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Abstract

Software systems play a more and more important role in our everyday life. Many relevant
human activities nowadays involve the execution of a piece of software. Software has to be
reliable to deliver the expected behavior, and assessing the quality of software is of primary
importance to reduce the risk of runtime errors. Software testing is the most common quality
assessing technique for software. Testing consists in running the [system under test (SUT)|on a
finite set of inputs, and checking the correctness of the results. Thoroughly testing a software
system is expensive and requires a lot of manual work to define test inputs (stimuli used to
trigger different software behaviors) and test oracles (the decision procedures checking the
correctness of the results).

Researchers have addressed the cost of testing by proposing techniques to automatically
generate test inputs. While the generation of test inputs is well supported, there is no way to
generate cost-effective test oracles: Existing techniques to produce test oracles are either too
expensive to be applied in practice, or produce oracles with limited effectiveness that can only
identify blatant failures like system crashes.

Our intuition is that cost-effective test oracles can be generated using information produced as
a byproduct of the normal development activities. The goal of this thesis is to create test oracles
that can detect faults leading to semantic and non-trivial errors, and that are characterized by a
reasonable generation cost.

We propose two ways to generate test oracles, one derives oracles from the software redun-
dancy and the other from the natural language comments that document the source code of
software systems.

We present a technique that exploits redundant sequences of method calls encoding the
software redundancy to automatically generate test oracles named [cross-checking oracles (CCO{
We describe how are automatically generated, deployed, and executed.
We prove the effectiveness of [CCOracles| by measuring their fault-finding effectiveness when
combined with both automatically generated and hand-written test inputs.

We also present Toradocu, a technique that derives executable specifications from Javadoc
comments of Java constructors and methods. From such specifications, Toradocu generates
test oracles that are then deployed into existing test suites to assess the outputs of given test
inputs. We empirically evaluate Toradocu, showing that Toradocu accurately translates Javadoc
comments into procedure specifications. We also show that Toradocu oracles effectively identify
semantic faults in the SUT.

and Toradocu oracles stem from independent information sources and are comple-
mentary in the sense that they check different aspects of the
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Chapter 1

Introduction

Software systems play a central role in our daily life. Software virtually affects every human
activity: working, driving, watching movies, taking pictures, communicating with others, and so
on. Over time, software systems are becoming more and more complex, and show more and
more complex behaviors that have to be verified. The cost of checking the software behavior
can amount up to the 75% of the total development cost [|6] (39} [40]].

Software verification is an activity that aims to identify mismatches between the expected
and the actual behavior of software systems, and is an essential part of modern development
processes. Software verification comprises software testing and formal verification. Formal
verification verifies that a[system under test (SUT)|is correct with respect to some specifications
for any possible input. Instead, software testing samples the behavior of a[SUT|and checks the
correctness of the finite set of sample executions. IEEE defines testing as

“the dynamic verification that a program provides expected behaviors on a finite
set of test cases, suitably selected from the usually infinite execution domain” [[9]].

Although formal verification and testing share the same goal, their applicability largely
differs. Formal verification is expensive because it requires formal specifications of the properties
under test, and those specifications are seldom available. There are several reasons for this: To
write formal specifications developers must use unfamiliar languages typically on a different
abstraction level of the programming languages they know and use everyday. While there
is a plethora of tools supporting developers in programming, there is way less support in
writing and debugging formal specifications. Formal verification applies only where its benefit
counterbalances its cost, for example in critical software systems and, in general, where the
developer craves or needs strong guarantees on the software behavior.

In industry the maturity level of testing activities is higher than formal verification activities,
and testing is now well integrated in software development processes, to the point that testing
can become the pillar around which a software system is built like in test-driven development
(TDD). The central artifact of software testing is the test case. Informally, a test case is composed
of a test input and a test oracle. Test input is a set of stimuli—inputs and execution conditions for
the software under test. Test oracle is a mechanism that applies a pass/fail criterion to software
executions [[4, [79]]. Test suite (i.e., a collection of test cases) and oracle generation are time-
consuming and expensive activity, and automation is a promising research direction to reduce
the cost and improve the effectiveness of software testing. Test automation reduce the cost of
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testing by automating several testing activities (e.g., test case execution, test suite management,
regression testing, test case generation). While many testing activities are supported by mature
tools and the generation of test inputs is becoming more and more automated, automatically
generating effective test oracles is still an open problem. In a recent survey of the literature on
test oracles, Barr and colleagues affirm that

“compared to many aspects of test automation, the problem of automating the
test oracle has received significantly less attention, and remains comparatively less well-
solved. This current open problem represents a significant bottleneck that inhibits
greater test automation and uptake of automated testing methods and tools more
widely” [[5]].

After an empirical evaluation of automated oracles, Nguyen and colleagues conclude that

“the high false positive rates of the existing automated oracles make them cost
effective only when manual oracle definition costs are very high (more than 30 times
higher, in our rough estimate), as compared to the manual assessment of a failed
test case. In practice, this might prevent any industrial adoption of automated oracles,
unless their false positive rate is dramatically reduced” [|69]].

Automated oracles are especially important in the context of automatic testing: automatic
test case generators produce hundreds, thousands of test cases for each software module under
test. Without a cost-effective oracle, developers have to inspect each generated test case, and
manually define oracles, for instance assertions, to check the results. The cost of such activity
represents a major bottleneck for the adoption of automatic test case generators.

This thesis addresses the problem of generating cost-effective test oracles. The cost-effective-
ness of a test oracle largely depends on the information used to generate the oracle. The more
the available information is formal and complete, the more the oracle is effective and costly. The
less the available information is formal and complete, the less the generated oracle is effective
and expensive. Finding a good trade-off between cost and effectiveness of test oracles is a major
challenge and is the ultimate goal of this thesis.

To be reasonably inexpensive oracles must be generated automatically, from information
sources that are usually available as byproduct of the software development and/or inexpensive
to produce. To be effective test oracles must be able to identify failures due to semantic faults,
going beyond the mere crash of the In this PhD research, we identify two information
sources that are commonly available and that we exploit to generate test oracles: intrinsic
software redundancy and natural language comments embedded in the source code of the

1.1 Research Hypothesis and Contributions

The overall research hypothesis of this PhD thesis is: Cost-effective test oracles can be automatically
generated from different and heterogeneous information sources that are present in software systems
as a byproduct of the normal development activities.

State-of-the-art techniques generate either inexpensive application-independent oracles that
miss many failures, or effective but expensive oracles from ad-hoc artifacts that must be produced
specifically for the oracle generation. This thesis proposes approaches that use information
already present in software systems as a byproduct of the normal software development to
produce effective oracles without incurring a high cost.
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This dissertation advances the state of the art in test oracle generation by proposing techniques
to automatically generate test oracles from information sources already present in software
systems, namely intrinsic redundancy and code comments:

Oracles from Intrinsic Redundancy The thesis proposes a technique to generate test oracles
from redundancy that is emerging in modern software systems, and that we refer to as
intrinsic software redundancy [[16,161]]. Intrinsic software redundancy has been identified by
Carzaniga et al., who exploited this redundancy to design self-healing Web applications [[15]]
and standard Java applications [[13]]. We demonstrate that intrinsic software redundancy
can be mined automatically from software systems and can be used to automatically
generate test oracles that we refer to as[cross-checking oracles (CCOracles)] In this thesis,
we propose a technique that generates from intrinsic redundancy that can be
automatically mined from the and that automatically deploys the generated oracles
into existing test cases. We show that[CCOraclesk are effective in identifying faults when
combined with both manually defined and automatically generated test inputs.

Oracles from Code Comments The thesis proposes a technique to generate test oracles from
natural language comments embedded in the source code of the Code comments are
pervasive in modern software systems. So far they have been only marginally exploited to
generate oracles, even though they contain a substantial amount of information about
the expected behavior of the We propose an approach to translate code comments
into procedure specifications that comprise pre- and post- conditions that, in turn, we
transform into test oracles. We demonstrate the effectiveness of the approach, both in
terms of accuracy of the generated specifications and in terms of effectiveness of the
generated oracles.

The two techniques we propose are different and independent. They are different because
they rely on different information sources to generate test oracles. Intrinsic redundancy and
comments can be available in different amount or even at different time, so that one technique
may be applicable when the other is not. They are also independent in the sense that they
produce complementary oracles that can be used together to thoroughly test the

1.2 Research Methods

Research methods can be categorized in two main classes: quantitative and qualitative methods.
In this thesis we use both quantitative and qualitative investigations to validate the research
hypothesis. In particular, we support the cost-effectiveness of the oracle-generating techniques
that we propose by:

* Quantitatively evaluating the effectiveness of the generated oracles. In particular, we
measure the effectiveness as the number of failures reported by the oracles.

* Quantitatively measuring the accuracy of the generated oracles. The accuracy of an oracle
consists in the number of false (spurious) alarms reported by the oracle.

* Qualitatively discuss the cost of the approaches. A quantitative study on the cost would be
hard to perform and even harder to generalize. The cost of an oracle generating technique
is strongly affected be the surrounding environment in which the technique is applied:
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development process, skill set of the people using the technique, nature and peculiarities
of the [SUT] company established practices, and so on. For this reason we opted for a
qualitative analysis of the cost.

1.3 Thesis Structure

The thesis is organized as follows:

* Chapter[2]describes the most relevant software engineering approaches to generate test
oracles. We survey techniques that generates oracles from different kinds of information,
with different levels of cost-effectiveness.

* Chapter [3| presents It describes the information source from which

are generated, the intrinsic software redundancy; it shows how the intrinsic redundancy
can be automatically identified and used to generate [CCOracles}; it presents the results of

a thorough empirical evaluation of

* Chapter [4 describes how we generate test oracles from code comments. It describes how
we exploit natural language processing techniques to translate natural language code
comments into procedure specifications; it also shows how to generate test oracles from
procedure specifications, and how to deploy the generated oracle into test cases. It presents
the results of the empirical evaluation that we performed to validate the technique.

* Chapter [5|summarizes the contributions of the thesis and outlines future research direc-
tions.



Chapter 2

Automated Oracle Generation

Test oracles are of prime importance to detect faults at testing time, expensive
to design manually, and difficult to generate automatically. This chapter overviews
the main techniques proposed to automatically generate test oracles, highlights
their contributions and strength, and discusses their limitations and weakness.
This chapter also emphasizes the characteristics of cost-effective oracles, and the
limitations of existing techniques with respect to cost-effectiveness.

Designing effective test oracles is a difficult and expensive task. In their seminal work,
Davis and Weyuker discuss the issue of creating oracles to test software systems for which is
difficult or even impossible to define the expected behavior [25, (97]]. While when designing
test cases manually developers usually write both test inputs and oracles (often in the form of
assertions), the oracle problem becomes extremely important in the context of the automatic
generation of test inputs. Current automatic test case generators produce inputs with limited
oracles. Generated test inputs with limited oracles can only identify blatant failures, for instance
system crashes, and lead to many false alarms and missed alarms. Many results produced by
the when fed with automatically generated test inputs, require manual inspection and
assessment. This is a time-consuming and error-prone task: for each result, developers have to
understand how automatically generated test inputs exercised the and figure out what the
expected behavior of the for the specific input is to classify the result as either correct or
wrong. This process is tedious, expensive and error-prone: The same or analogous behaviors
can be exercised by several tests and for each test the developer must assess the validity of
the outputs. This factor can be mitigated, but not eliminated, with test suite minimization
techniques.

A cost-effective technique to generate test oracles would allow automatic testing to be more
effective and less expensive: more effective because a semantically rich oracle can identify not
only blatant faults, but also complex wrong behaviors; less expensive because an automatic oracle
relieves developers from the burden of manually writing oracles for automatically generated
test cases.

We now survey the main techniques proposed so far to generate test oracles and deal with
the oracle problem [4} [5] (80}, [85]]. We borrow the classification and terminology from a recent
survey by Barr and colleagues who classify test oracles in three categories: implicit, specified,
and derived test oracles [|5]].
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2.1 Implicit Oracles

Implicit oracles are generated from implicit knowledge about the correct behavior of the
do not depend on the semantics, are easy to generate, and are generally applicable to any
program. Implicit oracles need to be defined only once, and can be deployed and applied to test
any implementation.

The most common implicit oracle is the “crash oracle”, sometimes also called “null oracle”:
Crash oracle deems as erroneous any system crash and unhandled exception. Crash oracle is
general since it can be applied to any application, given that it ignores the semantics of the
Crash oracle is a heuristic oracle since it signals as erroneous every crash and unhandled
exception, while not every crash and unhandled exception are erroneous behaviors. (A system
may intentionally crash under some circumstances, for instance to prevent major consequences
when a malicious attack is detected.) For such programs, the crash oracle would classify the
crash as an erroneous result, while the crash is the correct and expected result. The generation
of a crash oracle is straightforward: Modern execution environments and testing frameworks
like JUnitE] treat anomalous program termination as failures by default. Crash oracle is used in
different testing techniques because of its simplicity and low cost. For example, the crash oracle is
commonly used in automatic testing of graphical user interfaces (GUIs) where GUIs under test are
stimulated with different strategies, for instance randonﬂ and reinforcement learning [[59]]. Crash
oracle is combined with test inputs generated with tools like EvoSuite [34} [35]], Randoop [70],
and GRT [[56]] to detect faults causing system crashes. Alike those tools, robustness tester tools
such as JCrasher [22]], Check 'n’ Crash [23]], and DSD-Crasher [24]] exploit the crash oracle to
detect faults leading to crashes.

Self-healing techniques often use the crash oracle to detect system failures and apply proper
healing strategies [[13]]. Crash oracle is used in fuzzing, that is the generation of random input
in attempt to make the crash [[67]]. The effectiveness of the crash oracle is limited to those
faults that lead to an anomalous termination of the Shrestha and Rutherford empirically
evaluated the fault-finding effectiveness of the crash oracle, and indicate that crash oracle detects
about one fifth of faults present in software systems [87]].

Randoop [[70] generates test cases that combine assertions checking crashes with assertions
that check object-oriented contractsE] For example, Randoop-generated assertions check that
the implementations of the Java method java.lang.Object#equals are:

* reflexive: x.equals(x)==true;
* symmetric: x.equals(y)==y.equals(x);
e transitive: x.equals(y)==true && y.equals(z)==true => x.equals(z).

These checks are easy to generate in the test suite. Randoop also heuristically classifies test
executions. For instance, Randoop deems as faulty those Java methods that trigger NullPointer-
Exception when none of their arguments is null. Although straightforward to generate, the
heuristic-based assertions generated by Randoop are not always sound and may generate false
alarms.

Implicit oracles are effective in identifying generally wrong behaviors, but cannot identify
semantic failures, that is, incorrect results produced by the In a nutshell, implicit oracles

1http://junit.org
Zlhttps://developer.android.com/studio/test/monkey.html
3https://randoop.github.io/randoop/manual/index.html#classifying_tests
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can only detect general, blatant errors and fail in identifying wrong results produced by the
Implicit oracles are partial, since they only check few properties of the result produced by
a program, and cannot assess the overall correctness of the results.

An important aspect of implicit oracles is that they are generally applicable, but not always
valid. Crash oracle is a perfect example, since not every crash is an unintended incorrect behavior.
Thus, implicit oracles are not always correct and may generate spurious results.

2.2 Specified Oracles

Specified oracles are generated from formal specifications of the expected behavior of the
Formal specifications can be used to automatically generate test oracles by checking if the
behaves as specified. Formal specifications can also be used to generate test input, therefore the
existence of formal specifications supports the automatic generation of complete test cases that
stimulate the [SUT] and check the correctness of its behavior.

There is a vast availability of languages for creating specifications that, according to Barr and
colleagues [[5]], can be classified in three main categories: model-based specification languages,
assertions and contracts, and algebraic specification languages.

Model-based Oracles Model-based specifications describe, either explicitly or implicitly, the
different states in which a system can be, and the transitions that alter the state, possibly bringing
the system to a different state. Transitions can be constrained, meaning that a transition could
be possible only if its preconditions hold.

Several model-based specifications languages have been proposed, the most relevant ones
being Z [88]], B [53]], OCL [196]], Alloy [42]], PROMELA [[41]], Final State Machines [54]], UML
State Machines [[11]], and Labeled Transition Systems [|95]].

Peters and Parnas exploit Parnas’ seminal work on system specifications by proposing a testing
framework in which program documentation is written in a precise formal tabular notation that
describes the effects of the program, and therefore enables the automatic generation of test
oracles [[72} [77]].

Assertions and Contracts Assertions and contracts are a popular form of class and method
specifications. Assertions are conditions that must hold and can be checked during program
execution. The violation of a condition indicates the presence of an error condition in the
program. Assertions are supported by many popular programming languages like C, C++, C#,
Java, Python.

Languages that implement the design-by-contract methodology (e.g., Eiffel) provide de-
velopers with constructs to define contracts, that are pre- and post- conditions. Contracts are
exploited in testing to generate test inputs and test oracles [21] 64} [65], [68]].

Oracles from Algebraic Specifications Doong and Frankl propose ASTOOT, a technique to
automatically generate test cases for object-oriented programs from algebraic specifications [30]].
ASTOOT analyzes the algebraic specifications and derives pairs of method invocation sequences
and a Boolean tag indicating whether the two sequences should lead to an equivalent state or
not. A test case execution consists in executing the two sequences and checking whether the
obtained outputs/states are (approximately) observationally equivalent (or not) and if this is
consistent with the tag. The ASTOOT approach has been evolved and refined in TACCLE that
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combines black- and white-box testing for unit testing [[17} [18]]. TACCLE exploits a black-box
testing approach to generate sequences of method calls, and a white-box testing approach to
check the observational equivalence (or non-equivalence) of the generated sequences. TACCLE
also extends ASTOOT to cluster-level (integration) testing, with a new specification language
for modules called Contract. Contract specifications formally describe interactions between
different classes and allow the creation of integration tests.

Generating test oracles from formal specifications is not always simple and straightforward.
To create oracles in the form of assertions embeddable in a test suite, the language used to
write the specifications must have an abstraction level similar to the source code. Also, the
specifications must have a semantics that can be converted into assertions using a programming
language compatible with the programming language of the[SUT]| For example, name of variables
and constants in specifications and in the actual code of the must be compatible.

