototype is implemented as
an Eclipse plug-in that applies our technique to both repair a compilation error
in a test case and generate a test case for a new class or method. This chap-
ter provides some details of the design and the implementation of this eclipse
plug-in.

TCA extends the eclipse interface by adding a contextual menu to the project
explorer in Eclipse IDE, as shown in the screenshots presented in Figure 6.1.

In the next two sections, we presents the implementation details of the
"change of method declaration" Test Reuse Pattern and the other Test Reuse Pat-
terns.

6.1 The Test Repair Toolsuite

The test repair tool suite implements the "change of method declaration" Test
Reuse Pattern. The toolsuite takes as input the source code of the original and
the modified software and a set of test cases for the original software that suffer
from compilation errors caused by the changes, and repairs the broken test cases
for the modified software.

TCA works in two different scenarios:

1. The developer selects TCA by invoking the regular Eclipse quick assistant
function (ctrl+1) to see the suggestion proposed by TCA and apply TCA to
the broken test case. Figure 6.2 shows a suggestion proposed by TCA for
repairing a compilation error of a test case.

67

68 6.1 The Test Repair Toolsuite

Figure 6.1. A screenshopt of the TCA Eclipse plugin

2. The developer selects the TCA repair context menu by right clicking on
a set of test cases affected by compilation errors (can be a test class, a
package, or a folder containing packages). TCA then examines each single
compilation error, and, if it finds any repair, it corrects the broken test case.
Then the developer can inspect the repairs proposed by TCA.

Figure 6.2. TCA Test Repair Screenshot

Figure 6.3 shows an overview of the architecture of the test repair tool suite.
The figure shows the components, the external libraries and their dependencies.

69 6.1 The Test Repair Toolsuite

The Eclipse UI is a component of Eclipse that handles the developer interaction.
In fact, the Eclipse UI component delivers the change information that includes
the source code of the original and the modified software and the obsolete test
case to the Change Analyzer component.

The Change analyzer component detects the type of change in the method
signature. Change analyzer uses JDiff, as explained in details later in this Chap-
ter, to extract the types of change that are parameter type change, return type
change, parameter addition, and parameter removal. Corresponding Variable
Finder finds the initialization variables that are required to repair the test case
using Soot and DaTeC (these two components are described later in this Chap-
ter).

Dynamic Inspector finds the values for initializing the variables using Soot
Instrumentor and Junit Runner. Soot Instrumentor augments the byte code of
the test case to record the values of specific variables at a given location. Junit
Runner runs the instrumented test case and dumps the values of the variables
in an external file. Test Repair Generator produces the suggested test repair that
will be inserted into the test code.

Eclipse UI

DatecSoot

Corresponding
Variable Finder

JDiff

Soot
Instrumentor

Junit
 Runner

Test Repair
Generator

Dynamic
Inspector

API API

API

Legend

API

Component

Library

API API

Change Analyzer

Figure 6.3. The architecture of TCA Test Repair

The prototype tool uses three third party open-source components to per-
form background operations: JDiff1, a Java source code differencing tool, DaTeC
[GAM09], an interprocedural data flow analysis tool, and Soot [VRCG+99, GH01],
a static data flow analyzer:

JDiff: identifies the differences between two APIs, and indicates all the pack-
ages, classes, constructors, methods, and fields that have been removed,

1http://www.jdiff.org/

70 6.2 The Test Evolution Toolsuite

added, or changed. TCA uses the changes related to method and field dec-
larations. The changes identified with JDiff allow TCA to detect the type of
changes. JDiff is unable to find the corresponding line in original version
of the software, thus TCA uses the Needleman-Wunsch algorithm [NW70],
which performs a global alignment on the body of the original and the
modified methods to identify the corresponding lines and the modified
variables. TCA uses the information extracted with JDiff and with the
Needleman-Wunsch techniques to repair the broken test cases.

DaTeC: computes contextual data flow coverage of Java programs by execut-
ing the Java bytecode suitably instrumented to record the coverage of
contextual def-use associations. DaTeC identifies the data about contex-
tual data flow at different levels of granularity, from the finest grain level
that presents all covered and not-yet-covered associations, to the coarsest
granularity level that summarizes the amount of covered pairs for selected
classes only.

Soot: is a framework for optimizing Java bytecode. The framework is imple-
mented in Java and provides a set of intermediate representations and a
set of Java APIs for optimizing Java bytecode directly. The optimized byte-
code can be executed using any standard Java Virtual Machine (JVM). We
used Shimple, which is one of the intermediate representations of Java
bytecode to extract information about Java classes [VRHS+99].

6.2 The Test Evolution Toolsuite

This section provides some implementation details of Test Reuse Patterns: Exten-
sion of class hierarchy, Implementation of Interface, Introduction of overloaded
and overridden methods. TCA enriches the context menu of Eclipse with a menu
item for each Test Reuse Pattern. When a developer selects one of these menu
items, TCA generates test cases for the class or the method under test and shows
the results.

Figure 6.4 shows a high-level architecture of our prototype test evolution
toolsuite. The Eclipse UI component receives the developer actions and passes
them to TCA that generates the test cases for the selected items. Element Extractor
uses JDT2, described later in this chapter, to obtain selected elements by the
developer.

2Eclipse Java Development Tools (JDT): www.eclipse.org/jdt/

71 6.2 The Test Evolution Toolsuite

The Similarity Detector component is responsible for finding the elements
similar to the selected ones. TCA uses sibling and sub sibling classes for new class
elements and overloading/overriding methods for new method elements. For
each similar element, Test Finder seeks for test cases written for similar elements.
Test Finder uses different mechanisms for classes and methods. The Test Finder
component identifies test cases for classes by searching for entities with the same
name as the class name augmented with the "Test" prefix or postfix. Test Finder
extracts test cases for new methods by finding all the test cases that call the
current method.

The Test Adaptor component is the core component of TCA. It copies candi-
date test cases, resolves compilation errors (using JDiff and Compiler libraries),
fixes assertion failures (using ReAssert), removes runtime errors (using Junit
Runner), and optimizes the number of test cases (using Eclemma Coverage com-
ponent). The generated test cases will be shown to the developer for further
modification if it is required.

Test Finder

Test Adaptor

Eclipse
 UI

JDiff Eclemma
Coverage

Junit
RunnerCompiler

JDT

MethodClass

Similarity Detector

ReAssert

Element Extractor

Legend

API

Component

Library

API

API API
API API API

Figure 6.4. The architecture of the TCA Test Adaptation Toolsuite

TCA uses Eclipse JDT as a library to extract structure of the project source
code. The Eclipse Java Development Tools (JDT) provides APIs to access and
manipulate Java source code. JDT allows to access the existing projects in the
workspace, create new projects and modify and read existing projects. It also
allows developers to launch Java programs. Java JDT allows to access Java
source code via two different means: The Java Model and the Abstract Syntax
Tree (AST).

Java Model: A Java Model provides the API for navigating the Java element

72 6.2 The Test Evolution Toolsuite

tree. The Java element tree defines a Java centric view of a project. It pro-
vides elements like package fragments, compilation units, binary classes,
types, methods, fields. Each Java project is represented in Eclipse as a Java
model. The Eclipse Java model is a light-weight and fault-tolerant repre-
sentation of the Java project. It does not contain as much information as
the AST (for example it does not contain the body of a method) but it can
be quickly recreated in the case of changes. For example the outline view
in Eclipse uses the Java model for its representation. In this way the in-
formation in the outline view can be quickly updated. The Java model is
defined in the package and plugin "org.eclipse.jdt.core".

Abstract Syntax Tree (AST): The AST is a detailed tree representation of the
Java source code. The AST defines an API to modify, create, read, and
delete source code. The package for AST is org.eclipse.jdt.core.dom in the
Eclipse org.eclipse.jdt.core plugin. Each element in the Java source file is
represented as a subclass of ASTNode. Each AST node provides specific
information about the object it represents. For example, MethodDeclara-
tion represents methods, VariableDeclarationFragment represents variable
declarations, and SimpleName represents any string which is not a Java
keyword. The AST is created based on an ICompilationUnit from the Java
Model.

Since TCA works at different level of granularity depending on each pattern, TCA
uses both the Java model and the AST components to extract class level, method
level, and statement level information about the source code.

Here we describe a scenario of class level source data extraction. TCA needs
to extract sibling and sub sibling classes for the "extension of class hierarchy" Test
Reuse Pattern. Since TCA only needs information at the granularity level of class,
TCA uses the Java model to find sibling classes of a given class. First of all TCA
finds the superclass of the current class, then TCA extracts all classes extending
the super class. This gives TCA a list of ITypes that represent sibling classes of
the given class.

On the other hand, to create and edit the source code of test cases, TCA needs
the AST of the component to extract appropriate information. For example, to
extract all method calls in a given test method, TCA implements a visitor class
that extracts all method invocation objects in an AST representation of a given
test method. In this case TCA is only interested in method calls, so TCA ignores
all other information available on AST.

Chapter 7

Evaluation

This chapter describes the methodology adopted to validate the proposed ap-
proach for test suite evolution, TestCareAssistant, and presents the evaluation
results obtained by applying the Test Reuse Patterns on some case studies.

The results obtained in the experiments indicate that TestCareAssistant is a
viable solution to evolve test suites.

7.1 Evaluation Methodology

The goal of the empirical evaluation is to verify both the applicability and the
effectiveness of TCA in evolving test suites by addressing the following questions:

RQ1 How frequently can Test Reuse Patterns be applied to evolve test cases?

RQ2 How effective are the test cases adapted by TCA? How do these test cases
compare with the test cases generated by state-of-the-art techniques?

RQ1 refers to the applicability of Test Reuse Patterns. To address this question,
we apply TCA to a set of software systems developed by different organizations,
and measure the frequency of software elements (classes or methods) whose test
cases could be automatically repaired or generated with the provided Test Reuse
Patterns. We evaluated the results by categorizing them on the basis of the Test
Reuse Patterns.

RQ2 evaluates the effectiveness of TCA by focusing of the capability of the test
cases generated by TCA in covering software behaviors. To address this research
question, we compared the test cases generated by TCA with the ones generated
by both software developers and some state-of-the-art test case generation tools.
In the case of "change of method declaration", we compared the results of TCA

73

74 7.1 Evaluation Methodology

only with the test cases produced by developers, because, to the best of our
knowledge, there is no tool (other than TCA) for repairing test cases broken by
changes in method declarations.

