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Abstract 

 

In the existing literature on barrier options much effort has been exerted to ensure 

convergence through placing the barrier in close proximity to, or directly onto, the nodes of 

the tree lattice.  For a variety of barrier option types we show that such a procedure may not 

be a necessary prerequisite to achieving accurate option price approximations.  Using the 

Kamrad and Ritchken (1991) trinomial tree model we show that with a suitable transition 

probability adjustment our “probability adjusted” model exhibits convergence to the barrier 

option price.  We study the convergence properties of several option types including 

exponential barrier options, single linear time-varying barrier options, double linear time-

varying barriers options and Bermuda options.  For options whose strike price is close to the 

barrier we are able to obtain numerical results where other models and techniques typically 

fail.  Furthermore, we show that it is possible to calculate accurate option price 

approximations with minimal effort for options with complicated barriers that defeat standard 

techniques.  In no single case does our method require a repositioning of the pricing lattice 

nodes. 

 

Keywords: barrier option, binomial tree, convergence rate, lattice models, option pricing, 

transition probability, trinomial tree 

 

 

Introduction 

 

Methods for pricing barrier options consist of two approaches: numerical based methods and 

theoretical expressions based on continuous-time models.  In this paper we use a numerical 

technique with a suitable modification of the transition probabilities of the Kamrad and 

Ritchken (1991) trinomial tree1 to price several types of barrier options.  In doing so, we 

illustrate the convergence of our method to the price, when available from an analytic 

solution, of the respective options. 
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For European and American put and call options lattice models are able to yield convergence 

towards the option price given by a continuous-time model.  In the case of a plain-vanilla 

option, convergence of the standard binomial or trinomial tree to the analytic value generally 

occurs within a few hundred time steps, yet due to distribution and non-linearity errors a 

persistent inaccuracy in the price of the option remains.  If standard lattice methods are used 

to price more complex option types such as single constant barrier, multiple barrier and time-

varying barrier options, they converge so slowly and exhibit such large bias that their use 

becomes impractical.  This is an important observation because due to their lower cost and 

popularity in hedging financial and commodities positions, barrier and path-dependent 

options are now commonplace across all financial markets.  Consequently, a need for 

improved lattice pricing models exists particularly for the more complex option types. 

 

To explain the upward bias that occurs when pricing options using, for example, the Cox-

Ross-Rubinstein (CRR) binomial model, Boyle and Lau (1994) studied what happens to the 

price of a given option when the distance of the barrier to a layer of nodes in the binomial tree 

varies.  They found that the upward bias problem arises as a consequence of the discretization 

of the nodes of the binomial lattice.  Specifically, the bias occurs when the option barrier 

passes between two successive layers of nodes comprising the binomial tree without coming 

close to a node.  Numerically this is perceived as a mispricing of the option that takes the 

form of an upward bias (i.e. convergence to the continuous-time price from above) added on 

to the option price.  In order to reduce this bias, Boyle and Lau (1994) proposed to reposition 

the nodes in the binomial lattice such that the barrier passes as close as possible to a given 

layer of nodes in the binomial tree.  With this modification, increased convergence rates were 

achieved; in one case Boyle and Lau report that convergence improved from 800 steps in the 

binomial tree to just 21 steps.  This variation in the distance of the barrier from a layer of 

nodes manifests itself as an observable pattern in a plot of the option price against the number 

of time steps of the binomial lattice.  One observes a series of alternating crests and troughs in 

a plot of the option price versus the number of time divisions in the tree.  Accurate 

approximations to the continuous-time price occur at the troughs of the convergence graph 

where the barrier lies in close proximity to a given layer of the binomial lattice.  Conversely, 

poor price approximations occur at the crests. 
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It is known that the node-repositioning technique of Boyle and Lau is unable to produce an 

approximation to the option price when the initial underlying price lies close to the barrier, 

when there are multiple barriers or when the barrier is time-varying. Ritchken (1995) tries to 

address these particular problems by employing a trinomial lattice based upon the 

multinomial model of Kamrad and Ritchken (1991).  Ritchken’s method is also based upon a 

repositioning of the lattice nodes, however it differs from the method of Boyle and Lau in that 

Ritchken positions the lattice using a stretch-factor so that the barrier lies exactly upon a 

given level of the lattice nodes.  Thus, despite increasing the number of time-divisions of the 

tree, there always exists a layer of nodes that coincides with the barrier level resulting in a 

rapid convergence to the continuous-time option price.   While exhibiting good convergence, 

Ritchken’s method suffers from three drawbacks.  The first is that his method encounters 

difficulty converging to the continuous-time option price (and in some cases fails to converge 

at all) when the initial underlying price is very close to the barrier.  The second drawback is 

that if a parameter of the option changes (maturity, volatility, etc…) then the entire lattice 

must be repositioned before calculating the new option price.  Finally, Ritchken's method can 

only handle barrier options with constant boundaries. 

 

Another efficacious pricing model for pricing barrier options is the adaptive mesh model 

(AMM) of Figlewski and Gao (1999).  This technique works by grafting a fine resolution 

lattice onto the coarse lattice of the well-known trinomial tree and using smaller time and 

price increments to compute the finer mesh.  In the case of a barrier option, the fine-resolution 

mesh can be grafted onto the coarse lattice nodes in the vicinity of the barrier to improve the 

price estimate.  This has the effect of dramatically reducing the number of computations 

required to price the option in comparison to a normal trinomial tree model.  It has the 

additional effect of implicitly determining the number of lattice levels required to achieve an 

accurate price approximation. Furthermore, layers of finer resolution mesh may be mutually 

overlaid to improve accuracy.  However, owing to the difficulties in constructing a fine-

resolution lattice, the AMM model encounters problems with options possessing sloped linear 

and nonlinear barriers.  Consequently, it would be of interest to develop a generalized lattice-

pricing model that can be readily applied to options with arbitrarily specified barrier types.   