Specified oracles are effective in identifying semantic failures corresponding to faults in the
implementation of the but suffer from the cost of producing and maintaining the formal
specifications. While modern developers are accustomed to write, inspect, check, and debug
source code, familiarity with formal specification languages is still not widespread. Another
drawback of formal specifications is the alignment between source code implementation and its
formal specification: The alignment must be continuously maintained and, given the fast pace
at which the code evolves, this is an expensive task. As a consequence, specified oracles are
rarely used in practice for common systems that do not require strong and certified guarantees
on their behavior.

2.3 Derived oracles

Derived oracles are generated from artifacts other than formal specifications, such as execution
models, informal documentation, invariants, and other versions of the

Pseudo-oracles Pseudo-oracles rely on multiple alternative, independent implementations of
the [25]]. They check whether the program under test and the independent implementations
produce the same result given the same input. If the different versions agree, that is, they produce
the same result, the program under test is considered correct, otherwise pseudo-oracles report a
failure. In comparing the results from the different implementations, the comparison mechanism
may behave akin to a majority vote algorithm. Pseudo-oracles are conceptually simple. However
the comparison procedure, that compares the different outcomes to check whether they are the
same, hides potentially complex problems. Comparing integer numbers and Boolean values is
easy, while comparing complex outputs is less trivial. Thus, creating pseudo-oracles can be quite
difficult, even when multiple implementations of the same functionality are available. The main
limitation in pseudo-oracles adoption is the cost of producing multiple alternative (independent)
versions of the same functionality. Such high cost is not justifiable for testing the most common
applications.

Recently, a kind of pseudo-oracle has been used to test collaborative Web applications, for
instance Google Docs and Microsoft Office Online: in any given instant collaborators who are
working on the same shared document through their browsers should see the same document,
i.e., same content and same style. If the document looks different to the collaborators an error
has occurred [[8]]. In this case, there is no additional cost to generate the oracle: such technique
can be applied without incurring any additional development cost.
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Metamorphic and Symmetric Testing Metamorphic testing exploit metamorphic properties
of the program under test to automatically generate test inputs and oracles [[19} 20} [85]]. A
metamorphic relation specifies how a change in the input of a program under test would change
its output, and encodes the intrinsic redundancy present in the For instance, consider the
function cosine(x) that computes the cosine value of an angle x. A metamorphic relation for
the cosine function is cosine(x)=cosine(-x). The readers should notice that this is only one
of the many metamorphic relations of the function cosine. Given the metamorphic relation and
a test input like x=7t, metamorphic testing generates the following test case:

1 | resultl = cosine(m)
2 | result2 = cosine(—m)
3 | assert(resultl == result2)

On line |3| the generated test case verifies the validity of the metamorphic relation: If the
results of the assumed equivalent operations differ, the assertion fails letting the test case
fail. Besides mathematical domains where metamorphic testing has an immediate applicability,
metamorphic testing has been applied to different non-numerical domains, like Web services [[1,
107]], compilers, and computer graphics [[85]. The cost of metamorphic testing lies in the
generation of initial test inputs and in the definition of the metamorphic relations. While there
is a good support for the automatic creation of test inputs, at least in some of the domain where
metamorphic testing is applied, the support for an automatic identification of metamorphic
relations is at an early stage and is currently possible only in specific domains [[47, [48], 55| [T02]].

Symmetric testing exploits equivalent sequences of method calls to generate test cases with a
semantically relevant oracle [[38]]. Symmetric testing relies on two kind of symmetries: over-values
and over-variables. An over-values symmetry describes the relation between two executions of
the same functionality executed with different input values. As an example consider the function
add(x,y) computing the sum of two numbers x and y. An over-values symmetry for this function
is add(x,y)=add (x+k,y-k). An over-variables symmetry describes the relation between two
executions of the same functionality executed with a permutation of the same inputs. For
example, the symmetry add(x,y)=add(y,x) is an over-variables symmetry for the previously
introduced function add. Symmetries encode correctness conditions. For instance, function add
is correctly implemented if and only if V x,y,k add (x,y)=add (x+k, y-k). In symmetric testing,
symmetries are used to generate test oracles for a given set of test inputs that can be generated
with automatic tools or manually defined by developers. Given a test input and a symmetry,
symmetric testing verifies that the symmetry holds executing the function under test both with
the given input and the input transformed as specified by the symmetry, and then checking
whether the symmetry holds comparing the results. If the results differ, a symmetry violation is
reported thus highlighting a fault in the implementation of the function under test. The main
cost of symmetric testing lies in the manual discovery of symmetries (a common trait shared with
metamorphic testing). Manually defining symmetries is a difficult task since many symmetries
are nontrivial and they might be difficult to identify for a developer. Symmetries definition is
also an extremely important task: the effectiveness of symmetric testing largely depends on the
symmetries available for the To the best of our knowledge no technique supporting the
generation of symmetry has been presented so far, although it is conceptually possible to adapt
techniques for automatically derive metamorphic relations to the task of symmetries generation.

Oracles from System Executions Test oracles can be generated directly from properties inferred
by executing the [SUT] from models learned from system execution, and from previous executions
(regression oracles).
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Quasi-invariants that Daikon generates [[31}, 32]], temporal invariants [[7]], and final state
automata [|58]] can be used as test oracles.

Researchers have exploited Artificial Neural Nets (ANNs) and machine learning classifiers to
learn the expected behavior of the from executions and generate oracles [[10} [100]].

Automatic test case generators like EvoSuite [134} [35]] automatically generate test suites
with embedded regression oracles, in the form of assertions about the consistency between the
results of the current and the previous executions. EvoSuite generates a test input, executes the
generated test input, records the output, and generates an assertion that acts as an oracle, for
example, assert(result==42).

Generating derived oracles is less expensive than generating specified oracles, because the
information needed to generate the oracles is automatically extracted from the system execution.
However, an empirical study of Nguyen and colleagues indicates that some derived oracles are
still expensive to be applied in practice, since such oracles may present a high false alarm rate
that largely impact on their practical applicability [[69]].

2.4 Cost-effectiveness

Test oracles are characterizable by generation cost and effectiveness. The cost of generating
a test oracle roughly amounts to the cost of producing the information needed for the oracle
generation, plus the cost of using that information for the oracle generation. The effectiveness
of a test oracle is its ability to correctly classify executions of the as correct or wrong. In
other words, a test oracle is effective when it is able to precisely identify erroneous behaviors of
the and report those (and only those) failures.
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Figure 2.1. Test oracles cost-effectiveness

Let us consider the intuitive and informal landscape of the cost-effectiveness of implicit,
specified, and derived test oracles, where the oracle cost only amounts to the cost of its generation
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(see Fig.[2.1). On one side of the spectrum there are implicit oracles: inexpensive to generate,
but with a low effectiveness. Implicit oracles are generated from inexpensive information that
is usually available and does not have to be provided ad-hoc for the oracle generation. At the
same time, implicit oracles are only capable of detecting a small portion of the wrong behaviors
the might show. On the other side of the spectrum, there are specified oracles that are
expensive to generate and effective in finding semantic faults. The high generation cost of
specified oracles stems from the fact that the specifications from which they are produced are
difficult and costly to define. The effectiveness of specified oracles comes from the fact that they
are able to check every specified aspect of the In this sense, the effectiveness of specified
oracles largely depends on the quality of the specifications from which oracles are generated.
The more the behavior of the [SUT]is specified, the more the specified oracles are effective in
identifying failures. In between implicit and specified oracles there are derived oracles that can
be less expensive than specified oracles and more effective than implicit oracles. Derived oracles
save developers from writing formal specifications and are able to detect faults at testing time
that would be overlooked by simple implicit oracles.

Existing techniques to generate derived oracles show significant limitations. All the ap-
proaches that derive oracles from executions of the are convenient during regression testing
but difficult to apply for standard (i.e., non-regression) testing. Oracles generated from execu-
tions of the capture the behavior of the “golden” version and then test the new version to
check that golden and new version behave the same. However, this approach is not applicable in
normal testing, when new functionalities are added to the system (or existing functionalities are
changed). Pseudo-oracles require multiple implementations of the same functionality resulting
in an expensive alternative to specified oracles (but applicable even when it is difficult to define
the expected behavior of a system, and formal specification would be hard or impossible to write).
Symmetric/metamorphic testing are testing techniques rather than oracle generation techniques
and requires symmetric/metamorphic relations to be present, discovered, and formalized. All of
this implies a cost that counterbalances the effectiveness of such derived oracles. Besides the
information source used to generate the oracles, the rate of false alarms of derived oracles is
a critical issue [[69]. To be truly cost-effective derived oracles must provide a decent level of
accuracy, i.e., few false alarms must be generated. Clearly, the level of accuracy provided by
specified oracles is difficult to match, still the number of false alarms reported by derived oracles
should not be so high to prevent the adoption of derived oracles in practice.

The goal of this thesis is to design techniques to generate cost-effective test oracles that are
more effective than implicit oracles and current derived oracles, and that can be generated with
an acceptable cost. To achieve the goal, test oracles have to be generated from semantically
relevant information that is specific to the[SUT] and that is commonly present in software systems
(i.e., that has not to be produced ad-hoc for the oracle generation). This leads to the generation
of oracles that are truly cost-effective in most situations.






Chapter 3

Oracles from Intrinsic Redundancy

Modern software systems are intrinsically redundant, that is, they contain differ-
ent implementations of the same functionality. Thus, intrinsically redundant systems
can provide the same functionality through different executions. The intrinsic re-
dundancy of software systems is a consequence of the software life cycle, and does
not derive from explicit decisions to add redundancy, as in the case of safety critical
systems where redundancy is explicitly added to increase reliability.

We observe that intrinsic software redundancy can be used to automatically
generate test oracles, by checking that two intrinsically redundant functionalities
produce the same result when executed with the same input. In this chapter, we
propose a novel kind of test oracles, named|[CCOracles| that compares the outcomes of
two redundant functionalities, and identifies executions that lead to non-equivalent
results, thus violating the redundancy assumption.

The chapter introduces presents an approach to automatically gen-
erate from intrinsic software redundancy, and discusses the results of
an extensive empirical evaluation about the effectiveness of in identify-
ing synthetic faults in several [systems under testl The chapter also describes how
intrinsic redundancy can be automatically identified to further reduce the cost of

generating

Modern software systems are intrinsically redundant in the sense that they can provide the
same functionality through different executions. Intrinsic software redundancy is not added
explicitly to systems, for example to meet reliability requirements. Rather, intrinsic redundancy
is a consequence of independent design and process decisions: The intrinsic redundancy of
software systems stems from different design practices like design for reusability, backward
compatibility, and performance optimization.

Design for Reusability Current software systems mix and are composed of different compo-
nents whose functionalities may overlap. For example, there are a lot of Java libraries whose
functionalities overlap, at least partially, with the standard Java library: TroveE] that provides
high-performance collections, GuaveE] that contains various functionalities from collections to

1http://trove.starlight—systems.com
2http://github.com/google/guava
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1 | public boolean putAll(K key,Iterable values){
2 checkNotNull(values);
3 if (values instanceof Collection) {
4 Collection valueCollection = (Collection) values;
. 5 return !valueCollection.isEmpty()
1| public boolean put(K key, V value) { 6 & get (key).addAll(valueCollection);
2 return get(key).add(value);
3 |3 7 } else { .
8 Iterator valueltr = values.iterator();
9 return valueItr.hasNext()
10 && Iterators.addAll(get(key), valueltr);
11 }
12 |}

Figure 3.1. Methods put and putAll of the AbstractMultimap class from Google Guava

graphs and strings manipulation, SLF4ﬂ which is an API for logging that can be bound at
runtime with many back ends. The usage of reusable components is fostered by design for
reusability practices.

Backward compatibility During the system evolution functionalities are modified, updated
and replaced. Removing and replacing functionalities may significantly impact on the overall
system behavior, since it may affect any module that depends on the removed or replaced
function. To mitigate the impact of such changes, developers often keep the old functionality in
the system, sometimes as “deprecated” functions. This phenomenon is evident in every major
release of Java, where many methods are deprecated, leaving different alternatives to achieve
the same goal inside the Java library itsele]

Performance optimization Classic examples of redundancy due to performance optimization
are algorithms that work well for specific cases and poorly in others, for instance algorithms that
work well in terms of time but badly in terms of memory consumption. Consider the case of
sorting: there exist several algorithms to sort an array and, depending on the array size and the
memory available, an implementation can be better than the others. Therefore, having multiple
implementations of the same functionality makes sense in some contexts to build more efficient
software systems.

Software is redundant at different levels, from single instructions to functions and methods
to entire subsystems. For examples, systems can contain different subsystems taking care of
logging, and may contain different methods to sort collections and arrays. So far, most studies
have focused on the use of intrinsic redundancy at method call or function level for procedural
systems [[13], (14} (16}, 38, 61}, [85I].

Intrinsic redundancy at method call level manifests itself in the form of equivalent sequences
of method calls that produce the same effect, even though their executions differ. Figure 3.1
shows an example of intrinsic redundancy at method call level. Methods put (K key, V value)
and putAll(K key, Iterable values) ofthe class AbstractMultimap from the Google Guava
projectﬂ add key-value pair(s) to the map. The method put adds a new single key-value pair to a
map, while putAll adds multiple key-value pairs, one for each element of the Iterable object

3http://www.slf4j.org
4https://docs.oracle.com/javase/9/docs/api/deprecated- list.html#method
5https://github.com/google/guava
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values. Although they provide the same functionality, that is, they add key-value pair(s) to the
map, their implementation is largely different: put directly invokes method add, putAll does
not. Even if it is true that at some point the execution of putAll could trigger the execution of
the method add, still the implementations differ: putAll is not simply implemented as multiple
calls to put, at least, not directly. Therefore, put and putAll are redundant sequences of method
calls.

The presence of intrinsic redundancy in modern software systems has been empirically
studied in the last years. Carzaniga et al. studied the documentation of popular JavaScript
libraries looking for intrinsically redundant method calls to generate workarounds in self-healing
approaches for runtime failures. A workaround for a given method/function consists of an
alternative sequence, that is, a redundant sequence, of methods/functions. Carzaniga and
colleagues mined about 300 redundant sequences from Google Maps, JQuery, and YouTube
JavaScript libraries [[14} [15} [37]]. Mattavelli’s PhD thesis reports an exhaustive investigation of
the presence of intrinsic redundancy in software systems [[61]]. In the thesis, Mattavelli reports
5813 workarounds, that is, redundant method call sequences, from 961 classes of 12 open
source Java projects (Apache Ant, Apache Commons Lang, Google Guava, Oracle JDK, Joda Time
among the others). These data provide strong evidence of the presence of intrinsic redundancy
at method call level in software systems (at least in those written in Java and JavaScript). The
intrinsic redundancy is not equally distributed across different software systems. Some systems
contain way more equivalent sequences than others. For example, Google Guava contains about
15 equivalent sequences per class, while Apache Ant less than 4.

Intrinsically redundant functionalities are substantially different from code clones: intrinsi-
cally redundant functionalities are different implementations with the same functional behavior,
while code clones are logically or structurally similar code fragments with slightly different
functionality. Code clones are well known in the research community [43} (73] [81]], and mainly
regarded as the consequence of bad design and development practices, aimed to be avoided or
fixed. Intrinsically redundant functionalities have been investigated only recently, can stem from
good practices and can be fruitfully exploited for different purposes. In recent years, intrinsic
redundancy has been used to add self-healing capabilities to Web and Java applications by
means of workarounds that are automatically activated upon failures [[14}[37,76]. In this thesis,
we propose a new technique for automatically generating semantically relevant test oracles by
exploiting the intrinsic redundancy of software systems at method call level, that is, equivalent
sequences of method calls.

3.1 Cross-Checking Oracles

We propose to use intrinsic software redundancy to create test oracles that do not require addi-
tional and expensive-to-define information (e.g., formal specifications) beyond the information
already present in the itself. In particular, we exploit intrinsic redundancy at method call
level to automatically derive oracles that we call[CCOracles| [CCOracles|are rooted in the idea
of pseudo-oracles prosed by Davis and Veyuker [25] (see Section [2.3). However, instead of
cross-checking the executions of multiple, independently-developed versions of a functionality,
exploit the intrinsic redundancy contained in the encoded as equivalent se-
quences of method calls. Referring to Figure|3.1} an example of an equivalence rule that encodes
intrinsic redundancy is AbstractMultimap.put(key,value) = AbstractMultimap.putAll
(key,List.of(value)). The rule states that methods put and putAll shall provide the same
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functionality for any actual concrete value assigned to arguments key and value.

The key intuition underlying [CCOracles|is that two redundant sequences of method calls are
supposed to behave equivalently, but their actual behaviors may diverge because of a fault in
their implementation. Therefore, if there is an input for which the behavior of the two redundant
sequences diverges, the (from which the method sequences come from) is faulty. In other
words, given the same input, two redundant sequences should always produce the same output.
When two redundant sequences produce different outputs for a specific input, there is a bug
somewhere in the code of the [SUT]

Figure [3.2] shows the conceptual schema of a[CCOracle} Given two reundant sequences Seq,
and Seq, and given an input for the sequences, the execution of Seq; and Seq, produces Output;
and Output, respectively. The outputs are then checked with an equivalence-check procedure
that verifies the equivalence of the outputs. If the outputs are equivalent, the equivalence-check
passes, while it fails otherwise. A failure in the equivalence check indicates the presence of a

fault in the code.
Equivalence
rese |~ Cpassrai)

Figure 3.2. Conceptual schema of a[CCOracle

A[CCOracle| needs two redundant method call sequences, that is two call sequences that are
equivalent (i.e., they produce the same result) and different (i.e., they are not exactly the same
sequence). More precisely, a[CCOracle|relies on the redundancy between a single method call m
that we refer to as original method call, and a sequence of method calls m, . . . m,. A[CCOracle|
is applied to a test input, that is a valid input for both m and the sequence m, . . . m,, and that
can be either manually-written or automatically generated by automatic test case generator like
EvoSuite [35]] and Randoop [70]].