We compare the test cases generated with TCA with test cases produced by
developers manually for the pattern "change of method declaration": the com-
parison is easy in this case, because TCA simply repairs the way variables are
initialized thus leading to test cases that shall be the same as the ones repaired
by developers, or very similar to them. We discuss the measures of similarity in
Section 7.4. For the other Test Reuse Patterns we address RQ2 using two mea-
sures: Code Coverage and Conciseness:

Code Coverage Structural code coverage is a measure commonly adopted to
evaluate the effectiveness of test generation tools. High code coverage increases
the confidence about the quality of the code under test. There are many code
coverage criteria proposed in the literature such as statement, branch, condition,
condition/decision, etc. In our comparison we adopted the statement coverage
criterion that measures the percentage of statements executed by at least one
test case.

We compared the code coverage obtained with the test cases generated with
TCA with the code coverage of test cases generated by project developers, and
by three well known test case generation techniques:

• Randoop version 1.3.2: http://code.google.com/p/randoop

• Google CodePro version 7.1.0: https://developers.google.com/java-dev-
tools/codepro/doc/

• EvoSuite version 20110929: http://www.st.cs.uni-saarland.de/evosuite/

Conciseness Many test case generation tools aim to achieve a high level of
coverage for code under test. However, the fact that these test cases should
be readable is often neglected in the state-of-the-art techniques. We claim that
our approach can generate more concise test cases by optimizing number of test
cases, thus making the final test cases easier to read and inspect. In fact, the
third step of TCA removes redundant test cases and ignores test cases that do not
contribute to the increase of the code coverage. We compare TCA with state-of-
the-art techniques by comparing number of test methods generated as the test
suite of each element under test.

The remainder of this chapter presents our case studies and the empirical
results obtained by applying each Test Reuse Pattern to the case studies.

75 7.2 Case Study Subjects

Subject LOC Download Classes Test Classes Test Methods
Xstream 1.31 24,655 N/A 218 455 1486
PMD 4.2 65,279 747,765 483 193 880
Barbecue 1.5b1 8,842 126,736 55 20 294
JodaTime 1.62 63,922 207,323 99 204 4,402
JFreeChart 1.013 217,357 48,235 471 410 2,686

Table 7.1. Subject Programs

7.2 Case Study Subjects

We chose five open-source projects to evaluate applicability and effectiveness
of TCA. Table 7.1 presents some details about the popularity and complexity of
the case studies by giving: the number of lines of source code (column LOC),
the number of downloads1 (column Download), the number of classes (column
Classes), the number of test classes (column Test Classes) and the number of test
methods (column Test Methods). The numbers are calculated with the Metrics
1.3.6 Eclipse Plugin2.

We selected these software projects because they are good representatives of
software projects on which TCA could be applied: they include 3 libraries and
2 GUI applications. All the projects come with manually written test cases that
cover the software behavior and are kept up to date by software developers.

JFreeChart

JFreeChart3 is an open-source framework that creates a wide variety of interac-
tive and non-interactive charts. JFreeChart can be used to create XY, Pie, Gantt,
and Bar charts and many other specific charts such as wind, polar, and bubbles
charts.

JFreeChart supports many output types including swing components, image
files, and vector graphics file format. JFreeChart has been an active project since
February 2000, and all the revisions are accessible from the SVN repository on
SourceForge4.

1the data have been collected in August 2012
2http://metrics.sourceforge.net/
3http://www.jfreechart.org
4http://www.sourceforge.net/

76 7.2 Case Study Subjects

JodaTime

JodaTime5 is a replacement for Java date and time classes. JodaTime provide
utility classes to manage different types of multiple calendar systems: Gregorian,
Julian, Buddhist, Coptic, Ethiopic, and Islamic. This project is used in many
research papers as case study [BZ11, JOX10b, JOX10a, FZ12, DR12].

Barbecue

Barbecue6 is a Java library that supports the creation, printing, and displaying
of barcodes in Java applications. Barbecue supports many barcode formats as
well as a number of predefined formats. Barcodes can be exported to image and
SVG formats. The project is the smallest project that we considered and consists
of about 9 KLOC.

PMD

PMD7 is a source code analyzer that scans the Java source code to find potential
problems like possible bugs, dead code, suboptimal code, overcomplicated ex-
pressions, and duplicate code. PMD has been integrated in many IDEs such as
JDeveloper8, Eclipse9, Jedit10, IntelliJ IDEA11, Ant12, and Emacs13.

Xstream

Xstream14 is a library to serialize objects to XML and deserialize XML into ob-
jects. Xstream consists of over 24 KLOC and its code is accompanied by a set
of test cases for each version. Xstream comes with many non-trivial test cases
that parse complex XML files, thus being an interesting case for comparison be-
tween our selection of case studies and makes this project more challenging to
investigate.

5http://joda-time.sourceforge.net/
6http://barbecue.sourceforge.net/
7http://pmd.sourceforge.net/
8http://www.oracle.com/technetwork/developer-tools/jdev
9http://www.eclipse.org

10http://www.jedit.org/
11http://www.jetbrains.com/idea/
12http://ant.apache.org/
13http://www.gnu.org/software/emacs/
14http://xstream.codehaus.org/

77 7.3 Applicability of Test Reuse Patterns

7.3 Applicability of Test Reuse Patterns

This section addresses RQ1: How frequently can Test Reuse Patterns be applied to
evolve test cases? Our empirical study of several source repositories in popular
open-source projects indicates that the test cases repaired and produced with
our Test Reuse Patterns can cover a significant part of the software systems. The
study suggests that Test Reuse Patterns are more effective when applied to more
mature software systems than in the initial stage of the software lifecycle.

7.3.1 Change of Method Declaration

To determine the potential applicability of "change of method declaration" pat-
tern, we measured how often software developers modify method signatures
with respect to the overall number of changes that may lead to compilation er-
rors in the test cases.

We collected 162 versions belonging to the 5 subjects introduced in Sec-
tion 7.2. For each consecutive version we counted the number of changes and
the number of signature changes among them. Table 7.2 shows the results of
our analysis. Column Subject shows the subject name; Column Versions shows
the number of versions analyzed for each project.

We used JDiff to identify the changes between two consecutive releases of
each project, and counted the number of changes that can lead to compilation
errors in test cases.

Column Error raising Changes shows the total amount of changes that may
lead to compilation errors in the test cases. Column TCA indicates the number of
changes in which TCA can be applied to repair the compilation errors. TCA can
handle a total of 2,146 changes: 890 added parameters, 663 removed parameters,
319 parameter type changes, and 274 return type changes. Table 7.3 shows the
distribution of changes in the method declaration across 5 open-source projects.
On average, TCA can be applied to repair more than 40%15 of the changes that
lead to compilation errors.

These results indicate that the changes in parameter declarations are fre-
quent and that TCA can be applied to many of them. Since the test cases are not
available for all the changed methods, we did not compute the exact number
of test cases that raise compilation errors but the number of changes that might
cause these errors.

15The percentage is calculated using macro average formula that shows the average of changes
that TCA can handle over all changes that raise compilation error regardless of the software
projects.

78 7.3 Applicability of Test Reuse Patterns

Subject Versions TCA Error raising Changes %
Xstream 22 175 819 21.37
PMD 60 508 2,477 20.51
Barbecue 2 2 2 100.00
JodaTime 30 889 2,000 44.45
JfreeChart 48 572 2,976 19.22

Table 7.2. Applicability of TCA on open source projects

Subjects
Number of
Parameter
Type Change

Number of
Parameter
Add

Number of
Parameter
Remove

Number of
Return Type
Change

Xstream 12 91 61 11
PMD 112 168 144 84
Barbecue 0 1 1 0
JodaTime 93 366 321 109
JfreeChart 102 264 136 59
Total 319 890 663 274

Table 7.3. Amount of changes supported by TCA across projects

7.3.2 Extension of Hierarchy and Implementation of Interface

To evaluate the applicability of TCA for generating test cases we computed the
average number of classes belonging to each subject for which TCA can generate
test cases. To identify the number of classes for which TCA can be applied, we
identified the number of classes that either belong to a class hierarchy of project
or implement an interface.

Table 7.4 shows the results: Column Subject indicates the version of the sub-
ject that we investigated, Column Classes indicates the total amount of testable
classes in the analyzed version, Column Interface indicates the number and per-
centage of classes that implement an interface, Column Hierarchy indicates the
number and percentage of classes that extend a class hierarchy, i.e., classes for
which TCA could generate test cases. Column In+Hi shows the number and
percentage of classes that either implement an interface or belong to a class
hierarchy.

According to our results the "extension of class hierarchy" Test Reuse Pattern is
applicable to 794 out of 1,249 classes, 63.6% of the cases, while the "implemen-

79 7.3 Applicability of Test Reuse Patterns

Subject Classes Interface Hierarchy In+Hi
Xstream 1.31 185 24(14.1%) 103(55.7%) 127(68.6%)
PMD 4.2 472 36(7.6%) 315(66.7%) 342(72.5%)
Barbecue 1.5b1 49 3(6.1%) 27(55.1%) 30(61.2%)
JodaTime 1.62 97 32(33.0%) 74(76.3%) 77(79.4%)
JFreeChart 1.013 446 322(72.2%) 275(61.7%) 392(87.9%)
Average 33.5 63.6 77.5

Table 7.4. Applicability on Test Generation for Class Hierarchies and Interface

tation of interface" Test Reuse Pattern is applicable to 419 classes (33.5%). The
data also shows that when the two Test Reuse Patterns are combined together
TCA can generate test cases for 968 classes (77.5%).

The applicability of the "extension of class hierarchy" Test Reuse Pattern is uni-
form in all projects, in fact, the standard deviation is 8.7, which suggests that the
"extension of class hierarchy" could be successfully applied on different subjects
too.

On the other hand, the applicability of the "implementation of interface" Test
Reuse Pattern is less uniform, the standard deviation of this pattern is 27.64.
This depend on the fact that in 2 of the 5 subjects, Barbecue and PMD, the Inter-
face to class ratio (the total number of interfaces divided by the total number of
classes [SSK03]) is 5.4% (3/55) and 10.5% (51/483) respectively. This shows
that in Barbecue and PMD interfaces are under utilized in comparison to com-
mon software systems (a study of Steimann et al. [SSK03] shows that this ratio
on average is 25%).

The results presented in this section represent an upper bound to the appli-
cability of the approach, in fact the applicability of TCA depends not only on the
presence of class hierarchies but also on the availability of test cases for classes
of the same hierarchy. The applicability of the algorithm depends on the number
of test cases available for existing classes in the hierarchy. The applicability of
TCA benefits from the presence of several classes that extend hierarchies, which
are high (60%) in the projects considered. In practice the applicability of TCA
may be lower. For example, in JodaTime 1.62, TCA could generate test cases
for 76% (74/97) of the classes, but JodaTime does not have test cases for all
the implemented classes, thus TCA can automatically generate test cases for 32%
(32/97) of classes.

