Path planning for mobile robots in the real
world

Handling multiple objectives, hierarchical structures and partial
information

Doctoral Dissertation submitted to the
Faculty of Informatics of the Universita della Svizzera italiana
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Jérome Guzzi

under the supervision of

Prof. Luca Maria Gambardella and Dr. Alessandro Giusti

July 2018

Dissertation Committee

Prof. Cesare Alippi Universita della Svizzera italiana, Lugano, Switzerland
Prof. Francesco Mondada Ecole polytechnique fédérale de Lausanne, Switzerland
Prof. Evanthia Papadopoulou Universita della Svizzera italiana, Lugano, Switzerland
Prof. Domenico Sorrenti Universita di Milano-Bicocca, Italy

Dissertation accepted on 12 July 2018

Research Advisor Co-Advisor
Prof. Luca Maria Gambardella Dr. Alessandro Giusti
PhD Program Director PhD Program Director

Prof. Walter Binder Prof. Olaf Schenk

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Jérome Guzzi
Lugano, 12 July 2018

Abstract

Autonomous robots in real-world environments face a number of challenges even
to accomplish apparently simple tasks like moving to a given location. We present
four realistic scenarios in which robot navigation takes into account partial infor-
mation, hierarchical structures, and multiple objectives. We start by discussing
navigation in indoor environments shared with people, where routes are charac-
terized by effort, risk, and social impact. Next, we improve navigation by com-
puting optimal trajectories and implementing human-friendly local navigation
behaviors. Finally, we move to outdoor environments, where robots rely on un-
certain traversability estimations and need to account for the risk of getting stuck
or having to change route.

Acknowledgements

I would like to thank my supervisors Luca Maria Gambardella and Alessandro
Giusti for their invaluable support, and all people that traveled with me on my
journey in robotics research: Gabriele Scascighini who kicked off the adven-
ture, Andrea Rizzoli and Alexander Forster who, together with Luca Maria Gam-
bardella, welcomed me at IDSIA, Gianni di Caro who supervised the first part of
the thesis, and my colleagues Frederick Ducatelle, Eduardo Feo Flushing, Jawad
Nagi, Jacopo Banfi, Fang-Lin He, Juan Pablo Rodriguez Gémez, Boris Gromov,
and Omar Chavez-Garcia, for their precious help.

This work was partially supported by the Fondazione Informatica per la Pro-
mozione della Persona Disabile (FIPPD), the European Union Active and Assisted
Living Programme (AAL), and the Swiss National Competence Center for Re-
search in Robotics (NCCR-Robotics).

Vi

Contents

[Contents|
Introductionl

(1 Path planning in indoor spaces|

INtroduction] v v v v i e e e e e e e e e e e e e e e

(1.2.1 Spatial representations|
[1.2.2 Rich maps and multi-objective path planning
[1.2.3 Trajectory planning in social spaces|

1.3 Modell

(1.3.3 Microscopic attributes|.
(1.3.4 Navigationlayer]
[1.3.5 Macroscopic attributes|
(1.3.6 Navigation linegraph|.
(1.3.7 Multi-objective optimization|

(1.4 EXperiments|o uvuununenenennnnn..

(1.4.1 Experimental setup|

[1.4.2 Results| i e

(1.5.1 Optimal topological planning for smart wheelchairs|
(1.5.2 Drones coordinationonaflywayl

1.6 Conclusions and Perspectives|

Optimal trajectory planning in indoor spaces|

INtroduction v v vt e e e e e e e e e e

2.2 Related Workl. o i i e
.....................................

Vii

10
10
11
12
13
13
13
14
15
18
24
25
31
31
33
33
33
39
39

viii Contents
[2.3.1 The jerk along a trajectoryasacost] 45
[2.3.2 Problem formulation| 47
[2.3.3 Searchspace] 48
[2.3.4 Bending cost optimisation| 51
[2.3.5 Optimal trajectories in indoor buildings|. 53
[2.3.6 Geometric multi-objective optimization| 54

[2.4 EXperiments|ttt 54
[2.4.1 Syntheticmap|, 55
2.4.2 Realbuilldingmap| 55
[2.4.3 Multi-objective planning example| 57
[2.4.4 Robotnavigation|. 57

[2.5 Conclusions and Perspectives| 58

[3 Human-friendly local navigation| 61

B.1 Introduction 61
(3.1.1 Localnavigation| 61
(3.1.2 Human-friendly behavior|. 62
[3.1.3 Emerging collective behaviors|. 62
3.1.4 Outlinef. 63

3.2 Related Workl. 64
[3.2.1 Local navigation in robotics| 64
[3.2.2 Local navigation in social sciences| 65
[3.2.3 Robot behavior acceptance|. 66

..................................... 67
[3.3.1 Problem formulation| 67
[3.3.2 Pedestrian heuristics|. L. 67
[3.3.3 Application to robot navigation| 69

(3.4 Comparison with alternative navigation behaviors|. 73
[3.4.1 Behaviors based on Reciprocal Velocity Obstacle| 73
[3.4.2 Comparison with the Human-like behavior]. 75

[3.5 Navigation along a geometrical trajectory| 76

(3.6 Experimentalsetup|.............., 77
3.6.1 Scenarios] 77
[3.6.2 Robots and SensIing|ot 79
B.63 Simulationl. 80
[3.6.4 Implementation of navigation behaviors| 80

(3.7 EXperiments|ttt 81
................................. 84

[3.7.2 Sensing|. e 84

iX Contents
3.7.3 Validation with real robots| 85

(3.7.4 Scalability] 87

[3.7.0 Heterogeneousswarms|. 87

[3.7.6 Emerging collective behaviors|. 88

[3.7.7 Trajectory following| 92

[3.8 DiSCUSSION| . . . v v i i e e e e e e e e e e 93
[3.9 Conclusions and Perspectives| 97

[4 Planning with traversability estimations| 99
4.1 IntroducCtionl ¢ v v v v vt e e e e e e e e e e e 99
[4.1.1 Planning according to traversability estimations|. 100

[4.1.2 Risk-aware path planningl 101

4.1.3 Resilent path planning| 101

4.2 Related work on the Canadian traveller problem|. 102
4.3 Risk-aware path planning| 103
4.3.1 Problem formulation| 103

[4.3.2 Approximated convex-hull of the Pareto front| 105

[4.3.3 EXperiments|.t 107

4.4 The impact of the estimator quality on the navigation policy] ... 110
4.4.1 _Problem formulation| 112

14.4.2 Binary traversability classifier] 112

4.4.3 Optimal and baseline policies| 114

4.4.4 Experimentalsetup| 116

4.4.5 Experimental Results| 118

[4.4.6 _DISCUSSION . « « . ¢ v v v vt e e e e e e e e e e e e e e 124

4.5 Conclusions and Perspectives| 124
[5__Conclusion| 127
[O.1 Summary| e e e e 127
[5.2 Looking forward|. 130
|/A_Publications| 133
B r 1 137

Contents

Introduction

Making a robot solve a simple task is usually a complex exercise for researchers,
even without considering the challenge to design and build a working piece of
hardware. Complexity arises when we instantiate the robot’s task in the real
world, even more so when the robot interacts with people.

In the thesis we focus on a ubiquitous task for autonomous mobile robots:
reach a given target position using the robot’s locomotion capabilities. In fact,
there are instances of this problem, illustrated in any textbook, that are simple
to model and relatively easy to solve, e.g., computing a feasible path given a grid
map whose cells are either obstacles or free space. Yet, modeling realistic navi-
gation tasks is complex. Simply reaching the target along the shortest possible
path is often not enough; instead, we expect the robot to follow a trajectory that
satisfies multiple other implicit goals.

As an illustration, let us consider the navigation task that a service robot needs
to solve to go somewhere within a city using a map of the road (and sidewalk)
network. From our experience as pedestrians, we quickly realize that the robot
needs to consider many aspects. The robot should comply with traffic rules and
move in a considerate, predictable manner when crossing people along the side-
walks. The robot should work well even with maps that are not always accurate;
for example, maintenance works may block the access to some sidewalks on a
given day. Finally, the robot performance depends on the environment; for ex-
ample, the robot may need to avoid direct sunlight to be able to rely on infrared
sensors and avoid obstacles; the robot may be equipped with wheels able to over-
come small steps but not large ones, and may get stuck on streetcar rails when
crossing them at an oblique angle. This scenario describes a complex navigation
task.

In the thesis, we instantiate and solve navigation and path planning problems
in different contexts and different level of abstraction, as illustrated in Figure

In Chapter([1] the robot is traveling from one side to the other of a building, fol-
lowing a path that requires low effort, has a low risk of accidents, and minimizes
discomfort caused to other users (in particular to people). The environment is

2 Contents

Chapter 1 Chapter 2 Chapter 3

BUTY ST ' d_“., }
'n,. .

¢
R
>3

Chapter 4

Figure 1. Outline of the thesis. Chapter : accounting for many factors, the
robot plans the best path and identifies a sequence of cell boundaries to cross
(in blue). Chapter[2} the robot chooses an optimal (short, smooth and legible
to others) trajectory (blue) across these cell boundaries. Chapter [3} the robot
smoothly navigates around people. Chapter[4} the robot now ventures outside
in the unstructured world. The robot is not sure if it will be able to traverse a
part of rough terrain and decides that is better to take the longer path instead of
the shorter but riskier path. At the same time, the robot prefers crossing the river
where there are two visible nearby bridges: in case one of them is found to be
not traversable, backtracking to the other one will be cheap.

3 Contents

modeled as a set of cells (i.e., a non-regular decomposition of two-dimensional
space into polygons) that contain a rich description of their relationship with the
robot’s navigation task. We compute a high-level topological route: a sequence
of cells to traverse to reach the goal.

In Chapter [2] we go one step further and compute the continuous trajectory
that the robot should follow along the high-level route. We consider the case
when the robot is a smart wheelchair that has to be comfortable for the user (turn
gently and avoid excessive accelerations). Moreover, the robot should account
for the presence of other people, and, in particular, make its current goal easy to
infer.

In Chapter |3} the robot is following a trajectory across a space crowded with
people. Like them, the robot needs to continuously adjust its motion to avoid
collisions. In addition, the robot’s motion has to be as human-friendly as possible:
in particular, it should strive to conform to the way humans use to navigate. Are
humans proceeding along lanes? Then the robot should queue itself and follow
the flow.

In Chapter [4] the robot has arrived at the other end of the building and ven-
tures outside to navigate in a less structured environment. The robot needs to
estimate whether it is able to traverse several stretches of difficult outdoor ter-
rain. The estimate is computed by a statistical classifier using incomplete data,
which has non-ideal accuracy; the robot, when planning a path, has to take into
account the uncertainty in traversability estimates. When the robot arrives in
place, it is able to refine the traversability estimates using data from its onboard
sensors. The robot implements navigation strategies that are resilient to discover-
ies made along the path: in particular a resilient navigation strategy favors paths
that offer cheap alternatives should a portion turn out to be not traversable.

When dealing with these issues, we observe three recurrent, connected themes:
hierarchical structures, partial information and multiple objectives.

Hierarchical structures A realistic robotic task usually needs to be broken down
to manageable subtasks that interact with each other. A prominent example is
given by the first three chapters, where the task of reaching a target point is
broken down into three subtasks, which iteratively refine the solution: (1) com-
pute a high-level route; (2) compute a geometric trajectory along the route; (3)
avoid dynamic obstacles along the trajectory. The subtasks are related in mul-
tiple ways. In direction 1 — 2 — 3, the output of one planner serves as the
input (goals or constraints) of the next planner. In the opposite direction, lower
level planners serve to model costs. For example, a high-level planner estimates

4 Contents

the effort needed to cross a room with a given occupancy based on the average
performance of a local navigation controller in that setting.

Partial information In Chapter [1}, we model heterogeneous spatial descriptors:
attributes that may be subjective or objective, personal or general. We assume
that, at planning time, information is complete and that the robot will be able to
handle dynamic changes along its way, as e.g., in Chapter |3, where we handle
unforeseen obstacles that were previously outside of the robot’s view and we
show that a reactive navigation policy is a good strategy to cope with them.

In Chapter 4} we deal with partial information in a different context, i.e., un-
certain estimates concerning ground traversability. We discuss how the appro-
priate way to handle these uncertain estimates within a path-planning problem
crucially depends on the consequences of attempting to cross a terrain that is
not traversable. In particular, we distinguish the case in which the robot gets
irreversibly stuck, and the case in which the robot can backtrack and continue
traveling on a different route; we show that each case yields a very different
formalization of the path planning problem.

Multiple objectives When framed in realistic contexts, a navigation task usu-
ally requires multiple objectives to be satisfied. In Chapter [1, we introduce the
topic through an explicit model. The model derives, from a rich spatial de-
scription of navigability, a summary representation defining a few costs that are
well suited to address many different scenarios, in particular when people share
spaces with robots. In Chapter [2) we interpret some objectives (in particular
legibility) as constraints and search for trajectories that are smooth and short.
In Chapter 3, we proceed in a different way: one of the objectives (human-
friendliness) is satisfied by design through the selection of the navigation be-
havior, instead of by explicit optimization. In Chapter 4, we finally link partial
information to risk and formulate risk-aware multi-objective path planning prob-
lems.

When optimization over multiple objectives is suitable, we assume that we
are computing plans for a strategic decision maker (or agent) that sits on top of
the planning hierarchy. In Chapters[I]and[2] we compute exact solutions of multi-
objective optimization path planning problems over (sparse) navigation graphs,
whereas in Chapter[4|we compute approximations because the navigation graphs
are too large.

5 Contents

Contributions

In this section I use the singular personal pronoun to clarify my contributions
over the state-of-the-art and my own contributions in the collaborative research
effort, and to summarize the scientific outcome in terms of publications, project
milestones and software releases; the detailed list of scientific publications (Ap-
pendix [A) and software releases (Appendix [B) are provided as appendices.

Contributions over the state-of-the-art

Chapter 1: Path planning in indoor spaces I propose an extension of a recent
standard for indoor maps [89]] that adds a rich description of the relation between
agents and spaces, with particular focus on robotic navigation. I propose an
abstract model to describe planning costs in terms of geometry and environment
state; I identify three macroscopic costs that describe many common scenarios
both in robotics and in route planning for people.

Mine is the first effort to present a complete pipeline: from deriving a navi-
gation graph, to defining and solving a multi-objective path planning problem in
these spaces; this pipeline is composed by algorithms that are novel, namely: de-
composing the space in few quasi-convex cells well suited for planning; comput-
ing the exact Pareto front of the multi-objective problem by iterative application
of a state-of-the-art algorithm for the k-th shortest path on a graph [[156]]. Each
of these algorithms solves a specific, narrow problem and therefore represents a
minor contribution over the state-of-the-art [88]].

Publications We introduced the pipeline for path planning in social spaces
using three macroscopic costs (effort, safety risk, and social impact) in a work-
shop paper [56]]. We elaborated on it to support users with restrained mobility
in nursing homes in two project deliverables [53, |54].

Chapter 2: Optimal trajectory planning in indoor spaces I present a novel
derivation of the cost associated with the discomfort of following a trajectory
sitting on a robotic wheelchair as an intrinsic geometrical property. I use this
cost and a parametrization of trajectories as composite Bézier curves, to define a
non-linear optimization problem that searches for the trajectory that turns most
gently. In this regard, I extend the state-of-the-art [[28, 36, 147] in several di-
rections: a) my approach can compute a long, complex trajectory that spans a
whole building whereas previous work was limited to passing trough a single
door; b) my approach adds constraints to increase predictability; ¢) I propose an
effective heuristic to initialize the search; d) I propose a novel method to limit the

6 Contents

dimensionality of the search space without compromising smoothness; e) I de-
fine and solve a novel multi-objective problem in the search for short trajectories
that turn gently.

Publications We presented our optimal trajectory planner for wheelchairs
in a conference paper [|55]].

Chapter 3: Human-friendly local navigation I present the first application to
robotics of a state-of-the-art heuristic [[103]] used in social sciences to describe
the navigation of pedestrians [[105]. I compare it with two known algorithms
for local robot navigation [[14,|135], introducing new benchmarks for individual
and group navigation performance; it is the first systematic comparison between
reactive navigation algorithms with a large scale simulation campaign and real-
robot tests. Moreover, I explore novel ideas on multi-robot implicit coordination,
such as using artificial emotions to modulate the collective behavior.

Publications We described the extension of the pedestrian heuristic to ro-
botics in a conference paper [60]. We compared it with other collision avoid-
ance algorithms [|14, 135]] in conference paper [[61]. Similar to what observed
in crowds [[66, 104], local navigation rules let macroscopic behaviors emerge
in groups of robots, which we investigated in a conference paper [59]]. We dis-
cussed how to improve navigation using artificial emotions in two conference
papers [57, 58].

Chapter 4: Planning with traversability estimations In a joint effort with col-
leagues, I developed the first application of machine learning to estimate the
traversability of a portion of an heightmap, which inspires the definition of path
planning problems. In this framework, my specific contribution was to formalize
risk-aware multi-objective path planning on maps with uncertain traversability
estimations and develop a novel algorithm to approximate its solution; this is an
incremental contribution over state-of-the-art multi-objective planners [|35]].

I also propose the first large scale investigation on a question that has not
been tackled yet in the literature, namely: how does the quality of traversability
estimations impact the performance of the navigation policies for the (very well-
known) Canadian traveller problem [8, 113[]?

Publications We present the complete pipeline — from estimation of ter-
rain traversability to risk-aware multi-objective path planning — in a journal
paper [[26]]. We discussed the impact of traversability estimation on the cost of
navigation policies in a workshop paper [|62].

7 Contents

Own contributions to collaborative research

Avery large part of the work presented in the thesis originate from my direct con-
tribution. Nonetheless, scientific research is not an individual effort and I could
profit from many contributions from other researchers. I briefly go through each
chapter to separate my contributions from the contributions of colleagues; the
important contribution of the advisor (Prof. Luca Gambardella) and co-advisors
(Prof. Gianni di Caro and Dr. Alessandro Giusti) in all my research activity and
research output is always implied; in particular, the advisor and co-advisors ac-
tively participated in discussing and suggesting research ideas and assisting in
the preparation of research papers.

Path planning in indoor spaces 1 developed the model, implemented the soft-
ware and evaluated the planner performance. For the ALMA project, researchers
from SUPSI-DSAN helped to define the attributes to describe social spaces; other
partners have provided interfaces for my planner to the localization system, user
interface and robotic wheelchair (POLIMI) and to the smart cameras (VCA); site
tests were a collaborative effort of all project’s partners. For the DFW project, I
implemented the software on the light poles and on the drones with the help of
Dr. Eduardo Feo Flushing.

Optimal trajectory planning in indoor spaces I developed the model, imple-
mented all software and evaluated the planner performance. The robot con-
troller makes use of the open source ROS framework and the planner uses on
open source numerical solvers.

Human-friendly local navigation I adapted the pedestrian navigation model to
robotics, compared it with alternatives, developed a custom simulator for large
multi-agent scenarios, implemented the Human-like navigation behavior, and
performed all the experiments; Dr. Alessandro Giusti contributed the model for
simulating robot cameras. For the comparison, I use third-party, open source
implementations of the other algorithms [[69, |126]]. The biomimetic model for
tuning navigation based on artificial emotions is a joint idea of Prof. Gianni di
Caro and me.

Planning with traversability estimations The design of the machine learning
algorithms and the collection of the dataset in simulation was performed by Dr.

8 Contents

Omar Garcia-Chavez and Dr. Alessandro Giusti. I developed the risk-aware plan-
ner; I tested it on real maps and real robots with the help of Dr. Omar Garcia-
Chavez and other partners from NCCR Robotics (ETHZ, EPFL and UNI-ZH). I de-
signed the analysis of the Canadian traveler problem together with Dr. Alessan-
dro Giusti. I implemented the policies, the random graph generators, performed
the test and evaluated the results.

Scientific output

During the work that led to this thesis, I published, together with coauthors, 4
papers in major robotics journals (1 in Autonomous Robots, 2 in Robotics and
Automation Letters, and 1 in Robotics Automation Magazine) and 13 papers in
major robotics conferences: 4 at IROS, 2 at ICRA, 1 at GECCO, 1 at AAMAS, 2
at AAAI, 1 at AVICS, 1 at BIONETICS and 1 at ICSR. I was the responsible for
providing mapping and planning services for a ALMA, a large EU AAL project,
for DFW, a smaller Swiss CTI project, and for one work package in the search
and rescue grand challenge of phase 2 of NCCR-Robotics that provided resilient
path planning for ground robots on rough terrain. These efforts resulted in the
open source release of 7 software libraries: a pipeline for indoor planning, its
application in nursing homes and its extension to coordinate of a fleet of drones;
a multi-agent simulator; a ROS package with various reactive navigation policies;
a ROS package with a risk-aware path planner; and a library to perform large
scale navigation experiments on random maps with uncertain traversability.

Chapter 1

Path planning in indoor spaces

1.1 Introduction

An autonomous robot is traveling towards its destination inside a building. To
reach it, the robot will have to traverse several spaces with different character-
istics (narrow corridors, slippery floors, crowded halls, dark rooms, steep stairs,
and so on). Which one of the many alternative routes should it follow?

In this chapter, we focus on this question starting from the observation that
indoor spaces have rich spatial descriptions. Spatial information gives us clues
about difficulties and tradeoffs that the robot will face such as: it may fall or
get stuck on some floor types; it should avoid private rooms; it may struggle to
maintain good localization in dark spaces.

We approach the problem through a bottom-up analysis. We first discuss and
model spatial representations that are well suited to encode rich spatial descrip-
tions typical of environments shared with people. Then, we extract the most
relevant information for a robot to navigate safely, efficiently and in a way that
does not hinder people: a generic model that gives rise to a multi-objective path
planning problem. Finally, we instantiate the generic problem on two real-world
applications: computing appropriate routes for autonomous wheelchairs in nurs-
ing homes; coordinate drones along flyways, an outdoor scenario that features a
similar spatial structure.

We present a model that lets agents account for rich information about them-
selves and their environment, and get a description of several optimal routes
(each made of a sequence of cells to traverse) to reach a destination. In the next
chapters, we will discuss how to refine the plans: in Chapter [2 we compute the
best trajectory that passes through a sequence of cells; in Chapter (3| we study
how the robot avoids dynamic obstacles along the route.

9

10 1.2 Related Work

1.2 Related Work

1.2.1 Spatial representations

When humans describe a scenery, they normally label each part: “here is a grass
field, there is a swamp, and in between a river”. To encode this description in a
map, we may list pairs of shapes and labels.

Typically shapes attached to different labels may overlap: the grass field and
the swamp may be part of a larger flatland area. There are at least two alterna-
tives to encode overlapping spatial information. We could use a single generating
set of shapes and attach multiple labels to a shape, labeling areas as flatland grass
or flatland swamp. Alternatively, we could separate conflicting labels into non-
overlapping sets of shapes: a set of shapes would only carry labels about terrain
grounds like grass and swamp, while another set would carry labels about terrain
shape like flatland.

The second alternative, which we adopt in this chapter, is common in geo-
graphical information science, for which a family of (vectorial) multilayered [9,
158]] formats (foremost the Geographic Markup Language, GML) contains tagged
features linked to arbitrary polygonal shapes (also referred as cells in the follow-
ing). This representation reflects the way humans reason about space, as hinted,
for example, by Cognitive Maps [|39] (a neuropsychological model of how hu-
mans and animals conceptualize spatial information and use it to navigate).

Indoor spaces are well modeled using multilayered structures for several rea-
sons: a) spatial knowledge often originates from humans like buildings’ design-
erﬂ managers, and users; b) it’s easy to subdivide indoor spaces into (tagged)
cells like corridors, stairs, lunch rooms, or doors, because the spaces were de-
signed by humans and share a common spatial semantics [|95]]; ¢) most informa-
tion about geometry and designed usage of a space (e.g., transiting for a corri-
dor) is known and static; d) many types of ambient sensors are linked to cells; for
example, a thermometer measures the temperature of a room, a smart camera
estimates the crowding in an area, or a light barrier detects passages through a
door.

People naturally think in terms of cells: “this room is empty”, “this corridor
has low illumination”, or “I have no access to this area”. Psychometric attributes
of places can be quantified through surveys among people [24]; people acquire
spatial information by looking at maps (better for judging the relative location
of places) or by navigating in the environments (better for orienting themselves

!Modern computer-aided design file formats, like IFC-XML, indeed contains tagged features,
e.g., a door tag linked to its geometry and its material.

11 1.2 Related Work

with respect to unseen objects and to estimate distances) [[142]]; in fact, visibility
is very important for human’s perception, representation and movement inside
of a building [|146]]. The relation between spatial attributes and the use a per-
son makes of an environment has been investigated in different contexts; for
example, well designed, attractive open space favor public health by stimulating
people to walk across them [48, |49]].

These concepts also apply in the context of indoor robotics, in particular when
robots have spatially situated interactions with people [92, 101, |108].

Geographic information system (GIS) maps are commonly used by robots
to navigate outdoors [[145]. In this chapter, we build upon indoorGML, a GIS
data model for indoor spaces as a multilayered graph of cells, that has been re-
cently approved as a standard by the Open Geographical Consortium [[112]. It is
expected that an increasing number of architectural plans will be provided in for-
mats that contain rich geometric and semantic information such as IFC (Industry
Foundation Classes) and that automatic tools will convert IFC data to IndoorGML
maps to visualize maps and get navigation instructions inside buildings.

1.2.2 Rich maps and multi-objective path planning

For path planning, cells are preferably convex [88]; decomposing a map into
a set of polygonal cells is a widely studied topic both in robotics [87]] as well
in computational geometry [27]]. Besides resulting in a small number of cells,
convex decomposition for robot path planning has additional objectives, e.g.,
adding diagonals that look as natural continuations of walls [[134].

In this chapter, we focus on path planning problems for mobile robots [[120],
in particular on multi-objective path planning problems [2, 102], on maps with
rich semantics, for which objectives arise as a compact description of the naviga-
bility of cells.

Multi-objective path planning is widely applied to compute the best routes,
e.g., for ships [7]], for (unmanned) aerial vehicles [86], for railway passengers
looking for few train change, low prices, short travel time [[153|], for drivers to
avoid congestions [75], or for network design [31]]. Multi-objective path plan-
ning for robots, considers different costs, such, for example, minimal jerk and
duration for robotic manipulators [[123]], or maximal clearance and short length
for mobile robots [|34].

We follow a common approach to solve a multi-objective problem: compute
any solution that a rational strategy may select, i.e., the Pareto set [88,,/138]]. The
strategic agent may be nonetheless overwhelmed when lots of possibilities are
provided and it may help if we provide a more sparse set of solutions, different

12 1.2 Related Work

enough to represent significantly different strategic choices [42].

A Pareto set may be very large and contain all paths of a the graph, there-
fore viable solutions approximate the Pareto set, using for instance evolutionary
methods that combine genetic algorithms with Dijkstra’s algorithm [|75, 161] to
compute paths that are short, safe, and smooth [|1, 74/ for robots.

As an alternative, Particle Swarm Optimization allows fast computation of
short and low risk paths for robots dangerous situations [[159]]. Variations of A*,
such as MOA* [[139]] and NAMOA* [|98]], use heuristics to speed up the search [[96,
97]]. Multi-objective linear problem [[10] can be solved iteratively with input from
the strategic decision maker [[106]. NBI (Normal-Boundary Intersection) [33]]
is a popular method to approximate Pareto sets starting from the convex hull
of the solutions that minimize the single objectives before moving towards the
boundary.

In robotics, picking one of the Pareto optimal solutions may be delegated to a
human controller or to a higher-level planner, like a task scheduler [51]]. For both
cases, it’s important that the path planner provides a compact, yet rich descrip-
tion of the solutions to facilitate the selection, similar to multi-objectives path
planners that incorporate driver preferences [19]], or methods based on fuzzy-
optimization that take into account the preference of the decision maker [[154].

1.2.3 Trajectory planning in social spaces

In this chapter, we discuss high-level route planning where the possible indirect
interaction of robots and humans is encoded in attributes of cells. We will discuss
more direct human-robot interaction in the context of navigation in Chapter

Several existing planning approaches account for the fact that robots share
space with humans: discomfort to humans can be minimized through the en-
forcement of specific constraints [30]], additional cost terms [80, (132, |133]] or
rules implementing specific social conventions [77]; in the same framework, ex-
tensions were proposed for addressing more complex interaction scenarios like a
joint working space [|85], for ensuring that robots do not obstruct human’s view
of the environment [|122]], for navigating among moving humans [128, 140[] and
for taking into account the direction the human is facing [|121]].

A related line of research is concerned with learning-based prediction of hu-
man behavior [|82, 114, |144], for avoiding unwanted interference with human
activity [[160] and for navigating shared spaces [[47, 148], where, if crowded, the
robot benefit from learning to exploit cooperation with people [81} |143]].

13 1.3 Model

1.3 Model

1.3.1 Problem formulation

The environment is mapped as a multilayered graph of cells G = (N, E) and is
populated by a set of agents X. Each cell in N represents a polygon and contains
information about how suitable is for an agent to traverse it.

We want to answer path planning queries: given an agent’s initial and target
positions, return the best paths, where a path is defined as a list of cells to cross,
in a given layer, to reach the target.

First, we describe the static map and how we process it to derive a topological
navigation graph, whose edges will carry multiple traversability costs, which lead
to the definition of a multi-objective path planning problem. Finally, we propose
a simple algorithm to solve the optimization problem.

We plan for one agent at a time and only based on the current state of the
environment; multi-agent coordination is partially accounted by spatial costs that
depends on the movement of other agents.

1.3.2 IndoorGML

IndoorGML is a recent standard to describe indoor spaces and indoor navigation
of heterogeneous agents [89]]. An IndoorGML map is a graph G = (N, E) of polyg-
onal cells c € N. The graph is partitioned in one or more non intersecting layers
G;=(N;,L;),i=1,...,n. Cells belonging to the same layer do not overlap and
edges between them represent (possibly traversable) shared boundaries. Edges
between cells in different layers represent instead more general topological spa-
tial relations, like overlapping or contained in, defined by DE-9IM (Dimensionally

Extended nine-Intersection Model [29]).

Two IndoorGML schemas have been published. The core schema [|109]] de-
fines the topology of the maps, while the navigation schema [[110] add labels to
cells useful for navigation, starting from the distinction between traversable and
non-traversable cells; traversable cells are subdivided into general spaces (e.g.,
rooms), transition spaces (e.g., corridors and stairs) and connection spaces (e.g.,
doors), and carry fine grained attributes to specify their intended usage and func-
tion.

14 1.3 Model

1.3.3 Microscopic attributes

The data structure defined by IndoorGML is very general but limited to geom-
etry and minimal semantic for navigation, which is not sufficient for the richer
description of indoor spaces we are interested in. In particular, we expect that
cells contain any information that could be useful to estimate how well an agent
would traverse them. This spatial information originates from various sources,
like: a) ambient sensors deployed in the environment (ceiling cameras, tracking
systems, thermometers, light sensors, ...); b) sensors mounted on robots (ra-
dios, cameras, lasers scanners, IMUs, wheel-encoders, ...), which for example
can be used to measure wheel slippage; c) people traversing a space or passing
nearby, who provide more subjective and fuzzy — yet very valuable — observa-
tions than sensors (e.g., “this corridor is a bit slippery”); d) floor maps, which not
only contain the precise geometry of buildings but also label spaces according to

their designed usage and characteristics (“this cell is a corridor”, “this room is
private”, ...).

Therefore, in addition to geometry, we assume that the map contains a de-
scription of the environment in terms of spatial attributes a € A assigned to pairs
of cells and agents. Some attributes, like luminosity, may not depend on the
agent visiting that space. Other attributes, like familiarity, make only sense in
relation to an agent. The values of all attributes give us a microscopic description
of the environment with respect to an agent that is moving through it.

In general, the mappings a € A are partial functions N x X —» V. They are
defined only for subsets of cells, typically contained in one layer; for example,
a map may store in one layer any information collected by temperature sensors
spread in the environment. The same portion of physical space may be contained
in multiple cells belonging different layers. Hence we need a way to retrieve
attributes from overlapping cells.

Therefore we define an inheritance scheme in Algorithm [1|to let cells inherit
attribute values defined in other layers through the topological relations encoded
in IndoorGML inter-layer edges: a cell inherits missing attribute values from
enclosing cells. More precisely, when the cell is enclosed in multiple cells from
different layers, the cell inherits the attribute value from the smallest enclosing
cell that has a defined value. Attributes’ values are generally associated to pairs
of cells and agents but we allow that, for some attributes and cells, no value may
be associated to a particular agent; in this case, the value is inherited from the
value associated to the cell alone (see Algorithm .

15 1.3 Model

AttributeValue(a, c, x)
if ¢ has value v for a with respect to x then
\ return v
end
forall cells ¢’ € N that contain c, ordered by size do
if ¢’ has value v for a with respect to x then
\ return v
end
end
if x is not undefined then
\ return AttributeValue (a, ¢, undefined)
end

return undefined;
Algorithm 1: Computation of the value of attribute a € A of cell ¢ € N with

respect to agent x € X, which may be left undefined.

1.3.4 Navigation layer

Map layers are characterized by the different attributes associated with their
cells. In the following, we assume that geometric layer N; contains all geometric
information about the indoor space, labelled according to the indoorGML navi-
gation schema [[110], which discriminates between navigable (e.g., a corridor)
and not navigable cells (e.g., a wall). Other layers may contain information
about sensors or semantic information specific to an agent, as illustrated in the

example in Figure

|

Figure 1.1. An example of an IndoorGML map. Left, geometric layer: cells are
colored by their IndoorGML type — walls in black, transition spaces (corridors
and stairs) in green, general spaces (rooms) in olive, and connection spaces
(doors) in orange. Center, semantic layer: cells that carry labels (here rooms’
names) are colored in yellow. Right, ambient camera layer: cells describe the
range of view (blue) of an array of ambient monitoring cameras; grey cells are
not visible by any camera.