 

 Option pricing using lattice techniques can be thought of as a trade-off between 

convergence rates and having to reposition the nodes of the lattice in proximity to the barrier.  

In the following, we propose a simple modification applicable to both the CRR binomial 
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model and the trinomial tree model.  Specifically, we propose an adjustment to the transition 

probabilities that eliminates the need to reposition the nodes of the lattice.  Simultaneously, 

this approach yields significantly increased convergence rates compared to alternative 

models.  To calculate the continuous-time option price we make use of a series of analytical 

methods and empirical results available in the barrier option pricing literature.  We are thus 

able to compare our calculations to a known value.   

 

The remainder of the paper is organized as follows.  Section I briefly reviews the Kamrad and 

Ritchken model of the trinomial tree.  Section II explains the adjustment to the transition 

probabilities of the trinomial tree.  In section III we present the results of our convergence rate 

analysis for single time-varying barrier options and compare the results of our calculations to 

other models taken from the barrier option literature.  Section IV treats barrier options with 

multiple time-varying barriers and section V discusses exponential barriers.  In section VI we 

apply the method to a Bermuda option and compare our model to others.  Section VII 

provides some detail on computational complexity and time.  In the final section we conclude. 

 

 

I. Pricing Using a Trinomial Lattice 

 

Appealing to the standard assumptions of lattice-based methods we assume that the price of 

the underlying asset follows a geometric Brownian motion process.  Under this assumption 

the log-price drift is given by  where  is the risk-free rate and  is the 

instantaneous volatility at time .  The trinomial lattice for the underlying asset is first 

constructed using the up and down movement probabilities that are given by 

  (1) 

where  is the instantaneous volatility and  is the size of the time-division of the lattice 

tree.  Starting from a known initial asset price, , the underlying asset prices for the up, 

middle and down nodes at time  are given by ,  and , respectively.  A complete 

two-step trinomial lattice for the underlying asset is shown in Exhibit 1. 

 

Exhibit 1 about here 
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In the usual trinomial lattice implementation, after the creation of the underlying tree the 

option tree is constructed as in Exhibit 2.   

 

Exhibit 2 about here 

 

By working backwards through the option tree and appropriately discounting the calculated 

option prices one arrives at the lattice approximation to the option price.  In such a trinomial 

tree, the option price evolves according to a set of lattice-specific probabilities such that 

(working backwards through the tree) the discounted option price, , at time  is given by 

  (2) 

where ,  and  are the risk-neutral transition probabilities of the trinomial lattice,  is 

the risk-free rate and ,  and  are the call option prices for the up, middle and 

down nodes of the lattice, respectively.  For the purposes of our implementation we use the 

following representation for the probabilities.  Let 

  (3) 

  (4) 

then for the lattice probabilities we have: 

  (5) 

  (6) 

  (7) 

where  is a trinomial lattice-specific parameter.2  It is clear that the greater the number of 

time divisions taken for the tree, the greater the accuracy of the final approximation to the true 

price.  Traditionally, this method of pricing options has been used extensively for pricing 

European as well American plain-vanilla options. The adjusted transition probability method 

involves modifying these probabilities in order to produce accurate price approximation for 

the case of barrier options.  Furthermore, using the adjusted probability method it is also 

relatively simple to extend the procedure to options with time-varying barriers as well as more 

exotic types like the Bermuda option.  We now discuss the probability adjusted extension of 

the trinomial lattice method as applied to path-dependent barrier options. 
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II. The Probability Adjusted Trinomial Tree Model for an Option with a Linear Time-Varying 

Barrier 

 

A barrier option is a path-dependent option whose payoff is determined by whether the price 

of the underlying asset has reached some pre-determined price level negotiated at the time of 

the contract purchase.  For example, in the case of a down-and-out3 barrier option, the option 

payoff is set to zero when the underlying price falls below the barrier. A barrier option like 

this can be priced using the same trinomial tree method used to price plain-vanilla options, 

however, the trinomial tree will converge at an extremely slow rate to the true price of the 

option.  As discussed, it is possible to reposition the nodes of the lattice to increase 

convergence but this becomes difficult for curved barriers.  Compared to repositioning 

techniques, the transition probability adjustment method provides a more intuitive way to 

increase the convergence rate. The basic methodology has been used previously to increase 

the convergence rates of Monte Carlo option pricing algorithms. It is known that, due to the 

discretized path along which the asset price evolves, it is possible for the underlying asset 

price to breach the option barrier without being detected by the Monte Carlo simulation as 

discussed in Geman and Yor (1996).  One way to alleviate this problem is to use the 

supremum of a Brownian bridge to calculate the probability that the underlying asset price 

touches the barrier for any given step of the simulation. However, this method is not without 

its limitations.  As noted in Baldi et al. (1999) this technique cannot be effectively used to 

price multiple barrier and time-varying barrier options.  Consequently, Baldi derived a series 

of approximations for the exit probability of a Brownian bridge that can be used to price 

multiple and time-varying barrier options.  Although he used these probabilities to improve 

upon Monte Carlo calculations, our contribution is to demonstrate that these probability 

approximations can be used to price options with single and multiple time-varying barriers on 

a simple trinomial lattice. 