80 7.4 Effectiveness of Change of Method Declaration

Subjects Methods Override Overload
Xstream 1.31 1094 185(16.9%) 572(52.3%)
PMD 4.2 2443 280(11.5%) 1261(51.6%)
Barbecue 1.5b1 223 11(4.9%) 86(38.6%)
JodaTime 1.62 2053 329(16%) 1373(66.9%)
JFreeChart 1.013 6175 641(10.4%) 3329(53.9%)
Average 12.1% 55.2%

Table 7.5. Applicability of TCA on Override/Overload Test Reuse Pattern

7.3.3 Introduction of Overriding and Overloading Methods

In this section we discuss the applicability of the "introduction of overridden and
overloaded method" Test Reuse Patterns. To this end, we measured the number of
methods in the subject programs for which TCA can be applied. Table 7.5 shows
the results. Column Methods shows the number of public methods in the project.
Column Override shows the number of overridden methods. Column Overload
shows the number of methods on which the "introduction of overloaded method"
Test Reuse Pattern can be applied, i.e., pure overloaded methods and methods
that have the same name of a method declared in another class belonging to the
same hierarchy. On average the "introduction of overloaded method" Test Reuse
Pattern can be applied to slightly over the half of the visible methods of the
classes in the projects, 55.2%. While the "introduction of overridden method" Test
Reuse Pattern can be applied just to 12.1% of cases.

7.4 Effectiveness of Change of Method Declaration

This section answers RQ2: How effective are the test cases adapted by TCA? How do
these test cases compare with the test cases generated by state-of-the-art techniques?
specifically for the "change of method declaration" Test Reuse Pattern.

We applied TCA to repair 138 test cases of the subjects of our study. We con-
sidered 6 releases and 21 test cases for JFreeChart, 2 releases and 18 test cases
for JodaTime, 13 releases and 99 test cases for PMD. For each release of the soft-
ware, we executed TCA on all test cases that do not compile. The test cases con-
sidered in our study were broken by different type of changes: parameter type
changes (26), parameter additions (68), parameter removals (23), and return
type changes (21). Table 7.6 shows the obtained results. Column Errors-fixed

81 7.4 Effectiveness of Change of Method Declaration

shows the number of test cases whose compilation errors have been corrected
by TCA. TCA correctly repairs all the compilation errors. Column Valid-test-cases
shows instead the number of the test cases that do not show any runtime failure
after repair, which is 128 (92.75%).

The 10 failures of the repaired test cases depend on the default values gen-
erated by TCA that alter the test behavior, thus causing failures in assertions
(4 cases), or runtime exceptions due to the absence of proper initialization for
other variables (6 cases). The column Same-as-Developers shows the number of
test cases that TCA corrected as done by developers. To this end, we compared
the test cases repaired by TCA with the ones repaired by software developers to
check if they present the same behavior. Of the 128 repaired test cases, 105
present the same behavior of the test cases generated by software developers,
while the others present a different but valid behavior. Similar behavior is mea-
sured by counting instructions that both test cases cover during execution.

Change TC Errors Valid Same as
fixed test cases Developers

Parameter Type Change 26 26 22 (84.62%) 14 (53.85%)
Parameter Add 68 68 68 (100.00%) 59 (86.76%)
Parameter Remove 23 23 17 (73.91%) 21 (91.03%)
Return Type Change 21 21 21 (100.00%) 11 (52.38%)
Total 138 138 128 (92.75%) 105 (76.08%)

Table 7.6. Effectiveness of Generating Repairs

We compared the variables (either objects, fields or primitive variables) ini-
tialized by software developers with the variables initialized by TCA to determine
the distance of the repairs of TCA from the ones suggested by the developers. Ta-
ble 7.7 shows the results. Software developers initialized 124 different variables
(column Devels), while TCA initialized 119 variables (column TCA-All), and thus
TCA automatically initializes more than 95% of the variables manually initial-
ized by the developers. The variables that TCA fails to initialize are variables
required for the execution of methods that do not present changes in parame-
ters declarations. TCA focuses on methods that present changes in parameters
declaration only, thus cannot determine that it is necessary to initialize input
variables or object fields to properly execute methods that present changes in
their functionality.

Column TCA-Correct reports the number of variables properly initialized by
TCA. We consider a value as properly initialized if either its value is the same as

82 7.5 Effectiveness of Generating Tests for New Classes

Variables Initialized
Change TC Devels TCA-All TCA-Correct Pr Re
Parameter Type Change 26 31 26 14 0.54 0.45
Parameter Add 68 66 68 59 0.87 0.89
Parameter Remove 23 6 5 5 1.00 0.83
Return Type Change 21 21 20 20 1.00 0.95
Total 138 124 119 98 0.85 0.78

Table 7.7. Effectiveness of Finding Initialization Values

the one used by the developers, or the value is different but neither the execution
path of the software nor the generated results are different. We use these data
to compute the precision and the recall of TCA in initializing program variables
(columns Pr and Re). We calculate the precision as the fraction of the variables
initialized by TCA that are correctly initialized, and the recall as the fraction of
the variables initialized by software developers that are also properly initialized
by TCA.

The overall precision (0.85) is high. The lowest precision corresponds to
test cases affected by changes in the parameter type of the methods. This de-
pends on the fact that changes in parameter type often correspond to changes
in the structure of the methods that include many simultaneous modifications,
renamed variables, new variables, loops, etc. Many simultaneous changes in the
same method reduce the efficacy of function cor responding (defined in Sec-
tion 4.4.1) that currently combines Unix diff, Levenshtein algorithm, and strings
alignment. The presence of multiple changes in the code limits the ability of
identifying the corresponding lines because of many mismatches in the com-
pared lines. The overall recall (0.78) is also high. The high precision indicates
that although TCA cannot identify all the variables, it tends to initialize the vari-
ables with proper values.

7.5 Effectiveness of Generating Tests for New Classes

In this section we answer to RQ2 for the "extension of class hierarchy" and "imple-
mentation of interface" Test Reuse Patterns based on two measures: code coverage
and conciseness.

83 7.5 Effectiveness of Generating Tests for New Classes

Subjects C TCA Developer Randoop CodePro EvoSuite
Xstream 1.31 36 58.55 78.19 18.67 54.18 43.35
PMD 4.2 56 47.18 65.53 40.56 49.68 60.03
Barbecue 1.5 12 73.42 63.44 45.80 23.10 82.03
JodaTime 1.62 32 75.28 88.07 48.97 77.33 71.52
Jfrechart 1.013 204 47.92 49.22 27.70 52.06 51.46
Average 60.47 68.89 36.34 51.27 61.68

Table 7.8. Effectiveness of Test Generation for "extension of class hierarchy"
Test Reuse Pattern

7.5.1 Code Coverage

We evaluated the effectiveness of TCA by generating test cases for all the classes
that belong to a class hierarchy in the five subjects of the study. For each class
considered in the experiment, we removed the test cases implemented by devel-
opers for that class, and applied TCA to generate new test cases.

Table 7.8 shows the results on 340 classes: Column C indicates the number
of classes for which TCA generated the test cases. The other columns indicate
the instruction coverage for the class under test obtained with the test cases
generated with the different approaches.

The test cases produced by the developers obtain the highest coverage, but
at a price of a high effort. TCA performs as good as EvoSuite, and outperforms
both CodePro and Randoop. To characterize the differences between TCA, devel-
opers, and EvoSuite, we compared the set of instructions covered by test cases
generated by developers, TCA, and EvoSuite for each class under test. The test
cases generated by TCA and EvoSuite cover a common set of 12055 instruction
of code (49% of the total). TCA and EvoSuite are complementary: TCA covers
6370 instructions (25.9%) not covered by EvoSuite, while EvoSuite covers 6208
instructions not covered by TCA (25.2%). TCA outperforms EvoSuite in 130 test
cases, EvoSuite outperforms TCA in 134. EvoSuite works better than TCA when
path conditions cannot be covered by copying data used in existing test cases.
On the other hand, TCA produces test cases that covers some parts of the source
code that can only be covered with domain knowledge that TCA implicitly im-
ports from existing test cases.

The test cases produced by developers often stress both the code of the class
under test and the code of parent classes, to identify integration faults between
parent and child classes. Table 7.8 shows the coverage for the class under test

84 7.5 Effectiveness of Generating Tests for New Classes

Subjects C In In+Hi Dev Randoop CodePro Evo
Xstream 1.31 26 44.96 82.42 94.12 45.42 80.31 51.32
PMD 4.2 18 69.44 70.81 65.72 21.28 43.17 59.83
Barbecue 1.5b1 3 100 100 90.91 77.67 100 89.00
JodaTime 1.62 31 35.91 56.94 93.12 74.64 94.33 54.48
JfreeChart 1.013 309 14.44 55.68 64.61 34.11 77.49 40.09
Average 62.58 77.54 85.97 54.75 79.45 63.66

Table 7.9. Effectiveness on Test Generation for "implementation of interface"
Test Reuse Pattern

only. We manually inspected the generated test cases and found that by reusing
existing test cases, TCA generates test cases that check both the class under test
and its integration with parents. EvoSuite is configured to generate test cases for
single classes and produces good test cases for that class, but ignores the inte-
gration with the parent class. For example, for the class EthiopicChronology,
TCA covers 1083 statements that belong to class EthiopicChronology or one of
its parents, while EvoSuite covers only 683 statements.

By modifying existing test cases produced by the developers, TCA generates
test cases that are more likely to be readable than the ones produced by Evo-
Suite. Figure 5.2 shows a test case generated by TCA that although covers a
complex behavior is still easy to understand thanks to the presence of meaning-
ful names. Listing 7.1 shows a test case generated by EvoSuite that uses abstract
names that make test cases difficult to be understood.

1 public void test2() {
2 EthiopicChronology var0 = EthiopicChronology.getInstanceUTC()

;
3 assertNotNull(var0);
4 DateTimeField var1 = (DateTimeField)var0.weekyearOfCentury();
5 long var2 = var1.addWrapField(-803L, 65533);
6 assertEquals(var2, 1041465599197L);
7 }

Listing 7.1. A test case for class EthipicChronology by EvoSuite.

