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Abstract

We characterize the robustness of subsampling procedures by deriving a formula for the

breakdown point of subsampling quantiles. This breakdown point can be very low for

moderate subsampling block sizes, which implies the fragility of subsampling procedures,

even when they are applied to robust statistics. This instability arises also for data driven

block size selection procedures minimizing the minimum confidence interval volatility in-

dex, but can be mitigated if a more robust calibration method can be applied instead.

To overcome these robustness problems, we introduce a consistent robust subsampling

procedure for M-estimators and derive explicit subsampling quantile breakdown point

characterizations for MM-estimators in the linear regression model. Monte Carlo simula-

tions in two settings where the bootstrap fails show the accuracy and robustness of the

robust subsampling relative to the subsampling.
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1 Introduction

Resampling methods are powerful tools in modern statistics and econometrics; bootstrap pro-

cedures (see, e.g., Hall, 1992, Efron and Tibshirani, 1993, and Hall and Horowitz, 1996) and

subsampling procedures (Politis and Romano, 1992, 1994) have widespread applicability, and

are useful for a wide variety of inference problems in many fields. The bootstrap has been the

object of a huge research in statistics and econometrics, since its introduction by Efron (1979).

Subsampling procedures are more recent, but have gained rapidly considerable attention. The

simpler consistency conditions and the wider applicability in some cases (see, e.g., Andrews,

2000, and Bickel et al., 1997, for some famous examples) make subsampling a useful and valid

alternative to the bootstrap. Some examples of recent applications of subsampling proce-

dures include: Chernozhukov and Fernandez-Val (2005), who analyze subsampling inference

of quantile regression processes; Gonzalo and Wolf (2005), who study subsampling inference

in threshold autoregressive models; Linton, Maasoumi and Whang (2005), who develop a sub-

sampling testing procedure for stochastic dominance; Hong and Scaillet (2006), who propose a

fast subsampling method for nonlinear dynamic models; Lee and Pun (2006), who investigate

subsampling in nonstandard M-Estimation with nuisance parameters.

As emphasized, for instance, by Bickel et al. (1997), a key issue in the application of

subsampling methods is the selection of an adequate subsampling block size m among the n

data points, because subsampling accuracy can highly depend on this parameter. Hall and

Yao (2003) highlight this problem for GARCH settings with asymmetric heavy-tailed errors.

Cowell and Flachaire (2007) and Davidson and Flachaire (2007) observe a similar problem when

resampling inequality and poverty measures. Our goal in this paper is to study the robustness

of subsampling methods in relation to the choice of the subsampling block size.

The need for robust statistical procedures has been stressed by many authors and is now

widely recognized; see, e.g., Huber (1981), Hampel, Ronchetti, Rousseeuw and Stahel (1986),

Heritier and Ronchetti (1994), Sakata and White (1998), Ronchetti and Trojani (2001), Ortelli

and Trojani (2005), Mancini, Ronchetti and Trojani (2005), and La Vecchia and Trojani (2010).

A natural question is this context is whether standard subsampling methods applied to robust
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statistics already imply a robust subsampling inference. The answer is no and motivates our

interest for robust versions of the subsampling approach.

The following example, inspired by Singh (1998) in the bootstrap setting, illustrates the

intuition for the failing robustness of the standard subsampling, even when applied to a robust

statistic. Consider the 10% trimmed mean Tn := T (X1, . . . , Xn; 0.1) (i.e., 5% trimming each

side) on a random sample (X1, . . . , Xn) of size n = 200. If there are 8 outliers in the upper

tail, that is, the order statistics {X(193), ...X(200)} are extraordinarily large, Tn stays unaffected

due to the trimming. Now suppose a subsample (X∗1 , . . . , X
∗
m) of size m = 20 is drawn without

replacement from this sample. One outlier out of {X(193), ...X(200)} could appear, two outliers

could appear, or, in the most extreme case, the whole set of outliers could appear in the

subsample. Consider the subsampling distribution of the trimmed mean. If one outlier appears,

the subsampling statistic T ∗n,m := T (X∗1 , . . . , X
∗
m; 0.1) is free ot it. If at least two outliers appear,

it is not. The chances for the event that T ∗n,m is free of a single outlier is p0 = P [X(200, 20, .04) ≤

1], which is about 80%, where X(n,m, p) denotes an hypergeometrically distributed random

variable, with parameters n, np, and m. This means that if the order statistics diverge to

infinity, 100(1 − p0)% of all subsampling statistics diverge to infinity as well. In other words,

the subsampling quantile Q∗t,n,m of T ∗n,m, where t ranges from 0 to 1, will go to infinity for

all probability levels t > p0 ' 80%. This illustrates that the subsampling distribution of the

trimmed mean is not immune from the breakdown of its upper quantile when t > p0, and is

thus not robust to the presence of outliers in the original sample. This simple example also

indicates that the subsampling tends to be more fragile than its bootstrap counterpart. The

chances for the event that the bootstrap statistic T ∗n := T (X∗1 , . . . , X
∗
n; 0.1) computed on a

bootstrap sample (X∗1 , . . . , X
∗
n) of size n = 200 is free of 10 outliers is P [B(200, .04) ≤ 10] = p0,

which is about 82%, where B(n, p) denotes a binomial random variable, with parameters n and

p. Moreover, the above arguments also show that lower subsampling block sizes strengthen

the subsampling robustness problem. For example, it is easy to see that in the above setting a

block size m = 10 implies a chance of only 66% for the event that T ∗n,m does not depend on a

single outlier.

We organize the rest of the paper as follows. In Section 2.1, we focus on global subsam-
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pling instability. We derive a formula for the breakdown point of subsampling quantiles, i.e.,

we compute the smallest fraction of outliers in the original sample such that the subsampling

quantile diverges to infinity. When this occurs, inference based on subsampling distributions

becomes meaningless. Indeed, critical values of subsampling-based tests diverge to infinity, and

confidence intervals computed using subsampling distributions have an infinite length. It turns

out that in this case both the size and the power of subsampling-based tests collapse to zero

or one. Consequently, the quantile breakdown point is an important global robustness tool for

describing up to which fraction of contaminations the subsampling distribution still provides

some reliable information. We show that the subsampling quantile breakdown point is increas-

ing in the subsampling block size, the sample size, and the breakdown point of the statistic

used. Concrete computations show that moderate block sizes typically chosen in applications

can imply very unstable subsampling quantiles even when exploiting robust statistics. This

instability is larger than the one observed for standard bootstrap quantiles; see, e.g., Singh

(1998), and Salibian-Barrera and Zamar (2002). As shown in Section 2.2, it also arises for

data driven block size selection procedures based on the minimum confidence interval volatility

(MCIV) index, but can be mitigated by a more robust calibration approach (Romano and Wolf,

2001). To overcome these robustness problems, we introduce a robust subsampling method for

M-estimators in Section 2.3. We further analyze in detail the properties of the robust subsam-

pling for MM-estimates in the linear regression setting, by computing its breakdown point and

by proving its consistency in Section 2.4. Monte Carlo simulations and sensitivity analysis are

presented in Section 3, for two settings where the bootstrap fails. In the first example, we study

the inference about the squared mean of a random variable. In the second example, we study

a linear regression model with a parameter of interest near a boundary. Andrews and Guggen-

berger (2009a,b, 2010a,b) show that subsampling methods may imply a distorted asymptotic

size, when applied to statistics with a discontinuous asymptotic distribution in some model

parameter. They propose hybrid subsampling methods to overcome the problem. We borrow

from their approach to compute confidence intervals for the relevant parameter using hybrid

robust subsampling procedures. Section 4 gathers concluding remarks.
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2 Subsampling Breakdown Point and Robust Subsam-

pling

Let (X1, . . . , Xn) be an iid random sample from a probability distribution H on the real line

and Tn := T (X1, . . . , Xn) be a one-dimensional real valued statistic. Let 0 < b ≤ 0.5 be the

upper breakdown point of Tn, that is, nb is the smallest number of observations that need to

go to ±∞ in order to force Tn to go to +∞ (symmetrically, for one-dimensional real valued

statistics, the lower breakdown point of Tn is the smallest number of observations that need

to go to ±∞ in order to force Tn to go to −∞). The breakdown point b is an intrinsic

characteristic of the chosen statistic. It is explicitly known in some cases, and can be gauged

most of the time, for instance by means of simulation or sensitivity analysis. Many nonrobust

statistics have a breakdown point b = 1/n. Given a subsampling block size m < n, a random

subsample (X∗1 , . . . , X
∗
m) is drawn without replacement from the original sample (X1, . . . , Xn).

T ∗n,m := T (X∗1 , . . . , X
∗
m) denotes the subsampling statistic. Given t ∈ (0, 1), the t-quantile of

T ∗n,m is Q∗t,n,m := inf{x|P
[
T ∗n,m ≤ x

]
≥ t}, where, by definition, inf(∅) :=∞.

Definition 1 The upper breakdown point of the subsampling distribution t-quantile Q∗t,n,m =

Q∗t,n,m(X1, . . . , Xn) is defined by

bt,n,m := inf{p ∈ [1/n, b] : np ∈ N and Q∗t,n,m(Z1, . . . , Zn)→ +∞}, (1)

where the sample (Z1, . . . , Zn) is obtained by replacing np data points Xi1 , . . . , Xinp of the orig-

inal sample (X1, . . . , Xn) by values Yi1 , . . . , Yinp, with Yij → ±∞, j = 1, . . . , np.

By definition, bt,n,m is the smallest fraction of outliers in the original sample (X1, .., Xn)

such that the t−quantile of T ∗n,m diverges to infinity. Intuitively, bt,n,m is a measure of the

stability of quantile estimates provided by subsampling procedures, with respect to data con-

taminations of the original sample. In this section, we focus for brevity on one-dimensional real

valued statistics, even if, as discussed for instance by Singh (1998) in relation to the bootstrap,

our subsampling breakdown point results extend naturally to multivariate and scale statistics.
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The extension of our theory to the m out of n bootstrap is also straightforward. Asymptotic

confidence intervals built by subsampling and m out of n bootstrap are equivalent for iid obser-

vations when m2/n → 0; see Politis, Romano and Wolf (1999), Section 2.3, and Andrews and

Guggenberger (2009a, 2010a,b). Therefore, for brevity, we focus in the sequel on subsampling

procedures only.

2.1 Explicit Breakdown Point Formula for Subsampling Quantiles

The formula for the breakdown point of subsampling quantiles is given in the next theorem.

Theorem 2 The subsampling upper t−quantile breakdown point is

bt,n,m = inf{p ∈ [1/n, b] : np ∈ N and P [X(n,m, p) < mb] < t}, (2)

where X(n,m, p) is a hypergeometrically distributed random variable with parameters n, np,

and m.