 

We describe our technique in the case of a down-and-out call option with a single linear time 

varying barrier. The same procedure applies to every type of barrier option, provided one 

knows the appropriate probability adjustment.   
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Consider an option with a time-dependent, linear barrier.  We define the barrier level  

(lower barrier at time ) using the equation of a line and choosing a slope, , and an 

intercept, , as in Equation (8) 

  (8) 

Note that the special case of a knock-out option with a constant barrier can be recovered by 

setting  in Equation (8).  The situation for the time-varying barrier is illustrated in 

Exhibit 3. 

 

Exhibit 3 about here 

 

The lattice of Exhibit 3 is indexed by the time division  where  is the option 

maturity and  is the number of divisions of the tree.  Exhibit 4 shows a trinomial lattice with 

a time-varying linear barrier overlaid with two possible price paths labeled Diffusion Path 1 

(DP1) and Diffusion Path 2 (DP2). These paths represent possible underlying price 

trajectories between times  and  on the lattice.  It can be seen that both DP1 and DP2 

breach the barrier between adjacent node layers of the lattice and thus represent situations in 

which the option payoff should be set to zero. 

 

Exhibit 4 about here 

 

Paths such as these are analogous to the Monte Carlo paths that break the barrier yet remain 

undetected by the calculation.  Because the trinomial lattice only approximates a continuous-

time diffusion, diffusion paths 1 and 2 are possible in continuous time, but are not well 

approximated by the discretized nature of the lattice. Similarly, the trinomial lattice will 

possess paths like those indicated yet the stock price can end up above the barrier at the next 

time step of the tree.  In such cases the crossing of the barrier is not detected.  To account for 

this effect it is necessary to modify the option price calculation in order to reduce the expected 

payoff of the option by the total probability of all such possible diffusion paths.  The 

probabilities of these diffusion paths are related to the exit probabilities calculated by Baldi et 

al. (1999).   

 

We model a diffusion path of the logarithm of the stock price between lattice time divisions as 

a Brownian bridge.  A Brownian bridge is a stochastic process in continuous-time whose 
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probability distribution is given by the conditional distribution of a Weiner process.  In 

particular, the starting and ending points of the process are known quantities.  

Mathematically, a Brownian bridge is an R
n
-valued Gaussian process  for which we 

can define an exit probability, .  Let  be the probability that  breaches the linear 

barrier,  (with  for the lower barrier and  for the upper barrier), in the lattice time 

interval . More formally, it is the probability that the barrier is breached by a 

Brownian bridge that starts at  at time  and is conditional on it reaching  at 

time .  In order to correct for the possibility that the diffusion path breaches the barrier 

we subtract this probability from unity so that we obtain the probability that the diffusion path 

does not breach the barrier in the interval .  The correction is thereby obtained by 

multiplying the usual trinomial lattice probabilities by .  This is what we imply by the 

phrase “transition probability adjustment”.   

 

We illustrate the method using a barrier option with a barrier defined as in equation (8).  

Using the subscript  to denote a lower (i.e. down-and-out) barrier, the exit probability for 

this type of barrier is given by Baldi et al. (1999) as: 

 
    

� 
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 (9) 

where is the asset price at the current lattice node,  is the asset price at the next 

lattice node and 

� 

LT0 is the barrier level at the current node. The numerical procedure involves 

correcting the lattice probabilities for the diffusion paths in the following manner.  First we 

price the underlying tree using the normal trinomial tree method.  At each node of the lattice 

we also calculate the level of the barrier associated with that particular node using the 

equation for the barrier, in this case equation (8).  Subsequently, we work backwards through 

the option tree correcting for the exit probabilities, or rather we adjust the transition 

probabilities. At each node in the trinomial lattice there are three adjustments to perform for 

the “up”, “mid” and “down” transitions.  The calculation of the option price at a given node is 

shown in Equation (10). 

  (10) 

where   

� 

C ST0( )  is the call option price corresponding to the node at which the barrier level is 

� 

LT0 . 
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After iterating through the tree in this manner and performing the necessary adjustments we 

arrive at the final approximation to the option price.   

 

III. Options with a Single Linear Time-Varying Barrier 

 

To start with, we consider the special case of a single constant barrier option (by setting 

 in Equation (8)). We study the behaviour of the probability adjustment method when 

the stock price approaches the barrier. Under these circumstances many lattice-based option 

valuation techniques have difficulty producing an approximation to the option price.  In the 

case of the standard binomial tree, convergence is so slow that even after 5000 time divisions, 

there is significant difference between the approximate and analytical values. Even Ritchken’s 

“stretched” trinomial tree method encounters difficulty in pricing a down-and-out call when 

the stock price approaches the barrier. For example, see Exhibit 5.  Ritchken’s method first 

encounters difficulty at 500 time-divisions and a stock price of 91.0. Furthermore, when the 

initial stock price is very close to the barrier, even as many as 5000 iterations are unable to 

provide an approximation to the option price.  

 

 Exhibit 5 about here 

 

Conversely, because the probability adjustment technique is based on the lattice method with 

no node repositioning, we are always able to produce an approximation to the option price 

regardless of the stock price to barrier distance. Exhibit 5 presents our option price 

approximations in comparison to those of Ritchken’s as the stock price approaches the barrier. 