Table 7.9 shows the results of the instructions covered by "implementation of
interface" pattern and its comparison to other techniques on 387 classes. Col-
umn In shows the results of "implementation of interface" pattern which TCA
outperforms Randoop and is comparable with results of EvoSuite (column Evo).
However, the test cases generated by CodePro outperform other automated tech-

85 7.5 Effectiveness of Generating Tests for New Classes

Subjects TCA Developer Randoop CodePro EvoSuite
Xstream 1.31 2.81 5.53 667.53 10.39 5.00
PMD 4.2 3.41 9.23 316.86 12.21 6.54
Barbecue 1.5b1 18.67 27.58 250.50 33.75 15.67
JodaTime 1.62 5.19 5.81 344.22 42.75 19.56
JfreeChart 1.013 7.19 7.27 927.79 39.78 19.73
Average 7.45 11.09 501.38 27.78 13.30

Table 7.10. Average number of test cases per class for "extension of class hier-
archy" Test Reuse Pattern

niques. We applied both "extension of class hierarchy" and "implementation of in-
terface" patterns to see how our results get improved. The instruction coverage
obtained with applying both patterns (column In+Hi) shows that TCA can cover
15% more instructions than just applying "implementation of interface" pattern.
Moreover, the results are comparable with CodePro which is the best state-of-
the-art tool in this category of classes. Our investigation on "implementation of
interface" pattern shows that this Test Reuse Pattern is not as effective as "exten-
sion of class hierarchy" pattern but can be used where "extension of class hierar-
chy" is not applicable i.e., no sibling classes are available or sibling classes are
not associated with many test cases.

7.5.2 Conciseness

We measured the number of test cases generated by TCA, developers, and state-
of-the-art tools. To this end, we counted the number of test methods in the
test classes of class under test. As shown in Tables 7.10 and 7.11, we collected
these data from five case studies for two Test Reuse Patterns. Columns 2-6 show
the average number of test methods generated by TCA, developers, Randoop,
CodePro, and EvoSuite, respectively.

To obtain these results we counted the number of test methods that exercise
the class under test and discarded helpers, setup, teardown methods. As the
results suggest, on average, the number of test cases generated by TCA is lower
than the number of test cases generated by the other approaches, even than the
number of test cases written by the developers in "extension of class hierarchy"
pattern (Table 7.10). TCA generates 33% fewer test cases that the developers,
and 43% fewer test cases than the best automated tool (EvoSuite).

Table 7.11 shows the average size of test suite generated for classes in the

86 7.6 Effectiveness of Generating Tests for New Methods

Subjects TCA Developer Randoop CodePro EvoSuite
Xstream 1.31 1.35 3.12 20.88 7.15 3.12
PMD 4.2 1.94 1.33 891.72 10.72 2.56
Barbecue 1.5b1 2.00 2.33 77.67 2.00 2.00
JodaTime 1.62 1.33 1.33 257.09 7.85 2.55
JFreeChart 1.013 5.29 5.29 691.20 22.37 17.68
Average 1.66 2.03 417.42 6.93 2.55

Table 7.11. Average number of test cases per class for "implementation of
interface" Test Reuse Pattern

"implementation of interface" Test Reuse Pattern. The results show that TCA gener-
ates fewer test cases than the other approaches, even than the test cases written
by the developers. These results are consistent with the "extension of class hier-
archy" Test Reuse Pattern.

7.6 Effectiveness of Generating Tests for New Meth-
ods

In this section we answer RQ2 for the "introduction of overloaded method" and the
"introduction of overridden method" Test Reuse Patterns based on two measures:
code coverage and conciseness.

7.6.1 Code Coverage

We evaluated the ability of TCA to adapt test cases for new methods by apply-
ing TCA to all the testable methods in the considered case studies. Tables 7.12
and 7.13 show the results in terms of statement coverage for the "introduction
of overloaded and the overridden method" Test Reuse Patterns.

Table 7.12 presents the comparison of the code coverage of the test cases
generated by applying the "introduction of overloaded method" pattern, devel-
opers, Randoop, CodePro, and EvoSuite. The rows in the table show results
for each case study. The column (M) shows the number of methods under test
in each case study. Out of 2319 methods, TCA achieved an average coverage of
71% which is better than all the automated test generation tools. TCA performed
worse than CodePro and EvoSuite only on the JodaTime project.

87 7.6 Effectiveness of Generating Tests for New Methods

Subjects M TCA Developer Randoop CodePro EvoSuite
Xstream 1.31 177 74.75 83.85 30.09 67.63 54.31
PMD 4.2 46 71.20 79.39 40.85 67.04 61.11
Barbecue 1.5b1 47 78.41 59.63 51.78 45.80 70.20
JodaTime 1.62 523 57.76 75.16 35.82 76.81 62.63
JFreeChart 1.013 1526 73.35 72.14 54.79 80.40 75.58
Average 71.09 74.04 42.67 67.53 64.77

Table 7.12. Effectiveness of "introduction of overloaded method" Test Reuse
Pattern

Subjects M TCA Developer’s Randoop CodePro EvoSuite
Xstream 1.31 5 30.40 82.00 6.00 44.80 26.60
Barbecue 1.5b1 7 81.00 92.86 41.71 70.29 100.00
JodaTime 1.62 10 84.00 100.00 96.00 93.30 74.90
JFreeChart 1.013 121 55.50 70.61 47.90 82.96 84.16
Average 62.73 86.37 47.90 72.84 71.41

Table 7.13. Effectiveness on "introduction of overridden method" Test Reuse
Pattern

Table 7.13 presents the code coverage results of the test cases generated by
applying the "introduction of overridden method" Test Reuse Pattern on four case
studies. TCA covers a substantial part of the methods under tests, however due
to lack of test cases for the original methods, the results of coverage of test cases
generated by TCA are not as good as other test patterns.

7.6.2 Conciseness

To show the conciseness of the adapted test cases we count the number of gen-
erated test cases for each method under test. Tables 7.14 and 7.15 show the
average number of test cases generated for the "introduction of overloaded and
overridden method" Test Reuse Patterns. As Table 7.14 suggests TCA generates
fewer test cases in comparison with the test cases generated by the developers
and by other automated tools. In fact, TCA generates 35% fewer test cases than
the developers on average.

Table 7.15 presents the average number of test cases generated by the differ-

88 7.7 Discussion

Subjects TCA Developer Randoop CodePro EvoSuite
Xstream 1.31 3.43 5.44 606.25 3.65 0.95
PMD 4.2 1.22 2.7 1057.96 2.91 2.33
Barbecue 1.5b1 1.22 3.53 701.29 2.86 1.29
JodaTime 1.62 3.29 5.01 740.26 3.45 1.67
JFreeChart 1.013 3.01 2.22 2622.13 15.61 6.41
Average 2.43 3.78 1145.58 5.7 2.53

Table 7.14. Average number of test cases generated with "introduction of over-
loaded method" Test Reuse Pattern

Subjects TCA Developer Randoop CodePro EvoSuite
Xstream 1.31 1.00 7.6 3560.8 7.4 1.4
Barbecue 1.5b1 1.86 2.57 1026.29 9.29 0.86
JodaTime 1.62 1.00 4.4 1123.5 2.4 1
JFreeChart 1.013 1.20 5.79 1210.25 13.74 7.05
Average 1.26 5.09 1730.21 8.21 2.58

Table 7.15. Average number of test cases generated with "introduction of over-
ridden method" Test Reuse Pattern

ent approaches, and shows that TCA generates less test cases than the developers
and other automated tools, for the "introduction of overridden method" Test Reuse
Pattern. TCA generates 75% fewer test cases than the developers and 51% fewer
than best automated tool for this Test Reuse Pattern.

7.7 Discussion

We inspected the results of TCA on adapting and generating test cases to identify
the advantages and disadvantages of our technique. We discuss most common
problems that we found in generated test cases in our case studies.

7.7.1 Availability of Test Cases to Reuse

TCA generates the test cases essentially by reusing existing test cases. Limited
availability of test cases in the repository of projects directly affects the effec-
tiveness of TCA.

89 7.7 Discussion

For example, to generate test case for ISO8601GregorianCalendarConverter,
a new class in JodaTime,TCA uses test cases from 9 sibling classes. However, the
test cases of three of the sibling classes do not cover any part of the class un-
der test, the test classes of three of the sibling classes cover 100% of new class
ISO8601GregorianCalendarConverter, and the test cases of the other three
classes are redundant.

1 public boolean canConvert(Class type) {
2 return type.equals(GregorianCalendar.class);
3 }
4

5 public Object fromString(String str) {
6 for (int i = 0; i < formattersUTC.length; i++) {
7 DateTimeFormatter formatter = formattersUTC[i];
8 try {
9 DateTime dt = formatter.parseDateTime(str);

10 Calendar calendar = dt.toCalendar(Locale.
getDefault());

11 calendar.setTimeZone(TimeZone.getDefault());
12 return calendar;
13 } catch (IllegalArgumentException e) {
14 // try with next formatter
15 }
16 }
17 String timeZoneID = TimeZone.getDefault().getID();
18 for (int i = 0; i < formattersNoUTC.length; i++) {
19 try {
20 DateTimeFormatter formatter = formattersNoUTC[i

].withZone(DateTimeZone.forID(timeZoneID));
21 DateTime dt = formatter.parseDateTime(str);
22 Calendar calendar = dt.toCalendar(Locale.

getDefault());
23 calendar.setTimeZone(TimeZone.getDefault());
24 return calendar;
25 } catch (IllegalArgumentException e) {
26 // try with next formatter
27 }
28 }
29 throw new ConversionException("Cannot parse date " + str

);
30 }
31

32 public String toString(Object obj) {

90 7.7 Discussion

33 DateTime dt = new DateTime(obj);
34 return dt.toString(formattersUTC[0]);
35 }

Listing 7.2. Class ISO8601GregorianCalendarConverter

Listing 7.2 shows the body of the new class ISO8601GregorianCalendarCon-
verter that is composed of three methods canConvert, fromString, and toString.
The test cases adapted from three sibling classes DateConverter, ISO8601DateC-
onverter, and StringConverter are complementary. In fact, test cases adapted
from class DateConverter covers toString method and lines 6-18 of method
fromString. Lines 20-24 of method fromString are covered with test cases
adapted from class ISO8601DateConverter. Method canConvert is covered
with the test cases adapted from class ToStringConverter. This example shows
that we need a certain number of test cases to be able to generate effective test
cases. In this case, test cases from three sibling classes are enough to cover all
lines of the class under test.

7.7.2 Using Mock Objects

In the process of adapting test cases, wherever we could not find any reusable
inputs, we use mock objects to initialize the parameters. However, since mock
objects do not provide any implementation, the test case might fail to execute.
We present two examples and possible solution to avoid this problem.