16 1.3 Model

From N;, we derive, according to Algorithm [2, an (agent specific) navigation
layer N, ,, composed only of easily navigable cells, i.e., cells that can be crossed
by moving along a straight line between boundaries. We also require that cells in
N, ., have a well-defined value for each microscopic spatial attribute a according
to the inheritance chain defined by Algorithm (1, These constraints are satisfied
if the navigation layer consists of convex cells that cover the whole configuration
space for the agent and that are covered by one cell from every other layer.

We start by computing the non-navigable area O as the union of walls and
other obstacles in N;, inflated by a radius r given by the agent’s size plus a safety
margin. Then, we add to the navigation layer any navigable cell in N;, after
removing its intersection with O. If the resulting cell is not contained in a single
cell for each layer N,, ..., N,, we split the cell accordingly. Finally, we decompose
each cell into (quasi-) convex cells as described in the next section.

NavigationLayer(Ni,...,N,, r, x)
Nn+1 — Q
O «— [J{c eNy|cis awall}
O « O inflated by r
forall c € N; do
if ¢ is navigable by x then
c—c\O
M < Split(c, N5, ..., N,))
forall c in M do

‘ N, < N,,, UDecompose(c)
end
end

end

return N,
Algorithm 2: Computation of the set N, ,; of cells of the navigation layer for
agent x with radius r, from map layers Ny, ...,N,, where N; is the geometric
layer. Function Decompose is covered by Algorithm 3| Function Split(c,
N,, ..., N,) returns a partitioning of c into a set of cells {c}, such that, for
any cell ¢, there exist cells in every layer N,, ..., N, that contain c.

The navigation layer’s graph G,,; = (N4, E,.+1) is built by adding, for each
pair of adjacent navigable cells, an edge corresponding to the common boundary:.
The resulting navigation layer represents the configuration space for an agent as
a topological navigation graph of cells, where routes are specified as a list of cells’
boundaries to cross.

17 1.3 Model

An example of automatic derivation of the navigation layer for a real building
floor plan is illustrated in Figure

Figure 1.2. The navigation layer is automatically derived from the geometric
layer as described in Section Left: walls (gray) are inflated and subtracted
from the navigable cells. Center: cells are subdivided according to all other
layers in Figure [1.1] Right: cells are further partitioned into convex cells and
the topological navigation graph G, is computed; nodes are drawn as a brown
dots at the center of the cell; edges are drawn as polylines (brown) from one cell
center to the other, passing by the center of the common boundary.

Convex decomposition

We introduce a (quasi-) convex partitioning [27, 87]] algorithm that simplifies
path planning by generating small navigation graphs with portions where trajec-
tories are very constrained (see Chapter[2)).

Some convex partitioning schemes are more suitable than others to compute
routes: a) small violations of convexity, like those caused by small irregularities
along the boundary, won’t make navigation across a cell significantly more diffi-
cult; b) the computational cost of path planning is greatly reduced by having few
large cells;) to split a (non convex) polygon, we prefer to cut along short diag-
onals because they add constraints that simplify the task of geometric planners
(see Chapter[2).

Therefore, to keep the number of cells small, we relax the convexity con-
straint: we accept quasi-convex cells when the difference between a cell and its
convex hull is small (according to criteria such as a small relative and absolute
difference of area, and a small Hausdorff distance between boundaries). The
additional safety margin, used for inflating O, guarantees that the robots’ trajec-
tories will remain collision free.

The cell decomposition Algorithm 3] iteratively subdivides non convex cells
into quasi-convex cells by cutting along the shortest diagonal that removes a non

18 1.3 Model

regular vertex. An example of the decomposition of a cell is depicted in Fig-
ure The algorithm uses brute force to select the next diagonal to cut, which
leads to a quadratic complexity in the number of cell’s edges. Nonetheless, it
decomposes floor maps of large building, like the one depicted in Figure in

less than a minute.
;J |] |] |]
|

1]
] I I

I

Figure 1.3. From left to right, progressive segmentation of a non convex cell
into a set of convex cells by Algorithm 3 Red vertices are candidate vertices for
which the shortest diagonals are computed and compared. Cells are cut along
diagonals in ascending order of length.

1.3.5 Macroscopic attributes

Some spatial attributes (more precisely, their impact on traversability) may not
be directly comparable. For example, which alternative solutions should we
choose between taking the stairs (i.e., increasing our effort) or taking the ele-
vator (i.e., increasing the management cost and possibly hindering other peo-
ple movements)? We argue that forcing a comparison, e.g., by estimating how
much we would be willing to pay to avoid climbing the stairs, would constrain
the model too much and be difficult to assess objectively.

Instead of comparing all attributes together, we prefer to isolate some macro-
scopic attributes m whose value is derived from (possibly overlapping) subsets of
microscopic attributes A,, € A. For any microscopic attribute in A,,, there should
be a straightforward way to compare their effect on m. For examples given the
choices of climbing a stair or taking the elevator, with respect to the effort re-
quired, we can score the two choices. This way we identify effort as a possible
macro-attribute.

We formulate a generic description of traversability in terms of macroscopic
costs that depend on the agent’s characteristics, microscopic attributes, and topo-
logical/geometric features. In particular, three macroscopic costs, namely effort,
safety, and social cost, model well many planning instances; this holds both for
scenarios involving only robots, and in scenarios involving robots and humans.

19 1.3 Model

Decompose(c)
if ¢ is quasi-convex then
| return {c}
diagonal « BestDiagonal(c)
{cq1,c5} < SplitCellAlongDiagonal(c, diagonal)
return Decompose(c;) UDecompose(c,)

BestDiagonal(c)
diagonals « §
vertices < NonRegularVertices(c)

for v € vertices do
d « shortest line segment from v to any edge of c that is separated

by at least 2 edges from v
add d to diagonals
end
diagonal « the shortest among diagonals
return diagonal
Algorithm 3: Quasi convex decomposition of ¢ by iteratively splitting along

the shortest diagonal.

20 1.3 Model

The actual interpretation of a cost depends on the particular instance, of which
we provide examples in Section|[1.5]

The model also describes a variety of path planning problems for humans
in social spaces. For instance, we could model large shopping malls where con-
sumers are attracted by different goods and shopping areas: then, we could com-
pute routes that take into account the users preferences, the accessibility of the
route and the current occupancy of the stores.

The cost of a path

Before introducing three concrete macroscopic costs, we discuss how a macro-
scopic cost 6(y, x), paid by an agent x for traveling along a trajectory v, arises
from the interaction between the geometry of the trajectory and the (dynamic)
state, with respect to agent x, of the cells (cq,...,c,) that it traverses, which is
given by the collection of micro-attribute values introduced in Section[1.3.3] The
effect of micro-attributes on traversability may depend on the agent; for instance,
having to travel a long uphill path may be perfectly fine for a powerful robot, but
less so for a weaker robot running low on batteries.
We introduce three basic assumptions.

Additivity We assume that the cost is additive, i.e., when v is subdivided into
segments y; (one for each traversed cell c;) the total cost is the sum of the cost
of the segments:

G(r,x)= > 6y, x). (1.1)
i=1

Compact segment description We further assume that, with respect to the cost,
the geometry of each segment can be completely described by a small discrete set
of features w(y) € R*

(g(}/i:x) = (g(w(}/l)’x) (12)

Decoupling between cell and segment Finally, we assume that the contribu-
tion of the (static) segment’s geometry decouples from the contribution of the
dynamic spatial information and the agent’s characteristics as

k
C(rux)= > w;(r)pf(c,x), (1.3)

j=1

21 1.3 Model

where p;g : N x X — R" associates a cost density, with respect to the j-th geo-
metric feature, to an agent traversing a cell.

For example, the simplest description of a segment could be given by its
length, which drivers use to compute travelling costs: sum up equipment and
gas to estimate pje,,(road) — the cost per Km which depends on road condi-
tions — and then multiply by length wjepgm (7).

The model is more general than this example, as it allows for a richer descrip-
tion of the trajectory geometry. For instance, in a robotic scenario, it is relevant
how much the trajectory turns in addition to its length or elevation changes:
turning — the integral of the absolute angular changes along the segment —
provides clues about the difficulties that an agent could suffer when following
the segment, such as slipping, or losing orientation. Other features are illustrated
on a concrete application in Section[1.5.1

From micro- to macro-attributes In Equation (1.3)), the contribution p(c, x) of
the segment geometry w to the path cost depends on the interaction between the
agent and the environment. For instance, let us consider the very simple case of
a flat corridor and wje,,. We start modelling it by fixing a cost per unit length
that is the same for all agents and parts of the corridor. Now imaging that, in the
middle of the corridor, the floor is a bit slippery (as observed and reported to the
system by users passing nearby), the illumination is a bit too low or that there
are some steps; the cost (for instance the energy expenditure) would increase
depending on the agent’s abilities to overcome these problems; for instance a
robot with larger, high-friction wheels, and good localization sensors, would be
less penalized.

We assume that the macroscopic cost density is a summary of the microscopic
description given by attributes a € A that is given by a weighted sum

pic,x)= ZEA]R,-,a(x)oa(a(c,x)), (1.4)

where functions o, : V, — [0,1] convert attributes’ values to costs: o,(-) =0
represents the optimal value of attribute a with respect to the navigation task
while o,(-) = 1 the worst value (highest cost). The factors R;, € R" weights
the impact of problematic a on the navigation cost depending on the agent’s
characteristics.

For example, high floor slipperiness, low luminosity and very large steps (with
respect to the agent capability) would all be attribute value that map to a maxi-
mal (cost) contribution of 1; yet a robot with a laser scanner would not be hin-

22 1.3 Model

dered when passing through a dark area (i.e, R. jyminosity(x) = 0). We give a more
complete example of attributes and their contribution to a cost in Section [1.5.1]

Effort

Travelling along a path requires a certain effort & that increases when the path
crosses spaces with unfavorable conditions (e.g., a soft carpet on which wheels
don’t roll well), when the path turns a lot, climbs or descends steps,

In the simplest scenario (like moving along a straight flat corridor) the (min-
imal) energy expenditure along a path is given by a term proportional to the
distance. Namely, the basic cost &, of movement per unit length is given by the
mean force F(x) exerted by agent x

&o(y, x) = length(y)F(x), (1.5)

which identify F(x) as a lower bound for the cost density pingth(-,x) in Equa-
tion (1.3)). Several factors increase the required force, such as, moving on a
carpet for a wheeled robot.

Our model also takes into account other kind of efforts, and related sources,
such as increased computational time, or increased psycho-physical discomfort
caused to a user sitting on top of a robotic wheelchair, for which cost densities
with respect to different geometric features may contribute. For example, too
much turning would cause an increased effort for a user sitting on a wheelchair,
which translates to pt‘immg(c, x)> 0.

These cost densities, and the related Equations ([1.3)), are estimated by com-
parison with the basic effort &,. For example, to estimate the cost density of ¢
with respect to turning, we equate it with the additional length [, that the agent
would prefer to travel in order to avoid turning by a unit, i.e,

pf:lmmg(c,x) =1.F(x).

This example clarifies the basic requirement for macroscopic costs (such as
effort): the effects of micro-attributes on a macroscopic cost should be compara-
ble. In this case, we could objectively define effort as energy expenditure and we
could measure the effect of different spatial attributes on it.

Safety risk

An agent that travels along a path could incur into safety risks # for many rea-
sons; for instance a mobile robot could capsize, break a motor, or hit a sensor.

23 1.3 Model

We introduce basic concepts from survival analysis [[125[] in order to define
the safety risks associated to traveling along a path. The survival S(s) defines the
probability that the agent will avoid any accident up to distance s. The hazard
h(s) = 0 defines the probability of incurring in an accident in the next unit length,
after having safely traveled to s (i.e., the accident rate) as
S'(s) d

S6) % log(S5(s)). (1.6)

h(s)=—

If the hazard does not depend on the distance (i.e., if we are not including
fatigue into the analysis), then the probability of not having an accident along a
path of length [is given by

SO =e", (1.7)

where the term hl is called risk, coherently with the more general definition
of risk as the product of hazard and exposure. In our context, the exposure
corresponds to the travelled distance (where at each step an accident may occur),
while hazard is expressed as risk per unit of length.

The definitions of risk and hazard matches with the general form of Equa-
tion (1.2), which we use to identify hazards with cost densities (with respect to
length) linked to safety risks

pfngth(c,x) = h(c, x). (1.8)

When there are multiple threats, their hazards can be summed if we assume
that they are (statistically) independent. This justifies the choice of safety risk as
a macroscopic cost that conforms with equation (1.4): we sum hazards due to
threats represented by different attributes. All hazards are quantified as number
of accidents per unit length and per agent. For example, if a floor is slippery and
illumination is low, we can sum the related hazards of falling down due to one
of the two problems.

With similar arguments, we could introduce hazards related to exposures
identified by other geometric features w;. For example, for a robotic wheelchair,
we could consider the risk of losing localization because of too much turning,
ie., pffming(c,x) > 0.

Social impact

Agents traveling along a path may share the space with other agents (people,
robots or vehicles). If we follow economic reasoning, space is a limited resource
and could be assigned a (monetary) cost; for example, a person or robot taking

24 1.3 Model

an elevator forces others to wait or to use the stairs; moreover, a space may be
reserved to a group of agents, i.e., we may associate privacy and accessibility
rules, used for managing a building, with similar costs.

In the following, we assume that accessibility to a space has a monetary cost
& that can be purchased and depends on the time that an agent will spend in
that space. For simplicity, we also assume that agents move at constant speeds,
which lead to a cost that is proportional to the length of the path crossing cell ¢

(v = length(y.)pi ., X), (1.9)

Comparing with the general form of Equation , we identify p;7 gth(c) with
the penalty (per unit length) for occupying cell ¢, which we measure in $ per
unit length.

Contrary to other costs, & seems to just be proportional to the length of the
segment. Yet there are examples, such as when passing a toll bridge, for which
a fixed cost is paid, independently on the actual path taken inside the cell.

1.3.6 Navigation line graph

We have already discussed how when a segment crosses a single cell, the contri-
bution to the cost from geometry (@) and environment state (p) are decoupled
in Equation (L.3]). We further simplify the planning problem by considering only
paths composed of a finite number of linear segments, each segment approximat-
ing the optimal trajectory for crossing a cell from one boundary to the other.

This implies that the planning graph — whose nodes N, corresponds to cell
boundaries and edges to linear segments between them crossing a single cell
— is the line graph L = (N, E;) of the topological navigation graph G,.,; =
(N,11,Eqy1 = N;) (see Figure [1.4b).

(a) Navigation graph: cell boundaries are (b) Navigation line graph: the same cell
linked to edges in E, ;. boundaries are now linked to nodes in N; .

Figure 1.4. The navigation graphs.

In fact, a linear segment that crosses a (convex) cell from boundary center
to boundary center is reasonably close to the optimal trajectory. Although the

25 1.3 Model

optimal trajectory generally depends on the characteristics of the agents (e.g.,
pedestrians prefer to follow more direct paths than users on robotics wheelchairs)
and depends on the whole path, we would like to estimate the geometric features
w of the optimal trajectory segment from the linear segment.

We can assume that the length of the linear segment is a good proxy for the
length of the optimal segment. On the contrary, when estimating turning, we
cannot simply assume that the optimal trajectory will pass though the centers of
the boundaries as these zigzag trajectories have a much larger turning. Instead,
as illustrated in Figure we estimate turning by computing the minimal turn-
ing of a segment whose vertices are free to slide along the cell boundaries, while
maintaining the assumption that the (optimal) path will enter and leave the cell
perpendicularly to each boundary. Figure shows that this approach leads to
accurate estimations of the length and turning of (optimal) trajectories.

a

B

Figure 1.5. Computation of turning for an edge in E; that connects the red with
the blue boundary, assuming that the trajectory enters (red) or leaves (blue) per-
pendicularly through the boundary (i.e. needs to rotate by 8 at the red boundary
and by a at the blue boundary): turning = min{a + 8}, where the minimization
(solid line) is over all linear segments connecting the two boundaries (among
which there are the dashed lines).

The line graph topology and the geometric description of its edges are static
and need therefore to be computed only once. Figure displays the values of
length and turning for all edges on a navigation line graph of a synthetic map.

1.3.7 Multi-objective optimization

In this section, given a navigation line graph whose edges carry well defined,
non-comparable, positive, macroscopic costs, the path planning problem is for-
mulated as a multi-objective optimization.

In the worst case, the Pareto set contains all simple paths between source
and target (an exponential number with respect to the size of the graph). We

26 1.3 Model

180 Trajectory length L 30 Trajectory turning T
160 £ £
B 25 B
140
2, z e
€ 120 ML 8 20 Ce .
- ‘g‘r = ~ sk
© 100 34 ol I e
5] I € 15|
— 80 - 2
© —_
2 b E
S 60 £ 10
©
40
5
20|
0 ok ™"
0 20 40 60 80 100 120 140 160 180 0 5 10 15 20 25 30

estimated length [m] estimated turning [rad]

Figure 1.6. Estimation of the geometric features of the optimal trajectory from
the navigation line graph L for 300 random trajectories in our laboratory (see
Figure|1.10). Blue corresponds to optimal pedestrian trajectories, red to optimal

wheelchair trajectories computed in Chapter 2| Perfect estimations lie on the
dashed lines.

T 1
L) 4 | — IH } ey = |}
B T =t 1 [N L S A

V ' : i | | v Y | Y ¢

[N — WA

(a) Length (b) Turning

Figure 1.7. Part of the geometric description of the edges of the line graph L;
colder colors (blue) encode lower values.

27 1.3 Model

argue that, for indoor spaces, the average complexity is significantly lower and
we present a simple algorithm to compute all solutions in a short enough time.
We explore computational costs on a real building map in Section[1.4

Path planning instance We are given: an agent, its navigation line graph L =
(N.,E,), n positive cost functions 4, <;,(e,x) € R, source s and a target loca-
tions t. We complete L with any edge from s to neighboring cell boundaries, and
from all neighbor cell boundaries to t.

The planning problem looks for the best set of paths © € IT on L between
source and target according to costs 6;<;<,. Figure illustrates an example
of a path given by a sequence of cells and cells boundaries to be crossed when
travelling from s to t.

(a) A topological path is computed on the (b) The same path, projected onto other
navigation layer from the lighter to the map layers, provides a rich description. For
darker cells. The geometric information example, the projection on the smart cam-
about the cells can be used to compute an era layer informs that the agent will be par-
smooth trajectory (in black), see Chapter tially tracked by cameras 3 and 4.

Figure 1.8. A topological path = on a multi-layered map.

Optimal solutions In case of a single cost (n = 1), the best possible path is
the one that minimizes the total cost in Equation (1.I). We can compute it in
polynomial time with respect to the size of L using one of several algorithms for
shortest paths on a graph, like Dijkstra’s algorithm.

Instead, when multiple costs need to be minimized, there are multiple sensible
ways to define and interpret a solution (see [99] for a complete survey).

Lexicographic order We can define a total ordering between the costs; then,
we choose the path minimizing the first cost; if there are many such paths,
we choose the one minimizing the second cost, and so on.

28 1.3 Model

Costs as constraints We could interpret a subset of costs as constraints. That
is, we could define thresholds C; and impose 6;(7) < C; for some j’s and
solve for the best path with respect to the remaining costs, using one of the
other models presented in this list.

Combination of costs The most intuitive and simplest solution is to combine all
costs in a single cost, for example using a weighted sum.

Pareto front We may define the best set of paths as the Pareto front of the multi-
objective minimization problem, i.e. the set of all non dominated solutions.
A dominated solution is a path for which there exists at least another path
that is at better (or equal) to it with respect to every cost [20].

In general, to discriminate paths with respect to multiple costs, we need addi-
tional criteria that may not be specified at query time. In case of lexical ordering,
cost as constraints and combination of costs, the strategic decision is taken be-
fore the path is computed by setting the order, the thresholds or the function
to combine the costs respectively. On the contrary, the selection of one solution
from the Pareto front is delegated (as an informed strategic decision) to the agent
afterwards.

In the remaining of this chapter, we consider the multi-objective path plan-
ning problem associated with the computation of the Pareto front.

Computation of the Pareto front.

Yen’s algorithm [|156]] computes iteratively the k-th shortest simple path on a
graph and provides the key component to compute the set of optimal paths with
respect to a set of costs, as illustrated by Algorithm

The algorithm computes the Pareto front by iteratively applying Yen’s algo-
rithm (with respect to switching costs) and adding any non dominated solution
until one solution 7 has been computed by Yen’s algorithm with respect to all
costs. In fact, any further application of Yen’s algorithm would compute a path
with higher costs than . Figure illustrates this search in cost space in the
case of n = 2.

Complexity analysis The time complexity of Yen’s algorithm depends on the
shortest path algorithm that it uses. For example, for using Dijkstra’s algorithm
with Fibonacci heap, k applications of Yen’s algorithm have a worst-case time
complexity O (k|N,|(|E;| +1og|N,|)), which implies a worst-case time complexity
O (k(|T1| + |N.|(|E.| + IN;|log N, |))) for Algorithm (4, where k are the number

29 1.3 Model

Pareto front search

10)

Figure 1.9. An illustrative example of the computation of the Pareto front IT by
Algorithm [4] Each point represents the cost (6, %6,) of a solution in the two di-
mensional cost space. The best solution with respect to cost ¢, (left most point)
is computed first; then the best solution with respect to cost €, (bottom most
point), and so on. We keep adding solutions (black dots) to the set I, provided
they are not dominated by one of the current members of IT (which is not the
case for the red solution), following blue or green arrows, which correspond to
the computation of the next shortest path using Yen’s algorithm with respect to
%, and 6, respectively. We stop as soon as we find a solution (orange) that has
been visited by arrows of all colors. The search is terminated before most gray
solutions (which are all dominated) are even computed.

30 1.3 Model

OptimalSolutions(G, s, t, 6,,...,6,)

M0
foralli € {1,...,n} do
/* Initialize n instances of Yen's algorithm */

nextShortestPath; « Initialize Yen’s generator of shortest paths
between s and t on G with respect to cost G;
end
i1
do
7 < nextShortestPath;()
if m € I1 then
‘ add 7 to II;
end
else
if not dominated(r,I1;, 6,,...,%,) then
add 7 to II
add to IT;
end
end
i«—i+1 modn
while 7t ¢ I1, for some i € {1,...,n}
return I1

dominated(m, II, 6,,...,%,)
forall 7’ € I1 do
if 6¢(n') < 6(n)Vi=1,...,n then
‘ return true
end
end
return false
Algorithm 4: Construction of the Pareto front of all paths between s and ¢ on
G by repeated application of Yen’s algorithm with respect to costs 6, . .., G,.

31 1.4 Experiments

of iterations that the algorithm needs to visit the whole Pareto front. In the
worst case, the Pareto front may contain all simple paths from s to t, but in
typical indoor maps and cost distributions, the size is usually very limited (see

Section [1.4)).

Approximations If an approximation of the Pareto front is sufficient, we can
keep the query time limited by stopping Algorithm |4|after a maximal number of
iterations. We may also prefer to compute solutions with significantly different
costs to reduce the number of strategic choices. In this case, we relax the criteria
on dominance to avoid adding almost-dominated solutions [42] in Algorithm

1.4 Experiments

1.4.1 Experimental setup

We test the influence of the number of costs and their spatial distribution on the
multi-objective path planning problem formalized in Section[1.3.7]and solved by
Algorithm[4] We limit our analysis to a single map but we produce many different
planning instances by randomly selecting source, target and cell costs.

Graph We use the (connected) navigation line graph L = (N;, E;) depicted in
Figure that was automatically derived using Algorithm [2|from the floor map
of our building, which has a size of about 120mx70m; |N,| = 1638, |E;| = 2310.

W

Figure 1.10. Map and navigation line graph used to test the impact of the number
and the spatial distribution of costs on the planning problem.

32 1.4 Experiments

Source and target Source s and target t are randomly selected from N; with
uniform probability.

Cell cost densities We limit the analysis to (n different) costs per unit of length
p;fngth. We define two distribution classes, with varying degrees of spatial cor-
relation, that we use to sample cell cost densities: (1) a uniform distribution
M, = %([0,1]) without any spatial correlation between cell costs; and (2) a
distribution .#,(k) that mimics painting the map with k > 1 blurred disks of
radius %, with p = 50m, centered in random location x;;<, ~ %(A) on the
map area A C R%. For such a set of disks, the cost of any cell is defined as

=12

k
¢ _ E : o
plength(c) - € 7
j=1

where x. is the center of the cell. Large spatial correlations are produced by few,
large disks (small k), while many small disks produce maps that are similar to
those of ./, and have almost no spatial correlation. Note that the average area
(mp?) covered by the disks is independent of k. Figure contains samples
drawn from some of these distributions.

Random cost functions from .#,, serve as an extreme scenario because they
create large disparities in the costs of almost identical routes. In reality, many
(microscopic) attributes have strong spatial correlations (e.g., luminosity does
not usually change abruptly along a corridor) and are better modeled by ./,.

M, (16) My (256) M,

Figure 1.11. From left to right, samples drawn from cost map distributions that
have a decreasing spatial correlation: a cell’s brightness is proportional to its
cost density.

Planning instance A planning instance is given by the tuple (s, t, 6, ... %,). To
compute the edge costs %, ... %,, we sample n cost maps, as explained above,
which we use to assign n cost densities (per unit length) to each cell; then we
apply Equation (limited to wjepg) to compute n costs of every edge in E;.

We apply Algorithm |4 to compute the Pareto front IT of all paths between s
and t with respect to cost functions %;,...%,. For each instance, we measure

33 1.5 Concrete instances

the size of II, the time it took to compute it, and the distance (the length of the
shortest path on the graph) from s to t. We expect that distant s-t pairs will be
connected by more alternative routes, therefore making the problem harder and
the solution set larger.

For each experiment, we draw 10K planning instances and we average the
results over all instances.

1.4.2 Results

Varying number of random costs Figure illustrates the results when av-
eraging 10K random planning instances. As expected the computation cost and
the size of the Pareto set increase when source and target are distant. Not sur-
prisingly, they also increase when more objectives are added. Yet, the average
size of the Pareto set remains relatively small (less than 10) and the mean cost
is small enough to serve real time queries.

Varying spatial correlation of a fixed number of costs Figure reports re-
sults from an experiment with 10K planning instances using a fixed number of
costs (n = 3); this time we vary the spatial distribution from which each cost is
drawn. We find that the problem is harder for cost functions with average spatial
correlation (m = 4, m = 16); in contrast, when there are many disks (m = 256)
and with spatially-uncorrelated costs .#,,, the problem is significantly easier. At
least on this map, cost functions with small spatial correlation result in simpler
planning instances which yield smaller computational costs and smaller Pareto
fronts.

1.5 Concrete instances

We now present two concrete applications of the abstract model presented in this
chapter.

1.5.1 Optimal topological planning for smart wheelchairs

In environments like nursing homes and hospitals, (partially) automated smart
wheelchairs are an important aid for people with restrained mobility. Computing
routes for wheelchairs not only requires taking account of the wheelchairs’ kine-
matics to ensure feasibility of routes, but also of the interaction between users
and spaces. For example, some users may prefer a longer route that passes by the

34 1.5 Concrete instances
-//{u '//{u
I I T T
n=1
31— n=2 | @ 81 |
A ——n=23 8
—_ =} [N
g 2 ,—ni4 i S 6
(] n 5 —
a, ° 4 |
E | | 9]
g ! £
g2 2| .
O B | | | | | |] | | | | | |
0 20 40 60 80 100 120 0 20 40 60 80 100 120

length [m]

length [m]

Figure 1.12. Results from 10K randomly drawn multi-objective planning in-
stance with respect to 1 < n < 5 costs, drawn using .#,. Left: average com-
putation cost. Right: average size of the Pareto front.

comp. cost [s]

O,

0

| | |
20 40 60 80 100 120 140

length [m]

number of solutions

| | | |
0 20 40 60 80 1
length [m]

00 120 140

Figure 1.13. Results from 10K randomly drawn multi-objective planning in-
stance with respect to 3 costs, drawn various distributions. Left: average com-
putation cost. Right: average size of the Pareto front.

35 1.5 Concrete instances

garden, others may feel uncomfortable crossing a narrow or dark corridor, and
all routes should avoid passing through private rooms unless in an emergency.

The ALMA project

Ageing without Losing Mobility and Autonomy (ALMA) is a multidisciplinary re-
search project [3]], funded by the European Union Active and Assisted Living
Programme (AAL), to support the autonomous mobility, navigation, and orien-
tation of the (elderly) person with reduced mobility. ALMA specifically focuses
on large facilities such as nursing homes or hospitals, where ambient sensors
monitor the environment and track the location of people and objects. ALMA
addresses scenarios like when an elder person, possibly with orientation diffi-
culties, gets directions from a specialized navigator to reach a specific room;
in some scenarios, the user may be equipped by a semi-autonomous motorized
wheelchair that automatically takes him to the destination.

Several research groups have developed between 2013 and 2016 a set of
inter-dependent modules: a) a distributed, radio-based localization module that
tracks wheelchairs and users [Politecnico of Milano]; b) smart time-of-flight cam-
eras that monitor users and wheelchairs, and detect crowding [VCA Technology,
London]; c) specialized navigation interfaces for elderly users [Politecnico of
Milano and SUPSI-DSAN]; d) an interfacing module that provides commercial
motorized wheelchairs with (semi) autonomous navigation capabilities (i.e., a
robotic wheelchair) [Politecnico of Milano and Degonda Rehab, Lausanne]; e) a
central server, based on the model presented in this chapter, that stores spatial
information and provides path planning services [IDSIA] (see Appendix [B|for the
software implementation).

These modules have been deployed for testing in our labs and in a nurs-
ing home in Chiasso, Switzerland (see Figure [1.14); for every location we have
derived planning graphs as described in Section and offered online path
planning services

Specific attributes and cost mapping

We list in Table[1.]specific (micro) attributes to describe the navigation of people
and robotic wheelchairs in the scenarios targeted by ALMA. Some attributes are
linked to sensor measurements, others are meant to be assigned to spaces by
secondary users like, e.g., building managers and nurses.

For ALMA, the geometry of graph E;, is described by 4 features w;;y:
length, turning, diversity (which checks if the edge enters a cell of different de-

36 1.5 Concrete instances

Figure 1.14. ALMA project. Left: Part of the navigation graph (top) that covers
one floor plan of a nursing home in Chiasso, Switzerland, and one route (bot-
tom) computed during the final tests on user demand. Right: Semi-autonomous
smart wheelchair, radio-tag used for localizing users, and smart cameras detect-
ing pedestrians and wheelchairs, developed by POLIMI and VCA Technology,
are interacts with the mapping and path planning service.

37 1.5 Concrete instances

EmE noise
mmm comfort
mmm familiarity
-
-

mmm obstruction

occupancy
base
turns
choices

(b) Left: a radar chart of mm%(i(”) for the three costs €; € {&, 2,5}, drawn for each
optimal solution 7 € IT using the same color as above, helps to describe routes to users:
better solutions, with respect to a cost, have vertices toward the outer of the circle (all
solutions being not dominated corresponds to triangles not being contained in other
triangles). Right: the cost breakdown for a single solution (the one colored in red)

identifies the main problems along the path.

Figure 1.15. Results from a multi-objective query on a synthetic map, with ALMA
attributes and costs, for a path between the two starred locations on the naviga-
tion line graph.

38 1.5 Concrete instances
attribute | meas. | & | R | 5 |

traversable | Is a cell traversable by the agent? Is a
door locked?

crowding Smart cameras count people inside their | o . °
field of view.

accessible Is the agent allowed to access this cell? .

obstruction | How much the agent would obstruct | e .
other agents?

noise How much noise is these? .

comfort Is traversing a cell comfortable? .

familiarity | Is the agent familiar with the ambient? .

luminous How luminous is an ambient? .

slippery How slippery is the floor? °

steps Are there stairs or steps? o | o

help Is help available in case of need? .

Table 1.1. Some spatial attributes of ALMA maps. Note that they cover naviga-
tion of pedestrians as well as of robotic wheelchairs. The value of some attributes
depends on the agent, and some are measured or computed automatically (see
“meas.” column). The last three columns summarize the mapping o between
spatial attributes and macroscopic costs for a user on a robotic wheelchair; a dot
means that the attribute influences the cost, i.e., o Z 0.

39 1.6 Conclusions and Perspectives

signed use), choices (which counts the number of possible alternative edges, i.e.
the order of the incident node); this description covers two cases: assisting the
navigation of pedestrian users, and autonomous wheelchair navigation.

The planner provides a rich description of the routes in the Pareto set, such
as the breakdown of the costs, to inform the agent about which parts of the
environment may be problematic and how much each problem contributes to
the macroscopic costs (see Figure for an example).

1.5.2 Drones coordination on a flyway

Flyways are (virtual) corridors where airplanes are safe to travel. The Drone-
FlyWay (DFW) project, funded by the Swiss Commission for Technology and In-
novation (CTI), extends this idea to unmanned vehicles, with limited autonomy;
flying in a city (see Figure [1.16}Top).

An industrial partner (Paradox Engineering, Switzerland) has equipped light
poles with ultra-wide band radios to localize the drones along streets that act
as flyways. The subdivision of the map in cells controlled by one or more smart
light poles is well suited to the spatial model that we presented in this chapter.
Moreover, we add cell attributes to represents regulations restricting flying above
sensible areas, areas with strong wind or in congested air traffic. In fact, a model
based on indoorGML is not restricted to indoor spaces; it describes any settings
where spaces are naturally partitioned in cells and connectivity is an important
information, even when their geometry is three dimensional.