At a stock value of 90.3, Ritchken’s method is unable to produce an approximation to the 

price in 5000 divisions or less. Conversely, we obtain an approximation with 500 time-

divisions. Furthermore, we are able to obtain price approximations when the stock price is 

extremely close to the barrier. Additionally, the quality of the approximation improves with 

decreasing distance between the stock price and barrier and, in the extreme case of a stock 

price of 90.01, we have very good agreement between our approximation and the analytical 

price for the adjusted trinomial model. 

 

We now turn to the general case of a linear time varying barrier.  To provide a numerical 

example we select some values for the slope and intercept of the barrier equation (8).  We set 
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, , , , ,  and .  In Exhibit 6 we plot the 

convergence curve for the linear barrier option with the parameters specified above.   

 

Exhibit 6 about here 

 

It is clear that the convergence of the adjusted tree is considerably faster than that of the 

normal (unadjusted) trinomial tree.  Furthermore, the small fluctuations visible in the crests of 

the unadjusted curve are almost non-existent in the adjusted price curve.  Unfortunately, for 

this case we do not possess an analytical solution to which we can compare our results. 

 

 

IV. Options with Two Linear Time-Dependent Barriers 

 

Extending the example above, we now add an additional upper barrier, resulting in an option 

with two linear time-dependent barriers.  Unlike the single barrier case, the probability 

adjustment must now account for both the upper and lower barriers.  The appropriate exit 

probabilities for the upper, ,  and lower, , barrier were calculated by Baldi et al. (1999) 

and are given in Equation (11). 
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 (11) 

where the previous variable definitions still apply and  and  are the values of the upper 

and lower barrier at time , respectively.  To price the double barrier option the underlying 

tree is first constructed.  For each time division of the lattice we calculate the level of both the 

upper and lower barriers using the equations that define the barrier.  Once this is completed 

we can continue to price the option by calculating the option payoffs at maturity.  These are 

calculated at the last time division of the lattice.  We then work backwards through the tree 

calculating the option price at each given node using a slightly modified version of Equation 

(10) for the price of the option.  If, at a given node, the underlying price is either above U or 

below L we set the option value to zero, since the asset price has breached the barrier.  

Equation (12) gives the probability adjustment, , for the double barrier option case.  The 
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adjustment is a linear combination of the exit probabilities defined in Equation (11) for the 

upper and lower transitions: 

  (12) 

For the double time-varying barrier option it suffices to multiply the trinomial lattice 

probability by Equation (12) in order to effect the probability adjustment. To provide a 

numerical example, we choose the following set of parameters to describe the option: 

, , , , , ,  ,  and 

.  Exhibit 7 shows the convergence curves for the double linear time-varying 

barrier option. 

Exhibit 7 about here 

 

We do not have an analytical value for the double time-varying barrier option either, yet it is 

clear that the plot converges to a constant value.  The convergence is relatively stable after 

1000 time divisions of the lattice and convergence is near-monotonic.  The plot exhibits 

almost no periodical fluctuations in approaching a constant value for the option price.  

Notably, the unadjusted curve converges much more slowly to, presumably, the same value.  

However, an analytical or independent empirical result is needed to confirm the accuracy of 

our calculation.  

 

To judge the goodness of our method we can consider the special case of a knock-out option 

with double constant barriers. Although there is no analytic formula available, this type of 

option has been widely investigated in the option pricing literature.  Therefore, we can 

compare our  results with other numerical approximations.  The data presented in Exhibit 8 

are taken from Pelsser (1997). It is clear from the table the probability-adjusted method is in 

good agreement with the values obtained using other methods in the existing barrier option 

pricing literature. Specifically we consider the Kunitomo and Ikeda (1992), finite difference 

and Pelsser (1997) methods. We conclude that for short-term maturity options, the model 

demonstrates accurate approximations to the option price within 2000 time-divisions of the 

lattice.  Furthermore, these results do not differ significantly from those calculated using 1000 

divisions of the tree.  

 

Exhibit 8 about here 
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V. Options with Exponential Barriers 

 

We now turn our attention to the case of a barrier option with a time-varying exponential 

barrier. The probability adjustment is again given by Baldi et al. (1999) and is defined in 

Equation (13). This gives the exit probability in terms of the option parameters. As in the 

linear case, the barrier is characterized by its slope, , intercept,  and current lattice time- 

step, : 

                                                          . 

The probability correction is given by: 

    

� 
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 
 

 

 
 
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(13) 

The parameters for the calculation are: S0 = 95, K = 100,  = 25%, r = 10%, T = 1 year, 

exponential barrier slope = 0.05, exponential barrier intercept = 90. The analytical value is 

5.4861. 

 
Having specified the barrier and the parameters of the option we calculated the option price 

approximation for all time divisions from 1 to 1000 using the aforementioned procedure.  The 

results are plotted in Exhibit 9.    

 

 Exhibit 9 about here 

 

Because the exponential barrier option is priced using the same numerical technique that was 

applied to the single barrier option calculation times remain consistent and take approximately 

4 seconds.  After approximately 600 time-divisions of the tree, we note the decreased 

oscillations of the probability-adjusted model compared to that of the trinomial tree model. 

Convergence towards the analytical value of 5.4861 is also considerably faster. To judge the 

performance of our model for the exponential barrier option against another model, we 

compare our results to the empirical results published by Costabile (2002).  The results are 

shown in Exhibit 10. 

