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“It is not only the violin that shapes the violinist, we are all shaped by the tools we
train ourselves to use, and in this respect programming languages have a devious
influence: they shape our thinking habits.”

— Edsger W. Dijkstra, 2001, To the members of the Budget Council|

“http://www.cs.utexas.edu/users/EWD/transcriptions/OtherDocs/Haskell.html
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Abstract

The main goal of a static type system is to prevent certain kinds of er-
rors from happening at run time. A type system is formulated as a set of
constraints that gives any expression or term in a program a well-defined
type. Besides detecting these kinds of errors, a static type system can be
an invaluable maintenance tool, can be useful for documentation purposes,
and can aid in generating more efficient machine code. However, there are
situations when the developer has more information about the program
that is too complex to explain in terms of typing constraints. To that end,
programming languages often provide mechanisms that make the typing
constraints less strict to permit more programs to be valid, at the expense
of causing more errors at run time. These mechanisms are essentially two:
Unsafe Intrinsics and Reflective Capabilities.

We want to understand how and when developers give up these static
constraints. This knowledge can be useful as: a) a recommendation for
current and future language designers to make informed decisions, b) a
reference for tool builders, e.g., by providing more precise or new refac-
toring analyses, c) a guide for researchers to test new language features,
or to carry out controlled programming experiments, and d) a guide for
developers for better practices.

In this dissertation, we focus on the Unsafe API and cast operator—a
subset of unsafe intrinsics and reflective capabilities respectively—in Java.
We report two empirical studies to understand how these mechanisms—
Unsafe API and cast operator—are used by Java developers when the static
type system becomes too strict. We have devised usage patterns for both the
Unsafe API and cast operator. Usage patterns are recurrent programming
idioms to solve a specific issue. We believe that having usage patterns
can help us to better categorize use cases and thus understand how those
features are used.
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Chapter 1

Introduction

In programming language design, the main goal of a static type system is to
prevent certain kinds of errors from happening at run time. A type system
is formulated as a set of constraints that gives any expression or term in a
program a well-defined type. As Pierce| [2002] states: “A type system can
be regarded as calculating a kind of static approximation to the run-time
behaviors of the terms in a program.” These constraints are enforced by
the type checker either when compiling or linking the program. Thus, any
program not satisfying the constraints stated within a type system is simply
rejected by the type checker.

Besides detecting early errors, a type checker can also be an invaluable
maintenance tool. For instance, it can assist an IDE to perform refactoring
analyses, such as renaming a method or a field. A static type system can be
helpful to enforce disciplined programming. When composing large-scale
software, modular languages are built-up of types, shown in the interfaces of
modules. Along these lines, type systems can be useful for documentation
purposes. Type annotations, e.g., in method and field declarations, can
provide useful hints to the developer. Since type annotations are meant to
be checked every time the program is compiled, this information cannot be
outdated, unlike comments in the source text.

Static type systems can aid in generating more efficient machine code,
e.., choosing a different representation for integer or real values at run
time. Furthermore, in statically checked languages, e.g., Java or Rust, many
checks are performed at compile time, instead of being performed other-
wise at run time. Compare this to dynamically checked languages, where
all checks need to be performed at run time, degrading performance. Ta-
ble 1.1} shows where mainstream languages fit in the safe/unsafe and stat-
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2 1.1 Beyond Static Type Checking

ically/dynamically checked spectrum. “The emptiness of the bottom-right
entry in the [..] table is explained by the fact that, once facilities are in
place for enforcing the safety of most operations at run time, there is little
additional cost to checking all operations.” [Pierce, 2002]

Table 1.1. Safe/Unsafe and Statically/Dynamically checked languages

’ H Statically checked \ Dynamically checked ‘

Safe Haskell, SML, Java, C#, Rust, etc. | Python, Lisp, Racket, efc.
Unsafe || C, C++, etc.

1.1 Beyond Static Type Checking

Nevertheless, often the static approximation provided by a type system is
not precise enough. Being static, the analysis done by the type checker
needs to be conservative: It is better to reject programs that are valid, but
whose validity cannot be ensured by the type checker, rather than accept
some invalid programs. However, there are situations when the developer
has more information about the program that is too complex to explain
in terms of typing constraints. To that end, programming languages often
provide mechanisms that make the typing constraints less strict to permit
more programs to be valid, at the expense of causing more errors at run
time. These mechanisms are essentially two: Unsafe Intrinsics and Reflective
Capabilities.

Unsafe Intrinsics

Some programming languages provide unsafe intrinsics, the ability to per-
form certain operations without being checked by the compiler. They are
unsafe because any misuse made by the programmer can compromise the
entire system, e.g., corrupting data structures without notice, or crashing
the runtime system. In other words, all guarantees provided by a static
type system are undermined by the inclusion of unsafe intrinsics.

Unsafe intrinsics can be seen in safe languages, e.g., Java, C#, Rust, or
Haskell. Foreign Function Interface (FFI), i.e., calling native code from
within a safe environment is unsafe. This is because the runtime system
cannot guarantee anything about the native code. In addition to FFI, some
safe languages offer so-called unsafe blocks, i.e., making unsafe operations



3 1.1 Beyond Static Type Checking

within the language itself, e.g., C#ﬂ and RustE| For instance, when using
unsafe blocks in Rust, the developer can dereference a raw pointer, making
the application crash.

Other languages instead provide an API to perform unsafe operations,
e.g. Haskel and Java. But in the case of Java, the API to make unsafe oper-
ations, sun.misc.Unsafe, is unsupportedﬁ and undocumented. For instance,
by invoking the allocateInstance on an instance of sun.misc.Unsafe the
developer can allocate an object without calling any constructor, thus, vi-
olating Java’s type system guarantees. sun.misc.Unsafe was originally in-
tended for internal use within the JDK, but as we shall see later on, it is
used outside the JDK as well.

Reflective Capabilities

Many programming languages provide some sort of reflective capabilities, i.e.,
they enable an executing program to examine or “introspect” upon itself.
Much of the Java Reflection API resides in the java.lang.reflect package,
allowing the running program to obtain information about classes and ob-
jects. By using reflection, it is possible to dynamically create instances of
a class at run time as well, e.g., through the Class class. C# provides anal-
ogous classes, e.g., the Type class, to achieve the same functionality. When
reflection is used, many checks that were done by the type checker statically
(at compile time) now need to be performed dynamically (at run time).

Programming languages with subtyping such as Java, Scala or C++ pro-
vide a mechanism to view an expression as a different type than it was de-
fined, a form of type introspection. This mechanism is often called casting.
Casting can be in two directions: upcast and downcast. An upcast conver-
sion happens when converting from a type S to a type T, provided that T is
a supertype of S. An upcast does not require any explicit casting operation
nor compiler check. However, as we shall see later on, there are situations
where an upcast requires an explicit casting operation. On the other hand,
a downcast happens when converting from a type S to a type T, provided
that T is a subtype of S.

Unlike upcasts, downcasts in a safe language require a run-time check

lhttps://docs.microsoft.com/en—us/dotnet/csharp/language—reference/
language-specification/unsafe-code
“https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html
3http://hackage.haskell.org/package/base—4.11.1.0/docs/System—IO-Unsafe.html
4http://www.oracle.com/technetwork/java/faq—sun—packages—142232.html
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to verify that the conversion is indeed valid. For instance, Java provides the
cast operator, written (T) t, while Scala provides the asInstanceOf method,
written t.asInstanceOf[T]. Although C++ is an unsafe language, when
used with run-time type information (RTTI), it provides a safe cast opera-
tion, the dynamic_cast<> operator, written dynamic_cast<T>(t). However,
C++ provides more ways to perform a cast operation with different seman-
tics that are unsafe, i.e., static_cast<>, reinterpret_cast<>, const_cast<>,
and C-style casts. All mentioned cast operators in C++ can perform object
slicing when the type to cast of is neither a pointer nor a reference type.

This implies that downcasts provide the means to bypass the static type
system. By avoiding the type system, downcasts can pose potential threats,
because it is like the developer saying to the compiler: “Trust me here, 1
know what I'm doing”. Being an escape-hatch from the static type system, a
cast is often seen as a design flaw or code smell [Tufano et al., 2015] in an
object-oriented system.

1.2 Research Question

If static type systems aim to prevent certain kinds of errors from happening
at run time, yet they provide the means to loosen their typing constraints,
why exactly does one need to do so? Are these mechanisms actually used
in real-world code? If yes, then how so? This triggers our main research
question:

MRQ
For what purpose do developers give up static type checking?

We have confidence that this knowledge can be: a) a reference for cur-
rent and future language designers to make informed decisions about pro-
gramming languages, e.g., the adoption of Variable Handles in Java 9 [Lea)
2014], or the addition of Smart Casts in Kotlinf| b) a reference for tool
builders, e.g., by providing more precise or new refactoring analyses, c) a
guide for researchers to test new language features, e.g., Winther| [2011] or
to carry out controlled experiments about programming, e.g., Stuchlik and
Hanenberg) [2011]] and d) a guide for developers for best or better practices.

To answer our question above, we empirically studied how the two
aforementioned mechanisms—unsafe intrinsics and reflective capabilities—
are used by developers. Since we seek to understand how these mechanisms

5ht‘cps ://kotlinlang.org/docs/reference/typecasts.html#smart-casts
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5 1.2 Research Question

are used, our methodology is based on qualitative analysis. Our qualitative
data to analyse is source code text (to study unsafe intrinsics we performed
a preliminary analysis on intermediate code). In particular, in both stud-
ies we performed manual qualitative (static) analysis. It is static because
we have analysed only the source text (contrast with dynamic analysis). We
performed repository mining to gather the source code text to analyse.

Since any kind of language study must be language-specific, we focus
on Java given its wide usage and relevance for both research and industryﬁ
Moreover, we focus on the Java Unsafe API to study unsafe intrinsics, given
that the Java Native Interface already has been studied in Tan et al.| [2006];
Tan and Croft [2008]; Kondoh and Onoderal [2008]; Sun and Tan| [2014]; |Li
and Tan| [2009]. Similarly, although casting uses run-time type information
like the Java’s reflection API, the reflection API has been studied in |Livshits
[2006]; Livshits et al. [2005]; |Landman et al.| [2017]].

To better drive our main research question, we propose to answer the fol-
lowing set of sub-questions. To answer these research sub-questions, we
have devised usage patterns for both the Unsafe API and casting. Usage pat-
terns are recurrent programming idioms used by developers to solve a specific
issue. We believe that having usage patterns can help us to better catego-
rize use cases and thus understand how these mechanisms are used. These
patterns can provide an insight into how the language is being used by de-
velopers in real-world applications. Overall these sub-questions will help
us to answer our MRQ:

Unsafe API

RQ/U1: To what extent does the Unsafe API impact common applica-
tion code? We want to understand to what extent code actually
uses Unsafe or depends on it.

RQ/U2: How and when are Unsafe features used? We want to inves-
tigate what functionality third-party libraries require from Un-
safe. This could point out ways in which the Java language
and/or the JVM can be evolved to provide the same functional-
ity, but in a safer way.

The main contributions of our Unsafe API study have been published in
OOPSLA'15 [Mastrangelo et al., 2015].

6https://www.tiobe.com/tiobe—index/


https://www.tiobe.com/tiobe-index/

6 1.3 Thesis Outline

Casting

RQ/C1: How frequently is casting used in common application code?
To what extent does application code actually use casting oper-
ations?

RQ/C2: How and when casts are used? If casts are used in application
code, how and when do developers use them?

RQ/C3: How recurrent are the patterns for which casts are used? In ad-
dition to understand how and when casts are used, we want to
measure how often developers need to resort to certain idioms
to solve a particular problem.

The results of this study have been submitted for publication to OOP-
SLA'19.

1.3 Thesis Outline

The rest of this thesis is structured as follows. In Chapter 2| we give a review
of the literature in empirical studies of programming language features. In
particular, Sections 2.3.1] and [2.3.2| review the state-of-the-art of the different
aspects related to the two proposed studies. Chapter 3 presents a summary
of our Unsafe study, while in Chapter 4| we present our casting study. Finally,
Chapter 5 presents the conclusions of the thesis.

Appendix |A| contains an introduction to QL—the language we used to
approximate automatic detection of patterns—and reference material used
in our casting study. Appendix[Bl—although not directly related—describes
our bytecode analysis library used in some experiments in both Chapters
and @]




Chapter 2

Literature Review

Understanding how developers use language features and APIs is a broad
topic. There is plenty of research in the computer science literature about
empirical studies of programs which involves multiple dimensions directly
related to our plan. Over the last decades, researchers always have been
interested in understanding what kind of programs developers write.

The importance of conducting empirical studies of programs gave rise
to the International Conference on Mining Software Repositorieﬂ in 2004.

Outline

When conducting empirical studies about programs, multiple dimensions
are involved. The first one is What to analyse? Benchmarks and corpora
are used as a source of programs to analyse. Another aspect is how to
select good candidate projects from a large-base software repository. This
is presented in Section After the selection of programs to analyse is
set, comes the question how to analyse them? An overview of what tools
are available to extract information from software repositories is given in
Section With this infrastructure, what questions do researchers ask? In
Section we give an overview of large-scale empirical studies that show
what kind of questions researchers ask. In particular, this section ends by
presenting the related work more specific to the Unsafe API and Casting
in Sections [2.3.1| and [2.3.2] respectively. Finally, Section concludes this
chapter.

lhttp://www.msrconf.org/
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2.1 Benchmarks and Corpora

Benchmarks are crucial to properly evaluate and measure product develop-
ment. This is key for both research and industry. One popular benchmark
suite for Java is the DaCapo Benchmark [Blackburn et al., 2006]. This suite
has been cited in more than thousand publications, showing how impor-
tant is to have reliable benchmark suites. The SPEijmZOO (Java Virtual
Machine Benchmark) and SPECjbeOO(ﬁ (Java Business Benchmark) are an-
other popular Java benchmark suite.

Another suite has been developed by [Iempero et al,|[2010]. They pro-
vide the Qualitas Corpus, a corpus of curated open source systems to facil-
itate empirical studies on source code. On top of the Qualitas Corpus, Di-
etrich et al.| [2017b] provide an executable corpus of Java programs. This
allows any researcher to experiment with both static and dynamic analysis.

For any benchmark or corpus to be useful and reliable, it must faithfully
represent real-world code. For instance, DaCapo applications were selected
to be diverse real applications and ease of use, but they “excluded GUI
applications since they are difficult to benchmark systematically.” Along
these lines, Allamanis and Sutton [2013]] go one step further and provide a
large-scale (14,807) curated corpus of open source Java projects.

With the advent of cloud computing, several source code management
(SCM) hosting services have emerged, e.g., GitHub, GitLab, Bitbucket, and
SourceForge. These services allow the developer to work with different
SCMs, e.g., Git, Mercurial, Subversion to host their open source projects.
These projects are usually taken as a representation of real-world appli-
cations. Thus, while not curated corpora, these hosting services are com-
monly used to conduct empirical studies.

Another dimension to consider when analysing large codebases, is how
relevant the repositories are. [Lopes et al. [2017] conducted a study to mea-
sure code duplication in GitHub. They found out that much of the code
there is actually duplicated. This raises a flag when considering which
projects to analyse when mining software repositories.

Baxter et al. [1998] propose a clone detection algorithm using Abstract
Syntax Trees, while Rieger and Ducasse| propose a visual detection for
clones. Yuan and Guo [2011]; Chen et al| instead propose Count Matrix-
based approach to detect code clones.

thtps ://www.spec.org/jvm2008/
3ht‘cps ://www.spec.org/jbb2000e/
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Nagappan et al.| [2013] have developed the Software Projects Sampling
(SPS) tool. SPS tries to find a maximal set of projects based on representa-
tiveness and diversity. Diversity dimensions considered include total lines
of code, project age, activity, number of contributors, total code churn, and
number of commits.

2.2 Tools for Mining Software Repositories

When talking about mining software repositories, we refer to extracting any
kind of information from large-scale codebase repositories. Usually doing
so requires several engineering but challenging tasks. The most common
being downloading, storing, parsing, analysing and properly extracting in-
formation from different kinds of artifacts. In this scenario, there are several
tools that allows a researcher or developer to query information about soft-
ware repositories.

Urma and Mycroft [2012] evaluated seven source code query languages:
Java Tools Language [Cohen and Maman|], SOUL [De Roover et al., 2011],
Browse—By—Queryﬂ JQuery [Volder, 2006], .QL [de Moor et al., 2007, ]ackpoiﬂ
and PMljﬂ They have implemented, whenever possible, four use cases us-
ing the tools mentioned above. They concluded that only SOUL and .QL
have the minimal features to implement all their use cases.