As illustrated in Figure we use the spatial representation and the high-
level planner introduced in this chapter, to steer a fleet of drones along the fly-
ways: we compute high-level routes and use a simple locking mechanism, which
allow only one drone at time to enter one cell, to regulate traffic.

1.6 Conclusions and Perspectives

In this chapter, we presented a spatial modelling and planning approach for
robots moving in indoor spaces. Spaces are partitioned into cells characterized by
potentially many microscopic attributes; from these micro-attributes we extract
three macroscopic attributes — individual effort, social discomfort, and safety haz-
ard — that are well suited to describe a wide range of path planning problems.
We show how to compute multi-objective plans, i.e., the best sequences of cells
to traverse to reach a target. We test the computation requirements of planning
instances on a real building map with randomly assigned costs, where the prob-

40 1.6 Conclusions and Perspectives

Figure 1.16. Top: A drone flyway (green) controlled by light poles equipped with
UWAB antennas to localize the drones. Bottom-left: coordination strategy for a
group of robots (in this case MarXbots moving using the navigation algorithm
of Chapter [3) which make robots reserve the next cell on their path; if the cell
is not available, the robot request gets queued, as, for example, for the purple
robot that is waiting for the green robot to cross the cell. Bottom-right: test
with real drones have been performed in our lab and in an air base in Lodrino,
Switzerland.

41 1.6 Conclusions and Perspectives

lem is small enough to be solved by the proposed algorithm, in particular when
costs have small spatial correlations.

We conclude with two applications that validate the approach: planning
paths in nursing home for robotic wheelchairs, and controlling drone traffic in a
city. In the current implementation, some parameters need to be tuned manually
(e.g., in the functions o in Equation (1.4))), for which we don’t have yet a well-
tested procedure; moreover, the set of micro-attributes we used may need to be
extended for other applications. One potential, larger topic for future research is
automatically learning the mapping between micro- and macroscopic attributes
from the behavior and feedback of users. In addition, we plan to compare the
performance of the planning algorithm with approximations such as genetic pro-
gramming, which allow to approximate Pareto fronts on much larger graphs.

42

1.6 Conclusions and Perspectives

Chapter 2

Optimal trajectory planning in
indoor spaces

2.1 Introduction

In Chapter (1, we computed high-level paths using a rich description of the envi-
ronment, where each solution consisted of a sequence of cell boundaries to cross.
In this section, we study how to cross those cells boundaries. Which continuous
geometric trajectory should the agent follow while traveling from a cell boundary
to the next?

We expect that, in order to satisfy different types of agents, a planner should
compute different geometrical trajectories. For instance, most pedestrians will
be happy if we just provide them with the shortest possible path, since they can
handle very tight turns without issues; yet, some pedestrians, such as elderly
people using a walker, have difficulties when turning and may benefit from a
different trajectory.

Planning a geometrical trajectory is definitely important for users sitting on
wheelchairs, for whom a shorter length is not the most important feature of a suit-
able trajectory. Trajectories with small curvature are particularly beneficial [[101]]
for wheelchairs for multiple reasons; the wheelchair can limit accelerations [[52]],
increasing the comfort for a user sitting on it; furthermore, for a given linear
speed, a trajectory with lower curvature yields a lower angular speed, which im-
proves visual odometry accuracy due to better keypoint tracking and helps to
reduce wheel slippage.

It is also important that trajectories look natural, predictable and legible,
which are important features when autonomous wheelchairs share the space
with people [90]. In particular, when crossing narrow spaces like a door, people

43

44 2.2 Related Work

try to infer future trajectories of people (and robots) surrounding them. Some-
times it is beneficial to reduce personal utility for an increased legibility. Imagine,
for example, that we are standing close to a door while observing a person on
a wheelchair traveling along the corridor. If the wheelchair trajectory clearly
suggests that it is going to cross the door, we may recognize this and may be
able to move away in time. Instead, if the wheelchair, in an attempt to optimize
some performance metric, travels parallel to the corridor up to the door, before
suddenly turning towards us, we may not be able to anticipate its intentions in
time.

The spatial data model introduced in Chapter |1| contains all information re-
quired to plan trajectories that are safe, legible, and comfortable. In fact, we
use the shape and spatial semantic label (“door”, “corridor”, ...) of cells to de-
fine constraints on the trajectory to increase legibility and ensure safety; we then
look for the smoothest (i.e., highest comfort) trajectory that satisfies the con-
straints. The constraints allow us also to significantly reduce the complexity of
the optimization problem.

In case multiple routes are available, we formulate a new multi-objective
problem that relies on geometrical information only: which are the best trajec-
tories, between a start and goal pose, with minimal curvature and length?

In a hierarchy of controllers, geometrical trajectory planning lies between
high-level planning and low-level control, which we further discuss in Chapter [3]
where the robot, while following a geometrical trajectory, needs to avoid dynamic
obstacles.

2.2 Related Work

Planning for smooth trajectories has been an important topic of research in ro-
botics [[111]. Robots controller have an easier task when following a smooth
trajectory, which should ideally be G* continous [[116]]. Splines and compos-
ite Bézier curves are families of smooth curves that researchers often look at
for optimal smooth trajectories, for which the bend energy [|36] - i.e, the inte-
grated squared curvature of a trajectory — has provided a natural objective to
minimize. Curvature constraints can be added to ensure the feasibility of the
trajectory by non-holonomic robots [68]]. Recent research has investigated the
use of Bézier composite curves for planning trajectories along corridors [|28]], and
across doors [[147]; in this chapter, we discuss how to plan an optimal trajectory
that may traverse a whole building.

Interestingly, drawing Bézier curves on a screen may also provide a human

45 2.3 Model

friendly interface for the remote control of a robotic wheelchair [|73]].

2.3 Model

We introduce basic notatiorﬂ to describe the two dimensional trajectory followed
by a mobile robot, as illustrated in Figure We model a differential-driven
two wheeled robot as an oriented disk of radius p that travels along a trajectory
y : [to, t;] — R?, parametrized by time. Let {e;(t),e,(t)} be an orthonormal
frame attached to the robot such that e; points forward (i.e., the Frenet-Serret
frame of y). The robot kinematics is described by linear speed v(t) = |y(t)| and
angular speed w(t), which is related to the curvature x (by the Frenet-Serret
formula) as

w(t) =v(t)x(t). (2.1)
_— T — ,/‘ Y
N e,(t) /,/’/
el el(_t_)_,,—"'
r(t)

Figure 2.1. The robot trajectory y and its Frenet-Serret frame {e;,e,} at time t;
76(t) is a (polar) parametrization of the robot’s disk in the frame {e;,e,}.

2.3.1 The jerk along a trajectory as a cost

The jerk ¥(t) is a common quantity to quantify the smoothness of a trajectory;
in fact, trajectories with low jerk magnitude are perceived as more comfortable
by a user sitting in a vehicle [[70,|130] and they put less stress on the mechanical
parts like motors and gears [[84]].

We assume that average magnitude of jerk over the disk is a good proxy for
the discomfort of a user sitting on top of a robotics wheelchair (in this case p
would denote the radius of the user), and, more generally, is appropriate in our
context to discriminate smooth trajectories.

ldots denote derivations with respect to time.

46 2.3 Model

Discomfort should be accumulated over time, therefore we define the fol-
lowing cost, which was first introduced to measure coordination abilities of hu-
mans [[45]:

F)= J (70(0)%),dt, (2.2)

where
Yo = Y(t) +TRge (t)

denotes the position at time t of a point which has fixed polar coordinates (r, 6)
in the robot frame, R, a rotation by angle 6 in the robot frame, and (-), the
average over a disk or radius p.

We compute Eq. by inserting Eq. (2.1):
(T10(0)2), = ()= v(O) () +@v(De(t) + (Do (t))’
2
+ % (Bt () +(6(6) - w(0)?)).

In this chapter, we focus on the geometrical aspects only; therefore we assume
that the robot moves at constant speed v(t) = v = w(t) = vk(t) and we switch
to a parametrization of y by arc length s, for which

o 2 2 p) 2 52 2
(raor), = (s (557) + 5 (5570) + (5]))

When the trajectory turns relatively gently compared to the robot radius p,
i.e., when px < 1, only the first two terms make a significant contribution, i.e.,

S~V J (K(s)4+ (?))ds, 2.3)

which is the final form of the cost that we are going to optimize.

Alternative costs A similar, alternative cost that is discussed in the literature [[28,

55,147] is given by
f () ax(s))>
K(s) +1"() ds, 2.4)
. Js

where T is a factor with dimension [s]*. For I' = 0, this cost is proportional to
the trajectory bend energy [[36], i.e., to the potential energy required to bend an
elastic band to the shape given by v.

47 2.3 Model

An alternative approach would be to minimize the maximal discomfort, or
more simply, to find the trajectory with the largest minimal curvature

min |k (s)|. (2.5)
s€[0,length(y)]

2.3.2 Problem formulation

Trajectories with small curvature are beneficial for multiple reasons: a) the robotic
wheelchair keeps jerk small, increasing in this way the comfort for a user sitting

on it; b) with smaller angular speeds for the same linear speed, the wheelchair

slips less and reduces the risk of losing localization; ¢) gently turning paths also

look more natural, predictable and legible, which are important features when

autonomous wheelchairs share the space with people.

Bending cost optimization Given a list (b,,..., b,) of convex cells’ boundaries
to cross while traversing convex cells (c,...,c,), and start s and end e poses
located in the first and last cell, we look for the trajectory y that passes through
them in the correct order, is contained in the cells, and minimizes the bending
cost derived through Eq.

B(y) = J (K(s)4 + (aa—:))ds, (2.6)

where y is parametrized by arc length s and « is the curvature of y.
We make use of the semantic labels attached to cell boundaries to constrain
the trajectory to pass perpendicularly in the middle of doors.

Multi-objective geometrical optimization In general, there may be multiple
topological paths connecting two cells in the navigation layer (see Section[1.3.6)).
In this case, looking for the minimal bending cost while neglecting other geomet-
ric features may be too limited. As a matter of fact, humans prefer short and less
curved trajectories.

Therefore, a second optimization problem is defined for the same inputs that
looks for trajectories that turn gently and are short. Namely, for a set of convex
cells, a given source and target poses, we want compute the Pareto optimal tra-
jectories (contained within navigable cells) according to length and bending cost
AB.

48 2.3 Model

2.3.3 Search space

The problem is defined as a non-linear optimization in the space of all curves. It
becomes more manageable if we restrict the search to polynomial curves, which
have a finite (small) number of parameters but approximate well enough any
interesting trajectory.

In particular, composite Bézier curves [[119]] fit well into our problem [28,
147]]. In fact, we could split the trajectory y in many low-dimensional Bézier
curves, one for each cell; each curve lies inside the (convex) cell if all control
points lie inside the cell themselves; similarly, the curve will pass through two
cell’s boundaries if the first and last control points lie on the boundaries.

Therefore we search for the optimal y in the space of N-th order composite
Bézier curves.

Bézier curves

For each cell ¢;, the curve segment [0,1] — c; has the form?|
N
t— ZP;f b;n(0), (2.7)
j=0

where b; y are Berstein polynomials of order N,

b,y :[0,1]1-[0,1] (2.8)
NY . ,
b n(t) = (j)tj(l —)N (2.9)
and P;‘S j<y €Ciare N control points that completely define the curve.

Bézier curves have limited degrees of freedom, allowing for efficient opti-
mization, and are well known for approximating curves of any shape. They have
several additional useful properties. For instance, Bézier curves are contained
into the convex hull of their control points; thus, if the control points are con-
tained in a convex cell, the corresponding Bézier curve will be contained in it
too. Moreover, they are efficient to compute by a sequence of linear composi-
tions using the de Casteljau’s algorithm.

The control points adjacent to the segments’ joins define the smoothness de-
gree of a composite Bézier curve. More precisely, the n-th order derivative at a

2We switch to parameter t because, in this parametrization, curve segments are not
parametrized by arc length.

49 2.3 Model

join depends only on the adjacent n control points:

r°(0)=P,
r'(1) =Py
7°(0) =N (P; - Pf)
7'()=N(Py—P; ;)
N —1(P;—Py) x (P{ - Pf)

:(0) = — b (2.10)
X (1):N_l(PIiI_PIiI—l)X(PIiI—l_PIiI—Z)
S Ips =P

G° geometric continuity (i.e., C° continuity if the curve would be parametrized
by arc length), requires that successive segments share the last, resp. first, con-
trol point. G! continuity needs that the three control points around the join are
collinear.

Order

A necessary condition for a differential driven robot, like a typical wheelchair, to
be able to follow a trajectory is that the trajectory should be G*: the curvature
(and therefore the angular speed, for continuous linear speeds) must be con-
tinuous. This puts a constraint on the 5 adjacent control points around a join,
which generally requires N > 6 to be satisfied. Note that G* continuity may be
necessary for a controller to follow a curve [[116]; however, in most cases, the
robot has to cope with localization errors and obstacles avoidance, therefore G2,
or even G! continuity, may be smooth enough for a trajectory that will be locally
adjusted anyway.

The search for optimal curves is much faster when N is small, i.e., when their
parameter space is low dimensional. Therefore we limit ourselves to N < 6.
Often an optimal G! curve is sufficiently similar to an optimal G* to serve as an
approximation. This offers the following possibilities to reduce the computation
cost of the search of an optimal G* composite Bézier curve.

1. Search for optimal 4-th order (cubic) G' composite Bézier curve, without
imposing curvature continuity at cell boundaries. Then, in a second phase,
transform the curve into a G2 curve that has continuous curvature at the
boundaries.

50 2.3 Model

2. Search for optimal 4-th order G*> composite Bézier curve, while imposing
curvature continuity at cell boundaries. If we are lucky (which is actually a
common cases on indoor maps), we find a G? curve; else we revert to one
of the other methods.

3. Search for the optimal 6-th order G*> composite Bézier curve, imposing
curvature continuity at cell boundaries. As discussed, these curves have
enough degrees of freedom that feasible solution are always found.

For the rest of this chapter, we limit the discussion on the first option, which
has been proven to be a viable solution in real-world scenarios; we discuss smooth-
ing through degree elevation in Section [2.3.4}

Parametrization

We parametrize the 4n+4 control points defining a composite cubic Bézier curve
y from s to e. Figure [2.2fLeft illustrates the notation. In total, the curve has
4n + 2 degrees of freedom left for optimization after imposing G' continuity at
the boundaries.

The curve starts and end in control points located in P;° and P;", and passes
through control points P, = Pg"‘l located on each boundary. We parametrize
their positions along b, by a linear function [with parameterss' € [0,1] (s' =0, 1
define points on the boundary of b;)

P; =P, =1(s'; by).

For the second, and second-last control points, which define the start and end
derivatives, we use a polar parametrization p with origin in s, respectively e,

P =p@d,a,;s), Py =p(u}, a,e),

where u(l’, u, € [0,1] are (normalized) radial distances divided by the cell length
(the largest edge of the cell bounding box), and a,, a, are the headings of s and e
respectively. Similarly, the points sz, for 1 <i < n, which control the derivatives
at the cell boundaries, are polar parametrized with respect to origins in P, and

axis oriented along b,

P;i = p(uilJ ai; l(si; bi): bi):
P;i = P(ulzﬂ, a o, 1(sT bi1); bi1)s

where a! is the angle by which the trajectory crosses border b;.

51 2.3 Model

- c
c1 Po o Pyt o Pyt
Pr

i
»
y#

s~ o)

Pa'(P by R fopy 71 13 13 173 Ne -
s < \
ce

Figure 2.2. Towards the generation of the optimal Bézier composite curve. Left:
start (s) and end (e) poses, and a topological path that traverses cells (co, ¢y, ¢,)
and crosses boundaries (by, b,), are given. The control points Pg , , , define the
curve. There are four degrees of freedom at boundaries (e.g., a',s*,uj,uJ at b;)
and one degree of freedom at start and end (e.g., u ats). Center: the trajectory is
initialized after computing the shortest path (dashed). Right: the G? trajectory is
obtained by elevating the optimized 4-th order trajectory (black control points)
to 6-th order (gray control points). The 6-th order control points P;' and P}’
are moved slightly along the segment that connect them to make the curvature

continuous at b; and b,. respectively

2.3.4 Bending cost optimisation

We reformulate the optimization problem as a search in the space of the Bézier
segments’ control points.

Using the notation u = (1}, u})ocicn, § = (s)1<i<, and @ = (a');<i<,, the
4n + 2 parameters defining the optimal y = y(u, s, @) with respect to 4 are ob-
tained through the solution of the following non-linear constrained optimization
problem:

Minimize %(y(u,s,a))
Subject to
w,u,ub,ul, st €[0,1],
a' €[0,n],
p(u3, a;s) € ¢
p(,a';1(s'; by); b)) € ¢
p(uy, a' + m;1(s'; b;); b;) € ¢4
p(u;, a;e) €c,
Vie{l,...,n}.
We can then use a numerical solver, such as “Constrained Optimization By

Linear Approximations” (COBYLA) [[118], to compute (locally) optimal trajecto-
ries. Since this solver works better with differentiable constraints, we reformu-

52 2.3 Model

Figure 2.3. Optimized trajectories on a synthetic map. Left: Local optima found
by the solver between the same source and target poses, initializing the search
with random parameters (100 black lines) or using the heuristic (green line).
Right: 50 optimized trajectory between two poses (left), a pose and a point
(center), and two points (right); trajectories are colored by the cell they traverse.

late all constraints of form P;' € ¢; as:
Ci G
Pl ec;=d(P;,d¢) =0,

where d(P, dc) is the distance between P and the boundary of cell ¢, negated if
P lies outside of the cell.

Because of non linearity, the cost function may present several local minima to
which the solver converges depending on the initial conditions; therefore a good
initial estimation of the optimal parameters is needed. Figure [2.3}Left illustrates
an example for which most randomly initialized searches do not converge to
the global optimum, to the contrary of a search initialized with the heuristic
described below. Figure [2.3tRight depicts several optimal trajectories between
two random locations: two poses (i.e., a, and «a, fixed), a point and a pose (i.e.,
only a, fixed), and two points (i.e., a, and a, free to vary).

Initialization

To compute a good initial guess, we apply a heuristic that smoothens the shortest
path y, between start and end poses, as illustrated in Figure [2.2}Center. The
shortest path itself is computed from the visibility graph of the navigation layer
and is composed of a line segment for each cell.

The parameters s are chosen in order to place the points Py at the intersection
of y, with each boundary; angles a are initialized as a midway between the
angles of the two incident segments of y,; u;, are set by placing the control
points P! and P} at one third of the distance between P and P;*' (or on the cell
boundaries if they would end up outside of c;).

We have verified that, in most cases, applying this heuristic leads to accept-
able results even if the parameters are not further optimized.

53 2.3 Model

G? trajectory

As discussed in Section composite cubic Bézier curves are not generally
G? because of discontinuities in the curvature at the joins. In general, we need
to add at least two other control points for each cell to be able to adjust the
curvature at one endpoint, without modifying the derivative and the curvature
at the other end.
We apply the following procedure to transform the optimal 4-th order curve to
a 6-th order G2 curve; shape and cost %(y) do not be change significantly. The
degree of each segment is elevated to 6-th order [[119], i.e., we find 6 control
points that define the same Bézier curve. Then, for each boundary, we compute
the curvatures x'(0) and x"(1) on the two sides (see Equation . They
should be equal for the curve to be G. If they are different, we set the target
curvature at boundary b; as
g {\/Ki(O)Ki—lu), if k((0)x1(1) =0

2.11
0, else ()

and move the control point P;' along the line passing by P;' and P;' as necessary
to achieve curvature x' (see Figure :Right). Similarly, on the other side of the
boundary, P, is moved along the line passing by P;* and P;"".

For some trajectories, which are uncommon on indoor building maps, this
process may not be possible because the resulting control point would lie outside
of the cell. In those cases, we have to rely on other smoothing techniques or
switch to another option discussed in Section [2.3.3]

2.3.5 Optimal trajectories in indoor buildings

Doors and narrow passes Maps of indoor buildings generally have more struc-
ture than just being collection of cells. For instance, they contain corridors and
rooms separated by doors.

We use these characteristics to add additional constraints to the control points
of trajectories in indoor buildings. In particular, we want to ensure that the
wheelchair when crossing doors passes perpendicularly in the middle, i.e., a' = 7/2
and s' = 1/2 for all i for which c; or c;_; are doors.

This brings two advantages: a) legibility and predictability of the wheelchair
trajectory near doors is increased, where good negotiation of shared crossing
with humans is critical; b) the optimization problem is split into smaller prob-
lems, since the path (b,,...,b,) gets subdivided into m smaller chains

(1., 00), (Bysevby)sevy (B ey by), (2.12)

54 2.4 Experiments

for which the trajectory is perpendicularly constrained into the middle point at
b,,i=1,...,m. The optimization of one chain is independent from the other
chains.

We impose the same constraints on cell boundaries that are very narrow, los-
ing a little bit of freedom but substantially reducing computational complexity.
If all boundaries in a chain are constrained, like for a sequence of doors, opti-
mization is trivial and results in a straight line.

Trajectories graph Contrary to start and end poses, which are only known at
query time, all constrained boundaries can be identified at initialization. More-
over, the optimal trajectory between them can be pre-computed. In fact, they
form the edges of a graph G,,, whose nodes consist of doors and narrow pas-
sages.

Based on these insights, we greatly reduce query time by proceeding as fol-
lowing. Instead of optimizing the full trajectory, we first subdivide the topological
path into chains as described above. Then, we run the optimization only for the
first and last chain (i.e., from s to the first door and from the last door to e),
while we retrieve already optimized intermediate trajectory from G,,. In this
way, computational costs become almost independent of the number of bound-
aries crossed (see Section [2.4.2) for an experimental verification).

2.3.6 Geometric multi-objective optimization

The graph G, also serve us to compute Pareto optimal curves with minimal
length and bending cost. First, we add to G, all optimal trajectories from s and
to e that originate from a node of G, and do not cross any other node. Then, we
apply Algorithm [4] without modifications, with respect to pre-computed costs %3
and length ¢ for all edges in G,,. Figure illustrates an example.

The considerations discussed in Section[1.3.7 apply here as well. Namely; it
is in general beneficial to reduce the number of solutions by pruning solutions
with small cost differences.

2.4 Experiments

We report experimental results that evaluate the performance of the trajectory
optimization and of the multi-objective planner. All experiments are performed
on a single core modern architecture CPU using the implementation described in

Appendix

55 2.4 Experiments

Pareto Front

0 85 90 95 100 105 110 5 120
£(m]

Figure 2.4. The graph G, used for multi-objective path planning. Left: Optimal
solutions according to length ¢ and bending cost 8 between two poses (red
arrows) are drawn with different colors (green and purple paths overlap after a
few cells); edges of G, are drawn in black. Right: Pareto front in cost space
(with corresponding colors): the planner gives back the choice between longer
(green), curvier (red) and two intermediate trade-offs trajectories.

2.4.1 Synthetic map

We measure the performance of the planner on a synthetic map, made by a suc-
cession of corners similar to a snake (see Figure [2.5Top). Two examples of tra-
jectory optimization converge slower (right) and faster to the optimal solution.
Figure [2.5tLeft reports how the computational cost grows super-linearly w.r.t.
the length of the topological plan because of the linearly increasing number of
degrees of freedom.

The numerical solver can be tuned for faster or more accurate results. Fig-
ure 2.5} Right illustrates the trade-off between computational cost and accuracy
(bending cost nearer to the optimum) for paths of fixed length of 4 boundaries
(i.e., with 18 degrees of freedom to optimize). For the experiments shown in the
following, the planner is tuned for accuracy.

2.4.2 Real building map

We investigate the real world performance by testing the planner on the map of
our building, which is 120 meters long. The navigation layer was obtained as
described in Section[1.3.4]by inflating walls by 40 cm and then decomposing the
navigable space into convex cells.

As detailed in Section[2.3.5] the planner initialization pre-computes all trajec-
tories between constrained boundaries, which form the edges of the graph G,,.
For our building, this phase requires 3 minutes to compute about 2000 trajecto-
ries. Figure [2.6Left displays the full map and an excerpt of the navigation layer
together with trajectories in G,,. Note how curves originate perpendicularly

56 2.4 Experiments

200% - n

150%

comp. cost [s]
N
I
|
relative bending cost

0k . ‘ = 100% \ \ 8
0 5 10 15 0.2 0.4 0.6 0.8

path length [#boundaries] comp. cost [s]

Figure 2.5. Top: synthetic map with two examples of trajectory optimization.
Darker colors mean further optimization (higher computational cost). Botttom-
Left: Computational cost for optimizing trajectories between random poses (50
per length) of increasing (topological) length: average (line) £+ one standard devi-
ation (grey area). Botttom-Right: average trade-off between computational cost
and trajectory relative cost (w.r.t. the minimal trajectory cost) for 100 trajecto-
ries of (topological) length 4 between random poses when optimized by the
numerical solver according to different accuracies.

57 2.4 Experiments

from the middle of doors.

The planner performance is higher than on a synthetic map. On the one
hand, the trajectories are more constrained (more doors and narrow passes).
Therefore they can be split into chains of limited size. The total computational
(see Figure 2.7 Left) cost becomes almost linear w.r.t. the length of the path. On
the other hand, at query time, we take advantage of G,, to compute only the
first and last part of a trajectory. Thank to this caching, the computational cost
becomes almost constant and remains well under 1 s for almost all queries. This
confirms that the planner is well suited for online planning for robots moving in
real buildings.

2.4.3 Multi-objective planning example

Figure 2.6} Right displays the solution for a single multi-objective (6 vs £) plan-
ning problem between two poses in our building. For this case, Algorithm |4 ter-
minates after three paths have been evaluated and returns a Pareto front com-
posed of two solutions, while only one additional dominated solution is com-
puted. The planner gives us the choice between the longer (left) and curvier
(right) trajectory.

Figure[2.7|reports the cost to compute the set of optimal trajectories, between
1000 randomly drawn poses, and its size. Problem instances with longer paths
give rise to more solutions (up to 6 in average) and an increased cost, which
nonetheless remains acceptable for online planning. We note that the longest
topological paths do not correspond to the longest computational times: on this
particular map, the few longer paths happen to be relatively simple to optimize
(e.g., travelling along a long straight corridor).

2.4.4 Robot navigation

We tried to follow the optimal trajectories using a differentially driven, two
wheeled, TurtleBot 2 robot. The robot localizes itself, using a depth sensor, on
the same map used by the planner. We configure the robot navigation controller
to keep its contribution to the final robot trajectory negligible. See Appendix
for details about robot’s implementation, and Chapter [3| for a discussion about
the controller used to follow an optimal trajectory.

Figure shows some of the trajectories performed by the TurtleBot robot
moving autonomously in our building. We qualitatively compare our planner
with one of the planners implemented within the Robot Operating System (ROS)

58 2.5 Conclusions and Perspectives

B /m]

* e

Figure 2.6. Left: part of our building IndoorGML map with the optimal trajecto-
ries forming the edges of G,,. Cells are colored by type (corridors green, rooms
yellow, doors orange). Right: multi-objective optimal paths between two poses
(grey circles with arrow): Pareto optimal trajectories (solid lines) and the only
visited dominated solution (dashed line). Top Right: costs of the three trajecto-
ries — Pareto front (black circle), dominated solution (grey squares).

navigation framework (move base): navfn, a grid search planner, which opti-
mizes a navigation function. The two planners have different goals. In fact,
navfn is not trying to find a differentiable trajectory and is meant to be used to-
gether with a local planner that refines the trajectory. Still, it is interesting to
note how qualitatively different the plans and the robot’s traces are when using
the two planners. Our planner produces smooth robot’s traces that turn gently,
making use of the free space, which are easier to predict for a human observer
and more similar to those followed by a skilled human driver.

2.5 Conclusions and Perspectives

We discussed how to optimize a trajectory and perform multi-objective path plan-
ning to select short but comfortable trajectories for wheelchairs. We investigated
the performance of the planner in synthetic maps. We showed that the planner
is suitable for real time planning for robots in real world buildings.

In this work, we assumed that bending cost 28 is a good proxy for comfort
and that, together with the constraints we impose, minimizing this cost also in-
creases the acceptance of the robotic wheelchair by people sharing space with
it. While this assumption is reasonable, an experimental validation would be an
interesting (but difficult) future research effort.

One challenge for such validation is the separation of the contributions from
the path planner and from the lower-level controller: a perfectly smooth target

59 2.5 Conclusions and Perspectives

2F i i = 30 i i
—+— with cache || —e— comp. cost 16
—e— without cache —e—num. of solutions 2
—/ — .9
lg‘ ; 20 15 ,_g
o o 7}
(9 o Gy
. . o
3 & 5
o) o 10 - 14 o
o S =
=
=
0r |
| | | O [| | ‘ - 3
20 40 60 20 40 60
path length [#boundaries] path length [#boundaries]

Figure 2.7. Computational cost of 1000 trajectories between random poses on
the map depicted in Figure|2.6} average (solid line) and £1 standard deviations
(shaded area) vs. the number of boundaries crossed. Left: cost of trajectory
optimization with/without using the pre-computed optimal trajectory graph G,
as cache. Right: cost of the multi-objective path planning problem and, in blue,
the average number of optimal solutions.

trajectory is not of much use, for the user, if the local navigation algorithm or the
motor controller are very jerky, or when the wheelchair greatly deviates to avoid
dynamic obstacles. This last point is the topic of the next chapter.

60 2.5 Conclusions and Perspectives

d

Figure 2.8. Left: qualitative comparison of the trajectories computed by our
planner (solid black lines) and by the navfn planner (dashed grey lines). Cen-
ter and right: the trajectories followed by the robot, which suffers slightly from
inaccuracies in localization and in actuation (center: our planner, right: navfn
planner).

A

Chapter 3

Human-friendly local navigation

3.1 Introduction

3.1.1 Local navigation

The planners discussed in Chapters|l|and |2|do not account for dynamic aspects.
All obstacles have been modeled as static cells: they do not move and we know
the position of all of them at planning time. Moreover, the planners are not
concerned with time or velocity. The topological planner assumes that the robot
will be able to move towards the next cell boundary and the geometric trajectory
planner requires that the robot is able to follow a curve.

Nonetheless, dynamics is important. To remain safe, the robot should avoid
colliding into unforeseen or moving obstacles; to be predictable, it should accel-
erate and decelerate smoothly. This should be implemented while diverging as
little as possible from the optimal geometrical trajectory.

Local navigation and collision avoidance are fundamental challenges in mo-
bile robotics. The most common solutions adopt reactive algorithms [22, 23|]
that iteratively, at each control step, select the desired motion towards the tar-
get taking into account the presence and the expected motion, over a short time
horizon, of perceived obstacles.

From an engineering point of view, robot navigation needs to be effective in
terms of followed trajectories, robust to sensing errors, scalable to differently
crowded environments. At same time, when robots share space with people,
robot navigation needs to be safe and human-friendly [90].

61

62 3.1 Introduction

3.1.2 Human-friendly behavior

With human-friendly, we mean that robot movements must exhibit behaviors that
are acceptable by humans [50, 93]. In terms of local navigation, this could be en-
sured by trajectories that a person, in a similar setting, would follow. Such trajec-
tories have the property to be legible and predictable by humans [40[], meaning
that a person observing the robot motion can intuitively understand the spatial
target the robot is heading to and predict future movements. Other than limit-
ing emotional stress, this ensures that both humans and robots can navigate the
space efficiently. In fact, if navigation behaviors generate unpredictable trajec-
tories, humans have to frequently change their direction to move around robots,
ultimately resulting in less efficiency for both groups.

How to reproduce human-like behaviors? In this chapter, we illustrate a
robot navigation algorithm which mimics pedestrian behavior. In fact, we im-
plement the same local navigation rule [[103] that has been validated in large-
scale comparative experiments and shown to closely model human trajectories
in controlled conditions [|105]].

Our implementation provides a number of extensions to the basic model,
which take into account the core differences between robots and humans. In
particular, we: (1) enforce safety (lateral contacts and pushing are an integral
part of human crowd motion but are unacceptable in robotics); (2) respect hu-
man personal spaces whenever possible; (3) prevent local crowding situations,
which could naturally lead to reduced efficiency.

The microscopic description of human-like navigation models groups of hu-
mans and robots that share the same space (and the same navigation behav-
ior); this helps us to estimate the effort required to a human or a robot to move
through a crowded cell in the models introduced in Chapter[I} Yet, the behavior
works equally well when only robots are in the environment. In this respect, it
represents a more flexible alternative to existing methods.

The navigation behavior only relies on local sensing. Which is the impact of
perception on the navigation performance? We expect that a robot with a smaller
field of view is less safe because it doesn’t perceive some obstacles. The impact
on efficiency is also interesting: the short-sighted robot may go straighter at first
only to have to steer strongly later.

3.1.3 Emerging collective behaviors

The navigation algorithm is a microscopic description of the navigation behavior,
one small step at a time. Yet it let macroscopic patterns emerge, in the form of

63 3.1 Introduction

collective behaviors, which are similar to those observed in human crowds. For
example, crowds in corridors spontaneously split in lanes going towards different
directions; at crossing points crowds form a swirl pattern that minimizes stop and
go (see Figure[3.1).

Collective behaviors benefit the single agent in multiple ways. They increase
efficiency and safety by reducing the number of conflicts (i.e., collisions to be
avoided). They also increase human acceptance of the robot behavior, both for
single robots, as well for groups of robots.