As an example, consider the redundant sequences of Figure Starting from a given input,
for instance an empty map, adding a single key-value pair by means of method map.put (key,
value) and adding a collection with a single key-value pair with the call map.putAll(key,
List.of(value)) must produce an equivalent map, that is, a map containing a single key-value
pair. The equivalence of the resulting maps must be checked by the equivalence check decision
procedure.

are composed of three main ingredients:

1. Cross-check execution: The mechanism allowing the execution of two method sequences
starting from the same input.

2. Equivalence check: The decision procedure that verifies the equivalence of the outputs
produced by the sequences.

3. Deployment: The way|CCOracles|are applied to existing test inputs.

The general idea of [CCOracles|can be applied in many testing contexts. We implemented the
idea for the unit testing of Java programs and in the remainder of this chapter we refer to such

specific implementation of [CCOracles
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1|void testCase() {

2| Map map = ArrayListMultimap.create();
3| map.put(“Keyl”, 1);

4| map.put(“Key2”, 2);
5

6

map.containsValue(1);-------------- map.values().contains(1);

|—> equivalence check 4—,

v

7| map.containsKey(“Key1”);

Figure 3.3. A test case with an embedded [CCOracle

To illustrate the ingredients of a let us consider the more concrete example
reported in Figure The example consists of an excerpt of a unit test case for the class
ArrayListMultimap from Google Guava. The test case is augmented with a[CCOracle] exploit-
ing the following, given equivalence: map.containsValue(x) = map.value().contains(x).
The equivalence states that method map.containsValue(x) and the method call chain map-
.values().contains(x) are two equivalent ways to check whether a specific element x is a
value contained in the map. The execution of the test case proceeds normally up to the invocation
of the method containsValue(1). Then, right before the execution of containsValue(1), the
cross-check execution mechanism executes both containsValue(1) and value().contains(x)
starting from the same initial map, obtaining two maps. Then the equivalence check verifies
whether the two maps are equivalent. If so, the execution of the test case continues, otherwise
the reports a failure. The automatic deployment mechanism decides where to execute
a cross-checking oracle within a test case.

A key element for the success of CCOracles is the ability of automatically identifying redundant
method call sequences. The next sections describe how redundant method call sequences can
be automatically identified and the three ingredients of a[CCOracle

3.1.1 Automatic Identification of Redundant Sequences

Redundant method call sequences are relations between a method call and a sequence of method
calls, and encode the intrinsic redundancy present in a software system. Redundant sequences
have been exploited to add self-healing capabilities to software systems [[13} [14]].
exploit redundant sequences to automatically generate test oracles.

In this section, we discuss a search-based approach to automatically identify relations m =s,
between a method m of a class, and a method calls sequence s. m and s execute differently, but
produce equivalent results. (The approach is briefly discussed in this thesis since it is not one of
the author’s main contributions. The approach is described at length by Mattavelli in his Ph.D.
thesis [[61]].)

Checking the full equivalence of two programs (sequences) on every input is a well-known
undecidable problem. We propose a method that refers to a tractable notion of equivalence
based on testing equivalence [27]]: two sequence are testing equivalent—hereafter equivalent
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for short—if they are equivalent with respect to a finite (and thus tractable) set of inputs. We
designed a search-based approach for Java programs called SBES (Search-Based Equivalent
Sequences) [36] 61] [62]]. SBES takes as input a method call m and a set of test input I for
m, and generates redundant sequences in two iterative phases. SBES first generates a set of
likely-equivalent candidates, by exploiting a genetic algorithm (GA) to synthesize a candidate
sequence c that is testing equivalent to m, that is, it reaches the same state and produces the
same return value of m on every test input in I. SBES checks that two states or return values are
the same by recursively computing the distance between the two objects. SBES computes the
distance of primitives fields as the absolute mathematical difference between the numeric fields
and the Levenshtein distance of string fields. It computes the distance between arrays as the sum
of the distance of their elements, and replacing missing elements with the maximum possible
value for the array elements type, when processing arrays with different length. It considers
objects as “infinitely” distant from null. SBES is implemented as a modified version of the GA
implemented in EvoSuite [[34} 35]]. If SBES cannot synthetize a candidate sequence ¢ within a
given search (time) budget, it terminates. Otherwise, SBES validates the computed candidate ¢
to understand whether c is effectively equivalent to m. SBES tries to synthetize a test input t for
which the behavior of m and ¢ diverges, with a given search (time) budget. If SBES succeeds in
finding a test input t for which ¢ produces different output or state than m, SBES discards the
candidate sequence ¢ as non-equivalent, adds ¢ to the set of test inputs I, and iterates to select a
new candidate, otherwise SBES returns ¢ as a redundant sequence of m.

Notice that, although SBES generates redundant sequences, it does not check to what extent
the identified sequences are redundant. Therefore, SBES may find equivalences like m = s where
m and s contain exactly the same statements. Such equivalences do not affect the effectiveness

of [CCOracles|even though they are not helpful in identifying functional faults of the

SBES can synthetize redundant method call sequences in Java classes with good precision and
recall. We compute precision as the ratio between the number of correct equivalent sequences
synthesized by SBES and the total number of equivalent sequences reported by SBES (correct

and non-correct):
correct

precision =
correct +wrong

We compute recall as the ration between the number of correct equivalent sequences synthesized
by SBES and the total number of equivalent sequences of a given class:

correct

recall = —
correct +wrong + missing
SBES synthesizes correct equivalences when the generated equivalence holds for every possible
input. On the contrary, if the synthesized sequence does not hold for every possible input, we
deem the equivalence as wrong. Missing sequences are those sequences that SBES failed to
synthesize. We evaluated the precision and recall of SBES as follows:

1. We selected a class from a library.

2. We manually derived its redundant sequences, each in the aforementioned form m =s.
Note that manually derived equivalences are “minimal”. An equivalence is minimal if any
statement in the right-hand side s cannot be removed without altering the effect produced
by the sequence s. Of course a minimal sequence can be indefinitely extended, for
instance by adding adding statements with an overall null effect. For example, considering
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sequences from a Java list, the sequence X.add(42) can be extended as X.add(42);
X.add(42); X.remove(42);

3. For each equivalence, we ran SBES to generate the equivalent sequences of m (the left-
hand side of the equivalence). SBES is nondeterministic due to the random nature of GA
that SBES exploits to generate call sequences. Thus, we run SBES 20 times per target
method m, with a search budget of 3 minutes for the candidate generation phase and 6
minutes for the candidate validation phase.

4. We inspected each equivalent sequence that SBES produces and we classify it as correct
and wrong.

5. We measured precision and recall according to their definitions.

Table summarizes the subject classes we use in our experimental evaluation. For each
subject class, the table reports the number of methods provided by the class (column Available),
the number of methods considered in our evaluation (column Target), and the number of
equivalent sequences we manually derived for the class (column Equivalences). Target methods
are those methods that appear as left-hand side of manually-derived equivalences. Subject
classes are selected from three popular, open-source Java libraries: Google Guava, GraphStream,
and the Java standard library. GraphStream and Guava libraries are also used for the
evaluation and are described in Section[3.2.1} In addition, we consider the Stack class from the
standard Java Class LibraryE] In total, we evaluated SBES on 266 target methods from 23 Java
classes, with a total of 421 equivalences.

For each subject, Table[3.2|shows the aggregate results of the 20 runs of SBES for each subject.
Table reports the number of: manually derived equivalences (column Equiv.), equivalences
that SBES synthesizes correctly (column Correct), equivalences that SBES wrongly synthesizes
(column Wrong), precision and recall. SBES has an overall precision of 82%, meaning that
more than 4 out of 5 synthesized equivalences are correct. With an overall recall of 74%, SBES
can identify 3 out of 4 equivalences present in a Java class. In summary, SBES can effectively
identify many redundant method call sequences for Java programs.

3.1.2 Cross-Check Execution

The cross-check execution mechanism executes both method call sequences with the same input.
In general, the input consists of every external element that could affect the execution. For
instance, the input of a method call consists of the state of the program and the arguments
provided to the method call. The state of a program in itself includes many aspects: the state of
the receiver objects, the state of global variables, the state of input/output operations, etc. In an
object oriented system, the state is usually composed of interconnected objects referring each
other through their field members.

A[CCOracle] executes two method call sequences on the same object, by guaranteeing the
mutual independence of the two executions, and the equivalence check compares the results.
The test case execution following the execution of a shall not be affected by the
execution of the

We explored several techniques to execute pairs of redundant sequences without interferences
between their executions.

6 http://docs.oracle.com/javase/7/docs/api/java/util/Stack.html
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Table 3.1. SBES Empirical Evaluation Subjects

Methods
Library Class Available Target Equivalences
Graphstream  Path 31 2 5
Edge 36 9 20
SingleNode 72 5 12
MultiNode 76 5 12
Vector2 29 5 21
Vector3 39 6 22
Guava ArrayListMultimap 25 15 18
ConcurrentHashMultiset 27 16 16
HashBasedTable 25 16 13
HashMultimap 24 15 13
HashMultiset 26 16 19
ImmutableListMultimap 30 11 20
ImmutableMultiset 32 8 20
LinkedHashMultimap 24 15 13
LinkedHashMultiset 26 16 19
LinkedListMultimap 24 24 17
Lists 17 8 16
Maps 32 9 12
Sets 30 10 25
TreeBasedTable 27 15 17
TreeMultimap 26 14 12
TreeMultiset 35 20 34
Java Stack 50 15 45

Total 778 266 421
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Table 3.2. SBES Empirical Evaluation Results

Synthesized Equiv.

Library Class Equiv. Correct Wrong Precision Recall
GraphStream  Path 5 5 2 0.71 1.00
Edge 20 20 1 0.95 1.00
SingleNode 12 12 0 1.00 1.00
MultiNode 12 12 0 1.00 1.00
Vector2 21 21 3 0.87 1.00
Vector3 22 22 4 0.84 1.00
Guava ArrayListMultimap 18 12 3 0.80 0.67
ConcurrentHashMultiset 16 6 2 0.75 0.38
HashBasedTable 13 2 8 0.20 0.15
HashMultimap 13 13 1 0.92 1.00
HashMultiset 19 19 5 0.79 1.00
ImmutableListMultimap 20 2 0 1.00 0.10
ImmutableMultiset 20 3 0 1.00 0.15
LinkedHashMultimap 13 12 3 0.80 0.92
LinkedHashMultiset 19 19 6 0.76 1.00
LinkedListMultimap 17 11 0 1.00 0.65
Lists 16 15 1 0.94 0.94
Maps 12 8 0 1.00 0.67
Sets 25 21 0 1.00 0.84
TreeBasedTable 17 10 0.24 0.18
TreeMultimap 12 8 2 0.80 0.67
TreeMultiset 34 34 10 0.78 1.00
Java Stack 45 32 7 0.82 0.71

Total 421 312

=N
=]

0.82 0.74
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First, we explored a solution based on the fork of the execution of the test case into two
separated Java virtual machine [[49]]. Cloning the Java virtual machine is the ideal solution since
it supports completely independent executions, but this solution is complex and, to the best of
our knowledge, there is no readily usable implementation of a cloneable JVM. Unfortunately,
the fork primitive provided by operative systems cannot fork standard JVM implementations,
since the fork operation does not support multithreaded processes (the forked process would
have only one active thread that is the duplication of the thread from which the fork operation
is invoked). Another major shortcoming of this solution is that the output of the two executions
are in two different virtual environments. This complicates the comparison, since at least one
of the two results must be serizalized to be sent outside its environment, and serialization is
time-consuming and potentially a source of problems, for example when only part of an object
state can be serialized, not to mention when entire objects cannot be serialized out of the box,
that is, their classes do not implement java.io.Serializable interface.

We then investigated the use of a checkpoint and rollback approach whose conceptual schema
is shown in Figure In this approach, the initial state of the system is saved (init-state)
with a checkpoint operation so that both sequences can be executed starting from init-state.
The redundant sequence is then executed and the output outputl is saved. Then, the sys-
tem state is rolled back to previously saved init-state before the execution of the original
method invocation to produce output output2. The restore operation retrieves the output of
the redundant sequence outputl previously saved. Finally, the equivalence check procedure
compare verifies that outputl and output2 are equivalent. Even this solution requires complex
checkpoint-rollback mechanisms, either based on some form of serialization or other mechanisms
like software transactional memories [86]]. Thus, a checkpoint-rollback technique can show the
same shortcomings of the fork-based solution described before.

[init-state |+— checkpoint |
( redundiant-seq )
e {w]
)

’outputz ‘<—( original-call ]

restore  |e 3

i,,»[compare(outputl, output2)]

Figure 3.4. Cross-check execution by means of a checkpoint and rollback mechanism

We resorted to a simple, clone-based solution. Figure shows a sequential and a parallel
version of this solution. In this approach the original method call, the redundant sequence, and
the equivalence check execute in the same virtual machine. Without any isolation between
executions provided by the platform, it is crucial to create a mechanism to allow the execution
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[ duplicate(orig) } """"""""" ’

new Thread

‘ copy “[ duplicate(orig) ]

[orlglnal caII(or|g)] redundant- seq(copy

i
b [redundantlseq(copv)] """ . Out?mz | mx_‘/ m

[compare(outputl, outputz)]* compare(outputl outputz)

(a) Sequential. (b) Parallel.

Figure 3.5. Cross-check execution based on object duplication

of the [CCOracle] without interfering with the original test case execution. Our solution relies on
the duplication of the receiver object of the original call: in this framework the original call is
executed on the original receiver object, while the redundant sequence is executed on a copy of
the original receiver object. Optionally, also the arguments of the original method call can be
deep-cloned to ensure a higher level of isolation, especially for testing classes whose methods
may have side-effects on the input parameters. For the object duplication we exploit an open-
source and publicly-available library since it deep-clones objects, even instances of classes not
implementing the interface java.lang.Cloneable, that is, the standard implemented interface
to make a class cloneable. We modified the library in the way collections are duplicated: By
default, the cloning library uses methods putAll or addAl1l of collections APIs to insert elements
into the newly created clone object. Instead, we tweaked the library to deep-clone the exact
internal structure of collections.

To optimize the check for the consistency of the created clones, we added preliminary checks
that verify the result of the cloning procedure. The first check verifies that the created copy is
consistent with the original receiver object out of which the copy is created. Then, a second
check ensures that the execution of the original method call on two copies produces the same
consistent outcome. Only if the preliminary checks pass, the cross-check execution proceeds
with the execution of the original method on the original receiver object and the execution of
the redundant sequence on a copy of the original receiver object.

Even a perfect duplication mechanism cannot prevent all side-effects. In fact, interferences
may still happen through the shared state like global static variables. Although this may happen,
we observed that in the context of unit testing and with the additional checks, we are able to
obtain accurate test oracles.

Figure [3.5| shows two different versions of the solution based on objects duplication: se-
quential and parallel. The sequential approach, in which original call and redundant sequence
are executed one after the other sequentially in the same thread, is the one we adopted in our
prototype implementation of In the parallel alternative, original call and redundant
sequence are executed in parallel in two different threads that synchronize before the execution
of the equivalence check. Although this solution may be more efficient in some circumstances,
we adopted the more simple, linear approach.

7https://github.com/kostaskougios/cloning
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3.1.3 Equivalence Check

The equivalence check verifies that the original method call and the redundant sequence are
semantically equivalent, meaning that they produce the same output given the same input. In
the context of object-oriented languages, like Java, the output of a method invocation is often
structured, and is composed of the state of the receiver object, the return value, the state of the
method arguments, the shared state like global variables, and the state of I/O operations. We
simplify the equivalence check by considering only a subset of the output: We consider the state
of the receiver object and the state of the return value, thus ignoring the state of the parameters,
I/0 and global state. This means that our equivalence check procedure may be unsound, judging
equivalent two sequences producing outputs that are actually different, but whose difference
lies, for example, into state of I/O operations or global state.

Comparing the state of two objects is not trivial. The simplest way is to check their identity,
that is, to check if two references point to the exact same object in memory. This approach
is too strict: it distinguishes two absolutely identical objects. Moreover, identity check would
not work in since the two references, inputs of the equivalence check procedure,
are indeed pointing to two different objects. Sometimes, developers rely on the method java-
.lang.0Object#equals(Object o) to verify the equivalence of two objects. Method equals is
inherited by every Java class and, by default, performs an identity check: It considers equivalent
only two references pointing to the same object in the heap, that is, it returns true if and only if
the receiver object and the argument of the equals invocations are two references to the same
object. The equals method is often overridden to provide a more semantic equality comparison,
but even when the method equals is correctly implemented for a given class, it may trigger
the execution of the identity check defined in java.lang.Object#equals(Object o). This
can happen when the equals implementation at some point relies on the equals defined in
java.lang.0Object, for example, to check the equality of referenced objects of a type that does
not provide a reimplementation of the equals method. Therefore, the equals method may, in
some circumstances, perform an undesired identity check.

To overcome the limitations of the equals method, we designed a generic procedure to verify
the equality of two objects based on the notion of observational equivalence. The procedure is
generic, that is, it applies to any object type, does not require any knowledge about the objects
to compare, and does not require any implementation of specific interfaces by the classes of the
objects to compare. Thus, the procedure is fully compatible with instances of existing classes.
Our observational equivalence check tries to infer that the outputs are indistinguishable, by
probing the two objects with identical sequences of public methods, and by comparing the return
values. If the return values of the probing sequences are primitives types (or wrappers), then
they are directly compared. If return values are objects, they are recursively compared with the
observational equivalence procedure. If the procedure observes a difference, there is at least one
sequence of calls (a counterexample) that, if applied to the two objects, leads to two different
results, and thus the results of the original and the redundant calls differ. If the procedure fails
in identifying a difference, the equivalence check deems the two objects as equivalent. Ideally,
the procedure would deem as equivalent two objects that cannot be distinguished through any
sequence of method calls, be it finite or infinite. For practical purposes, the probing sequence is
bounded and then the result produced by the equivalence check may not be always correct.