Dyer et al|[2013a)c|] built Boa, both a domain-specific language and an
online platformﬂ It is used to query software repositories on two popular
hosting services, GitHub and SourceForge. The same authors of Boa con-
ducted a study on how new Java features, e.g., Assertions, Enhanced-For Loop,
Extends Wildcard, were adopted by developers over time [Dyer et al., 2014].
This study is based SourceForge data, which nowadays can be considered
outdated, since the proliferation of hosting services like GitHub, GitLab,
and BitBucket. Nevertheless, the current Boa dataset is from GitHub. More-
over, recent work on Boa removed some of the expressiveness limitations
it had in the past. For instance, Upadhyaya and Rajan| [2018]; |Ramu et al.
[2018] have added the capability to run static analyses, such as control-flow
graph analyses, over the Boa datasets. |Zhang et al. [2018] and Maddox
et al. [2018] use the aforementioned Boa capability to study programming

4http://browsebyquery.sourceforge.net/
5http://wiki.netbeans.org/Jackpot
Shttps://pmd.github.io/
7http://boa.cs.iastate.edu/
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language features at a large scale. Zhang et al. [2018] conduct an empiri-
cal study on the prevalence and severity of API misuse on Stack Overflow,
while Maddox et al.|[2018] conduct a large scale study in order to compare
the side-effects—e.g., reading/writing from/to files, throwing exceptions,
or acquiring locks—of the methods of subclasses and superclasses in prac-
tice.

Gousios|[2013] provides an offline mirror of GitHub that allows researchers
to query any kind of that data. Later on, Gousios et al. [2014] published the
dataset construction process of GitHub.

Similar to Boa, lgtmﬁ is a platform to query software projects properties.
It works by querying repositories from GitHub. But it does not work at a
large-scale, i.e., Igtm allows the user to query just a few projects. Unlike
Boa, Igtm is based on QL—before named .QL—, an object-oriented domain-
specific language to query recursive data structures based on Datalog [Av-
gustinov et al., 2016]. Another static analysis framework based on Datalog
is Doop [Bravenboer and Smaragdakis, b]. Since QL and Doop are based on
Datalog, both are well-suited to perform points-to analysis and data-flow
analysis. However, scaling such analysis to a large-scale study remains an
open problem.

On top of Boa, Tiwari et al. [2017] built Candoinﬂ Although it is not a
mining software repository per se, it eases the creation of mining applica-
tions.

Another tool to analyse large software repositories is presented in Bran-
dauer and Wrigstad [2017]. In this case, the analysis is dynamic, based on
program traces. At the time of this writing, the servicﬂ was unavailable
for testing.

Bajracharya et al| [2009] provide a tool to query large code bases by
extracting the source code into a relational model. Sourcegrapﬂ is a tool
that allows regular expression and diff searches. It integrates with source
repositories to ease navigate software projects.

Posnett et al. [2010] have extended ASM [Bruneton et al., 2002b|] to detect
meta-patterns, i.e., structural patterns of object-oriented interaction. Hu
and Sartipi| [2008] used both dynamic and static analysis to discover design
patterns, while |Arcelli et al. [2008] used only dynamic analysis.

Trying to unify analysis and transformation tools, |Vinju and Cordy

8https://1lgtm.com/

http://candoia.github.io/
10http://www.spencer-t.racing/datasets
11https://sourcegraph.com
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[2006] and Klint et al|[2009] built Rascal, a DSL that aims to bring them
together by querying the AST of a program. Spoon is a Java library “to anal-
yse, rewrite, transform, transpile Java source code” [Pawlak et al., 2015]. It
supports symbol resolution natively and match code elements using Spoon
patterns. Probably one of the most mature libraries to parse and manip-
ulate Java source code is Eclipse Java Development Tools (]DT)E Besides
parsing Java source code, Eclipse JDT has the ability to compile, run, and
debug Java source code. Extend] [Ekman and Hedin, 2007] is an extensible
Java compiler. It supports semantic analysis and bytecode generation. With
Java 8, it is possible to write plug-ins for the javac compiler. By writing a
compiler plug-in, it is possible to add extra-compile checks, perform code
transformations and custom analysis. ]avaParserH as its name suggests,
is a parser for Java. The main issue with JavaParser is that it lacks the
ability to perform symbol resolution integrated with project dependencies.
javalan is a library written in Python to parse Java source code.

In early prototypes of our cast study we have used javalang and a cus-
tom javac plug—in and ]avaParseﬁ to parse and analyse Java source code.

2.3 Empirical Studies of Large Codebases

In the same direction as our plan, |Callau et al|[2013] performed an em-
pirical study to assess how much the dynamic and reflective features of
Smalltalk are actually used in practice. Analogously, Richards et al.|[2010,
2011]]; Wet et al.|[2016] conducted a similar study, but in this case targeting
JavaScript’s dynamic behavior and in particular the eval function. Also, for
JavaScript, Madsen and Andreasen| [2014] analysed how fields are accessed
via strings, while [Jang et al. [2010] analysed privacy violations. Similar
empirical studies were done for PHP [Hills et al., 2013; Dahse and Holz,
2015; Doyle and Walden, 2011] and Swift [Rebougas et al., 2016]. |Pinto et al.
[2015] conducted a large-scale study on how concurrency is used in Java
Going one step forward, Ray et al.| [2017] studied the correlation be-
tween programming languages and defects. One important note is that
they choose relevant projects by popularity, measured by how many times

2https://www.eclipse.org/jdt/
Bhttp://javaparser.org/

14https ://github.com/c2nes/javalang
Bhttps://gitlab.com/acuarica/java-cast-inspection
16ht‘cps ://gitlab.com/acuarica/java-cast-study
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the project was starred in GitHub.

Gorla et al.| [2014] mined a large set of Android applications, cluster-
ing applications by their description topics and identifying outliers in each
cluster with respect to their API usage. Grechanik et al.|[2010] also mined
large scale software repositories to obtain several statistics on how source
code is actually written.

For Java, Dietrich et al. [2017a]] conducted a study about how program-
mers use contracts in Maven Centmﬂ Dietrich et al. [2014] have studied
how API changes impact Java programs. They have used the Qualitas Cor-
pus [Tempero et al., 2010] mentioned above for their study.

Tufano et al. [2015| 2017] studied when code smells are introduced in
source code. Palomba et al. [2015] contribute a dataset of five types of
code smells together with a systematic procedure for validating code smell
datasets. Palomba et al.| [2013] propose to detect code smells using change
history information.

Nagappan et al. [2015] conducted a study on how the goto statement is
used in C. They used GitHub as a data source for C programs. They con-
cluded that goto statements are most used for handling errors and cleaning
up resources.

Static vs. Dynamic Analysis. Given the dynamic nature of JavaScript,
most of the studies mentioned above for JavaScript perform dynamic analy-
sis. However, Callat et al.| [2013] uses static analysis to study a dynamically
checked language. For Java, most empirical studies use static analysis. This
is due to the unavailability of input data. Finding valid input data for test
cases is not a trivial task. For JavaScript, having a big corpus of web-sites
generating valid input data makes more feasible to implement dynamic
analysis.

Programming Language Features

Programming language design has always been a hot topic in computer sci-
ence literature. It has been extensively studied in the past decades. There
is a trend in incorporating programming features into mainstream object-
oriented languages, e.g., lambdas in Java @ C++11E and C# 3.@ or para-

17http://central.sonatype.org/

18https://docs.oracle.com/javase/specs/j1s/se8/html/jls—15.html#jls—15.27

19http://www.open—std.org/jtc1/sc22/wg21/docs/papers/2®®6/n1968.pdf

20https://msdn.microsoft.com/en—us/library/bb308966.aspx#csharp3.®overview_
topic7/
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metric polymorphism, i.e., generics, in Java SH@ For instance, Java gener-
ics were designed to extend Java’s type system to allow “a type or method
to operate on objects of various types while providing compile-time type
safety” [Gosling et al., 2013|]. However, it was later shown [Amin and Tate,
2016] that compile-time type safety was not fully achieved.

Kery et al|[2016]; Asaduzzaman et al. [2016] focus on exceptions. They
conducted empirical studies on how programmers handle exceptions in
Java code. The work done by Nakshatri et al.|[2016] categorized them into
patterns. Coelho et al|[2015] used a more dynamic approach by analysing
stack traces and code issues in GitHub. Kechagia and Spinellis| [2014] anal-
ysed how undocumented and unchecked exceptions cause most of the ex-
ceptions in Android applications.

Mazinanian et al.| [2017] and [Uesbeck et al.| [2016] studied how devel-
opers use lambdas in Java and C++ respectively. The inclusion of generics
in Java is closely related to collections. [Parnin et al|[2011} 2013] studied
how generics were adopted by Java developers. They found that the use of
generics does not significantly reduce the number of type casts.

Costa et al.|[2017] have mined GitHub corpus to study the use and per-
formance of collections, and how these usages can be improved. They
found that in most cases there is an alternative usage that improves per-
formance.

Another study about how a programming language feature is used is
done in [Iempero et al.|[2008]. They conducted a study on how inheritance
is used in Java programs.

This kind of studies give an insight of the adoption of lambdas and
generics, which can drive future direction for language designers and tool
builders, while providing developers with best practices.

2.3.1 Unsafe Intrinsics in Java

Oracle provides the sun.misc.Unsafe class for low-level programming, e.g.,
synchronization primitives, direct memory access methods, array manip-
ulation and memory usage. Although sun.misc.Unsafe is not officially
documented, it is being used in both industrial applications and research
projects [Korland et al., 2010; Pukall et al.j Gligoric et al., 2011] outside the
JDK, compromising the safety of the Java ecosystem.

21ht’cps ://docs.oracle.com/javase/1.5.0/docs/guide/language/generics.html
22ht*cp: //www.oracle.com/technetwork/java/javase/generics-tutorial-159168.pdf
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Oracle’s software engineer Paul Sandoz performed an informal analysis
of Maven Central artifacts and usages in Grepcode [Sandoz, |2015] and con-
ducted a user survey to study how the Unsafe API is used [Sandoz, 2014].
The survey consists of 7 questions that help to understand what pieces
of sun.misc.Unsafe should be mainstreamed. In his survey, he found out
that most developers who use sun.misc.Unsafe do not have a fallback when
sun.misc.Unsafe is not present, thus undermining portability. Similarly,
most developers are willing to replace Unsafe with safer alternatives—new
API or language changes—in the case there is one. Figure shows the
answers to the question: “What reasons did you use Unsafe for?” These rea-
sons are somewhat related to our Unsafe usage patterns. We complement
his survey to identify more use cases of Unsafe in a large codebase. When
studying a larger codebase some results might change. For instance, he
concluded that the monitorEnter/monitorExit/tryMonitorEnter methods
are not used, whereas in our study we found out (see Section that
only tryMonitorEnter is never used.

Tan et al. [2006] propose a combination of static and dynamic checks to
provide a safe variant of the Java Native Interface (JNI). They have iden-
tified several loopholes that may cause unsafe interoperation between Java
and native code. The language extension provided by Bubak and Kurzyniec
[2000] allows the developer to interleave Java and native code in the same
compilation unit. However, the native code is not—neither statically nor
dynamically—checked, causing a possible JVM crash. [Ian and Croft [2008]
and Kondoh and Onodera| [2008] conducted an empirical security study to
describe a taxonomy to classify bugs when using JNI. Sun and Tan| [2014]
develop a method to isolate native components in Android applications. |Li
and Tan! [2009] analyse the discrepancy between how exceptions are han-
dled in native code and Java.

2.3.2 Reflective Capabilities

Livshits| [2006]; Livshits et al.| [2005] “describes an approach to call graph
construction for Java programs in the presence of reflection.” He has de-
vised some common usage patterns for reflection. More precisely, he iden-
tified 7 reflection usage patterns. Most of the patterns need a cast operation
to actually be able to use some value obtained by reflection. For instance,

23ht’cp: //www.infoq.com/news/2014/02/Unsafe-Survey
24http: //cr.openjdk. java.net/~psandoz/dv14-uk-paul-sandoz-unsafe-the-situation.
pdf
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4. What reasons did you use Unsafe for?

Response Response

Percent Count

Atomic access to fields and array
elements (such as compare-and- | ] 44.1% 149

swap)

Off-heap memory operations
(such as to emulate structures or [ ] 63.6% 215

packed objects)
Deserialization hacks [ ] 36.4% 123

Fencing (to constrain re-ordering of
22.5% 76

memory operations) l:

Access to private fields of another
[E— 25.1% 8

class

ith

Array access without bounds :I 32.5% 110

checks

Other (please speci

(plense speclly) ) 222% 75

Figure 2.1. Categorization of Unsafe usages from Sandoz’ survey

the “Specifying Application Extensions” pattern is used to implement a
plugin system, i.e., where classes are dynamically loaded from a configura-
tion file to extend the functionality of a base application. Usually the class
being dynamically loaded needs to implement or extend a specific interface
or class respectively to be used by the plugin system. Thus, a cast is needed
to dynamically assert that indeed this is the case. In our study, we plan to
categorize all cast usages, not only where reflection is used.

Landman et al.|[2017] have analysed the relevance of static analysis tools
with respect to reflection. They conducted an empirical study to check how
often the reflection API is used in real-world code. They have devised re-
flection AST patterns, which often involve the use of casts. Finally, they
argue that controlled programming experiments on subjects need to be cor-
related with real-world use cases, e.g., GitHub or Maven Central.

Casting operations in ]ava@ allows the developer to view a reference

25https ://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.16
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at a different type as it was declared. The related instanceof operato@—
written e instanceof T—tests whether a reference e could be cast of a
different type T without throwing ClassCastException at run time.

Winther| [2011] has implemented a path sensitive analysis that allows
the developer to avoid casting once a guarded instanceof is provided. He
proposes four cast categorizations according to their run-time type safety:
Guarded Casts, Semi-Guarded Casts, Unguarded Casts, and Safe Casts.

Tsantalis et al.| [2008] present an Eclipse plug-in that identifies type-
checking bad smells, a “variation of an algorithm that should be executed,
depending on the value of an attribute”. They provide refactoring analy-
sis to remove the detected smells by introducing inheritance and polymor-
phism. This refactoring will introduce casts to select the right type of the
object.

Controlled Experiments on Subjects. There is an extensive literature
per se in controlled experiments on subjects to understand several aspects
in programming, and programming languages. For instance, Soloway and
Ehrlich! [1984] tried to understand how expert programmers face problem
solving. Budd et al.| [1980] conducted an empirical study on how effective
mutation testing is. |[Prechelt| [2000] compared how a given—fixed—task
was implemented in several programming languages. Laloza and Myers
[2010] realize that, in essence, programmers need to answer reachability
questions to understand large codebases. Several authors [Stuchlik and Ha-
nenberg| [2011]; Mayer et al.| [2012]; Harlin et al.| [2017] measure whether
using a static-type system improves programmer productivity. They com-
pare how a static and a dynamic type system impact on productivity. The
common setting for these studies is to have a set of programming problems.
Then, let a group of developers solve them in both a static and dynamic lan-
guages. For this kind of studies to reflect reality, the problems to be solved
need to be representative of the real-world code. Having artificial problems
may lead to invalid conclusions. The work by Wu and Chen| [2017]; Wu
et al. [2017] goes towards this direction. They have examined programs
written by students to understand real debugging conditions. Their focus
is on ill-typed programs written in Haskell.

26https ://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.20.2
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2.4 Conclusions

The Java Native Interface and Java’s reflection API are well-studied topics.
Several studies have been conducted to understand why developers use
these features, and several analyses have been devised to check whether
their usage is correct.

But Java’s unsafe intrinsics and reflection capabilities comprise more
than JNI and reflection API. Unsafe operations can be performed by us-
ing the undocumented sun.misc.Unsafe class. The cast operator provides
a lightweight form of type introspection. However—to our knowledge—
these features have never been studied before in the literature. Moreover,
given that the cast operator is part of the Java language itself, we believe
its use is more widespread than the reflection API. This thesis provides the
tirst empirical studies on the Unsafe API and cast operator in Java. In our
work [Mastrangelo et al., 2015] we extend Sandoz” work by performing a
comprehensive study of the Maven Central software repository to analyse
how and when sun.misc.Unsafe is being used. This study is summarized
in Chapter 3l We refined the categorization performed by |Winther| [2011]
to answer our (How and when casts are used?). This is described in
Chapter §] We believe that understanding how and when developers use
these features can provide informed decisions for the future of Java while
providing a guide for developers with better or best practices.
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Chapter 3

Empirical Study on the Unsafe API

The Java Virtual Machine (JVM) executes Java bytecode and provides other
services for programs written in many programming languages, including
Java, Scala, and Clojure. The JVM was designed to provide strong safety
guarantees. However, many widely used JVM implementations expose an
API that allows the developer to access low-level, unsafe features of the
JVM and underlying hardware, features that are unavailable in safe Java
bytecode. This API is provided through an undocumente class, sun.-
misc.Unsafe, in the Java reference implementation produced by Oracle.