 

 Exhibit 10 about here 
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Usually, Costabile’s method converges slightly faster than the adjusted probability technique 

due to the fact that he is repositioning the nodes of his lattice whereas our method does not.  

As mentioned, we know that methods based on lattice manipulation exhibit faster 

convergence.  Nonetheless, Costabile’s method is specific to single exponential barrier 

options only yet the adjusted method can handle a multitude of barrier types and is not 

restricted to a particular option type. 

 

VI. Application to Bermuda Options 

 

A Bermuda option is a discretely monitored barrier option whose payoff is zero if the 

underlying price is below the barrier at some discretely monitored time, .  Exhibit 11 shows 

the diffusion paths that must be considered in order to apply the transition probability 

adjustment method. 

 Exhibit 11 about here 

 

We can see two possible types of diffusion paths for the underlying price; a safe path and a 

knock-out path.  Along the safe diffusion paths, the underlying price (even though discretely 

monitored) never falls below the barrier in continuous-time, yet in discrete time it appears to 

be a knock-out path.  Looking now at the discretely monitored knock-out paths, the price of 

the underlying asset actually does fall below the barrier for some monitored time .  At this 

particular time instant the option does, in fact, knock-out which results in a payoff of zero.  In 

applying the transition probability method the situations for both safe type paths and knock-

out type paths must be handled in order to achieve convergence to a fixed price.  This is the 

basis of our method in the Bermuda option case. 

 

The method for pricing a Bermuda option under transition probability adjustment proceeds as 

follows. First the underlying tree is constructed in the usual manner.  We then determine the 

monitoring frequency of the option.  This monitoring frequency provides us with a discrete 

set of times, , at which we determine whether the barrier has or has not been breached.  

When these monitoring dates lie between the time partitions of the lattice we adjust the lattice 

probabilities.  This situation is illustrated in Exhibit 12. 
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 Exhibit 12 about here 

 

In the downward transition from  to  the probability that the option expires is equal to 

the probability that a Brownian bridge between  and  falls, at time , below the 

barrier.  A complication arises when the barrier coincides with a time partition of the lattice as 

shown in Exhibit 13. 

 Exhibit 13 about here 

 

In this case the exit probabilities cannot be calculated and the method suffers from 

discretization error.  For the purpose of illustration, let the barrier level of Exhibit 11 be 95, 

the initial asset price,  and . In this scenario we would have to calculate the 

probability that the diffusion process falls below 95 at time  having started at  and ended 

at .  However, this probability equals unity when the barrier exceeds 90.  The underlying 

problem is that the option payoff on the trinomial tree is unaffected by the level of the barrier.  

Using the above example, the payoff of the option would be calculated as: 

  (14) 

Equation (14) produces the same result for the price of the option, , even if the barrier was 

placed at 90.01 since  would still be zero.  This result manifests itself as a large bias in 

the approximation to the option price. 

 

To avoid this discretization problem we can restrict the computation of the trinomial tree, 

only to a number of steps such that the lattice time division does not coincide with barrier 

monitoring times. As a general guideline, in practice it is best to avoid choosing multiples of 

the prime factors of the monitoring frequency in order to eliminate this problem. Thus, if the 

monitoring frequency, , is selected to be weekly and we assume 50 weeks in a year, it 

suffices to select a number of steps such as .  Since the prime factors of 50 

are 2 and 5, we do not compute the trinomial tree for steps that are multiples of 2 and 5.   

 

The pricing of the Bermuda option is not significantly different from the single linear barrier 

case, the main difference being that a slight amount of additional effort is required to account 

for the discrete monitoring times as previously discussed. The probability adjustment is given 

by the cumulative normal distribution which is the probability distribution of a Brownian 
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bridge between two successive points of the lattice.  For the Weiner process  that starts 

at  and ends at , its distribution in time  is 

normal with mean: 

 (15) 

and variance 

 . (16) 

The exit probability adjustment for the Bermuda option is therefore the cumulative normal 

distribution with mean, , and variance, , as defined in Equations (15) and (16). The 

distribution function is evaluated at the log price of the underlying asset at the current lattice 

node. The option price is then calculated using the trinomial lattice and the procedure 

described for the previous option types. To illustrate, we provide several numerical examples 

and compare the results to existing techniques for Bermuda options in the literature.   

 

Broadie and Glasserman (1997) derive a continuity correction for discretely monitored barrier 

options using the Reimann zeta function. This allows them to price a Bermuda option 

accurately, yet their method breaks down when the underlying price is close to the barrier or 

the barrier is time varying. A comparison between the adjusted transition probability method 

with the continuity correction method is given in Exhibit 14. 

 

 Exhibit 14 about here 

 

The table shows the results of the adjusted probability method compared to the values 

published in Brodie et al. (1997) for the corrected continuous pricing method. The option 

parameters are , , , , and .     The number of 

monitoring times for the corrected continuous method is 50 (with ) and for the 

adjusted method this translates into 250 annual monitoring points. These values correspond to 

daily monitoring of the option by assuming 250 trading dates per year.  Values of the true 

price are taken from Brodie et al. and are calculated using a specialized trinomial tree as 

described in Broadie, Glasserman and Kou (1999).  Both pricing methods perform well, but 

when the underlying price is close to the barrier, the probability-adjusted method has a much 
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smaller value for the relative error illustrating its ability to accurately price options for which 

the initial underlying asset price is close to the option barrier. 