1 @Test
2 public void testIsExceptionBlockParameter() {
3 ASTTryStatement tryNode = new ASTTryStatement(1);
4 ASTBlock block = new ASTBlock(2);
5 ASTVariableDeclaratorId v = new ASTVariableDeclaratorId

(3);
6 v.jjtSetParent(block);
7 block.jjtSetParent(tryNode);
8 assertTrue(v.isExceptionBlockParameter());
9 }

Listing 7.3. Test Case of developers for class ASTVariableDeclaratorId

The listing 7.4 presents an example of TCA test case that is generated to
cover constructor ASTVariableDeclaratorId(JavaParser p, int i) of class
ASTVariableDeclaratorId in PMD 4.2. TCA uses the test cases written for an-
other constructor in a previous version of the application. The Listing 7.3 shows
the original test case written for the constructor ASTVariableDeclaratorId(int i).

91 7.7 Discussion

Line 5 instantiates an object of type ASTVariableDeclaratorId by calling con-
structor with an integer parameter.

The new overloaded constructor accepts two parameters: the first parame-
ter is of type JavaParser and the second parameter is an integer. The second
parameter is reused when adapting the test case (Listing 7.3) and is replaced in
the constructor call. However, TCA can not find any variable for first parameter.
Thus TCA calls the constructor of class JavaParser that accepts one input of type
CharStream. TCA uses the mock objects to initialize CharStream object, as it is
shown in Line 5. Although the generated test case compiles, it raises an excep-
tion complaining about the missing definition of the preceding method call that
is not implemented in the mock object.

1 @Test
2 public void testOverload_ASTVariableDeclaratorId_Q...() {
3 ASTTryStatement tryNode = new ASTTryStatement(1);
4 ASTBlock block = new ASTBlock(2);
5 ASTVariableDeclaratorId v = new ASTVariableDeclaratorId(
6 new net.sourceforge.pmd.ast.JavaParser(org.easymock.

EasyMock.createMock(CharStream.class)), 3);
7 v.jjtSetParent(block);
8 block.jjtSetParent(tryNode);
9 assertTrue(v.isExceptionBlockParameter());

10 }

Listing 7.4. A TCA test case that uses mock objects

1 @Test
2 public void testOverload_ASTVariableDeclaratorId_Q...() {
3 ASTTryStatement tryNode = new ASTTryStatement(1);
4 ASTBlock block = new ASTBlock(2);
5 ASTVariableDeclaratorId v = new ASTVariableDeclaratorId(
6 TargetJDKVersion.DEFAULT_JDK_VERSION.createParser(new

StringReader("")), 3);
7 v.jjtSetParent(block);
8 block.jjtSetParent(tryNode);
9 assertTrue(v.isExceptionBlockParameter());

10 }

Listing 7.5. A manually repaired test case of TCA

These test cases are not considered valid for the new overloaded method.
However, the developer only needs to fix the first parameter of the constructor
call and the test case will run on the modified software. One way to solve this
problem is to see how the developers initialized any variable of type JavaParser.

92 7.7 Discussion

A quick look at the test repository of PMD project shows that the developers use
a factory method to instantiate the JavaParser class. By replacing the first pa-
rameter of the ASTVariableDeclaratorId constructor with the factory method,
the test case runs smoothly on the new overloaded method. The modified test
case is shown in Listing 7.5.

Chapter 8

Conclusion

Testing software systems is the most popular way of verifying software systems.
Since software evolves frequently, developers need to constantly update test
cases. This process is time consuming and error-prone, thus automating the
test evolution process can reduce the overall cost of software evolution. The
problem of evolving test cases recently gained considerable attention in the re-
search community. So far, researchers have mainly focused on regression test-
ing [HO08, XKK+10], repairing failing test cases [DJDM09, DGM10], and re-
pairing GUI test cases [Mem08, FGX09].

This dissertation investigates the problem of test suite evolution by proposing
a new approach to repair and evolve test cases. We empirically studied the
evolution of test cases in test repository, and noticed some recurrent patterns in
the structure of test cases written by developers. We exploited this redundancy
to define a set of algorithms to automatically generate and repair test cases to
verify new or modified functionality of software systems.

We refer to the common activities that the developers follow to write similar
test cases as Test Reuse Patterns. We identified five different Test Reuse Patterns:
change of method declaration, extension of class hierarchy, implementation of
interface, introduction of overload and override methods. We noticed that when
the declaration of a method changes, specifically by adding a parameter, chang-
ing a parameter type, changing a return type or removing a parameter, software
developers tend to repair the test cases that do not compile any more by using
their domain knowledge to resolve compilation errors and update the obsolete
test cases. We also notice that when a software system is extended with a new
class, developers tend to reuse the test cases of sibling classes or classes that im-
plement the same or similar interfaces to generate test cases for the new class.
Moreover, when developers add a new method to a class, they tend to reuse the

93

94 8.1 Contributions

test cases written for overloading and overriding methods to generate test cases
for the new methods.

We defined algorithms that automate the Test Reuse Patterns that we identi-
fied so far, thus reducing the effort and time required to write new test cases.
We propose a framework, TCA, that repairs test cases that do not compile due to
changes in the software system, and that generates test cases when new classes
and methods are added to the system. To repair not compiling test cases, TCA
first finds the type of change. According to the type of change, TCA finds ini-
tialization variables and their corresponding values by combining dynamic and
static data flow analysis. Then TCA proposes a repair to the developer which pre-
serves the behavior of the test case. To generate test cases for new elements of
the system, TCA extracts similar test cases that can be used to generate test cases
from the repository of software system, then TCA adapts the test cases by updat-
ing the references, resolving compilation errors, repairing failing test cases, and
removing redundant test cases.

We evaluated the potential applicability and effectiveness of the proposed
framework by experimenting on five open-source projects. We evaluated the
applicability of our framework by examining the amount of test cases that TCA
can potentially repair and generate. We evaluated the effectiveness of the ap-
proach by comparing the code coverage obtained with the test cases generated
by TCA with the coverage obtained with the test cases written by the developers
and generated with the state-of-the-art test generators like Evosuite, Randoop,
and CodePro. Our evaluation results suggest that TCA can effectively be used by
software developers to reduce the effort of maintaining test suites.

8.1 Contributions

The first contribution of this dissertation is the introduction of Test Reuse Patterns
which to the best of our knowledge have not been identified in the literature.
This dissertation provides an empirical study of the redundancy of test cases in
software test suites, and proposes possible ways to exploit this redundancy.

The second major contribution of this dissertation is the development of the
TCA framework, which exploits Test Reuse Patterns to repair and evolve test cases
in software systems.

We now summarize in more details some aspects of these two major contri-
butions:

Empirical study of test suite repositories. We analyzed the test suite reposi-
tories of multiple versions of several software projects to identify the sim-

95 8.1 Contributions

ilarity of modified and added test cases with already available test cases.
As a result, we identified some changes that guide developers in writing
test cases (Chapter 3).

Test Reuse Patterns. We identified the changes that guide software developers
in writing test cases as Test Reuse Patterns that represent common practice
of developers who reuse and adapt test cases to evolve exiting test suites.
The Test Reuse Patterns that we identified include: change of method dec-
laration, extension of class hierarchy, implementation of interface, intro-
duction of overloaded and overridden methods (Chapter 3). The results
have been published in [Mir11, MPP12].

Test suite evolution framework. We proposed a general framework to both
repair obsolete test cases and generate new test cases by reusing existing
ones. Our framework exploits the Test Reuse Patterns introduced in this
dissertation and is generally applicable to new Test Reuse Patterns (Chap-
ter 3). The results have been published in [MPP12].

Test suite repair. We presented a technique to repair the test cases that do
not compile any more due to changes in some method declarations. Our
technique leverages data flow analysis and dynamic instrumentation to
suggest developers how to repair the test cases in a way that preserves the
behavior of the test cases after the modification (Chapter 4). The results
have been published in [MPP10, MP11, MPP11, MPP12].

Test suite adaptation. We proposed a technique to generate test cases for
new classes and methods by reusing existing test cases and adapting them
for the new elements. The adaptation technique finds similar test cases,
updates the references to new elements, resolves compilation errors, re-
pairs failing test cases, and removes redundant test cases. The technique
enables the reuse of existing test cases to test new functionality instead
of writing the test cases from scratch (Chapter 5). The results have been
published in [MPP12].

Prototype implementation. We implemented our framework in an prototype
tool called TCA that implements the techniques for repairing and gener-
ating test cases. We used TCA prototype to experimentally evaluate the
effectiveness of our technique on real world software projects (Chapter 6).
The results have been published in [MP11, MPP12].

96 8.2 Future Research Directions

Framework evaluation. We evaluated the test adaptation framework by ap-
plying TCA to five open-source projects. The results of our experiment
shows that TCA is applicable for testing a fair portion of software systems.
We evaluated the effectiveness of our framework by comparing the re-
pairs suggested by TCA on 138 test cases with the repairs suggested by
developers. The comparison shows the viability of our approach. We ap-
plied TCA to adapt test cases of more than 700 classes and 2400 meth-
ods of five open-source projects. This study shows that our technique can
generate test cases that achieve a coverage comparable with the coverage
obtained with automated test generation tools. We also verify that our
technique complements the test cases generated by automated tools since
TCA can cover part of code that test cases produced by automated tools
can not cover and vice versa (Chapter 7). The results have been published
in [MPP12].

8.2 Future Research Directions

The idea of Test Reuse Patterns and the framework that automates the process of
repairing and generating test cases open several new research directions:

Extending TCA with test generation tools: Although our results are comparable
with test generation techniques by means of coverage, we can improve
the coverage results of our framework by extending the framework with
dynamic symbolic execution (DSE) engines or search based test (SBST)
input generators. DSE and SBST can help TCA improve the code coverage
by generating test inputs that TCA can not produce. For example in the
presence of a method with a new sets of parameters, TCA can ask a DSE
or SBST tool to generate some possible inputs that increase the code cov-
erage. It would be interesting to explore the possibility of integrating TCA
with JavaPathFinder [VPK04] and EvoSuite.

Improving the applicability of TCA: We identified an initial set of interesting Test
Reuse Patterns thus opening the research for new Test Reuse Patterns.

Generalizing test cases: Another issue that we need to address is copy and past-
ing test cases which is an anti-pattern. We investigate the ways to factorize
the test cases by producing more maintainable test cases using object ori-
ented design principles like encapsulation.

97 8.2 Future Research Directions

Readability and understandability of TCA test cases: One of the advantages of
TCA is to adapt test cases that are already written by the developers, thus
the test cases will be more understandable than test cases generated by
automated tools. We manually checked some of the test cases and iden-
tified that the test cases by TCA are closer to actual test scenarios which
the developers are interested. However, an empirical study with some ex-
perienced users (i.e., real developers) is required to evaluate the actual
readability and understandability of the test cases.