From formula (2), bt,n,m depends on the quantile probability t, the breakdown point b of

Tn, the block size m, and the sample size n. It is decreasing in t, and increasing in b, m, for

mb ∈ N. Moreover, bt,n,m = b for m = n. The formula for the subsampling lower t−quantile

breakdown point is analogous.

The main implication of Theorem 2 is that it pays to start with a robust statistic Tn having

nontrivial breakdown point, to stay away from extreme quantiles, and to avoid small block

sizes. Table 1 emphasizes this point by computing the subsampling quantile breakdown points

when n = 40, 80, 120, and for b = 0.25, 0.5. The bootstrap quantile breakdown points based on

Singh (1998) formula are often close to the ones given by medium subsample sizes.

Insert Table 1 about here

Theorem 2 implies that we can always obtain a target upper quantile breakdown point

b̂ ∈ (1/n, b] by selecting a suitable block size m̂ = m̂(n, t, b, b̂). The formula for the smallest

block size ensuring a given upper breakdown point of subsampling quantiles is given below.
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Corollary 3 For given t ∈ (0, 1), let b̂ ∈ (1/n, b] be such that nb̂ ∈ N. The smallest block size

m̂ such that bt,n,m̂ ≥ b̂ is given by

m̂ = inf
{
m : P

[
X(n,m, b̂− 1/n) < mb

]
≥ t
}
.

Corollary 3 implies that, for b̂ = b, it is possible to obtain a breakdown point bt,n,m as large

as the one of the statistic Tn. As highlighted by Table 1, in order to achieve this goal, it is

not in general necessary to select a trivial block size m = n. For instance, when b = .25, for

sample sizes n = 40, 80, 120, the maximal breakdown point is achieved with m = 37, 77, 117,

respectively. When b = .5, and n = 40, 80, 120, it is instead achieved with m = 39, 79, 119,

respectively.

According to Theorem 2, the block size m has to be sufficiently high, in order to avoid

undesired subsampling breakdown properties. However, to get consistency in a general setting,

a condition like m/n → 0 should hold as n,m → ∞ (see, for instance, Politis, Romano and

Wolf, 1999). This means that the application of Corollary 3 is essentially relevant only for

particular settings for which the consistency of the subsampling holds with m = O(n); see Wu

(1990), and Remark 2.2.2 in Politis, Romano and Wolf (1999).

The asymptotic subsampling breakdown behavior is characterized as follows.

Corollary 4 Let subsampling block size m satisfy m/n → r ∈ [0, 1), m, n → ∞. Then,

bt,n,m = b− zt
√
b(1− b)(1− r)/

√
m + O(1/m), for n large enough, where zt is the t−quantile

of the standard normal distribution.

From Corollary 4, the subsampling breakdown point bt,n,m converges to the breakdown point

of statistic T as n,m → ∞. Therefore, similar to the asymptotic bootstrap breakdown point

formula in Singh (1998), Corollary 4 rules out the breakdown problem of subsampling quantiles

for large samples and large subsampling block sizes.
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2.2 Breakdown Point and Data Driven Choice of the Block Size

A main issue in the application of subsampling procedures is the choice of block size m, because

the subsampling accuracy heavily depends on this parameter. In this section, we study the

robustness of data driven block size selection procedures based on either a minimization of the

confidence interval volatility index (MCIV) or the calibration method (CM); see Romano and

Wolf (2001).

Given a sample of size n, we denote by M = {mmin . . . ,mmax} the set of admissible block

sizes. Both MCIV (denoted by v) and CM (denoted by c) select the data-driven block size

mu ∈M, with u = v, c, as solution of a problem of the form

mu = arg infm∈M{Fu,1(X1, . . . , Xn;m) : Fu,2(X1, . . . , Xn;m) ∈ Iu} , (3)

where by definition arg inf(∅) := ∞, Fu,1, Fu,2 are two scalar functions of the original sample

(X1, . . . , Xn) and block size m, and Iu is a subset of R; see equations (6) and (8) below for the

explicit definitions of Fu,1, Fu,2 in the setting u = v, c.

We characterize the robustness properties of MCIV and CM by their respectively breakdown

points. More precisely, we are interested in computing the minimal proportion of contamination

in the original sample such that the data driven choice of the block size fails and diverges to

infinity. Consequently, we consider the following definition for the breakdown point:

Definition 5 The breakdown point of mu := mu(X1, . . . , Xn) is defined as

but := inf{p ∈ [1/n, p] : np ∈ N and mu(Z1, . . . , Zn)→ +∞}, (4)

where the sample (Z1, . . . , Zn) is obtained by replacing np data points Xi1 , . . . , Xinp of the orig-

inal sample (X1, . . . , Xn) by values Yi1 , . . . , Yinp, with Yij → ±∞, j = 1, . . . , np.

In the next sections, we briefly describe the MCIV and CM approaches, and compute their

breakdown points.
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2.2.1 Minimum Confidence Interval Volatility Method

A consistent method for a data driven choice of m determines the block size by minimizing the

confidence interval volatility index across the admissible values of m. For brevity, we present

the method for one–sided intervals. Modifications for the case with two–sided intervals are

obvious.

Definition 6 Let mmin < mmax, and k ∈ N be fixed. For m ∈ {mmin−k, . . . ,mmax +k} denote

by Q∗t (m) the (lower) t−subsampling quantile for block size m. Further, define Q
∗k
t (m) as the

average quantile Q
∗k
t (m) := 1

2k+1

∑j=k
j=−kQ

∗
t (m+ j). The confidence interval volatility (CIV)

index is defined for m ∈ {mmin,mmin + 1, ...,mmax − 1,mmax} by

CIV (m) :=
1

2k + 1

j=k∑
j=−k

(
Q∗t (m+ j)−Q∗kt (m)

)2
. (5)

LetM := {mmin,mmin+1, . . . ,mmax}. The data driven block size that minimizes the confidence

interval volatility index is

mv = arg infm∈M{CIV (m) : CIV (m) ∈ R+} , (6)

where, by definition, arg inf(∅) :=∞.

The block size mv minimizes the empirical variance of the upper bound in a subsampling

confidence interval with nominal confidence level t. Typical recommended choices for k, mmin

and mmax are k = 2, 3, mmin = c1n
ζ and mmax = c2n

ζ , respectively, where c1 ∈ [0.5, 1], c2 ∈ [2, 3]

and ζ = 0.5; see Romano and Wolf (2001). Moreoveor, according to Theorem 2, in order to

ensure a minimal breakdown point for the quantile of the subsampling distribution, we can

select the value of mmin as

mmin = max(c1n
ζ , m̂), (7)
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where m̂ is the minimal subsampling block size in Corollary 3, which ensures a breakdown

point larger than b̂. Using Theorem 2, the formula for the breakdown point of mv follows from

Definition 5.

Corollary 7 For given t ∈ (0, 1), let bt(m) be the subsampling upper t−quantile breakdown

point in Theorem 2, as a function of the block size m ∈M. Then we have:

bvt = sup
m∈M

inf
j∈{−k,..,k}

bt(m+ j).

Since mv is a crucial parameter for the accuracy of the resulting subsampling inference, it

is convenient to quantify bvt for realistic applications. To this end, we can use Corollary 7. For

instance, for a sample size n = 100 and for t = 0.99, we obtain mmin = 8 and mmax = 25, using

the average recommended choice in Romano and Wolf (2001), i.e., c1 = 0.75 and c2 = 2.5.

For a statistic with breakdown point b = 0.1 and for k = 3, this parameter setting implies

bvt = 0.03. In other words, three outliers out of a hundred data points are sufficient to break

down the data driven choice of m based on the MCIV index.

2.2.2 Calibration Method

Another consistent method for a data driven choice of the block size m can be based on a

calibration procedure in the spirit of Loh (1987). As above, we present this method for the

case of a one–sided confidence interval only. The modifications for two-sided intervals are

obvious.

Definition 8 Fix t ∈ (0, 1) and let (X∗1 , . . . , X
∗
n) be a bootstrap sample from (X1, . . . , Xn). For

each bootstrap sample, denote by Q∗∗t (m) the t−sub-sampling quantile according to block size

m. The data driven block size according to the calibration method is defined by

mc := arg inf
m∈M
{|t− P ∗ [Tn ≤ Q∗∗t (m)] | : P ∗ [Q∗∗t (m) ∈ R] > 1− t}, (8)

where, by definition, arg inf(∅) :=∞, and P ∗ denotes the probability with respect to the bootstrap

distribution.
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By definition, mc is the block size for which the bootstrap probability of the event {Tn ≤

Q∗∗t (m)} is as near as possible to the nominal level t of the confidence interval, but which, at

the same time, ensures that the subsampling quantile breakdown probability of the calibration

method is less than t. The last condition is necessary to ensure that the calibrated block size

mc does not imply a degenerate subsampling quantile Q∗∗t (mc) with a too large probability. By

definition, the breakdown point of mc is the smallest fraction of outliers such that equation (8)

is degenerate, similar to the MCIV index method. The formula for the breakdown point of mc

is given next.

Corollary 9 Let t ∈ (0, 1). The breakdown point of mc is given by bct = max
m∈M
{b∗∗t (m)}, with

b∗∗t (m) = inf{p ∈ [1/n, b] : np ∈ N and P [BIN(n, p) < nbt(m)] < 1− t},

where bt(m) is for given m ∈ M the quantile subsampling breakdown point in Theorem 2 and

BIN(n, p) is a binomial random variable with parameters n and p.

Table 2 compares the breakdown point of mv and mc for some concrete parameter choices,

given a statistic with breakdown point b = 0.5.

Insert Table 2 about here

These theoretical results corroborated by unreported Monte Carlo results in linear regres-

sion models indicate a higher robustness of the calibration method relative to the MCIV index

method. Therefore, from a robustness perspective, the former should be preferred when consis-

tent bootstrap methods are available. However, as discussed in Romano and Wolf (2001), the

application of the calibration method in some settings can be computationally too expensive.

In these cases, it is necessary to select an appropriate subset ofM for the admissible block size

(see Romano and Wolf (2001), Remark 5.4).

2.3 Robust Subsampling

To overcome the problem of the low breakdown point of subsampling quantiles, it is necessary

first to apply subsampling methods to robust statistics, in order to avoid a trivial breakdown
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point from the beginning, and, second, to robustify the subsampling procedure itself. We first

show how this goal can be achieved for the class of robust M-estimators, by applying the fast

subsampling approach in Hong and Scaillet (2006). Such a fast approach is put forward, among

others, in Davidson and McKinnon (1999) and Andrews (2002) for the bootstrap. It can be

used to extend in a convenient way the robust bootstrap procedure for fixed point estimators

of Salibian-Barrera, Van Aelst and Willems (2006, 2007) to the robust subsampling setting

with M-estimators. In a second step, we study in more detail the linear regression setting,

where explicit breakdown point characterizations are possible. We develop robust subsampling

procedures for robust MM-estimators and derive a formula for the implied subsampling quantile

breakdown point. These results are a natural complement to the theoretical findings obtained

in Salibian-Barrera and Zamar (2002) for the robust bootstrap.