 

Naturally, we can reduce the monitoring frequency and therefore reduce the number of 

probability adjustments in the trinomial lattice.  In doing so we can compare the adjusted 

model to additional results by Broadie et al. (1997).  Exhibit 15 shows the comparison of the 

model results for reduced monitoring frequency (the other parameters are equal to the 

previous example).  

 

 Exhibit 15 about here 

 

The increased accuracy of the transition probability adjusted trinomial tree over the corrected-

continuous method is immediately evident when the underlying asset price is close to the 

barrier.  The increase in the relative error of the corrected-continuous model in the  

case is pronounced even several price units away from the barrier. 

 

To provide a graphical depiction of the convergence properties of the probability adjusted 

method applied to a Bermuda option, in Exhibit 16 we provide a series of convergence plots 

for various barrier levels.   

 

 Exhibit 16 about here 

 

Panels (a) through (c) show convergence graphs for barrier levels, , of 95, 99.5 and 99.9, 

respectively with weekly barrier monitoring.  The remaining parameters are taken from Table 

2 in Duan et  al. (2003): , , , , and .  

Panels (a)-(c) clearly show the convergence of the probability adjusted method to the analytic 

price which is shown on the plots as a straight line. Fluctuations about the true price are small 

and in most cases are within less than one-tenth of a unit of the option price.  Some 

oscillations of increasing period do remain, however.  Panel (d) shows the convergence plot 

for Example 1 as published in Ahn, Figlewski and Gao (1999).  The parameters for this 

calculation are taken to be , , , , ,  and a 

single monitoring time at .  The convergence to the true price in this case is near-

monotonic and occurs rapidly.  There are no noticeable oscillations in this particular case.  
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Combined, panels (a)-(d) illustrate the flexibility of the method for pricing options of various 

maturities and various barrier levels; including barrier levels that are very close to the initial 

underlying asset price. 

 

 

VII. Numerical Performance 

 

All calculations were implemented in the C++ programming language.  Exhibit 17 shows the 

CPU time in seconds spent on the adjusted trinomial option tree and the CPU time in 

microseconds spent on the adjusted trinomial underlying tree.  Also shown is the total 

combined CPU time of the calculation.  All computations were performed on a 1.83 GHz 

CPU with 2 GB of RAM. 

 Exhibit 17 about here 

 

The CPU time spent on the underlying tree is negligible and on the order of microseconds.  

Consequently, it is evident that the bulk of the CPU time is spent on generating the option 

tree.  In fact, total calculation time and CPU option tree time are indistinguishable on the 

figure.  Calculation time increases rapidly after 4000 lattice levels and at 10000 lattice levels, 

the calculation time is approximately 47 seconds.  A typical calculation for 1000 lattice 

divisions and a time-varying barrier requires approximately 4 seconds. 

 

 

VIII. Conclusion 

 

In this paper we have presented a generalized method for pricing numerous types of  barrier 

options that is based on a simple modification of the  trinomial tree model.  With minimal 

effort, the calculations can readily be implemented on a binomial lattice with little to no 

change in accuracy.  This also has the effect of decreasing calculation time owing to the 

reduced number of lattice paths.  Additionally, the model can be applied to any option as long 

as the exit probability can be calculated (or approximated) in a closed-form.  Our results for 

time-varying barrier options are promising and demonstrate good convergence properties 

towards the continuous-time price of the option.   More specifically, we have shown that it is 

possible to produce option price approximations even when the initial underlying price is very 

close to the barrier, a result that is often difficult to obtain using alternative models in the 



 18 

literature.  Furthermore, the model produces accurate price approximations for options with 

short maturity. 

 

We have applied the transition probability method to several types of time-varying barrier 

options including those with exponential, single linear and double linear barriers.  A lack of 

closed-form option valuation equations for some option types renders it difficult to precisely 

gauge the accuracy of our approximations in the case of the single linear and double linear 

time-varying barriers.  Nonetheless, the price appears to converge to a fixed value based on 

the convergence plots.  The accuracy of the option price approximations produced by the 

model dominates that of the Kamrad and Ritchken model while avoiding any repositioning of 

the lattice nodes.  This makes it expedient and simple to implement even for complex option 

types. 

 

Application of the model to discretely monitored Bermuda options also produces good results 

with no loss in pricing accuracy when the barrier level is close to the underlying asset price.  

Given its straightforward implementation, the model outperforms more complicated pricing 

models and convergence to the true price is near to monotonic, a desirable property for an 

asset pricing model. 

 

While no single lattice based pricing model can be used to estimate option prices with 

arbitrary accuracy, a given model selected from the literature can be used either as a general 

purpose pricing model or as a specialized pricing model tailored to a specific option.  What is 

important is that the practitioner understands the advantages and shortcomings of any 

particular option pricing model.
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Exhibit 1 

Evolution of the underlying trinomial tree. 
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Exhibit 2 

The option price trinomial lattice associated with the underlying asset tree. 
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Exhibit 3 

The trinomial lattice for an option with a linear time-varying barrier.
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Exhibit 4 

Trinomial lattice with diffusion paths that traverse the barrier between lattice nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 23 

 

_________________________________ Number of Time Steps in the Tree _____________________________________ 

Stock Price 500 1000 2000 3000 4000 5000 Analytic 

Price 

94.0 4.849/ 4.723 

(4.863) 