Porting to Web application test evolution: This dissertation developed the con-
cept of Test Reuse Patterns for desktop applications. We think that the
technique is not bound to this domain, and our long-term plan is to adapt
and generalize the technique to a wider class of applications, such as web
applications. To generalize TCA to the web applications, we would have
to first examine how current Test Reuse Patterns fit into web application
testing context and find some new patterns that are specialized in web ap-
plication testing. Dynamic, heterogeneous, and distributed nature of web
applications would make this task more challenging.

98 8.2 Future Research Directions

Bibliography

[ALM07] James H. Andrews, Felix C. H. Li, and Tim Menzies. Nighthawk:
a two-level genetic-random unit test data generator. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, pages 144–153, 2007.

[AM09] James H. Andrews and Tim Menzies. On the value of combining
feature subset selection with genetic algorithms: faster learning
of coverage models. In PROMISE ’09: Proceedings of the 5th In-
ternational Conference on Predictor Models in Software Engineering,
pages 1–10, 2009.

[AML10] James H. Andrews, Tim Menzies, and Felix C.H. Li. Genetic algo-
rithms for randomized unit testing. IEEE Transactions on Software
Engineering, 99:80–94, 2010.

[ASC+06] Taweesup Apiwattanapong, Raul Santelices, Pavan Kumar Chit-
timalli, Alessandro Orso, and Mary Jean Harrold. Matrix:
Maintenance-oriented testing requirements identifier and exam-
iner. Academic and Industrial Conference on Practice And Research
Techniques, Testing, pages 137–146, 2006.

[Bal98a] Thomas Ball. On the limit of control flow analysis for regression
test selection. SIGSOFT Software Engineering Notes, 23:134–142,
1998.

[Bal98b] Thomas Ball. On the limit of control flow analysis for regression
test selection. In ISSTA ’98: Proceedings of the 1998 ACM SIGSOFT
international symposium on Software testing and analysis, pages
134–142, 1998.

[Bin97] David Binkley. Semantics guided regression test cost reduction.
IEEE Transactions on Software Engineering, 23(8):498 –516, 1997.

99

100 Bibliography

[BKM02] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov.
Korat: automated testing based on Java predicates. In Proceedings
of the 2002 ACM SIGSOFT international symposium on Software
testing and analysis, ISSTA ’02, pages 123–133, 2002.

[BLH09] Lionel Briand, Yvan Labiche, and Siyuan He. Automating regres-
sion test selection based on UML designs. Information and Software
Technology, 51(1):16–30, 2009.

[BLO03] Lionel Claude Briand, Y Labiche, and L O’Sullivan. Impact analysis
and change management of UML models. In Proceedings of the
International Conference on Software Maintenance, pages 256–265,
2003.

[BM07] Renée C. Bryce and Atif M. Memon. Test suite prioritization by
interaction coverage. In DOSTA ’07: Workshop on Domain specific
approaches to software test automation: in conjunction with the 6th
Foundations of Software Engineering Conference, pages 1–7, 2007.

[BM10] Luciano Baresi and Matteo Miraz. TestFul: automatic unit-test
generation for Java classes. In ICSE ’10: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Vol-
ume 2, pages 281–284, 2010.

[BWK05] Stefan Berner, Roland Weber, and Rudolf K. Keller. Observations
and lessons learned from automated testing. In ICSE ’05: Proceed-
ings of the 27th international conference on Software engineering,
pages 571–579, 2005.

[BZ11] Martin Burger and Andreas Zeller. Minimizing reproduction of
software failures. In ISSTA ’11: Proceedings of the 2011 Interna-
tional Symposium on Software Testing and Analysis, pages 221–231,
2011.

[CKMT10] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H. Tse.
Adaptive random testing: The art of test case diversity. Journal of
Systems and Software, 83:60–66, 2010.

[CLOM08] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer.
Artoo: adaptive random testing for object-oriented software. In
ICSE ’08: Proceedings of the 30th international conference on Soft-
ware engineering, pages 71–80, 2008.

101 Bibliography

[CM05] Tsong Yueh Chen and Robert Merkel. Quasi-random testing. In ASE
’05: Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering, pages 309–312, 2005.

[CM07] Tsong Yueh Chen and R. Merkel. Quasi-random testing. IEEE
Transactions on Reliability, 56(3):562 –568, 2007.

[Cod12] Google CodePro. http://code.google.com/javadevtools/codepro/doc/index.html,
accessed August 2012.

[CPU02] Yanping Chen, Robert L. Probert, and Hasan Ural. Model based
regression test reduction using dependence analysis. In Proceedings
of the International Conference on Software Maintenance, pages 214
– 223, 2002.

[CPU07] Yanping Chen, Robert L. Probert, and Hasan Ural. Model-based
regression test suite generation using dependence analysis. In A-
MOST ’07: Proceedings of the 3rd international workshop on Ad-
vances in model-based testing, pages 54–62, 2007.

[CRV94] Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. TEST-
TUBE: a system for selective regression testing. In Proceedings of
the 16th International Conference on Software Engineering, pages
211 –220, 1994.

[CYK+05] David Coppit, Jinlin Yang, Sarfraz Khurshid, Wei Le, and Kevin
Sullivan. Software assurance by bounded exhaustive testing. IEEE
Transactions on Software Engineering, 31(4):328–339, 2005.

[DCMJ06] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph E. John-
son. Automated detection of refactorings in evolving components.
In Proceedings of the 20th European Object-Oriented Programming
Conference, pages 404–428, 2006.

[DGM10] Brett Daniel, Tihomir Gvero, and Darko Marinov. On test repair
using symbolic execution. In ISSTA ’10: 2010 International Sym-
posium on Software Testing and Analysis, pages 207–218, 2010.

[DJDM09] Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov. Re-
assert: Suggesting repairs for broken unit tests. In Proceedings of
the 24th IEEE/ACM international Conference on Automated software
engineering, pages 433–444, 2009.

102 Bibliography

[DLM+11] Brett Daniel, Qingzhou Luo, Mehdi Mirzaaghaei, Danny Dig, Darko
Marinov, and Mauro Pezzè. Automated GUI refactoring and test
script repair. In Proceedings of the First International Workshop on
End-to-End Test Script Engineering, pages 38–41, 2011.

[dMB08] Leonardo de Moura and Nikolaj Bjorner. Z3: An efficient SMT
solver. In Tools and Algorithms for the Construction and Analysis of
Systems, volume 4963, pages 337–340, 2008.

[DME09] Danny Dig, John Marrero, and Michael D. Ernst. Refactoring se-
quential Java code for concurrency via concurrent libraries. In ICSE
’09: Proceedings of the 2009 IEEE 31st International Conference on
Software Engineering, pages 397–407, 2009.

[DN84] Joe W. Duran and Simeon C. Ntafos. An evaluation of random
testing. IEEE Transactions on Software Engineering, SE-10(4):438
–444, 1984.

[DNMJ08] Danny Dig, Stas Negara, Vibhu Mohindra, and Ralph Johnson.
ReBA: refactoring-aware binary adaptation of evolving libraries. In
ICSE ’08: Proceedings of the 30th international conference on Soft-
ware engineering, pages 441–450, 2008.

[DNSVT07] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guil-
herme H. Travassos. A survey on model-based testing approaches:
a systematic review. In WEASELTech ’07: Proceedings of the 1st
ACM international workshop on Empirical assessment of software en-
gineering languages and technologies, pages 31–36, 2007.

[dPX+06] Marcelo d’Amorim, Carlos Pacheco, Tao Xie, Darko Marinov, and
Michael D. Ernst. An empirical comparison of automated genera-
tion and classification techniques for object-oriented unit testing.
In ASE ’06: Proceedings of the 21st IEEE/ACM International Confer-
ence on Automated Software Engineering, pages 59–68, 2006.

[DR12] Barthélémy Dagenais and Martin P. Robillard. Recovering trace-
ability links between an API and its learning resources. In Proceed-
ings of the 2012 International Conference on Software Engineering,
pages 47–57, 2012.

103 Bibliography

[FA11a] Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic test suite
generation for object-oriented software. In Symposium on the Foun-
dations of Software Engineering, pages 416–419, 2011.

[FA11b] Gordon Fraser and Andrea Arcuri. Whole test suite generation. In
Proceedings of the 11th International Conference on Software Qual-
ity, page 1, 2011.

[FAW07] Gordon Fraser, Bernhard K. Aichernig, and Franz Wotawa. Han-
dling model changes: Regression testing and test-suite update with
model-checkers. MBT ’07: Proceedings of the Third Workshop on
Model Based Testing, 190(2):33 – 46, 2007.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

[FF04] Ira R. Forman and Nate Forman. Java Reflection in Action. Manning
Publications Co., 2004.

[FGX09] Chen Fu, Mark Grechanik, and Qing Xie. Inferring types of refer-
ences to GUI objects in test scripts. In International Conference on
Software Testing Verification and Validation, pages 1–10, 2009.

[FZ12] Gordon Fraser and Andreas Zeller. Mutation-driven generation of
unit tests and oracles. IEEE Transactions on Software Engineering,
38(2):278–292, 2012.

[GAM09] Denaro Giovanni, Gorla Alessandra, and Pezeè Mauro. DaTeC:
Contextual data flow testing of Java classes. In Companion of the
Proceedings of 31st International Conference on Software Engineer-
ing, pages 421–422, 2009.

[GGJ+10] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid,
Viktor Kuncak, and Darko Marinov. Test generation through pro-
gramming in udita. In ICSE ’10: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, pages 225–234,
2010.

[GH01] Etienne M. Gagnon and Laurie J. Hendren. SableVM: a research
framework for the efficient execution of Java bytecode. In JVM’01:
Proceedings of the 2001 Symposium on JavaTM Virtual Machine Re-
search and Technology Symposium, page 3, 2001.

104 Bibliography

[GHS96] Rajiv Gupta, Mary Jean Harrold, and Mary Lou Soffa. Program
slicing-based regression testing techniques. Software Testing Verifi-
cation and Reliability, 6(2):83–111, 1996.

[GJS08] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection
of semantic clones. In ICSE ’08: Proceedings of the 30th interna-
tional conference on Software engineering, pages 321–330, 2008.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed
automated random testing. In PLDI ’05: Proceedings of the 2005
ACM SIGPLAN conference on Programming language design and im-
plementation, pages 213–223, 2005.

[God07] Patrice Godefroid. Compositional dynamic test generation. ACM
SIGPLAN Notices - Proceedings of the 2007 Annual Symposium on
Principles of Programming Languages, 42:47–54, January 2007.