We consider the class of robust M-estimators θ̂n for parameter θ ∈ Rd, defined by the

solution of

ψn(θ̂n) =
n∑
i=1

f(Xi, θ̂n) = 0, (9)

for some function ψn : Rd → Rd depending on the parameter θ and on the sample (X1, . . . , Xn),

where f is a known Rd-valued function. In particular, we focus on robust M-estimators with

bounded influence function, i.e., bounded estimating function f , see, e.g., Hampel, Ronchetti,

Rousseeuw and Stahel (1986).

The boundedness of the estimating function is a key feature for developing our robust

subsampling approach. As shown previously, a high breakdown point of θ̂n does not have to

imply a high breakdown point for the corresponding subsampling quantiles. For instance, in

Table 1, we obtain very low breakdown points of subsampling quantiles, especially for small

subsample sizes, even using robust estimators. A second issue is the fact that the application of

robust estimators in resampling schemes can rapidly become prohibitive from a computational

point of view.

To obtain a robust and computationally feasible subsampling method, we consider the

following Taylor expansion of (9) around the true parameter value θ?: ψn(θ̂n) = ψn(θ?) +

13



∇ψn(θ?)(θ̂n − θ?) + oP (1), where ∇ψn ∈ Rd×d is the matrix of partial derivatives with respect

to parameter θ. This implies: θ̂n − θ? = (−∇ψn(θ?))
−1ψn(θ?) + oP (1). Thus, we can consider:

(−∇ψn(θ̂n))−1ψ∗n,m(θ̂n) as an approximation of θ̂∗n,m − θ̂n, where ψ∗n,m is computed from the

subsampling block (X∗1 , . . . , X
∗
m).

Given the normalization constant τn, the robust subsampling distribution approximating

the sampling distribution of τn(θ̂n − θ?) is defined by

LRn,m(x) =
1

Nn,m

Nn,m∑
s=1

I
{
τm(−∇ψn(θ̂n))−1ψ∗n,m,s(θ̂n) ≤ x

}
, (10)

where s indexes the set of possible subsamples, Nn,m =
(
n
m

)
, and I{·} is the indicator function.

The following standard high-level assumptions ensures consistency of the robust subsampling

for the class of robust M-estimators; see also Politis, Romano, and Wolf (1999).

(A1) θ̂n = θ? +OP (1/τn).

(A2) (−∇ψn(θ̂n))−1 = (−∇ψn(θ?))
−1 + oP (1).

(A3) τn(θ̂n − θ?) = τn(−∇ψn(θ?))
−1ψn(θ?) + oP (1).

(A4) There exists a limit law J(H) such that the distribution of τn(θ̂n − θ?) converges weakly

to J(H).

Given Assumptions (A1)-(A4), consistency of the robust subsampling scheme follows as stated

in the next theorem.

Theorem 10 Let Assumptions (A1)-(A4) be satisfied. Assume further that τm/τn → 0 and

m/n→ 0 as m,n→∞. Then we get:

(1) If x is a continuity point of J(., H), then LRn,m(x)→ J(x,H) as n→∞.

(2) If J(., H) is continuous, then supx |LRn,m(x)− J(x,H)| → 0 in probability as n→∞.
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(3) Given α ∈ (0, 1) define cn,m(1− α) = inf{x : LRn,m(x) ≥ 1− α} and c(1− α,H) = inf{x :

J(x,H) ≥ 1− α}. If J(., H) is continuous at c(1− α,H), then:

P
[
τn(θ̂n − θ?) ≤ cn,m(1− α)

]
→ 1− α, as n→∞ .

Statements 1–3 in Theorem 10 are standard statements on the weak convergence of the robust

subsampling approximation to the true asymptotic distribution J(H) of
√
n(θ̂n−θ?). Statement

3 implies that the (1−α)−quantile of LRn,m converges to the corresponding (1−α)−quantile of

J(H). Therefore, the quantities cn,m(1− α), α ∈ (0, 1), can be used to construct finite sample

tests and confidence intervals for θ? with correct asymptotic size and coverage.

The robustness improvement provided by our robust approach is observable through the

definition of the robust subsampling distribution (10). Indeed, in this definition we note that

the subsampling quantile breakdown point is maximal if (i) (−∇ψn(θ̂n))−1 does not breakdown

as long as θ̂n does not breakdown, and (ii) given a subsampling block size m, function ψ∗n,m(θ̂n)

is bounded with a bound that depends only on the original data set. The last condition is

typically satisfied by the estimating functions of robust M-estimators. The first one is often

verifiable in concrete model settings. In Section 2.4, we characterize explicitly the breakdown

point of robust subsampling quantiles in the linear regression setting based on MM-estimates.

The fast subsampling approach can be applied also with estimators θ̃n defined by the solution

of a set of smooth fixed-point equations gn(θ̃n) = θ̃n, for some function gn : Rd → Rd depending

on the parameter θ and the sample (X1, . . . , Xn). This follows from writing the fixed-point

equations in the form gn(θ̃n) − θ̃n = 0. This corresponds to equation (9) with ψn = (gn −

Id), where Id is the identity function Id(x) = x. Consequently, in these cases the robust

subsampling is equivalent to the extension of the robust bootstrap approach in Salibian-Barrera,

Val Aelst and Willems (2007) to the subsampling setting.
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2.4 Robust Subsampling in the Linear Regression Model

We consider the iid linear regression model:

Yi = X ′iβ + σUi, i = 1, .., n, (11)

where Yi is a scalar random variable, Xi an Rd−valued random variable, β ∈ Rd, σ ∈ R+,

E[Ui] = 0, V ar(Ui) = 1, and E[UiXi] = 0. The joint probability distribution of (Yi, X
′
i)
′ is

denoted by H. Several robust estimators of β and σ are available in the literature; see, e.g.,

Hampel et al. (1986) for a review. We focus on a high-breakdown MM-estimator of β (Yohai,

1987).

Let {(yi, x′i)′ : i = 1, .., n} be a sample of observations of model (11). The MM-estimate β̂n

of β is defined by the implicit equation:

1

n

n∑
i=1

∇ρ1

(
yi − x′iβ̂n

σ̂n

)
xi = 0. (12)

In equation (12), ∇ρ1 is the derivative of a continuously differentiable, bounded and sym-

metric function ρ1, satisfying the assumption (A1)-(A4) below. The estimate σ̂n is a scale

S−estimate that minimizes with respect to β the M−estimate σ̂n(β), defined implicitly by

1

n

n∑
i=1

ρ0

(
yi − x′iβ
σ̂n(β)

)
= B, where function ρ0 satisfies the same assumptions as ρ1 and B is a

positive constant. We denote by β̃n the S−regression estimate, i.e., σ̂n = σ̂n(β̃n). The choice

of B determines the breakdown point of the estimators, which is maximal for B = 0.5 (see,

e.g., Huber, 1981).

Note that the estimates β̂n, σ̂n, and β̃n satisfy the equations,

1

n

n∑
i=1

∇ρ1

(
yi − x′iβ̂n

σ̂n

)
xi = 0,

1

n

n∑
i=1

ρ0

(
yi − x′iβ̃n

σ̂n

)
= B,

1

n

n∑
i=1

∇ρ0

(
yi − x′iβ̃n

σ̂n

)
xi = 0.

(13)

Let θ̂n = (β̂n, σ̂n, β̃n). Simple calculations allow us to write the equations in (13) as a unique

fixed-point equation gn(θ̂n) = θ̂n; see the proof of Theorem 13 for further details on the compu-
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tation of function gn. Therefore, as discussed in the previous section, we can apply our robust

subsampling approach to this setting. We first introduce the following notation.

Notation 11 (i) For i = 1, .., n, define the residuals: r̂i = yi − x′iβ̂n and r̃i = yi − x′iβ̃n, and

compute the weights: ω̂i = ∇ρ1(r̂i/σ̂n)/r̂i, ṽi =
σ̂n
nB

ρ0(r̃i/σ̂n)/r̃i. (ii) Given m < n, define for

every subsampling block {(y∗i , x∗i ′) : i = 1, ..,m} the residuals r̂∗i = y∗i−x∗i ′β̂n and r̃∗i = y∗i−x∗i ′β̃n,

and compute the weights:

ω̂∗i = ∇ρ1(r̂∗i /σ̂n)/r̂∗i , ṽ∗i =
σ̂n
nB

ρ0(r̃
∗
i /σ̂n)/r̃∗i . (14)

With these weights, define:

β̂∗n,m =

(
m∑
i=1

ω̂∗i x
∗
ix
∗
i
′

)−1 m∑
i=1

ω̂∗i x
∗
i y
∗
i , σ̂∗n,m =

m∑
i=1

ṽ∗i (y
∗
i − x∗i

′β̃n). (15)

Note that the weights ω̂i and ṽi are computed without recalculating the estimators β̂n, β̃n and

σ̂n, and are kept fixed for each subsampling block. Because of this construction, the quantities

β̂∗n,m and σ̂∗n,m in (15), which are only an approximation of the “true” point estimates β̂∗m and σ̂∗m

implied by the subsampling block {(y∗i , x∗′i ) : i = 1, ..,m}, may not reflect the actual variability

of β̂n and σ̂n. We overcome this problem by applying the linear correction factors defined in (17)

and (18) below. In this way, the large breakdown point of these estimators will be inherited by

the implied subsampling quantiles. Moreover, since it is not necessary to compute the implied

robust point estimate in each subsampling block, the robust subsampling in Definition 12 yields

a computationally feasible resampling scheme. This allows us to compute robust confidence

intervals for the regression parameter β in presence of the nuisance scale parameter σ.

Definition 12 Let β? be the true parameter value in the regression model (11) and Jn(H) be the

sampling distribution of
√
n(β̂n − β?), i.e., for any x ∈ Rn: Jn(x,H) = P

[√
n(β̂n − β?) ≤ x

]
.

The robust subsampling approximation of Jn(x,H) is given by

LRn,m(x) =
1

Nn,m

Nn,m∑
s=1

I
{
Mn

√
m(β̂∗n,m,s − β̂n) + dn

√
m(σ̂∗n,m,s − σ̂n) ≤ x

}
, (16)
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where the linear corrections Mn and dn are defined as follows:

Mn = σ̂n

(
n∑
i=1

∇2ρ1(r̂i/σ̂n)xix
′
i

)−1 n∑
i=1

ω̂ixix
′
i, (17)

dn =
nB

σ̂2
n

n∑
i=1

∇ρ0(r̃i/σ̂n)r̃i/σ̂n

(
n∑
i=1

∇2ρ1(r̂i/σ̂n)xix
′
i

)−1 n∑
i=1

∇2ρ1(r̂i/σ̂n)r̂ixi. (18)

The following are detailed assumptions on the robust linear regression setting based on the

above MM-estimator, which ensure consistency of the robust subsampling approximation in

Definition 12.