Other virtual machines provide similar functionality. For example, the
C# language provides an unsafe construct on the .NET platformE| and
Racket provides unsafe operationsﬂ

The operations sun.misc.Unsafe provides can be dangerous, as they al-
low developers to circumvent the safety guarantees provided by the Java
language and the JVM. If misused, the consequences can be resource leaks,
deadlocks, data corruption, and even JVM crashesﬁ E| H ﬂlﬂ

We believe that sun.misc.Unsafe was introduced to provide better per-
formance and more capabilities to the writers of the Java runtime library.
However, sun.misc.Unsafe is increasingly being used in third-party frame-
works and libraries. Application developers who rely on Java’s safety guar-

1http://www.oracle.com/technetwork/java/faq—sun—packages—142232.html
2https://msdn.microsoft.com/en-us/en—en/library/chfaZzbs(v=vs.9@).aspx
3http://docs.racket—lang.org/re’r‘erence/unsa’r‘e.html
4https://groups.google.com/d/msg/elasticsearch/Nh—kXI5J6Ek/WXIZKthVHkJ
5https://github.com/EsotericSoftware/kryo/issues/219
6https://github.com/dain/snappy/issues/24
7https://netbeans.org/bugzilla/show_bug.cgi?id=229655
8https://netbeans.org/bugzilla/show_bug.cgi?id=244914
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antees have to trust the implementers of the language runtime environment
(including the core runtime libraries). Thus the use of sun.misc.Unsafe in
the runtime libraries is no more risky than the use of an unsafe language
to implement the JVM. However, the fact that more and more “normal” li-
braries are using sun.misc.Unsafe means that application developers have
to trust a growing community of third-party Java library developers to not
inadvertently tamper with the fragile internal state of the JVM.

Given that the benefits of safe languages are well known, and the risks
of unsafe languages are obvious, why exactly does one need unsafe features
in third-party libraries? Are those features used in real-world code? If yes,
how are they used, and what are they used for? More precisely, we want to
answer the following research questions:

RQ/U1: To what extent does the Unsafe API impact common applica-
tion code? We want to understand to what extent code actually
uses Unsafe or depends on it.

RQ/U2: How and when are Unsafe features used? We want to inves-
tigate what functionality third-party libraries require from Un-
safe. This could point out ways in which the Java language
and/or the JVM can be evolved to provide the same functional-
ity, but in a safer way.

If Unsafe is not just dangerous, but also confusing or difficult to use,
then its use by third-party developers is particularly problematic. If there
are specific Unsafe features or usage patterns that developers worry about,
it would make sense to evolve Java or the JVM to provide safer alternatives
in that direction.

We studied a large repository of Java code, Maven Central, to answer
these questions. We have analysed 74 GB of compiled Java code, spread
over 86,479 Java archives, to determine how Java’s unsafe capabilities are
used in real-world libraries and applications. We found that 25% of Java
bytecode archives depend on unsafe third-party Java code, and thus Java’s
safety guarantees cannot be trusted. We identify 14 different usage patterns
of Java’s unsafe capabilities, and we provide supporting evidence for why
real-world code needs these capabilities. Our long-term goal is to provide
a strong foundation to make informed decisions in the future evolution of
the Java language and virtual machine, and for the design of new language
features to regain safety in Java.
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Outline

This chapter is based on our study of how developers use the Unsafe API in
Java [Mastrangelo et al., 2015]. In this thesis we outline the risks of using the
Unsafe API in Section[3.1} Then we answer (To what extent does the
Unsafe API impact common application code?) in Section To answer
(How and when are Unsafe features used?), first we introduce our
methodology and the patterns we found in Sections [3.3|and |3.4| respectively,
to then present how the patterns we found could be implemented in a safer
way in Section Finally, Section [3.6| concludes this chapter.

3.1 The Risks of Compromising Safety

We outline the risks of Unsafe by illustrating how the improper use of Unsafe
violates Java’s safety guarantees.

In Java, the unsafe capabilities are provided as instance methods of class
sun.misc.Unsafe. Access to the class has been made less than straightfor-
ward. Class sun.misc.Unsafe is final, and its constructor is not public.
Thus, creating an instance requires some tricks. For example, one can in-
voke the private constructor via reflection. This is not the only way to get
hold of an unsafe object, but it is the most portable.

Constructor<Unsafe> ¢ = Unsafe.class.getDeclaredConstructor();
c.setAccessible(true);
Unsafe unsafe = c.newlnstance();

Listing 3.1. Instantiating an Unsafe object

Given the unsafe object, one can now simply invoke any of its methods
to directly perform unsafe operations.

Violating Type Safety

In Java, variables are strongly typed. For example, it is impossible to store
an int value inside a variable of a reference type. Unsafe can violate that
guarantee: it can be used to store a value of any type in a field or array
element.
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class C {
private Object f = new Object();

3
long fieldOffset = unsafe.objectFieldOffset(

C.class.getDeclaredField("f") );
C o =new C(O;
unsafe.putInt(o, fieldOffset, 1234567890); // f now points to nirvana

Listing 3.2. sun.misc.Unsafe can violate type safety

Crashing the Virtual Machine

A quick way to crash the VM is to free memory that is in a protected address
range, for example by calling freeMemory as follows.
unsafe.freeMemory(1);

Listing 3.3. sun.misc.Unsafe can crash the VM

In Java, the normal behavior of a method to deal with such situations is
to throw an exception. Being unsafe, instead of throwing an exception, this
invocation of freeMemory crashes the VM.

Violating Method Contracts

In Java, a method that does not declare an exception cannot throw any
checked exceptions. Unsafe can violate that contract: it can be used to
throw a checked exception that the surrounding method does not declare
or catch.

void m() {
unsafe. throwException(new Exception());

}

Listing 3.4. sun.misc.Unsafe can violate a method contract

Uninitialized Objects

Java guarantees that an object allocation also initializes the object by run-
ning its constructor. Unsafe can violate that guarantee: it can be used to
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allocate an object without ever running its constructor. This can lead to
objects in states that the objects’ classes would not seem to admit.

class C {

private int f;

public C() { f = 5; }

public int getF() { return f; }
3

C ¢ = (C)unsafe.allocatelnstance(C.class);
assert c.getF()==5; // violated

Listing 3.5. sun.misc.Unsafe can lead to uninitialized objects

Monitor Deadlock

Java provides synchronized methods and synchronized blocks. These con-
structs guarantee that monitors entered at the beginning of a section of
code are exited at the end. Unsafe can violate that contract: it can be used
to asymmetrically enter or exit a monitor, and that asymmetry might be not
immediately obvious.

void m() {
unsafe.monitorEnter(o);
if (c) return;
unsafe.monitorExit(o);

b

Listing 3.6. sun.misc.Unsafe can lead to monitor deadlocks

The examples shown above are just the most straightforward violations
of Java’s safety guarantees. The sun.misc.Unsafe class provides a multitude
of methods that can be used to violate most guarantees Java provides.

To sum it up: Unsafe is dangerous. But should anybody care? In the
next sections we present a study to determine whether and how Unsafe is
used in real-world third-party Java libraries, and to what degree real-world
applications directly and indirectly depend on it.



24 3.2 Is Unsafe Used?

3.2 Is Unsafe Used?

To answer (To what extent does the Unsafe API impact common appli-
cation code?) we need to determine whether and how Unsafe is actually
used in real-world third-party Java libraries, and to what degree real-world
applications directly and indirectly depend on such unsafe libraries. To
achieve our goal, several elements are needed.

Code Repository. As a code base representative of the “real world”, we
have chosen the Maven Central software repository. The rationale behind
this decision is that a large number of well-known Java projects deploy to
Maven Central using Apache Maven. Besides code written in Java, projects
written in Scala are also deployed to Maven Central using the Scala Build
Tool (sbt). Moreover, Maven Central is the largest Java repositoryﬂ and it
contains projects from the most popular source code management reposi-
tories, like GitHub and SourceForge.

Artifacts. In Maven, an artifact is the output of the build procedure of
a project. An artifact can be any type of file, ranging from a .pdf to a .zip
file. However, Artifacts are usually .jar files, which archive compiled Java
bytecode stored in .class files.

Bytecode Analysis. We examine these kinds of artifacts to analyse how
they use sun.misc.Unsafe. We use a bytecode analysis library to search for
method call sites and field accesses of the sun.misc.Unsafe class [Bruneton
et al., 2002a,b; Kuleshov) 2007]].

However, our first attempt was to use JNIF, our own bytecode analy-
sis library [Mastrangelo and Hauswirth, 2014]. JNIF is described in Ap-
pendix B Due to its own limitations, we decided to use the aforementioned
analysis library.

Dependency Analysis. We define the impact of an artifact as how many
artifacts depend on it, either directly or indirectly. This helps us to de-
fine the impact of artifacts that use sun.misc.Unsafe, and thus the impact
sun.misc.Unsafe has on real-world code overall.

Usage Pattern Detection. After all call sites and field accesses are found,
we analyse this information to discover usage patterns. It is common that
an artifact exhibits more than one pattern. Our list of patterns is not ex-
haustive. We have manually investigated the source code of the 100 highest-
impact artifacts using sun.misc.Unsafe to understand why and how they
are using it.

9http: //www.modulecounts.com/
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Our analysis found 48,490 uses of sun.misc.Unsafe—48,139 call sites
and 351 field accesses—distributed over 817 different artifacts. This initial
result shows that Unsafe is indeed used in third-party code.

We use the dependency information to determine the impact of the ar-
tifacts that use sun.misc.Unsafe. We rank all artifacts according to their
impact (the number of artifacts that directly or indirectly depend on them).
High-impact artifacts are important; a safety violation in them can affect
any artifact that directly or indirectly depends on them. We find that while
overall about 1% of artifacts directly use Unsafe, for the top-ranked 1000 ar-
tifacts, 3% directly use Unsafe. Thus, Unsafe usage is particularly prevalent
in high-impact artifacts, artifacts that can affect many other artifacts.

Moreover, we found that 21,297 artifacts (47% of the 47,127 artifacts
with dependency information, or 25% of the 86,479 artifacts we down-
loaded) directly or indirectly depend on sun.misc.Unsafe. Excluding lan-
guage artifacts, numbers do not change much: Instead of 21,297 artifacts,
we found 19,173 artifacts, 41% of the artifacts with dependency informa-
tion, or 22% of artifacts downloaded. Thus, sun.misc.Unsafe usage in third-
party code indeed impacts a large fraction of projects.

The complete scripts and results used for this study are available on-
linem Moreover, this study contains a companion artifact that aims to
reproduce the results shown in this chapter. The companion artifact can be
found in the Source Materials tab in the ACM Digital Libraryﬂ

3.2.1 Which Features of Unsafe Are Actually Used?

Figures 3.1/ and 3.2| show all instance methods and static fields of the sun.-
misc.Unsafe class. For each member we show how many call sites or field
accesses we found across the artifacts. The class provides 120 public in-
stance methods and 20 public fields (version 1.8 update 40). The figure
only shows 93 methods because the 18 methods in the Heap Get and Heap
Put groups, and staticFieldBase are overloaded, and we combine overloaded
methods into one bar.

We show two columns, Application and Language. The Language column
corresponds to language implementation artifacts while the Application col-
umn corresponds to the rest of the artifacts.

We categorized the members into groups, based on the functionality

WOhttps://gitlab.com/acuarica/java-unsafe-analysis
Hhttp://dx.doi.org/10.1145/2814270.2814313
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Figure 3.1. sun.misc.Unsafe method usage on Maven Central
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Figure 3.2. sun.misc.Unsafe field usage on Maven Central
they provide:

* The Alloc group contains only the allocatelnstance method, which al-

lows the developer to allocate a Java object without executing a con-
structor. This method is used 181 times: 180 in Application and 1 in
Language.

The Array group contains methods and fields for computing relative
addresses of array elements. The fields were added as a simpler and
potentially faster alternative in a more recent version of Unsafe. The
value of all fields in this group are constants initialized with the result
of a call to either arrayBaseOffset or arrayIndexScale in the Array group.
The figures show that the majority of sites still invoke the methods
instead of accessing the corresponding constant fields.

The CAS group contains methods to atomically compare-and-swap
a Java variable. These methods are implemented using processor-
specific atomic instructions. For instance, on x86 architectures, com-
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pareAndSwapInt is implemented using the CMPXCHG machine instruc-
tion. Figure [3.1| shows that these methods represent the most heavily
used feature of Unsafe.

Methods of the Class group are used to dynamically load and check
Java classes. They are rarely used, with defineClass being used the
most.

The methods of the Fence group provide memory fences to ensure
loads and stores are visible to other threads. These methods are im-
plemented using processor-specific instructions. These methods were
introduced only recently in Java 8, which explains their limited use
in our data set. We expect that their use will increase over time and
that other operations, such as those in the Ordered Put, or Volatile Put
groups will decrease as programmers use the lower-level fence oper-
ations.

The Fetch & Add group, like the CAS group, allows the programmer
to atomically update a Java variable. This group of methods was also
recently added in Java 8. We expect their use to increase as program-
mers replace some calls to methods in the CAS group with the new
functionality.

The Heap group methods are used to directly access memory in the
Java heap. The Heap Get and Heap Put groups allow the developer
to load and store a Java variable. These groups are among the most
frequently used ones in Unsafe.

The Misc group contains the method getLoadAverage, to get the load
average in the operating system run queue assigned to the available
processors. It is not used.

The Monitor group contains methods to explicitly manage Java moni-
tors. The tryMonitorEnter method is never used.

The Off-Heap group members provide access to unmanaged memory,
enabling explicit memory management. Similarly to the Heap Get and
Heap Put groups, the Off-Heap Get and Off-Heap Put groups allow the
developer to load and store values in Off-Heap memory. The usage of
these methods is non-negligible, with getByte and putByte dominating
the rest. The value of the ADDRESS_SIZE field is the result of the
method addressSize().
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* Methods of the Offset group are used to compute the location of fields
within Java objects. The offsets are used in calls to many other sun.-
misc.Unsafe methods, for instance those in the Heap Get, Heap Put,
and the CAS groups. The method objectFieldOffset is the most called
method in sun.misc.Unsafe due to its result being used by many other
sun.misc.Unsafe methods. The fieldOffset method is deprecated, and
indeed, we found no uses. The INVALID FIELD_ OFFSET field indi-
cates an invalid field offset; it is never used because code using object-
FieldOffset is not written in a defensive style (given that Unsafe is used
when performance matters, and extra checks might negatively affect
performance).

* The Ordered Put group has methods to store to a Java variable without
emitting any memory barrier but guaranteeing no reordering across
the store.

* The park and unpark methods are contained in the Park group. With
them, it is possible to block and unblock a thread’s execution.

¢ The throwException method is contained in the Throw group, and al-
lows one to throw checked exceptions without declaring them in the
throws clause.

e Finally, the Volatile Get and Volatile Put groups allow the developer to
store a value in a Java variable with volatile semantics.

It is interesting to note that despite our large corpus of code, there are
several Unsafe methods that are never actually called. If Unsafe is to be used
in third-party code, then it might make sense to extract those methods into
a separate class to be only used from within the runtime library.

3.2.2 Beyond Maven Central

While Maven Central is a large repository, we wanted to check whether our
results generalize to other common repositories. Thus, we performed a
similar analysis of method usage using the Boa [Dyer et al, 2013a)b|] in-
frastructure. Boa allows the developer to mine ASTs of Java projects in
SourceForge.

The usage profile of Unsafe methods we obtained from Boa was simi-
lar in shape, but at a different scale, compared to the one obtained from
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Maven Central. Using Boa’s SourceForge dataset, for instance, the most called
method, objectFieldOffset, is called 200 times in 50 projects. This is two
orders of magnitude lower than the count we found on Maven Central. Al-
though Boa enables the mining of source code in a convenient way, the data
it analyses probably is not current enough to include the more recent Java
code that uses sun.misc.Unsafe more heavily.

In recent versions [Dyer et al., 2015], Boa added support to conduct
empirical studies on open source projects from GitHub and Qualitas Cor-
pus [Tempero et al., 2010]. However, at the time we conducted our study
on Unsafe, this support was not yet included.

3.3 Finding sun.misc.Unsafe Usage Patterns

We examined the artifacts in the Maven Central software repository to iden-
tify usage patterns for Unsafe. This section describes our methodology for
identifying these patterns.

Our first step is to visualize how an artifact uses Unsafe. To this end,
we count the Unsafe call sites and field usages per class in each artifact.
Figures and show two examples of call sites usages for com./max:-
disruptor and org.scala-lang:scala-library respectively. Each row shows a fully
qualified class name and their usage of sun.misc.Unsafe.