[HGS93] Mary Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A method-
ology for controlling the size of a test suite. ACM Transactions on
Software Engineering and Methodololgy, 2:270–285, 1993.

[HJL+01] Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang,
Alessandro Orso, Maikel Pennings, Saurabh Sinha, S. Alexander
Spoon, and Ashish Gujarathi. Regression test selection for Java
software. In Proceedings of the 2001 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications,
pages 312–326, 2001.

[HM10] Mark Harman and Phil McMinn. A theoretical and empirical study
of search-based testing: Local, global, and hybrid search. IEEE
Transactions on Software Engineering, 36(2):226 –247, 2010.

[HMF92] Mary Jean Harrold, John D. McGregor, and Kevin J. Fitzpatrick.
Incremental testing of object-oriented class structures. In ICSE ’92:
Proceedings of the 14th international conference on Software engi-
neering, pages 68–80, 1992.

[HO08] Mary Jean Harrold and Alessandro Orso. Retesting software during
development and maintenance. Frontiers of Software Maintenance,
pages 99–108, 2008.

105 Bibliography

[HR90] Jean Hartmann and David J. Robson. Techniques for selective
revalidation. IEEE Software, 7(1):31 –36, 1990.

[HS94] Mary Jean Harrold and Mary Lou Soffa. Efficient computation of
interprocedural definition-use chains. ACM Transactions on Pro-
gramming Languages and Systems, 16(2):175–204, 1994.

[HS05] Jason Osborne Hema Srikanth, Laurie Williams. System test case
prioritization of new and regression test cases. In Proceedings of the
International Symposium on Empirical Software Engineering, page
64Ð73, 2005.

[HZ93] James H. Hicinbothom and Wayne W. Zachary. A tool for auto-
matically generating transcripts of human-computer interaction.
In Proceedings of the Human Factors and Ergonomics Society 37th
Annual Meeting, volume 2, page 1042, 1993.

[IX08] Kobi Inkumsah and Tao Xie. Improving structural testing of object-
oriented programs via integrating evolutionary testing and sym-
bolic execution. In Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering, pages 297–306,
2008.

[Jac90] Jonathan Jacky. The Way of Z: Practical Programming with Formal
Methods. Cambridge University Press, 1990.

[JH03] James A. Jones and Mary Jean Harrold. Test-suite reduction
and prioritization for modified condition/decision coverage. IEEE
Transactions on Software Engineering, 29(3):195 – 209, 2003.

[JLDM09] Vilas Jagannath, Yun Young Lee, Brett Daniel, and Darko Marinov.
Reducing the costs of bounded-exhaustive testing. In FASE ’09:
Proceedings of the 12th International Conference on Fundamental
Approaches to Software Engineering, pages 171–185, 2009.

[JLM11] Vilas Jagannath, Qingzhou Luo, and Darko Marinov. Change-
aware preemption prioritization. In ISSTA ’11: Proceedings of the
2011 International Symposium on Software Testing and Analysis,
pages 133–143, 2011.

106 Bibliography

[JOX10a] Wei Jin, Alessandro Orso, and Tao Xie. Automated behavioral re-
gression testing. In Proceedings of the Third International Confer-
ence on Software Testing, Verification and Validation, pages 137–
146, 2010.

[JOX10b] Wei Jin, Alessandro Orso, and Tao Xie. BERT: a tool for behavioral
regression testing. In Proceedings of the 18th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, pages
361–362, 2010.

[JS09] Lingxiao Jiang and Zhendong Su. Automatic mining of function-
ally equivalent code fragments via random testing. In ISSTA ’09:
Proceedings of the eighteenth international symposium on Software
testing and analysis, pages 81–92, 2009.

[Kin76] James C. King. Symbolic execution and program testing. Commu-
nications of the ACM, 19(7):385–394, 1976.

[KTH05] Bogdan Korel, Luay H. Tahat, and Mark Harman. Test prioritiza-
tion using system models. In Proceedings of the 21st IEEE Interna-
tional Conference on Software Maintenance, pages 559 – 568, 2005.

[Lev65] Vladimir I. Levenshtein. Binary codes capable of correcting spu-
rious insertions and deletions of ones. Problems of Information
Transmission, 1:8–17, 1965.

[LHH07] Zheng Li, Mark Harman, and Robert M. Hierons. Search algo-
rithms for regression test case prioritization. IEEE Transactions on
Software Engineering, 33(4):225 –237, 2007.

[LM90] Ursula Linnenkugel and Monika Müllerburg. Test data selection
criteria for (software) integration testing. In ISCI ’90: Proceedings
of the first international conference on systems integration on Sys-
tems integration, pages 709–717, 1990.

[LMH10] Kiran Lakhotia, Phil McMinn, and Mark Harman. An empirical in-
vestigation into branch coverage for C programs using CUTE and
AUSTIN. Journal of Systems and Software, 83:2379–2391, Decem-
ber 2010.

107 Bibliography

[LS92] Janusz Laski and Wojciech Szermer. Identification of program
modifications and its applications in software maintenance. In Pro-
ceedings of the International Conference on Software Maintenance,
pages 282 –290, 1992.

[McM04] Phil McMinn. Search-based software test data generation: a sur-
vey. Software Testing, Verification and Reliability, 14(2):105–156,
2004.

[McM05] Phil McMinn. Evolutionary Search for Test Data in the Presence of
State Behaviour. PhD thesis, University of Sheffield, 2005.

[MDR06] Henry Muccini, Marcio Dias, and Debra J. Richardsonn. Software
architecture-based regression testing. Journal of systems and soft-
ware, 79(10):1379–1396, 2006. Special Issue on ’Architecting De-
pendable Systems’.

[Mem04] Atif M. Memon. Using tasks to automate regression testing of GUIs.
In Proceedings of The IASTED International Conference on artificial
intelligence and applications, pages 477–482, 2004.

[Mem08] Atif M. Memon. Automatically repairing event sequence-based GUI
test suites for regression testing. ACM Transactions Software Engi-
neering Methodology, 18(2):1–36, 2008.

[Mir11] Mehdi Mirzaaghaei. Automatic test suite evolution. In FSE ’11:
Proceedings of the 2011 Foundations of Software Engineering Con-
ference, pages 396–399, 2011.

[MM07] Scott McMaster and Atif Memon. Fault detection probability anal-
ysis for coverage-based test suite reduction. In Proceedgins of the
IEEE International Conference on Software Maintenance, pages 335
–344, 2007.

[MNX05] Atif Memon, Adithya Nagarajan, and Qing Xie. Automating re-
gression testing for evolving GUI software. Journal of Software
Maintenance, 17(1):27–64, 2005.

[MP11] Mehdi Mirzaaghaei and Fabrizio Pastore. TestCareAssistant: Auto-
matic repair of test case compilation errors. In Proceedings of 6th
Italian Workshop on Eclipse Technologies, pages 90–101, 2011.

108 Bibliography

[MPP10] Mehdi Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzè. Automati-
cally repairing test cases for evolving method declarations. In ICSM
’10: Proceedings of the 26th IEEE International Conference on Soft-
ware Maintenance, pages 1–5, 2010.

[MPP11] Mehdi Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzè. Algo-
rithms for repairing test suites through parameters adaptation.
Technical report, Faculty of Informatics, University of Lugano,
Switzerland, 2011.

[MPP12] Mehdi Mirzaaghaei, Fabrizio Pastore, and Mauro Pezzè. Support-
ing test suite evolution through test case adaptation. In proceedings
of the Fifth International Conference on Software Testing, Verification
and Validation, pages 231–240, 2012.

[MS03] Atif M. Memon and Mary Lou Soffa. Regression testing of GUIs. In
ESEC/FSE-11: Proceedings of the 9th European software engineering
conference and The 11th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 118–127, 2003.

[MS07] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In
ICSE ’07: Proceedings of the 29th international conference on Soft-
ware Engineering, pages 416–426, 2007.

[MT04] Tom Mens and Tom Tourwe. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30:126–139, 2004.

[Muc07] Henry Muccini. Using model differencing for architecture-level re-
gression testing. In EUROMICRO ’07: Proceedings of the 33rd EU-
ROMICRO Conference on Software Engineering and Advanced Appli-
cations, pages 59–66, 2007.

[NMS+11] Agastya Nanda, Senthil Mani, Saurabh Sinha, Mary Jean Harrold,
and Alessandro Orso. Regression testing in the presence of non-
code changes. In Proceedings of Fourth IEEE International Confer-
ence on Software Testing, Verification and Validation, pages 21 –30,
2011.

[NW70] Saul Needleman and Christian Wunsch. A general method applica-
ble to the search for similarities in the amino acid sequence of two
proteins. Journal of Molecular Biology, 48(3):443 – 453, 1970.

109 Bibliography

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[OSH04] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. Scaling
regression testing to large software systems. SIGSOFT Software
Engineering Notes, 29:241–251, 2004.

[PE07] Carlos Pacheco and Michael D. Ernst. Randoop: feedback-directed
random testing for Java. In OOPSLA ’07: Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming systems
and applications companion, pages 815–816, 2007.

[PLB08] Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball. Finding
errors in .net with feedback-directed random testing. In Proceed-
ings of the 2008 international symposium on Software testing and
analysis, ISSTA ’08, pages 87–96, 2008.

[PLEB07] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas
Ball. Feedback-directed random test generation. In ICSE ’07: Pro-
ceedings of the 29th International Conference on Software Engineer-
ing, 2007.

[PMB+08] Corina S. Pǎsǎreanu, Peter C. Mehlitz, David H. Bushnell, Karen
Gundy-Burlet, Michael Lowry, Suzette Person, and Mark Pape.
Combining unit-level symbolic execution and system-level con-
crete execution for testing NASA software. In ISSTA ’08: Proceed-
ings of the 2008 international symposium on Software testing and
analysis, pages 15–26, 2008.

[PSO12] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. Under-
standing myths and realities of test-suite evolution. In FSE ’12:
Proceedings of the 2012 Foundations of Software Engineering Con-
ference, 2012.

[PY07] Mauro Pezzè and Michal Young. Software Testing and Analysis:
Process, Principles, and Techniques. John Wiley & Sons, Inc, 2007.

[REP+11] Brian Robinson, Michael D. Ernst, Jeff H. Perkins, Vinay Augustine,
and Nuo Li. Scaling up automated test generation: Automatically
generating maintainable regression unit tests for programs. In In-
ternational Conference on Automated Software Engineering, pages
23–32, 2011.