(A5) The sampling distribution Jn(H) converges weakly to a limit distribution J(H) as n→∞.

(A6) The following limits in probability hold as n → ∞: β̂n→β?, β̃n→β̃?, σ̂n → σ?, where

parameters β?, β̃? and σ? are the unique solution of the set of moment conditions:

E [∇ρ1((Y1 −X ′1β)/σ)] = 0, E
[
ρ0((Y1 −X ′1β̃)/σ)

]
= B, E

[
∇ρ0((Y1 −X ′1β̃)/σ)

]
= 0.

(A7) For j = 0, 1, the function ρj is three times continuously differentiable and such that: (R1)

ρj(−u) = ρj(u) for all u ∈ R; (R2) ρj(0) = 0; (R3) supu |ρj(u)| = 1; (R4) If ρj(u) < 1

and 0 < v < u then ρj(v) < ρj(u).

(A8) Let r = Y1 −X ′1β?. The following matrices exist and are finite:

E

[
∇ρ1(r)
r

X1X
′
1

]−1
, E [∇ρ1(r)X1X

′
1] , E

[
∇2ρ1(r)X1X

′
1

]−1
, (19)

E [∇ρ1(r)rX1X
′
1] , E

[
∇ρ0(r)
r

X1X
′
1

]−1
, E [∇ρ0(r)r] , (20)

E
[
∇2ρ0(r)X1X

′
1

]
, E
[
∇2ρ0(r)rX1

]
, E
[
∇2ρ1(r)rX1

]
. (21)

In addition, the third matrix in (20) is not zero.

(A9) The following functions are continuous:

u 7−→ ∇ρ0(u)

u
, u 7−→ ∇ρ0(u)−∇2ρ0(u)u

u2
, u 7−→ ∇ρ1(u)−∇2ρ1(u)u

u2
.
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A well-known example where assumptions (A1)-(A9) are typically satisfied arises for func-

tions ρ in the Tukey’s family:

ρ(u) =

 3(u/d)2 − 3(u/d)4 + (u/d)6, if |u| ≤ d,

1 if |u| > d,

where d > 0 is a fixed constant; see also Salibian-Barrera and Zamar (2002). We use a MM-

estimator based on such functions in the Monte Carlo experiments reported below for the

linear regression. Consistency of the robust subsampling in Definition 12 is stated in the next

theorem.

Theorem 13 Let Assumption (A5)-(A9) be satisfied. Then we get:

1. If x is a continuity point of J(·, H), then the following limit in probability holds as n,m→

∞ and m/n→ 0: LRn,m(x)→ J(x,H).

2. If J(·, H) is continuous, then the following limit in probability holds as n,m → ∞ and

m/n→ 0: sup
x
|LRn,m(x)− J(x,H)| → 0.

3. For α ∈ (0, 1), define cn,m(1 − α) = inf{x : LRn,m(x) ≥ 1 − α}, c(1 − α,H) = inf{x :

J(x,H) ≥ 1− α}. If J(·, H) is continuous at c(1− α,H), then the following limit holds

as n,m→∞ and m/n→ 0: P
[√

n(β̂n − β?) ≤ cn,m(1− α)
]
→ 1− α.

In contrast to the general M-estimator case, we can exploit the additional structure of the

linear regression setting to explicitly characterize the breakdown point of robust subsampling

quantiles. The breakdown point formula for the robust subsampling in Definition 12 is given

in the next theorem.

Theorem 14 Let
√
ω̂1x1, ..,

√
ω̂nxn be in general position, i.e., any d row vectors of the n× d

design matrix X = [
√
ω̂ix

′
i]i=1,..,n are linearly independent, and fix t ∈ (0, 1).

1. The breakdown point bRt,n,m of the t−quantile of the robust subsampling in Definition 12

is given by

bRt,n,m = inf{p ∈ [1/n, b] : np ∈ N and P [X(n,m, p) ≤ m− d] < t}, (22)
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where b is the breakdown point of the robust MM−regression estimator β̂n.

2. Let b̂R ∈ (1/n, b] be such that nb̂R ∈ N. The smallest block size m̂R such that bRt,n,m̂R ≥ b̂R

is given by

m̂R = inf{m : P
[
X(n,m, b̂R − 1/n) ≤ m− d

]
≥ t}.

The assumption on the general position of
√
ω̂1x1, ..,

√
ω̂nxn is also used in Salibian-Barrera

and Zamar (2002), and is needed here to ensure that the approximation β̂∗n,m of the subsam-

pling estimate β̂∗m is well-defined in every subsampling block. By comparing (22) with the

breakdown formula (2) of the standard subsampling in Theorem 2, we note that for reason-

able parameter choices mb << m − d = m(1 − d/m). Therefore, P [X(n,m, p) < mb] <<

P [X(n,m, p) ≤ m− d] and bRt,n,m >> bt,n,m. The numerical difference between the two break-

down points can be large. Table 3 computes the robust subsampling breakdown point for a

setting with d = 3 and for sample sizes n = 40, 80, 120, in dependence of the breakdown point b

of the MM−regression estimator β̂n. We find that statement 2 of Theorem 14 can be more rele-

vant for applications than the one of Corollary 3. This is so because a large breakdown point of

the robust subsampling can arise also for small subsampling block sizes, which asymptotically

can more easily ensure the subsampling consistency conditions.

Insert Table 3 about here

For b = 0.225 and n = 40, the robust subsampling breakdown point is bRt,n,m = 0.225 for

all m ≥ 6. For t = 0.9, the maximal breakdown point is obtained already for m = 8. For

t = 0.95 and t = 0.99, it is obtained for m = 10 and m = 12, respectively. In general, the

maximal breakdown point is obtained for all samples sizes and confidence levels in Table 3,

independently of b, for m = 14. When b < 0.5, the value of m ensuring the maximal breakdown

point is even lower. These are large differences with respect to the subsampling breakdown

points in Table 1.

These results have implications also for the breakdown point of mv in Corollary 7. For

instance, with a sample size n = 100, the average recommended choice in Romano and Wolf
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(2001) yields mmin = 8 and mmax = 25 (using c1 = 0.75 and c2 = 2.5). For b = 0.1 and k = 3,

the breakdown point of mv when using the robust subsampling is maximal for all confidence

levels, but the one when using the standard subsampling is bvt = 0.03 for t = 0.99. On the

other side, the breakdown point of mc is much higher, as was shown by our previous numerical

computations.

Our results on the robust subsampling extend directly to linear regression models with

fixed designs. Assume that the covariates Xi ∈ Rd are fixed and part of an infinite sequence

(X1, . . . , Xn, Xn+1, . . . ). For Zi = (Yi, X
′
i)
′, let H be the joint probability law governing the in-

finite sequence (Z1, . . . , Zn, Zn+1, . . . ). Salibian-Barrera (2006a) proves consistency and asymp-

totic normality of MM-estimators in this setting. Moreover, Salibian-Barrera (2006b) shows

the validity of the first order Taylor expansion for the corresponding fixed-point estimating

equation. Under the weak assumptions of Theorem 4.3.1 in Politis, Romano and Wolf (1999),

the consistency of the robust subsampling in Definition 16 then follows even for settings with

fixed designs.

3 Monte Carlo Study and Sensitivity Analysis

We study through Monte Carlo simulations the statistical properties (size and power) of the

subsampling and the robust subsampling in estimating the confidence interval of (i) the squared

mean for an iid sample and (ii) a parameter of interest in the iid linear regression model (11)

when this parameter is possibly near a boundary. In both settings, the bootstrap is inconsistent,

but subsampling procedures are applicable.

3.1 Squared mean

The first example concerns the sampling distribution of the squared mean for an iid normal

sample with known variance. This is an informative, albeit simple, design to measure the

accuracy of subsampling techniques in presence of model contaminations. As discussed, e.g.,

in Datta (1995), the bootstrap fails in this setting, and only a modified bootstrap procedure
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is applicable. Instead, the subsampling is consistent without modifications of the standard

procedure.

3.1.1 Model and Estimation

Let (X1, . . . , Xn) be an iid sample with Xi ∼ N(µ, 1), and take the parameter of interest as

θ = µ2. Let the nonrobust estimator θ̂NRn be the squared sample average θ̂NRn =
(
1
n

∑n
i=1Xi

)2
,

so that the asymptotic distribution of nθ̂NRn is a non-central chi-squared distribution with one

degree of freedom and noncentrality parameter µ2. Let (X∗1 , . . . , X
∗
m) be a random subsample

such that the subsampling statistic is θ̂NR,∗n,m =
(

1
m

∑m
i=1X

∗
i

)2
. We denote by θ? the true

parameter value. Then, the subsampling approximation of the distribution of n(θ̂NRn − θ?) is

LCSn,m(x) =
1

Nn,m

Nn,m∑
s=1

I
{
m(θ̂NR,∗n,m,s − θ̂NRn ) ≤ x

}
. (23)

We refer to using (23) as “classical subsampling (CS)” .

Let us now consider a robust estimator θ̂Rn based on the square of the robust location

estimate X̄R
n given as solution of the equation ψn(X̄R

n ) = 0, where function ψn is defined by

ψn(θ) =
1

n

n∑
i=1

hc(Xi − µ), (24)

and hc(x) = x · min(1, c/|x|) is the Huber function. We denote by θ̂R,∗n,m the robust estimator

based on the random subsample. Then, the subsampling approximation of the distribution of

n(θ̂Rn − θ?) is

LSRn,m(x) =
1

Nn,m

Nn,m∑
s=1

I
{
m(θ̂R,∗n,m,s − θ̂Rn ) ≤ x

}
. (25)

We refer to using (25) as “subsampling robust (SR)”. As discussed in the introduction, sub-

sampling a robust estimator does not deliver a robust resampling procedure.

To robustify subsampling, we use the decomposition m(θ̂R,∗n,m − θ̂Rn ) = m((X̄R,∗
n − X̄R

n )2 +

2X̄R
n (X̄R,∗

n − X̄R
n )), where X̄R,∗

n is the subsampling robust estimator of the true mean µ?. Then,

using our robust approach, the idea is to consider An,m,s = (−∇ψn(X̄R
n ))−1ψ∗n,m,s(X̄

R
n ) as an
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approximation of X̄R,∗
n − X̄R

n . The robust subsampling approximation of the distribution of

n(θ̂Rn − θ?) is obtained as

LRSn,m(x) =
1

Nn,m

Nn,m∑
s=1

I
{
m(A2

n,m,s + 2X̄R
n An,m,s) ≤ x

}
. (26)

We refer to using (26) as “robust subsampling (RS)”.