The equivalence check blends equals method with observational equivalence:
It exploits the equals method when there is an implementation overriding the identity check
provided by java.lang.0Object#equals(Object o), and relies on the observational equiva-
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lence when there is no override of equals available or when the override implementation at
some point triggers the execution of method java.lang.0Object#equals(Object o). In this
second case, the [CCOracles| equivalence check substitutes the equals method defined in java. -
lang.0Object with the observational equivalence, so that, every time there is an invocation of
such method, the observational equivalence actually executes. The blended approach presents
a major advantage over a pure observational equivalence, since it uses the equality notion
provided by developers when available. We implemented the equivalence check by
modifying the implementation of the equals method in the java.lang.0Object class to trigger
the execution of the observational equivalence instead of the identity check implemented in
the equals method. We expect such equality implementation to be both precise and efficient
in most of the cases. Thus, the blended approach is more efficient than a pure observational
equivalence check.

3.1.4 Automatic Deployment

The automatic deployment automatically embeds into a test suite. Given a test case,
S composed of n + 1 statements s, ...,s,, and a list of equivalences (redundant method call
sequences) ES = {m, = eqSeqy, ..., m, = eqSeq, } where m; is a single method invocation, the
automatic deployment selects where to deploy [CCOraclesk to correctly trigger them during the
test case execution.

We implement oracles deployment by means of aspect-oriented programming (AOP) [51]@
We translate each equivalence m; = eqSeq; € ES into an aspect. Every aspect defines one single
advice that performs cross-check execution and equivalence check. An advice executes every
time a test case execution reaches a join point corresponding to a pointcut. Given an equivalence
m; = eqSeq; € ES, the aspects we create defines:

* a pointcut that triggers the advice execution in place of the execution of m; for every
statement s; € S that invokes m;;

* an advice the cross-check the execution of m; and eqSegq;.

We use aspects to instrument the bytecode of the input test suite, either statically with an
ad-hoc compiler or dynamically at load time with a mechanism called load-time weaving. Advices
are executed instead of the method calls originally present in test cases. In other words, by
means of aspects, change the normal control flow of the input test suite, embedding
checks during test case executions. In this respect, are more akin to

embedded assertions rather than assertions checking the overall result of a test case execution.

3.2 CCOracles Evaluation

We empirically evaluated to investigate to what extent the intrinsic software redun-
dancy at method call level can be used to automatically generate cross-checking oracles and to
what extent such oracles can identify non-blatant failures of the [12].

Previous work already shows that modern software systems are intrinsically redundant, and
that such redundancy can be practically exploited to add self-healing capabilities to software
systems [[14} [37, 61}, [76]. Our experiments aim to evaluate the effectiveness of that

8https://eclipse.org/aspectj
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we measure in terms of fault-finding ability of the oracles, that is, the amount of faults that
ICCOracless can reveal by signaling a failure. The oracles effectiveness depends and is affected
by the test input. In our evaluation we consider both manually and automatically generated test
suites. In detail, we answer the following research questions:

RQ1 To what extent are|CCOracles|effective in revealing failures when deployed within manually-
written test cases? How do [CCOracles| compare with oracles (assertions) defined by
developers in terms of fault-revealing effectiveness?

RQ2 To what extent are effective in revealing failures when deployed within automat-
ically generated test inputs? How do|CCOracles|compare with implicit oracles automatically
generated in terms of fault-revealing effectiveness?

3.2.1 Evaluation Setup

To answer the research questions, we conducted an empirical evaluation on subjects, we selected
classes from the following three open-source, publicly available Java libraries:

Guava is a core library developed by Google and used in many of their Java projects. Guava
offers classes supporting caching, concurrency, string processing, and many other tasks.
Guava also extends the set of collections and data structures provided by the Java standard

library}|

Joda-Time is a library that improves in many respects the support for dates and times provided
by the standard Java libraryET]

GraphStream is a library supporting the creation, manipulation, and analysis of dynamic

graphs

From each library we selected concrete classes. From Guava and Joda-Time we selected
classes for which we had a set of equivalences that was derived in previous research work [13]].
We selected two more classes from the GraphStream library. For the selected class for which
we had no equivalences, we manually derived a set of equivalences. Table lists the subject
classes along with the number of methods and of equivalences we found for every class. Overall,
we selected 18 classes from which we identified 529 equivalences.

For each subject, we considered both manually-written and automatically generated test
suites, to address RQ1 and RQ2, respectively. We generated test suites with the test case generator
Randoop [[70]]. Both manually-written and generated test suites contain oracles. Manually-written
test suites have assertions defined by developers to check the outcome of test case executions.
Generated test suites contain Randoop-generated implicit oracles that check the validity of
general object-oriented properties, for instance, method equals must be reflexive, symmetric,
and transitive.

To evaluate the effectiveness of we seeded artificial faults into the subject
classes,with systematic mutation analysis [[29} [79]]. Although mutants might not strongly re-
semble real faults, recent studies indicate a positive correlation between real fault detection
and mutation detection effectiveness of a test suite independently of code coverage [45]]. In

“https://github.com/google/guava
Ohttp:/ /www.joda.org/joda-time
http://graphstream-project.org
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Table 3.3.|CCOracles|Evaluation Subjects and Number of Available Equivalences

Subject Class Methods Equivalences
Guava ArrayListMultimap 25 29
ConcurrentHashMultiset 27 32
HashBiMap 20 16
HashMultimap 24 29
HashMultiset 26 30
ImmutableBiMap 25 19
ImmutableListMultimap 30 34
ImmutableMultiset 32 50
LinkedHashMultimap 24 30
LinkedHashMultiset 26 31
LinkedListMultimap 24 29
TreeMultimap 26 28
TreeMultiset 35 37
Joda-Time DateMidnight 118 20
DateTime 153 27
Duration 44 6
GraphStream  SingleGraph 107 41
MultiGraph 107 41

other words, mutation analysis is considered an effective technique to evaluate and compare the
effectiveness of different test suites. We generated mutants of each subject class by means of
Major, an automatic framework for mutation analysis [[44} |46]]. With Major, we mutated each
subject class obtaining several mutants. We then tested each mutant with both the manually-
written and the Randoop-generated test suites, and recorded the test suites and oracles that kill
mutants.

In summary, for each selected subject we investigated RQ1 and RQ2 using the following
process:

* We seeded faults mutating the subject class (and its superclasses) with Major. We mutated
also super-classes to reflect the fact that faults could be located in inherited methods.
Thus, we obtained a set of mutants (versions).

* We measured the effectiveness of [CCOracles| with manually-written test suites as follows:

— Among all the mutants, we selected the mutants whose seeded mutation is covered
(executed) by the execution of at least one test case of the manually-written test
suite.

— We tested each selected mutant with the manually-written test suite with and without
We recorded the mutants killed by executing the test suite, and the oracles,
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either manually-written or [CCOracle} that contribute in killing the mutant.
* We measured the effectiveness of [CCOracles| with generated test suites as follows:

— We generated a test suite for each mutant with Randoop, specifying the subject class
as the test target to Randoop, and by setting 90 seconds as time budget for the
generation. We discarded mutants for which Randoop fails to generate a test suite.

— Among all the mutants, we selected the mutants whose seeded mutation is covered
(executed) by the execution of at least one test case of the generated test suite.

— We tested each selected mutant with the generated test suite with and without
We recorded the mutants killed by executing the test suite, and the
oracles, either Randoop generated or[CCOracle] that contribute in killing the mutant.

Since we are interested in the fault-finding effectiveness of the oracles, we discard mutants
whose corresponding mutations are not covered (executed) by the test cases, since the amount
of not covered mutations relates to limitations of the test suites, and not with the effectiveness
of the oracle that cannot detect faults that are not executed with the test suite.

During test suites execution, we activated an aspect (corresponding to an equivalence) at

time, to better measure the effectiveness of the oracles, by identifying which oracle kills which
mutant.

3.2.2 Evaluation Results

Table reports the results of the empirical evaluation. For each subject class, and for both
the manually-written and automatically generated test suites, the table reports the number of
selected mutants, the number of mutants killed by implicit or [CCOracles] and the number of
mutants killed by both implicit and

100
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Figure 3.6. Mutants killed with manually-written tests

To answer RQ1 we embedded into manually-written test suites. As shown by
results in Table and more clearly depicted by Figure are effective when
combined with manually-written test cases. More precisely, [CCOracles|correctly kill 28% mutants
on average, while kill 31% mutants. We do not expect to spot all the
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seeded faults, since not every method has a redundant equivalent method to cross-check its
execution, and the equivalence check may still fail to identify the difference in the mutant’s
execution produced by the mutation. Still, kills almost one- third of the mutants.
Therefore, we can affirm that[CCOraclesk are effective in identifying seeded faults. Unsurprisingly,
compared with manually-written assertions, are less effective. In fact, developers
assertions identify 66% of the mutants (70% on average). This was expected, since not every
facet of the outcome of a test can be checked with a and the intrinsic redundancy
(although present) may not be enough to identify some failures. However, [CCOracles|kills 32
mutants (2% of the total) that go unnoticed by manually-written assertions. Thus
well complement manually-written oracles, being able to kill mutants that assertions written

by expert developers do not kill. This means that [CCOracless can increase the fault-finding
effectiveness of manually-written test suites.
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Figure 3.7. Mutants killed with generated tests

To answer RQ2 we augmented Randoop-generated test suites with The results
reported in Table[3.4and graphically illustrated in Figure[3.7]show that[CCOraclesk are effective
when combined with automatically generated test suites. In fact, [CCOracles| kills 21% mutants,
27% on average, while implicit oracles kill only 3%, 10% on average. Therefore, sub-
stantially improve automatically generated test suites that rely on state-of-the-art implicit oracles,
and improves automatic testing, without requiring extra effort. During the experiments with gen-
erated test suites, [CCOracles|detected a real bug in the implementation of the class SingleGraph
of the GraphStream library. The bug has been reported to and confirmed by the develop-
ersH Methods SingleGraph.removeNode (Node node) and SingleGraph.removeNode(int
nodeId) are supposed to be equivalent, both removing a node from a graph given a reference
to the node to be removed or its identification number. The two methods were actually not
behaving equivalently on the following test input:

SingleGraph graphl = new SingleGraph("graphl");
Node nodel = graphl.addNode("nodel");
SingleGraph graph2 = new SingleGraph("graph2");

Node node2 = graph2.addNode("node2");
graphl.removeNode (node2);

Ul WN -

12h‘c‘cps://gi‘chub. com/graphstream/gs-core/issues/109
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The test creates two graphs (graphl and graph2) with two nodes (nodel and node?2 respectively).
Then the test tries to remove node2 from graphl. On line 5 a is deployed checking the
equivalence between graphl. removeNode(node2) and graphl. removeNode (node2.getId()).
The actions should obviously have no consequences on graphl since node2 is not a node of
graphl. Instead, graphl.removeNode(node2) wrongly removes nodel from graphl while
graphl.removeNode(node2.getId()) does not. The difference in the state of graphl is de-
tected by the[CCOracle]that thus reports a failure. The fact that SingleGraph. removeNode (Node
node) deletes the wrong node from the receiver graph is clearly an implementation bug.

The fact that can detect real faults confirms their effectiveness when used in
combination with generated test suite.

All the results reported in Table and in Figures and are true alarms, meaning that
ICCOracles correctly signaled failures when killing mutants. We inspected all the failure reports
produced by [CCOracles| during the evaluation. Out of 846 mutants killed by [CCOracles] only
2 (2%o) are false alarms, that is, the generated spurious alarms when the test cases
should pass. In both cases, false alarms are generated for the subject class ImmutableMultiset
of Google Guava. The reason for such false alarms is that cloned object tree contains object
nodes with different hash codes. Different hash codes can cause differences in the behavior of
the equivalent sequences, differences that are revealed by the equivalence check procedure of
the cross-checking oracles. In essence, may in rare cases produce spurious results
when applied to objects whose behavior depends on hash code.

Overall we can affirm that the additional checks we perform in the cross-check execution

phase of [CCOracles|do not suffer from false alarms (see Section [3.1.2]). Thus, [CCOracles|are

automatically generated oracles that can be applied without high false alarm rate.

3.3 Limitations and Threats to Validity

The effectiveness of[CCOracles|naturally depends on the amount of intrinsic redundancy (encoded
as redundant sequences) that the contains. We did not evaluate the presence of intrinsic
redundancy in software, as it has been proven by existing research work [[16}[61]]. The empirical
evaluation demonstrates that, whenever the is intrinsically redundant at method call level,
such redundancy can be used to automatically derive effective test oracles.

As a technique, the main limitation of is the kind of faults that[CCOracles| aim
to detect. focus on functional faults, and they are not intended and designed to
detect non-functional faults. This stems from the nature of redundant sequences, from which
are generated. Redundant sequences do not capture non-functional properties. In
other words, two sequences that produce equivalent results in different ways (for example with
different execution time or memory consumption) are considered equivalent and then redundant.
Therefore, ignore differences in the non-functional behavior of sequences, and they
do not identify faults causing performance degradation, memory leaks and similar. The use of
intrinsic redundancy to detect non-functional errors has not been explored yet and is outside
the scope of this thesis.

The current prototype has limitations that could affect its effectiveness depending on charac-
teristics of the [SUTI The cross-check execution mechanism does not execute the two redundant
sequences in complete isolation. Interferences between the executions of the redundant se-
quences may happen, for instance, through the static shared state or shared resources like
files and directories. In practice, the execution of one sequence may interfere with the other
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invalidating the pass/fail answer produced by the oracle. In our evaluation we did not witnessed
interferences, but they may appear when are used to test different classes.

Another limitation of the current implementation is the lack of support for I/O operations.
More in detail, do not check the result of I/O operations during the equivalence
check. This may lead to missed alarms when two supposedly redundant sequences produce
different outcomes and the outcomes are results of I/O operations. For example, consider the
case of two redundant sequences producing a file as result. Being redundant, the output files
have to be identical. If the files have different content, it means there is an implementation fault
invalidating the redundancy. The checking the sequences would not be able to detect
the difference and therefore would not report the failure.

The results of the empirical evaluation we performed have limitations that impact both their
internal and external validity. Threats to the internal validity may derive from implementation
errors in the mechanisms that constitute a[CCOracle] Errors in the automatic deployment, cross-
check execution or equivalence check may have introduced spurious outcomes affecting the
overall results of the evaluation. To mitigate the threat we carefully tested the implementation
and we manually investigated the outcomes of the empirical evaluation and we fixed all the
errors we were able to find in our implementation. Furthermore, a complete replication package
available with the prototype implementation of [CCOracles and the experimental infrastructure
is publicly availableE-] Sampling bias is a threat to the external validity of the results. In our
evaluation, subject classes are not randomly selected from projects that have similar character-
istics: they are open-source, written in Java, and extensively used as building blocks in many
other projects. Thus, subject classes may not represent well the entire population of Java classes.
This, and the rather limited number of subject classes, could limit the generalizability of the
results that is[CCOracles| may show a different fault-finding effectiveness when applied on other
Java classes with a similar presence of intrinsic redundancy and faults.

Another threat to validity is the fact we used synthetic faults (mutants) to validate the
effectiveness of Just et al. show with an empirical evaluation that synthetic faults
are good representative of real faults in the sense that a statistically significant correlation exists
between fault- and mutant-detection effectiveness of a test suite [45]]. Although this correlation
exists, some real faults do not have a synthetic counterpart. This means that may
show a lower fault-finding effectiveness on real faults than the one shown with synthetic faults.

13h‘c‘cp://s‘car.inf.usi.ch/s‘car/cross—check
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Chapter 4

Oracles from Natural Language
Documentation

Software systems are commonly documented with code comments. Many modern
languages provide ways to document functions, method, classes, and modules
with semi-structured comments that can be used to generate a nicely formatted
documentation. Such comments are commonly present in software systems.

We propose a technique to derive test oracles by exploiting code comments. In
particular we propose an approach called Toradocu that translates semi-structured
comments, written in natural language, into procedure specifications. Toradocu uses
the procedure specifications to generate test oracles and deploy them into existing
test suites. The chapter presents Toradocu and discusses the results of an extensive
empirical evaluation of the effectiveness of Toradocu.

Software systems are documented at different levels, from code comments embedded into
source code, to procedure documentation and user guides. Code comments embedded in source
code and procedure documentation are commonly encoded in markup languages, like Javadoc,
Doxygen and Sphinx. Javadof] is the standard way to document Java code and is included in
Java since its first release in 1995. DoxygerE] is the most common way to document C/C++
source code, but it also supports other languages like Fortran, Java, and Python. Sphinxﬂ is used
to document Python code and also supports C/C++ and JavaScript among other languages. Code
comments are widespread and commonly used. Virtually every non-trivial project is documented
with such kind of documentation.

Documentation captures the design goals, and frequently describes the expected behavior
of the code fragment it documents. In general, a comment may document different code ele-
ments: statements, fields, methods, classes, packages. Java APIs (constructor and methods) are
commonly documented with Javadoc comments, whose typical structure is shown in Figure
Javadoc comments are particularly interesting because they represent a sort of informal proce-
dure specification that expresses the expected behavior of the method they document. More
precisely, Javadoc comments express the behavior that a user of the documented API should
expect.

1http://docs.oracle.com/javase/9/javadoc/javadoc.htm
2http://www.doxygen.org
3http://www.sphinx—doc.org
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1 /*%

2 * Returns the index of the first matching BMP character in a character sequence, starting from a
3 * given position, or {@code -1} if no character matches after that position.

4 *

5 * <p>The default implementation iterates over the sequence in forward order, beginning at {@code
6 * start}, calling {@link #matches} for each character.

7 *

8 * @param sequence the character sequence to examine

9 * @param start the first index to examine; must be nonnegative and no greater than {@code

10 * sequence. length()}

11 * @return the index of the first matching character, guaranteed to be no less than {@code start},
12 * or {@code -1} if no character matches

13 * @throws IndexOutOfBoundsException if start is negative or greater than {@code sequence.length()}
14 */

15 | public int indexIn(CharSequence sequence, int start) { ... }

Figure 4.1. Javadoc comment of method CharMatcher#indexIn(CharSequence, int) from
Google Guava library

Figure shows the Javadoc comment of method CharMatcher#indexIn(CharSequence,
int) (we omit the implementation of the method for brevity). Method indexIn belongs to class
CharMatcher from Google Guava library (version 23.2). The Javadoc comment is composed
of two optional blocks: The description block highlighted in gray in Figure and a list of
block tags highlighted in light blue in Figure A description block is a free-form natural
language text that generally describes the behavior of the commented method. The text can
contain HTML formatting tags like <p> or inline tags like {@code start} and {@link #matches}
that respectively identify source code fragments and links to other documentation fragments,
resources, and documents. A Javadoc comment like the one reported in Figure describes
in detail the behavior of the documented method indexIn. For example, lines 9-10 indicate
that the integer value used as second argument must be greater or equal zero and less than
the length of the sequence used as first argument. This “pre-condition” is also described on
line 13, where block tag @throws specifies the type of the exception that is thrown when the
pre-condition is not satisfied.