After determining the call sites and field usage per artifact, we tried
to find a way to group artifacts by how they use sun.misc.Unsafe. The
tirst issue is to determine which method calls work together to achieve a
goal. These calls might all be located within a single class, be spread across
different classes within a package, or be spread across different packages
within the whole artifact. After trying different combinations, we decided
to group together calls occurring within a single class and its inner classes.

We cluster classes and their inner classes by Unsafe method usage using
a dendrogram. Because a dendrogram can result in different clusters de-
pending on at which height the dendrogram is cut, we experimented with
various clusterings until settling on 31 clusters. An example of a cluster
and its dendrogram is shown in Figure In the figure we can see classes
using methods of the Off-Heap, Off-Heap Get, and Off-Heap Put groups to
implement large arrays.

Once we had a clustering of the artifacts by method usage, we man-
ually inspected a sample of artifacts in each cluster to identify patterns.
Some artifacts contained more than one pattern. For instance the cluster
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Figure 3.3. com.Imax:disruptor call sites

in Figure contains classes that use Unsafe to implement large off-heap
arrays, but also contains calls to methods of the Put Volatile group used to
implement strongly shared consistent variables. We tagged each artifact
manually inspected with the set of patterns that it exhibits.
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Figure 3.4. org.scala-lang:scala-library call sites

3.4 Usage Patterns of sun.misc.Unsafe

This section presents the patterns we have found during our study. We
present them sorted by how many artifacts depend on them, as computed
from the Maven dependency graph described in Section

A summary of the patterns is shown in Table The Pattern col-
umn indicates the name of the pattern. Found in indicates the number of
artifacts in Maven Central that contain the pattern. Used by indicates the
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number of artifacts that transitively depend on the artifacts with the pat-
tern. Most used artifacts presents the three most used artifacts containing
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10

11

12

13

14

Table 3.1. Patterns and their occurrences in the Maven Central repository

Pattern

Allocate an Object without Invoking a
Constructor

Process Byte Arrays in Block

Atomic Operations

Strongly Consistent Shared Variables
Park/Unpark Threads

Update Final Fields
Non-Lexically-Scoped Monitors

Serialization /Deserialization

Foreign Data Access and Object Mar-
shaling

Throw Checked Exceptions without Be-
ing Declared

Get the Size of an Object or an Array
Large Arrays and Off-Heap Data Struc-
tures

Get Memory Page Size

Load Class without Security Checks

Found In
88

44

84

198

62

11

14

32

59

12

11

21

Used by
14794

12274

10259

9795

7330

7281

7015

5689

3690

3566

3003

487

359

294

Most used artifacts
org.springframework:spring-core
org.objenesis:objenesis
org.mockito:mockito-all
com.google.guava:guava
com.google.gwt:gwt-dev
net.jpountz.lz4:1z4
org.scala-lang:scala-library
org.apache.hadoop:hadoop-hdfs
org.glassfish.grizzly:grizzly-framework
org.scala-lang:scala-library
org.jruby:jruby-core
com.hazelcast:hazelcast-all
org.scala-lang:scala-library
org.codehaus.jsr166-mirror:jsr166y
com.netflix.servo:servo-internal
org.codehaus.groovy:groovy-all
org.jodd:jodd-core
com.Imax:disruptor
org.jboss.modules:jboss-modules
org.apache.cassandra:cassandra-all
org.gridgain:gridgain-core
com.hazelcast:hazelcast-all
com.esotericsoftware.kryo:kryo
com.thoughtworks.xstream:xstream
eu.stratosphere:stratosphere-core
com.github.jnr:jffi
org.python:jython

io.netty:netty-all

net.openhft:lang

ai.h20:h20-core
net.sf.ehcache:ehcache
com.github.jbellis:jamm
org.openjdk.jol:jol-core
org.neodj:neodj-primitive-collections
com.orientechnologies:orientdb-core
org.mapdb:mapdb
org.apache.hadoop:hadoop-common
net.openhft:lang
org.xerial.larray:larray-mmap
org.elasticsearch:elasticsearch
org.apache.geronimo.ext.openejb:core
net.openhft:lang

the pattern, that is, the artifact with the most other artifacts that transi-
tively depend upon it. Artifacts are shown using their Maven identifier, i.e.
(groupld):{artifactld).

We present each pattern using the following template.

Description. What is the purpose of the pattern? What does it do?
Rationale. What problem is the pattern trying to solve? In which contexts
is it used?
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Implementation. How is the pattern implemented using sun.misc.Unsafe?
Issues. Issues to consider when using the pattern. In addition, we present
the problems discussed in the Stack Overflow question/answer database
based on our previous work [Mastrangelo et al., 2015].

3.4.1 Allocate an Object without Invoking a Constructor

Description. With this pattern an object can be allocated on the heap with-
out executing its constructor.

Rationale. This pattern is useful for creating mock objects for testing and
in deserializing serialized objects.

Implementation. The allocatelnstance method takes a java.lang.Class ob-
ject as parameter, and returns a new instance of that class. Unlike allocating
an object directly, or through the reflection API, the object’s constructor is
not invoked.

Issues. If the constructor is not invoked, the object might be left uninitial-
ized and its invariants might not hold. Users of allocatelnstance must take
care to properly initialize the object before it is used by other code. This is
often done in conjunction with other methods of Unsafe, for instance those
in the Heap Put group, or by using the Java reflection APL

3.4.2 Process Byte Arrays in Block

Description. When processing the elements of a byte array, better perfor-
mance can be achieved by processing the elements 8 bytes at a time, treating
it as a long array, rather than one byte at a time.

Rationale. The pattern is used for fast byte array processing, for instance,
when comparing two byte arrays lexicographically.

Implementation. The arrayBaseOffset method is invoked to get the base
offset of the byte array. Then getLong is used to fetch and process 8 bytes of
the array at a time.

Issues. The pattern assumes that bytes in an array are stored contiguously.
This may not be true for some VMs, e.g. those implementing large arrays
using discontinuous arrays or arraylets [Siebert| [2000]; Bacon et al.| [2003].
Users of the pattern should be aware of the endianness of the underlying
hardware. In one Stack Overflow discussion, this pattern is discouraged
since it is non-portable and, on many JVMs, results in slower codeH

12ht‘cp: //stackoverflow.com/questions/12226123
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3.4.3 Atomic Operations

Description. This pattern is used to implement non-blocking concurrent
data structures and synchronization primitives. Hardware-specific atomic
operations provided by sun.misc.Unsafe are used.

Rationale. Non-blocking algorithms often scale better than algorithms that
use locking.

Implementation. To get the offset of a Java variable either objectFieldOffset
or arrayBaseOffset / arrayIndexScale can be used. With this offset, the methods
from the CAS or Fetch & Add groups are used to perform atomic operations
on the variable. Other methods of Unsafe are often used in the implemen-
tation of concurrent data structures, including Volatile Get/Put, Ordered Put,
and Fence methods.

Issues. Non-blocking algorithms can be difficult to implement correctly.
Programmers must understand the Java memory model and how the Unsafe
methods interact with the memory model.

3.4.4 Strongly Consistent Shared Variables

Description. Because of Java’s weak memory model, when implementing
concurrent code, it is often necessary to ensure that writes to a shared vari-
able by one thread become visible to other threads, or to prevent reorder-
ing of loads and stores. Volatile variables can be used for this purpose,
but sun.misc.Unsafe can be used instead with better performance. Addi-
tionally, because Java does not allow array elements to be declared volatile,
there is no possibility other than to use Unsafe to ensure visibility of ar-
ray stores. The methods of the Ordered Put groups and the Volatile Get/Put
groups can be used for these purposes. In addition, the Fence methods were
introduced in Java 8 expressly to provide greater flexibility for this use case.
Rationale. This pattern is useful for implementing concurrent algorithms
or shared variables in concurrent settings. For instance, JRuby uses a
fullFence to ensure visibility of writes to object fields.

Implementation. To ensure a write is visible to another thread, Volatile
Put methods or Ordered Put methods can be used, even on non-volatile
variables. Alternatively, a storeFence or fullFence can be used. Volatile Get
methods ensure other loads and stores are not reordered across the load. A
loadFence could also be used before a read of a shared variable.

Issues. Fences can replace volatile variables in some situations, offering
better performance. Most of the uses of the pattern use the Ordered Put and
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Volatile Put methods. Since they were added to Java only recently, there are
currently few instances of the pattern that use the Fence methods.

3.4.5 Park/Unpark Threads

Description. To implement locks and other blocking synchronization con-
structs, the park and unpark methods are used. With these methods, the
developer can block and unblock threads.

Rationale. The alternative to parking a thread is to busy-wait, which uses
CPU resources and does not allow other threads to proceed.

Implementation. The park method blocks the current thread while unpark
unblocks a thread given as an argument.

Issues. Users of park must be careful to avoid deadlock.

3.4.6 Update Final Fields

Description. This pattern is used to update a final field.

Rationale. Although it is possible to use reflection to implement the same
behavior, updating a final field is easier and more efficient using sun.misc.-
Unsafe. Some applications update final fields when cloning objects or when
deserializing objects.

Implementation. The objectFieldOffset methods and one of the Put meth-
ods work in conjunction to directly modify the memory where a final field
resides.

Issues.  There are numerous security and safety issues with modifying
tinal fields. The update should be done only on newly created objects (per-
haps also using allocatelnstance to avoid invoking the constructor) before
the object becomes visible to other threads. The Java Language Specifica-
tion (Section 17.5.3) Gosling et al.|[2013]] recommends that final fields not be
read until all updates are complete. In addition, the language permits com-
piler optimizations with final fields that can prevent updates to the field
from being observed. Since final fields can be cached by other threads, one
instance of the pattern uses putObjectVolatile to update the field rather than
simply putObject. Using this method ensures that any cached copy in other
threads is invalidated.
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3.4.7 Non-Lexically-Scoped Monitors

Description. In this pattern, monitors are explicitly acquired and released
without using synchronized blocks.

Rationale. The pattern is used in some situations to avoid deadlock, releas-
ing a monitor temporarily, then reacquiring it.

Implementation. One usage of the pattern is to temporarily release monitor
locks acquired in client code (e.g., through a synchronized block or method)
and then to reenter the monitor before returning to the client. The monitor-
Exit method is used to exit the synchronized block. Because monitors are
reentrant, the pattern uses the method Thread.holdsLock to implement a loop
that repeatedly exits the monitor until the lock is no longer held. When
reentering the monitor, monitorEnter is called the same number of times as
monitorExit was called to release the lock.

Issues. Care must be taken to balance calls to monitorEnter and monitorExit,
or else the lock might not be released or an I1legalMonitorStateException
might be thrown.

3.4.8 Serialization/Deserialization

Description. In this pattern, sun.misc.Unsafe is used to persist and subse-
quently load objects to and from secondary memory dynamically. Serial-
ization in Java is so important that it has a Serializable interface to automati-
cally serialize objects that implement it. Although this kind of serialization
is easy to use, it does not offer good performance and is inflexible. It is
possible to implement serialization using the reflection API. This is also ex-
pensive in terms of performance. Therefore, fast serialization frameworks
often use Unsafe to get and set fields of objects. Some of these projects use
reflection to check if sun.misc.Unsafe is available, falling back on a slower
implementation if not.

Rationale. De/serialization requires reading and writing fields to save and
restore objects. Some of these fields may be final or private.
Implementation. Methods of Heap Get and Heap Put are used to read and
write fields and array elements. Deserialization may use allocatelnstance to
create objects without invoking the constructor.

Issues.  Using Unsafe for serialization and deserialization has many of
the same issues as using Unsafe for updating final fields (Section and
for creating objects without invoking a constructor (Section [3.4.1). Objects
must not escape before being completely deserialized. Type safety can be
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violated by using methods of the Heap Put group. In addition, care must
be taken when deserializing some data structures. For instance, data struc-
tures that use System.identityHashCode or Object.hashCode may need to re-
hash objects on deserialization because the deserialized object might have
a different hash code than the original serialized object.

3.4.9 Foreign Data Access and Object Marshaling

Description. In this pattern sun.misc.Unsafe is used to share data between
Java code and code written in another language, usually C or C++.

Rationale. This pattern is needed to efficiently pass data, especially struc-
tures and arrays, back and forth between Java and native code. Using this
pattern can be more efficient than using native methods and JNI.

Implementation. The methods of the Off-Heap group are used to access
memory off the Java heap. Often a buffer is allocated using allocateMemory,
which is then passed to the other language using JNI. Alternatively, the
native code can allocate a buffer in a JNI method. The Off-Heap Get and
Off-Heap Put methods are used to access the buffer.

Issues. Use of Unsafe here is inherently not type-safe. Care must be taken
especially with native pointers, which are represented as long values in Java
code.

3.4.10 Throw Checked Exceptions without Being Declared

Description. This pattern allows the programmer to throw checked excep-
tions without being declared in the method’s throws clause.

Rationale. In testing and mocking frameworks, the pattern is used to cir-
cumvent declaring the exception to be thrown, which is often unknown. It
is used in the Java Fork/Join framework to save the generic exception of a
thread to be re-thrown later.

Implementation. This pattern is implemented using the throwException
method.

Issues. This method can violate Java’s subtyping relation, because it is not
expected for a method that does not declare an exception to actually throw
it. At run time, this can manifest as an uncaught exception.
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3.4.11 Get the Size of an Object or an Array

Description. This pattern uses sun.misc.Unsafe to estimate the size of an
object or an array in memory.

Rationale. The object size can be useful for making manual memory man-
agement decisions. For instance, when implementing a cache, object sizes
can be used to implement code to limit the cache size.

Implementation. To compute the size of an array, add arrayBaseOffset and
arraylndexScale (for the given array base type) times the array length. For
objects, use objectFieldOffset to compute the offset of the last instance field.
In both cases, a VM-dependent fudge factor is added to account for the
object header and for object alignment and padding.

Issues. Object size is very implementation dependent. Accounting for the
object header and alignment requires adding VM-dependent constants for
these parameters.

3.4.12 Large Arrays and Off-Heap Data Structures

Description. This pattern uses off-heap memory to create large arrays or
data structures with manual memory management.

Rationale. Java’s arrays are indexed by int and are thus limited to 23!
elements. Using Unsafe, larger buffers can be allocated outside the heap.
Implementation. A block of memory is allocated with allocateMemory and
then accessed using Off-Heap Get and Off-Heap Put methods. The block is
freed with freeMemory.

Issues. This pattern has all the issues of manual memory management:
memory leaks, dangling pointers, double free, etc. One issue, mentioned
on Stack Overflow, is that the memory returned by allocateMemory is unini-
tialized and may contain garbage@ Therefore, care must be taken to ini-
tialize allocated memory before use. The Unsafe method setMemory can be
used for this purpose.

3.4.13 Get Memory Page Size

Description. sun.misc.Unsafe is used to determine the size of a page in
memory.

Rationale. The page size is needed to allocate buffers or access memory
by page. A common use case is to round up a buffer size, typically a

13ht‘cp: //stackoverflow.com/questions/16723244
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java.nio.ByteBuffer, to the nearest page size. Hadoop uses the page size
to track memory usage of cache files mapped directly into memory using
java.nio.MappedByteBuffer. Another use is to process a buffer page-by-page.
Some native libraries require or recommend allocating buffers on page-size
boundaries [

Implementation. Call pageSize.

Issues. Some platforms on which the JVM runs do not have virtual memory,
so requesting the page size is non-portable.

3.4.14 Load Class without Security Checks

Description. sun.misc.Unsafe is used to load a class from an array contain-
ing its bytecode. Unlike with the ClassLoader API, security checks are not
performed.

Rationale. This pattern is useful for implementing lambdas, dynamic class
generation, and dynamic class rewriting. It is also useful in application
frameworks that do not interact well with user-defined class loaders.
Implementation. The pattern is implemented using the defineClass method,
which takes a byte array containing the bytecode of the class to load.
Issues. The pattern violates the Java security model. Untrusted code could
be introduced into the same protection domain as trusted code.

3.5 What is the Unsafe API Used for?

In response to (How and when are Unsafe features used?), many of the
patterns we found indicate that Unsafe is used to achieve better performance
or to implement functionality not otherwise available in the Java language
or standard library.

However, many of the patterns described can be implemented using
APIs already provided in the Java standard library. In addition, there are
several existing proposals to improve the situation with Unsafe already un-
der development within the Java community. Oracle software engineer
Paul Sandoz [2014] performed a survey on the Open]DK mailing list to
study how Unsafe is usedﬁ and describes several of these proposals.

A summary of the patterns with existing and proposed alternatives to
Unsafe is shown in Table The table consists of the following columns:

14http: //stackoverflow.com/questions/19047584
15ht‘cp: //www.infoq.com/news/2014/02/Unsafe-Survey
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Table 3.2. Patterns and their alternatives. A bullet (®) indicates that an alternative
exists in the Java language or APIl. A check mark (v') indicates that there is a
proposed alternative for Java.