3.1.2 Numerical Results

We consider a sample size n = 120. Results are almost identical for n = 40, 80. Since the

calibration method is not applicable here (bootstrap inconsistency), we use a data driven block

size obtained by minimizing the CIV index for k = 2. For n = 120, the minimal recommended

choice in Romano and Wolf (2001) implies a lower bound mmin = 6 and an upper bound

mmax = 22, for c1 = 0.5 and c2 = 2, respectively. Beside these selections, we consider also the

block size m = 3 as extreme case.

We study the finite sample coverage implied by subsampling (CS, SR), and robust subsam-

pling (RS). To this end, we test the null hypothesis H0 : θ? = 0 against H1 : θ? > 0, under the

following data generating process for Xi:

Xi ∼ (1− γ)N(µ?, 1) +
γ

2
(N(5, 100) +N(−5, 100)),

for γ = 0 (no contamination), γ = 0.05 (5% of contaminated data) and γ = 0.10 (10% of

contaminated data). We use the true value µ? = 0 for the size, and µ? = .25, .5 for the power.

For each of the 2000 Monte Carlo replications, resampling distributions are computed based

on 200 draws. For the subsampling approximations we generate the 200 draws, instead of the

Nn,m possibilities, by permuting the original sample and taking the first m observations of the

random samples. Table 4 and Table 5 summarize the empirical frequencies of rejection of the

null hypothesis H0 for a significance level α = .05.

Let us first analyze the size issues summarized in Table 4. We find that the empirical

frequencies for the robust subsampling are quite accurate and closer to the nominal frequencies
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than those of the other resampling methods. Under a model contamination, the underrejection

of the null hypothesis using classical subsampling can be severe: We get an empirical rejection

frequency less than .02 instead of the true .05 value when γ = 0.10. According to the theoretical

results, Table 4 confirms that resampling a robust statistic does not yield a robust resampling

method. Indeed, for m = 3, and γ = 0.05, 0.10, the results implied by SR are even worse than

those implied by CS. The robustness problem of SR can be in part mitigated by the selection

of a larger block size (m = 22), nevertheless our robust approach still outperforms SR. At the

same time, the quantile implied by the classical subsampling virtually explodes in presence of

contamination, leading to a virtually noninformative inference. For instance, when γ = 0.10,

and m = 3, the median .95-quantile implied by the classical subsampling approximation is

71.55, while the one implied by the robust subsampling approximation is 5.75.

Finally, in Table 5 we can analyze the power of the procedures under investigation. When

θ? > 0, the proportion of rejection of H0 increases as expected. Without contamination all

the procedures under investigation imply similar accurate results. When γ > 0, the proportion

of rejections implied by the classic approach dramatically decreases. For instance, when θ? =

0.252, γ = 0.10, and m = 6, the power of CS and SR are less than 6% and 20%, respectively.

For our robust approach, in the same case, the power is instead larger than 54%.

Unreported Monte Carlo results for the bootstrap approach confirm the inconsistency of this

method in the squared mean setting. In particular, we consider a nonrobust approximation

similar to (23), and the robust approximations similar to (25) and (26), but based on the

bootstrap instead of the subsampling approach. When θ? = 0, tests based on these three

bootstrap distributions never reject H0 both in presence or absence of contaminations.

Insert Table 4 and Table 5 about here

3.2 Linear Regression

In this section we consider the iid linear regression model (11) when a parameter of interest is

possibly near a boundary (see, e.g., Kim, Stone and White (2005) for an application in finance).

As discussed in detail by Andrews (2000), the bootstrap is inconsistent in this context and the
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subsampling is a potentially natural alternative to it. Moreover, Andrews and Guggenberger

(2009a, 2010a,b) (see also Mikusheva (2007) for a similar problem in autoregressive models with

unit roots) show that pure subsampling methods have a lack of uniform asymptotic approxi-

mation within a class of models including our Monte Carlo setting. They also develop hybrid

and size-correction procedures to fix the arising asymptotic size distortion. Analogous remarks

hold in the linear regression model when making inference on a parameter of a given regressor

and the parameter of another regressor, a nuisance parameter, may be near a boundary. We

follow their hybrid approach in our Monte Carlo study of the classical and robust subsampling.

3.2.1 Model and Estimation

We consider the scalar regression parameter β, which is known to satisfy the constraint β ≥ 0

in the iid linear regression model:

Yi = X ′iθ +Wiβ + σUi,

= Z ′iη + σUi, i = 1, . . . , n, (27)

where Yi, Wi are scalars, Xi is an Rd−1-valued random variable, θ ∈ Rd−1, and σ ∈ R+.

Moreover, Zi(1) = Xi(1) = 1, η(1) = θ(1), Zi(2) = Wi, η(2) = β and for 3 ≤ j ≤ d, Zi(j) = Xi(j−1),

η(j) = θ(j−1), where h(j) denotes the j-th coordinate of vector h. In order to construct confidence

intervals for parameter β using the classic subsampling, we consider the constrained estimator

β̂NRn = max(0, η̂olsn(2)), where η̂olsn is the (unrestricted) OLS estimator of η. For the robust

subsampling, we consider the constrained estimator β̂Rn = max(0, η̂robn(2)), where η̂robn is a MM-

estimator of η. The S-estimate σ̂n = σ̂n(η̃robn ) is computed from a constrained robust estimator

η̃robn of η under the constraint η(2) ≥ 0.

We construct consistent subsampling and robust subsampling methods as follows. For the

subsampling, we compute in each block the constrained estimator β̂NRn,m = max(0, η̂olsn,m(2)). The

subsampling distribution function estimating the distribution function of
√
n(β̂NRn −β?) is then
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given by

LNRn,m(x) =
1

Nn,m

Nn,m∑
s=1

I
{√

m(β̂NRn,m,s − β̂NRn ) ≤ x
}
. (28)

For the robust subsampling, we follow (15) and (16) and additionally account for the parameter

constraint. Thus, we consider the robust subsampling statistic

ˆsubβ
∗
n,m = max

(
(Mn(η̂∗n,m − η̂robn ) + dn(σ̂∗n,m − σ̂n))(2) + β̂Rn , 0

)
.

The robust subsampling distribution function which approximates the distribution function of
√
n(β̂Rn − β?) is then given by

LRn,m(x) =
1

Nn,m

Nn,m∑
s=1

I
{√

m ( ˆsubβ
∗
n,m,s − β̂Rn ) ≤ x

}
. (29)

By construction, the theoretical results in Section 2.4 for the upper quantile breakdown point

of the robust subsampling distribution in Definition 12 hold also for (29).

3.2.2 Hybrid Procedures

Using (28) and (29), we construct hybrid, classical and robust, equal-tailed confidence intervals

for parameter β as follows. Let cn,m(1 − α) be the (1 − α)-quantile implied by either (28) or

(29). The corresponding hybrid quantile is:

cHn,m(1− α) = max(cn,m(1− α), c∞(1− α)), (30)

where c∞(1− α) is the quantile of the asymptotic distribution of
√
n(β̂in − β?), i = CL,R, for

the unconstrained, either classical or robust, estimator β̂in of β. To compute c∞(1−α), we can

use standard asymptotic normality results for OLS estimators and the asymptotic normality

results for MM-estimates in Yohai (1987). However, Salibian-Barrera and Zamar (2002) show

that these asymptotic approximations behave poorly in presence of contamination. Therefore,

we use the bootstrap and the robust bootstrap, for the subsampling and the robust subsampling,
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respectively, to estimate the distribution of the unconstrained estimators in the computation

of hybrid quantiles. Unreported numerical results confirm the superiority of this approach. In

this way, the construction of hybrid quantiles for our robust subsampling approach can profit

also from the robustness properties of the robust bootstrap developed in Salibian-Barrera and

Zamar (2002).

3.2.3 Numerical Results

We consider the iid linear regression model (27) for d = 3, 5 and n = 120. Results are almost

identical for n = 40, 80. The true parameter vector is η? = (0, β?, 0)′ and η? = (0, β?, 0, 0, 0)′,

respectively, with β? = .05, .25. We analyze the accuracy of subsampling procedures for fixed

and data driven block sizes. For our sample size n = 120, the maximal recommended choice

in Romano and Wolf (2001) implies a lower bound mmin = 6 and an upper bound mmax = 33,

for c1 = 0.5 and c2 = 3, respectively. Nevertheless, because of convergence problems of the

algorithm, for d = 5 block sizes less than m = 8 are not applicable. Besides the selections

recommended by Romano and Wolf (2001), we analyze also the accuracy of the block sizes

implied by Theorem 14. In particular, we consider the block sizes m = 11 and m = 16, for

d = 3 and d = 5, respectively, which imply a breakdown point of 50% for the .975-quantile.

Finally, since the calibration method is not applicable here, we use a data driven block size

obtained by minimizing the CIV index with k = 2. More precisely, for d = 3 we apply MCIV

to the intervals I(d=3,1) = {8, . . . , 27} and I(d=3,2) = {11, . . . , 27}, while for d = 5, we consider

the intervals I(d=5,1) = {10, . . . , 27} and I(d=5,2) = {16, . . . , 27}. The intervals I(d=3,1) and

I(d=5,1) represent the average intervals proposed by Romano and Wolf (2001) for this setting.

The intervals I(d=3,2) and I(d=5,3) represent instead the optimal intervals based on Theorem 14,

which ensure a breakdown point of 50% for the .975-quantile.

We make use of functions ρ0 and ρ1 in Tukey family. The constant for the MM−regression

estimator in our simulations is B = 0.5. For this choice, we obtain a breakdown point of η̂n

satisfying b ≥ 0.47; see Yohai (1987, Theorem 2.1).

We first study the finite sample coverage of confidence intervals implied by classical and
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robust subsampling methods (denoted by CS and RS, respectively). We do not report results

concerning SR since its implementation is computationally prohibitive. The simulation results

obtained in the previous squared mean regression example, as the theoretical results provided

by our study, are convincing enough in showing that the application of the classical subsampling

to the robust MM-estimator is not sufficient to imply a robust subsampling inference for this

setting.

We consider parameter choices β? = .05, .25 under a contaminated distribution for U :

U ∼ (1− γ)N(0, 1) +
γ

2
(N(C, (0.1)2) +N(−C, (0.1)2)), (31)

where C = 5, γ = 0 (no contamination), γ = 0.15 (15% of contaminated data) and γ = 0.25

(25% of contaminated data), as in Salibian-Barrera and Zamar (2002). For each of the 2000

Monte Carlo replications, resampling distributions are computed based on 500 draws. For the

subsampling approximations we generate the 500 draws, instead of the Nn,m possibilities, by

permuting the original sample and taking the first m observations of the random samples.

Table 6 and Table 7 summarize the empirical coverage for parameter choices β? = .05, and

β? = .25, respectively, and the median confidence interval lengths for the nominal confidence

level 1− α = .95.