Program documentation is a valuable source of information, and software engineering
researchers have studied comments with different goals.

Comment Quality Analysis The quality of comments has a direct impact on developers who
have to understand, use, modify, and improve the commented code. JavadocMiner automatically
assesses the quality of Javadoc comments by computing several metrics related to both the quality
and readability of the comment text and the consistency between comment and documented
source code [|50]]. JavadocMiner detects low quality comments, to focus the efforts in improving
code documentation. With the same goal, Steidl and colleagues propose two metrics to evaluate
the quality of Javadoc comments [|90]]: coherence and length. The coherence between a method
description and the documented method name is defined as the percentage of words in common
between the method name and the method description. The length is the number of words in a
comment. These metrics identify critical method comments. Pawelka and Juergens investigated
the natural language used for source code identifiers (for example, variable names, method
names, etc.) and comments [[74]], and found that open-source projects are consistently written in
English, while closed-source projects are more mixed, combining English with other languages.
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Source Code Generation Source code generation approaches aim to produce methods from
the Javadoc documentation. Zhai et al. use Javadoc method comments to provide a testing
equivalent implementation of the commented method that is simpler than the original [[I01]]. The
generated implementation can be useful when the original implementation is not available but
required for specific kinds of analysis. Also, the generated implementation is generally simpler,
meaning that analysis techniques should be more efficient on the generated implementation
than the original one. The generated implementation may inaccurately mimic the original
implementation.

Code Summarization Code summarization aims to generate natural language description of
the behavior of a given piece of code. Sridhara et al. detect high level actions within a Java method
and derive a natural language (English) documentation for the method describing the method
behavior [|89]]. The approach considers only the source code of the to-be-commented method,
thus ignoring the context, i.e., how the to-be-commented method is generally invoked and used.
The approach generates summaries that include information about how the summarized method
is used and the context [[63]].

Specification Mining and Bug Finding Using documentation to detect errors in the docu-
mented software system is a quite old idea. The early attempts exploited documentation written
in formal languages for testing and verification purposes [30, [72, [77, [78]. More recently re-
searches focused on natural language documentation that is way more common than formal
specifications. Specifications inferred from natural language documentation are sometimes used
to find inconsistencies between the documentation and the implementation of a software system.
An inconsistency stems from an error in either the documentation or the code (or both). A
recent empirical study shows that the most common repair action to fix a bug in Java systems is
changing the documentation [[104]].

API documentation often includes code examples and refers to code elements such as classes,
interfaces, and so on. It may happen that the documentation is not updated after a code change,
leading to confusing, inconsistent and useless API documentation. DOCREF automatically detects
wrong “code names” in comments, such as a non-existing class name, by extracting code names
from comments (even in code snippets embedded in code comments) and checking whether the
mentioned code names are correct, i.e., they correspond to existing code elements like types,
methods, fields, parameters, etc [103]].

Text2Policy derives Access Control Policies (ACP) from natural language software documen-
tation. Text2Policy transforms English sentences like “The Health Care Personnel (HCP) does
not have the ability to edit the patient’s security question and password.” to a formal specifi-
cation in eXtensible Access Control Markup Language (XACML). Text2Policy helps developers
in identifying inconsistencies between ACP and functional requirements expressed in natural
language like use cases [|99]].

INDICATOR analyzes the API documentation and the implementation of a web service to
derive constraints on parameters. INDICATOR validates derived constraints by means of testing
with an average precision of 94.4% and an average recall of 95.5% [[98]].

Doc2Spec infers resource specifications from Javadoc comments. Specifications inferred
by Doc2Spec describe how resources should be manipulated. For example, for a file resource,
Doc2Spec could infer that read actions should always happen before a close action and that no
actions can be performed after the close action. The precision of the specification created by
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Doc2Spec depends on the quality of the documentation of the resource usage model [[T05]].

Tan and colleagues exploit code comments to detect bugs: Their approach detected several
unknown lock-related bugs in Linux [[92].

Rubio-Gonzdlez and Liblit’s approach detects mismatches between possible error codes
produced by a Linux (file-related) system call and the list of documented error codes that system
call is supposed to produce. The technique exploits a very simple pattern-based approach to
extract the list of possible, documented error codes from Linux manual pages [|83]].

iComment detects both bad comments and bugs by analyzing code comments in programs
written in C/C++. iComment focuses on lock-related issues. To understand comment semantics,
iComment combines natural language processing (NLP) with (supervised) machine learning.
Comments are classified according to a small set of rules that represent lock-related constraints.
iComment detects code-comments inconsistencies by statically analyzing the code to check
whether an inferred rule is violated [[91]].

aComment reports concurrency bugs related to the interrupt context in OS code inferring
the correct expected behavior from the analysis of code comments and source code. More in
detail, aComment analyzes from comments and code the requirements [93]].

ALICS infers method specifications from Javadoc comment exploiting NLP techniques, by
generating specifications as first order logic expressions. For example, given the block tag
comment @param x cannot be null, ALICS produces the predicate cannot_be(x, null).
ALICS defines the semantics of generated FOL expressions only for some of them. In particular,
ALICS supports String and Integer classes, null checks, @return and @throws block tag
comments. This means that specifications produced by ALICS are not readily usable, but they
must be manually translated in a suitable format. For instance, the predicate cannot_be(x,
null) may be translated into the Java code x != null [71]].

In line with ALICS, @tComment extracts method specifications from Javadoc comments [[94]];
differently from ALICS, @tComment focuses on four specific classes of method behaviors that
relate with null arguments, and can infer the following properties for a method that receives as
input null as argument: (i) Null Normal—no exception is expected; (ii) Null Any Exception—
an exception is expected; (iii) Null Specific Exception—a specific exception type is expected;
(iv) Null Unknown—expected behavior is unknown. For example, from the comment @param x
cannot be null, @tComment infers x==null => exception. @tComment works heuristically:
Comments do not predicate on the behavior of the method, rather state preconditions. The
authors of @tComment found out that the proposed heuristic commonly matches developers’
intention. @tComment is relatively simpler than ALICS: It does not exploit complex NLP
techniques, rather, it relies on pattern matching. Specifications generated with @tComment are
expressed in Java and can be directly used without any additional translation. @tComment
embeds @Randoop, a modified version of the Randoop test case generator [[70] to generate test
inputs and oracles that check the properties inferred from the Javadoc documentation.

Zhou et al. address the problem of inconsistency between code and documentation by
proposing a technique to automatically detect errors in the Javadoc documentation of methods,
assuming correct method implementations [[106]]. Zhou et al.’s approach detects the following
types of errors in comments about constraints on method inputs relying on pattern matching:
(i) nullness not allowed—none of the arguments can be null; (ii) nullness allowed—arguments
can be null; (iii) type restriction—arguments must be of specific types; (iv) range limitation—
arguments must be within a specific range. The approach first infers properties of these type
by statically analyzing the source code, and by analyzing the Javadoc comments using NLP
techniques such as POS tagging and dependency parsing, and then checks the consistency
between formulas derived from code and documents with the Z3 SMT solver [26]].
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Summing up, documentation is commonly produced during development to express the
intended behavior of the program, and there exist several techniques to automatically derive
the developers’ intentions from the documentation, and report inconsistencies between the
documentation and the implementation. However, existing techniques are limited. Approaches
that infer specific properties like @tComment [[94]], Zhou et al. [106]], aComment [|93]], and
iComment [|91]] focus on a small set of properties and do not deal with many properties that
documentation may express. General approaches lack semantics, for example ALICS generates
specifications whose semantics is defined only in few cases [71[], thus ALICS specifications are
more akin to a comment in a different language than a specification describing a software
behavior.

We overcome such limitations, by providing a technique that generates test oracles from
Javadoc method documentation and that (i) is more general than existing ones, i.e., it is able
to understand more of the entire comment semantics, and (ii) produces specifications with a
defined semantics that can readily be used for the oracle generation (among many other usages
such as program comprehension or refactoring).

4.1 Javadoc Documentation

Source code is commonly documented with natural language comments. In particular, procedure
(method) comments usually describe the procedure input, output and behavior. In other words,
procedure comments—also called APIs documentation—describe preconditions, postconditions
and exceptional postconditions of procedures in natural language.

Javadoc is the de facto standard to document Java code, and is similar to many other tools for
documenting programs written in different programming languages like Doxygen for C/C++ and
Sphynx for Python. Figure|4.1|shows the typical structure of a Javadoc method comment that
document preconditions and postconditions in block tag comments: @param for preconditions,
@return for postconditions, @throws and @exception for exceptional postconditions

@param comments describe the semantics of the input parameters of the documented code,
and document constraints on the input. Figure[4.2|shows a simple example of a Javadoc comment
that indicates whether a null value is acceptable for the parameters (Figure line 5). The
comment corresponds to the precondition a != null (Figure line 10). Another common
example of conditions expressed in Javadoc are comments that constrain numerical inputs, as
the comments at lines 5-7 of Figure [4.3|that correspond to the preconditions at lines 12 and 13
of Figure In general, @param comments list preconditions of the documented method, that
is, conditions that should hold when method is invoked to obtain a correct behavior.

@return comments describe the expected outputs of the methods, and correspond to post-
conditions. For example, the comment at line 6 of Figure [4.2| asserts that the return value of the
method cannot be null, and corresponds to the postcondition reported at line 11 of Figure |4.2
As another example, the comment at line 4 of Figure says that the return value must be an
empty map, and corresponds to the postcondition at line 8 of Figure Sometimes @return
comments express postconditions as relations between method inputs and outputs. For example,
the @return comment in Figure |4.5| asserts that the method returns true if the receiver object
graph does not already contains the edge given as input.

@throws comments document the exceptions that a method can throw and the condition
to throw the exceptions. For example, the comment at line 5 of Figure [4.5| states that a

4@exception is an alias for @throws. Hereafter, we mention only @throws block comments. Everything we discuss
equally applies to @exception comments.
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/*%
Returns a representation of {@code a} as an instance of type {@code B}. If {@code a} cannot be
converted, an unchecked exception (such as {@link IllegalArgumentException}) should be thrown.

*
*
*
* @param a the instance to convert; will never be null

* @return the converted instance; <b>must not</b> be null
*/

protected abstract B doForward(A a);

PRE: a != null
POST: result != null

OV OOV WN-

—

Figure 4.2. Javadoc comment of method Converter#doForward from Google Guava library
and its preconditions and postconditions.

1 VEZS

2 * [...]

3 *

4 * @param funnel the funnel of T’s that the constructed {@code BloomFilter} will use

5 * @param expectedInsertions the number of expected insertions to the constructed {@code BloomFilter};
6 * must be positive

7 * @param fpp the desired false positive probability (must be positive and less than 1.0)

8 * @return a {@code BloomFilter}

9 */
10 public static <T> BloomFilter<T> create(Funnel<? super T> funnel, int expectedInsertions, double fpp)
11
12 | PRE: expectedInsertions > 0
13 | PRE: fpp > 0 && fpp < 1.0

Figure 4.3. Javadoc comment of method BloomFilter#create from Google Guava library and
its preconditions and postconditions.

NullPointerException is expected when one of the method arguments is null, corresponding
to the postcondition reported at line 11 of Figure 4.5

In the examples, we express pre- and post-conditions (both normal and exceptional) as Java
expressions. The formalism used to encode specifications has a direct impact on the usability of
the specifications. While first-order logic expressions & la ALICS are not directly usable [71]],
Java specifications are readily usable since their semantics is known.

In this chapter we propose Toradocu, an approach to automatically infer Java procedure
specifications from Javadoc comments (in particular constructor and method comments), and
automatically generate test oracles from such specifications. The specifications in Figure
Figure [4.3] Figure Figure |4.5|are examples of specifications that Toradocu is able to infer. In

VAL

*

* @return an empty Bag

*/

public static <E> Bag<E> emptyBag()

N UTA WN =

POST: result.equals(target.EMPTY_BAG) == true

Figure 4.4. Javadoc comment of method BagUtils#emptyBag from Apache Commons Collec
tions library and its postcondition.
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1 /*%

2 * [...]

3 * @return {@code true} if this graph did not already contain the specified edge.
4 * [...]

5 * @throws NullPointerException if any of the specified vertices is {@code null}.
6 * [...]

7 */

8 | boolean addEdge(V sourceVertex, V targetVertex, E e)

9

10 | POST: !receiver.containsEdge(sourceVertex, targetVertex) — result == true

11 | EXC_POST: sourceVertex == null || targetVertex == null — java.lang.NullPointerException

Figure 4.5. Javadoc comment of method Graph#addEdge from JGraphT library and its postcon-
dition

a nutshell, Toradocu translates Javadoc natural language comments into Java procedure specifi-
cations. Such specifications can be used for different purposes, like program comprehension
and verification. We use Toradocu specification to automatically generate test oracles, the main
theme of this Ph.D thesis.

4.2 Toradocu

Toradocu derives procedure specifications from @param, @return and @throws Javadoc com-
ments, and generates test oracles from the derived specifications.

Figure shows the overall architecture schema of the approach. Given as input the source
code of the the binaries of the and a set of test cases for the[SUT] Toradocu augments
the test cases with oracles generated from the Javadoc comments of the input source code.
Toradocu works in two phases. In the first phase, Toradocu infers specifications from the Javadoc
comments: the Javadoc extractor identifies Javadoc comments from existing source given as input
to Toradocu, and the comment translator converts the identified comments into specifications.
In the second phase, the Toradocu oracle generator generates test oracles from the inferred
specifications, and deploys the oracles into the input test cases. The next sections describes in
detail the Toradocu components.

Toradocu

Comment Translator Test Cases

_ »
Propositions Subject Predicate Inferred Oracle
Extractor Translator Translator Specifications Generator —
™~a| Augmented

*

Javadoc
Comments

Source Javadoc
Code Extractor

Binaries ‘

/)

Figure 4.6. Toradocu Architecture

4.2.1 Javadoc Extractor

Given the source code of the and a target class, the Javadoc extractor identifies @param,
@return, and @throws Javadoc comments. More specifically, the Javadoc extractor identifies all
the @throws comments declared in the documented methods, or inherited from the target class.
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Toradocu ignores Javadoc description block and tags different than @param, @return, @throws.
For example, when processing the comment @throws NullPointerException if any of the
specified vertices is @code null (Figure line 11), the Javadoc extractor identifies
the following information:

method: addEdge(V sourceVertex, V targetVertex, E €)
exception: java.lang.NullPointerException
comment: if any of the specified vertices is {@code null}

The Javadoc extractor infers the fully qualified name of the expected exception from the input
source code. The Javadoc extractor is implemented as a custom parser of the Java input source
code built on top of the JavaParser libraryE]

4.2.2 Comment Translator

The comment transaltor translates the @param, @return, @throws Javadoc comments identified
by the Javadoc extractor into procedure specifications. As an example, by processing the nat-
ural language comment @throws [...] if any of the specified vertexes is {@code
null} (Figure line 5), the comment translator derives the specification
sourceVertex==null || targetVertex == null — [...] (Figure line 11).

The comment translator works in three phases:

1. Proposition extraction: after a simple preprocessing step, Toradocu identifies propositions
(subject-predicate pairs) in the natural language comments by means of NLP techniques.

2. Subject translation: Toradocu translates the subject of the identified proposition into a
source code elements, by identifying the Java code elements corresponding to the item
identified in the natural language comment.

3. Predicate translation: Similarly, Toradocu translates the predicate of the identified proposi-
tion into source code elements.

Algorithm (1) shows the pseudocode of the algorithm we designed to translate Javadoc
comments into boolean expressions. Algorithm [l first preprocesses the input comment text
(Algorithm [T} line[3). The comment translator preprocesses @return comments, by removing
the initial “if” from the comment, and transforming a dependent clause into a main clause. It
preprocesses the other types of comments by adding end-of-sentence periods where missing,
being standard and recommended practice not to end comments with period punctuation mark
if the comment consists of a single sentenceﬁ The preliminary preprocessing facilitates the
parsing of the sentence.

The comment translator differentiates between @return and other kind of comments, since
often @return comments aggregate up to three distinct concepts of information that Toradocu
translates independently. This is illustrated with the comment “return true if this graph did
not already contain the specified edge” (line 3 of Figure that expresses three concepts that
we call guard, true property, and false property (sometimes implicit). True and false properties
predicate on the return value, by commenting about the return values. In the example, the true
property is “true”, meaning that the result should be true, and the false property is expressed
implicitly as the negation of the true property (“false”). The guard is a boolean condition that

Shttp://javaparser.org
6http://www.oracle.com/technetwork/java/javase/documentation/index—137868.htm1
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Algorithm 1 Comment Translator

NI AW

._.
SN

11:
12:
13:
14:

15

if c.kind = @return then
guard = GET-GUARD(c.text)
trueProperty = GET-TRUE-PROPERTY/(c.text)
falseProperty = GET-FALSE-PROPERTY(c.text)
TRANSLATE (guard, method)
TRANSLATE (trueProperty, method)
TRANSLATE (falseProperty, method)

else
TRANSLATE (c.text, method)

end if

end function

. function TRANSLATE (text, method)
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

propositions = EXTRACT-PROPOSITIONS (text)
javaExpression =

for all proposition p = (subject, predicate) in propositions do

javaSubjects = MATCH (subject, method)
for all javaSubject in javaSubjects do
javaPredicate = MATCH(predicate, method)

MERGE-INTO-EXPRESSION (javaSubject, javaPredicate, javaExpression)

end for
end for
return javaExpression

end function

27: function EXTRACT-PROPOSITIONS (text)
propositions = @ > Data structure that considers grammatical conjunctions among propositions.