110 Bibliography

[RGJ06] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagan-
nathan. Sieve: A tool for automatically detecting variations across
program versions. In Proceedings of the 21st IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 241–
252, 2006.

[RH94] Gregg Rothermel and Mary Jean Harrold. Selecting tests and iden-
tifying test coverage requirements for modified software. In ISSTA
’94: Proceedings of the 1994 ACM SIGSOFT international sympo-
sium on Software testing and analysis, pages 169–184, 1994.

[RH97] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regres-
sion test selection technique. ACM Transactions on Software Engi-
neering and Methodology, 6(2):173–210, 1997.

[RHOH98] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin, and Christie
Hong. An empirical study of the effects of minimization on the
fault detection capabilities of test suites. In Proceedings of the Inter-
national Conference on Software Maintenance, pages 34 –43, 1998.

[RRST05] Xiaoxia Ren, Barbara G. Ryder, Maximilian Stoerzer, and Frank Tip.
Chianti: a change impact analysis tool for Java programs. In ICSE
’05: Proceedings of the 27th international conference on Software
engineering, pages 664–665, 2005.

[SB02] Ken Schwaber and Mike Beedle. Agile Software Development with
Scrum. Prentice Hall, 2002.

[SCA+08] Raul Santelices, Pavan Kumar Chittimalli, Taweesup Apiwat-
tanapong, Alessandro Orso, and Mary Jean Harrold. Test-suite
augmentation for evolving software. In ASE ’08: The 23rd
IEEE/ACM International Conference on Automated Software Engi-
neering, pages 218–227, 2008.

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic
unit testing engine for c. SIGSOFT Software Engineering Notes,
30(5):263–272, 2005.

[SRRE08] Michele Sama, Franco Raimondi, David S. Rosenblum, and Wolf-
gang Emmerich. Algorithms for efficient symbolic detection of
faults in context-aware applications. In Proceedings of 23rd

111 Bibliography

IEEE/ACM International Conference on Automated Software Engi-
neering Workshops, pages 1 –8, 2008.

[SS04] Mirko Streckenbach and Gregor Snelting. Refactoring class hier-
archies with kaba. In OOPSLA ’04: Proceedings of the 19th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 315–330, 2004.

[SSK03] Friedrich Steimann, Wolf Siberski, and Thomas Kühne. Towards
the systematic use of interfaces in Java programming. In PPPJ ’03:
Proceedings of the 2nd international conference on Principles and
practice of programming in Java, pages 13–17, 2003.

[ST02] Amitabh Srivastava and Jay Thiagarajan. Effectively prioritizing
tests in development environment. In ISSTA ’02: Proceedings of the
2002 ACM SIGSOFT international symposium on Software testing
and analysis, pages 97–106, 2002.

[SYC+04] Kevin Sullivan, Jinlin Yang, David Coppit, Sarfraz Khurshid, and
Daniel Jackson. Software assurance by bounded exhaustive test-
ing. In ISSTA ’04: Proceedings of the 2004 ACM SIGSOFT interna-
tional symposium on Software testing and analysis, pages 133–142,
2004.

[Tah92] Abu-Bakr Mostafa Taha. An approach to software fault localization
and revalidation based on incremental data flow analysis. PhD the-
sis, University of Florida, 1992.

[TBV07] Aaron Tomb, Guillaume Brat, and Willem Visser. Variably inter-
procedural program analysis for runtime error detection. In ISSTA
’07: Proceedings of the 2007 international symposium on Software
testing and analysis, pages 97–107, 2007.

[TDH08] Nikolai Tillmann and Jonathan De Halleux. Pex: white box test
generation for .NET. In TAP’08: Proceedings of the 2nd international
conference on Tests and proofs, pages 134–153, 2008.

[TdHTW10] Suresh Thummalapenta, Jonathan de Halleux, Nikolai Tillmann,
and Scott Wadsworth. DyGen: automatic generation of high-
coverage tests via mining gigabytes of dynamic traces. In TAP ’10:
Proceedings of the 4th international conference on Tests and proofs,
pages 77–93, 2010.

112 Bibliography

[Ton04] Paolo Tonella. Evolutionary testing of classes. SIGSOFT Software
Engineering Notes, 29(4):119–128, 2004.

[TXT+09] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan
de Halleux, and Wolfram Schulte. MSeqGen: object-oriented unit-
test generation via mining source code. In ESEC/FSE ’09: Proceed-
ings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of
software engineering, pages 193–202, 2009.

[TXT+11] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan
de Halleux, and Zhendong Su. Synthesizing method sequences for
high-coverage testing. SIGPLAN Notices - Proceedings of the 2011
ACM international conference on Object oriented programming sys-
tems languages and applications, 46(10):189–206, 2011.

[Utt05] Mark Utting. Position paper: Model-based testing. In Verified Soft-
ware: Theories, Tools, Experiments, 2005.

[VF97] Filippos Vokolos and Phyllis Frankl. Pythia: a regression test selec-
tion tool based on textual differencing. In Proceedings of 3rd inter-
national conference on on Reliability, quality and safety of software-
intensive systems, pages 3–21, 1997.

[VPK04] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test in-
put generation with Java pathfinder. SIGSOFT Software Engineer-
ing Notes, 29:97–107, 2004.

[VPP06a] Willem Visser, Corina S. Pǎsǎreanu, and Radek Pelánek. Test input
generation for Java containers using state matching. In ISSTA ’06:
Proceedings of the 2006 international symposium on Software testing
and analysis, pages 37–48, 2006.

[VPP06b] Willem Visser, Corina S. Pǎsǎreanu, and Radek Pelánek. Test input
generation for Java containers using state matching. In ISSTA ’06:
Proceedings of the 2006 international symposium on Software testing
and analysis, pages 37–48, 2006.

[VRCG+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren,
Patrick Lam, and Vijay Sundaresan. Soot - a Java bytecode op-
timization framework. In CASCON ’99: Proceedings of the 1999

113 Bibliography

conference of the Centre for Advanced Studies on Collaborative re-
search, page 13. IBM Press, 1999.

[VRHS+99] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam,
Etienne Gagnon, and Phong Co. Soot - a Java optimization frame-
work. In Proceedings of CASCON 1999, pages 125–135, 1999.

[WHLB97] Eric Wong, Joseph R. Horgan, Saul London, and Hira Agrawal Bell-
core. A study of effective regression testing in practice. In Proceed-
ings of the Eighth International Symposium On Software Reliability
Engineering, pages 264 –274, 1997.

[WSKR06] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer, and
Robert S. Roos. TimeAware test suite prioritization. In ISSTA ’06:
Proceedings of the 2006 international symposium on Software testing
and analysis, pages 1–12, 2006.

[WST09] Jan Wloka, Manu Sridharan, and Frank Tip. Refactoring for reen-
trancy. In ESEC/FSE ’09: Proceedings of the the 7th joint meeting
of the European software engineering conference and the ACM SIG-
SOFT symposium on The foundations of software engineering, pages
173–182, 2009.

[XGF08] Qing Xie, Mark Grechanik, and Chen Fu. REST: A tool for reducing
effort in script-based testing. In IEEE International Conference on
Software Maintenance, pages 468–469, 2008.

[XKK+10] Zhihong Xu, Yunho Kim, Moonzoo Kim, Gregg Rothermel, and
Myra B. Cohen. Directed test suite augmentation: Techniques and
tradeoffs. In FSE ’10: Proceedings of the 2010 Foundations of Soft-
ware Engineering Conference, pages 257–266, 2010.

[XN05] Tao Xie and David Notkin. Checking inside the black box: Re-
gression testing by comparing value spectra. IEEE Transactions on
Software Engineering, 31:869–883, 2005.

[XR07] Guoqing Xu and Atanas Rountev. Regression test selection for As-
pectJ software. In Proceedings of 29th International Conference on
Software Engineering, pages 65 –74, 2007.

[XR09] Zhihong Xu and Gregg Rothermel. Directed test suite augmen-
tation. In APSEC ’09: Proceedings of the 2009 16th Asia-Pacific
Software Engineering Conference, pages 406–413, 2009.

114 Bibliography

[XS06] Zhenchang Xing and Eleni Stroulia. Refactoring practice: How it is
and how it should be supported an eclipse case study. In ICSM’06:
IEEE International Conference on Software Maintenance, pages 458–
468, 2006.

[ZRWS06] Jiang Zheng, Brian Robinson, Laurie Williams, and Karen Smiley.
Applying regression test selection for COTS-based applications. In
ICSE ’06: Proceedings of the 28th international conference on Soft-
ware engineering, pages 512–522, 2006.

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Research Hypothesis and Contributions
	Scope of Research
	Structure of the Dissertation

	State of The Art
	Test Case Generation
	Random Test Case Generation
	Symbolic and Concolic Execution
	Search-Based Test Generation
	Model-Based Testing
	Heuristic-Based Approaches

	Regression Testing
	Regression Test Selection
	Test Suite Prioritization
	Test Suite Augmentation
	Test Suite Minimization

	Test Suite Repair
	Repairing GUI Test Cases
	Repairing Test Oracles
	Refactoring Techniques

	Test Evolution
	TestCareAssistant
	Test Reuse Patterns
	Change of Method Declaration
	Extension of Class Hierarchy
	Implementation of Interface
	Introduction of Overloaded Method
	Introduction of Overridden Method

	Test Suite Repair
	Motivating Example
	Automatic Test Repair
	Analyze the Change
	Determine the Initialization Values
	Input Parameters
	Variables Following Modified Method

	Repair Test Case
	Update Variable Definitions
	Initialize New Variables

	Test Suite Adaptation
	Motivating Example
	Overview of Test Adaptation Process
	Identify and Copy Candidate Test Cases
	Classes Added to a Hierarchy
	Interface Implementations
	Overloaded Methods
	Overridden Methods

	Adapt Candidate Test Cases
	Update References to New Element
	Adapt Compilation Errors
	Adapt Oracles
	Repair Runtime Failures

	Removing Redundant Test Cases

	Prototype Implementation
	The Test Repair Toolsuite
	The Test Evolution Toolsuite

	Evaluation
	Evaluation Methodology
	Case Study Subjects
	Applicability of Test Reuse Patterns
	Change of Method Declaration
	Extension of Hierarchy and Implementation of Interface
	Introduction of Overriding and Overloading Methods

	Effectiveness of Change of Method Declaration
	Effectiveness of Generating Tests for New Classes
	Code Coverage
	Conciseness

	Effectiveness of Generating Tests for New Methods
	Code Coverage
	Conciseness

	Discussion
	Availability of Test Cases to Reuse
	Using Mock Objects

	Conclusion
	Contributions
	Future Research Directions

	Bibliography