Insert Table 6 and Table 7 about here

In all Monte Carlo simulation settings, the empirical coverage for the robust subsampling

with data driven choice of the block size are accurate and closer to the nominal coverage than

those of the classical subsampling. The median length of the robust subsampling confidence

intervals is moderately higher in the setting with no contamination (γ = 0%). For instance, for

the case n = 120, d = 3, β? = .25, the median confidence interval of the robust subsampling

is approximately 9% higher than the median length of the subsampling. However, in presence

of contamination, the robust subsampling produces clearly a more efficient inference with dra-

matically smaller median confidence interval lengths. For instance, for the case n = 120, d = 3,

β? = .25, the median confidence interval of the robust subsampling is approximately 55% (53%)
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lower than the median length of the subsampling when γ = 15% (γ = 25%). These are large

differences having obvious implications for the power of tests based on subsampling and robust

subsampling methods. Therefore, for the sake of brevity, we do not report a detailed power

comparison of tests based on the two methods.

Unreported results for the inconsistent bootstrap and robust bootstrap yield empirical cover-

ages between 51.35% to 56.50%, for parameter β? = .05. Similarly, the subsampling and robust

subsampling without hybrid correction yield empirical coverages between 48.20% and 53.15%,

which are not too far away from the theoretical distorted coverage (1 − α)/2 of equal-tailed

confidence intervals; see Andrews and Guggenberger, 2010b. Results of the robust bootstrap

and hybrid robust subsampling for the parameter choice β? = 0.5 are more similar, as expected,

but still in favour of the latter. Unreported results with different contamination sizes, model

dimensions and sample sizes (e.g., C = 4 , d = 20) produce similar results.

We complete this analysis with some results also for the naive bootstrap approach based on

unconstrained estimators. More precisely, we compute a nonrobust bootstrap distribution by

applying the classical bootstrap approach to the unconstrained OLS estimator of β. Similarly,

we compute a robust bootstrap distribution by applying our robust approach to the robust

unconstrained MM-estimator of β. Finally, we construct nonrobust and robust confidence

intervals for the parameter of interest by truncating at 0 the confidence intervals implied by

the unconstrained nonrobust and robust bootstrap distributions, respectively. As discussed in

Andrews and Guggenberger (2010b) in relation to using the unconstrained OLS estimator, when

β? is ”sufficiently” far from the boundary restriction, confidence intervals computed in this way

may imply an empirical coverage quite close to the nominal confidence level. In contrast, for β?

”close” to the boundary this approach tends to produce too conservative confidence intervals.

In our setting, for β? = .25, d = 3, the robust bootstrap shows a desirable stability, implying an

empirical coverage between 94.4% and 96.1% both in presence and absence of contamination.

The results for the nonrobust bootstrap confirm the lack of robustness of this method. Indeed,

for β? = .25, the coverage ranges between 94.10% and 97.95%, for γ = 0 and γ = 0.25,

respectively. As expected the accuracy of both procedures deteriorates for β? = .05. In this

case, the coverage is larger than 96.65% for both nonrobust and robust bootstrap methods,
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even without contamination.

Finally, to analyze the robustness properties of classical and robust subsampling with larger

sample sizes, we also consider the case n = 500. Table 8 summarizes the empirical coverage

for parameter choices β? = .05, .25, and the median confidence interval lengths for the nominal

confidence level 1− α = .95.

Insert Table 8 about here

We consider the maximal recommended choice proposed by Romano and Wolf (2001),

mmin = 12 and mmax = 68, respectively. Moreover, we also apply MCIV to the interval

I = {23, . . . , 45}, which represents the minimal interval proposed by Romano and Wolf (2001).

In this setting, the block sizes m = 11 and m = 16 imply a breakdown point of 50% for the

.975-quantile for d = 3 and d = 5, respectively.

The Monte Carlo results confirm the findings obtained for smaller sample sizes. In particu-

lar, we observe that classical and robust subsampling perform very similarly without contam-

ination. Also, in this setting, the presence of contamination dramatically increases the length

of classical subsampling confidence intervals. For instance, for d = 3 and β? = .25, the median

confidence interval of the robust subsampling is approximately 55% lower than the median

length of the classical subsampling when γ = .25.

We have also studied the sensitivity of the subsampling and robust subsampling inference

with respect to empirical contaminations of the data. For each Monte Carlo sample, let:

Ymax = arg max
Y1,...,Yn

{u(Yi)|u(Yi) = Yi − Z ′iη, underH0 : β? = 0.25}. (32)

We modify Ymax over a grid within the interval [Ymax + 1, Ymax + 4]. Then, we analyze the

sensitivity of the resulting empirical averages of p-values for testing the null hypothesis H0 :

β? = 0.25. Figure 1 summarizes the results for n = 120.

Insert Figure 1 about here

As expected, we obtain quite large absolute variations in average p-values for the subsam-

pling and an almost flat sensitivity curve for the robust subsampling.
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Finally, as a last exercise, we have computed the average p−value for Monte Carlo samples

generated under H0 : β? = 0.25, with increasing contamination sizes γ ∈ [0, 0.25] in (31) with

C = 15, and have analyzed the average p−value variation with respect to the setting with no

contamination (γ = 0). Figure 2 summarizes the results.

Insert Figure 2 about here

Also in this case, the subsampling clearly implies larger variations in average p-values as a

function of the size of contamination in the data, indicating the fragility of the implied inference

results.

4 Concluding Remarks

We derive a formula for the breakdown point of subsampling quantiles, which is shown to imply

fragile subsampling procedures for moderate block sizes, even when subsampling is applied to

robust statistics. This instability is inherited by data driven block size selection procedures.

We propose consistent robust subsampling methods for the class of M-estimators and derive

detailed breakdown point formulas for MM-estimators in the linear regression setting. Monte

Carlo simulations in two settings where the bootstrap is known to fail show the usefulness of

robust subsampling relative to the classical subsampling for producing accurate inferences in

presence of model deviations.
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Appendix: Proofs

Proof of Theorem 2. The quantile Q∗t,n,m breaks down if and only if the proportion of

bounded realizations of the statistic T ∗n,m is less than t, i.e., when the proportion of subsamples

with less than mb outliers is less than t. Let X(n,m, p) be the number of outliers in subsample

(X∗1 , . . . , X
∗
m), when np is the number of outliers in the original sample (X1, . . . , Xn). The

random variableX(n,m, p) follows a hypergeometric distribution with parameters n, np, andm.

Consequently, bt,n,m is the smallest proportion p such that np ∈ and P [X(n,m, p) < mb] < t,

which is the stated result.

Proof of Corollary 3. Existence of m̂ is ensured by Theorem 2. For a hypergeometri-

cally distributed variable X(n,m, p) such that np ∈ N, the probability P [X(n,m, p) < mb]

is decreasing in p. Consequently, bt,n,m̂ ≥ b̂. By definition, for every integer m < m̂,

P
[
X(n,m, b̂− 1/n) < mb

]
< t, and bt,n,m ≤ b̂− 1/n. This concludes the proof.

Proof of Corollary 4. Let us take p = b − zt
√
b(1− b)(1− r)/

√
m + c/m, for p ∈

[0, b], and compute a Berry-Esseen type bound for the normal approximation of the hy-

pergeometric distribution, where c is in a fixed compact set. For n and c large enough,

P [X(n,m, p) < mb] < t, where X(n,m, p) is a hypergeometric random variable with parame-

ters n, np, and m. For n large enough and c small enough, P [X(n,m, p) < mb] > t. Therefore,

bt,n,m = b− zt
√
b(1− b)(1− r)/

√
m+O(1/m), as stated.

Proof of Corollary 7. By definition, in order to get mv = ∞ we must have CIV (m) = ∞

for all m ∈ M. Given m ∈ M, CIV (m) = ∞ if and only if the fraction of outliers p in the

sample {X1, . . . , Xn} satisfies p ≥ min{bt(m − k), bt(m − k + 1), .., bt(m + k − 1), bt(m + k)}.

This concludes the proof.

Proof of Corollary 9. By definition, in order to getmc =∞ we must have P [Q∗∗t (m) =∞] ≥

t for all m ∈ M. Q∗∗t (m) = ∞ if the number of outliers in bootstrap sample (X∗1 , . . . , X
∗
n) is
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at least as large as nbt(m). The number of outliers in the bootstrap sample is distributed as

B(n, p). This concludes the proof.

Proof of Theorem 10. Under Assumptions (A1)-(A4) the statements of the theorem follow

from Theorem 1 in Hong and Scaillet (2006).

Proof of Theorem 13. We first rewrite the estimator θ̂n = (β̂′n, σ̂n, β̃
′
n)′ as the fixed point

of the following system of equations:

β̂n = An(β̂n, σ̂n)−1Vn(β̂n, σ̂n),

σ̂n = σ̂nUn(β̃n, σ̂n),

β̃n = Bn(β̃n, σ̂n)−1Wn(β̃n, σ̂n), (33)

where

An(β, σ) =
1

n

n∑
i=1

∇ρ1((yi − x′iβ)/σ)

yi − x′iβ
xix
′
i,

Vn(β, σ) =
1

n

n∑
i=1

∇ρ1((yi − x′iβ)/σ)

yi − x′iβ
yixi,

Un(β̃, σ) =
1

n

n∑
i=1

ρ0((yi − β̃′xi)/σ)

B(yi − β̃′xi)
(yi − β̃′xi),

and

Bn(β̃, σ) =
1

n

n∑
i=1

∇ρ0((yi − x′iβ̃)/σ)

yi − x′iβ̃
xix
′
i,

Wn(β̃, σ) =
1

n

n∑
i=1

∇ρ0((yi − x′iβ̃)/σ)

yi − x′iβ̃
yixi.

More compactly, the system (33) can be written as θ̂n = Fn(θ̂n) for an appropriate function

33



Fn : R2d+1 → R2d+1. A first order expansion of (33) gives

√
n(θ̂n − θ?) = [I −∇Fn(θ?)]

−1√n(Fn(θ?)− θ?) + oP (1), (34)

where θ? = (β′?, σ?, β̃
′
?)
′. The explicit computation of ∇Fn shows that β̃n does not enter (34)

in the approximation of the first d + 1 components of
√
n(θ̂n − θ?), i.e., the approximation of

√
n(β̂n − β?) and

√
n(σ̂n − σ?). The d × d matrix Mn in (17) is the left upper diagonal block

of [I −∇Fn(τn)]−1, and the vector dn in (18) is the d+ 1−th upper d−dimensional column of

this matrix. Summarizing, we obtain the approximation:

√
n(β̂n − β?) = Mn,?

√
n(An(β?, σ?)

−1Vn(β?, σ?)− β?)

+dn,?
√
n(σ?Un(β̃?, σ?)− σ?) + oP (1)

=: ξn(θ?) + oP (1),

where Mn,? and dn,? are the same matrix and the same vector as in (17) and (18), respectively,

but evaluated at θ? instead of θ̂n. Therefore, we have to show that the limit distribution of

ξn(θ?) is the same as the limit distribution of

ξ∗n,m = Mn

√
m(A∗n,m(β̂n, σ̂n)−1V ∗n,m(β̂n, σ̂n)− β̂n)

+dn
√
m(σ̂nU

∗
n,m(β̃n, σ̂n)− σ̂n)

= Mn

√
m(β̂∗n,m − β̂n) + dn

√
m(σ̂∗n,m − σ̂n).