Collective behaviors are also a form of implicit (proxemic) communication.
In the navigation algorithm, collision avoidance is shared by agents on a collision
course. The agents communicate their intention just by moving towards where
they want to go. Does perception (i.e., partial information) play a significant
role? Indeed, we show that the collective behaviors require that enough infor-
mation is (implicitly) shared among agents. For instance, agents that only look
in front of their eyes, like horses with blinkers, won’t organize in lanes.

, ’:///‘r\
Ll a3 t=12s

Figure 3.1. Visualization of trajectories for 40 simulated robots following the
human-inspired navigation behavior. The robots show a collective behavior at
a crossing: they swirl around each others without having to stop.

t=21s t=30s L t=39s Ct=48 s

3.1.4 Outline

In this longer chapter, we present a bio-inspired, local navigation algorithm that
generates human-like (and thus human-friendly) trajectories. In Section
we introduce the algorithm, which is conceptually simple, computationally light,
independent of the specific sensing technique, and inherently able to handle het-
erogeneous agents. In Section [3.4, we compare the human-inspired behavior
with two other state-of-the-art algorithms for local navigation of group of robots.
In Section we present a control strategy to let robots follow the (optimally
smooth) path computed in Chapter

We discuss and demonstrate the implementation of the navigation behav-
ior on both real and simulated robots (Section [3.6)); the simulation results are
validated with real experiments; we also provide quantitative results obtained

64 3.2 Related Work

from large-scale simulations (Section for all three navigation behaviors. In
particular, we test the scalability of the approach to large robot swarms, the ro-
bustness to sensing inaccuracies, and the effect of various parameters on safety
and efficiency. We additionally demonstrate that robot swarms implementing
the proposed algorithm exhibit macroscopic behavioral patterns (e.g., the emer-
gence of lanes of opposite flows in corridors) matching those observed in human
crowds [[105]]. Finally, we show results on how simulated robots perform nav-
igation in indoor building: how much navigation algorithms deviate from the
prescribed trajectory and how much jerk increases as a results.

We only present experimental results that measures objective, quantitative
metrics for safety and efficiency; ongoing experimental trials focused on ac-
ceptance as an inherently subjective quantity, using the tools described in Ap-
pendix B] are briefly discussed in Section

3.2 Related Work

Dynamic obstacle avoidance is a challenge that has to be faced by any mobile
agent. Therefore, this is a topic that has been extensively studied both in robo-
tics and social sciences. In robotics, the aim is to effectively control the motion
of one or more robots, while in social sciences the basic goal is to understand
the behavioral models adopted by pedestrians in different situations. Moreover,
since humans and robots may share common spaces, obstacle avoidance has been
studied in reference to the simultaneous presence of both humans and robots,
which raises up a number of issues regarding not only safety but also reciprocal
predictability of trajectories and acceptance (of robots).

In this section, we present related works in the context of local navigation
and human acceptance of robots’ behaviors. We refer to Section for the
case when agents have access to global information to compute human-friendly
paths.

3.2.1 Local navigation in robotics

In robotics, the most common approach is based on the concept of velocity obsta-
cle [[131], also known as collision cone or forbidden velocity map, which is the set
of velocities that will lead a robot to collision: choosing a velocity outside such
set ensures that no collision will occur. Different variants have been presented
to: a) improve the prediction of the other agents’ trajectories [[13, (150, 155];
b) add recursion and include a probabilistic framework to account for sensing

65 3.2 Related Work

errors [|78]]; and c) ensure smooth trajectories by sharing the responsibility to
avoid a collision with other robots (reciprocal velocity obstacle, RVO [12]]), pro-
vided that the robots pass each other from the same relative side, to prevents
oscillatory behaviors.

Two common approaches proposed to enforce that robots pass each other
from the same side are: a) restricting the safe velocity space to half-planes con-
structed from the tangent spaces of velocity obstacles, truncated by a finite time
horizon (optimal reciprocal collision avoidance, ORCA [|14]) or b) artificially en-
larging one side of the reciprocal velocity obstacle (hybrid reciprocal velocity ob-
stacle, HRVO [[135]]). Both techniques can be applied to non-holonomic differen-
tial driven robots [|5, 136]] with localization and sensing uncertainties (an imple-
mentation for the Robot Operating System (ROS) is also available [|67]]).

Original velocity obstacle approaches assume that all agents and obstacles
follow piece-wise linear motions and that agents adapt their velocity in a dis-
tributed way without explicit coordination. Extensions take into account robots’
specific mobility constraints as well as the nonlinear or unpredictable motion of
obstacles [[11, 151]], and robots following smooth feedback controlled trajecto-
ries [[124]]. A recent work investigates a centralized solution to select the optimal
velocities and found that robots can increase their performance by operating in
the joint velocity space [4]]. Another recent study shows the utility of RVO as
mesoscopic navigation strategy, where a robot treats similar neighbors as a larger
group resembling a single obstacle, and avoid them as a whole [|64].

All the mentioned works build on a mechanistic and artificial approach to
navigation, which is primarily designed to ensure safety (collision-free motion),
and is engineered to produce also smooth trajectories. Instead, our work stems
from a heuristic modeling human behavior [[103]]. Since for humans a “contact”
with another human while walking can be tolerated, the heuristic naturally pro-
duces paths of good efficiency, smoothness, and legibility, to which we add some
modifications to ensure safety. We are first to apply this heuristic to robotics.
Implementation-wise, the characteristics of the heuristic allows to decouple the
computation of the desired heading and of the desired speed. This leads to a sim-
pler implementation than velocity-obstacle approaches, which requires a search
over the two-dimensional velocity space.

3.2.2 Local navigation in social sciences

Mutual avoidance and sharing of space among humans has been extensively stud-
ied in social sciences, mostly to predict the behavior of crowds. The original mod-
els are based on the study of proxemics [63]], which formalizes the concept of per-

66 3.2 Related Work

sonal and social space; pedestrian behavior based on social forces [65]] enforces
people to keep a minimum distance from neighbors whenever possible. Such a
model was successfully used for crowd simulation and also inspired several hu-
man tracking and avoidance models in robotics [94, |141]]. Simple rules applied
in pedestrian navigation (passing on the left and shared collision avoidance re-
sponsibility) were incorporated in a sampling-based planner [79] for collision
avoidance among robots. Moussaid et al. [103}, [105|] recently proposed a funda-
mentally different model, which we extend in this chapter for implementation in
robots.

By adopting such a model for pedestrians, we aim to ensure that the robot
will exhibit a human-like behavior. In turn, this can ensure that humans sharing
space with the robot will be able to easily predict its intentions thus improving
both efficiency and social acceptance.

3.2.3 Robot behavior acceptance

Research on the acceptance of a robot behavior by a human has identified two
separate relevant characteristics of the robot behavior [40[], which refers to the
ability of humans to: a) infer the robot’s intent by observing its behavior (legi-
bility); and b) predict the robot’s behavior while knowing its intent in advance
(predictability).

In the context of robots navigating and sharing space with humans, the dif-
ferentiation between a legible (i.e., when it is possible to infer which goal a tra-
jectory is heading to) and a predictable (i.e., when it’s possible to anticipate the
trajectory towards a goal) behavior, may depend on the chosen experimental
setup. First investigations report no significant distinctions after studying robots
heading to possible different goals while being observed by humans [91]. For
the same experiment setup, the interplay between local and global navigation
behaviors has been shown to be of large importance for the legibility and ac-
ceptance of the resulting trajectories: in particular, human-aware global path
planners only resulted in acceptable trajectories when coupled with human-like
obstacle avoidance behaviors [[90], which further highlights the importance of
human-friendly local navigation behaviors. In addition to safety, efficiency (i.e.,
the amount of time or other resources required to accomplish a task) also improve
the acceptance [|50] of robots as social partners and was recently investigated for
navigation [93]].

67 3.3 Model

3.3 Model

3.3.1 Problem formulation

At any given time, given the robot shape, an optimal speed, a target position, and
a list of moving obstacles, compute the optimal velocity to avoid any collision and
give rise to a efficient, legible and predictable motion towards the target.

3.3.2 Pedestrian heuristics

The pedestrian heuristics [[103, 105[], upon which we develop the robot naviga-
tion algorithm, can be summarized as following: move towards the direction that
come closest to the target before colliding with any obstacles and keep a speed
that allows breaking in time if needed. We introduce the following notation to
formulate it more precisely (see Figure [3.2)).

A time t, an agent at position x(t) and with heading a(t) in some fixed
frame F, is directed, with velocity v(t) = v(t)e,(t), towards a (static) target
point O, where e;(t) = e(a(t)) is the unit vector in direction a(t). The agent is
characterized by: (i) an optimal (open space) moving speed v,,; (ii) a horizontal
field of view fov(t) = fov(a(t)) =[a(t)— ¢, a(t)+ ¢], for some ¢ € [0, 7] that
depends on the perception capabilities of the agent; (iii) a ground occupancy
that we approximate by a disk of radius r.

To direct its movements, the agent, based on visual information, makes use
of a cognitiveE] function f : fov(t) —» R* that maps each heading a within the
field of view to the distance that the agent could travel at speed v, towards a
before colliding with any visible obstacle. The distance is bounded by a maximum
horizon H. When computing f (a), all obstacles are assumed to keep their current
heading and speed, thus moving according to a uniform linear motion. Let d,, :
fov(t) — R* be the minimal distance from O when moving in direction a before
reaching horizon H or colliding with an obstacle, i.e., the distance from O to the
segment that connects x(t) and f (a)e,(t).

Given the above notation, the navigation of a (pedestrian) agent can be ex-
plained by the following simple heuristic rules. First, the agent determines its
desired heading a4.(t) as the direction allowing the most direct path to O, tak-
ing into account the presence of obstacles

Qges(t) = argmind,(a). (3.1)

acfov(t)

'Humans feature a dedicated neural mechanisms to detect object motion [[129]] and predict
the time-to-collision with obstacles.

68 3.3 Model

>

| | —
i 'O fla)] o

- A do(Cdes [m]
\ QJ dolaae) Floras)

: Y :
v N

>
>

1
oRe 2
& v
< &

Figure 3.2. Human-inspired navigation behavior. The red curve f(a) is the
estimated free distance that the blue robot can travel in direction a up to the
first collision, that in direction ay., will happen at the red point where the light
blue (robot) and green (robot neighbor) dotted circles will touch.

If the agent moves towards direction a,, at a constant speed v, it will reach
a point closer to the target than any point it would reach when moving in any
other direction.

Then, the agent determines its desired speed to allow stopping in a fixed time
1 > 0 within the free distance D(ay.) € [0, H], currently seen in direction a4,

D
vdes(t) = min (Voptn (adES)) (32)
vdes(t) = vdese(ades) (33)
The actual velocity vector v(t) is continuously adjusted to obey
3v(t) _ Va0 =v(0) 5

ot T ’

where the fixed parameter 7 represents the time constant characterizing the ex-
ponential speed profile, which modulates the smoothness of motion. Controlled
laboratory experiments measured 1) &~ 7 ~ 0.5 s for pedestrians in normal walk-
ing conditions [|104].

Since computing f(a) involves a rough prediction of agent’s and obstacles’
future trajectories, the resulting behavior is proactive in that it attempts to avoid
potential collisions well before they are expected to occur.

69 3.3 Model

Pedestrian movements to reach a pose (i.e., when there is a target heading
too, like when passing through a door) is different [[114] than the heuristic we
have illustrated.

3.3.3 Application to robot navigation

We now describe the application of the navigation heuristics for a two wheeled
differential-driven robot with wheel axis A and current wheel speeds w'*(t),
w'eh(¢) that are bounded by a maximal wheel speed w,....

Robot kinematics

There are various possibilities to adapt the algorithm to the robot’s simple kine-
matics [88]]. We follow a common approach: from the desired heading computed
in Equation (3.1), we compute a desired angular speed w,, that makes the robot
turn towards a4, in a fixed time 7.,

. +Wmax
ades(t) a(t):| , (35)

TI’O'E

Wes(t) = [

—Wmax

where, in order to avoid large slippages and sensing errors, we clamp the angular
speed to an interval [—w .y, Wmax]-

Then, left and right desired wheel speeds are computed from desired linear
(Equation (3.2))) and angular speeds

A
W (£) = Vaes (1) = 5 wgec(t), (3.6)
11 A
Wdiu(t) = Vges(£) + Ewdes(t)- 3.7)

Finally, we apply a modulation similar to Equation (3.4) to the speed of the

wheels oo

left,right(;) __ ., leforight
(t) B wleftrig (t) Wdes(t) 3.8)
ot T ’ '

and clamp their value to [—w, ., Wpax -

0 Wleft,right

Increase safety

The model described above results in smooth paths, which have been shown to
closely match the characteristics of pedestrian motion in large-scale controlled

70 3.3 Model

experiments, both for single trajectories and macroscopic crowd motion pat-
terns [[105]]. Robots following the same rules would therefore exhibit a behavior
which is predictable, legible, and acceptable by humans sharing the same envi-
ronment with robots.

Nevertheless, the immediate application of the model to robotics is hindered
by several shortcomings, with the main one related to the fact that trajectories
are not safe: in fact, collisions among humans happen routinely (gentle pushing,
shoulders rubbing) and, especially in crowded situations, contribute to define the
motion of tightly-packed groups through reciprocal pushing forces. Even with
sparse agents, collisions may happen when agents with a limited field of view
are unable to perceive each other when traveling side by side, or in presence of
sudden direction changes, which are only partially accounted for by the heuristic
model.

Clearly, in our context, collisions (both among robots and between robots
and humans) should be avoided as much as possible. Therefore, we extend the
heuristic with the concept of safety margin, which is common to many obstacle
avoidance approaches. In particular, when computing f (a), we account for an
increased radius r’ = r + m, for each agent, with m, being a fixed safety margin
parameter. Agents that enter into the safety margin of an obstacle are required
to nullify the components of v 4., which point towards it.

Under the unrealistic assumption of perfectly-accurate and omnidirectional
sensing, choosing a sufficiently large value for m, ensures that no collisions can
occur. The trade-off is that a larger safety margin generally leads to worse per-
formance because it reduces the available free space. In fact, we can estimate an
upper bound M, on the minimal safety margin required for collision-free behavior
for agents that adjust their desired velocity once every finite time step At. For an
agent with no constraints on acceleration, moving together with agents with the
same upper bound on speed v, (Figure :Left), collision-free behavior is en-
sured if m; > M, = 2v,,,(At + 7), where the second term takes into account the
additional amount of space to come to a complete stop. Non-holonomic agents
demand extra care as their selection of desired velocity does not take the motion
constraints into account and therefore need additional space to turn towards the
desired heading. In the worst case scenario (Figure [3.3}Right), when two facing
robots moving at full speed towards each other do 180° turn, they need an ad-
ditional space proportional to v, T ., which has to be added to M;. In practice,
much shorter safety margins can be safely adopted (see Section [3.7.1).

Nonetheless, with realistic sensing inaccuracies and limited field of view, a
completely safe behavior cannot be guaranteed, and too large safety margins
would also lead to inefficient and unnatural trajectories. Therefore, given the

71 3.3 Model

@ ® S

Figure 3.3. The worst case scenario considered to compute the upper bound M;
on the safety margin: two agents travel at maximal speed towards each other.
Left: each needs at most v, (At + 7) space to stop before colliding. Right: non-
holonomic agents need additional space proportional to v, T, when they turn.

characteristics of the sensing subsystem, the safety margin m, controls the trade-
off between efficiency and safety of the trajectories, which is investigated in Sec-
tion[3.7.2] Unlike Moussaid et al. [[103]], if an obstacle is inside the safety margin,
we set f(a) = D(a) = 0 for all angles a that would bring the robot closer to the
obstacle.

Respect personal space

We observe that robots that follow the pedestrian navigation rule, when crossing
in opposite directions, tend to pass each other (and humans) as close as allowed
by the safety margin, regardless of how much space is available. While it may be
an appropriate model for humans, this behavior is not always suited to robots, for
two reasons: a) a robot passing a human should, if possible, keep a distance large
enough to avoid invading its personal space and causing discomfort; b) groups
of robots passing close to each other can induce a temporary situation of local
crowding, which occasionally results in deadlocks.

Increasing m, is not an appropriate solution for either problem, because agents
should be allowed to come close to each other when needed (e.g., in order to ne-
gotiate tight spaces). To address the problem, we add, to the static safety margin,
a social margin m, > m, that varies with the distance between the agent and its
closest neighbor. When possible, the social margin should enforce a personal
space, while, when the robot negotiates tight spaces, it should dissolve to avoid
deadlocks.

Therefore we redefine r’ = r + m(d), where m : [0,H] — [m,,m,] is a piece-
wise linear function of the distance d between the agent and its closest neighbor
(see Figure [3.4). As a result, when enough space is available, d is large and the
robots tend to keep a distance larger than strictly necessary. On the one hand, this
increases social acceptance by humans; on the other hand, this reduces the like-
lihood of forming local high-density clusters of robots (further enhancing safety

72 3.3 Model

3
=
=

Mmeg

d

Figure 3.4. lllustration of safety margin m, and social margin m(d). As a function
of the distance d of the closest neighbor, a margin m, < m(d) < m, is added to
each obstacle’s physical radius r. The figure also illustrates the foot-bot robot,
on which we implemented the navigation system.

as a side-effect), which may lead to deadlocks. Still, deadlocks cannot be com-
pletely ruled out and may occasionally occur, especially with large sensing errors
and/or large numbers of robots packed in tight spaces.

The function m(d) acts as a soft constraint, plays a similar role as potential
fields in the social force formulation of navigation [|65], and can be modulated
to enforce interesting group behaviors [|59].

Biomimetic tuning

All parameters of the navigation behavior have a simple social/bioinspired in-
terpretation. For example, 1) can be interpreted as “caution”: the higher 7, the
more time the robot keep away from the nearest obstacles. Can the dynamical,
bio-inspired modulation of the social margin, be extended to other parameters
to improve the robots’ (collective) behavior?

In two related works [57, |58]] we propose a model of artificial emotions for
adaptation and implicit coordination in multi-robot systems that indeed improves
the collective performance. Artificial emotions act as modulators of the individ-
ual robots’ navigation behavior, and as means of communication for social coor-
dination to: a) prevent deadlocks in crowded conditions; b) enabling efficient
navigation of agents with time-critical tasks; c) assisting robots navigating de-
spite of faulty sensors.

As an example of situation a), robots which progress slowly towards their
target, i.e., for which v, is small due to little free distance D(ay.) in Equa-
tion caused by local crowding, progressively become frustrated; this in-
creases fear among neighbors to end up in a deadlock. By modulating free pa-

73 3.4 Comparison with alternative navigation behaviors

rameters (Vo,, ¢, M, T, H) depending on the emotional states, we show in these
works that the agents avoid potential blockage. For instance, fearful agents slow
down (Vopt decreases), are more attentive (¢ increases), and more cautious (7
increases).

3.4 Comparison with alternative navigation behav-
iors

We refer to the algorithm described in Section as Human-like (HL); in this
section, we present alternative algorithms and compare them with HL.

3.4.1 Behaviors based on Reciprocal Velocity Obstacle

Behaviors based on Reciprocal Velocity Obstacle are state-of-the-art for local
robot navigation. They originated from the Velocity Obstacle concept [[131]. The
main idea is to first determine the set of velocities (denoted as VO,) that will
lead to collisions with an obstacle o, assuming that o will maintain its current
velocity, and then select the best velocity outside of it, typically the one that is
nearest to a prescribed preferred velocity. VO, is constructed in the velocity space
by translating the collision cone (i.e., the set of velocities that eventually lead to
a collision if o remains at its current position) by the obstacle’s velocity v,.

Nevertheless, when the obstacle is an agent also adjusting its velocity follow-
ing the same rule, oscillations and unsafe trajectories may occur when using this
behavior, because there is no guarantee that the desired velocity remains safe
after the concurrent change of velocity by the neighboring agent. The issue is
addressed by the Reciprocal Velocity Obstacle behavior [[12]], which modifies the
construction of the safe velocity set, moving the collision cone by %vo + %v in-
stead of by v,, (yielding the reciprocal velocity obstacle RVO,) so to let each one
of the agents take half of the responsibility to avoid the collision.

Still, the behavior requires that the agents choose to adjust the velocity to-
wards the same (relative) side (i.e., either both are steering left, or both are
steering right), in order to avoid oscillating behaviors. Researchers have pro-
posed two approaches to enforce this implicit coordination for steering, depicted
in Figure (3.5

Hybrid Reciprocal Velocity Obstacle (HRVO [135]) The forbidden velocity set
induced by obstacle o is given by the hybrid reciprocal velocity obstacle HRVO,,

74 3.4 Comparison with alternative navigation behaviors

ORCA

Figure 3.5. lllustration of the main entities and notations for HRVO and ORCA.
The desired velocity is chosen inside the green region containing the feasible
velocities that are outside of the HRVO/ORCA velocity obstacle (red region)
induced by the top-right neighbor robot.

which is constructed by asymmetrically enlarging the reciprocal velocity obstacle
RVO,. In particular, if v is in the left half-plane respect to the bisector of RVO,,
then the right half of RVO, is substituted with the right half of VO,. Intuitively,
the agent takes half of the responsibility to avoid a collision when choosing to
pass to the left, whereas full responsibility is taken if choosing to pass to the right.
If v lies instead in the right half-plane, the opposite occurs.

Optimal Reciprocal Collision Avoidance (ORCA [14]) In the case of ORCA, the
construction of the forbidden velocity set is more involved. Let v * represent an
optimal velocity the agent would like to maintain, that we fix to its current ve-
locity v (see [|14] for a discussion about the effect of different choices). In ORCA
a finite time horizon 7 is considered: beyond T future collisions are ignored.
Consequently, the velocity obstacle VO, (with apex at v') is truncated to VO;. In
practice, this removes the apex of VO,, which corresponds to the velocities that
would lead to a collision after a large amount of time. Let q be the point on the
boundary of VO that is nearest to v*, and u be the vector connecting q to v*,
n be the outwards normal of VO at q. The half-plane ORCA, is defined as the
half-plane perpendicular to n at point v * + %u and define the set of forbidden
velocities induced by obstacle o.

Both approaches lead to safe paths without oscillatory behaviors, even when

75 3.4 Comparison with alternative navigation behaviors

more than two agents are involved. Moreover, for ORCA it is possible to formally
prove smoothness and safety of the resulting paths (assuming that the agent’s
velocity update are synchronized and perfect knowledge about the neighbors is
available).

There are several approaches to extend these algorithms behind holonomic
agents that are capable to immediately adjust its speed in any direction. One is
to follow Equations and to transform the desired Cartesian velocity
to wheel speeds.

Non Holonomic Optimal Collision Reciprocal Avoidance (ORCA-NH [136])
Following [[136], another possibility is to consider the agents as being contained
within an effective circle with a forward-shifted center = = x 4+ p,e(a) and radius
r+p with p > 0. There is an invertible map between wheel speeds and velocities
of the effective center, that allows the agent to follow an arbitrary path of its
effective center like if it were holonomic. We denote the ORCA behavior applied
on the effective circle with p = A/2 as ORCA-NH.

3.4.2 Comparison with the Human-like behavior

All presented behaviors have a common trait: they anticipate future collisions
by using the current sensing information for position, velocity, and shape of the
agent and of surrounding obstacles. All use a linear prediction of the obstacles’
trajectories to compute a time-to-collision estimate, then select the velocity that
minimizes their deviation from the straight line towards the target. The presence
of obstacles enforces hard constraints on the agent that is not permitted to touch
them. In contrast, methods based on potential fields (also known in sociology as
social forces) do not explicitly perform a prediction of future trajectories; in this
case obstacles generate soft constraints in the form of increased costs.

HRVO and ORCA explicitly share the collision avoidance responsibility among
agents, which leads to improved performance. HL indirectly obtains the same ef-
fect by modulating velocities smoothly using the T parameter: an agent, while
smoothly turning to avoid others, has sufficient time to acknowledge the obsta-
cles’ actions.

All behaviors only use currently sensed information and bear no history or
state information, i.e. they are purely reactive and statelessﬂ; at the same time,
all behaviors proactively avoid collisions and anticipate the motion of others.

2This does not necessarily apply to the sensing subsystems. For instance, history of obstacles’
positions could be maintained in order to determine their speed.

76 3.5 Navigation along a geometrical trajectory

The most prominent peculiarity of HL is that it performs a one-dimensional
search over the direction of the desired velocity, choosing the one that minimizes
the spatial distance to the target. RVO and all derivatives, instead, perform a
search over (a subset of) the two-dimensional velocity space: then the desired
speed is chosen in order to minimize the velocity-space distance to the optimal
velocity, i.e., the velocity directed towards the target with maximal speed. Note
that because HL acts to minimize spatial distance, in no circumstances it will
dictate to move farther away from the target. Instead, ORCA and HRVO may
exhibit such behavior when the forward half of the velocity space is forbidden
(i.e., when moving backwards is the only solution to avoid a future collision).

Another peculiarity of the HL behavior is that it does not explicitly exclude
directions that could lead to future collisions: such directions are just penalized
in the search of the desired direction. Instead, velocity obstacle based behav-
iors forbid all velocities leading to a collision, unless forced by the absence of
alternatives. In other words, they start by searching for the set of safe velocities,
then select the one that maximizes performance, whereas HL optimistically se-
lects a direction maximizing performance (accounting for obstacles), and, only
as a second step, it adjusts speed to ensure safety.

3.5 Navigation along a geometrical trajectory

In the previous sections we presented controllers that steer an agent to reach a
fixed target point while avoiding obstacles. In this section, we describe an exten-
sion that allow the robot to follow a geometrical path y discussed in Chapter
The controller dynamically updates the target O,(t) = O,(x(t)), used by the
navigation algorithms, depending on the agent current position with respect to
v, which is a simple strategy known as carrot planner [88]].

Let y : [0,1] — R? be a curve parametrized by arc length. To get a reference
point y(s) on the curve, we project the robot position x(t) on y and advance by
(at most) 6 > 0:

l
s(t) = [argmin ly(s’) —x(t)] + 5] , (3.9)

S/G[O,l] 0

which we use to define the target point for the navigation algorithms at time t,
as illustrated in Figure

0,(t)=y(s(t)) + he] (s(t)), (3.10)

where 0 < h < H influences the planning horizon for the navigation behavior.

77 3.6 Experimental setup

des o -

Figure 3.6. The dynamic target point O, used to follow curve y. When there are
no obstacle, the desired velocity v4,; computed by Equation (3.3) points to O,
and steers the robot along the path.

The distance between the actual robot trajectory x(t) and the target trajec-
tory y depends on the navigation parameters T,, and v,,, and on the carrot
planner’s head gap 6. When the robot is near and almost aligned with the tra-
jectory, for small curvature 6k < 1 and large horizon 6 < h, the robot rotation
should be equal to the trajectory rotation, or more precisely

w
WTe =Aa~kd =—06. (3.11D)
v
Therefore, in order for the controller to accurately follow the trajectory, we re-
quire that

8 A Ty (3.12)

We verify in Section that this in fact the best choice.

3.6 Experimental setup

3.6.1 Scenarios

We investigate the behavior of robots that navigate, using the algorithms de-
scribed in Sections [3.3]and in four scenarios.

Cross robots are initially randomly placed, and divided in two equally-sized
groups; robots of each group need to travel back and forth between two targets
located at the opposite vertices of a square with an edge of 3.4 meters. This
creates a crossroad in the center where robots frequently need to adjust their
trajectories in order to avoid collisions (Figure [3.7)).

78 3.6 Experimental setup

Circle robots are initially placed at regular intervals along a circumference with
a given radius, and are tasked to reach a target at the diametrical point (Fig-
ure ; because robots start moving at the same moment, crowding at the
center of the circle occurs. This is a commonly used benchmark in related works.

Corridor two groups of robots, initially randomly placed, travel towards op-
posite directions along a straight corridor with finite width (Figure [3.15). The
ends of the corridor “wrap around” and connect to each other, as if the corridor
was wrapped around a cylinder; this simulates a corridor of infinite length. This
setup is commonly considered in crowd analysis literature [[104].

Figure 3.7. Six foot-bot robots at play in the Cross scenario.

Figure 3.8. 10 foot-bot robots perform one run of the Circle scenario with radius
2.4 m. From left to right, images are taken after 0, 4, 8, 12, 16, and 22 seconds.

Indoor The robots move in a synthetic indoor map (Figure [3.17)), where opti-
mal trajectories are compute following the methods introduced in Chapters[l]and
Trajectory are constrained to pass in the middle of the shorter corridors where
they are smoothly joined to form closed loops. Robots are randomly attributed

79 3.6 Experimental setup

to one of the different loops and randomly placed along their target trajectory,
which they start to follow without interruption.

3.6.2 Robots and sensing

We have implemented on real foot-bots robots the navigation behaviors described
in Sections together with a simple higher-level planner required to ac-
complish the tasks described in Section The foot-bot robot (Figure [3.4)
is a small mobile platform, directly derived from the marXbot [|18]], specifically
designed for swarm robotics [38]]. The robot is 30 cm wide and 20 cm tall, and is
based on an on-board ARM-11 processor programmed in a Linux-based operat-
ing environment. Differential-driven motorized tracks allow mobility at speeds
up to 30 cm/s.

Foot-bots use two distinct sensing modalities: a) an IR-based range-and-bear-
ing sensor and communication system, which allows a robot to detect its line-of-sight
robot neighbors within a 4 m range and estimate their relative distance and bear-
ing; each robot also advertises its current speed and relative bearing to neigh-
bors through the same system; b) a forward-facing camera with a 2¢p = 90°
field of view and a resolution of 128 x 92 px, which is used for localizing neigh-
bors (humans and other foot-bots), colored target markers, and walls at 25
frames-per-second.

Because our main focus is on navigation behaviors and not on sensing, we
use straightforward techniques for processing camera images: entities of interest,
(e.g., landmarks used to identify a destination point, or humans) are marked with
differently colored bands at a known height from the floor. Robots convert each
frame to the HSV color space, and segment pixels corresponding to each object.
After performing connected component analysis, this results in a set of binary
blobs. From the image coordinates of each blob’s centroid, the robot computes
distance and bearing of the corresponding entity by means of a homography
transform, which can be estimated in advance given that the camera parameters
and height of each entity are known. The velocity of neighbors is estimated
as a finite difference, after smoothing position readings with a moving average
filter defined over a period of 0.5s. Note that the position of path markers (i.e.,
destination points) is sensed online through vision, and not given by an external
observer.

80 3.6 Experimental setup

3.6.3 Simulation

In addition to the real robots implementation, we developed a custom simulator
(see Appendix [B) for performing large-scale experiments with different kinds of
agents that comprise: foot-bots, holonomic robots, and humans.

In real robot implementations, perception of the environment (i.e., positions
of navigation targets and of other robots) is commonly affected by major sensing
inaccuracies, which in turn affect navigation performance and safety. To address
this issue, in our simulations we consider two different sensing models. A perfect
sensing model, in which all robots within an assigned range are perfectly de-
tected, and a realistic, camera-based sensing model, in which neighbors are only
perceived when not occluded and within a given angular field of view (centered
on the direction the robot is currently facing).

Simulated vision sensor readings approximate the statistical properties of lo-
calization errors from monocular, catadioptric, or stereo cameras. That is, precise
and uniform bearing resolution but large uncertainty in depth estimation, which
increases for objects farther away. More specifically, given an obstacle whose
ground truth relative position is expressed in robot-centered polar coordinates
as (p, 0), the observed position (p’,0’) is given by 8’ = 6 + ¢pe; p’ = p +kp e,
where: e ~ A(0, o) models the localization error in the normalized image space,
¢ denotes the camera field of view, and k is a constant depending on the char-
acteristics of the depth estimation approach. In the following, we set 0 = 1/128
(i.e., 1 pixel on a 128 x 96 sensor) and k = 10, which well fits the errors ob-
served in real robots. We can evaluate the impact of sensing errors by tuning
the o parameter. As in the real robot implementation, velocity vectors are esti-
mated as a finite difference. Simulated range and bearing sensors, which model
well other sensing modalities like laser, ultrasound, time-of-flight or structured
illumination are instead characterized by constant angular resolution for bearing
and distance-independent uncertainty for range (within maximum limits) and a
constant probability (set as 80%) for the message to be received.

We verify in Section that indeed our simulation models the real navi-
gating foot-bot accurately enough.

3.6.4 Implementation of navigation behaviors

Robot controllers operate on a 0.1 s time step and are not synchronized with
each other. At each time-step, the robot updates its belief about the neighboring
robots and fixed obstacles, and applies one of the behaviors described in Sec-
tions and to compute the desired heading and velocity. Robots are con-

81 3.7 Experiments

trolled with ORCA, HRVO and HL as described in Section by translating
the holonomic desired velocity into wheel speeds. In addition, we also consider
ORCA-NH, which explicitly takes into account the non-holonomicity of the robots
when computing the desired wheel velocities, as discussed in Section (3.4.1

HL We provide HL robots with our own implementation (see Appendix [B) of
the behaviors described in Section [3.3] We fix 7,,, = 0.5s and we limit the foot-
bot angular speed to w,,,, = 90°s™! to prevent excessive slipping and camera
image blurring. Wheel speed is clipped to w,_,, = 30cm/s. Human motion
characteristics are given by T = n = 0.5s [[104]. We maintain = 0.5s and
decrease 7 to 0.125 s to obtain a more reactive but still smooth behavior, which
moves with increased caution.

HRVO We use an open source implementation [[69] of the model described in
Section The desired velocity is found in the velocity space through a linear
optimization technique. The implementation does not have free parameters.

ORCA We use an open source implementation [[126] of the model described
in Section The desired velocity is found in the velocity space through a
linear optimization technique. The time horizon is a free parameter: a large time
horizon allows the robot to anticipate crowding and avoid congestion, but at the
same time penalizes it with a reduction of speed and a longer, more conservative
path. In the following, we select the time horizon with the best performance for
each scenario.