# Pattern Lang VM Lib Ref

1 Allocate an Object without Invoking a Con- v

structor

Process Byte Arrays in Block v

Atomic Operations

Strongly Consistent Shared Variables

Park/Unpark Threads

Update Final Fields .

Non-Lexically-Scoped Monitors v

Serialization/Deserialization v ° .

Foreign Data Access and Object Marshal- v/

ing

Throw Checked Exceptions without Being v

Declared

11 Get the Size of an Object or an Array v/ v

12 Large Arrays and Off-Heap Data Struc- v v
tures

13 Get Memory Page Size v v

14 Load Class without Security Checks v v

N °

O 0 I ON U1 = W N

—_
(@)

The Pattern column indicates the name of the pattern. The next three
columns indicate whether the pattern could be implemented either as a
language feature (Lang), virtual machine extension (VM), or library exten-
sion (Lib). The Ref column indicates that the pattern can be implemented
using reflection. A bullet () indicates that an alternative exists in the Java
language or API. A check mark (v') indicates that there is a proposed alter-
native for Java.

Many APIs already exist that provide functionality similar to Unsafe. In-
deed, these APIs are often implemented using Unsafe under the hood, but
they are designed to be used safely. They maintain invariants or perform
run-time checks to ensure that their use of Unsafe is safe. Because of this
overhead, using Unsafe directly should in principle provide better perfor-
mance at the cost of safety.

For example, the java.util.concurrent package provides classes for safely
performing atomic operations on fields and array elements, as well as sev-
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eral synchronizer classes. These classes can be used instead of Unsafe to
implement atomic operations or strongly consistent shared variables. The
standard library class java.util.concurrent.locks. LockSupport provides park and
unpark methods to be used for implementing locks. These methods are just
thin wrappers around the sun.misc.Unsafe methods of the same name and
could be used to implement the park pattern. Java already supports seri-
alization of objects using the java.lang.Serializable and java.io.ObjectOutput-
Stream API. The now-deleted JEP 187 Serialization 2.0 proposa]@ E ad-
dresses some of the issues with Java serialization.

Because volatile variable accesses compile to code that issues mem-
ory fences, strongly consistent variables can be implemented by accessing
volatile variables. However, the fences generated for volatile variables may
be stronger (and therefore less performant) than are needed for a given ap-
plication. Indeed, the Unsafe Put Ordered and Fence methods were likely
introduced to improve performance versus volatile variables. The accepted
proposal JEP 193 (Variable Handle [Lea, 2014]) introduces variable han-
dles, which allow atomic operations on fields and array elements.

Many of the patterns can be implemented using the reflection AP], albeit
with lower performance than with Unsafe [Korland et al., 2010]. For exam-
ple, reflection can be used for accessing object fields to implement serializa-
tion. Similarly, reflection can be used in combination with java.nio.ByteBuffer
and related classes for data marshaling. The reflection API can also be used
to write to final fields. However, this feature of the reflection API makes
sense only during deserialization or during object construction and may
have unpredictable behavior in other cases.

Writing a final field through reflection may not ensure the write becomes
visible to other threads that might have cached the final field, and it may
not work correctly at all if the VM performs compiler optimizations such
as constant propagation on final fields.

Many patterns use Unsafe to use memory more efficiently. Using structs
or packed objects can reduce memory overhead by eliminating object head-
ers and other per-object overhead. Java has no native support for structs,
but they can be implemented with byte buffers or with ]NIH

16http://mail.openjdk.java.net/pipermail/core—libs—dev/2®14—January/®24589.
html
Yhttp://web.archive.org/web/20140702193924/http://openjdk.java.net/jeps/187
18https://openjdk.java.net/jeps/193
19http://www.oracle.com/technetwork/java/jvm152®13sciam—2®13525.pdf
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The Arrays 2.0 [Rose, 2012b] and the value typeﬂEl[Rose et al., 2014;
Rose| 2012a] proposals address the large arrays pattern. Project Suma-
tra@ [Open]JDKj, 2013] proposes features for accessing GPUs and other ac-
celerators, one of the use cases for foreign data access. Related proposals
include JEP 19 [Nutter, 2014], which proposes a new foreign function in-
terface for Java, and Project Panama@ [Rose, 2014], which supports native
data access from the JVM.

A sizeof feature could be introduced into the language or into the stan-
dard library. A use case for this feature includes cache management im-
plementations. A higher-level alternative might be to provide an API for
memory usage tracking in the JVM. A page size method could be added
to the standard library, perhaps in the java.nio package, which already in-
cludes MappedByteBuffer to access memory-mapped storage.

Other patterns may require Java language changes. For instance, the
language could be changed to not require methods to declare the exceptions
they throw, obviating the need for Unsafe in this case. Indeed, there is a
long-running debate@ about the software-engineering benefits of checked
exceptions. C#, for instance, does not require that exceptions be declared in
method signatures at all. One alternative not requiring a language change,
proposed in a Stack Overflow discussion, is to use Java generics instead
Because of type erasure, a checked exception can be coerced unsafely into
an unchecked exception and thrown.

Changing the Java language to support allocation without constructors
or non-lexically-scoped monitors is feasible. However, implementation of
these features must be done carefully to ensure object invariants are prop-
erly maintained. In particular, supporting arbitrary unconstructed objects
can require type system changes to prevent usage of the object before initial-
ization [Qi and Myers, 2009]. Limiting the scope of this feature to support
deserialization only may be a good compromise and has been suggested in
the JEP 187 Serialization 2.0 proposal.

Since Unsafe is often used simply for performance reasons, virtual ma-
chine optimizations can reduce the need for Unsafe. For example, the JVM's

20https://openjdk.java.net/jeps/169
21http://cr.openjdk.java.net/~jrose/values/values—@.html
2https://openjdk.java.net/projects/sumatra/
23https://openjdk.java.net/jeps/191
24https://cr.openjdk.java.net/~jrose/panama/isthmus—in—the—vm—2014.html
Zhttp://www. ibm. com/developerworks/library/j-jtp05254/
26http://stackoverflow.com/questions/11410042
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runtime compiler can be extended with optimizations for vectorizing byte
array accesses, eliminating the motivation to use Unsafe to process byte ar-
rays. Many patterns use Unsafe to use memory more efficiently. This could
be ameliorated with lower GC overhead. There are proposals for this, for
instance JEP 189 Shenandoah: Low Pause G [Christine H. Flood, 2014]].

3.6 Conclusions

sun.misc.Unsafe is an API that was designed for limited use in system-
level runtime library code. The Unsafe API is powerful, but dangerous. The
improper use of Unsafe undermines Java’s safety guarantees. We studied
to what degree Unsafe usage has spread into third-party libraries, to what
degree such third-party usage of Unsafe can impact existing Java code, and
which Unsafe API features such third-party libraries actually use.

We thereby provided a basis for evolving the Unsafe API, the Java lan-
guage, and the JVM by eliminating unused or abused unsafe features, and
by providing safer alternatives for features that are used in meaningful
ways. We hope this will help to make Unsafe safer.

27https ://openjdk. java.net/jeps/189
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Chapter 4

Empirical Study on the Cast
Operator

A common mechanism for relaxing the static typing constraints in object-
oriented languages is casting. In programming languages with subtyping—
or subtype polymorphism [Cardelli and Wegner, 1985]—such as Java, C# or
C++, casting allows an expression to be viewed at a different type than the
one at which it was defined. Casts are checked dynamically, i.e., at run
time, to ensure that the object being cast is an instance of the desired type.
We aim to understand why developers use casts. Why is the static type
system insufficient, requiring an escape hatch into dynamic type checking?
Specifically, we attempt to answer the following three research questions:

RQ/C1: How frequently is casting used in common application code?
To what extent does application code actually use casting oper-
ations?

RQ/C2: How and when casts are used? If casts are used in application
code, how and when do developers use them?

RQ/C3 : How recurrent are the patterns for which casts are used? In ad-
dition to understand how and when casts are used, we want to
measure how often developers need to resort to certain idioms
to solve a particular problem.

To answer these research questions, we devise usage patterns. Usage pat-
terns are recurrent programming idioms used by developers to solve a specific
issue. Usage patterns enable the categorization of different kinds of cast
usages and thus provide insights into how the language is being used by
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developers in real-world applications. Our cast usage patterns can be: (1) a
reference for current and future language designers to make more informed
decisions about programming languages, e.g., the addition of smart casts in
Kotlin (2) a reference for tool builders, e.g., by providing more precise or
new refactoring or code smell analyses, (3) a guide for researchers to test
new language features, e.g., Winther [2011] or to carry out controlled exper-
iments about programming, e.g., Stuchlik and Hanenberg| [2011], and (4) a
guide for developers for best or better practices. To answer our research
questions, we empirically study how casts are used by developers. The
results of this study have been submitted for publication to OOPSLA19.

Outline

Section provides an introduction to casts in Java, while Section il-
lustrates the sort of problems developers have when applying casting con-
versions. In Section [4.3| we introduce the methodology we used to analyse
casts and to devise cast usage patterns. Sections and present the
cast usage patterns and answers our research questions. Finally, Section
discusses the patterns we found, while Section concludes.

4.1 Castsin Java

While casts should be familiar to most developers of object-oriented lan-
guages, because they have different semantics in different programming
languages, we briefly summarize the meaning of casts in Java and the ter-
minology used in the rest of this chapter.

In object-oriented programming languages like Java, the subtype mecha-
nism allows the interoperability of two different but related types. As Pierce
[2002] states, “[...] S is a subtype of T, written S <: T, to mean that any
term of type S can safely be used in a context where a term of type T is
expected. This view of subtyping is often called the principle of safe substi-
tution” [Liskov and Wing), [1994]. Conversely, if S is a subtype of T, we say
that T is a supertype of S.

A cast operation, written (T) e in Java consists of a target type T and
an operand e. The operand evaluates to a source value which has a run-time
source type. In Java, a source reference type is always a class type. For a

lht‘cps ://kotlinlang.org/docs/reference/typecasts.html#smart-casts
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particular cast evaluated at run time, the source of the cast is the expression
in the program that created the source value. For reference casts, the source
is an object allocation. The source may or may not be known statically.

An upcast occurs when the cast is from a source reference type S to a
target reference type T, where T is a supertype of S. In our terminology,
upcasts include identity casts where the target type is the same as the type
of the operand. An upcast does not require a run-time check.

A downcast, on the other hand, occurs when converting from a source
reference type S to a target reference type T, where T is a proper subtype of
S. Listing 4.1/ shows how to use the cast operator (line 2) to treat a reference
(the variable o) as a different type (String) as it was defined (Object).

Object o
String s

IIf‘OOIl;
(String)o;

Listing 4.1. Variable o (defined as Object) cast of String.

In type-safe object-oriented languages, downcasts require a run-time
check to ensure that the source value is an instance of the target type. The
above snippet is compiled into the Java bytecode shown in listing The
aload_1 instruction (line 3) pushes the local variable o into the operand
stack. The checkcast instruction (line 4) then checks at run time that the
top of the stack has the specified type (java.lang.String in this example).

ldc "foo" Bytecode
astore_1

aload_1

checkcast java.lang.String

astore_2

Listing 4.2. Compiled bytecode to the checkcast instruction.

This run-time check can either succeed or fail. A ClassCastException is
thrown when a downcast fails. This exception is an unchecked exception,
i.e., the programmer is neither required to handle nor to specify the excep-
tion in the method signature. Listing shows how to detect whether a
cast failed by catching this exception.
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try {
Object x = new Integer(0);
System.out.println((String)x);
} catch (ClassCastException e) {
System.out.println("");

G e W N =

}
Listing 4.3. Catch ClassCastException when a cast fails.

A guard is a conditional expression on which a cast, usually a downcast,
is control-dependent and that ensures that the cast is evaluated only if it
will succeed. Guards are often implemented using the instanceof operator,
which tests if an expression is an instance of a given reference type. If
an instanceof guard returns true, the guarded cast should not throw a
ClassCastException. Listing shows a usage of the instanceof operator
together with a cast expression.

1 if (x instanceof Foo) {
2 ((Foo)x) .doFoo();
3}

Listing 4.4. Run-time type test using instanceof before applying a cast.

An object’s type can also be checked using reflection: the getClass
metho returns the run-time class of an object. This Class object can be
then compared against a class literal, e.g., x.getClass() == Foo.class. This
test is more precise than an x instanceof Foo test since it succeeds only
when the operand’s class is exactly Foo, rather than any subclass of Foo.
Listing shows how to use the getClass method to test for an object’s

type.

1 if (x.getClass() == Foo.class) {
2 ((Foo)x) .doFoo();
3}

Listing 4.5. Run-time type test using getClass before applying a cast.

Because they can fail, downcasts pose potential threats. Unguarded
downcasts in particular are worrisome because the developer is essentially

2https://docs.oracle.com/javase/8/docs/api/java/lang/object.html#getClass——
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telling the compiler “Trust me, I know what I'm doing.” Because downcasts
are an escape-hatch from the static type system—they permit dynamic type
errors—a cast is often seen as a design flaw or code smell in an object-
oriented system [Tufano et al., 2015].

A cast can also fail at compile time if the cast operand and the target type
are incompatible. For instance, in the expression (String) new Integer(1)
a value of type Integer can never be converted to String, so the compiler
rejects the cast expression.

Another form of casts in Java are primitive conversions, or more specifi-
cally numeric conversions. These are conversions from one primitive (non-
reference) type, usually a numeric type, to another. These conversions can
result in loss of precision of the numeric value, although they do not fail
with a run-time exception.

Boxing and unboxing occur when casting from a primitive type to the
corresponding reference type or vice versa, e.g., (Integer) 3 converts the
primitive int 3 into a boxed java.lang.Integer. Unlike downcasts, un-
boxing casts never throw a ClassCastException. However, an unboxing
conversion throws a NullPointerException when the cast operand is null,
e.g., (double) (Double) null Java supports autoboxing and autounboxing
between primitives and their corresponding boxed type in the java.lang
package. The cast of x in Object x = new Integer(1); (double) x fails
because it is technically a downcast from Object to Double, followed by
an unboxing cast of double. Since Integer cannot be cast of Double, the
downcast throws a ClassCastException.

Generics were introduced into Java to provide more static type safety.
For instance, the type List<T> contains only elements of type T. The un-
derlying implementation of generics, however, erases the actual type ar-
guments when compiling to bytecode. To ensure type safety in the gen-
erated bytecode, the compiler inserts cast instructions into the generated
code. Improper use of generic types or mixing of generic and raw types
can lead to dynamic type errors—i.e., ClassClassException. Our study,
however, does not consider these compiler-inserted casts. Moreover, up-
casts inserted by the developer in the source code are completely removed
from the generated bytecode by the compiler. Our first attempt to con-
duct this study was to use our bytecode library analysis [Mastrangelo and
Hauswirth| 2014] described in Appendix [Bl Nevertheless, unlike our Un-
safe study—which targeted Java bytecode level—in this chapter we are only

3ht‘cps ://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#j1s-5.1.8
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concerned with programmer-inserted casts in the source code, not in the
generated bytecode—given the discrepancy between them.

4.2 Issues Developers have using Cast Operations

Do cast operations pose a problem for developers? Several studies [Kechagia and
Spinellis, 2014; Coelho et al., 2015; Zhitnitsky, 2016] suggest that in Java,
the ClassCastException is in the top ten of exceptions being thrown when
analysing stack traces. These studies have analysed the exceptions thrown
in stack traces. The exceptions come from third-party libraries and the
Android API, indicating a misuse of such APIs. ClassCastException is in
the top 10 of exceptions thrown, thus it represents a problem for developers.

To illustrate the sort of problems developers have when applying casting
conversions, we performed a search for commits and issues including the
term ClassCastException within projects using Java on GitHub, the largest
host of source code in the world [Gousios et al., 2014]]. Our searches re-
turned about 171K commitslﬂ and 73K issuesﬁ respectively, at the time of
this writing. At first glance, these results indicate that ClassCastException
indeed represents a source for problems for developers.

Typical classes of bugs encountered when using a cast are using the
wrong cast target type, or using the wrong operand, or failing to guard
a cast. We present a few examples we found. Each example presented
here contains the link to the commit in GitHub. Instead of presenting long
GitHub URLs, we have used the URL shortening service Bitly for easier
reading. Each Bitly link was customized to include the project name.

The following snippet shows a cast applied to the variable job (in line 3)
that throws ClassCastException because the developer forgot to include
a guard. In this case, the developer fixed the error by introducing an
instanceof guard to the cast (lines 1 and 2).

if(!(job instanceof AbstractProject<?, 7>))

return ;
AbstractProject<?, ?> project = (AbstractProject<?, ?>) job;

http:/ /bit.ly /jenkinsci_extra_columns_plugin_2vviBuc

Listing 4.6. Cast throws ClassCastException because of a forgotten guard.