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

39

for all sentences s in t do
semanticGraph = GET-SEMANTIC-GRAPH(s)
subjectList = IDENTIFY-SUBJECTS (semanticGraph)
for all subjects subj in subjectList do

proposition = (subj, IDENTIFY-PREDICATE(subj, semanticGraph))

propositions.add (proposition)
end for
end for
return propositions

end function

: function MATCH (text, method)
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:

candidates = COLLECT-CANDIDATES (method)
REMOVE-STOP-WORDS (text)
LEMMATIZATION (text)
translation = PATTER-MATCHING (text)
if translation is empty then

translation = LEXICAL-MATCHING (text, candidates)
end if
if translation is empty then

translation = SEMANTIC-MATCHING (text, candidates)
end if
return translation

end function

// Translates the English text of a comment extracted by the Javadoc extractor into a (pre- or post-) specification.
INPUT: comment (Javadoc block tag comment), method (method commented by comment)

: function TRANSLATE-COMMENT (comment, method)
preprocessedComment = PREPROCESS-COMMENT (comment)

> Relies on the Stanford Parser.
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specifies the conditions for the properties to hold, either the true or the false property. In the
example the guard is “if this graph did not already contain the specified edge”.

In the case case of @return comments, the comment translator first identifies guards, true
and false properties through pattern identification (Algorithm 1] lines[5H7), and then translates
the identified elements into Java predicates (Algorithm 1] lines[8H1O). In the case of @param
and throws comments, the comment translator directly translates the identified elements into
Java predicates (line[12). Toradocu identifies the propositions in the comments (Algorithm 1]
line as a first step of the comment translation.

Proposition Extraction

Toradocu understands the semantics of a Javadoc comment, by extracting subject-predicate pairs
from the comment. In the NLP community, this activity is called Information Extraction (IE).
Information Extraction recently evolved into Open Information Extraction (Open IE) [12] 3] 28]
33},[84]]. While IE identifies specific information in a text, Open IE identifies general propositions
or relations from the text. In general, the output of an Open IE technique is a list of tuples with
two or more elements where each tuple describes a relation (proposition) in the input text. For
example, given the text “Barack Obama served as the 44th President of the United States from
2009 to 2017.”, Open IE may extract the proposition (Barack Obama, served as the 44th
President of the United States from 2009 to 2017). A proposition consists, at least, of
a subject and a predicate. A subject is a noun phrase that the sentence is about, Barack Obama
in the example, and the predicate is the remainder of the sentence, which says something
about the subject, served as the 44th President of the United States from 2009 to
2017 in the example. The predicate may contain different information, for example it may miss
the from 2009 to 2017 part, depending on the goal of the Open IE analysis. State-of-the-art
Open IE techniques precisely extract relations, but do not support well relations interconnected
with a grammatical relation such as “and”, “or”. For instance, given the comment “if foo or bar
is null.”, an Open IE tool may extract two propositions (foo, is null) and (bar, is null),
missing the connection between the two propositions. We designed and implemented a custom
IE algorithm to identify propositions in Javadoc comments.

Proposition extraction transforms a Javadoc comment text into propositions, invoking func-
tion EXTRACT-PROPOSITIONS at line[16]of Algorithm[I] A single natural language sentence may
contain multiple connected propositions, which we represent in a linked list. Elements of the list
are the propositions, links between elements are the grammatical conjunctions connecting the
propositions. A single Javadoc comment may be composed of multiple sentences. Propositions
belonging to different sentences are heuristically joined with an “or” conjunction.

Function EXTRACT-PROPOSITIONS (Algorithm|[1} line[27) relies on the Stanford Parser [57, (60]]
to process the natural language Javadoc comment, and identify propositions in the input text.
Given the Javadoc comment text, the function first identifies the different sentences composing
the whole comment using the sentence splitting functionality of the Stanford Parser. It then uses
the Stanford Parser to produce a semantic graph for each of the sentences (line[30). A semantic
graph is a representation of a sentence where the nodes are the words composing the sentence,
and the edges are the grammatical relations between the words[] Given the semantic graph of a
sentence, the condition translator traverses the graph and identifies subjects (line[31)) and related
predicates (line[33). If the sentence contains multiple subjects, function IDENTIFY-SUBJECTS
(line identifies them all. Function IDENTIFY-SUBJECTS also handles the case where the subject

7h‘c‘cp://nlp.stanford.edu/software/dependencies,manual .pdf
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is a compound noun, and considers the head noun plus the noun compound modifier as (one)
subject of the sentence.

For each identified subject, function IDENTIFY-PREDICATE (line traverses the semantic
graph to identify the predicate of a subject, by looking for specific patterns, that is, specific chains
of grammatical relations that commonly appear in Javadoc documentation. For example, the
parts of the predicate of an active form sentence are verb and complement. Toradocu identifies
as predicate only some words of the sentence. The IE approach in Toradocu is not complete, in
the sense that it may not correctly extract the predicate in every possible English sentence, but
is effective and adequate for common Javadoc comments.

Toradocu adds each identified proposition to a list of identified propositions (line[34), by
considering the specific grammatical relation that joins the current proposition to the propositions
already present in the list. Function EXTRACT-PROPOSITIONS returns the proposition list (line[37).

Subject and Predicate Translation

Toradocu translates subjects and predicates of the identified propositions (subject-predicate
pairs) into Java expressions, by exploiting the references to the code in the Javadoc comments.
Toradocu uses code elements of the documented code, like methods and parameters, as well
as general Java constructs to translate subjects and predicates. For example, the Toradocu
translator associates the subject “any of the specified vertices” of the @throws comment at line 5
in Figure to the parameters sourceVertex and targetVertex, thus translating the single
subject into two Java code elements, each of them with its own predicate. In general, a single
Java element may be referred to either by name or by type name, as in this example. A single
subject may refer to multiple Java elements. For example, the subject “argument” in the comment
@return [...] if an argument is null refers to each parameter of the method.

The translation of a subject happens at line of Algorithm [1] Toradocu translates the
predicate corresponding to each subject (line[21]), and merges the translation of subject and
predicate into a well-formed Java expression (function MERGE-INTO-EXPRESSION).

Function MATCH translates the input text into Java elements. Function MATCH collects
translation candidates from the source code by gathering identifiers and types from the code
(line[40). Function MATCH translates a subject to:

A formal parameter of the documented method This is the most common, and we already
exemplified it (Figure line 5). Sometimes, Javadoc comments refer to parameters by
means of their types. For example, the comment “if the collection is empty” may refer
to a parameter of type java.lang.Collection. For this reason the algorithm identifies
both identifiers and type names, and considers all supertypes: transitive superclasses and
implemented interfaces.

4

A method of the class under test For example, the comment “the capacity of the container’
refers to a private field of the class under test named capacity. In this case the field is not
visible outside the class. Toradocu translates the subject capacity to the getter method
getCapacity(). Toradocu only considers nullary non-void methods of the class under
test.

The receiver object For example, in the comment “if the comparator is locked”, the subject
“the comparator” refers to the instance of the receiver object, instance of the class whose
documented method belongs to, which implements the Comparator interface.
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Toradocu first removes stop words from the input text (line[41), and applies a lemmatization
to the input text (line [42)), then it selects the best candidates for the translation by exploiting
three different strategies applied sequentially: textual pattern, lexical, and semantic matching.

Textual Pattern Matching Toradocu tries to translate the input text using a textual pattern
matching on a set of predefined patterns (line[43)). The textual pattern matching tries to find a
match for the input text with a set of predefined patterns that we derived looking into Javadoc
comments. Table reports an excerpt of the list of patterns currently supported in Toradocu.
For instance, the predicate “is positive”, which can be applied to numeric types (byte, short, int,
long, float, double, and respective wrappers), produces the Java condition subject>0. When
the subject element’s type is a reference type, a non-primitive type, the only relevant pattern is a
check whether an object is null: “is null” — == null.

Table 4.1. Comment Translation Selected Patterns

Comment Words Translation

is/are positive >0
is/are negative <0
is/are < 1 <1
isfare <=0 <=0
is/are true == true
is/are false == false
is/are null == null

Lexical Matching If the pattern matching fails, Toradocu selects the Java elements with the
smallest edit distance within a given threshold among all the possible candidates. As edit
distance, Toradocu uses the Levenshtein distance extended with a new operation, the word
removal, where a word deletion is a single edit action (Algorithm [2] lines [45] [54H71)).

Semantic Matching If both the pattern and the lexical matching fails, Toradocu proceeds with
semantic matching (line [48). For example, in the comment @throws [...] if [...] is
not found in the graph, Toradocu identifies the predicate “is not found in the graph” that
should be translated to “target.contains(args[0])”. Both pattern and lexical matching fail in
translating the predicate, since “is not found in the graph” and “contains” do not have many
characters in common. However, their semantics is close. In the semantic matching (Algorithm [2]
lines[72}-[80)), Toradocu exploits the semantics of input text and candidates to select the best
candidates for the translation.

Toradocu relies on word embedding where words are mapped to numbers and embedded
into a vector space. In the vector space, words with similar semantics are close together. In
particular, Toradocu uses GloVe [[75]] as word vectors, to capture the semantic relation between
pairs of single words. Since often predicates are composed of multiple words, we augmented
GioVe with two algorithms that compute the semantic distance considering multiple word at
once: Vector Sum [|66]] and Word Mover’s Distance [52]] (WMD). Vector Sum exploits linear
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algebra operations on vectors to solve word analogy tasks involving multiple words. The classic
example is that “king” - “man” + “woman” is semantically equivalent (has no distance) to
“queen”. Toradocu exploit Vector Sum computing the sum of all the term vectors to come up
with a single concept, and applies it to both the input text to translate and the candidates. Then
Toradocu measures the distance between the unique “concept” representing the input text and
the “concept” representing a candidate. Toradocu uses this approach when the number of words
in the text to translate is less than four. For texts with four or more words, Toradocu uses WMD,
which computes the distance between two lists of words as the cumulative distance that words
from a list has to travel in the vector space to exactly match words in the other list. Both Vector
Sum and WMD reduce spurious translations, that would jeopardize the precision of the overall
approach, with thresholds.

If Toradocu fails to find a match for a subject or predicate, the specific proposition has an
empty translation.

After translating all propositions, Toradocu assembles the Java condition (Algorithm
line[22)). To compose conditions, the algorithm decides whether the condition evaluates to true or
false, by analysing the predicate: if the predicate contains the string “not” or “n’t” the condition
is evaluated to false (aList.isEmpty() == false), otherwise to true (aList.isEmpty()).

Toradocu instantiates the common approach that we outlined in this section to translate both
subjects and predicates with few simple differences. The most notable difference is the collection
of candidates. While translating the predicate, Toradocu already knows the subject and exploits
that information to collect candidates that are not collected during the subject translation. For
example, when the subject is of a non-primitive type, for the predicate translation Toradocu also
collects as candidates methods belonging to subject’s class.

4.2.3 Oracle Generator

The comment translator produces procedure specifications in the form of method pre- and
post-conditions that are tuples of the form (m, pre, post,excpost) where:

¢ m is a method of the class under test;
* pre are preconditions of m: Java Boolean conditions that should hold before m is invoked.

* post ={(g,tp, fp)} are postconditions of m: when the Java Boolean condition g (guard)
holds, the Java Boolean condition tp (true property) must hold. Otherwise, the Java
Boolean condition f p (false property) must hold.

e excpost = {{e,c)} are postconditions of m: where e is the type of the expected exception
and c is the Java Boolean condition that holds when the exception is expected.

The conditions pre, post, and excpost may be empty.

The oracle generator processes these tuples to produce the oracles that it deploys into test
cases, given as input to Toradocu. Input test cases can be either manually defined by developers
or automatically generated with automatic test generators like EvoSuite [35]] and Randoop [[70].

To automatically create and inject test oracles into test cases, the oracle generator exploits
aspect-oriented programming (AOP) [|51]] as implemented in AspectJE] The oracle generator
creates an AspectJ aspect working as oracle for each method m, for which Toradocu generates

8h‘c‘cp://www.eclipse.org/aspectj
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Algorithm 2 Comment Translator (Matching)

52:

53:

54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:

72:
73:
74:
75:
76:
77:
78:
79:
80:

function PATTERN-MATCHING (text)
// Translates input text using patter matching.
end function

function LEXICAL-MATCHING (text, candidates)
matches = §§
threshold = 2
minimumDistance = 00
for all candidate in candidates do

distance = EDIT-DISTANCE(text, candidate)

if distance <= threshold then
if distance < minimumDistance then
minimumDistance = distance
matches = §
matches.add(candidate)

else if distance == minimumDistance then
matches.add(candidate)
end if
end if
end for

return matches
end function

function SEMANTIC-MATCHING (text, candidates)
matches = §§
if text.words.length > 3 then
matches = wMmD (text, candidates)
else
matches = VECTOR-SUM (text, candidates)
end if
return matches
end function

> Relies on wmd4j library to compute Word Mover’s Distance.

> Relies on GloVe library.
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at least a procedure specification, and uses the aspects to inject oracles into the input test suite.
At runtime the aspects behave as oracles checking all the available specifications.

Given the aspect corresponding to the tuple (m,pre, post,excpost) and a test case that
invokes method m, the generated oracle works as follows:

1. Preconditions: right before (each) invocation of m in the test case, the oracle checks
whether all the preconditions in pre hold or not. If all the preconditions hold, the test
execution continues. Otherwise, the execution terminates. In this case the oracle does not
notify a failure, rather it signals a malformed test input.

2. Postconditions: before the invocation of m, the oracle checks all the guards g in post-
conditions (g, tp, fp). If g does not hold, the oracle marks the false property f p that is
checked after the execution of m.

3. Exceptional Postconditions: before the invocation of m, the oracle checks if m may raise
an exception, by evaluating the condition ¢ of each exceptional postcondition (e, c) in
excpost. If ¢ holds, the throw of an exception of type e is an acceptable behavior of m.
Every exception type e that is expected is collected to be used later on.

4. Execution: method m is executed.

5. Postconditions Check: after the execution of m, the oracle checks if m threw an exception.
If no exception was thrown, the oracle verifies the postconditions that should be valid,
that is, the true/false properties identified in step 2.

6. Exceptional Postconditions Check: if m threw an exception, the oracle checks if the type
of the raised exception is among the expected ones. If not, the oracle signals a failure.

Figure shows the template of the aspect generated from a tuple {m, pre = {p}, post =
{{g,tp, fp)},excpost = {{e,c)}). When executing a test case that invokes m, the aspect is
invoked right before the invocation of m (Figure line (1)) and is executed instead of method
m, thus changing the original control flow of the test case. The oracle checks the validity of
the preconditions (line [6), and if one precondition does not hold, the oracle signals a failure,
and interrups the execution of the (invalid) test case. The oracle collects the postconditions to
be checked after the execution of the method under test (line[7) and the expected exceptions
(line . In this way, conditions are evaluated before the execution of method m (linesand.
Then method m is executed normally (line .

If m terminates normally (without an exception), then the oracle verifies if any exception
was expected (line[12)). If so, the oracle lets the test fail because an exception was expected but
no exception was raised (line[13). If no exception was expected and raised, the oracle checks
the validity of the postconditions (line[16)). If a postcondition does not hold, the oracle signals
the failure and the test case execution terminates. When every postcondition holds, the test
execution continues (line 20)).

If m terminates with an exception, the oracle check whether the exception was among
the expected ones (line[12). If so, the test case execution terminates successfully (line [23).
Otherwise, the oracle reports the failure terminating the execution of the test case (line .

By relying on AspectJ aspects, Toradocu does not modify the source code of the input test
cases, rather, it modifies the bytecode of the input test cases, injecting oracles where needed.



48 4.2 Toradocu
1 | @Around("call(m)")

2 | public Object advice(ProceedingJoinPoint jp) throws Exception {

3 Object receiver = jp.getTarget();

4 Object[] args = jp.getArgs();

5

6 checkPreconditions(pre);

7 List<Postcondition> postconditions = getPostconditions(receiver, args);
8 List<Class> expectedExceptions = getExpectedExceptions(receiver, args);
9

10 try {

11 Object returnValue = jp.proceed(args); // Method m is invoked here.
12 if (!expectedExceptions.isEmpty()) {

13 fail("Expected exception not thrown");

14 }

15 for (Postcondition p : postconditions) {

16 if (!p) { // Postconditions are checked here.

17 fail("Postcondition does not hold");

18 }

19 }

20 return returnValue;

21 } catch (Throwable e) {

22 if (expectedExcepts.contains(e.getClass()) {

23 pass("Raised exception was expected");

24 } else {

25 fail("Unexpected exception thrown");

26 }

27 }

28 |}

29

30 | private void checkPreconditions(Object receiver, Object[] args) {

31 for (Precondition p : pre) {

32 if (!p) { // Precondition is checked here.

33 pass("Precondition does not hold")

34 }

35 }

36 |}

37

38 | private List<Postcondition> getPostconditions(Object receiver, Object[] args) {
39 List<Postcondition> postconditions = new ArraylList<>();

40 for (Postcondition p : post) {

41 if (g) { // Guard g is checked here.

42 p.checkTrueProperty(); // Indicates that (only) tp has to be checked.
43 } else {

44 p.checkFalseProperty(); // Indicates that (only) fp has to be checked.
45 }

46 postconditions.add(p);

47 }

48 |}

49

50 | private List<Class> getExpectedExceptions(Object receiver, Object[] args) {
51 List<Class> expectedExcepts = new ArraylList<>();

52 for (<e, c> : excpost) {

53 if (c) { // Condition c is checked here.

54 expectedExcepts.add(Class.forName(e));

55 }

56 }

57 return expectedExcepts;

58 |1}

Figure 4.7. Model of an Aspect Generated by the Oracle Generator
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4.3 Toradocu Evaluation

Toradocu translates Javadoc comments into actionable exceptional postconditions that can be
used to automatically generate test oracles. When used in combination with automatic test input
generators, Toradocu enables the automatic unit testing of software systems.