ORCA-NH We use the same controller as ORCA, but apply it to the effective
center and effective radius (see Section (3.4.1)) of the non-holonomic robots.

3.7 Experiments

We investigate how the proposed human-like behavior compares with alternative
local navigation behaviors detailed in Section In particular, we aim to:

a) investigate how the safety margin affects the navigation safety for robots
with error-free omnidirectional sensing and the trade-off between efficiency
and safety for robots with realistic sensing (Section [3.7.1));

b) study the impact of imperfect sensing (Section [3.7.2);

82 3.7 Experiments

c) validate simulated results by comparison with real-robot experiments per-
formed in the same conditions (Section|[3.7.3));

d) investigate how the navigation performance for the different behaviors
scales with the number of robots (Section [3.7.4)), and explore the impact
of groups of heterogeneous agents implementing different navigation al-

gorithms (Section [3.7.5);

e) study the emergence of macroscopic group behaviors (Section |3.7.6));
f) study how well the robots follow a prescribed smooth trajectory (Section|3.7.7).

For each experiment, we compute how a given parameter affects a number
of performance metrics, detailed below; for each value of the parameter, we
perform R simulation runs (replicas), each lasting T seconds after a random ini-
tialization. For the Cross scenario, R = 50, T = 900s; for the Circle scenario,
R =100, T = 100s; for the Corridor scenario, R = 100, T = 180s; for the Indoor
scenario, R =100, T = 300s.

Performance Metrics

We compute the following performance metrics, which quantify different aspects
of the robots’ trajectories.

Relative throughput indicates the efficiency in navigating towards the targets.
This measure is defined for the Cross scenario as the total amount of targets
that the robots were able to reach, divided by the number of targets that the
robots could reach in the same time while traveling in straight lines (i.e., ignor-
ing any collision). In the Circle scenario, throughput is defined as the minimal
time it would take for one robot to reach the opposite side (when traveling in
a straight line) divided by the actual time it took. In the Corridor scenario, the
relative throughput is given by the average speed directed towards the target
divided by the maximal admitted speed of the robot. The resulting quantity is a-
dimensional, bounded between 0 (worst) and 1 (optimal), and is averaged over
all the robots in the simulation.

Relative path length: the total length that the agents have traveled, divided by
the length the agents would have covered while traveling in straight lines (i.e.,
ignoring any collision). This is negatively related to the energetic efficiency of
the trajectories.

83 3.7 Experiments

Path irregularity: the amount of unnecessary turning per unit path length per-
formed by a robot; unnecessary turning corresponds to the total amount of robot
rotation minus the minimum amount of rotation which would be needed to reach
the same targets with the most direct path. Path irregularity is measured in
rad/m, and is averaged over all the robots in the simulation. We propose this as
an objective measure of the legibility (see Section [3.2) of the robot’s behavior. In
fact, it’s difficult to infer the intention (the target) of a robot that is changing its
direction often. We are currently researching the correlation of path irregular-
ity with the legibility of the robot’s behavior and the subjective judgment of its
friendliness by humans.

Total number of collisions: the number of collisions per robot per meter of
covered distance. Collisions are defined as discrete events, so pairs of agents
repeatedly brushing against each other give rise to multiple collision events.

Safety margin violations: for a given robot r, the fraction of time during which
at least one agent or obstacle penetrates the safety margin m, by more than
a given amount of space (violation length); the value is then averaged over all
robots. The value is computed for every violation length between 0 and m,. Com-
pared to the number of collisions, this provides a more descriptive but less con-
crete measure of safety: for example, it allows to discriminate a case in which
the safety margin is frequently violated, but only by a small amount, from a case
in which the safety margin is rarely violated, but with robots almost coming into
contact.

Line order: a metric computed only in the Corridor scenario, where it quan-
tifies, for a given moment, the segmentation of robots of two different groups
(corresponding to different optimal speeds or target directions) in longitudinal
lines [[103]]. More specifically, we divide the corridor into narrow longitudinal
bands with a width of 30cm (i.e., roughly twice the width of a foot-bot) and
count the number of robots of each group n;(B),n,(B) inside a band B: the
Yamori band [[152] is defined as Y(B) = %. The line order O, is defined
as the average Yamori index over all bands. O; is bounded between 0 and 1
(representing a perfect organization of the swarm classes in longitudinal lines).

Hausdorff distance:

dy(y,v,) = max (maxmin |x — y|, maxmin |x —yl) ,
xey yey, YEYr, xe&y

84 3.7 Experiments

between the robot’s trajectory y and a target trajectory y,, quantifies deviations
from the path.

Discomfort: the integrated squared magnitude of the jerk ¢ quantifies the
smoothness of the trajectory (see Section [2.3.1)). Agents that would artificially
reduce their speed while following a geometrical trajectory, would substantially
decrease _#¢. We get a better metric ¢ when we divide _¢ by the fifth power
of the efficiency because it become independent of the mean speed (see Equa-

tion (2.3))).

3.7.1 Safety

Ideal sensing If the robots would have perfect omnidirectional sensing and im-
plement the HL behavior, a lower bound M, for the safety margin parameter m;
would give a theoretical guarantee of collision-free behavior as discussed in Sec-
tion (M, ~ 15cm for foot-bots). In Figure [3.9;Left, we compare the safety
margin violations metric for different behaviors, with the safety margin set to
m, = 20 cm, for simulated robots with ideal sensing.

The ORCA-NH variant is safer than plain ORCA; yet HL is the safest behavior
and a safety margin m, = 10 cm minimizes the probability of collisions for HL.

Realistic sensing When sensing is not ideal and not omnidirectional, safety can-
not be theoretically guaranteed by any of the considered behaviors; for example,
collisions may occur between pairs of robots traveling in parallel to each other
— like those that happen shoulder to shoulder in human crowds — because of
missing lateral view. In Figure [3.9;Right, we report the trade-off between safety
and efficiency, determined by safety margin m,, in case of sensing parameters
(2¢p =90°, 0 = 0.008) that models well real foot-bots. Choosing a larger value
for m, improves safety, but hinders efficiency. The HL behavior performs well
(Iess than 10 collisions per km and large throughput) for any safety margin. In
contrast, safety of ORCA strongly depends on the choice of m,. The performance
of ORCA-NH is significantly worse than other behaviors. In the following exper-
iments m; is set to 6 cm and we do not further report results for ORCA-NH.

3.7.2 Sensing

We study the impact of the quality of a forward-looking camera used by simu-
lated foot-bots to navigate in the Cross following the HL behavior. As expected,

85 3.7 Experiments

.4
IS
L

[, = U Cml 0 T
g £ 7
3 = 081 oy 4 i
o 5 e 20
S 1073 3 20
e S 06 0 8
2‘ k=
2 2 o4 -
= 108 =
9 L 02 |
> - . | | \20
0 0.05 0.1 0.15 0 0.02 0.04
violation length [m] collisions [1/m]

| —e HL-+ ORCA—+— ORCA-NH —s— HRVO I

Figure 3.9. Safety in the Cross scenario with 20 simulated foot-bots. Left: safety
margin violation probability (i.e., fraction of time during which a violation oc
curs by a given margin, per robot, per time step) with ideal omnidirectional
sensing and m, = 20 cm; Right: tradeoff between safety and efficiency with re-
alistic sensing parameters (o = 0.008,2¢ = 90°) averaged over 50 runs.

unreliable sensing (larger error o) leads to more collisions (Figure [3.10}Left);
at the same time, trajectories are less efficient because robots are misled to of-
ten change desired heading. A narrow field of view 2¢ also leads to collisions
(Figure [3.10tRight) and generates less efficient trajectories because robots are
unable to navigate around crowded regions.

3.7.3 Validation with real robots

Within scenarios Cross and Circle, we validate the simulation results by compar-
ison with the performance measured in real experiments with foot-bot robots.
Results are reported in Figure We can observe that the results obtained
with real robots in the same conditions closely match simulations.

In the real robot implementation, despite the severe hardware limitations, the
navigation controller requires invariably less than 20 ms of computation time per
time-step. In simulation, we also tested robustness to time-steps longer than 0.1 s
and found that in all considered scenarios, performance begins to degrade only
when the time-step exceeds 0.4s. When larger swarms are considered, the path
irregularity increases because robots need to follow more curvy (and longer)
trajectories in order to avoid collisions. Even in very crowded scenarios, paths
remain smooth and predictable.

86 3.7 Experiments

5 09| —
,% - -0.02 i 0.02 =
50 0.8 ~
= —
e a
= 0.8 g
v -1 0.01 0.6 |- { 0.01 B
= :
[} 0.7 + o . / \ collisions ©
= e collisions RO\

| | ! 0 0.4 | A " N

0 0.02 0.04 0 90 180

visual localization error o field of view 2¢

Figure 3.10. Average impact of sensing quality on 20 simulated foot-bots that
follow the HL behavior in the Cross scenario (dashed lines are at + one standard
deviation over 50 runs). Left: fixed field of view 2¢p = 90° and variable error o
(0 = 0.008 corresponds to 1 pixel in a 128 x 96 image and matches the error
observed on real robots). Right: fixed o = 0 (no visual error) and variable field
of view 2¢.

Cross Circle
I I I I I - =
. 1 -12 1 . E
2 el
. &
= -2
&0 <15

S 09 é’
= i 0.8 - a
= 1 -54
2 1B
= (D)
E 0.8 - 1os E
z 06 | 5
X4 ! ! L ¢ ! L <
0 0 A

0 10 20 0 5 10

number of robots number of robots

Figure 3.11. Experimental results with real and simulated robots in the Cross
(left) and Circle with radius 2.4 m (right) scenarios. Large filled markers corre-
spond to results measured on real robots; small markers correspond to simulated
results. Dashed lines delimit £ standard deviation over 50 (Cross) and 300 (Cir-
cle) simulation replicas. In this experiment, both real and simulated robots use
360° range-and-bearing sensing, m, = 10 cm.

87 3.7 Experiments

3.7.4 Scalability

Figure shows how different behaviors cope with increasingly crowded sce-
narios. In order to focus on the behaviors, we report the results for simulated
robots with ideal sensing. As expected, the performance of all behaviors de-
creases when more robots are used, because longer and more complicated tra-
jectories are required to navigate around others and avoid collisions. HL out-
performs other behaviors in these scenarios, especially when a relatively large
number of robots is considered.

In Figure [3.12fRight we compare the computational cost of different behav-
iors. We observe that the ORCA algorithm is faster than HL, which in turn is faster
than HRVO. Note that for all algorithms the computation cost is low enough to
run in real time on the embedded CPU of real foot-bot robots.

Cross Circle Cross
I I I I I I I I
= 1t ~ = 1| -
2. 2. -,
fo FEO 2 100 |~ —
309 |- . 3 Q
o o 09 — Q
= = g
= =) S 50l |
© 05| 1o 5
8= ‘5 0.8 | 4 B
= = g
(V] 5] A
=07 L ! ! L - ! ! ! “oo L ! ! L
0 10 20 30 0 20 40 0 10 20 30
number of robots number of robots number of robots
| e HL ORCA —s=— HRVO |

Figure 3.12. Left: Impact of the number of robots on trajectory efficiency in the
Cross (left) and Circle with radius 5m (center) scenarios, using simulated foot-
bots with ideal sensing. Right: the time required to simulate 900 s in the Cross
scenario as a function of the number of robots; simulation time includes the time
needed to simulate physics and sensing, but is dominated in the simulation by
the time required to execute the navigation algorithm for all robots. Simulation
are run on a 2GHz dual core laptop. Narrow lines represent 99% confidence
intervals.

3.7.5 Heterogeneous swarms

For a given robot, the performance of an obstacle avoidance behavior is affected
by the obstacle avoidance algorithms implemented by other agents. For exam-

88 3.7 Experiments

ple, HRVO assumes that all robots implement the same rules and the collision
avoidance responsibility is shared between the robots. What happens when some
agents implement a different behavior? In the Cross scenario, we investigate the
performance of a 20-robot swarm whose members are divided into two groups,
each following a different navigation behavior.

In Figure [3.13}Left one of the groups implements HL and the other group
implements ORCA: we observe that the overall performance is maximized when
most robots belong to the HL group (low values on the x-axis); as we move
along the x-axis, we increase the number of ORCA robots (and correspondingly
decrease the number of HL robots): overall efficiency decreases and average path
length increases. A similar pattern in the overall performance is observed in Fig-
ure [3.13}Right, where a group implements HL, and the other group implements
HRVO.

The performance metrics are also reported separately for each group. We
observe that the behavior implemented by neighbors has a limited effect on the
performance of HL robots: in particular, the relative throughput of HL robots
marginally increases when neighbors switch from HL to ORCA, whereas it de-
creases when neighbors switch from HL to HRVO; we observe that the behavior
of HRVO robots is generally less proactive than the behavior of ORCA robots
(which does not translate to improved safety, as shown in Section [3.7.1): HL
robots need a larger effort to navigate around HRVO robots than to avoid the
ORCA robots.

Surprisingly, we also observe that ORCA (or HRVO) robots perform signifi-
cantly better when their neighbors implement HL, rather than in a homogeneous
group; HL robots directed to the same target tend to form short-lived, compact
lines, which are not observed in other behaviors; these dynamic structures allow
for easier and more efficient navigation also for other robots, and may explain
for the performance difference.

3.7.6 Emerging collective behaviors

Recent research [|66] in the field of anthropology has shown that groups of pedes-
trians exhibit in certain scenarios specific emergent collective behaviors; for exam-
ple, when a corridor is traversed by a lot of people traveling in opposite direc-
tions, people tend to self-organize in longitudinal flow lines [|104]].

We investigate whether robot navigation algorithms also lead to emergence of
collective behaviors in two specific scenarios, where such behaviors are favorable,
namely Circle and Corridor.

89

3.7 Experiments

ORCA & HL robots HRVO & HL robots

0.95 T T T re 0.95 T T T T
N 2 1.08 =
a 1106 Bo
= : =)
% 09 1107 0.9 =
5] <
= 3
k= -11.06 &
2 o0ss| 0.85 (105 @
®) -{ 1.05 k=
8 & - / om0 =0 —=O---p-¢ 8

0.8 L éomor @ | L 1.04 0.8 ‘

0 5 10 15 20 5 10 15 20

number of ORCA robots number of HRVO robots

|+ALL+ORCA+HL+HRVO I

Figure 3.13. A swarm of 20 simulated robots with ideal sensing divided into
two groups that implement different navigation behaviors in the Cross scenario:
ORCA & HL (left), HRVO & HL (right). We report the average relative throughput
(solid lines) and the average relative path length (dashed lines). The gray lines
(labeled ALL) report the metrics computed for all members of the swarm; lines
labeled HL, HRVO and ORCA represent the metrics computed only on robots
implementing the corresponding algorithm.

Circle

Figure(3.1/shows the trajectories followed by 40 simulated HL robots in the Circle
scenario (radius 5m) with ¢ = 50°,0 = 0.008.

One can notice that most robots tend to deviate from the straight path to the
target, by passing by the same side with respect to the center of the circle — akin
to cars in a roundabout. This is a very efficient emergent behavior, which mini-
mizes the need to steer and avoid others; the behavior occurs without any explicit
communication among robots, nor any social convention prioritizing steering to
one side with respect to the otherf} in fact, different simulation runs result in
different directions of the swirl and both outcomes are equiprobable.

The same behavior is observed, albeit to a lesser extent, with HRVO robots;
conversely, ORCA robots tend to follow straighter trajectories which do not ex-
hibit any coordinated behavior. The impact on trajectory efficiency is shown in
Figure [3.12} Center, where we observe that the HL algorithm tends to be the best
performing option as soon as more than 30 robots are considered, followed by

3Conversely, a recent feedback-controlled variant of RVO [124] integrates an explicit prefer-
ence over which direction to steer around an obstacle, which also causes the emergence of the
same collective behavior.

90 3.7 Experiments

HRVO and ORCA.

In this context, the amount of available sensing information plays an impor-
tant role on efficiency; we study this relation in Figure which compares the
trajectory efficiency for different values of sensing range and field of view, for HL
(left) and ORCA (right) robots. We observe that the performance of HL robots
abruptly improves when the semi-field of view ¢ exceeds 70° (corresponding to
a field of view 2¢p = 140°), regardless of the range of view; in this case, robots
can perceive the neighbors close at their side, which promotes the emergence of
the efficient swirling collective behavior. This highlights that the collective be-
havior stems from an implicit communication occurring among agents by means
of their occupation of space (a topic studied by proxemics [|63]]): when agents
can not sense each other, such implicit communication does not occur, and col-
lective behaviors do not emerge, yielding worse performance. In comparison,
ORCA robots do not manifest such a transition in behavior but steadily increase
their efficiency when more information is available.

HL ORCA
semi field of view ¢ - semi field of view ¢
¢ =90° 2, ¢ =90°
¢ =135° ‘ ¢ =45° 08 5 ¢ =135° \ b =45°
» / 0.6 B y '
~
04 5
02 @
_ o | 4 N° ‘= _ o | A N°
¢ =180 lm 5m 10111¢_0 0 ,‘3 ¢ =180 1m 5m 1Om¢_O
range of view I range of view

(H &=

Figure 3.14. Influence of the amount of sensing information on the efficiency of
trajectories in the Circle scenario with radius 5 m: 50 simulated HL robots (left),
50 simulated ORCA robots (right). The shade of gray at a given radius and angle
represents the relative throughput observed when robots have the corresponding
range of view and semi field of view ¢.

Corridor

In the Corridor scenario, HL robots traveling in opposite directions exhibit collec-
tive behaviors matching those observed in studies of human crowds [[104]]: they
tend to form ordered flow lines (despite being randomly initialized and imple-
menting no explicit rules promoting such behavior), which minimizes the need
to avoid others.

91 3.7 Experiments

Figure [3.16}Left explores the transition from the random configuration at
initialization time towards the configuration reached after 40 seconds. We ob-
serve that the line order metric (defined in Section (3.7 approaches 1, meaning
that robots organize themselves in longitudinal lines of opposite flow. ORCA
robots also evolve towards an ordered configuration, albeit more slowly than HL
robots. Figure [3.16Center shows that there is a critical corridor width below
which robots are too packed to reach an ordered configuration.

We investigate whether coordination also arises when heterogeneous agents
that share the same space. In Figure [3.15|we analyze how 30 humans and 30
foot-bot robots behave within a corridor, where each group is divided in equal-
sized subgroups traveling in opposite directions. We observe that after 60 sec-
onds, lines emerge formed by homogeneous agents (i.e., all humans or all robots)
traveling in the same direction: this minimizes the need to avoid agents traveling
in opposite directions, and also does not require humans to steer in order to over-
take foot-bots traveling in the same direction (which are significantly slower).
In this experiment, humans are simulated by adopting a realistic sensing model
with 150° field of view, have a circular shape with radius 25 cm, and travel at a
normal walking speed of 1.3 m/s; they are controlled by means of the heuristic
introduced by Moussaid et al. [[103]], which is also implemented by the HL algo-
rithm and has been shown [[105] to accurately model the behavior of pedestrians
for 1 =71 =0.5s and m;, = Ocm.

— | .|
. 3 | « LY
- 1 L Y € €
" k) 2 [» ™ - -
L . P =% ‘\ - ¥ P O % »n A » 2
. - - 3 - -
J nLl ey T N, w - b
. - . 3 " y
El - e - »
L . ‘~ L3 2 - . - -
s 3
I K 1 * 5 - " g I Y = |,
- . b~ o, b b i Al bl .
3 . 2\- € s ¥

t=0s t=20s t=060s

Figure 3.15. Simulation results on how humans and robots (which travel at sig-
nificantly different speeds of 1.3 m/s and 0.3 m/s) tend to auto-organize them-
selves in vertical flow lines characterized by homogeneous agents traveling in
the same direction

Another example is provided by two groups of robots with very different
speeds, moving all towards the same direction. Figure [3.16}Right shows how
the field of view of the slow robots affects the ability to reach an ordered config-
uration. When provided with a narrow field of view, slow robots cannot perceive

92 3.7 Experiments

and react to fast robots approaching behind them. In contrast, fast robots fre-
quently need to steer around slow ones. As a consequence, fast robots tend to
form ordered but curvy line-like structures, whereas slower robots remain scat-
tered because they rarely need to navigate around obstacles. On the contrary,
when slow robots are able to perceive neighbors in a large field of view (e.g., by
using omnidirectional cameras or additional back-pointing sensors), both robot
types reach a well-ordered configuration. In fact, slow robots are now able to
anticipate that they are being overtaken and steer accordingly. This enables the
formation of flow lines for both groups, therefore resulting in a very efficient
configuration.

1.5

2.5

1 B |
) — semi field of view ¢
0.8 O X
g . ¢=90°
S 06 0.6 ¢ =135
o // ///
£ 04 7’/,’ 0.4
B 0.2 2 H 0.2
e ORCA | 5
] ¢ ¢ =180

1ir01Ee“I:'order1

| T
20 40 60 80

time [s] corridor width [m] [=)

Figure 3.16. Left and center: 60 simulated foot-bots moving in a corridor in
opposite directions: the progressive ordering in lines (left, within a corridor of
width 2 m) and the dependence of final order (after 180 s) on the corridor width
(center). Right: 30 slow (v,,, = 10cm/s) and 30 fast (v,, = 30cm/s) foot-bots
traveling in the same direction in a corridor of width 2m, for different values
of the field of view 2¢ of the slow robots. Dashed lines represent £1 standard
deviation over 50 runs.

3.7.7 Trajectory following

Single robot Figure illustrates the behavior of a simulated robot that is
alone in the Indoor scenario and follows closed loop trajectories. The results are
consistent with the analysis (see Equation (3.12)) that sets 7, &~ & /v, in this
case, the trajectory deviates minimally from the target trajectory. Larger values
of T, (green traces Figure [3.17}Left), slightly decrease the discomfort cost by
ignoring the constraints imposed by the target trajectory and overshooting during
turns.

93 3.8 Discussion

0.4 |- |, 10'E E

1n = B

L | w I B
g (\E B i
= o] &/Vopt |
=5 02| a1 P -
Sy r §

1071 E

E— 5/V0Pt E M E

0L | | |] £l | | |]

0 0.5 1 1.5 0 0.5 1 1.5

Trot [S] Trot [S]

Figure 3.17. Controllers following the target path (black) at 0.5m/s with no
dynamic obstacles (only walls) for varying values of 7. Left: Resulting robot
trajectories. Center: Hausdorff-distance d,; between target trajectory and ac
tual trajectory. Right: actual cost (blue) compared to the target trajectory’s cost
(black).

Group of robots We collect in Figure [3.18} Top traces of groups (of different
size) of simulated robots in the Indoor scenario. We note that HL robots (top
row), deviate less from the target trajectory and their trajectories are more pre-
dictable, as confirmed by the average Hausdorff distance in Figure3.18}Bottom-
Left.

The discomfort cost reported in Figure [3.18Bottom-Right increases signif-
icantly with respect to the target trajectory and the single robot scenario; the
increase is due to manoeuvres to avoid collisions that cause sudden velocity
changes. This is not surprising: the navigation algorithms we are considering
were not designed to optimize smoothness, and should be adapted if an high
degree of smoothness is required, such as for robotic wheelchair navigation.
Nonetheless we observe that HL has a cost that is several orders of magnitude
smaller than ORCA, in part due to the better group coordination we have already
noted in other experiments, and in part because the HL behavior modulates the
velocity over time T, which therefore is less affected by sudden changes of desired
velocity.

3.8 Discussion

The experimental validation presented in the previous section yields a number
of interesting and counter-intuitive results, which we discuss in the following.

94 3.8 Discussion

Figure 3.18. Groups of robots following the target trajectory (top left) using
either HL or ORCA; results are from 100 randomly initialized replicas. Top:
Robots’ trajectory for different sized groups; to simplify comparison, we split
the figure in two parts: HL robots above and ORCA robots below; note that the
scenario is symmetric, therefore the two halves look very similar for the same
algorithm. Bottom: Average Hausdorff distance from the target path (left) and
average discomfort cost (right).

Performance compared to alternative algorithms Sections [3.7.2}[3.7.5| com-
pared the proposed human-like behavior with two state-of-the-art variants of
the Reciprocal Velocity Obstacle (RVO) behavior, namely Hybrid Reciprocal Ve-
locity Obstacle (HRVO) and Optimal Reciprocal Collision Avoidance (ORCA). We
focused on the safety and efficiency of the trajectories of simulated robots, and
showed that in most considered scenarios the human-like behavior achieves a
better trade-off between safety and efficiency, meaning that it’s safer for a given
efficiency and it’s more efficient (and requires a smaller safety margin) for a given
safety requirement.
We identify two main factors which may contribute to this improvement.

* The most important factor affecting performance in Circle and Corridor is
the emergence of collective behaviors, which lead to extremely efficient
configurations; as shown in Section [3.7.6 these occur earlier and most

95 3.8 Discussion

often in HL than in RVO algorithms, which explains the difference in per-
formance. Notably, HL robots in the Cross scenario also tend to organize
in compact, short-lived queues formed by small groups of robots heading
to the same target; these structures are not observed in other algorithms.
Navigating around a compact group of obstacles traveling in a line grants
more free space than when such obstacles are moving in an unorganized
way: therefore, we hypothesize that the formation of these structures in
HL algorithms may contribute to the observed performance differences in
the Cross scenario. In support of this hypothesis, we recall the results in
Section which show that also ORCA (or HRVO) robots perform bet-
ter when their neighbors implement HL rather than ORCA (or HRVO). We
elaborate further on collective behaviors below.

* An additional factor contributing to performance disparity may directly
stem from the algorithms themselves: the most obvious difference (a more
detailed analysis is in Section [3.4.2)) is that the HL behavior first selects the
desired heading — assuming to adopt the maximum speed v,,, — only later
determines a safe speed for such heading; in contrast, RVO approaches
operate in the space of velocities and jointly optimize both parameters. In
this respect, the HL algorithm determines the desired heading under an op-
timistic assumption (i.e., the ability to move at optimal speed) than RVO
algorithms, which may explain its better efficiency in crowded scenarios.
In contrast, ORCA restricts the space of safe velocities far more than HL
(Figures [3.2]3.5). We observe that, when heading towards a moving ob-
stacle in a crowded scenario, ORCA robots often reduce speed until enough
free space is available, whereas HL tends to navigate around the obstacle
while moving fast.

We highlight that all considered algorithms provide local reactive navigation
rather than high-level path planning: therefore, in very crowded or constrained
environments, the formation of deadlocks can not be excluded without an coor-
dination mechanism like the one discussed in Section [3.3.3l

Requisites for emergent macroscopic behaviors Crowds of human pedestri-
ans, like other biological multi-agent systems, exhibit emergent macroscopic be-
haviors such as lanes of flow, oscillations, and roundabout-like motion at inter-
sections [[66]. In general, a macroscopic behavior emerges when choices made
locally by individuals promote the adoption of coordinated choices by neigh-
bors, in a process which progressively propagates to the whole group. One re-
quirement for this to happen is the sharing of information among agents. In the

96 3.8 Discussion

context of navigation, agents communicate implicitly by means of their position
and motion, and acquire all the information they rely upon (position, velocity
and shape of neighbors) through sensing.

Experiments in Section [3.7.6]verify that the ability to sense (and thus, implic-
itly communicate with) neighboring robots enables the emergence of collective
behaviors. More specifically, the emergence of the swirling collective behavior
in the Circle scenario requires coordination (and thus the ability to sense each
other) among neighbors traveling side-by-side, and is hindered when the field
of view does not allow to perceive such neighbors. In contrast, the formation of
lines of flow among agents traveling in the same direction at different speeds in
the Corridor scenario requires that slow agents coordinate with faster ones ap-
proaching from the back, and is only observed when the field of view approaches
360°.

The Corridor experiments also show that the emergence of organized struc-
tures requires time and some amount of free space. We observe that due to
lack of free space, no lanes are formed in a corridor narrower than a critical
width. Other critical values for density, vy, 7, 1, or H yield to a with a similar
effect [|59]].

Acceptance of navigation behaviors by humans Acceptance of a robot navi-
gation behavior by humans sharing the same space is influenced by several fac-
tors, whose precise definition is still an open scientific question. Several of these
factors are dependent on the specific application scenario (e.g., acceptable be-
haviors in a public sidewalk are likely to be a subset of those acceptable in an
industrial setting shared with skilled workers), or related to the robots’ physical
characteristics (such as size and appearance [|72]).

If we focus our attention on the more general properties of the robot trajec-
tories, it is reasonable to assume that the key factors influencing acceptance are
safety, efficiency, legibility and predictability. A safe robot which does not col-
lide is more acceptable than an unsafe one; an efficient robot, which moves in
a rational, goal-oriented fashion is more acceptable (other than more desirable)
than an inefficient one. Safety and efficiency are objective, measurable quanti-
ties, on which we focused our experimental analysis. In contrast, legibility and
predictability [40] are subjective properties, deeply linked to human psychology,
whose quantitative measurement in robot navigation scenarios is an open sci-
entific challenge. How legible and predictable are the trajectories generated by
robot navigation algorithms?

We argue that the HL algorithm generates legible and predictable trajectories

97 3.9 Conclusions and Perspectives

by design. In fact, the HL algorithm implements an heuristic which has been
found to well model pedestrian behavior [[103[]: therefore, we expect that the re-
sulting trajectories are similar to the trajectories that a pedestrian would follow
in the same scenario. Such trajectories are legible and predictable for humans,
because humans routinely solve local navigation tasks among other pedestrians
with minimal cognitive effort. In other words, we claim that a robot implement-
ing the HL algorithm is acceptable because: a) it behaves as a pedestrian would
behave; and b) it is also safe and efficient, as our experimental analysis shows.

Still, the issue to objectively measure acceptance of different navigation algo-
rithms remains open: are RVO algorithms less acceptable than HL? Is it possible
to devise an algorithm which is even more acceptable than the behavior an hu-
man would have, without compromising efficiency or safety?

We plan to quantify the robots’ legibility and predictability by analyzing the
trajectories of people: in particular, people sharing the environment with legi-
ble and predictable robots are expected to follow smooth, rational and efficient
trajectories with fewer changes of speed and direction. In order to have a nat-
ural (navigation) interaction with people, in addition to a friendly behavior, the
robots need to have a similar size and speed; therefore, slow and small robots,
like the one we tested in this chapter, are not well suited to study interaction
with people.

As an intermediate step to overcome this problem, we are working on an im-
mersive virtual reality scenario (see Appendix[B) where a person, using a joypad,
moves around among a crowd of robots that display different navigation behav-
iors. We will measure the (virtual) jerk that users experience while manually
driving a wheelchair, compare it with the jerk experienced by the robots, and
study the impact of the robots’ behavior on the user navigation. It will be an
interesting scenario where to test human acceptance of robots and verify if the
human-like behavior is indeed more friendlier (at least in a virtual environment).

We also plan to test which effect macroscopic behaviors have on acceptance.
We hypothesize that algorithms exhibiting macroscopic behaviors also observed
in humans increase the acceptance of robots, because people are used to them
and expect robots to act accordingly.

3.9 Conclusions and Perspectives

In this longer chapter, we introduced a local navigation algorithm for ground
robots, based on a simple obstacle avoidance heuristic which well models pedes-
trian behavior [[105]]. We adapted the heuristic to a robotic context and extended

98 3.9 Conclusions and Perspectives

it in order to ensure effective, safe, and smooth behavior in challenging settings.
We compared with two state-of-the art reactive local navigation algorithms that
share the same goals. We introduced a simple control strategy to follow a target
(optimal) trajectory, providing an link with the geometrical planner discussed in
Chapter

The algorithm is demonstrated on real robots and on large-scale simulations
considering multiple scenarios with different characteristics, in which we mea-
sured better performance of the human-like behavior compared to the alterna-
tives: human-like trajectories were safer, smoother, and more efficient. We ex-
plored the impact of the parameters on efficiency, smoothness, and safety. We
showed that the algorithm can handle heterogeneous agents, such as robots at
different speeds, dynamics and sensing ability. The simulated experiments also
demonstrate good performance when sharing spaces with humans.

Trajectories produced by the human-like behavior look legible and predictable
but we did not yet validate these features through a user study. As a first step
towards this goal, we are testing the interaction between a person, manually
controlling a virtual wheelchair in an immersive simulated scenario, shared with
a group of autonomous robotic wheelchairs.

Jerk, and the related discomfort metric we discussed in Chapter[2], necessarily
increases when the robots need to avoid collisions; this is an important consid-
eration in case the human-like navigation behavior is implemented on robotic
wheelchairs (or other similar vehicles). In particular, we believe that collision
avoidance algorithms that simultaneously yield legible and comfortable trajecto-
ries are an interesting, open research question.

Chapter 4

Planning with traversability
estimations

4.1 Introduction

In Chapter |1, we discussed how traversability can be modeled by rules that as-
sociate spatial attributes and segments’ geometry to costs. This approach works
well for indoor environments, and, in general, for any structured environment
that carries a natural partitioning into cells. Instead, in this section, we focus on
unstructured (outdoor) environments and on traversability defined in terms of
traversal probabilities.

In unstructured environments, or when the agent locomotion is complex, it is
difficult to define rules that cover the many reasons a robot may fail to traverse
a terrain. For example, consider a four-wheeled mobile robot that is trying to
traverse a patch of outdoor terrain: can the robot pass over a tree branch, climb
a sand dune, or make its way through a narrow aperture? Ideally, traversability
estimates for real environments should also account for uncertainty.