4.814 /4.839 

(4.864) 

4.866 /4.811 

(4.864) 

4.840 /4.880 

(4.864) 

4.839 / 4.845 

(4.864) 

4.82 / 4.833 

(4.864) 

4.864 

93.0 3.667 / 3.610 

(3.700) 

3.601 / 3.634 

(3.701) 

3.697 / 3.722 

(3.702) 

3.641 / 3.708 

(3.701) 

3.649 / 3.717 

(3.701) 

3.654 / 3.703 

(3.702) 

3.702 

92.0 2.45 / 2.526 

(2.504) 

2.509 / 2.398 

(2.506) 

2.487 / 2.425 

(2.506) 

2.507 / 2.497 

(2.506) 

2.488 / 2.502 

(2.506) 

2.454 / 2.464 

(2.506) 

2.506 

91.5 1.8 / 1.726 

(1.894) 

1.799 / 1.930 

(1.894) 

1.868 / 1.850 

(1.895) 

1.885 / 1.877 

(1.895) 

1.836 / 1.863 

(1.895) 

1.893 / 1.907 

(1.895) 

1.895 

91.0 1.222 / 1.333 

- 

1.176 / 1.155 

(1.274) 

1.239 / 1.286 

(1.274) 

1.221 / 1.248 

(1.275) 

1.275 / 1.217 

(1.275) 

1.224 / 1.272 

(1.274) 

1.274 

90.5 0.716 / 0.669 

- 

0.707 / 0.695 

- 

0.614 / 0.672 

- 

0.57 / 0.612 

- 

0.593 / 0.580 

(0.642) 

0.626 / 0.590 

(0.642) 

0.642 

90.4 0.561 / 0.521 

- 

0.576 / 0.544 

- 

0.549 / 0.558 

- 

0.498 / 0.542 

- 

0.462 / 0.512 

- 

0.458 / 0.480 

(0.515) 

0.515 

90.3 0.409 / 0.380 

- 

0.424 / 0.393 

- 

0.433 / 0.412 

- 

0.423 / 0.419 

- 

0.403 / 0.418 

- 

0.381 / 0.410 

- 

0.387 

90.2 0.263 / 0.248 

- 

0.271 / 0.252 

- 

0.281 / 0.260 

- 

0.287 / 0.267 

- 

0.289 / 0.273 

- 

0.288 / 0.276 

- 

0.258 

90.1 0.127 / 0.122 

- 

0.129 / 0.122 

- 

0.131 / 0.123 

- 

0.129 / 0.124 

- 

0.135 / 0.126 

- 

0.137 / 0.127 

- 

0.129 

90.05 0.063 / 0.061 

- 

0.063 / 0.061 

- 

0.064 / 0.061 

- 

0.064 / 0.061 

- 

0.064 / 0.061 

- 

0.065 / 0.061 

- 

0.065 

90.01 0.012 / 0.012 

- 

0.012 / 0.012 

- 

0.012 / 0.012 

- 

0.012 / 0.012 

- 

0.012 / 0.012 

- 

0.012 / 0.012 

- 

0.013 

Exhibit 5 

This table presents the results for the behaviour of the down-and-out call option price when 
the stock price is close to the barrier.  The last column contains the price of the down-and-out 
call option using an analytical solution.  The prices are displayed as adjusted binomial price / 
adjusted trinomial price. Prices in brackets are those given in Ritchken (1995). Prices 
indicated by “-” were unable to be computed using the node repositioning method of Ritchken 
- that is the number of partitions used were insufficient to produce an approximation to the 
analytical price. 
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Exhibit 6 
Convergence plot for the single linear time-varying barrier option. Option parameters are  
S0 = 100,  K = 100, = 25%, r = 10%, l1 = 10 and l0 = 95. 
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Exhibit 7 
Convergence plot for the double linear barrier option. Option parameters are S0 = 100, K = 
100, = 25%, r = 10%, l1 = -22, l0 = 92, u1 = 35 and u2 = 105. 
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Vol U L KI Ana FD Approx 1 Approx 2 

1500 500 25.12 25.12 24.57 25.12 / 25.12 25.12 / 25.12 

1200 800 24.76 24.76 24.69 24.77 / 24.76 24.76 / 24.76 

 

  

1050 950 2.15 2.15 2.15 2.14 / 2.15 2.15 / 2.15 

1500 500 36.58 36.58 36.04 36.59 / 36.58 36.59 / 36.58 

1200 800 29.45 29.45 29.40 29.42 / 29.40 29.42 / 29.46 

 

 

1050 950 0.27 0.27 0.27 0.27 / 0.26 0.26 / 0.27 

1500 500 47.85 47.85 47.31 47.86 / 47.85 47.85 / 47.84 

1200 800 25.84 25.84 25.82 25.85 / 25.88 25.83 / 25.86 

 

 

1050 950 0.02 0.02 0.01 0.01 / 0.01 0.01 / 0.01 

 

Exhibit 8 

Comparison of the adjusted method (binomial / trinomial) with values from Pelsser (1997).  
The option parameters used are S0 = 1000, K = 1000, r = 5% and T = 1/12.  Note: “Approx 1” 
is calculated for 1000 time-divisions of the adjusted tree and “Approx 2” is calculated using 
2000 time-divisions of the adjusted tree. Column “U” gives the upper barrier while column 
“L” gives the lower barrier.  KI is calculated using the method of Kunitomo and Ikeda (1992), 
“Ana” are the results of Pelsser (1997) and “FD” is the finite difference calculation based on a 
1000 by 1000 grid. 
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Exhibit 9 