We conducted several experiments, each of them investigating a different research question.
We first studied how well exceptional behaviors are tested by manually written test suites. This
is not a direct evaluation of Toradocu, rather it gives a feeling on the impact Toradocu could
have. We then experimentally validated the accuracy of Toradocu in translating comments into
procedure specification. In particular, we measure the translation accuracy of Toradocu in terms
of precision and recall. We compared the accuracy of Toradocu with a state-of-the-art technique.
We also measured how Toradocu affects the effectiveness of automatically generated test cases.
Specifically, we evaluated if and how much Toradocu-generated oracles reduce the number of
false alarms and increase the number of true alarms produced by automatically generated test
cases. Our evaluation aims to address the following research question:

RQ1 To what extent is Toradocu accurate in translating Javadoc comments into procedure
specifications? What is the impact of the semantic translator engine on the accuracy of
Toradocu? How does Toradocu accuracy compare with a state-of-the-art technique, namely
@tComment?

RQ2 To what extent do Toradocu test oracles reduce the number of false alarms reported by
automatically generated test cases? Automatically generated test cases rely on simplistic
oracles and heuristics that often misclassify test executions, producing many false alarms,
that is, a test execution fails when the software under test is correct, that developers have
to manually inspect and discard. We measure if and to what extent Toradocu oracles can
reduce the number of false alarms, thus reducing the overall costs of automatic testing.

RQ3 To what extent do Toradocu test oracles increase the number of discovered faults (bugs)
in the Automatically generated test cases miss many faults that may leak into
production code. We measure if and to what extent Toradocu oracles can complement
automatically created test cases to identify erroneous exceptional behaviors, thus improving
the effectiveness of automatic testing more effective.

4.3.1 RQ1: Translation Accuracy

This research question investigates the accuracy of Toradocu in translating Javadoc comments
into procedure specifications. We measure accuracy in terms of precision and recall, two standard
metrics for information retrieval tasks. Precision measures the portion of the output that is
correct. Recall measures the portion of the desired output that is actually produced. The output
of a Javadoc translation technique that produces specifications like Toradocu can be:

correct (C) when the produced specification exactly matches the expected one;

missing (M) when the technique does not produce any specification, and a specification was
expected;

wrong (W1) when the technique produces a specification, but no specification was expected;

wrong (W2) when the actual translation does not match the expected one.
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We define precision as the ratio between the number of correct outputs (C) and the total
number of outputs (C + W1 + W2):
IC|
[C]+ |W1|+ |W2|

precision =

We define recall as the ration between the number of correct outputs (C) and the total number
of expected outputs (C + W2 + M):

IC|

recall = ———
IC|+[W2|+|M|

To answer RQ1, we manually derived procedure specifications from a set of Javadoc com-
ments. Such manually derived specifications constitute the ground truth. We then translated
the same Javadoc comments using @tComment and Toradocu (with and without the semantic
matching enabled), and we measured precision and recall. In the experiment we proceeded as
follows:

* We selected 7 popular open-source Java projects, and, for each of them, we randomly
selected 5 classes with more than 4 Javadoc block tags comments introduced by @param,
@return, and @throws. To select classes with meaningful and documented behavior, we
ignored methods inherited from java.lang.Object, getters (methods whose name starts
with “get”), and setters (methods whose name starts with “set”). In total we randomly
selected 35 classes as subjects of the experiment.

* We manually derived procedure specification from the Javadoc comments of methods in
each class. (When we could not derive any specification, we discarded the class and select
another one within the same project.)

* We ran Toradocu (with and without the semantic matching) and @tComment on the
subject classes, recording the produced specifications. We used a reimplementation of
@tComment that produces an output compatible with the one produced by Toradocu and,
therefore, easy to compare.

* We measured precision and recall of the three configurations. We conservatively define a
wrong output specification as a specification that does not completely match the expected
one. Thus, we considered as wrong partially correct translations. For example, given the
comment @throws [...] if x is negative or y is null, the specification “x < 0”
is considered wrong (and in particular of W2 type).

Table shows the characteristics of experimental subjects. For each system, the table
reports the total number of classes in the system, the number of randomly selected classes, the
total number of methods in the selected classes, and the number of methods that are docu-
mented with a Javadoc comment (column Doc’d). Table also shows the number of manually
derived preconditions (column Pre), normal postconditions (column Post), and exceptional
postconditions (column Ex. Post). Overall, the ground truth is composed of 154 specifications.

https://commons.apache.org/collections
Ohttps://commons.apache.org/math
Whttp://www. freecol.org
12http://graphstream—project.org
13http://github.com/google/guava
“http://jgrapht.org
Bhttp://mernst.github.io/plume- lib
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Table 4.2. Toradocu Accuracy Evaluation Subjects

Classes Methods Specifications

System Total Selected Total Doc’d Pre Post Ex. Post
Commons Collections 4.17] 320 5 31 16 17 2 11
Commons Math 3.6.1 990 5 41 9 0 2 9
FreeCol 0.11.61] 678 5 334 14 0 13 1
GraphStream 1.33 233 5 115 10 1 8

Guava 197 469 5 91 16 2 0 16
JGraphT 0.9.2] 205 5 48 7 0 1 8
Plume-lib 1.1 50 5 241 67 4 37 21
Total 2945 35 9201 139 24 63 67

Table 4.3. Toradocu Accuracy Evaluation Results
@param @return @throws Overall
Pre Rec Pre Rec Pre Rec Pre Rec F

@tComment 1.00 0.74 n.a. 0.00 0.60 0.18 0.78 0.13 0.23
Toradocu 0.84 0.91 0.89 0.76 0.94 0.90 090 0.84 0.87

Toradocu-Sem  0.84 0.91 0.75 0.78 0.94 0.90 0.84 0.85 0.85
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Table shows the results of our evaluation with @tComment and Toradocu without
(row Toradocu) and with the semantic matching (row Toradocu-Sem). For each comment type,
Table reports precision (column Pre), and recall (column Rec). Column Overall reports the
precision, recall, and F-measure (column F) considering all the specification kinds.

In deriving preconditions and exceptional postconditions, Toradocu consistently outperforms
@tComment. @tComment obtains a higher precision than Toradocu only in the translation of
@param comments. This is because @tComment is tailored to translate null-related comments
matching specific patterns. Everything else is ignored. This leads @tComment to have good
precision and poor recall, since @tComment misses many opportunities to derive specifications.
Another important limitation of @tComment, when compared with Toradocu, is that @tComment
does not support comments composed of many clauses connected with grammatical conjunctions.
For instance, the comment @throws [...] if x and y are positive or z is negative
is correctly supported by Toradocu, while cannot be translated correctly with @tComment.
Overall, Toradocu outperforms @tComment, obtaining better precision (90% vs. 78%) and better
recall (84% vs. 13%).

Toradocu, with and without semantic matching, translates better @param and @throws com-
ments than @return comments. @return comments may express conditions that, in themselves,
are difficult to check. For example, the comment @return [...] if no overflow occurs
should generate a guard condition checking whether an overflow occurs during the execution
of the documented method. Also, consider comments like @return the sorted array docu-
menting a sorting procedure. The comment translates into a postcondition checking that the
procedure output is actually sorted. This is a complex check involving iterations on the entire
output array. Such comments are not supported by the current version of Toradocu.

In translating @param and @throws, the semantic matching has no sensible impact on preci-
sion and recall. The semantic matching does have an impact on the precision and recall in the
case of @return. In particular, the semantic matching improves the recall (78% vs. 76%) at the
cost of a worse precision (75% vs. 89%). Overall, with the semantic matching enabled Toradocu
achieves better recall (85% vs. 84%) and a worse precision (84% vs. 90%).

We replicated the initial experiment with a large set of subject classes, following the same
experimental setup, with a different selection of subjects. In this new experiment, we selected
classes by manually identifying classes looking at the amount of Javadoc comments, and at our
familiarity with the functionality provided by the class, to reduces the time required to derive
the ground truth. The larger number of comments of the selected classes, reduces the bias that
may derive from a non random selection and produces interesting results.

Table [4.4]reports the subjects we selected for this experiment. Columns in Table 4.4/ have the
same semantics of the columns in Table The manually derived ground truth is composed of
755 specifications.

Table shows the results obtained with @tComment and Toradocu with (column Toradocu-
Sem) and without the semantic matching (column Toradocu). The results confirms the results
obtained with fewer and randomly-selected classes in the previous experiments: Toradocu is
more accurate @tComment in translating @param and @throws comments. Overall, Toradocu
and @tComment obtains a comparable precision, while Toradocu recall is greatly better than
@tCommetn recall: 81% vs. 23%. Also in this experiment, the semantic matching does not
impact in an appreciable way the translation of @param and @throws comments. On the other
hand, the semantic matching increases recall on @return comments while decreasing precision.
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Table 4.4. Toradocu Accuracy Evaluation Subjects (Non-random)

Classes Methods Specifications
System Total Selected Total Doc’d Pre Post Ex. Post
Commons Collections 4.1 320 13 224 158 141 24 157
Commons Math 3.6.1 990 30 568 154 47 16 165
FreeCol 0.11.6 678 3 456 24 0 16 4
GraphStream 1.3 233 2 6 4 2 0 0
Guava 19 469 17 296 56 30 12 37
JGraphT 0.9.2 205 10 81 23 0 6 26
Plume-lib 1.1 50 11 404 78 7 38 27
Total 2945 86 2035 497 227 112 416

Table 4.5. Toradocu Accuracy Evaluation Results (Non-random)

@param @return @throws Overall
Pre Rec Pre Rec Pre Rec Pre Rec F
@tComment 0.96 0.62 n.a. 0.00 0.78 0.15 0.90 0.23 0.36
Toradocu 0.95 0.96 0.65 0.62 0.95 0.76 0.90 0.80 0.85

Toradocu-Sem  0.94 0.96 0.57 0.67 095 0.77 0.87 0.81 0.84
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In summary, Toradocu is accurate in translating Javadoc comments into procedure specifica-
tions, and is more accurate than @tComment, a state-of-the-art technique. In Toradocu, the
semantic matching has a double effect, increasing the recall and worsening the precision. Thus,
the choice of exploiting the semantic matching or not depends on whether the Toradocu user
values more the soundness or the completeness of generated specifications.

4.3.2 RQ2: False Alarms Reduction

Toradocu translates Javadoc comments into procedure specifications that can be used to generate
test oracles. Such test oracles can be combined with automatically generated test inputs to make
them more accurate and more effective in finding faults. In this research question, we evaluate
the effectiveness of Toradocu in generating test oracles, by reducing the number of false alarms
reported by automatically generated test cases. To answer RQ2, we proceeded as follows:

* We selected nine subject classes from the open-source Java project Google Guava. We
selected subject classes from packages base, collections, and primitives because of
our familiarity with those packages that reduces the time required to manually investigate
the results of the experiment. Table lists the selected subject classes with the number
of @throws Javadoc comments present in each class (column @throws).

* We ran Toradocu on each class to generate test oracles from @throws Javadoc comments.
Table reports the number of generated oracles for each subject class (column Toradocu
Oracles). With the word oracles we actually denote aspects. At runtime each oracle (aspect)
is executed multiple times, therefore, column Toradocu Oracles does not report the number
of assertions deployed into the test suite. We manually inspected generated oracles and
we classified them into Correct and Partial. Correct oracles are oracles that perform a
check that is precisely what is described by the @throws comment from which the oracle
is derived. Partial oracles are those oracles that perform an incomplete, although correct,
check. Partial oracles stem from incomplete translations of @throws comments, where
Toradocu can understand the meaning of the comment only partially. Column Missing
reports the amount of comments that Toradocu cannot translate into an oracle. Toradocu
did not generate wrong aspect in our evaluation.

* For each subject class, we created a test suite with EvoSuite. We configured EvoSuite
to avoid missed alarms (false negatives), that is, we configured EvoSuite not to treat
exceptions (both checked and unchecked) as expected, legal behavior. This is because
there is no generally valid rule that states when a thrown exception is the expected behavior.
We enabled all EvoSuite’ search goals and we gave EvoSuite a search budget of 60 seconds.

 For each subject class, we ran EvoSuite-generated test suites with and without Toradocu
oracles.

* We manually inspected each failing test case to check whether it was a true or false alarm.

Table shows the results of the experiment. Table reports the number of partial and
correct oracles (aspects) generated by Toradocu for each subject class (column O), and the
results of the execution of EvoSuite-generated test suite with and without Toradocu oracles.
Table shows the number of successful Evosuite test case executions (column Pass), the
number of Evosuite test cases failing because of a bug (column True Alarms), and the number
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Table 4.6. Toradocu False Alarms Evaluation Subjects and Toradocu-generated Oracles

Toradocu Oracles

Subject Class @throws Correct Partial Missing
ArrayListMultimap 1 1 0 0
AtomicDoubleArray 1 1 0 0
ConcurrentHashMultiset 12 8 1 3
Doubles 4 3 1 0
Floats 4 3 1 0
MoreObjects 1 1 0 0
Shorts 6 3 1 2
Strings 1 1 0 0
Verify 4 4 0 0
Total 34 25 4 5

of Evosuite test cases that fail while they should not, that is, they terminates because of a
thrown exception that is exactly the intended behavior of the (column False Alarms). For
EvoSuite+Toradocu executions, we distinguish between false alarms caused by the generated
test input being illegal, and Toradocu limitations that prevents a correct oracle generation of a
specific @throws comment.

Table 4.7. Toradocu False Alarms Evaluation Results

EvoSuite EvoSuite + Toradocu

True False True False False
Subject Class O Pass Alarms Alarms Pass Alarms Alarms-T  Alarms-I
ArrayListMultimap 1 3 0 6 4 0 0 5
AtomicDoubleArray 1 20 0 10 21 0 0 9
ConcurrentHashMultiset 9 32 1 15 40 1 1 6
Doubles 4 42 0 12 47 0 2 5
Floats 4 43 0 18 47 0 2 12
MoreObjects 1 17 0 4 18 0 0 3
Shorts 4 22 0 22 30 0 3 11
Strings 1 6 0 9 0 0 6
Verify 4 4 4 1 5 4 0 0
Total 29 189 5 97 221 5 8 57

Overall, we generated 290 test cases with EvoSuite. Of these test cases, 101 (35%) fail
because the generated test input triggers an exception. For some of the subject, EvoSuite
generated more failing than passing test cases.

With Toradocu oracles embedded in EvoSuite tests, the overall number of failing tests
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decreases from 101 to 65 (22%), and Toradocu reduces the percentage of failing test cases
from 35% to 22%. We manually inspected every failure reported by test cases augmented with
Toradocu oracles, and we classified each failing execution as: 1. true alarm—a failing test cases
execution that reveals a fault in the (column True Alarms), 2. false alarm due to current
limitations of Toradocu (column False Alarms-T), and 3. false alarm due to illegal test input
generated by EvoSuite (column False Alarms-I).

In the experiment, automatic testing discovers five bugs in total. Notice that those four failures
are revealed by EvoSuite-generated test input triggering exceptions at runtime. Toradocu oracles
confirm those failures and do not mask raised exceptions. Thus, Toradocu oracles correctly
report the failures to developers.

Out of five true alarms, four are due to missing @throws comments. In other words, there are
methods throwing an undocumented exception. (In all four cases the undocumented exception
is unchecked An example is method ConcurrentHashMultiset#removeExactly(Object
element, int occurrences) that throws I1legalArgumentException if the argument occur-
rences is less than 0. The missing Javadoc comment is @throws IllegalArgumentException
if {@code occurrences} is negative. To infer whether the missing @throws comment was
a developer choice or rather a mistake, we inspected similar methods in the same code base and
their documentation. We then judged missing comments as a documentation bug likely caused
by a developer oversight. We reported the issues to the developers, creating pull requests
Developers accepted our pull requests, confirming that our classification of the alarms as true,
fault-revealing alarms was correct. Toradocu oracles can help developers discover undocumented
exceptions, even though is the automatically generated test input that triggers the exception.

The other true alarm is due to a wrong exception type raised at runtime by the method
Verify#verifyNotNull(T, String, Object...errorMessageArgs). According to its docu-
mentation, the method is supposed to throw a VerifyException when invoked as verify-
NotNull(null, "", null). Instead, the method threw a NullPointerException. The excep-
tion stems from a dereference of the third argument errorMessagArgs, which is marked as
@Nullable. However, the arguably misleading annotation actually means that single elements
in the input array can be null and not the array itself. This is a known issue, of which we were
not aware, independently reported to the developers who confirmed the issues but refused to fix
it cause they do not think the problem is relevant in common usage scenarios of the methodE]
Even in this case the exception is triggered by the test input generated by EvoSuite. Toradocu
oracles help developers understand the failure because they clearly signal that the raised ex-
ception type is not one of the documented, expected exception types. Therefore, developers
have a precise idea of the reason of the failure rather than a generic stack trace without any
meaningful message.

Although Toradocu oracles greatly reduce the number of false alarms reported by EvoSuite
tests (-33%, from 97 to 65), there are still several false alarms. We analyzed all the false alarms
and classified them into: 1. false alarms caused by limitations of Toradocu, 2. false alarms
generated by illegal input (produced by EvoSuite).

Out of 65 failures, 8 are caused by limitations of Toradocu, that is, developers correctly doc-
umented the raised exception, but Toradocu was not able to correctly parse the comment to gen-
erate the corresponding specification. For instance, method ConcurrentHashMultiset#toAr-

16Unchecked exceptions are of class RuntimeException, Error, and their subclasses. Unchecked exceptions do not
require to be explicitly handled with try-catch blocks.

Yhttps://github.com/google/guava/pull/2099, https://github.com/google/guava/pull/2106

18h‘c‘cps://gi‘chub. com/google/guava/issues/1701
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ray(T[]) is expected to throw an exception when “the runtime type of the specified array is not
a supertype of the runtime type of every element in this collection”. Toradocu fails to correctly
translate this comment into an oracle. As another example, Toradocu fails to correctly parse 4
comments regarding arrays and collections of the kind “if collection or any of its elements is
null”. Such kind of comments are present in classes Floats and Doubles. Toradocu is only able
to understand the first part of the comment, “if collection... is null” while missing the second
part “or any of its elements is null”. The translation as a whole is incorrect. In all cases, the
method under test correctly raises an exception that is documented. However, Toradocu is not
able to derive an oracle that can interpret the exception as the correct expected behavior of
the

The other 57 failures are caused by illegal inputs generated by EvoSuite. In those cases the
method under test raises an exception that is not explicitly documented. A common reason
for this is the violation of a precondition. For example, developers can describe a precon-
dition of a method with the comment @param x must not be null. The comment states
that the argument x cannot be null, but does not specify what happens when the precondi-
tion is violated. For instance, in the experiment EvoSuite generated tests with the method
invocation Doubles.tryParse(null) which threw NullPointerException. As another exam-
ple, an EvoSuite-generated test passed a very large value to the ArrayListMultimap static
constructor create(int, int), then invoked the method createCollection(), which threw
OutOfMemoryException.