4https://github.com/search?1=Java&q=ClassCastException&type=Commits
5https://github.com/search?1=Java&q=ClassCastException&type=Issues
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In the next example the developer made a mistake by choosing the
wrong class for the cast target, i.e., JCustomFileChooser instead of CustomFile-
Filter (line 9). The CustomFileFilter is an inner static class inside the
JCustomFileFilter class. There is no subclass relationship between these
two classes. The cast happens inside an equals method—where this id-
iom is well known—within the CustomFileFilter class. But the developer
picked the wrong class, the outer class (JCustomFileFilter), instead of the
inner class (CustomFileFilter).

public final class JCustomFileChooser extends JFileChooser {
/x [...] %/
public static class CustomFileFilter extends FileFilter {
/x [...] %/
public boolean equals(Object obj) {
if (getClass() != obj.getClass()) {
return false;
3
final JCustomFileChooser other = (JCustomFileChooser) obj;
if (!Objects.equals(this.extensions, other.extensions)) {
return false;
3
3

3
} http:/ /bit.ly/GoldenGnu_jeveassets_2vsLbMr

Listing 4.7. Cast throws ClassCastException because of wrong cast target.

More subtle, however, is the interaction between casting and generics.
For example, the following call to the getProperty method (line 1),throws
a ClassCastException. The method definition is shown in line 3E|

config.getProperty("peer.p2p.pinglnterval”, 5L)

public <T> T getProperty(String propName, T defaultValue) {
if (!config.hasPath(propName)) return defaultValue;
String string = config.getString(propName);
if (string.trim().isEmpty()) return defaultValue;
return (T) config.getAnyRef (propName);
3 http:/ /bit.ly/ethereum_ethereumj_2vw4If8

Listing 4.8. Cast throws ClassCastException because of generic inference.

Shttp://bit.ly/ethereum_ethereumj_getProperty_2vwQIBH
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The first argument to the method is the name of a property, used to
lookup a value in a table. The second argument is a default value to
use if the property is not in the table. If the lookup is successful, the
method casts the value found to type T. In the call, the given property
"peer.p2p.pingInterval” is in the table and mapped to an Integer. How-
ever, Java uses the type of the defaultValue argument to instantiate the
type parameter T. In this case, Long—autoboxed from 5L of type long—is
used as the type parameter T.

Note, however, that the cast inside getProperty, which in this context
should cast from Integer to Long, does not fail. This is because the Java
compiler erases type parameters like T and so dynamic type tests are not
performed on them. Instead, the compiler inserts a cast where the return
value of getProperty is used later with type Long. It is this cast that fails at
run time and that is reported at run time.

The fix for this bug is to change the default value argument from 5L to
just 5. This causes the call’s return type is inferred to be Integer, and the
compiler-inserted cast succeeds.

As these examples show, problems with casts are not always obvious.
In this thesis we aim to uncover the many different ways in which develop-
ers use casts by manually analysing a large sample of cast usages in open
source software.

4.3 Finding Cast Usage Patterns

Since casts represent a problem for developers, we aim to provide an answer
for our research questions, (How frequently is casting used in common
application code?), (How and when casts are used?) and (How
recurrent are the patterns for which casts are used?). To answer them several
elements are needed. We need a corpus of representative “real world” code
and we need to perform source code analysis to identify cast operations
and to help classify these operations into usage patterns.

4.3.1 Corpus Analysis

We gathered cast usage data using the QL query language, “a declarative,
object-oriented logic programming language for querying complex, poten-
tially recursive data structures encoded in a relational data model” [Av-
gustinov et al., [2016]. QL allows us to analyse programs at the source code
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level. QL extracts the source code of a project into a Datalog model. Be-
sides providing structural data for programs, i.e., ASTs, QL has the ability to
query static types and perform data-flow analysis. To test our QL queries,
we have used the Igtm service provided by Semmle the developers of QL.
To gather all cast expressions used in this study, we asked Semmle devel-
opers to run a query essentially like Query on their entire database.

The Igtm database includes—at the time of writing—7,559 Java projects
imported from open-source projects hosted in GitHub. The Igtm database
was constructed by importing popular open-source projects, e.g., Apache
Mavenﬂ Neo4jﬂ and Hibernatelﬂ Additionally it includes projects ex-
ported by developers to Igtm to query them for bug finding, smell detection,
and other analyses. We argue that this project selection provides a wide
coverage over realistic Java applications, excluding uninteresting projects,
e.g., student projects.

4.3.2 Is the Cast Operator used?

~ No. of C.U.

NS r o
LI o
—_— @ 5000
T o
b, A @ 0
N " ® @ 10000
0.00 0.25 0.50 0.75 1.00

Figure 4.1. Projects, by fraction of their methods containing casts. Bulk of data
summarized by box plot, outliers shown as individual data points.

We want to know how common cast usage is across projects (RQ/C1)
The box plot in Figure 4.1/ shows, for each project, the fraction of non-native

non-abstract methods containing at least one cast. The x-axis represents the
fraction (1 means 100% of methods contain casts). The y-axis has no mean-
ing and is just used to randomly spread the data points for outliers. For

7https://lgtm.com/

8https://1gtm.com/projec'cs/g/apache/maven

9https://lgtm.com/projects/g/neo4j/neo4j/

10https://lgtm.com/projec‘cs/g/h:'Lber‘nate/hiber‘na’ce—or‘m/

" We collected the data for this section after completing our manual analysis of casts
(Section [£.3). Given that the Igtm database is continuously evolving, we were unable to
analyze the exact same set of projects from which we had drawn our sample.
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outliers, each dot represents a project, and its size is given by the number
of compilation units (C.U.) in the project. There are projects where none of
the methods contain a cast (at x = 0), but there are also four small projects
where all methods contain a cast (at x = 1; e.g., an SSLPing tool imple-
mented in a single method). The plot shows that for most projects, fewer
than a quarter of their methods contain casts. Overall, of the 24,559,050 non-
abstract non-native methods in the database, 2,139,582 (8.7%) contained at
least one cast. The following sections analyze why there are cast instances

(RQ/C2) and how often the use cases that lead to casts occur (RQ/C3).

4.3.3 Manual Detection of Cast Patterns

We initially sought to describe patterns precisely as QL queries so that de-
tection and categorization was repeatable, but we found this was infeasible
because of the complexity of the reasoning involved in identifying some
patterns. Often determining to which pattern a cast belongs requires rea-
soning about the run-time source of the cast, which might be non-local and
might depend on external application frameworks or generated code. Thus,
we resorted to manually inspect casts in order to devise cast usage patterns.

Nevertheless, whenever possible, we provide a QL query that approx-
imates the detection of some patterns. That is, cast expressions returned
as the result of a QL query for a pattern, most often belong to that pat-
tern. However, there could be other cast expressions not returned by the
query, which are instances of the pattern. Our QL queries used for pattern
detection can be found online[™

Unfortunately, we do not possess the Igtm database. It is not feasible
for us to run our queries on their database. Therefore, it is impractical to
gather partial statistics using our queries.

4.3.4 Methodology

To identify patterns of cast usage, we analysed all Java projects in the Igtm
database, 7,559 projects with a total 10,193,435 casts, at the time of writing.
There are 215 projects in the database for which we could not retrieve the
source code. In total, these 215 projects contain 1,162,583 casts. Moreover,
there are also 516 projects that do not contain any cast. Therefore the total
cast population to be analysed consists of 9,030,852 casts in 6,840 projects.

12ht‘cps ://gitlab.com/acuarica/java-cast-queries
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Because the number of cast instances is large, it is not feasible to man-
ually analyse all of them. Therefore we have opted to perform random
sampling to get a subset of cast instances to analyse. To choose a sam-
ple size such that the probability of missing the least frequent pattern is
extremely low, we assume a hypergeometric distribution of the data. The
hypergeometric distribution is a discrete probability distribution used with
a finite population of N subjects. It is used to calculate the probability of
drawing k subjects with a given feature—provided that there are K subjects
with that feature in the population—in n draws, without replacement.

Returning to our problem of finding an appropriate sample size, we
model our question as follows: We assume there are K casts that are mem-
bers of the least frequently occurring pattern. We want to know the prob-
ability of not finding this pattern, i.e., sampling exactly k = 0. Our popu-
lation consists of N = 9,030, 852 cast instances. For our study, we assume
that a pattern is irrelevant if it represents less than 0.1% of the population,
or K = 9,031 cast instances. Plugging-in these parameters using the hy-
pergeometric distribution formula we found that with a sample size of
n = 5,000 the probability of not sampling the least frequently occurring
pattern is 0.67%.
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Figure 4.2. Cast distribution

Our sample represents a set of casts coming from various projects in the

13The reader can use any hypergeometric distribution calculator, e.g., https://keisan.
casio.com/exec/system/1180573201
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database. We sampled 5000 casts, but there are more than 5000 projects in
the database, so not every project is represented in our sample. Figure
compares the projects in the database to the projects from which we sam-
pled at least one cast. The x-axis shows the number of casts in a project, the
y-axis shows the fraction of projects with fewer than x casts. In the popula-
tion, 50% of projects have fewer than 100 casts, but in the sample, only 6%
of projects have fewer than 100 casts. Our sample is thus somewhat biased
towards larger projects, which is to be expected, given that projects with
more casts had a larger probability to be sampled. Remember, we sampled
casts, not projects. Nevertheless, the sample does include projects across
the entire spectrum, with 50% of projects having fewer than 2,000 casts.

The manual categorization file can be found online@ This file is a
comma-separated values (CSV) table. Each row represents a cast instance.
This table contains 6 columns. The castid and repoid columns represent in-
ternal IDs to uniquely identify each cast instance and each project. The
target and source columns indicate the source and target types used in the
cast. The last two columns—Iink and value—are the link to the source code
file in Igtm and the result of the manual inspection. The script to process
the results of the manual inspection is available online as wellE We had
to sample more than 5,000 casts. The CSV table mentioned above contains
5,530 casts (rows). This is because we found 526 links that were not ac-
cessible during our analysis, making manual code inspection impossible.
Inaccessible links can be found because some projects were removed from
the Igtm platform. We also found 1 cast that was clearly a bug, a downcast
using the wrong cast operand. Thus, we had to resample the cast instances
until we reach 5,000 manually inspected casts. When resampling, we took
care of inspecting different cast instances, i.e., we have discarded duplicated
casts. We found 3 duplicated casts when resampling.

4.4 Overview of the Sampled Casts

The casts we sampled are summarized in Table Our sample of casts
spans 1,299 different projects (19%, out of 6,840 projects). In our sample of
5,000 casts, we found 1,043 (20.86%) primitive conversions. The remaining
3,957 (79.14%) casts are either reference upcasts, downcasts, boxing casts,
or unboxing casts.

14ht’cps ://gitlab.com/acuarica/phd-thesis/blob/master/analysis/casts.csv
15ht‘cps ://gitlab.com/acuarica/phd-thesis/blob/master/analysis/analysis.r
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Table 4.1. Statistics on Sampled Casts

All sampled casts 5,000 100%
Reference casts 3,957 | 79.14%
Primitive casts 1,043 | 20.86%
Upcasts 100 | 2.00%
Downcasts 3,857 | 77.14%
Boxing casts 11 | 0.22%
Unboxing casts 18 | 0.36%
Guarded by instanceof 881 | 17.62%
Guarded by getClass 64 | 1.28%
Guarded by type tag 237 | 4.74%
Unguarded or possibly unguarded | 2,499 | 49.98%
In application/library code 3,427 | 68.54%
In test code 549 | 10.98%
In generated code 1,054 | 21.08%

Casts can be classified as either guarded or unguarded casts. A guard is
a conditional expression on which the cast is control dependent, which, if
successful, ensures the cast will not fail. Guards are typically implemented
using the instanceof operator or using a test of the source value’s class
(retrieved using the Object::getClass method) against a subtype of the
cast target type. Guards can also be implemented in an application-specific
mannet, for instance by associating a “type tag” with the source value that
can be used to distinguish the run-time type.

Of the 3,957 analysed reference casts, we found that 1,458 (29.16%) were
guarded by a guard in the same method as the cast and 2,499 (49.98%)
were either unguarded or had a guard in another method. In the latter case,
which we refer to as possibly unguarded, determining by manual inspection if
a guard is actually present is often infeasible. The possibly unguarded casts
are cases where the application developer has some reason for believing the
cast will succeed, but it is not immediately apparent in the source code.

As with any expression, casts can appear in either application/library
code, test code, or generated code. As expected, most casts appear in appli-
cation or library code (68.54%). However, casts in test and generated code
are not negligible (10.98% and 21.08% respectively).

As we describe in the next section, nearly all guarded casts fit into just
a few patterns. Unguarded or possibly unguarded casts account for most
of the patterns.



60 4.5 Cast Usage Patterns

4.5 Cast Usage Patterns

Using the methodology described in the above section, we have devised 26
cast usage patterns. Table 4.2 presents our patterns and their occurrences
sorted by frequency.

The patterns were arrived at by an iterative process. Each sampled cast
was assigned a pattern. If no pattern fit the given cast, a new pattern was
invented and described. My advisors and I then discussed the patterns
and their instances, refining, merging, or splitting them into new patterns.
This process was repeated until consensus among us was reached. The
particular categorization here is therefore subjective.

We do not claim that our list of patterns is exhaustive, although our
methodology should ensure that any pattern that occurs more than 0.1% of
the time has a small probability of being excluded.

Moreover, we are interested in the scope of the cast instance, i.e., does
it appear in application/library code, test code, or generated code? Figure
shows our patterns and their occurrences grouped by scope and sorted by
frequency.

Each pattern is described using the following template:

* Description. Tells what the pattern is about, gives a general overview
of its structure, and briefly describes the rationale behind how this
pattern was characterized as such. A few patterns can have distinct
variants, i.e., different ways of implementing the pattern. Whenever a
pattern has variants, we state how they differ from each other.

* Instances. Gives one or more concrete examples found in real code.
The code snippets presented here were modified for formatting pur-
poses. Each example contains a highlighted line which shows the cast
instance being inspected. Moreover, to facilitate some snippet presen-
tations, we remove irrelevant code and replace it with the comment
// [...] or/x [...1 =*/. For each instance presented here, we
provide the link to the source code repository in Igtm. We provide
the link in case the reader wants to do further inspection of the pre-
sented snippet. Instead of presenting long Igtm URLs, we have used
the URL shortening service Bitly for easier reading. Each Bitly link
was customized to include the project name. As we mentioned above,
projects can be removed from the Igtm service, thus some links may
not work.
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Table 4.2. Categorization of Analyzed Cast-Usage Patterns. These are the pat-
terns identified in our manual analysis. The categorization is subjective, thus the
distribution of patterns over the analyzed casts is not necessarily generalizable to
casts in all Java programs.

Pattern ] Description | # Casts I %
Guarded Group. The cast patterns in this group are guarded casts.
1 | |TYPECASE Cast guarded with instanceof, class literal, or 1,182 | 23.64%
application-specific tag.
2 | |[EQUALS A cast used in the implementation of the well- 247 4.94%
known equals method.
3 | [PArRsERSTACK| A cast of a heterogenous stack. 29 0.58%
API Group. Cast patterns that depends on an API definition.
4 | |StasH] A cast of a heterogenous collection element. 559 | 11.18%
5 | |[FACTORY] A cast used to convert a newly created object. 378 7.56%
6 | [KNOWNRETURNTYPE The client of an API knows the exact return 89 1.78%
type of a method invocation.
7 | |DESERIALIZATION] A cast used to convert newly created objects in 71 1.42%
deserialization.
8 | INEWDYNAMICINSTANCE Cast the result of newInstance in Class, 59 1.18%
Constructor, or Array.
9 | [ComrosITE| A composite cast. 21 0.42%
Covariance Group. Patterns related to different kinds of covariance.
10 | [FAMILY A cast applied in a family of classes. 343 6.86%
11 | |COVARIANTRETURNTYPE A cast when the return type of a method is co- 106 2.12%
variant.
12 | |[FLUENTAPI Cast of permit a fluent API through method 23 0.46%
chaining.
Generics Group. Patterns related to use or misuse of generics.
13 | |UseERawTyYPE A cast of a raw type (instead of using the 335 6.70%
generic type).
14 | |REMOVEWILDCARD| A cast of remove a wildcard in a generic type. 33 0.66%
15 | |COVARIANTGENERIC| Remove type parameter to permit covariant 10 0.20%
generics.
16 | |[SELECTTYPEARGUMENT] An upcast of guide the type checker to provide 9 0.18%
the right return type.
17 | |GENERICARRAY| A cast of create a generic array. 5 0.10%
18 | |UNOCCUPIEDTYPEPARAMETER| A cast used to change an unoccupied type pa- 1 0.02%
rameter in a generic type.
Type-Hacking Group. Casts due to hacking the type system.
19 | |[SELECTOVERLOAD A cast of disambiguate between overloaded 97 1.94%
methods.
20 | [SOLESUBCLASSIMPLEMENTATION| | A cast of the only subclass implementation. 57 1.14%
21 | IMPLICITINTERSECTIONTYPE| A cast of implicitly use an intersection type. 45 0.90%
22 | |REFLECTIVEACCESSIBILITY Cast the result of the Method::invoke or 26 0.52%
Field::get.
23 | |JACCESSSUPERCLASSFIELD| A cast of access a private field in a superclass. 4 0.08%
Code Smell Group. The patterns in this group are regarded as code smells.
24 | [REDUNDANT A cast that is not necessary for compilation. 117 2.34%
25 | [VARIABLESUPERTYPE A cast of a variable that could be declared to 64 1.28%
be more specific.
26 | |OBJECTASARRAY| A cast of a constant array slot used as a field of 47 0.94%
an object.
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Scope . Application/Library code . Test code . Generated code
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Figure 4.3. Cast Usage Pattern Occurrences

* Detection. For some patterns, we provide a QL query that approxi-
mates their automatic detection, as describes in Section 4.3l Whenever
a pattern is too complex to describe in terms of QL, we explain the
reasons why this is the case. Additional QL classes and predicates
used in detection queries can be found in Appendix [Al

¢ Issues. Discusses the issues with the pattern, flaws, and alternatives
that achieve the same goal without casting.
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Guarded Group

The cast patterns in this group are guarded casts.