In this chapter, we compute traversability estimates using a classifier that has
been trained from the experiences collected by a simulated mobile robot while
moving on rough terrain [[25]. At runtime, this traversability estimator provides a
map between terrain patches and the probability q € [0, 1] that the robot will tra-
verse them safely. In this thesis, we don’t focus on perception problems; nonethe-
less we provide a brief summary of how a traversability estimator is trained in

Section

99

100 4.1 Introduction

4.1.1 Planning according to traversability estimations

Given an estimator that returns (soft) probabilistic information about traversabil-
ity, how to compute the best sequence of patches to traverse towards a desti-
nation? The answer depends on the actual interpretation of the traversability
estimator’s output: the meaning of the labels used in training and of “traversal
probability”.

We consider the case of path planning on graphs whose edges have an asso-
ciated traversal probability. Once the robot is at node n, incident to edge e that
has traversal probability g(e), it may turn out that e is in fact not traversable.
Four alternative interpretations for this event are meaningful in robotics and are
linked to different classes of path planning problems.

1. The robot tries to traverse e but fails, therefore remains at n (and possibly
pays a cost). However, attempting to cross e again may work, with the
same probability g(e).

2. The robot tries to traverse e, doesn’t get stuck, but ends up in a different
node than expected.

3. The robot gets stuck while attempting to traverse e, i.e., it can not proceed
nor backtrack.

4. The robot observes, before attempting to traverse it, that e is in fact non-
traversable: e is removed from the graph and the robot has to plan an
alternative path to its target.

In the first scenario, we assume that, with a slightly different speed or initial
conditions, the robot may be able to pass, and that the robot may retry to pass the
edge until successful. The lower the traversal probability g, the more times the
robot will have to try before succeeding. The cost, measured as time or energy,
to traverse a patch is then a stochastic variable whose distribution depends on
g. This yields a path planning problem with stochastic costs, which is widely
researched [|137]] and has many real-world applications. If we look for the path
with lowest expected cost, the problem translates to a shortest path problem [88]].

In the second scenario, the robot does not experience a complete failure and
may be able to reach the goal along the same route. We would actually need to fix
more details to define a sensible planning problem. For instance, if the estimator
could predict the pose where the robot will end up, we would formulate the
problem as a Markov Decision Problem [|6]. In this interpretation, the stochastic
outcome of actions is the sole source of uncertainty, while spatial knowledge

101 4.1 Introduction

is complete, which is the opposite interpretation as for the Canadian traveller
problem that we discuss below.
The last two scenarios are the topic of this chapter.

4.1.2 Risk-aware path planning

The third scenario, or, more generally, when an estimator just returns if a robot
can traverse a patch, would force us to act pessimistically. Should the robot take
more risk for a reduced effort? The answer depends on contextual information
we are missing: what is the task that the robot is doing? how bad is to get stuck
and abort the mission? can other robots take on and complete the mission?
and so on. Similar to Chapter |1, we are not able to directly compare differ-
ent costs. The only sensible planning problem would be to find the best paths
according to length (or other metrics connected to effort) and risk of getting
stuck [159]. These two objectives can be handled with multi-objective optimiza-
tion techniques [[35]], which have been applied to path planning for vehicles on
uneven ground in previous works [[120, [159] (Section[1.2.2] discusses additional
related works on multi-objective path planning). We focus on this interpreta-
tion, the related multi-objective path planning problem, and its application to
real world instances in Section

4.1.3 Resilent path planning

Finally, in the last scenario the robot has no chance to pass even when reattempt-
ing. In this case, we assume that the estimator uncertainty originates from lack of
information which the robot is able to discover once it arrives on site. The result-
ing planning problems are instances of the Canadian traveller problem (CTP) [8,
113]], or stochastic path planning with recourse [[117]].

In winter, Canadians face the following problem. They want to reach a desti-
nation but some roads may be blocked by a deep cover of snow. At the time they
leave home, they don’t know which routes are free. They may have beliefs about
the state of some roads based on their location, their importance, or their state
during past winters. They know that they may have to backtrack if they discover
that a road is indeed blocked. Which road should they pick based on their current
belief? That is, which navigation policy should the Canadian traveller follow?

Not just Canadians need to reason about uncertain traversability information.
Imagine that a fire alarm triggers. We look around and see smoke around us. We
have a couple of possible routes to exit the building. We are unsure about which
one to take: maybe some doors are blocked or some passage is no more viable.

102 4.2 Related work on the Canadian traveller problem

Changes of directions, each time we get blocked, would cost us precious time.
Do we go for the shortest route? For the route with lowest blockage risk? How
to balance backtracking risk and route length?

Robots are confronted with the same problem if they are able, using local
sensing, to refine traversability estimations on the spot. When they arrive near
an area marked on their map with uncertain traversability, they inspect it with
sensors and reveal information such as: the bridge is indeed fallen; the grass is
too wet; the slope is too steep. The robot, after an observation, becomes sure
that an area is traversable or not.

Formally, the Canadian traveller problem (CTP) searches for the optimal pol-
icy to navigate a graph with some hidden edges of unknown traversability: an
information that will be revealed only upon arrival on an incident node. In this
chapter, we do not look for better algorithms to approximate or compute the op-
timal policy. Instead, we are interested in the actual cost than an agent will pay
when following the policy on a given map realization.

In Section we introduce a model to study the impact of traversability es-
timations on CTP policies to tackle the following questions. When using a very
accurate estimator, is it worth to account for small uncertainties? Can we rely on
optimistic heuristics that treat as traversable all edges tagged with sufficiently
high traversal scores? On the other end, when the estimator accuracy is very
low, is it worth trusting the estimations at all? Are we not better served by a pes-
simistic policy that would simply assume that all hidden edges are not traversable
and therefore choose the path with highest traversal probability?

To answer these questions, and more generally model the relation between
traversability estimation and cost of a policy, we simulate a noisy estimator, i.e.
an imperfect, realistic classifier. Then, we measure the cost of policies, on real
and randomly generated maps that store traversal probabilities sampled from
(hidden) probability distributions.

4.2 Related work on the Canadian traveller problem

Computing a policy for the Canadian traveller problem that minimizes the ex-
pected path cost is a #P-hard problem [|46]]. If we frame the problem as a POMDP
and use Value Iteration to compute the optimal policy, computation cost growths
0(3") with the number n of hidden edges. This makes practically impossible to
solve CTP for more than a few tens of hidden edges, except for particular types of
graphs, like DAGs, for which exact policy have been explicitly formulated [[107]].

Researchers have developed heuristics, based on Monte Carlo Sampling, to

103 4.3 Risk-aware path planning

approximate the optimal policy [[41, 127|]]. Another method uses heuristics to
speed up search of solutions in AND-OR trees [[44].

Extensions of CTP account for remote sensing [|16] and multi-agent systems [|17]].
Adjusting traversability beliefs along the path, according to Gaussian Processes,
allows to model realistic problem, where uncertainty on different edges is not
independent [37]].

In this chapter, contrary to the mentioned related works, we do not inves-
tigate how to efficiently compute or approximate the optimal policy for CTP;
instead, we study the impact of uncertain estimations on the quality of policies
in Section [4.4]

4.3 Risk-aware path planning

In this Section, we assume that a binary classifier estimates the probability that
a patch of terrain is traversable by a particular robot.

Training a traversability estimator In previous work [25], we presented the
following method to train a traversability classifier (illustrated in Figure 4.1)):
(1) we generate a wide spectrum of synthetic terrains; (2) using an accurate
simulator, we test if the robot, spawn at random locations, can move for at least
A units of length, and use the result to label a patch of terrain as traversable or
non-traversable; (3) we train a Convoluted Neural Network on a large dataset
of labelled terrain patches, which, given a new patch, will output a traversability
score g € [0, 1], which we interpret as a probability. We tested [[26] the classifier
estimation’s quality on synthetic maps (AUC = 0.926) and on real terrain maps
(AUC € [0.819,0.961]). On rough terrain, a differential-driven wheeled robot
may not be able to rotate in place everywhere. Therefore, we extended the clas-
sifier so that it also estimates the probability that the robot can rotate in place by
at least 45°, clock or counter-clock wise (with AUC = 0.926 on synthetic maps
and AUC = 0.834 on real terrain maps).

Next, we introduce a related path planning problem and apply this classifier
to compute optimal paths for a mobile outdoor robot on rough terrain.

4.3.1 Problem formulation

Given a map of a terrain, a robotic agent, start and a goal poses, and a binary
probabilistic traversability estimator that assign a probability g to the event that
the robot will be able to traverse or turn on a patch of terrain, find the best set

104 4.3 Risk-aware path planning

Simulator _ Dataset generation
: T ‘ [0.3m
> |lan l
-0.3m
Convolutional Neural Network +

Traversability
True S
False

Figure 4.1. The robot model runs in simulation on procedurally generated ter-
rains (left) to generate datasets linking heightmap patches with their traversability
(top); on these datasets we train classifiers to estimate the probability that a given
heightmap patch is traversable or not (bottom). The learned classifier correctly
predicts terrain traversability for a real robot (right).

of paths {7} from source to target that take into account that the robot may get
stuck.

Planning graph

The robot, a Pioneer 3-AT (see Figure :Right), is a skid-steer outdoor robot
with four wheels (i.e., wheels on the same side turn at the same speed).

We compute paths on a graph G = (N, E) of nodes regularly distributed (every
A = 18cm and 45°) on a horizontal grid of poses. Edges e € E comprise: (1)
rotations in place by £45°, and (2) segments connecting neighboring poses of
the same orientation. For every edge, we compute length and traversability score
p(e) = q(patch(e)), which is the result of the traversability/turnability estimator
q applied to a patch(e) centered at the edge’s origin and oriented along the edge
(see Fig. 4.3} Top-right).

As an alternative to a grid graph, in order to take into account kinematic
constraints for more complex robots, we can generate the graph using sampling
methods such as Probabilistic Road Map (or its variations that have better spatial
coverage, such as PRM*).

Costs of a path

Similar to Section[1.3.5] we introduce a cost that measure the traversability of a
path C E, as the fraction of robots which would arrive at a destination if they
would all follow the same path, i.e., the survival [[125] S(7) at the end of the

105 4.3 Risk-aware path planning

path.

We assume that traversal probabilities of (non overlapping) patches are in-
dependent, or in other words, that the traversability along a path is Markovian.
This allows us to compute the probability to traverse a path composed of edges
(e1,...,e,) as S(m) = l_[?zl p(e;), where p(e;) is the probability to traverse a sin-
gle edge; then the path risk Z(7) = —log S(7) is additive, i.e., it is given by the
sum of the edges’ risk —log p(e;).

The planning problem is framed as a two objective optimization path plan-
ning problem over G = (N, E) with respect to length (6, = length > 0) and and
risk (6, =% = 0).

4.3.2 Approximated convex-hull of the Pareto front

As already discussed in Chapter there are potentially a very large number
of Pareto optimal paths. For navigation graphs derived from indoor maps, we
could compute the whole set in a short time using Algorithm[4] Instead, for fine-
grained outdoor maps, like the grid graph G, we cannot afford to compute the
whole set. The general approach is instead to compute a subset of the Pareto set
that covers enough the set of strategies that a ration agent would use [[138]].
We present one of these approaches, which restricts the choice to linear strate-
gies. A linear strategy find the best path according to a weighted cost function

G (k)= (1—k)6, + k%,

for some k € [0,1]. Their solutions (k) range from the shortest, but often
non-traversable, path 7(0) to the safest, but longer, path 7(1) (see Figure [4.3).
Solutions from the set of linear strategies are points on the convex hull of the
Pareto front, and are denoted as non-convex -dominated [99].

In the worst case, the convex hull has the same size as the Pareto front, there-
fore we want to limit computational costs by searching a representative subset,
an idea shared by many approaches. Cost are not normalized and solutions may
be very unevenly spread in cost space, which is a common problem [32]] that
we overcome with a simple algorithm that is scale-invariant (under multiplica-
tion of costs by different factors), similarly to [[33] but in our case limited to
non-convex-dominated solutions.

Algorithm |5|applies a divide and conquer approach that iteratively subdivide
a set of linear strategies with [a, b] in [a,k]U[k, b], where k is chosen such that
optimal solutions for strategies a and b have the same cost, i.e., € (k)(nt(a)) =
% (k)(m(b)), as illustrated in Figure The search starts from a =0 and b =

106 4.3 Risk-aware path planning

1 and stops when solutions 7m(a) and 7(b) have almost the same costs (by a
factor € > 0). The algorithm returns (non-convex-dominated) solutions that
corresponds to the knots of this partition.

The set returned by Algorithm [5| may still be too large for a strategic de-
cision maker. Therefore we (optionally) prune all solutions that are almost-
dominated [42]] by a factor) > 0 (using brute-force comparison).

ApproximatedParetoCH(G, s, t, 6;, 6,, €)

a0

b1

return PartialApproximatedParetoCH(G, s, t, 6}, 65, a, b, €))

PartialApproximatedParetoCH(G, s, t, 6, 6, a, b, €)

1, < ShortestPath(G,s, t, 6;, 6,,a)

1, < ShortestPath(G,s,t, 6, 65, D)

/*x If their costs are similar, stop the iteration */
if €,(m,) < (14 €)6,(mp) A6 (7) < (1 +€)6,(n,) then

‘ return {7, 7, }

end

/x k is an optimal trade-off when both solutions have the

same cost */

k <gl(ﬂ:a)_(gl(ﬂ:b)
6o (1) =65 (1) =61 (1) +61(1q)

1, < PartialApproximatedParetoCH(G,s,t, 6;, 6,,a, k)
I, « PartialApproximatedParetoCH(G,s,t, 6;, 6,, k,b)
return I, UTI,

ShortestPath(G, s, t, 6,, 6,, k)
/* Results are cached to avoid re-computations x/
return the shortest path between s and t according to cost % (k)

Algorithm 5: Approximation (e > 0) of the convex hull of the Pareto front of
all paths between s and t on G w.r.t. positive cost functions %, and %,.

Example on a real map. Figure illustrates solutions of the multi-objective
problem on a real map where we applied our estimators. The shortest path (red)
is Pareto-optimal, but has a very low traversal probability. The path with the low-
est risk (green) is also Pareto-optimal, but may be unnecessarily long; between
the two extremes, a potentially very large set of Pareto-optimal paths exist, span-
ning the trade-off between risk and length.

107 4.3 Risk-aware path planning

CQ\\ ° Ca g\. C2l o
7%,“ ° ° o ° o e ° °
L [° °
o ® o °
a e ° °
° .) ® () ® ®
7T2,_
‘C1 C1 Cl

Figure 4.2. An illustrative application of Algorithm [5|in cost space. Left: the
algorithm starts by computing 7(0) and 7(1) and k (depicted as a line with
slope a = k—fl passing through their costs). Center: a new optimal solution 7t(k)
is computed that lies on a line with slope a and minimal intercept. Right: the
algorithm is applied recursively on the left and on the right of (k) until no more
(significantly different) solutions are found; the algorithm returns non-dominated
solutions (red), ignoring any convex-dominated solution (blue) of the Pareto set.

4.3.3 Experiments

We tested our approach on an outdoor grass slope. First we used a Tango device,
hand-held at 1 m from the ground pointing downwards, to build a height-map
map of the area. Then we compute the navigation graph applying the traversabil-
ity classifier in any node of N to estimate its risk. The map is about 10x 10 m
large and the planning graph has 29929 nodes and 234800 edges.

Planner performance

We randomly draw 1000 pairs of connected source and target nodes on N, we
run Algorithm |5 and measure for different e: (1) the computation cost, (2) the
number of computed solutions.

Results Figure |4.4|illustrates the results. Contrary to the indoor maps tested in
Section there is a smaller dependency of the computational cost on the dis-
tance between source on target. As expected, the computational cost decreases
for larger € because the search terminates earlier, resulting in a smaller set of so-
lutions. Pruning (almost dominated) solutions significantly reduce their number
even for very small 7) as this eliminates small variations, which may be beneficial
to improve robustness with respect to the classifier’s noise. On this map, running
the planner with € ~ 1 and 1) &~ 0.1 results, in average, in 2-4 solutions computed
in few seconds.

108 4.3 Risk-aware path planning

Trav. prob Length
0.99

" Trav. prob Length
0.99 30.2
0.42 28.9
0.02 27.2

path length [m]

~
@
n

.0 0.5 1
path traversal probability

Figure 4.3. Left: a selection of Pareto optimal paths on a map of a quarry for
two pairs of source (arrow) and target (white square) locations. The paths are
colored by estimated traversal probability S(7r) from red (non-traversable) to
green (surely traversable). Corresponding values for traversal probability and
length of each trajectory are shown in the side tables. Right top: a portion of the
planning graph on the quarry map. Nodes are placed on a regular grid at 18 cm.
The blue edge’s traversal probability is estimated by applying the classifier on a
1.2m x 1.2m patch (light blue) centered at the edge origin and directed along
the edge. Robot’s silhouette is shown for size comparison. Right bottom: The
trade-off between path length and traversability for Pareto optimal paths of the
bottom source-target location (note that on the horizontal axis we are plotting
S(m) = e 2 and not # (), therefore the solutions are not on the convex hull).
Colored dots correspond to paths drawn on the left.

109 4.3 Risk-aware path planning

T T LU 1 s s A B s R MR RN
— = 20 - .
15 | e=0.1 |
—€=0.5

S —e=2.0 i
g 1 1 8

. . 10 - .
o o
= =
55 L — | 8

e
07 | | | I Oiwum\ Ll Ll Lol |
2 4 6 8 107" 10° 10! 10?
distance [m] €
€e=0.1
T T LU 1 B A B s R MR RN TTTT T T T T T T T
30 e B e T

o w 15 N
o=t o=t
8 8
5 B i 5

£ 20 2 10l |
G S
o o
£ 1 3

E E °f i
= =
= =

ijum\ Ll Ll Lol 07\\\\ Ll Ll
107t 10° 10! 10? 1072 107" 10°
€ 7

Figure 4.4. Evaluation of the risk-aware planner on 1000 random instances on
a 10 m x 10 m outdoor terrain. We report the average over all instances; shaded
areas represent =1 standard deviations. Top Left: Computational cost for three
value of e versus the distance between source and target. Top Right: Compu-
tational cost versus tolerance €. Bottom Left: number of solutions versus toler-
ance €. Bottom Right: number of solutions after pruning any solution almost-
dominated by factor 1 from solutions computed using ¢ = 0.1 (dashed line).

110 4.4 The impact of the estimator quality on the navigation policy

Real robot experiments

Pioneer 3-AT As a partial test, we have attempted to follow the safest solution
found by Algorithm 5|with the real robot. Figure[4.5]illustrates some of the results
when the robot starts from the blue silhouette and targets the white markers.

The safest way for the robot to reach the top area (square mark) is to follow
the smooth side-walk ramp uphill, avoiding the grass slope which has an irregular
shaped terrain. This path is estimated as certainly traversable: we verified this
is in fact a traversable path by tele-operating the robot through it.

The maximal-traversability path that reaches the circle mark involves first
reaching the square mark uphill on the sidewalk, then heading down on the
grassy slope for a short distance: even though it is long, this path is in fact the
most rational to reach such point, because traversing the grass slope uphill or
transversally is challenging.

The star mark lies on a difficult to reach area in the middle of the grass
slope. The location is not reachable from the sidewalk above it, because that
area of the sidewalk is flanked by a small step that is correctly estimated to be not
traversable. The maximal-traversability path, instead, accesses the grass from a
point left to start, then proceeds uphill avoiding obstacles and excessively steep
or rugged areas; the path has a traversal probability of 0.21, and we were un-
able to successfully teleoperate the robot through it because it was blocked by a
bump.

The reachability map illustrates which parts of the terrain the robot can reach
from its current pose. For a given target location, it is defined by the maximal
traversal probability among all paths from source to target.

NCCR Robotics Part of the work presented in this thesis was developed in the
context on NCCR ([Swiss] National Centres of Competence in Research) Robo-
tics. Figure illustrates a demonstration performed in collaboration with the
other research partners (ETHZ, UNI-ZH and EPFL): a drone (not depicted) built
a map that we used to compute safe, short trajectories for a legged robot.

4.4 The impact of the estimator quality on the navi-
gation policy

In this section we analyze the impact of the traversability estimator on the Cana-
dian traveller problem.

111 4.4 The impact of the estimator quality on the navigation policy

Trav. prob Length
1.0 9.36m 1.0

Trav. prob Length
0.23 11.92m

0.0

Trav. prob Length
0.21 5.39m

Figure 4.5. Paths of maximal traversability from the robot’s initial pose (blue
silhouette) to three different goals in the Slope map. Paths are colored according
to their traversal probability, from red (low) to green (high). The blue overlay
represents the reachability map from the robot’s initial pose: blue (certainly
reachable) to gray (certainly not reachable).

Figure 4.6. ANYmal robot from ETHZ follows one of the solutions, com-
puted by our planner, which was selected by an operator during a search & res-
cue simulation for NCCR Robotics in November 2017. Left: reachability map.
Right: the robot passing over stairs located above the red marker in the left pic-
ture.

112 4.4 The impact of the estimator quality on the navigation policy

4.4.1 Problem formulation

We are given a graph G = (N, E) and an agent that moves on G. At the beginning,
the true traversability r : H — {0, 1} (0: not traversable, 1: traversable) of some
edges in H C E is not known to the agent. A non-ideal classifier estimates the
traversal probability as g : H — [0, 1]. The agent uses knowledge of g to navigate
between a starting node s € N and a target node t € N according to navigation
policy . We assume that s and t are connected.

The problem is framed as a POMDE whose states (n, k) are given by a node
n € N and by the current knowledge k : H — Q = {0, 1, unknown} of the true
values of traversability of H. A navigation policy « : N x QFl — N selects the
next node the agent will travel to according to its state. When the agent reaches
a new node n, it observes the true value of some edges H, C H and sets k(e) =
r(e), Ve € H,. In the original CTB H,, is the set of edges incident to n; here we
allow more general mapping between n and H,, depending on the type of maps.

The cost of a policy is defined as the cost of the trajectory from s to t that
it generates. The optimal policy 7, is defined as the policy with the lowest
expected cost.

If the traversability estimation q is exact, it associates a 100% traversal prob-
ability to hidden edges that are in fact traversable, and a 0% probability to edges
that are not; then we can expect that 7., will lead the agent to follow the
minimume-cost path.

However, in the following we assume g to be inexact, i.e., it may assign non-
zero probabilities to edges that are in fact non-traversable. Then, the optimal
policy may lead the agent to reach a node where an edge, that would be fol-
lowed next, is revealed to be non-traversable, and thereafter backtrack to follow
a different path. Similarly, if a traversable hidden edge on the minimum-cost
path is assigned a probability less than 100%, the optimal policy may prefer a
longer path that minimizes the risk to backtrack.

We are interested in how the cost of a policy depends on the quality of the
estimations, which we assume are generated by a binary classifier.

4.4.2 Binary traversability classifier

We model q as a stochastic function that assigns scores to hidden edges according
to a probability distribution that depends only on the true traversability of the
edge. To keep the model simple, we assume that the distribution is symmetric
if we exchange the classes; this models the assumption that the classifier works

113 4.4 The impact of the estimator quality on the navigation policy

equally well for traversable and not traversable edges

p(qlr=0)=p(1—q|r =1) =B, 4(q). (4.1)

B, p represents the family of Beta distributions, which is well suited to model
binary classifiers [[15, 21} (83, 115].

) /0.96—\ pl pgr —@) AUC 0‘9U
0.87 —
0.9 /
0 0.8 \ P AUC 0.87
= 0.69 P \\J
0.7 /

0.6 p| AUC 0.69

0.5

0 0.2 0.4 0.6 0.8 1
o/ 0 output ¢ !

Figure 4.7. Left: relation between a, f and AUC for a calibrated classifier (f =
a + 1). Right: probability distribution of the classifier output g(e) applied to a
non-traversable (red) or traversable (green) edge e; for a strong (top), medium-
quality (middle), weak (bottom) classifier. Note that the strong classifier returns
polarized (close to 0.0 or 1.0) outputs, whereas the weak classifier is uncertain
and aware of it (outputs are close to 0.5)

We limit our analysis to calibrated classifiers (i.e., p(r = 1|q) = q), which is
the case if B = a+1: this implies that the score returned by a calibrated classifier
can be interpreted directly as a probability by the agent. Intuitively, this means
that if we collect many hidden edges for which the classifier returned a given
probability g, a fraction close to q of them will in fact be traversable. Several
techniques have been developed [143, [157] to calibrate off-the-shelf classifiers,
so in the following we focus on calibrated classifiers only.

A calibrated classifier may or may not be accurate. Following the best prac-
tices in Machine Learning [15[], we measure a classifier’s quality via its Area
Under the [ROC] Curve (AUC). AUC values range from 0.5 (for a classifier that
returns random or constant answers) to 1.0 (for an ideal classifier). Let e, be a
random non-traversable edge (r(e,) = 0), and e; be a random traversable edge
(r(e;) = 1). The AUC value q,,of classifier q can be intuitively interpreted as
the probability that g(e;) > q(e,). The classifier returning exact answers (1.0 for

114 4.4 The impact of the estimator quality on the navigation policy

traversable edges, 0.0 for non-traversable edges) is calibrated and has q,,.= 1 .OEI
A classifier returning always 0.5 is also calibrated (on a balanced dataset) but has
q.uc= 0.5, which means that its answers are not informative.

that yields a calibrated classifier (see Figure [4.7).

For any 0.5 < q,,. < 1.0, there is a single choice of the pair a(q,uc.), B(Qauc)

4.4.3 Optimal and baseline policies

The optimal policy 7, is defined as the policy with the lowest expected cost, and
is computed using Value Iteration (see [44] for a reference to the algorithm).

We compare 7t,,, with a family of baseline policies 7t(7), parametrized by a
threshold T € [0,1]. A policy 7(7) is defined as follows:

* in any state (n, k), we consider the subgraph composed of all and only the
edges which are either known to be traversable, or unknown with g(e) > 7
(this excludes the edges known to be non-traversable and unknown edges
with gq(e) < 7);

* if at least one path to the target exists in such subgraph, the shortest is
computed and the first of its edges is traversed; else, the path with the
highest probability of being traversable is computed (regardless of cost)
on the full graph, and its first edge is traversed.

For any 7, m(7) is guaranteed to eventually lead an agent to its target t as
long as t is reachable from the source node s. 7(7) defines reactive policies
which decide which edge to traverse next by making hard assumptions on the
traversability of all unobserved edges, but revise these decisions as soon as new
edges are observed.

1t(0) is a baseline optimistic policy that strives for the shortest path, ignoring
classifier estimations and assuming all unobserved edges are traversable.

7t(1) is a baseline pessimistic policy: it assumes that hidden edges are not
traversable unless observed to be traversable. In the (common) case in which
this does not yield a path to the target, this policy always chooses the action
which proceeds along the path with highest traversal probability, ignoring edge
Ccosts.

115 4.4 The impact of the estimator quality on the navigation policy

Figure 4.8. Instance generation with a random graph, from left to right: gen-
eration of nodes and edges; random choice of edges in H; realization of each
edge as traversable (dark green) or non-traversable (red) (ensuring connectivity
between s and t); realization of the traversability estimates (light green) accord-
ing to classifier model; the agent at the beginning of the simulation knows the
graph and g, but not r.

Figure 4.9. 14 out of 100K random graphs and realizations with 7 hidden edges
(with an average of 23 nodes and 35 edges). On each graph, we apply classifiers
of different quality to generate more than 1M planning instances. For every
instance we collect the true cost of all policies.

116 4.4 The impact of the estimator quality on the navigation policy

4.4.4 Experimental setup

In the following, we generate a large amount of planning problem instances, and
compare the performance of different policies.
One instance is defined as follows (see right part of Figure [4.8).

* We consider: a graph G = (N, E), in which each edge has an associated
cost; a pair of source and target nodes s,t € N; a set H of hidden edges
HCE.

* We generate one realization r : H — {0, 1} of the hidden edges true traversabil-
ity, unknown to the agent; it assigns a binary traversability value (not
traversable or traversable) to each hidden edge. Each r(e) is independently
generated following a Bernoulli(0.5) distribution; if in the resulting graph
t is not reachable from s, a new realization is drawn.

* We generate one realization q : H — [0, 1] of the traversability probabil-
ities, which are known to the agent. q is generated according to r by a
classifier with a given AUC value q,,.. In particular, we sample the classi-
fier output from q(e) ~ By) p(q,.0) if 7(€) =0 or from q(e) ~ Bg(y.) a(q.u0)
ifr(e)=1.

Once an instance is defined, we compute the optimal policy 7, simulate
an agent following it in the realization r, and measure the cost of the resulting
trajectory. We do the same with baseline policies 7t(7) for different values of 7.

We do not report these costs directly; instead, we are interested in the ratio
c(m) > 1, called competitive ratio, between such costs and the cost of the minimal-
cost path in G (which can be computed given r).

In each of the experiments below, we analyze the effect of a different param-
eter (¢, |H|, T) and report statistics about competitive ratios of each policy
computed over many instances.

Random graphs

We generate random graphs as illustrated in the first three illustrations (from left
to right) of Figure by: (1) drawing 30 points uniformly between [0,1]; (2)
connecting the points using a Delaunay triangulation; (3) selecting s and t at the
bottom-left and top-right corner respectively; (4) randomly deleting half of the

1g.uc= 1.0 does not imply calibration: the classifier returning 0.9 for all traversable edges and
0.1 for non-traversable edges is not calibrated but has g,,.= 1.0 and perfect accuracy.

117 4.4 The impact of the estimator quality on the navigation policy

edges without disconnecting s and t; (5) randomly selecting edges in H; and (6)
randomly selecting one feasible realization r.

We use simple strategies to generate interesting planning instances. For ex-
ample: in (4) we prune parts of the graph that no policy would visit (e.g., leave
nodes other than s and t and bridges that do not separate s and t); in (5) we
force that at least one hidden edge separates s and t along the minimal-cost path
but we avoid picking hidden edges that would anyway need to be passed (e.g.,
bridges between s and t).

For each experiment, we generate planning instances corresponding to 100K
random graphs and realizations r (see Figure [4.9).

Indoor map

We use a floor map of a real building (see Chapter[1)) where an agent estimates if
doors are open (traversable) or closed (non-traversable). The navigation graph
(Section [1.3.4), depicted in Figure [4.10}Left, is composed of local trajectories
derived from the building geometry and has 187 nodes and 236 edges; s and t
are located in two rooms at the opposite side of the building.

The set H of hidden edges contains all 9 doors that may be traversed when
traveling from s to t. We run simulations over all (2° = 512) realizations r,
generating 100 instances for each classifier q,,.value (for total 500K instances).

H ; i .. ,. -'. "/‘...21’,:"
f ~— 4 g — R 3
] A7 MEETERERE)

T N T e g R

A RS YRy ?“fﬁé’;z{

Figure 4.10. Left: Indoor floor map; navigation graph with doors that may be
locked (blue circles), source (black circle) and target (white circle) nodes. Right:
Rugged terrain map acquired by 3D reconstruction with an UAV; classifier out-
puts for traversable (green), non-traversable (gray) and uncertain (yellow) terrain
patches; corresponding navigation graph between source (black circle) and tar-
get (white circle) locations with known (solid lines) and hidden edges (dashed
lines).

118 4.4 The impact of the estimator quality on the navigation policy

Rugged terrain map

Figure[4.10}Right shows a 3D mapping from the ETH-ASL traversability dataset [149]:
an experimental scenario with several obstacles, such as bumps, ramps, holes,
boxes and slippery surfaces. The traversability classifier presented in Section[4.3]
estimates whether the robot will be able to traverse a patch of terrain. We draw
the navigation graph by hand with 24 nodes and 30 edges. We take into account
traversability estimations to label edges as traversable, not traversable or with
uncertain traversability. We identify a total of 8 uncertain edges that correspond
to challenging terrain such as ramps, boxes edges or high bumps and are modeled
as hidden edges in H. As above, we use a single graph from which we generate
all (28 = 256) realizations r, generating 100 instances for each classifier AUC
value (for a total 250K instances).

4.4.5 Experimental Results

In this Section, we present and discuss the experimental results. First, in Sec-
tion(4.4.5, we analyze the performance of policies on random graphs with 7 hid-
den edges. Then, we look at results on random graphs with different numbers
of hidden edges and on real-world maps.

Random graph with |[H| =7

Baseline policies Figure [4.11} Top-Left illustrates the effect of different values
of T on the average performance of baseline policies (7). As expected, the
performance of the optimistic policy 7(0), which ignores classifier outputs, does
not depend on the classifier quality; moreover it has the lowest average perfor-
mance. Policies with 7 ~ 0.6 perform best regardless of classifier quality. For
low quality classifier, the performance penalty for being too pessimistic (high 7)
is progressively reduced, to the point that, for extremely low quality classifiers,
the pessimistic policy 7(1) offers a comparable performance. More precisely,
from a smooth u-shaped function for high q,,., the dependency of the competi-
tive ratio on T becomes, as we approach q,,.= 0.5, a step-like function that just
discriminates if T > 0.5.

For all other experiments, we only report results for 7(0) and (1), which
have opposite distinct characteristics and are clearly interpretable, and for the
nearly optimal choice of T = 1/2. In fact, t(1/2) has also a simple interpretation:
it considers as traversable any edge that has a higher probability to be traversable.