The empirical results indicate that Toradocu is effective in reducing the number of false
alarms reported by automatically generated test cases. Thus, Toradocu makes the application of
automatic testing more efficient for developers.

4.3.3 RQ3: True Alarms Increment

With this research question we investigate the effectiveness of Toradocu oracles in discovering
bugs in the To answer the question we applied automatic testing and Toradocu to check
the exceptional behavior of several implementations of four classes. Such implementations were
created during an empirical evaluation conducted by Rojas and colleagues to investigate how
developers use automated unit test generation during the implementation of a new code [82]].
In the study, developers were asked to (re-)implement four classes of Apache Commons,Eg] using
the Javadoc comments as specification. We proceeded as follows:

* We considered all 4 Java classes that were the subjects of the experiment conducted by
Rojas and colleagues, and all the implementation snapshots available for each class.

* For each implementation snapshot, we generated a test suite with EvoSuite, with branch
coverage as search criterion and 30 seconds as search budget. We set EvoSuite to treat
any exception as an erroneous behavior (crash oracle) and avoid any regression assertion.

* For each implementation snapshot, we generated tests with Randoop. We ran Randoop
with 20 seconds of time budget and with a test generation limit of 150. We also set
Randoop to treat any exception as an erroneous behavior (crash oracle) and avoid any
regression assertion. For each target implementation, Randoop generates a regression
and an error test suite: regression test suite collects tests that pass, while error test suite
collects all the tests that fail.

19h‘c‘cps://commons .apache.org
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* We ran Toradocu on each of the four subject classes, obtaining test oracles for the excep-
tional behavior of each class. We manually analyzed specifications produced by Toradocu,
and we discarded all the wrong translations. We deemed a specification as wrong if it was
not a correct translation of the corresponding @throws comment.

* We ran test suites generated with EvoSuite and Randoop with and without (correct)

Toradocu oracles. For each test we recorded the outcome: pass, fail because of a failing
assertion, fail because of a runtime exception.

Table 4.8. Toradocu True Alarms Evaluation Subjects

Executable Implementation Toradocu
Class Members Snapshots @throws Corr Miss
collections.map.Filterlterator 10 401 2 2
collections.comparators. FixedOrderComparator 9 391 9 5 4
math.genetics.ListPopulation 13 269 10 2 8
collections.map.PredicatedMap 7 283 4 2 2
Total 39 1344 27 11 16

Table [4.8| summarizes the selected subjects. For each class, the table reports the number of
executable members (constructors and methods) and the number of implementation snapshots
that are the subjects of our experiment. The table reports the number of @throws Javadoc
comments present in each class and the number of @throws comments that Toradocu correctly
translates into oracles (column Corr) that are encoded into AspectJ aspects. Column Miss is
the number of @throws comments that Toradocu is not able to translate into a specification. In
all these cases Toradocu does not produce any output. All the eleven translations provided by
Toradocu are correct.

Table [4.9] presents the results of the experiment. Columns EvoSuite and EvoSuite+T report
the results obtained with EvoSuite-generated test suites without and with Toradocu oracles,
respectively. Columns Randoop-E and Randoop-E+T report the results obtained with Randoop-
generated error test suites without and with Toradocu oracles, respectively. Columns Randoop-R
and Randoop-R+T report the results obtained with Randoop-generated regression test suites
without and with Toradocu oracles, respectively. For each category, we distinguish tests that pass
(column Pass), fail because of an assertion (column FA), and fail because of a runtime exception
(column RE).

EvoSuite test cases report many failures due to runtime exceptions (column EvoSuite, RE).
Toradocu oracles produce a twofold effect. First, the number of reported failures consistently
decrease for each subject class. Second, Toradocu oracles report several failures that were
undetected by the implicit EvoSuite oracle (column EvoSuite+T, FA). The same effect can be
appreciated with Randoop error test suites (columns Randoop-E and Randoop-E+T). When
combined with Randoop regression test suites (column Randoop-R), Toradocu oracles detect
faults that are not detected otherwise. In summary, Toradocu oracles can both detect semantic
failures of the and reduce the number of false alarms reported by automatically generated
test cases.
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We manually analyzed a sample of failures reported by Toradocu oracles. We randomly
selected 20 failure reports for EvoSuite+T, Randoop-E+T, and Randoop-R+T. Of the 60 selected
failures none of them is a false alarm, that is, Toradocu oracles reported only true alarms
corresponding to faults in the implementation.

The experiments indicate that Toradocu oracles are effective in identifying faults, and that
Toradocu oracles well complement automatically generated test inputs, improving their fault-
finding effectiveness.

4.4 Limitations and Threats to Validity

Toradocu translates Javadoc comments into procedure specifications that can be used to create
effective test oracles. Such test oracles have a twofold effect: They identify violations of
method preconditions, and they identify violations of method postconditions. In particular,
violations of the preconditions occur when a method is invoked with a context (e.g., state of the
receiver object, method arguments) that does not fulfill method preconditions described in the
method Javadoc documentation. A test case whose execution leads to a method precondition
violation should be deemed as invalid. (Notice that the preconditions described in the Javadoc
documentation might be incorrect.) Violations of the postconditions occur when a method
produces a result that is different from the result described in its Javadoc documentation. Such
kind of violations highlights a mismatch between documented and actual behavior of a method.
A mismatch represents an error, either in the implementation of the method or in its the Javadoc
documentation (or both). Either way, the error has to be fixed. Toradocu oracles are effective in
identifying the aforementioned issues. Every other problem is outside the scope of Toradocu
oracles. For example, non-functional properties and properties not described in the Javadoc
documentation are not checked by Toradocu oracles.

The empirical evaluation we performed shows the accuracy of Toradocu and the effectiveness
of produced oracles. Nonetheless, the results we obtained have limitations impacting both
their internal and external validity. Threats to the internal validity may derive from errors in
the implementation of Toradocﬂ that, in turn, may lead to imprecise results. To limit the
impact of such threat, we carefully inspected and tested the implementation, addressing all
the problems arisen during testing. Threats to the external validity stem from the process we
used to select the evaluation subjects. For the evaluation, we selected classes from open-source
Java projects that are intended to be used by others. Their collaborative nature and their
reusability may impact the way Javadoc comments are written. Therefore, the classes we used
in our evaluation may not be representative of the systems internally developed in a company,
not intended to be publicly released and used by others. In closed-source systems, Javadoc
documentation could be less present and accurate (or the other way around, more present
and accurate). The limited number of subject classes used in the evaluation could affect the
generalizability of the results. However, the classes belong to systems in different domains. For
example, Commons Math classes are generally dedicated to perform mathematical operations,
while Commons Collections classes represent general purpose data structure. Different domains
imply different Javadoc documentation (e.g., different kind of preconditions). The heterogeneity
of the comments we considered in the evaluation should favor the generalizability of the results.
For the accuracy evaluation (Section[4.3.1)) we manually defined the ground truth against to we
measured precision/recall values of different techniques. Errors in the ground truth can affect

20Toradocu is open-source and publicly available: |https://github.com/albertogoffi/toradocul
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precision/recall values. To mitigate such risk, “golden” specifications were cross-checked by
at least two people (i.e., for each “golden” specification the author of this thesis was either an
author or a reviewer of the specification).






Chapter 5

Conclusions

Automatic generation of test oracles is a widely investigated problem in both academic and
industrial research laboratories, aiming to complement automatic input generation to produce
a fully automated testing process. The approaches proposed so far produce oracles that are
either inexpensive but with limited fault-finding effectiveness, or effective but expensive to
generate. In this thesis, we propose approaches to generate cost-effective oracles, that is, oracle
that can be generated inexpensively from code and existing artifacts, and effective, that is, can
identify a relevant set of failures with a reduced amount of false alarms. We use information
generally available as byproduct of standard development practices to produce test oracles
without incurring high generation cost. We use information that is specific to the
and that encodes the semantics of the [SUT} This dissertation introduces two kinds of
automatic oracles: [cross-checking oracles (CCOracles)|and Toradocu oracles.

exploit intrinsic software redundancy to generate test oracles. Modern software
systems are intrinsically redundant, that is, they provide the same functionality through different
executions. We encode such redundant functionalities as equivalent sequences of method
calls, and design a technique that exploits equivalent sequences to automatically generate test
oracles. We demonstrate the effectiveness of in identifying synthetic faults when
combined with both automatically-generated and manually-written test inputs. We also show
that[CCOracles| can detect real faults in the[SUTsl The main cost factor of [CCOracles lies in the
definition of equivalent sequences. We briefly discuss a search-based technique called SBES that
automatically discovers intra-class equivalent sequences. We show that SBES is effective and
accurate. SBES reduces the cost of manually identifying equivalent sequences. (SBES is part of
the contributions of Andrea Mattavelli’s Ph.D. thesis [61]].)

Toradocu automatically translates natural language procedure documentation into Java
procedure specifications that it uses to generate test oracles. Both the specification generation and
the oracle generation are completely automated. We show that Toradocu accurately translates
procedure documentation into procedure specifications and that oracles derived from such
specifications are effective in identifying faults in the

Contributions

This thesis contributes to the state-of-the-art by defining two cost-effective techniques to generate
test oracles from existing information. [CCOracles|automatically generate oracles from the intrin-
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sic software redundancy, while Toradocu generates test oracles form procedure documentation
written in natural language. We now summarize the different aspects of this thesis’ contributions.

CCOracles. We propose a technique to automatically derive test oracles from redundant
method call sequences, that is, sequences of method calls that are different but produce equivalent
outcomes. A executes pairs of expected equivalent sequences by controlling the
interferences between the two executions, and semantically compares the outcomes, using an
hybrid approach that combines the notion of equivalence provided by the developers of the
and an observational equivalence that probes the outcomes through their public interface.

Empirical evaluation of effectiveness. We empirically evaluate the effectiveness
of with both manually-written and automatically-generated test cases.
improve the fault-finding effectiveness of automatically generated test cases detecting 6.5 times
more faults than the simple implicit oracles usually that characterize automatically generated test
oracles. are less effective than manually-written assertions, since they identify about
2/3 of the faults detected by hand written assertions, but can identify faults that go undetected
with developers-written assertions.

Toradocu. We propose an approach to derive procedure specifications from semi-structured
natural language (English) comments, and transform the derived procedure specifications
into test oracles. Toradocu employs natural language processing techniques to derive subject-
predicate pairs from input comments, and then translates subject-predicate pairs matching
subjects and predicates to Java code elements (mainly existing in the [SUT).

Empirical Evaluation of Toradocu accuracy and effectiveness. We conduct two experimental
evaluations, one with comments from randomly selected classes and one with a larger set of
comments from non-randomly selected classes. In both cases Toradocu accurately translates
comments into procedure specifications with a precision of about 90% and a recall of about
80%. Toradocu-generated oracles both effectively reduce the number of false positives and
detect more implementation faults than implicit oracles generally employed by automatically
generated tests.

Discussion

In this thesis we propose two ways to use information present in software systems to generate
effective test oracles with a reasonable cost. In Section we introduce a conceptual landscape
in which oracles are classified according to their cost-effectiveness. In particular, with the term
effectiveness we mean the capacity of an oracle to detected faults. The extent to which an oracle
is able to detect faults is called completeness. Along with completeness, an oracle is defined by
its soundness that is the extent to which an oracle reports only true alarms.

Fig.[5.1] shows where and Toradocu oracles stand in the landscape: both of them
are more effective than implicit oracles normally employed by automatic test case generators,
as shown by the results of our empirical evaluation (Sections and[4.3.3)). Compared to
implicit oracles, and Toradocu oracles detect more faults and trigger less false alarms,
i.e., they are more complete and more sound than implicit oracles. Regarding the cost, Toradocu
oracles come roughly for free when Java constructors and methods in the are commented
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Figure 5.1. Cost-effectiveness of cross-checking and Toradocu oracles

with Javadoc comments. Instead, require the mining and encoding of the intrinsic
redundancy in the as redundant sequences. This activity can be assisted and made less
expensive by automatic tools like SBES (Section[3.1.1)). In summary, Toradocu and
are more effective than implicit oracles with a marginally higher cost. On the other hand, both
Toradocu and [CCOracles|are less costly than specified oracles since no formal specifications have
to be manually produced.

Specified oracles are sort of perfect oracles, in the sense that formal specifications enable the
generation of sound and complete oracles (as long as the implementation of the [SUT] perfectly
matches its formal specification). Being sound and complete, specified oracles do not need, in
general, to be complemented with other kind of oracles. However, formal specifications are
rarely available in practice and so are specified oracles.

When we move from sound and complete specified oracles to incomplete oracles, the
complementarity of the oracles becomes important. To thoroughly check the we need
several, and crucially different, oracles that can be used together to combine their fault finding
abilities. Implicit oracles are by nature limited and they have to be complemented with other
oracles to achieve a good fault-finding effectiveness. In our experiments we showed how
both Toradocu and nicely complement implicit oracles to get a more thorough test
of the Not only Toradocu and can be independently combined to implicit
oracles, but they can also be applied together to get a more complete testing. Toradocu and
are different because they are generated from different information sources, that can
be available in different amount and with different timing along the development cycle of the
Toradocu and are different also because they focus on different classes of faults.
Toradocu oracles can detect are inconsistencies between the behavior of a method described in
its documentation and the actual behavior of the method. Instead, detect violations
of the redundancy relations among constructors and methods. Errors revealed by [CCOracles|
are not code-comments inconsistencies. Instead, they are true faulty behaviors due to faults in
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the implementation of the [SUT] Thus, [CCOracles|reveal implementation errors, while Toradocu
oracles detect code-comments inconsistencies.

As an example of the difference, consider the case of procedure preconditions. Toradocu is
able to derive preconditions from the Javadoc documentation and can detect when a procedure
invocation violates such preconditions. Precondition violations are useful to identify invalid tests.
[CCOracles|do not check preconditions and are not helpful to identify invalid tests. In addition to
preconditions, ignore exceptional behaviors. This is because redundant sequences of
method invocations often show a different exceptional behavior. This also implies that[CCOracles|
are not able to detect errors in the exceptional behavior of methods, while Toradocu can spot
inconsistencies between the documented and the actual behavior of a method.

Javadoc comments are not intended to be complete. This means that Toradocu oracles,
that are derived from Javadoc comments, are not good in completely checking the results of a
documented procedure. That is exactly what[CCOracles|are good at. aim to precisely
find errors in the results of procedure invocations.

To summarize, specified oracles are complete, but when formal specifications are not avail-
able, they become not cost-effective. Differently from specified oracles derived oracles are not
complete, they are partial. We need to combine multiple partial oracles, in addition to simple
implicit oracles, to thoroughly check the behavior of a[SUT| Toradocu and are a sort
of derived oracle, they nicely complement implicit oracles and they identify different classes of
faults. Thus, Toradocu and can be used together (and in addition to other partial
oracles) to make testing more effective.

Open Research Directions

The contributions of this thesis open new research directions towards the automatic generation
of effective test oracles.

Efficient|CCOracle|execution and equivalence check mechanisms. |CCOracles|execute equiv-

alent sequences in isolation by relying on a cloning mechanism that does not guarantee a
completely safe and sound isolation, mitigate the issue with consistency checks before executing
two equivalent sequences, and check equivalence by combining the Java equals method with
observational equivalence. The results open the problems of defining safe and sound mechanisms
to guarantee the isolation of executing equivalence sequences, and of finding effective ways to
check for the equivalence of redundant method call sequences.

Possible research directions for a safe and sound execution in isolation involve the study
of static/dynamic analysis to record the values that are read and written by the sequences,
and to check that values written in a sequence are not read in the other sequence. Possible
research directions towards precise and effective equivalence checks involve the exploitation of
information about the differences in the objects that represent the outcome of the two equivalent
sequences.

Another relevant research direction involves the study of the performance of [CCOracles|
Both the execution order of redundant sequences and the equivalence check affect the overall
performance of a[CCOracle] Possible research directions involve the study of performance issues
to identify performance bottlenecks and propose efficient approaches. Concurrent executions of
equivalences and equivalence checks could largely improve efficiency.
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Generalizing beyond object oriented systems. This thesis explores the use of
to test object-oriented (Java) systems. The core idea can be used to address different
domains, by devising suitable extensions of cross-check execution, equivalence check, and oracle
deployment mechanism. Possible research directions can consider the test of Web applications
where the outcome of specific system functions can be a Web page or a JSON file. Studying how
to execute sequences in isolation from the same initial state and how to compare their outcomes
are future work.

Generalizing Toradocu to non-structured natural language documentation. Toradocu gen-
erates test oracles from natural language semi-structured Java procedure documentation. Only
an arguably small portion of the documentation is semi-structured. A lot of documentation is
written as unstructured natural language, like the description comment fragment in Javadoc
comments. Parsing and understanding the semantics of unstructured text is more complicated
than semi-structured text. Unstructured text presents new complex challenges that are also
investigated in research communities dealing with the automatic comprehension of natural
language. How to exploit unstructured natural language documentation to generate test oracle
is yet another important an open research issue.

Generating test oracles by exploiting other sources of information. This thesis proposes to
exploit information available in the code and related artifacts to generate test oracles, and focuses
on code redundancy and Javadoc comments. This opens many research directions towards the
exploitation of the many other artifacts that are available in software systems. Requirements
documentation, models, messages exchanged between developers are example of information
sources that can be studied and from which interesting information can be mined. In principle,
every document somehow encoding or describing the expected behavior of the is valuable
and can be considered for automatically generating test oracles.
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