4.51 Typecase

Description. The TyPECASE pattern consists of dispatching to different
cases depending on the run-time type of the source value. The run-time
type is tested against known subtypes of the operand type, with each test
followed by a cast of that type. The guard may be implemented using one
of three variants: an instanceof operator (GuardBylnstanceOf), a compari-
son of the run-time class against a class literal (GuardByClassLiteral), or an
application-specific type tag (GuardByTypeTag).

Instances: 1,182 (23.64%). We found 1,050 in application code, 17 in test
code, and 115 in generated code. TYPECASE is by far the most common
pattern. Figure 4.4/ shows the different variants of the pattern. The Guard-
ByInstanceOf is the most used variant. Often there is just one case and the
default case, i.e., when the guard fails, performs a no-op or reports an error.

GuardBylInstanceOf - I 881 AppiLib code
GuardByTypeTag - 1287
GuardByClassLiteral - 44 . Test code
0 250 500 750 Generated code

Figure 4.4. TYPECASE Variant Occurrences

The following listing shows an example of the TYPECASE pattern, using
the GuardBylnstanceOf variant.

if (object instanceof Item) {
return getStringFromStack(new ItemStack((Item) object));
} else if (object instanceof Block) {
return getStringFromStack(new ItemStack((Block) object));
} else if (object instanceof ItemStack) {
return getStringFromStack((ItemStack) object);
} else if (object instanceof String) {
return (String) object;
} else if (object instanceof List) {
return getStringFromStack((ItemStack) ((List) object).get(0));
} else return ""; http:/ /bit.ly/PenguinSquad_Enchiridion_2HnNwB?7’
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In the next case a type test is performed—through a method call—before
actually applying the cast of the variable props (line 3). Note that the type
test is internally using the instanceof operator (line 8).

@Override
public CTSolidColorFillProperties getSolidFill() {
return isSetSolidFill() ? (CTSolidColorFillProperties) props : null;
3
@Override
public boolean isSetSolidFill() {
return (props instanceof CTSolidColorFillProperties);
b http:/ /bit.ly/apache_poi_2FW5SXU

Another common scenario is when several cases are used to re-throw
an exception of the right type, as shown below. The cast instance is ap-
plied to a variable of type Throwable (line 13). Nevertheless, the enclosing
method is only allowed to throw NamingException by the throws declara-
tion (line 3). Since an exception of type Throwable is checked, a cast of
VirtualMachineError (subclass of Error) is needed.

protected Object wrapDataSource(
Object datasource, String username, String password)
throws NamingException {
try {
/7 [...]
Jcatch (Exception x) {
if (x instanceof InvocationTargetException) {
Throwable cause = x.getCause();
if (cause instanceof ThreadDeath) {
throw (ThreadDeath) cause;
3
if (cause instanceof VirtualMachineError) {
throw (VirtualMachineError) cause;
3
if (cause instanceof Exception) {
x = (Exception) cause;

3

3

if (x instanceof NamingException) throw (NamingException)x;

else {
/7 L. ]

3

3
} http:/ /bit.ly /codefollower_Tomcat_Research_2SGDUG5

The next example shows that TYPECASE can also be used to filter el-
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ements by type within a stream. The cast is applied to stream operations
(line 1) over the caseAssignments collection. The instanceof guard is tested
in line 2.

user = (User) caseAssignments
.stream().filter(oe -> oe instanceof User)
.findFirst()
.orElseThrow(() -> new IllegalArgumentException());

http:/ /bit.ly /kiegroup_jbpm_2ENCL8a

Rather than using an instanceof guard, in the following example the
target type of the parameter reference is determined by the value of the
parameter referenceType, which acts as a type tag for reference.

switch (referenceType) {
case ReferenceType.FIELD:
return fieldSection.getItemIndex((FieldRefKey) reference);
case ReferenceType.METHOD:
return methodSection.getItemIndex((MethodRefKey) reference);
case ReferenceType.STRING:
return stringSection.getItemIndex((StringRef) reference);
case ReferenceType.TYPE:
return typeSection.getItemIndex((TypeRef) reference);
case ReferenceType.METHOD_PROTO:
return protoSection.getItemIndex((ProtoRefKey) reference);
default:
throw new ExceptionWithContext("/* [...] */", referenceType);
} http:/ /bit.ly /JesusFreke_smali_2Ho8bVL

In some cases, the target types of the casts are the same in every branch.
In the following snippet, the cast is applied to the message.obj field to (line
11), according to the value of the tag message.what field (line 1). How-
ever, a similar cast is applied in the first branch (line 3). In both branches
message.obj is of type Object[], but with different lengths. The casts in
the calls to onSuccess and onFailure (lines 5, 13-14) are instances of the
IOBJECTASARRAY| pattern.

switch (message.what) {
case SUCCESS_MESSAGE:
response = (Object[]) message.obj;
if (response != null && response.length >= 3) {
onSuccess((Integer) response[0], (Header[]) response[1],

(byte[]) response[2]);

}else { /* [...] %/ }

break;


http://bit.ly/kiegroup_jbpm_2ENCL8a
http://bit.ly/JesusFreke_smali_2Ho8bVL
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case FAILURE_MESSAGE:
response = (Object[]) message.obj;
if (response != null && response.length >= 4) {
onFailure((Integer) response[0], (Header[]) response[1],
(bytel[]1) response[2], (Throwable) response[3]);
}else { /x [...1 *x/ }
break;
/7 [...]
3 http:/ /bit.ly /loopj_android_async_http_2IpIULk

In the next example, instead of a switch, an if statement is used to
guard the cast (in line 6).

for (final IEnrolment enrolment : dismissal.getSourcelEnrolments()) {
if (enrolment.isExternalEnrolment()) {
generateExternalEnrolmentRow(mainTable, (ExternalEnrolment) enrolment,
level + 1, true);
} else {
generateEnrolmentRow(mainTable, (Enrolment) enrolment,
level + 1, false, true, true);

} http:/ /bit.ly /FenixEdu_fenixedu_academic_2SUNOUJ

In the next example, the parameter args is cast of Object[] (line 13).
The “type tag” is given by the fact that the cast is executed in a catch
block, and that value is an instance of Closure (line 9). The args parameter
flows into two methods, invokeMethod(String name, Object args) and
call(Object... args). Thus, args is treated as an Object or Object[]
depending on the “type tag”, resembling a union type.

public Object invokeMethod(String name, Object args) {
try {
return super.invokeMethod(name, args);
}
catch (GroovyRuntimeException e) {
// br should get a "native"” property match first.
// getProperty includes such fall-back logic
Object value = this.getProperty(name);
if (value instanceof Closure) {
Closure closure = (Closure) value;
closure = (Closure) closure.clone();
closure.setDelegate(this);
return closure.call((Object[]) args);
} else {
throw e;

}


http://bit.ly/loopj_android_async_http_2IpIULk
http://bit.ly/FenixEdu_fenixedu_academic_2SUNOUJ
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} http:/ /bit.ly /groovy_groovy_core_25GzK16

In the GuardByClassLiteral variant, a cast uses an application-specific
guard, but the guard depends on a class literal. In the following exam-
ple, a cast is performed to the field variable (line 22), based on whether
the run-time class of the variable is actually Short.class.

Class type = field.getClass();

if (type == String.class) {
out.writeByte((byte) 1);
out.writeString((String) field);

} else if (type == Integer.class) {
out.writeByte((byte) 2);
out.writeInt((Integer) field);

} else if (type == Long.class) {
out.writeByte((byte) 3);
out.writeLong((Long) field);

} else if (type == Float.class) {
out.writeByte((byte) 4);
out.writeFloat((Float) field);

} else if (type == Double.class) {
out.writeByte((byte) 5);
out.writeDouble((Double) field);

} else if (type == Byte.class) {
out.writeByte((byte) 6);
out.writeByte((Byte) field);

} else if (type == Short.class) {
out.writeByte((byte) 7);
out.writeShort((Short) field);

} else if (type == Boolean.class) {
out.writeByte((byte) 8);
out.writeBoolean((Boolean) field);

} else if (type == BytesRef.class) {
out.writeByte((byte) 9);
out.writeBytesRef ((BytesRef) field);

} else {
throw new IOException(”Can't handle sort field value of type ["+type+"]1");

3 http:/ /bit.ly/elastic_elasticsearch_2SSgsFV'

Similar to the previous example, the next snippet contains several type
cases. Each type case is guarded by an equals comparison between a class
literal and the clazz parameter. The cast is applied to the type parameter T
only if the guard succeeds.


http://bit.ly/groovy_groovy_core_2SGzK16
http://bit.ly/elastic_elasticsearch_2SSgsFV
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@0verride
@SuppressWarnings("unchecked")
public <T> T get(String fieldName, Class<T> clazz) throws DecodingException {
if (clazz.equals(Boolean.class)) {
return (T) getBoolean(fieldName);
3
/7 [...]
if (clazz.equals(ExtensionObject.class)) {
return (T) getExtensionObject(fieldName);
3
/7 L. ]
} http:/ /bit.ly/OPCFoundation_UA_Java_Legacy_2Fb2xmZ

In the following listing, a cast is applied to the result of the getObject
method (line 2). The target type of the cast, MyKey, corresponds to the
class literal argument, MyKey.class. Essentially, getObject is using the
isInstance methodm of the class java.lang.Class to check whether an
object is from a certain type.

public MyKey getMyKey() {
return (MyKey) getObject(MyKey.class, KEY_MY_KEY);
} http:/ /bit.ly /smartdevicelink_sdl_android_2EjJiaq

The following snippet shows an instance of the GuardByClassLiteral vari-
ant. In this case, the cast is guaranteed to succeed because the class literal
used as argument to the recursive call (Integer.class) determines that the
method returns an int value.

public Object convertToNumber (Number value, Class toType) throws Exception {
toType = unwrap(toType);
if (AtomicInteger.class == toType) {
return new AtomicInteger((Integer)convertToNumber(value,Integer.class));
} else if (AtomicLong.class == toType) {
return new AtomicLong((Long) convertToNumber(value, Long.class));
} else if (Integer.class == toType) {
return value.intValue();
} else if (Short.class == toType) {
return value.shortValue();
} else if (Long.class == toType) {
return value.longValue();
} else if (Float.class == toType) {
return value.floatValue();

16https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#
isInstance-java.lang.Object-
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} else if (Double.class == toType) {
return value.doubleValue();
} else if (Byte.class == toType) {
return value.byteValue();
} else if (BiglInteger.class == toType) {
return new BigInteger(value.toString());
} else if (BigDecimal.class == toType) {
return new BigDecimal(value.toString());
} else {
throw new Exception("Unable to convert number "+valuet+” to "+toType);

} http:/ /bit.ly/apache_karaf 2HE55gE

Detection. When implementing the pattern, care must be taken with com-
plex operands that the value of the operand is not changed between the
guard and the cast, possibly even by another thread. For instance, in some
situations the operand expression is a method invocation. The value re-
turned by the method should be the same for both the instanceof and the
cast, thus the method should be a pure method. Typically, this problem is
avoided by using an effectively final local variable in both the guard and
the cast operand.

The Query @4.9| detects the GuardBylnstanceOf variant. It is decoupled in
two QL classes. The ControlByInstanceOfCast class checks that the cast—
to a variable—is control-dependant on an instanceof on the same variable.
Then, the GuardByInstanceOfCast class checks that the value tested by the
instanceof is the same to be cast. That is, it checks that there is no assign-
ment to the variable between the instanceof and the cast.


http://bit.ly/apache_karaf_2HE55gE
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class ControlByInstanceOfCast extends { QL

InstanceOfExpr iof;

private ConditionBlock cb;

ControlByInstanceOfCast() {
iof = cb.getCondition() and
cb.controls(getBasicBlock(), true) and
var.getAnAccess() = iof.getExpr()

3

InstanceOfExpr getIof() { result = iof }

3

class GuardByInstanceOfCast extends ControlByInstanceOfCast {
GuardByInstanceOfCast() {
forall (VariableUpdate def | defUsePair(def, getExpr()) |
defUsePair(def, iof.getExpr())
)

Listing 4.9. Query for the GuardBylInstanceOf variant.

The implementation of GuardByTypeTag variant is application-specific,
and thus its automatic detection in QL is impractical. Nevertheless, the
Query detect the special case when a cast is applied to a field in an
object inside a switch statement. The expression to be switched is another
field in the same object.

class SwitchFieldTypeTagCast extends { QL
FieldAccess tagAccess;
FieldAccess castAccess;
Variable v;
SwitchFieldTypeTagCast() {
tagAccess = this. (SwitchedExpr).getSwitchStmt().getExpr() and
castAccess = getExprOrDef() and
v.getAnAccess() = tagAccess.getQualifier() and
v.getAnAccess() = castAccess.getQualifier()

Listing 4.10. Detection of a cast inside a switch statement

Similar to the previous case, the Query detects when a cast is
guarded by a call to the Class.isArray method. This query detects only
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the case when the variable to be cast and the getClass invocation are in the
same method.

class ControlByIsArrayCast extends { QL

ConditionBlock cb;
MethodAccess iama;
ControlByIsArrayCast() {
exists (VariableAssign def, GetClassMethodAccess gcls |
gcls.getQualifier() = var.getAnAccess() and
def.getSource() = gcls and
defUsePair(def, iama.getQualifier().(VarAccess) )
) and
iama.getMethod() instanceof IsArrayClassMethod and
(
(cb.getCondition()=iama and cb.controls(getBasicBlock(), true)) or
(cb.getCondition(). (LogNotExpr).getExpr() = iama and
cb.controls(getBasicBlock(), false)
)

Listing 4.11. Detection of a cast guarded by the Class.isArray method.

The following query detects the GuardByClassLiteral variant. Similar to
the previous case, this query does not detect the case when the variable to
be cast and the Class object are passed as parameters. To detect such case
would require an inter-procedural (global) data flow analysis. Such analysis
does not scale easily.

class GuardByClassLiteral extends { QL

TypelLiteral tl;
GetClassMethodAccess gcma;
GuardByClasslLiteral() {
gcma. getQualifier() = getVar().getAnAccess() and
[[sSubtype|(tl.getTypeName() .getType(), getTargetType()) and (
[controlByEqualityTest|(tl, gcma, this) or
[controlByEqualsMethod|(tl, gcma, this)

Listing 4.12. Query for the GuardByClassLiteral variant.
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Issues. Having only a single case—that is, a single guard and cast—is
common. In the 742 instances of TYPECASE that used instanceof, 511 (69%)
had only one case.