Results of the convergence calculation for an exponential barrier option. Parameters for the 
calculation are S0 = 95, K = 100,  = 25%, r = 10%, T = 1 year, exponential barrier slope = 
0.05, exponential barrier intercept = 90.  The analytical value is 5.4861. 
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 Slope = m = -0.1  Slope = m = 0.1 

Tree Lvls. Costabile Adjusted Tree Lvls. Costabile Adjusted 

17 7.002 6.631 24 5.020 5.400 

77 6.958 6.753 92 4.949 4.985 

181 6.920 6.787 203 4.934 4.876 

327 6.910 6.786 356 4.934 4.877 

515 6.912 6.802 552 4.932 4.912 

2100 6.902 6.868 2174 4.929 4.915 

4754 6.900 6.889 4865 4.929 4.918 

Analytic 6.896 Analytic 4.928 

 

Exhibit 10 
 
Comparison of results between the adjusted-probability method and the extended Cox-Ross-
Rubinstein method of Costabile (2002) 
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Exhibit 11 
 
Diagram illustrating the two types of possible diffusion paths.  These are denoted the knock-
out (continuous line) and safe type paths (dashed line).  
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Exhibit 12 
 
When the discrete monitoring times, , lies between the lattice nodes, the probability 
correction is applied. 
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Exhibit 13 
 
A complication arises when the barrier and a layer of lattice nodes coincide at a discrete 
monitoring time, .
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Barrier Continuous 

Barrier 

Corrected 

Continuous 

Probabililty 

Adjusted 

True 

Price 

Broadie 

Rel. Err. (%) 

Adj. 

Rel. Err. (%) 

85 6.308 6.322 6.322 6.322 0 0 

86 6.283 6.306 6.306 6.306 0 0 

87 6.244 6.281 6.281 6.281 0 0 

88 6.185 6.242 6.242 6.242 0 0 

89 6.099 6.184 6.184 6.184 0 0 

90 5.977 6.098 6.097 6.098 0 -0.02 

91 5.808 5.977 5.976 5.977 0 -0.02 

92 5.579 5.810 5.811 5.810 0 0.02 

93 5.277 5.585 5.583 5.584 0.02 -0.02 

94 4.888 5.288 5.283 5.288 0 -0.09 

95 4.398 4.907 4.905 4.907 0 -0.04 

96 3.792 4.428 4.430 4.427 0.02 0.07 

97 3.060 3.836 3.841 3.834 0.05 0.18 

98 2.189 3.121 3.131 3.126 -0.16 0.16 

99 1.171 2.271 2.337 2.337 -2.82 0 

 

 

Exhibit 14  
 
Comparison between the results of Broadie and Glasserman (1997) and the adjusted transition 
probability method for a down-and-out call Bermudan style option. The option parameters are 

, , , , and .  The number of monitoring times for 
the corrected continuous method is 50 (with ) and for the adjusted method this 
translates into 250 annual monitoring points. 
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Barrier Corrected 

Continuous 
Adjusted 

Tree 
True Cor. Cont. 

Rel. Err. (%) 
Adj. Tri. 

Rel. Err. (%) 
 85 6.327 6.326 6.326 0.02 0.01 
 87 6.293 6.292 6.292 0.02 0.01 
m= 125 89 6.210 6.210 6.210 0.00 0.00 
 91 6.033 6.031 6.032 0.02 -0.01 
 93 5.688 5.686 5.688 0.00 -0.03 
 95 5.084 5.080 5.081 0.06 -0.02 
 97 4.113 4.119 4.116 -0.07 0.09 
 99 2.673 2.813 2.813 -4.98 0.00 
       
 85 6.337 6.336 6.337 0.00 0.00 
 87 6.323 6.321 6.321 0.03 0.01 
m=25 89 6.284 6.280 6.281 0.05 0.00 
 91 6.194 6.187 6.187 0.11 0.00 
 93 6.004 5.999 6.000 0.07 -0.01 
 95 5.646 5.670 5.671 -0.44 0.00 
 97 5.028 5.167 5.167 -2.69 0.01 
 99 4.050 4.489 4.489 -9.78 0.01 
 

 

Exhibit 15 
 
Comparison between the adjusted probability method and corrected-continuous method for 
reduced monitoring frequency. The option parameters are , , , 

, and . 
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Exhibit 16 
 
Panels (a)-(c) show convergence plots for various starting barrier levels with weekly 
monitoring. The parameters are taken from Table 2 in Duan et al. (2003): , , 

, , and .  
Panel (d) shows a comparison with the method of Ahn et al. (1999). The parameters for this 
calculation are taken to be , , , , ,  and a 
single monitoring time at . 
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Exhibit 17 
 
CPU times required for the underlying asset lattice and the option price tree
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Endnotes 
 
The authors thank Stephen Figlewski, the editor, for valuable comments and the FinRisk for 
its financial support. 
 
1 Although we implement the transition probability adjusted model on a trinomial tree, the 
model can easily be implemented on the standard binomial lattice with slightly less effort. In 
Exhibit 5 and Exhibit 8 we show results for both models. 
 
2 . The special case of  makes the trinomial tree to collapse into a binomial tree. 
 
3 In the case of a down-and-in call option, the value of the call option is set to zero if the 
underlying price does not touch the barrier. 