119

4.4 The impact of the estimator quality on the navigation policy

Qaue= 0.96
RS
EE
5 11
2 >
S 1.08 &
- 3
g 1.06 2
S o
° a
§° 1.04
% 1.02 [aue 0.6 | |
0 02 04 06 08 1 1 1.2 1.4 1.6
T competitive ratio
Gaue=0.83
-8 T 1 T
©
=1
Z 5 09
S =
& % 08 = Topt |
§ 105 18 ——n(1/2)
% W —— m(0) |
5 —— n(1)
= 1 0.6 : :
1 1.2 1.4 1.6
competitive ratio
% qaue=0.69
; 1.6 T T
2
5
Q,
S 4l -
< 2
© <}
L 12} a g
=
g
T 1 0.6 : :
N 0.6 0.8 1 1 1.2 1.4 1.6
o Qauc competitive ratio

Figure 4.11. Competitive ratio of policies on 100K random graphs with 7 hidden
edges. Left-Top: average as a function of 7, with high-quality (black), medium-
quality (dark gray) and low-quality (light gray) classifiers; performance of
is represented by dashed lines of the same color. Left-Middle: average versus
Qauc- Left-Bottom: 95%-quantile versus gq,,.. Right: the cumulative distribution
of competitive ratios for high quality classifier (top), medium quality (middle),
and low quality (bottom).

120 4.4 The impact of the estimator quality on the navigation policy

Impact of classifier quality on competitive ratio distribution Figure re-
ports mean, 95%-quantile and cumulative distribution of competitive ratios ver-
sus classifier quality. As expected, the competitive ratios are close to 1 when the
classifier is very accurate (q,,.~ 1) and grows as the classifier quality decreases.
The optimal policy 7, is almost always better than any baseline policy. The only
exception is the policy 7(1/2), which has a higher probability of minimal cost
(c =1) (Fig.[4.I1}Right). Not surprisingly, 7, has the lowest mean cost.

For accurate classifiers, policy 7(1/2) is on par with the optimal policy, but
performs significantly worse for inaccurate classifiers. In fact, for inaccurate clas-
sifiers, the gap between 7,,, and 7(1/2) increases while the gap between 7,
and 7(0) or 7(1) decreases.

In general, the impact of the classifier quality on the average competitive ratio
is limited (c(m) < 1.11). This is also due to the “forgiveness” of the planning
problem (CTP) we are considering, where [rational] policies try at worst few
different routes. For reference, the highest competitive ratio sample over all
planning instances and policies is 5.23. When we consider the 95%-quantile,
the impact is more significant, but the relations between the four policies remain
similar.

—

Il T —— Topt N o 10 1

& — n(0) 5

T a2 e

; 081 . (1) N ;g g 08| B

= 2 |

3 AE

S 06 e ° 06 e, |

o e] | | | |
0.6 0.8 1 0.6 0.8 1

qauc qauc

Figure 4.12. Left: probability that a policy follows the shortest path. Right:
probability that a policy has at most a cost equal to any other policy in

{7 ope, 1(0), 7(1/2), m(1)}.

Policies comparison on planning instances On many random instances, poli-
cies have minimal costs (see Figure [4.12;Left and first row of Table [4.1I). As
expected, the higher the classifier quality, the more probable is for a policy to
follow the shortest path. This probability remains very significant (around 60%)
even for low quality classifiers; the corresponding planning instances are trivial.
We note that the gap between all four policies fades for low quality classifiers,

121 4.4 The impact of the estimator quality on the navigation policy

while for high quality classifiers 7, and 7(1/2) finds the shortest path much
more often than 7(0) or 7(1). Interestingly, 7(1/2) follows the shortest path
with higher probability than 7, except when the classifier quality is extremely
low or high.

Figure [4.12}Right illustrates the probability that a policy ranks first (possibly
tied) among other policies on a random instance. This represents the fraction of
samples for which the agent will not regret (in the aftermath) to having followed
a particular policy. For a good part of these instances, the agent actually follows
the shortest path and the impact of the classifier quality is similar to the one
illustrated before.

+252% + 232% + 229%

n(1/2)

Topt

+ 128% + 132%

Figure 4.13. Planning instance on random graphs with 7 hidden edges for
Qauc = 0.83, ordered (from left to right) by the ratio between the costs of the
policies m(1/2) and .. On the left, three instances for which 7(1/2) has a
cost that is 252%, 232%, and 229% higher. On the right, two instances for
which 7, is worse and pay a penalty of 128%, and 232%. The trajectory gen-
erated by the policies is drawn as a semi-transparent blue line; when the robot
discovers non-traversable edges, it may need to back-track, which leads to darker
segments.

Figure lists planning instances for ¢,,. = 0.83 ordered by the penalty
that the agent will pay for following 7(1/2) instead of 7,,. On the left, there
are sample instances on which the cost of 7(1/2) is more than 200% higher.
On the right — after many instances in the middle where the policies have the
same cost — we reach instances where the cost of 7, is more than 100% higher.
As discussed before, there are actually more instances for which 7, is worse,
yet the average cost over all instance is nonetheless smaller for 7. Table
contains the details of this comparison for different classifiers: the probability to
pay at most a given penalty for following one or the other policy. We note that

122 4.4 The impact of the estimator quality on the navigation policy

Table 4.1. Cost of policies 7, and 7(1/2) on random graphs with 7 hidden
edges using classifiers of different quality. Top two rows: percentage of instances
for which the two policies follow the same path (first row: shortest path, second
row: a non minimal path). Middle section: percentage of instances for which
Tope has higher, and significantly higher (+10%, +50%, +100%), cost com-
pared to 7t(1/2). Lower section: Percentage of instances for which 7(1/2) has
higher, and significantly higher (+ 10%, +50%, +100%), cost compared to 7.

Gauc

0.999

0.987

0.957

0.919

0.877

0.833

0.788

0.741

0.690

0.630

0.540

c(mop) = c(m(1/2)) =1
c(mop) = c(m(1/2)) #1

c(op) > c(r(1/2))

c(mopt)/c(n(1/2)) > 110%
c(mopt)/c(m(1/2)) > 150%
c(mopt)/c(m(1/2)) > 200%

e(w(1/2)) > (7o)

c(m(1/2))/c(mope) > 110%
c(m(1/2))/c(mopt) > 150%
c(m(1/2))/e(mopt) > 200%

86.21%
13.06%

0.54%
0.07%
0.00%
0.00%

0.19%
0.16%
0.03%
0.00%

78.11%
15.56%

4.25%
0.65%
0.02%
0.00%

2.09%
1.66%
0.30%
0.04%

71.07%
17.49%

7.59%
1.37%
0.05%
0.00%

3.86%
3.03%
0.64%
0.09%

65.35%
19.21%

9.83%
1.91%
0.08%
0.01%

5.61%
4.44%
0.92%
0.14%

60.98%
20.36%

11.51%
2.52%
0.10%
0.01%

7.15%
5.64%
1.15%
0.19%

57.17%
21.24%

12.96%
2.99%
0.10%
0.01%

8.63%
6.73%
1.37%
0.23%

53.65%
21.92%

14.19%
3.58%
0.14%
0.02%

10.24%
7.97%
1.68%
0.30%

50.56%
22.33%

15.18%
4.07%
0.18%
0.02%

11.93%
9.37%
1.96%
0.39%

47.77%
22.65%

16.00%
4.65%
0.22%
0.02%

13.58%
10.62%
2.29%
0.39%

44.59%
22.57%

16.73%
5.47%
0.26%
0.03%

16.11%
12.55%
2.66%
0.51%

40.82%
22.13%

16.95%
6.26%
0.34%
0.04%

20.10%
15.68%
3.31%
0.66%

whereas the probability for 7, of being worse is higher, the probability to pay
at most a penalty of 10%, 50% or 100%, is significantly smaller; this difference
becomes more significant for classifiers of lesser quality.

Random graph with 1 < |H| <9

We report in Figure how the competitive ratio increases as a function of
the number of hidden edges |H|. The impact of the classifier quality on the poli-
cies’ performance growths with planning complexity (higher |H|), yet the relative
performance between policies remains similar.

We also report the measured mean computational cost for computing the op-
timal policy 7, by Value Iteration using a single modern CPU core. The baseline
policies 7t(7) have instead negligible computation costs that scale polynomially
with respect to |H|.

Real-world graphs

We compare the results on random graphs with experiments on two real maps,
where we study the impact of classifier quality on the policies’ performance. Note
that although we sample over all possible realizations (and many classifications),
these two maps represent just two graph instances and, as already discussed, the
policies performance has a large variability over different graphs.

123 4.4 The impact of the estimator quality on the navigation policy
Qo= 0.96 Qoue= 0.69 computation cost of 7T,

g I I I I I I — I

s - 2,

= (0) 2107 | E
Z 11 411 S i g
3 = B]
& / S102} |
S 1.05 |-) n(1/2)-{ 1.05 IS k 1
o e 5 i 1
£ E107° E
> 1 ! | Tlopt 1 © = ! ! | | 3
©

2 4 6 8 2 4 6 8
[H| |H|

Figure 4.14. Left: Competitive ratio of different policies on random graphs as
a function of |H|, with a high-quality (left) and a low-quality (center) classifier.

Right: Mean computational cost for computing a single instance of 7.

Indoor map Figure [4.15} Top summarizes the policies’ performance on map of
a real building, where hidden edges correspond to doors (that may be open or
closed). The impact of estimation quality on the optimal policy is comparable to
the previous results. Interestingly, on this particular map, baseline policy 7(0)
perform much better than on the average random graphs.

Rugged terrain map We report a similar experiment for the Rugged terrain map
in Figure [4.15;Bottom. The average competitive ratios for this graph are high
when compared to the randomly-generated graph (= 90%-quantile), denoting

1.15 [‘ R

1.05 |- . L2

average competitive ratio
average competitive ratio

|
0.6 0.8 1 0.6 0.8 1

qauc qauc

Figure 4.15. Competitive ratio of policies as a function of classifier quality on
real world maps. Left: Indoor floor map. Right: Rugged terrain map.

124 4.5 Conclusions and Perspectives

an harder than average planning instance. Also in this case, the performance of
7(0) with respect to 7, is much better than on average graphs.

4.4.6 Discussion

The overall impact of uncertainty on the optimal policy is relatively small: even
with very weak classifiers (q,,. = 0.54), the average path cost increases by only
about 5% with respect to the shortest path; however, this is very dependent on
the specific map, as shown in the real-world scenario in Figure[4.15tRight where
the competitive ratio with a weak classifier exceeds 1.2.

The baseline strategies yield a worse performance than the optimal policy, but
such penalty is small in most cases. The best baseline reactive policies are mod-
erately pessimistic (7 &~ 0.6), which is particularly preferable when uncertainty
is high.

Computing the optimal policy has a much higher cost but gives better perfor-
mance, in particular when uncertainty increases (due to lower classifier quality
and/or more hidden edges), or more importance is given to the worst case than
to an average case. This is also very dependent on the graph as shown by the
many instances where a reactive policy had better performance.

4.5 Conclusions and Perspectives

In this section we discussed different interpretation of traversal probabilities and
we focused on two of them, which lead to the risk-aware path planning problem
and the Canadian traveller problem.

Risk-aware path planning To introduce the first problem, we briefly illustrated
how machine learning and simulation techniques on synthetically generated maps
are used to train a rough terrain traversability estimator that associates a ter-
rain patch to the probability that a robot will successfully traverse it. Then,
we discussed how to make use of these estimations to formulate one-shot, risk-
aware path planning problems, i.e., a multi-objective problems to maximize path
traversability and minimize path length. We introduced an algorithm to approx-
imate the set of non-convex-dominated solutions. Experiments on real maps
showed that this method produces few strategic choices and requires low com-
putational cost, at least on relatively small maps. We also presented two applica-
tion with real robots (one wheeled and one legged) that highlight the generality
of the approach.

125 4.5 Conclusions and Perspectives

Ongoing work targets a comparison with other techniques to approximate
the Pareto front (or its convex hull) based on Genetic Algorithms.

Canadian traveller problem In the second part, we allowed the robot to lo-
cally refine the estimations during the execution of its navigation policy. We
presented results from a large-scale simulation campaign to evaluate the effects
of two sources of uncertainty (inaccuracy of the classifier and number of hidden
edges) on the cost of paths obtained by the optimal policy and a family of base-
line reactive strategies. The penalty from bad estimations is small enough, on the
graphs we considered, that we may conclude that we don’t need accurate estima-
tions. Yet, in some situations, robots may have other additional constraints (e.g.
they should arrive before a given deadline) which requires different objectives
than the one we considered in this study.

In the future, we would like to investigate the impact of the graph itself on the
policy performance. Which graphs give rise to the most challenging planning in-
stances? Are the distributions we used to generate graph samples representative
of real-world maps? Results on the real-world maps indicate that the distribution
may indeed be not enough representative. We are also interested to study the im-
pact of the classifier calibration on the policy costs because real-world classifiers
are typically not perfectly calibrated.

126 4.5 Conclusions and Perspectives

Chapter 5

Conclusion

5.1 Summary

We have presented a pipeline for path planning in robotics that accounts for
many issues that arise in real-world problems; in particular, we have discussed
solutions to the following issues: (1) representing complex, hierarchical spatial
information that is relevant to path planning; (2) accounting for the indirect
effects of the robot moving in the environment; (3) computing coarse-grained
high-level routes; (4) refining those routes to precise geometrical trajectories
with desirable properties; (5) and, finally, follow the trajectories while navigat-
ing among robots and other obstacles. We have examined the impact of partial
information, introduced multi-objective path planning problems and illustrated
real world applications.

Spatial model and high-level path planning

In Chapter [I) we presented an abstract spatial representation that is inspired by
the way people reason about indoor spaces and that is well suited for robotics
applications in environments shared with humans. We derived a high-level nav-
igation graph from an IndoorGML map, a recently approved GIS standard for
indoor spaces; we introduced an algorithm to decompose the robot’s configura-
tion space in a set of quasi-convex cells and derive a convenient planning graph.

We modeled generic costs associated to routes and argued that three costs —
effort, safety risk, and social impact — describe a wide range of scenarios with
humans and/or robots. We defined the associated multi-objective path planning
problem, which we solved with an exact algorithm, based on the observation that
the solution space for typical indoor planning graphs is small. We measured the

127

128 5.1 Summary

performance of the multi-objective planner performance on a real building map
with different cost configurations.

The model is general; it was successfully applied to real world scenarios in
two different research projects, in which we tested our solutions on real robots:
(online) path planning services for autonomous wheelchairs in nursing homes
and coordination of a fleet of drones in an urban environment.

We developed a pipeline — from extracting maps out of floor plans, to updat-
ing spatial attributes, to computing individual plans — which serves as a proof
of concept for the model.

Trajectory planning

In Chapter |2, we focused on the trajectory of mobile robots, and in particular
of autonomous wheelchairs, in the absence of dynamic obstacles. We discussed
how high-level routes are refined to geometrical curves that are smooth, legible
and comfortable to the user when executed by a wheelchair. We identified a
proxy cost that discriminates gently turning paths — which we use to formulate
an optimization problem — and discussed alternative costs.

We searched for solutions in the space of composite Bézier curves that traverse
convex cells and are constrained while passing through narrow passes. At least
6-th order Bézier curves would be needed to get optimal curves with continuous
curvature; yet we showed a method for relaxing the curvature constraints and
speed up the search using 4-th order Bézier curves. We introduced an heuristic
to fix the free parameters, which is used as an initial guess by the optimization
solver. The planning complexity is dramatically reduced by splitting the curves
into independently optimized chains and pre-computing most of them.

We introduced a further link with Chapter [1|when presenting another multi-
objective problem: the search for short and gently-turning trajectories. We con-
cluded with tests performed on a real mobile robots; the trajectories followed by
the robots look legible and similar to the trajectory followed when a skilled per-
son is teleoperating the robot. We provide an implementation that works with
generic trajectory costs, optional constraints and supports different search spaces
(2-th, 4-th and 6-th order composite Bézier curves), and different third-party nu-
merical solvers.

Local navigation In Chapter 3] we finally consider dynamic aspects: how the
robots, given a trajectory to follow or a point to reach, should move among peo-
ple and/or other robots. We focused on reactive navigation rules that should
produce safe (no collisions), efficient (short and fast), legible and predictable

129 5.1 Summary

trajectories, which we argued are the key attributes for the robot to be perceived
as human-friendly. We achieved smooth human-robot co-navigation by letting
robots follow the same navigation algorithm as pedestrians. We adapted the pol-
icy to address robotic peculiarities, like differential-drive kinematics, safety, and
social constraints.

We compared the resulting policy with two state-of-the-art algorithms for
reactive robot navigation in a variety of scenarios; its performance, in simula-
tion and with real robots, compared favorably in terms of efficiency and safety
Moreover, the human-like policy let macroscopic (crowd) behaviors emerge, like
the formation of lanes, which are expected by humans co-navigating along with
the robots, and lead to increased legibility, predictability and efficiency in mixed
groups.

We measured the impact of partial information, observing that limited sens-
ing ability delays the emergence of macroscopic behaviors. In our context, robots
implicitly communicate by sensing the position and velocity of each other: by
hindering this communication we prevented efficient coordination.

We analyzed the impact of navigation behaviors on the cost of a trajectory
optimized in Chapter |2/ and concluded that, compared to alternative behaviors,
human-like navigation leads to a more accurate following of the prescribed path,
and to a smaller (albeit still large) increase of jerk.

Traversability estimates

In Chapter[4] we introduced the topic of uncertain traversability estimates, which
are typical of outdoor robotic scenarios. We discussed how different failures of
traversing a patch of terrain give rise to different path planning problems.

We briefly presented how to train a classifier that generates traversability
estimates of a patch of terrain from examples collected in simulation over syn-
thetically generated terrains. We use these estimates as an inspiration to define
a multi-objective path planning problem; we introduce a simple algorithm that
approximates the Pareto front (which is potentially very large) by returning a
small selection of optimal paths (in terms of minimal risk and minimal length);
we presented results of the planner performance on a real map and investigated
the trade-off between computational cost and the number of optimal solutions
found.

This solution is well-suited for an ongoing research project in search and
rescue robotics, because it offers the human operator few choices of trajectories
to select from when controlling a semi-autonomous robot moving over difficult
terrain.

130 5.2 Looking forward

Then, we measured how the quality of the traversability estimate impacts
path planning. We considered a scenario where the robot is able to locally re-
fine (using its sensors) a rough estimate available at planning time; we modeled
this as an instance of the Canadian traveller problem whose the goal is to com-
pute navigation policies that are resilient to local changes in the graph such as
the deletion of an incident edge. We introduced a class of heuristic policies and
compared their performance with the optimal policy. We showed that heuris-
tics perform comparably well when applied to an average graph, but that their
performance degrades when considering worst-case metrics. The optimal pol-
icy, which has a much higher computational cost, helps with dealing with more
uncertain predictions (larger uncertainty and/or more edges that are uncertain).

Discussion

The thesis deals with a complex pipeline that links spatial information to robot
actions; in particular we highlight the interplay between the components of such
pipeline: understanding this interplay is required to design a generic but realistic
and usable model.

Through the research, we have encountered three recurrent challenges — hi-
erarchical structures, partial information and multiple objectives — and tackled
them from different points of view.

We validated most of the proposed models and algorithms either on real
robots or in simulation on real-world scenarios, both indoor and outdoor. Testing
the feasibility of ideas in different contexts was an expensive but necessary step
to identify relevant, focused research questions.

5.2 Looking forward

We are currently working on several open research questions related to the topics
discussed in this thesis.

One line of research deals with measuring, through extensive experiments
and user studies, the legibility, predictability, and (human) comfort of the robot
behaviors (Chapter [3)); for human-like navigation, we are designing a user study
to be performed in an immersive simulation to overcome limitations of robot
hardware and guide the design of future real-robot experiments.

For the spatial representation (Chapter [I)), we plan to model at least one
other scenario, in addition to the nursing home, to validate the description of
social spaces in terms of micro and macro attributes.

131 5.2 Looking forward

For outdoor navigation (Chapter [4), we are actively working on more accu-
rate models for traversability estimators and their application to path planning
in real-world contexts, also considering complex, legged robots such as ANY-
mal [[71] and K-Rock [[100] developed by other partners of the NCCR Robotics
Consortium.

On a longer term, we are interested in the connections between all compo-
nents of a robot controller. For example, for the pipeline we have been discussing
in this thesis, we may be able to: (1) generalize our approach to learn the map-
ping between environment state and control outcome, e.g., to predict critical
density for a group of robot to form a jam from the geometry of the space; (2)
learn to predict the geometry of optimal trajectory from high-level routes (some-
thing we currently do with an heuristic); (3) gather feedback during plan execu-
tion and use it to refine map attributes (through online learning).

More generally, our goal is to preserve important information when compo-
nents interact and communicate; an interaction could consist, for example, of
a path planner that passes a target trajectory to a controller, which in turn pro-
vides feedback about how well it is following the path. In particular, components
should preserve, when possible, information about uncertainty.

Inspiration from and comparison with the real world is fundamental for ro-
botics. Like theoretical physicists are ultimately confronted with the outcome
of experiments, roboticists should ground their ultimate source of knowledge in
real robots performing real tasks in the world. We should implement our models
and bring them out there. This means overcoming technical issues that occasion-
ally make robotics research unpleasant. Yet, these issues, which may be at first
perceived as mere implementation details, sometimes hide important lessons.
The difficulty lies in noticing them.

132 5.2 Looking forward

Appendix A

Publications

Path and trajectory planning in indoor spaces We discuss spatial represen-
tations and path planning in a workshop paper [[12]. We present an optimal
trajectory planner for wheelchairs in a conference paper [[11]]. We describe the
prominent use case of supporting users with restrained mobility in nursing homes
in two project deliverables [9, [10].

Human-friendly local navigation We introduce the algorithm in a conference
paper [[16] and compared it with other collision avoidance algorithms in another
conference paper [[17]]. We discuss groups behaviors emerging from local navi-
gation rules in a third conference paper [[15[]. In another conference paper, we
present a machine learning approach to let a robot track people using low-lying
sensors, a very useful capability when navigating among people [8]]. Finally, in
two conference papers we discuss how affective states can modulate navigation
and increase coordination [|13, (14].

Planning with traversability estimations We present a machine learning ap-
proach to navigate along forest trails in a journal paper [[7]]. We apply a similar
technique to estimate terrain traversability for ground robots in a conference pa-
per [[3]. In a journal paper, we discuss how uncertain traversability estimations
lead to a risk-aware, multi-objective path planning problem [4]]. We discuss the
impact of traversability estimation on the cost of navigation policies in a work-
shop paper [[19]]. Alonger version is currently under review for a conference [20].

Other publications Publications [[1, |2, |5, 6, 18, 21]] are not directly related to
the content of this thesis, although they discuss mobile robotics and/or multi-
agent planning.

133

134 CONFERENCE PAPERS

Conference papers

[2] J. Banfi, J. Guzzi, A. Giusti, L. Gambardella, and G. A. Di Caro. “Fair
multi-target tracking in cooperative multi-robot systems”. In: Interna-
tional Conference on Robotics and Automation (ICRA). IEEE. 2015, pp. 5411-
5418.

[3] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti. “Im-
age Classification for Ground Traversability Estimation in Robotics”. In:
Proceedings of the 18th International Conference on Advanced Concepts for
Intelligent Vision Systems (ACIVS). Springer, 2017, pp. 325-336.

[6] E Ghiringhelli, J. Guzzi, G. A. Di Caro, V. Caglioti, L. M. Gambardella,
and A. Giusti. “Interactive augmented reality for understanding and an-
alyzing multi-robot systems”. In: International Conference on Intelligent
Robots and Systems (IROS). IEEE/RSJ. 2014, pp. 1195-1201.

[8] A. P Gritti, O. Tarabini, J. Guzzi, G. A. Di Caro, V. Caglioti, L. M. Gam-
bardella, and A. Giusti. “Kinect-based people detection and tracking from
small-footprint ground robots.” In: International Conference on Intelligent
Robots and Systems (IROS). IEEE/RSJ. 2014.

[11] J. Guzzi and G. A. Di Caro. “From indoor GIS maps to path planning
for autonomous wheelchairs”. In: International Conference on Intelligent
Robots and Systems (IROS). IEEE/RSJ. Oct. 2016, pp. 4773-4779.

[12] J. Guzzi and G. A. Di Caro. “Towards supporting elderly’s orientation,
mobility, and autonomy”. In: Workshop on Improving the quality of life
in the elderly using robotic assistive technology: benefits, limitations, and
challenges - International Conference on Social Robotics (ICSR). Oct. 2015.

[13] J. Guzzi, A. Giusti, G. A. Di Caro, and L. M. Gambardella. “A Model of
Artificial Emotions for Behavior-Modulation and Implicit Coordination
in Multi-robot Systems”. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO). 2018. to appear.

[14] J.Guzzi, A. Giusti, G. A. Di Caro, and L. M. Gambardella. “Artificial Emo-
tions as Dynamic Modulators of Individual and Group Behavior in Multi-
robot System”. In: Proceedings of International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). 2018. to appear.

[15] J. Guzzi, A. Giusti, L. M. Gambardella, and G. A. Di Caro. “Bioinspired
obstacle avoidance algorithms for robot swarms”. In: Proceedings of the
International Conference on Bio-Inspired Models of Network, Information,
and Computing Systems (BIONETICS). Springer, 2014, pp. 120-134.

135

JOURNAL ARTICLES

[16]

[17]

[18]

[19]

[20]

[21]

J. Guzzi, A. Giusti, L. M. Gambardella, G. Theraulaz, and G. A. Di Caro.
“Human-friendly robot navigation in dynamic environments.” In: Pro-
ceedings of the International Conference on Robotics and Automation (ICRA).
May 2013, pp. 423-430.

J. Guzzi, A. Giusti, L. M. Gambardella, and G. A. Di Caro. “Local reac-
tive robot navigation: A comparison between reciprocal velocity obsta-
cle variants and human-like behavior”. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2013,
pp. 2622-2629.

J. Guzzi, A. Giusti, G. A. Di Caro, and L. M. Gambardella. “Mighty Thymio
for Higher-Level Robotics Education”. In: Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI). AAAIL. 2018. to appear.

J. Guzzi, R. O. Chavez-Garcia, L. M. Gambardella, and A. Giusti. “On the
Impact of Uncertainty on Path Planning”. In: Federated Al for Robotics
Workshop (FAIR). 2018. to appear.

J. Guzzi, R. O. Chavez-Garcia, L. M. Gambardella, and A. Giusti. “On
the Impact of Uncertainty on Path Planning”. In: Conference on Robot
Learning (CoRL). 2018. under review.

S. Toniolo, J. Guzzi, A. Giusti, and L. M. Gambardella. “Learning an
Image-based Obstacle Detector with Automatic Acquisition of Training
Data”. In: Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI-18 Demo Track). 2018.

One publication is currently under review.

Journal articles

[1]

[4]

J. Banfi, J. Guzzi, E Amigoni, E. E Flushing, A. Giusti, L. M. Gambardella,
and G. A. Di Caro. “An Integer Linear Programming Model for Fair Mul-
titarget Tracking in Cooperative Multirobot Systems”. In: Autonomous
Robots (Apr. 2018).

R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti. “Learn-
ing Ground Traversability from Simulations”. In: IEEE Robotics and Au-
tomation Letters 3.3 (July 2018), pp. 1695-1702.

136 TECHNICAL REPORTS

[5] M. Dorigo, D. Floreano, L. Gambardella, E Mondada, S. Nolfi, T. Baaboura,
M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo,
A. Christensen, A. Decugniere, G. Di Caro, E Ducatelle, E. Ferrante, A.
Forster, J. Martinez Gonzales, J. Guzzi, V. Longchamp, S. Magnenat, N.
Mathews, M. Montes de Oca, R. O’Grady, C. Pinciroli, G. Pini, P Retor-
naz, J. Roberts, V. Sperati, T. Stirling, A. Stranieri, T. Stutzle, V. Trianni,
E. Tuci, A. Turgut, and E Vaussard. “Swarmanoid: A Novel Concept for
the Study of Heterogeneous Robotic Swarms”. In: Robotics Automation
Magazine, IEEE 20.4 (Dec. 2013), pp. 60-71.

[7] A. Giusti, J. Guzzi, D. C. Ciresan, E-L. He, J. P Rodriguez, E Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. A. Di Caro, D. Scaramuzza,
and L. M. Gambardella. “A Machine Learning Approach to Visual Percep-
tion of Forest Trails for Mobile Robots”. In: IEEE Robotics and Automation
Letters (2016), pp. 661-667.

Technical Reports

[9] J. Guzzi. Ageing without Losing Mobility and Autonomy (ALMA). Deliver-
able D4.1 - Distributed information gathering and management. Tech. rep.
IDSIA, 2013.

[10] J. Guzzi. Ageing without Losing Mobility and Autonomy (ALMA). Deliver-
able D4.3 - Path planning services. Tech. rep. IDSIA, 2016.

Appendix B

Software Releases

We have developed software tools to experiment with the ideas presented in the
text and apply them in research projects; all software listed below is released
online as open source libraries.

Rich indoor maps

Core We release an Python implementation [|7]] of the core spatial model intro-
duced in Chapter [1]with generic cost attributes and single/multi-objective plan-
ners that use these cost functions. The software stack consists of: (1) a SketchUp
plugin to convert between CAD floor plans and IndoorGML maps; (2) a library to
import/export/edit IndoorGML maps and their spatial attributes, and compute
navigation graphs for different kind of agents; (3) a GUI where users inspect
and edit maps; (4) a suite of topological path planners that compute the best
paths according to multiple costs; (5) a geometrical planner that compute the
best trajectories in multiple search spaces (composite Bézier curves of 2-th, 4-th
or 6-th), according to different costs (bend energy, bending cost, maximal cur-
vature, length, ...) and with variable smoothness requirements (G°, G' or G?).

ALMA We release an implementation of the web server developed in the ALMA
project [[1]] that provides real time mapping and planning services to users in
nursing homes. The server implements an instance of the core model tailored
to social spaces, elderly users and users on wheelchairs. The server exposes
resources through an HTTP interface to different type of clients: people can vi-
sualize and edit the maps through an HTML interface; ambient sensors provide
real-time updates about the environment through a JSON interface; users get
directions, with a description of difficulties they may experience along the route,

137

138

through the same JSON interface, according to their characteristics and the cur-
rent state of the environment.

DFW We also release the implementation [2] of the central planner and of
the distributed nodes (running on light poles) that control a fleet of drones in a
smart city. Similarly to the ALMA implementation, the library extends the core
model with specific attributes and planners. Moreover, it contains a global traffic
coordinator that manages the exclusive locks that drones need to enter a cell.
We also provide the drone controller, build on top of ROS and ArduPilot, which
interfaces with UWB sensors to localize the drone in the flyway.

Optimal trajectory planner

The core spatial model [7]] described above contains an implementation of the
trajectory planner discussed in Chapter[2] The planner is implemented in Python
and the following core libraries: scipy and pyOpt for the COBYLA solver, networkx
for the Yen’s k-shortest path algorithm, and shapely for the computation of geo-
metric constraints. We also provide a ROS interface [5]] with the planning server
as a plugin for move_base, which is the main ROS package for mobile robotic
navigation. We used this interface to control a TurtleBot robot in Section [2.4.4

Multi-agent navigation

Multi-agent simular We release a multi-agent simulator [4]] with a custom (sim-
plified) 2D physics engine to experiment with different navigation algorithm for
heterogeneous groups of agent, developed in ObjC. The simulator can run on a
cluster of computers to perform large scale experiments but can also be used to
visualize the behavior of up to 1000 agents in real time on a personal computer.

A 3D immersive interface allows people to experience (virtual) interaction
with robots of comparable size and velocity.

Human-friendly navigation We provide a C++ library that implements the human-
like navigation behavior and its ROS wrapper [|3]. The library has been used to
control multiple types of robot systems: large swarm of little-wheeled robots,
flying drones, and larger wheeled robots interacting with people.

139 ONLINE REPOSITORIES

Traversability estimations

We release two smaller pieces of software: a library [|6] reproduces the exper-
iments of Section i.e., generates random maps and efficiently computes
the costs of navigation policies; a library [|8]] provides a ROS package that imple-
ments a risk-aware multi-objective path planner for the NCCR Robotics search &
rescue challenge.

Online repositories

[1] J. Guzzi. ALMA planning. https://github.com/jequzzi/ri_alma.
2018.

[2] J. Guzzi. DFW planning. https://github.com/jequzzi/ri_dfw. 2018.

[3] J. Guzzi. Human-like navigation. https://github.com/jeguzzi/hl_
navigation. 2018.

[4] J.Guzzi. Multi-agent navigation simulator. https://github.com/jequzzi/
man_sim. 2018.

[5] J. Guzzi. Optimal trajectory planner interface. https://github.com/
jequzzi/ri_robot. 2018.

[6] J.Guzzi.Resilient path planning. https://github.com/jeguzzi/resilience.
2018.

[7] J. Guzzi. Rich maps planning. https://github. com/jequzzi/ri_
planning. 2018.

[8] J. Guzzi. Risk-aware planner. https://github.com/jeguzzi/risk_
aware_planning. 2018.

https://github.com/jeguzzi/ri_alma
https://github.com/jeguzzi/ri_dfw
https://github.com/jeguzzi/hl_navigation
https://github.com/jeguzzi/hl_navigation
https://github.com/jeguzzi/man_sim
https://github.com/jeguzzi/man_sim
https://github.com/jeguzzi/ri_robot
https://github.com/jeguzzi/ri_robot
https://github.com/jeguzzi/resilience
https://github.com/jeguzzi/ri_planning
https://github.com/jeguzzi/ri_planning
https://github.com/jeguzzi/risk_aware_planning
https://github.com/jeguzzi/risk_aware_planning

140 ONLINE REPOSITORIES

Bibliography

[1] E Ahmed and K. Deb. “Multi-objective optimal path planning using eli-
tist non-dominated sorting genetic algorithms”. In: Soft Computing 17.7
(2013), pp. 1283-1299.

[2] E Ahmed and K. Deb. “Multi-objective path planning using spline repre-
sentation”. In: Proceedings of the IEEE International Conference on Robotics
and Biomimetics (ROBIO). IEEE. 2011, pp. 1047-1052.