To this end, it is sufficient to prove that the limit distribution of ζ∗n,m(θ̂n) :=
√
m(F ∗n,m(θ̂n)− θ̂n)

is the same as the limit distribution of ζn(θ?) :=
√
n(Fn(θ?)−θ?). In order to obtain this, we only

need to show that the U -statistic defined by Un,m(x) =
1

Nn,m

Nn,m∑
s=1

I
{√

m(F ∗n,m,s(θ̂n)− θ?) ≤ x
}

converges to the limit cumulative distribution of ζn(θ?), evaluated at any continuity point x.

This implication follows, however, with standard arguments; see, e.g., the proof of Theorem

2.2.1 in Politis, Romano and Wolf (1999).
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Proof of Theorem 14. Under the assumptions of the theorem, we can use the same argu-

ments as in the proof of Theorem 2 in Salibian-Barrera and Zamar (2002) to show that, given

a subsampling block of size m, the approximation β̂∗n,m is bounded, with a bound that depends

only on the original data set, if at least d observations in the block are not outliers. More-

over, σ∗n,m remains bounded for every subsampling block. Therefore, the robust subsampling

approximation in Definition 12 breaks down if and only if in the subsampling block the number

X(n,m, p) of outliers is larger than m− d. The proportion p of outliers in the original sample

that is needed to drive the t−th subsampling quantile estimate above any bound should then

satisfy:

P [X(n,m, p) > m− d] ≥ 1− t. (35)

This proves statement (i) of Theorem 14, after taking complements of the event in (35). State-

ment (ii) now follows with the same arguments used to prove Corollary 3.
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Figure 1: Sensitivity analysis. Sensitivity plots of the absolute variation of the empirical
p−value average, for a test of the null hypothesis H0 : β? = 0.25, with respect to variations of
Ymax, in each Monte Carlo sample, within the interval [1, 4]. The random samples are generated
under H0 and, from the top to the bottom, with n = 120, and d = 3, d = 5, respectively. We
consider the classical subsampling (dash-dotted line) and the robust subsampling (straight
line), using the MCIV method for the block size selection.
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Figure 2: Breakdown point analysis. Sensitivity plots of the empirical p−value average for
a test of the null hypothesis H0 : β? = 0.25. Each p−value average is computed using Monte
Carlo samples generated with contamination probabilities γ ∈ [0, 0.25]. The graphs plot the
difference in average p−value relative to the case with no contamination (γ = 0). The random
samples are generated under H0 and, from the top to the bottom, with n = 120, and d = 3,
d = 5, respectively. We consider the classical subsampling (dash-dotted line) and the robust
subsampling (straight line), using the MCIV method for the block size selection.
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n = 40 t = .9 t = .95 t = .99 n = 40 t = .9 t = .95 t = .99

B. Point .2500 .2500 .2500 B. Point .5000 .5000 .5000

CB .1750 .1500 .1250 CB .4000 .3750 .3250

CS CS

m = 5 .1250 .1000 .0500 m = 5 .2750 .2250 .1500
m = 10 .1500 .1250 .0750 m = 10 .3000 .2750 .2000
m = 20 .1750 .1500 .1250 m = 20 .4000 .3750 .3250
m = 30 .2250 .2000 .2000 m = 30 .4500 .4250 .4000
m = 37 .2500 .2500 .2500 m = 39 .5000 .5000 .5000

n = 80 t = .9 t = .95 t = .99 n = 80 t = .9 t = .95 t = .99

B. Point .2500 .2500 .2500 B. Point .5000 .5000 .5000

CB .1875 .1750 .1500 CB .4250 .4125 .3750

CS CS

m = 10 .1250 .1000 .0625 m = 10 .2875 .2375 .1750
m = 20 .1500 .1250 .1000 m = 20 .3625 .3250 .2750
m = 30 .1875 .1625 .1375 m = 30 .4000 .3750 .3375
m = 40 .1875 .1750 .1500 m = 40 .4250 .4000 .3750
m = 50 .2125 .2000 .1875 m = 50 .4375 .4250 .4000
m = 60 .2125 .2125 .2000 m = 60 .4625 .4500 .4250
m = 70 .2375 .2250 .2250 m = 70 .4750 .4625 .4500
m = 77 .2500 .2500 .2500 m = 79 .5000 .5000 .5000

n = 120 t = .9 t = .95 t = .99 n = 120 t = .9 t = .95 t = .99

B. Point .2500 .2500 .2500 B. Point .5000 .5000 .5000

CB .2000 .1917 .1667 CB .4417 .4250 .3917

CS CS

m = 10 .1250 .1000 .0583 m = 10 .2750 .2333 .1667
m = 20 .1417 .1167 .0833 m = 20 .3500 .3167 .2667
m = 40 .1750 .1667 .1333 m = 40 .4083 .3917 .3500
m = 60 .2000 .1917 .1667 m = 60 .4417 .4250 .3917
m = 80 .2167 .2083 .1917 m = 80 .4583 .4417 .4250
m = 100 .2250 .2250 .2167 m = 100 .4750 .4667 .4500
m = 117 .2500 .2500 .2500 m = 119 .5000 .5000 .5000

Table 1: Breakdown point of subsampling and bootstrap quantiles. t-quantile upper
breakdown point of the classical bootstrap (CB) and the classical subsampling (CS) for different
block sizes, sample sizes n = 40, 80, 120, and confidence levels t = 0.9, 0.95, 0.99 when the
breakdown point (B. Point) is b = 0.25, 0.5. Bootstrap breakdown points are computed using
Singh (1998) results. Subsampling breakdown points are computed using Theorem 2. The
smallest subsample size such that the t−quantile subsampling breakdown point equals the
breakdown point of statistic T for all given confidence levels is 37, 77, and 117 (when b=0.25),
and 39, 79 and 119 (when b=0.5), for sample sizes 40, 80, and 120, respectively.
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n = 40 M t = .9 t = .95 t = .99

MCIV [7; 12] .3000 .2750 .2000
MCIV [4; 18] .3750 .3250 .2750

CM [7; 12] .4500 .4500 .4250
CM [4; 18] .5000 .5000 .5000

n = 80 M t = .9 t = .95 t = .99

MCIV [9; 17] .3250 .2875 .2250
MCIV [5; 26] .3750 .3500 .3000

CM [9; 17] .4500 .4250 .4000
CM [5; 26] .4750 .4625 .4500

n = 120 M t = .9 t = .95 t = .99

MCIV [11; 21] .3417 .3083 .2500
MCIV [6; 32] .3917 .3583 .3167

CM [11; 21] .4417 .4250 .3917
CM [6; 32] .4667 .4583 .4333

Table 2: Breakdown point of Minimum Confidence Index Volatility (MCIV) and
Calibration Method (CM). We consider a statistic with breakdown point b = 0.5 and
confidence levels t = 0.9, 0.95, 0.99. The set M of admissible block sizes is implied by the
smallest and largest block size according to the suggested choice in Romano and Wolf (2001).

43



n = 40, d = 3 t = .9 t = .95 t = .99

RB min(b, .5000) min(b, .5000) min(b, .5000)

RS
m = 6 min(b, .3750) min(b, .3000) min(b, .2250)
m = 8 min(b, .5000) min(b, .4500) min(b, .3500)
m = 10 min(b, .5000) min(b, .5000) min(b, .4500)
m = 12 min(b, .5000) min(b, .5000) min(b, .5000)

n = 80, d = 3 t = .9 t = .95 t = .99

RB min(b, .5000) min(b, .5000) min(b, .5000)

RS
m = 6 min(b, .3500) min(b, .2875) min(b, .1875)
m = 8 min(b, .4750) min(b, .4250) min(b, .3125)
m = 10 min(b, .5000) min(b, .5000) min(b, .4125)
m = 12 min(b, .5000) min(b, .5000) min(b, .5000)

n = 120, d = 3 t = .9 t = .95 t = .99

RB min(b, .5000) min(b, .5000) min(b, .5000)

RS
m = 8 min(b, .4750) min(b, .4167) min(b, .3083)
m = 10 min(b, .5000) min(b, .5000) min(b, .4083)
m = 12 min(b, .5000) min(b, .5000) min(b, .4833)
m = 14 min(b, .5000) min(b, .5000) min(b, .5000)

Table 3: Breakdown point of robust subsampling and robust bootstrap quantiles.
t-quantile breakdown point of the robust bootstrap and the robust subsampling, denoted ”RB”
and ”RS”, respectively, in a linear regression model with d = 3, for different block sizes, sample
sizes n = 40, 80, 120, and confidence levels t = 0.9, 0.95, 0.99. Robust bootstrap breakdown
points are computed using the results in Salibian-Barrera and Zamar (2002). Robust subsam-
pling breakdown points are computed using Theorem 14.
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n = 120, θ? = 0 γ = 0% γ = 5% γ = 10%
CS m = 3 .0530(3.6728) .0425(34.1359) .0195(71.5518)
CS m = 6 .0475(3.6751) .0200(35.5514) .0135(62.2192)
CS m = 22 .0360(3.3840) .0135(24.4441) .0125(46.1002)
CS MCIV .0385(3.5610) .0140(26.8490) .0130(50.7207)
SR m = 3 .0555(3.6784) .0070(27.4814) .0020(71.3789)
SR m = 6 .0485(3.6821) .0220(6.2247) .0140(17.0751)
SR m = 22 .0380(3.4263) .0330(4.3636) .0315(5.5619)
SR MCIV .0415(3.5236) .0315(4.5493) .0295(5.7227)
RS m = 3 .0540(3.6776) .0540(4.6349) .0530(5.7500)
RS m = 6 .0475(3.6763) .0465(4.6267) .0460(5.7412)
RS m = 22 .0375(3.4188) .0345(4.3154) .0345(5.3183)
RS MCIV .0390(3.5930) .0370(4.5302) .0360(5.6653)