[3] ALMA. http://www.alma-aal.org.

[4] J. Alonso-Mora et al. “Collision avoidance for multiple agents with joint
utility maximization”. In: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA). May 2013, pp. 2833-2838.

[5] J. Alonso-Mora et al. “Optimal Reciprocal Collision Avoidance for Mul-
tiple Non-Holonomic Robots”. In: Proceedings of the International Sym-
posium on Distributed Autonomous Robotic Systems (DARS). 2010, pp. 1-
14.

[6] R. Alterovitz, T. Siméon, and K. Y. Goldberg. “The Stochastic Motion
Roadmap - A Sampling Framework for Planning with Markov Motion
Uncertainty.” In: Robotics - Science and Systems (2007).

[7] A. Andersson. “Multi-objective optimisation of ship routes”. MA thesis.
ABB Corporate Research, Chalmers University of Technology, 2015.

[8] A.Bar-Noy and B. Schieber. “The Canadian Traveller Problem.” In: ACM-
SIAM symposium on Discrete algorithms. 1991.

[9] T Becker, C. Nagel, and T. H. Kolbe. “A Multilayered Space-Event Model
for Navigation in Indoor Spaces”. In: 3D Geo-Information Sciences. Springer
Berlin Heidelberg, 2009, pp. 61-77.

[10] R. Benayoun et al. “Linear programming with multiple objective func-
tions: Step method (stem)”. In: Mathematical Programming 1.1 (Dec.
1971), pp. 366-375.

141

http://www.alma-aal.org

142 BIBLIOGRAPHY

[11] J. van den Berg and M. Overmars. “Planning Time-Minimal Safe Paths
Amidst Unpredictably Moving Obstacles”. In: The International Journal
of Robotics Research 27.11-12 (2008), pp. 1274-1294.

[12] J. van den Berg, D. Manocha, and M. Lin. “Reciprocal velocity obsta-
cles for real-time multi-agent navigation”. In: Proceedings of IEEE Inter-
national Conference on Robotics and Automation (ICRA). 2008, pp. 1928-
1935.

[13] J.van den Berg et al. “Reciprocal collision avoidance with acceleration-
velocity obstacles”. In: Proceedings of IEEE International Conference on
Robotics and Automation (ICRA) (2011), pp. 3475-3482.

[14] J. van den Berg et al. “Reciprocal n-body collision avoidance”. In: Pro-
ceedings of the International Symposium Robotics Research (ISRR). 2011,
pp. 3-19.

[15] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[16] Z.Bnaya, A. Felner, and S. E. Shimony. “Canadian Traveler Problem with
Remote Sensing.” In: International Joint Conferences on Artificial Intelli-
gence. 2009.

[17] Z.Bnaya et al. “Repeated-task Canadian Traveler Problem”. In: AI Com-
munications 28.3 (2015), pp. 453-477.

[18] M. Bonani et al. “The marXbot, a miniature mobile robot opening new
perspectives for the collective-robotic research”. In: Proceedings of the
IEEE /RSJ International Conference on Intelligent Robots and Systems (IROS).
2010, pp. 4187-4193.

[19] S. Bozkurt, A. Yazici, and K. Keskin. “A multicriteria route planning ap-
proach considering driver preferences”. In: Proceedings of the IEEE In-
ternational Conference on Vehicular Electronics and Safety (ICVES). IEEE.
2012, pp. 324-328.

[20] J. Branke et al., eds. Multiobjective Optimization. Springer, 2008.

[21] K. H. Brodersen et al. “The Balanced Accuracy and Its Posterior Distribu-
tion.” In: International Conference on Pattern Recognition. 2010.

[22] R. A. Brooks. “A robust layered control system for a mobile robot”. In:
IEEE Journal on Robotics and Automation 2.1 (Mar. 1986), pp. 14-23.

[23] R. A. Brooks. “Elephants don’t play chess”. In: Robotics and Autonomous
Systems 6.1 (1990), pp. 3-15.

143 BIBLIOGRAPHY

[24] G. Brown. “Mapping Spatial Attributes in Survey Research for Natural
Resource Management: Methods and Applications”. In: Society & Natural
Resources 18.1 (Dec. 2004), pp. 17-39.

[25] R.O. Chavez-Garcia et al. “Image Classification for Ground Traversability
Estimation in Robotics”. In: Proceedings of the 18th International Confer-
ence on Advanced Concepts for Intelligent Vision Systems (ACIVS). Springer,
2017, pp. 325-336.

[26] R. O. Chavez-Garcia et al. “Learning Ground Traversability from Simula-
tions”. In: IEEE Robotics and Automation Letters 3.3 (July 2018), pp. 1695-
1702.

[27] B. Chazelle and D. P Dobkin. “Decomposing a Polygon into its Convex
Parts”. In: Proceedings of the annual ACM symposium on Theory of com-
puting (STOC). 1979.

[28] J.-W. Choi, R. Curry, and G. Elkaim. “Piecewise Bézier Curves Path Plan-
ning with Continuous Curvature Constraint for Autonomous Driving”.
In: Machine Learning and Systems Engineering. 2010.

[29] E. Clementini, P Di Felice, and P van Oosterom. “A small set of formal
topological relationships suitable for end-user interaction”. In: Advances
in Spatial Databases. Springer, June 1993, pp. 277-295.

[30] E.G. Collins Jr et al. “Human-aware robot motion planning with velocity
constraints”. In: Proceedings of the International Symposium on Collabo-
rative Technologies and Systems. 2008, pp. 490-497.

[31] J. Current and M. Marsh. “Multiobjective transportation network design
and routing problems: Taxonomy and annotation”. In: European Journal
of Operational Research 65.1 (1993), pp. 4-19.

[32] I DasandJ.E.Dennis. “A closer look at drawbacks of minimizing weighted
sums of objectives for Pareto set generation in multicriteria optimization
problems”. In: Structural optimization 14.1 (Aug. 1997), pp. 63-69.

[33] 1. Das and J. E. Dennis. “Normal-Boundary Intersection: A New Method
for Generating the Pareto Surface in Nonlinear Multicriteria Optimiza-
tion Problems”. In: SIAM Journal on Optimization 8.3 (1998), pp. 631-
657.

[34] M. Davoodi et al. “Multi-objective path planning in discrete space”. In:
Applied Soft Computing 13.1 (2013), pp. 709-720.

[35] K. Deb. “Multi-objective optimization”. In: Search methodologies. Springer,
2014, pp. 403-449.

144 BIBLIOGRAPHY

[36] H. Delingette, M. Hebert, and K. Ikeuchi. “Trajectory generation with
curvature constraint based on energy minimization”. In: Proceedings of
the IEEE /RSJ International Conference on Intelligent Robots and Systems
(IROS) (1991).

[37] D. Dey et al. “Gauss meets Canadian traveler: shortest-path problems
with correlated natural dynamics.” In: Proceedings of the International
Conference on Autonomous Agents and Multi-agent Systems (AAMAS). 2014,
pp. 1101-1108.

[38] M. Dorigo et al. “Swarmanoid: A Novel Concept for the Study of Hetero-
P
geneous Robotic Swarms”. In: Robotics Automation Magazine, IEEE 20.4
(Dec. 2013), pp. 60-71.

[39] R. M. Downs and D. Stea. Cognitive Maps and Spatial Behaviour: Process
and Products. John Wiley & Sons, 2011.

[40] A.Dragan, K. Lee, and S. Srinivasa. “Legibility and predictability of robot
motion”. In: Proceedings of the ACM/IEEE International Conference on
Human-Robot Interaction (HRI). Mar. 2013, pp. 301-308.

[41] P Eyerich, T. Keller, and M. Helmert. “High-Quality Policies for the Cana-
dian Traveler’s Problem”. In: Third Annual Symposium on Combinatorial
Search (2010).

[42] M. Farrow and M. Goldstein. “Almost-Pareto Decision Sets in Impre-
cise Utility Hierarchies”. In: Journal of Statistical Theory and Practice 3.1
(2009), pp. 137-155.

[43] T. Fawcett and A. Niculescu-Mizil. “PAV and the ROC convex hull”. In:
Machine Learning 68.1 (2007), pp. 97-106.

[44] D. Ferguson, A. Stentz, and S. Thrun. “PAO* for planning with hidden
state”. In: Proceedings of the International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2004, 2840-2847 Vol.3.

[45] T Flash and N. Hogan. “The coordination of arm movements: an experi-
mentally confirmed mathematical model”. In: Journal of neuroscience 5.7
(1985), pp. 1688-1703.

[46] D. Fried et al. “Complexity of Canadian traveler problem variants”. In:
Theoretical Computer Science 487 (2013), pp. 1-16.

[47] C. Fulgenzi, A. Spalanzani, and C. Laugier. “Probabilistic motion plan-
ning among moving obstacles following typical motion patterns”. In: Pro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2009, pp. 4027-4033.

145 BIBLIOGRAPHY

[48] B. Giles-Corti and R. J. Donovan. “Relative Influences of Individual, So-
cial Environmental, and Physical Environmental Correlates of Walking”.
In: American Journal of Public Health 93.9 (Sept. 2003), pp. 1583-1589.

[49] B. Giles-Corti et al. “Increasing walking”. In: American Journal of Preven-
tive Medicine 28.2 (Feb. 2005), pp. 169-176.

[50] M. A. Goodrich and A. C. Schultz. “Human-robot interaction: a survey”.
In: Foundations and TA Model of Artificial Emotions for Behavior-Modulationrends
in Human-Computer Interaction 1.3 (2007), pp. 203-275.

[51] S. Greco, J. Figueira, and M. Ehrgott. “Multiple criteria decision analy-
sis”. In: Springer’s International series (2005).

[52] S. Gulati and B. Kuipers. “High performance control for graceful motion
of an intelligent wheelchair”. In: 2008 IEEE International Conference on
Robotics and Automation (ICRA). 2008.

[53] J. Guzzi. Ageing without Losing Mobility and Autonomy (ALMA). Deliver-
able D4.1 - Distributed information gathering and management. Tech. rep.
IDSIA, 2013.

[54] J. Guzzi. Ageing without Losing Mobility and Autonomy (ALMA). Deliver-
able D4.3 - Path planning services. Tech. rep. IDSIA, 2016.

[55] J. Guzzi and G. A. Di Caro. “From indoor GIS maps to path planning
for autonomous wheelchairs”. In: International Conference on Intelligent
Robots and Systems (IROS). IEEE/RSJ. Oct. 2016, pp. 4773-4779.

[56] J. Guzzi and G. A. Di Caro. “Towards supporting elderly’s orientation,
mobility, and autonomy”. In: Workshop on Improving the quality of life
in the elderly using robotic assistive technology: benefits, limitations, and
challenges - International Conference on Social Robotics (ICSR). Oct. 2015.

[57] J. Guzzi et al. “A Model of Artificial Emotions for Behavior-Modulation
and Implicit Coordination in Multi-robot Systems”. In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO). 2018. to ap-
pear.

[58] J. Guzzi et al. “Artificial Emotions as Dynamic Modulators of Individ-
ual and Group Behavior in Multi-robot System”. In: Proceedings of Inter-
national Conference on Autonomous Agents and Multiagent Systems (AA-
MAS). 2018. to appear.

146

BIBLIOGRAPHY

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]
[70]

[71]

J. Guzzi et al. “Bioinspired obstacle avoidance algorithms for robot swarms”.
In: Proceedings of the International Conference on Bio-Inspired Models of
Network, Information, and Computing Systems (BIONETICS). Springer,
2014, pp. 120-134.

J. Guzzi et al. “Human-friendly robot navigation in dynamic environ-
ments.” In: Proceedings of the International Conference on Robotics and
Automation (ICRA). May 2013, pp. 423-430.

J. Guzzi et al. “Local reactive robot navigation: A comparison between
reciprocal velocity obstacle variants and human-like behavior”. In: Pro-
ceedings of the IEEE /RSJ International Conference on Intelligent Robots and
Systems (IROS). 2013, pp. 2622-2629.

J. Guzzi et al. “On the Impact of Uncertainty on Path Planning”. In: Fed-
erated Al for Robotics Workshop (FAIR). 2018. to appear.

E. T. Hall. “A system for the notation of proxemic behavior”. In: American
Anthropologist 65.5 (1963), pp. 1003-1026.

L. He and J. van den Berg. “Meso-scale planning for multi-agent naviga-
tion”. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). May 2013, pp. 2839-2844.

D. Helbing, I. Farkas, and T. Vicsek. “Simulating dynamical features of
escape panic.” In: Nature 407.6803 (2000), pp. 487-490.

D. Helbing et al. “Self-organizing pedestrian movement”. In: Environ-
ment and planning B 28.3 (2001), pp. 361-384.

D. Hennes et al. “Multi-robot collision avoidance with localization un-
certainty”. In: Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). 2012, pp. 4-8.

Y.-J. Ho and J.-S. Liu. “Collision-free curvature-bounded smooth path
planning using composite Bezier curve based on Voronoi diagram”. In:
Proceedings of the IEEE International Symposium on Computational Intel-
ligence in Robotics and Automation (CIRA). 2009.

HRVO Library. http://gamma.cs.unc.edu/HRVO.

Q. Huang and H. Wang. Fundamental study of jerk: evaluation of shift
quality and ride comfort. Tech. rep. SAE, 2004.

M. Hutter et al. Anymal-a highly mobile and dynamic quadrupedal robot.
Tech. rep. Robotic Systems Lab, ETH Zurich Zurich Switzerland, 2016.

http://gamma.cs.unc.edu/HRVO

147 BIBLIOGRAPHY

[72] J. Hwang, T. Park, and W. Hwang. “The effects of overall robot shape on
the emotions invoked in users and the perceived personalities of robot”.
In: Applied ergonomics 44.3 (2013), pp. 459-471.

[73] J.-H. Hwang, R. C. Arkin, and D.-S. Kwon. “Mobile robots at your fin-
gertip: Bezier curve on-line trajectory generation for supervisory con-
trol”. In: Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). 2003.

[74] H. Jun and Z. Qingbao. “Multi-objective Mobile Robot Path Planning
Based on Improved Genetic Algorithm”. In: Proceedings of the Interna-

tional Conference on Intelligent Computation Technology and Automation.
Vol. 2. May 2010, pp. 752-756.

[75] H. Kanoh and K. Hara. “Hybrid Genetic Algorithm for Dynamic Multi-
objective Route Planning with Predicted Traffic in a Real-world Road
Network”. In: Proceedings of the Annual Conference on Genetic and Evolu-
tionary Computation. GECCO ’08. ACM, 2008, pp. 657-664.

[76] S.Karaman and E. Frazzoli. “Sampling-based algorithms for optimal mo-
tion planning”. In: The International Journal of Robotics Research 30.7
(June 2011), pp. 846-894.

[77] R.Kirby, R. Simmons, and J. Forlizzi. “COMPANION: A constraint-optimizing
method for person-acceptable navigation”. In: Proceedings of the IEEE In-
ternational Symposium on Robot and Human Interactive Communication.
2009, pp. 607-612.

[78] B. Kluge and E. Prassler. “Recursive agent modeling with probabilistic
velocity obstacles for mobile robot navigation among humans”. In: Pro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Vol. 1. 2003, pp. 376-380.

[79] R. Knepper and D. Rus. “Pedestrian-inspired sampling-based multi-robot
collision avoidance”. In: Proceedings of the International Symposium on
Robot and Human Interactive Communication. 2012.

[80] T Kruse et al. “Legible robot navigation in the proximity of moving hu-
mans”. In: Proceedings of IEEE Workshop on Advanced Robotics and its
Social Impacts (ARSO). 2012, pp. 83-88.

[81] M. Kuderer, H. Kretzschmar, and W. Burgard. “Teaching mobile robots
to cooperatively navigate in populated environments”. In: Proceedings of
the IEEE /RSJ International Conference on Intelligent Robots and Systems
(IROS). Nov. 2013, pp. 3138-3143.

148 BIBLIOGRAPHY

[82] M. Kuderer et al. “Feature-based prediction of trajectories for socially
compliant navigation”. In: Proceedings of Robotics: Science and Systems.
2012.

[83] M. Kull, T. S. Filho, and P. Flach. “Beta calibration: a well-founded and
easily implemented improvement on logistic calibration for binary clas-
sifiers”. In: Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics. Vol. 54. PMLR, Apr. 2017, pp. 623-631.

[84] K. J. Kyriakopoulos and G. N. Saridis. “Minimum jerk path generation”.
In: Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA). Vol. 1. Apr. 1988, pp. 364-369.

[85] C.-P Lam et al. “Human-centered robot navigation — Toward a harmo-
niously coexisting multi-human and multi-robot environment”. In: Pro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2010, pp. 1813-1818.

[86] G. B. Lamont, J. N. Slear, and K. Melendez. “UAV swarm mission plan-
ning and routing using multi-objective evolutionary algorithms”. In: Pro-
ceedings of the IEEE Symposium on Computational Intelligence in Multicri-
teria Decision Making. IEEE. 2007, pp. 10-20.

[87] J.-C. Latombe. “Exact Cell Decomposition”. In: Robot Motion Planning.
Springer, 1991, pp. 200-247.

[88] S. LaValle. Planning algorithms. Cambridge University Press, 2006.

[89] K. J.LiandJ. Lee. “Indoor spatial awareness initiative and standard for
indoor spatial data”. In: Proceedings of the Workshop on Standardization
for Service Robot, IEEE /RSJ International Conference on Intelligent Robots
and Systems (IROS). 2010.

[90] C. Lichtenthéler et al. “Increasing perceived value between human and
robots — Measuring legibility in human aware navigation”. In: Proceedings
of the IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO).
2012, pp. 89-94.

[91] C.Lichtenthiler and A. Kirsch. “Goal-predictability vs. Trajectory-predictability:
Which Legibility Factor Counts”. In: Proceedings of the ACM /IEEE Interna-
tional Conference on Human-robot Interaction (HRI). ACM, 2014, pp. 228-
229.

[92] Z. Liu, D. Chen, and G. von Wichert. “2D Semantic Mapping on Oc-
cupancy Grids.” In: Proceedings of the German Conference on Robotics
(ROBOTIK). May 2012, pp. 1-6.

149

BIBLIOGRAPHY

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

D. Lu and W. Smart. “Towards more efficient navigation for robots and
humans”. In: Proceedings of the IEEE /RSJ International Conference on In-
telligent Robots and Systems (IROS). Nov. 2013, pp. 1707-1713.

M. Luber et al. “People tracking with human motion predictions from
social forces”. In: Proceedings of IEEE International Conference on Robotics
and Automation (ICRA). 2010, pp. 464—469.

M. Luperto, A. Quattrini Li, and E Amigoni. “A System for Building Se-
mantic Maps of Indoor Environments Exploiting the Concept of Building
Typology”. In: RoboCup 2013: Robot World Cup XVII. Springer Berlin Hei-
delberg, 2014, pp. 504-515.

E. Machuca and L. Mandow. “Multiobjective heuristic search in road
maps”. In: Expert Systems with Applications 39.7 (2012), pp. 6435-6445.

E. Machuca et al. “An empirical comparison of some multiobjective graph
search algorithms”. In: Proceedings of the Annual Conference on Artificial
Intelligence AAAI. Springer. 2010, pp. 238-245.

L. Mandow and J. P. de la Cruz. “Comparison of heuristics in multiobjec-
tive A* search”. In: Proceedings of the Conference of the Spanish Association
for Artificial Intelligence. Springer. 2005, pp. 180-189.

R. Marler and J. Arora. “Survey of multi-objective optimization methods
for engineering”. In: Structural and Multidisciplinary Optimization 26.6
(Apr. 2004), pp. 369-395.

K. Melo, T. Horvat, and A. J. Ijspeert. “K-Rock, a Bio-robot Outside the
Lab, Back In Nature”. In: Proceedings of the International Symposium on
Adaptive Motion of Animals and Machines (AMAM). 2017.

Y. Morales, A. Watanabe, and E Ferreri. “Including human factors for
planning comfortable paths”. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). 2015.

A. 1. Mouaddib. “Multi-objective decision-theoretic path planning”. In:
Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA). 2014.

M. Moussaid, D. Helbing, and G. Theraulaz. “How simple rules deter-
mine pedestrian behavior and crowd disasters.” In: Proceedings of the Na-
tional Academy of Sciences of the United States of America 108.17 (2011),
pp. 6884-6888.

150 BIBLIOGRAPHY

[104] M. Moussaid et al. “Experimental study of the behavioural mechanisms
underlying self-organization in human crowds.” In: Proceedings of the
Royal Society B: Biological sciences. Vol. 276. 1668. Aug. 2009, pp. 2755-
2762.

[105] M. Moussaid et al. “Traffic instabilities in self-organized pedestrian crowds.”
In: PLoS Computational Biology 8.3 (2012), €1002442. arXiv: 1203.5267.

[106] S.C.Narulaand V. Vassilev. “An interactive algorithm for solving multiple
objective integer linear programming problems”. In: European Journal of
Operational Research 79.3 (1994), pp. 443-450.

[107] E. Nikolova and D. R. Karger. “Route Planning under Uncertainty - The
Canadian Traveller Problem.” In: Proceedings of the Annual Conference on
Artificial Intelligence (AAAI) (2008).

[108] A.Niichter and J. Hertzberg. “Towards semantic maps for mobile robots.”
In: Robotics and Autonomous Systems (2008).

[109] OGC. IndoorGML core schema. http://schemas.opengis.net/indoorgml/
1.0/indoorgmlcore.xsd. 2016.

[110] OGC. IndoorGML navigation schema. http://schemas.opengis.net/
indoorgml/1.0/indoorgmlnavi.xsd. 2016.

[111] S. On and A. Yazici. “A comparative study of smooth path planning for
a mobile robot considering kinematic constraints”. In: Proceedigns of the
International Symposium on Innovations in Intelligent Systems and Appli-
cations (INISTA). 2013.

[112] Open Geospatial Consortium Inc. OGC IndoorGML v.1. http: //www .
opengeospatial.org/standards/indoorgml. 2014.

[113] C. H. Papadimitriou and M. Yannakakis. “Shortest paths without a map”.
In: Theoretical Computer Science (1991).

[114] A. Papadopoulos, L. Bascetta, and G. Ferretti. “Generation of human
walking paths”. In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Nov. 2013, pp. 1676-1681.

[115] W. J. Park and R. M. Kil. “Pattern Classification With Class Probability
Output Network.” In: IEEE Trans. Neural Networks (2009).

[116] A. Piazzi, C. G. Lo Bianco, and M. Romano. “Smooth Path Generation for
Wheeled Mobile Robots Using 1°-Splines”. In: Motion Control. 2010.

[117] G. H. Polychronopoulos and J. N. Tsitsiklis. “Stochastic shortest path
problems with recourse.” In: Networks (1996).

https://arxiv.org/abs/1203.5267
http://schemas.opengis.net/indoorgml/1.0/indoorgmlcore.xsd
http://schemas.opengis.net/indoorgml/1.0/indoorgmlcore.xsd
http://schemas.opengis.net/indoorgml/1.0/indoorgmlnavi.xsd
http://schemas.opengis.net/indoorgml/1.0/indoorgmlnavi.xsd
http://www.opengeospatial.org/standards/indoorgml
http://www.opengeospatial.org/standards/indoorgml

151

BIBLIOGRAPHY

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]
[126]
[127]

[128]

[129]

[130]

M. J. D. Powell. “A Direct Search Optimization Method That Models the
Objective and Constraint Functions by Linear Interpolation”. In: Advances
in Optimization and Numerical Analysis. 1994.

H. Prautzsch, W. Boehm, and M. Paluszny. Bézier and B-Spline Techniques.
Springer, 2002.

P Raja and S. Pugazhenthi. “Optimal path planning of mobile robots: A
review”. In: International Journal of Physical Sciences 7.9 (2012), pp. 1314—
1320.

P Ratsamee et al. “Social navigation model based on human intention
analysis using face orientation”. In: Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2013, pp. 1682—
1687.

J. Rios-Martinez et al. “Navigating between people: a stochastic opti-
mization approach”. In: Proceedings of IEEE International Conference on
Robotics and Automation (ICRA). Vol. 231855. 2012, pp. 2880-2885.

E Rubio et al. “Industrial robot efficient trajectory generation without
collision through the evolution of the optimal trajectory”. In: Robotics
and Autonomous Systems 86 (2016), pp. 106-112.

M. Rufli, J. Alonso-Mora, and R. Siegwart. “Reciprocal Collision Avoid-
ance With Motion Continuity Constraints”. In: IEEE Transactions on Ro-
botics 29.4 (Aug. 2013), pp. 899-912.

J. Rupert G Miller. Survival Analysis. John Wiley & Sons, 2011.
RVO2 Library. http://gamma.cs.unc.edu/RV02.

O. E Sahin and V. Aksakalli. “A Comparison of Penalty and Rollout-Based
Algorithms for the Canadian Traveler Problem”. In: International Journal
of Machine Learling and Computing 5.4 (2015), pp. 319-324.

L. Scandolo and T. Fraichard. “An anthropomorphic navigation scheme
for dynamic scenarios”. In: Proceedings of IEEE International Conference
on Robotics and Automation (ICRA). 2011, pp. 809-814.

P R. Schrater, D. C. Knill, and E. P Simoncelli. “Mechanisms of visual
motion detection.” In: Nature Neuroscience 3.1 (2000), pp. 64-68.

H. Seki, T. Sugimoto, and S. Tadakuma. “Novel driving control of power
assisted wheelchair based on minimum jerk trajectory”. In: IEEJ Trans-
actions on Electronics, Information and Systems 125 (2005), pp. 1133-
1139.

http://gamma.cs.unc.edu/RVO2

152

BIBLIOGRAPHY

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

Z. Shillert and P, Fiorini. “Motion planning in dynamic environments us-
ing velocity obstacles”. In: The International Journal of Robotics Research
17.7 (1998), pp. 760-772.

E. A. Sisbot et al. “Navigation in the presence of humans”. In: Proceed-
ings of IEEE-RAS International Conference on Humanoid Robots. 2005,
pp- 181-188.

E. A. Sisbot et al. “A mobile robot that performs human acceptable mo-
tions”. In: Proceedings of IEEE /RSJ International Conference on Intelligent
Robots and Systems (IROS). 2006, pp. 1811-1816.

N. H. Sleumer and N. T. Gurman. Exact Cell Decomposition of Arrange-
ments used for Path Planning in Robotics. Tech. rep. ETHZ, 199.

J. Snape et al. “The hybrid reciprocal velocity obstacle”. In: IEEE Trans-
actions on Robotics 27.4 (2011), pp. 696-706.

J. Snape et al. “Smooth and collision-free navigation for multiple robots
under differential-drive constraints”. In: Proceedings of the International
Conference on Intelligent Robots and Systems (IROS). 2010, pp. 4584—
4589.

A. Stentz. “Optimal and efficient path planning for partially-known en-
vironments”. In: Proceedings of the International Conference on Robotics
and Automation (ICRA). IEEE. 1994, pp. 3310-3317.

R. E. Steuer. Multiple criteria optimization: theory, computation, and ap-
plication. Wiley, 1986.

B. S. Stewart and C. C. White III. “Multiobjective A*”. In: Journal of the
ACM 38.4 (Oct. 1991), pp. 775-814.

M. Svenstrup, T. Bak, and H. J. Andersen. “Trajectory planning for robots
in dynamic human environments”. In: Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). 2010, pp. 4293—
4298.

Y. Tamura, T. Fukuzawa, and H. Asama. “Smooth collision avoidance in
human-robot coexisting environment”. In: Proceedings of IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). 2010,
pp. 3887-3892.

P W. Thorndyke and B. Hayes-Roth. “Differences in spatial knowledge
acquired from maps and navigation”. In: Cognitive Psychology 14.4 (Oct.
1982), pp. 560-589.

153

BIBLIOGRAPHY

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

P Trautman et al. “Robot navigation in dense human crowds: the case
for cooperation”. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). May 2013, pp. 2153-2160.

P Trautman and A. Krause. “Unfreezing the robot: navigation in dense,
interacting crowds”. In: Proceedings of IEEE /RSJ International Conference
on Intelligent Robots and Systems (IROS). 2010, pp. 797-803.

J. M. M. Tur, C. Zinggerling, and A. C. Murtra. “Geographical information
systems for map based navigation in urban environments”. In: Robotics
and Autonomous Systems 57.9 (2009), pp. 922-930.

A. Turner et al. “From Isovists to Visibility Graphs: A Methodology for
the Analysis of Architectural Space”. In: Environment and Planning B:
Planning and Design 28.1 (Feb. 2001), pp. 103-121.

S. Wang et al. “Sensor-based dynamic trajectory planning for smooth
door passing of intelligent wheelchairs”. In: Proceedings of the Computer
Science and Electronic Engineering Conference (CEEC). 2013, pp. 7-12.

C. Weinrich et al. “Prediction of human collision avoidance behavior by
lifelong learning for socially compliant robot navigation”. In: Proceedings
of the International Conference on Robotics and Automation (ICRA). May
2013, pp. 376-381.

M. Wermelinger et al. “Navigation planning for legged robots in chal-
lenging terrain”. In: Proceedings of the IEEE /RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 2153-0866.

D. Wilkie, J. van den Berg, and D. Manocha. “Generalized velocity obsta-
cles”. In: Proceedings of IEEE /RSJ International Conference on Intelligent
Robots and Systems (IROS). 2009, pp. 5573-5578.

A. Wu and J. P How. “Guaranteed infinite horizon avoidance of unpre-
dictable, dynamically constrained obstacles”. In: Autonomous Robots 32.3
(2012), pp. 227-242.

K. Yamori. “Going with the flow: Micro-macro dynamics in the macrobe-
havioral patterns of pedestrian crowds.” In: Psychological review 105.3
(1998), pp. 530-557.

X. Yang et al. “Route Selection for Railway Passengers: A Multi-objective
Model and Optimization Algorithm”. In: Journal of Transportation Sys-
tems Engineering and Information Technology 13.5 (2013), pp. 72-100.

154

BIBLIOGRAPHY

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

W. Yanyang, W. Tietao, and Q. Xiangju. “Study of multi-objective fuzzy
optimization for path planning”. In: Chinese Journal of Aeronautics 25.1
(2012), pp. 51-56.

A. B. E. Yasuaki, M. Yoshiki, and Y. Abe. “Collision avoidance method for
multiple autonomous mobile agents by implicit cooperation”. In: Pro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). Vol. 3. 2001, pp. 1207-1212.

J. Y. Yen. “Finding the K-Shortest Loopless Paths in a Network”. In: Man-
agement Science 17.11 (1971), pp. 712-716.

B. Zadrozny and C. Elkan. “Transforming classifier scores into accurate
multiclass probability estimates”. In: International Conference on Knowl-
edge Discovery and Data Mining. ACM. 2002, pp. 694-699.

H. Zender et al. “Conceptual spatial representations for indoor mobile
robots”. In: Robotics and Autonomous Systems 56.6 (June 2008), pp. 493—
502.

Y. Zhang, D.-w. Gong, and J.-h. Zhang. “Robot path planning in uncer-
tain environment using multi-objective particle swarm optimization”. In:
Neurocomputing 103 (2013), pp. 172-185.

B. D. Ziebart et al. “Planning-based prediction for pedestrians”. In: Pro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 2009, pp. 3931-3936.

E. Zitzler, K. Deb, and L. Thiele. “Comparison of multiobjective evolu-
tionary algorithms: Empirical results”. In: Evolutionary computation 8.2
(2000), pp. 173-195.

	Contents
	Introduction
	Path planning in indoor spaces
	Introduction
	Related Work
	Spatial representations
	Rich maps and multi-objective path planning
	Trajectory planning in social spaces

	Model
	Problem formulation
	IndoorGML
	Microscopic attributes
	Navigation layer
	Macroscopic attributes
	Navigation line graph
	Multi-objective optimization

	Experiments
	Experimental setup
	Results

	Concrete instances
	Optimal topological planning for smart wheelchairs
	Drones coordination on a flyway

	Conclusions and Perspectives

	Optimal trajectory planning in indoor spaces
	Introduction
	Related Work
	Model
	The jerk along a trajectory as a cost
	Problem formulation
	Search space
	Bending cost optimisation
	Optimal trajectories in indoor buildings
	Geometric multi-objective optimization

	Experiments
	Synthetic map
	Real building map
	Multi-objective planning example
	Robot navigation

	Conclusions and Perspectives

	Human-friendly local navigation
	Introduction
	Local navigation
	Human-friendly behavior
	Emerging collective behaviors
	Outline

	Related Work
	Local navigation in robotics
	Local navigation in social sciences
	Robot behavior acceptance

	Model
	Problem formulation
	Pedestrian heuristics
	Application to robot navigation

	Comparison with alternative navigation behaviors
	Behaviors based on Reciprocal Velocity Obstacle
	Comparison with the Human-like behavior

	Navigation along a geometrical trajectory
	Experimental setup
	Scenarios
	Robots and sensing
	Simulation
	Implementation of navigation behaviors

	Experiments
	Safety
	Sensing
	Validation with real robots
	Scalability
	Heterogeneous swarms
	Emerging collective behaviors
	Trajectory following

	Discussion
	Conclusions and Perspectives

	Planning with traversability estimations
	Introduction
	Planning according to traversability estimations
	Risk-aware path planning
	Resilent path planning

	Related work on the Canadian traveller problem
	Risk-aware path planning
	Problem formulation
	Approximated convex-hull of the Pareto front
	Experiments

	The impact of the estimator quality on the navigation policy
	Problem formulation
	Binary traversability classifier
	Optimal and baseline policies
	Experimental setup
	Experimental Results
	Discussion

	Conclusions and Perspectives

	Conclusion
	Summary
	Looking forward

	Publications
	Software Releases