Table 4: Proportion of rejections of H0 : θ? = 0, using the classical subsampling,
the subsampling applied to a robust estimator, and the robust subsampling (CS,
SR, and RS, respectively). The true value of θ? is equal to 0 (size analysis). We report the
proportion of rejection in the squared mean testing setting, for significance level α = .05, for
the sample size n = 120, and contamination probabilities γ = 0%, 5%, 10%. We denote the
block size by m. The data driven block size selection procedure based on the MCIV index is
denoted by “MCIV”. In brackets, we give the median of the .95-quantile of the correspondently
subsampling distributions. The number of replications is 2000.
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n = 120, θ? = 0.252 γ = 0% γ = 5% γ = 10%
CS m = 3 .7635(4.1476) .1910(31.7474) .0535(73.8258)
CS m = 6 .7490(4.5221) .1375(35.6029) .0590(62.1055)
CS m = 22 .6760(5.4951) .1335(26.1528) .0590(47.5607)
CS MCIV .7170(5.0817) .1350(28.1353) .0575(51.4249)
SR m = 3 .7690(4.1514) .1885(27.2040) .0280(70.5696)
SR m = 6 .7500(4.5252) .4370(7.2949) .1970(17.9760)
SR m = 22 .6795(5.5407) .5615(6.5782) .4680(7.6559)
SR MCIV .7260(4.9687) .5535(6.1515) .4595(7.7612)
RS m = 3 .7670(4.1536) .6660(5.1016) .5695(6.1756)
RS m = 6 .7500(4.5383) .6420(5.5291) .5415(6.5852)
RS m = 22 .6785(5.5402) .5695(6.5089) .4850(7.5393)
RS MCIV .7190(5.1322) .6015(6.0631) .4895(7.1599)

n = 120, θ? = 0.52 γ = 0% γ = 5% γ = 10%
CS m = 3 .9995(5.3078) .4670(32.0986) .2000(70.4190)
CS m = 6 .9995(6.3159) .4360(36.0152) .2170(63.6958)
CS m = 22 .9995(8.9073) .4740(30.7224) .2340(52.4371)
CS MCIV .9995(7.8590) .4535(31.1614) .2260(54.4384)
SR m = 3 .9995(5.3093) .5230(26.2870) .1565(70.2665)
SR m = 6 .9995(6.3324) .8195(9.4694) .5445(20.5761)
SR m = 22 .9995(8.9026) .9905(10.3072) .9630(11.8511)
SR MCIV .9995(7.7826) .9895(9.2190) .9615(11.0778)
RS m = 3 .9995(5.3135) .9965(6.3198) .9850(7.4703)
RS m = 6 .9995(6.3356) .9955(7.4686) .9815(8.6930)
RS m = 22 .9995(8.9353) .9935(10.2753) .9685(11.7832)
RS MCIV .9995(7.9353) .9950(9.0888) .9760(10.4156)

Table 5: Proportion of rejections of H0 : θ? = 0, using the classical subsampling, the
subsampling applied to a robust estimator, and the robust subsampling (CS, SR, and
RS, respectively). The true value of θ? is equal to 0.252 and 0.52, respectively (power analysis).
We report the proportion of rejection in the squared mean testing setting, for significance
level α = .05, for the sample size n = 120, and contamination probabilities γ = 0%, 5%, 10%.
We denote the block size by m. The data driven block size selection procedure based on the
MCIV index is denoted by “MCIV”. In brackets, we give the median of the .95-quantile of the
correspondently subsampling distributions. The number of replications is 2000.
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n = 120, d = 3, β? = .05 γ = 0% γ = 15% γ = 25%
CS m = 6 .9990(0.2356) .9995(0.4620) .9995(0.5598)
CS m = 11 .9840(0.2341) .9935(0.4637) .9955(0.5585)
CS m = 33 .9465(0.2351) .9660(0.4574) .9675(0.5573)
CS MCIV1 .9625(0.2377) .9750(0.4619) .9755(0.5592)
CS MCIV2 .9615(0.2368) .9740(0.4583) .9745(0.5571)
RS m = 6 1.0000(0.2559) 1.0000(0.2650) 1.0000(0.3460)
RS m = 11 .9905(0.2536) .9920(0.2616) .9955(0.3418)
RS m = 33 .9490(0.2507) .9535(0.2605) .9625(0.3360)
RS MCIV1 .9630(0.2531) .9635(0.2616) .9715(0.3410)
RS MCIV2 .9615(0.2530) .9615(0.2602) .9685(0.3406)

n = 120, d = 3, β? = .25 γ = 0% γ = 15% γ = 25%
CS m = 6 .9725(0.4172) .9950(0.6365) .9965(0.7237)
CS m = 11 .9560(0.3744) .9925(0.6355) .9930(0.7219)
CS m = 33 .9205(0.3338) .9620(0.6100) .9655(0.7126)
CS MCIV1 .9430(0.3522) .9745(0.6213) .9755(0.7146)
CS MCIV2 .9410(0.3517) .9710(0.6186) .9715(0.7151)
RS m = 6 .9730(0.4470) .9745(0.4572) .9835(0.5168)
RS m = 11 .9640(0.4096) .9650(0.4321) .9830(0.4949)
RS m = 33 .9245(0.3616) .9290(0.3790) .9490(0.4450)
RS MCIV1 .9440(0.3836) .9445(0.3999) .9575(0.4662)
RS MCIV2 .9425(0.3818) .9430(0.3982) .9550(0.4632)

Table 6: Empirical coverage of the classical subsampling and the robust subsampling
(CS and RS, respectively). Simulated empirical coverage in the linear regression testing setting
with β? = .05, .25, d = 3, for confidence levels t = 0.95, for the sample size n = 120 and
contamination probabilities γ = 0%, 15%, 25%. We denote the block size by m. Data driven
block size selection procedures based on the MCIV are denoted by “MCIV”. In particular,
for ”MCIV1” we consider the set M1 = {8, . . . , 27}, while for ”MCIV2” we consider the set
M2 = {11, . . . , 27}. In brackets we report the median of the confidence interval lengths. The
number of replications is 2000.
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n = 120, d = 5, β? = .05 γ = 0% γ = 15% γ = 25%
CS m = 8 .9980(0.2372) 1.0000(0.4661) 1.0000(0.5689)
CS m = 16 .9815(0.2388) .9920(0.4579) .9955(0.5605)
CS m = 33 .9530(0.2373) .9635(0.4571) .9710(0.5613)
CS MCIV1 .9720(0.2367) .9820(0.4523) .9835(0.5567)
CS MCIV2 .9635(0.2353) .9785(0.4510) .9815(0.5592)
RS m = 8 .9985(0.2713) 1.0000(0.2814) 1.0000(0.3596)
RS m = 16 .9830(0.2701) .9915(0.2735) .9955(0.3580)
RS m = 33 .9545(0.2687) .9610(0.2742) .9705(0.3567)
RS MCIV1 .9730(0.2712) .9775(0.2802) .9815(0.3618)
RS MCIV2 .9640(0.2709) .9715(0.2777) .9785(0.3578)

n = 120, d = 5, β? = .25 γ = 0% γ = 15% γ = 25%
CS m = 8 .9720(0.4308) .9985(0.6309) 1.0000(0.7201)
CS m = 16 .9545(0.3788) .9900(0.6308) .9905(0.7298)
CS m = 33 .9255(0.3434) .9615(0.6150) .9625(0.7259)
CS MCIV1 .9505(0.3655) .9755(0.6301) .9770(0.7288)
CS MCIV2 .9420(0.3610) .9745(0.6281) .9760(0.7282)
RS m = 8 .9760(0.4569) .9785(0.4679) .9895(0.5405)
RS m = 16 .9610(0.4191) .9635(0.4475) .9825(0.5167)
RS m = 33 .9325(0.3850) .9340(0.4021) .9565(0.4730)
RS MCIV1 .9525(0.4042) .9570(0.4204) .9710(0.4952)
RS MCIV2 .9475(0.4035) .9530(0.4167) .9670(0.4914)

Table 7: Empirical coverage of the classical subsampling and the robust subsampling
(CS and RS, respectively). Simulated empirical coverage in the linear regression testing setting
with β? = .05, .25, d = 5, for confidence levels t = 0.95, for the sample size n = 120 and
contamination probabilities γ = 0%, 15%, 25%. We denote the block size by m. Data driven
block size selection procedures based on the MCIV are denoted by “MCIV”. In particular,
for ”MCIV1” we consider the set M1 = {10, . . . , 27}, while for ”MCIV2” we consider the set
M2 = {16, . . . , 27}. In brackets we report the median of the confidence interval lengths. The
number of replications is 2000.
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n = 500, d = 3, β? = .05 γ = 0% γ = 15% γ = 25%
CS m = 12 .9925(0.1436) .9935(0.2430) .9950(0.2909)
CS m = 68 .9635(0.1412) .9670(0.2417) .9760(0.2812)
CS MCIV .9780(0.1423) .9780(0.2420) .9795(0.2888)
RS m = 12 .9930(0.1514) .9965(0.1558) .9980(0.1825)
RS m = 68 .9640(0.1510) .9645(0.1536) .9690(0.1790)
RS MCIV .9805(0.1509) .9835(0.1543) .9835(0.1787)

n = 500, d = 3, β? = .25 γ = 0% γ = 15% γ = 25%
CS m = 12 .9640(0.1951) .9685(0.4029) .9765(0.4679)
CS m = 68 .9385(0.1726) .9430(0.3596) .9550(0.4311)
CS MCIV .9530(0.1782) .9560(0.3713) .9595(0.4496)
RS m = 12 .9660(0.2209) .9670(0.2365) .9685(0.2903)
RS m = 68 .9375(0.1885) .9365(0.1951) .9380(0.2360)
RS MCIV .9530(0.1947) .9565(0.2029) .9575(0.2487)

n = 500, d = 5, β? = .05 γ = 0% γ = 15% γ = 25%
CS m = 12 .9975(0.1464) 1.0000(0.2494) 1.0000(0.2944)
CS m = 68 .9685(0.1454) .9725(0.2477) .9765(0.2861)
CS MCIV .9785(0.1455) .9820(0.2478) .9840(0.2927)
RS m = 12 .9990(0.1559) 1.0000(0.1572) 1.0000(0.1873)
RS m = 68 .9715(0.1514) .9775(0.1534) .9785(0.1857)
RS MCIV .9800(0.1545) .9825(0.1552) .9850(0.1845)

n = 500, d = 5, β? = .25 γ = 0% γ = 15% γ = 25%
CS m = 12 .9735(0.2115) .9740(0.4200) .9750(0.4810)
CS m = 68 .9435(0.1745) .9455(0.3617) .9470(0.4302)
CS MCIV .9565(0.1823) .9590(0.3764) .9630(0.4505)
RS m = 12 .9785(0.2447) .9790(0.2764) .9835(0.3386)
RS m = 68 .9505(0.1931) .9555(0.2006) .9580(0.2409)
RS MCIV .9605(0.2022) .9605(0.2109) .9635(0.2549)

Table 8: Empirical coverage of the classical subsampling and the robust subsampling
(CS and RS, respectively). Simulated empirical coverage in the linear regression testing setting
with β? = .05, .25, d = 3, 5, for confidence levels t = 0.95, for the sample size n = 500 and
contamination probabilities γ = 0%, 15%, 25%. We denote the block size by m. Data driven
block size selection procedures based on the MCIV are denoted by “MCIV”. In brackets we
report the median of the confidence interval lengths. The number of replications is 2000.

49