The TYPECASE pattern can be seen as an ad-hoc alternative to a typecase
or pattern matching [Milner, 1984] as a language construct. In Kotlin, flow-
sensitive typing is used so that immutable values can be used at a subtype
when a type guard on the value is successfulm This feature eliminates
much of the need for the guarded casts. Pattern matching can be seen in
several other languages, e.g., SML, Scala, C#, and Haskell. For instance, in
Scala the pattern matching construct is achieved using the match keyword.
In this examplem a different action is taken according to the run-time type
of the parameter notification (line 10).

abstract class Notification Scala
case class Email(sender: String, title: String, body: String)
extends Notification
case class SMS(caller: String, message: String)
extends Notification
case class VoiceRecording(contactName: String, link: String)
extends Notification

def showNotification(notification: Notification): String = {
notification match {
case Email(email, title, _) => s”"Email from $email titled: $title”
case SMS(number, message) => s"SMS from $number! Message: $message”
case VoiceRecording(name, link) => s"Recording from $name! Link: $link"”

Alternatives to the TYPECASE pattern would be to use the visitor pattern
or to use virtual dispatch on the match scrutinee. However, both of these
alternatives might be difficult to implement when the scrutinee is defined
in a library or in third-party code. There is an ongoing proposa [Goetz,
2017a] to add pattern matching to the Java language. The proposal explores
changing the instanceof operator in order to support pattern matching.
Java 12 extends the switch statement to be used as either a statement or an
expressior@@ [Goetz, 2017bj Bierman, 2019]. This enhancement aims to

17https://kotlinlang.org/docs/reference/typecasts.html#smart—casts
1SAd.aptedfromhttps://docs.scala—lang.org/tour/pattern—matching.html
19https://openjdk.java.net/jeps/3®5
20https://cr.openjdk.java.net/~briangoetz/amber/pattern—match.html
2lhttps://openjdk. java.net/jeps/325
22https://openjdk.java.net/jeps/354
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https://openjdk.java.net/jeps/305
https://cr.openjdk.java.net/~briangoetz/amber/pattern-match.html
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ease the transition to a switch expression that supports pattern matching.

The GuardByClassLiteral variant may be used instead of the instanceof
operator when the developer wants to match exactly the runtime class of an
object. The instanceof operatoﬂ returns true if the expression could be
cast of the specified type, whereas using a class literal comparison returns
true if the expression is exactly the runtime class.

In some cases, the GuardByTypelug variant can be replaced by Guard-
ByInstanceOf. However, if the application-specific tag is a numeric value,
the GuardByTypeTag could perform better than the GuardBylnstanceOf using
instanceof. Moreover, there are situations where the instanceof operator
cannot be avoid since the types to be cast are the same.

4.5.2 Equals

Description. This pattern is a common pattern to implement the well-
known equals method (declared in java.lang.Object). It is a particu-
larly instance of guarded casts. A cast expression is guarded by either an
instanceof test—InstanceOf variant—or a getClass comparison—GetClass
variant—usually to the same target type as the cast; in an equal method
implementation. This is done to check if the argument has the same type
as the receiver (this argument). Notice that a cast in an equals method is
needed because it receives an Object as a parameter.

To detect this pattern, a cast must be applied to the parameter of the
equals method. The result value of the cast must be then used in an equality
comparison. We relax the constraint that the target type of the cast must
the enclosing class.

Instances: 247 (4.94%). We found 202 in application code, 0 in test code,
and 45 in generated code. This pattern accounts for 16.94% of guarded
casts, 247 instances out of 1,458. Figure shows the different variants of
the EQuaLs pattern and their occurrences. The InstanceOfSupertype, Auto-
Value, and InstanceOfSwitch variants are explained below.

The following listing shows an example of the EQuALs pattern. In this
case, an instanceof guards for the same type as the receiver (InstanceOf
variant).

23https://docs.oracle.com/javase/specs/j15/se8/html/jls—15.html#jls—15.20.2
24https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals—java.
lang.Object-


https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.20.2
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#equals-java.lang.Object-
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InstanceOfSwitch- |2
InstanceOfSupertype - |2
nstenceor- i 73 [ AveiLi code
GetClass- [I62 . Generated code
Autovalue-  [JlI8
(I) 5I0 l(I)O léO
Figure 4.5. EQUALS Variant Occurrences
@0override

public boolean equals(Object obj) {
if ( this == obj ) {
return true;
3
if ( (obj instanceof Difference) ) {
Difference that = (Difference) obj;
return actualFirst == that.actualFirst
&& expectedFirst == that.expectedFirst
&& actualSecond == that.actualSecond
&& expectedSecond == that.expectedSecond
&& key.equals( that.key );
3
return false;
} http:/ /bit.ly /neodj_neodj_2vjw94J

Alternatively, in the following listing we show another example of the
EqQuaLs pattern. But in this case, a getClass comparison is used to guard
for the same type as the receiver in line 4 (GetClass variant).

@Override
public boolean equals( Object o ) {
if ( this == o ) return true;

if ( o == null || getClass() != o.getClass() )
return false;

ValuePath that = (ValuePath) o;
return nodes.equals(that.nodes) &&
relationships.equals(that.relationships);
} http:/ /bit.ly /neodj_neodj 2vKPOMW

In some situations, the type cast is not the same as the enclosing class.
Instead, the target type of the cast is the super class or a super interface
of the enclosing class (InstanceOfSupertype variant). The following exam-
ple shows this scenario. The cast is performed in the WildcardTypeImpl
enclosing class, but the target type is java.lang.reflect.WildcardType.


http://bit.ly/neo4j_neo4j_2vJw94J
http://bit.ly/neo4j_neo4j_2vKP0MW
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public static class WildcardTypeImpl implements WildcardType, CompositeType {
@Override
public boolean equals(Object other) {
return other instanceof WildcardType
&& MoreTypes.equals(this, (WildcardType) other);

} http:/ /bit.ly/elastic_elasticsearch_2GHyPp5

Similar to the previous example, the AutoValue variant casts the equals
parameter to a super class of the enclosing class. However, this happens
when the Google AutoValue library@ is used. AutoValue is a code genera-
tor for value classes.

@AutoValue
abstract class ListsItem implements Parcelable { /x [...] */ }

abstract class $AutoValue_ListsItem extends ListsItem {
@Override
public boolean equals(Object o) {
if (o == this) {
return true;
3
if (o instanceof ListsItem) {
ListsItem that = (ListsItem) o;
return (this.id == that.id())
&& (this.name.equals(that.name()))
&& (this.itemCount == that.itemCount());
3
return false;

}
} http:/ /bit.ly/square_sqlbrite 2HmHMYE

The following snippet shows a non-trivial implementation of equals.
The enclosing class of the equals method is CapReq (line 1). However, the
cast instance (line 13) is not against the enclosing class, it is against to the
Requirement interface (InstanceOfSwitch variant). Note that the cast using
the enclosing class as target type is in line 9.

class CapReq {
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)

Bhttps://github.com/google/auto/tree/master/value
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return false;

if (obj instanceof CapReq)
return equalsNative((CapReq) obj);

if ((mode == MODE.Capability) && (obj instanceof Capability))
return equalsCap((Capability) obj);

if ((mode == MODE.Requirement) && (obj instanceof Requirement))
return equalsReq((Requirement) obj);

return false;

3 http:/ /bit.ly/bndtools_bnd_2SM5pOw

Detection. This pattern contains several variants. The Query detects
three of them, i.e., InstanceOf, GetClass, and AutoValue. It is not difficult to
extend this query to detect the other variants.

class EqualsCast extends { QL
EqualsCast() {
getVar() instanceof Parameter and
getEnclosingCallable() instanceof EqualsMethod and (
this instanceof |GuardByInstanceOfCast| or

this instanceof [GetClassGuardsVarCastl

) and (
getTargetType() = getEnclosingCallable().getDeclaringType() or
(
getTargetType() = getEnclosingCallable().getDeclaringType().
getASupertype+() and
getEnclosingCallable() .getDeclaringType()
instanceof |[AutoValueGenerated
)
)

Listing 4.13. Detection of the EQUALS pattern.

Issues. The pattern for an equals method implementation is well-known.
Most equals methods in our sample are implemented with the same boiler-
plate structure: that is, first checking if the parameter is another reference
to this, then checking if the argument is not null, and finally, checking
if the argument is of the right class (with either an instanceof test or a
getClass comparison). Once all checks are performed, a cast follows, and
a field-by-field comparison is made.


http://bit.ly/bndtools_bnd_2SM5pOw
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To avoid this boilerplate, other languages bake in deep equality com-
parisons, at least for some types (e.g., Scala case classes), or provide mech-
anisms to generate the boilerplate code (e.g., deriving Eq in Haskell or
#[derive(Eq)] in Rust). |Vaziri et al.|[2007] propose a declarative approach
to avoid boilerplate code when implementing both the equals and hashCode
methods. They manually analysed several applications, and found there
are many issues while implementing equals() and hashCode() methods. It
would be interesting to check whether these issues happen in real applica-
tion code.

There is an exploratory document@ by Brian Goetz, Java Language Ar-
chitect, addressing these issues from a more general perspective. It is defi-
nitely a starting point towards improving the Java language.

This pattern can be seen as a special instance of the pattern
when the guard is an instanceof test or a getClass comparison.

4.5.3 ParserStack

Description. The PARSERSTACK pattern consists of multiple cases, dispatched

depending on some application-specific control state, with casts of the top
elements of stack-like collection in each case. An application invariant en-
sures that if the application is in a given state then the top elements of the
stack should be of known run-time types.

Instances: 29 (0.58%). We found 13 in application code, 0 in test code, and
16 in generated code. The following example shows a cast whose value is
on top of a stack (line 2). In this case, the code is transforming a parse tree
into an abstract syntax tree. The casts in the switch case are guarded by the
parse tree node type and its arity.

case JJTASSERT_STMT:
exprType msg = arity == 2 ? ((exprType) stack.popNode()) : null;
test = (exprType) stack.popNode();
return new Assert(test, msg);
http:/ /bit.ly/fabioz_Pydev_2HFénrF

Similar to the previous example, in this case a guarded cast is performed
on a stack of grammar symbols. The code was generated using an LR parser
generator. The guard ensures that the parser has already matched a given

26http://cr.openjdk.java.net/~briangoetz/amber/datum.html
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prefix of the input and so the top of the stack should contain the expected
symbols.

case 40: // qualified_name_decl = name_decl.n DOT.DOT IDENTIFIER.i

{
final Symbol _symbol_n = _symbols[offset + 1];
final IdUse n = (IdUse) _symbol_n.value;
final Symbol DOT = _symbols[offset + 27;
final Symbol i = _symbols[offset + 31;
return new IdUse(n.getID() + "." + ((String)i.value));
} http:/ /bit.ly /Sable_soot_2MZLZ3m

Detection. To manually detect this pattern, we look for methods that pop
up an element from a stack, and then cast of it. Automatic detection for
this pattern becomes impractical, since a query would need to detect such
a method, and when a class is implementing a stack-like structure.

Issues. In our sample, this pattern is always seen when implementing
grammar-related operations, such as parsers or interpreters. In some situ-
ations, similar to the pattern, this pattern could be replaced with a
strongly typed heterogenous collection [Kiselyov et al., 2004].

Similar to multiple cases are evaluated with casts to different
types, depending on application-specific guards. However, unlike
the success of the casts is ensured not by a type-tag-like value, but
by application-specific state (e.g., the current parser state or the state of an
evaluator) and proper use of the stack.

API Group

Cast patterns that depends on an API definition.

4.5.4 Stash

Description. This pattern is used to stash an application-specific value. It
has three variants. The LookupByld and StaticResource variants are used to
extract values from a heterogenous container. The Tag variant is used to
extract a “tag” value, typically in a GUI object or message payload. They
look up an object by a compile-time constant identifier, tag, or name and
casts the result to an appropriate type. They access a collection that holds


http://bit.ly/Sable_soot_2MZLZ3m
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values of different types (usually implemented as Collection<Object> or
as Map<K, Object>). The actual run-time type returned from the lookup is
determined by the value of the identifier.

The StaticResource variant is more specific. It is used to retrieve a value
instantiated from a static resource file, e.g., an XML, HTML or a Java prop-
erties file. The file contents are (in theory) known at compile time and the
file is included in the binary distribution of the application. These files are
often built using tools such as GUI builders.

Instances: 559 (11.18%). We found 354 in application code, 63 in test code,
and 142 in generated code.  Figure shows different variants of the
pattern. The LookupByld is the most used variant.

LookupByld - I 435 AppiLib code
Tag - b3
StaticResource - 61 . Test code
0 100 200 300 400 Generated code

Figure 4.6. STASH Variant Occurrences

In the LookupByld variant example shown below, the return type of the
getAttribute method is Object. The variable context is of type BasicHttp-
Context, which is implemented with HashMap.

AuthState authState = (AuthState) context.getAttribute(
ClientContext.TARGET_AUTH_STATE);
http:/ /bit.ly /loopj_android_async_http_2S5UzY4E

The next snippet shows a call site to the getComponent method cast of the
ActivelistManager class (line 14). The getComponent method in this cast in-
stance uses as argument the PROP_ACTIVE_LIST_MANAGER constant. Looking
at the definition of this constant (line 3), we can see there is a companion
attribute (@S4Component) whose argument is the ActivelListManager class,
the target of the cast instance.

/** The property that defines the type of active list to use */
@S4Component(type = ActivelListManager.class)
public final static String PROP_ACTIVE_LIST_MANAGER = "activelistManager";

@Override
public void newProperties(PropertySheet ps) throws PropertyException {
super .newProperties(ps);


http://bit.ly/loopj_android_async_http_2SUzY4E
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logMath = (LogMath) ps.getComponent(PROP_LOG_MATH);
logger = ps.getlLogger();
linguist = (Linguist) ps.getComponent(PROP_LINGUIST);
pruner = (Pruner) ps.getComponent(PROP_PRUNER) ;
scorer = (AcousticScorer) ps.getComponent(PROP_SCORER);
activelListManager =
(ActivelistManager) ps.getComponent(PROP_ACTIVE_LIST_MANAGER);
/7 [...]
} http:/ /bit.ly/skerit_cmusphinx_2HGgL1D

In the following example, a cast is applied to the result of looking up by
index in the iContexts map (line 9). In case there is no value for the given
index, a value of the corresponding type is stored using the same index
(line 13), thus guaranteeing the success of the cast.

protected Map<Integer,AssignmentContext> iContexts =
new HashMap<Integer, AssignmentContext>();

@Override
@SuppressWarnings("unchecked")
public <U extends AssignmentContext> U getAssignmentContext(
Assignment<V, T> assignment,
AssignmentContextReference<V, T, U> reference) {
U context = (U) iContexts.get(reference.getIndex());
if (context != null) return context;

context = reference.getParent().createAssignmentContext(assignment);
iContexts.put(reference.getIndex(), context);
return context;

} http:/ /bit.ly /UniTime_cpsolver_2HUmGki

The following StaticResource example is from an Android application. A
cast is applied to the findViewById method invocation. View classes are
instantiated by the application framework using an XML resource file. The
findViewById method looks up the view by its ID.

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
connectivityStatus = (TextView) findViewById(R.id.connectivity_status);
mobileNetworkType = (TextView) findViewById(R.id.mobile_network_type);
accessPoints = (ListView) findViewById(R.id.access_points);
busWrapper = getOttoBusWrapper(new Bus());
networkEvents = new NetworkEvents(getApplicationContext(), busWrapper)

.enableInternetCheck()


http://bit.ly/skerit_cmusphinx_2HGgL1D
http://bit.ly/UniTime_cpsolver_2HUmGki
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.enableWifiScan();
} http:/ /bit.ly /pwittchen_NetworkEvents_2HGbrMq

The next listing, shows a cast of a GUI component (XulListbox) using
the getElementById method (lines 12 and 13). In this case the developer is
using the XUL language@

private void createBindings() {
loginDialog = (XulDialog) document
.getElementById( "repository-login-dialog” );
repositoryEditButton = (XulButton) document
.getElementById( "repository-edit” );
repositoryRemoveButton = (XulButton) document
.getElementById( "repository-remove” );
username = (XulTextbox) document
.getElementById( "user-name” );
userPassword = (XulTextbox) document
.getElementById( "user-password” );
availableRepositories = (XullListbox) document
.getElementById( "available-repository-list” );
/7 [...]
} http:/ /bit.ly /pentaho_pentaho_kettle_2TswNSf

In the following snippet of the Tag variant, a cast is performed to a get-
Serializable invocation (lines 9 and 10). This method gets a Serializable
value given the specified key, TAG_CUR_DIR in this case. To set a value with
a specified key, the putSerializable method is used. The mentioned cast
succeeds because a value of the appropriate type is set in line 18 using the
putSerializable method.

private TorrentContentFileTree curDir;

@0verride
public void onActivityCreated(@Nullable Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);
if (activity == null)
activity = (AppCompatActivity) getActivity();
if (savedInstanceState != null) {
curDir = (TorrentContentFileTree) savedInstanceState
.getSerializable(TAG_CUR_DIR);
} else {
makeFileTree();

b

27https://developer.mozilla.org/en—US/docs/Mozilla/Tech/XUL


http://bit.ly/pwittchen_NetworkEvents_2HGbrMq
http://bit.ly/pentaho_pentaho_kettle_2TswNSf
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@Override

public void onSavelnstanceState(Bundle outState) {
outState.putSerializable(TAG_CUR_DIR, curDir);

} http:/ /bit.ly /proninyaroslav_libretorrent_2TxpZCM

In the last example, the cast is applied to a getModel invocation on the
matchTable field (line 16). Looking how matchTable is initialized (line 7),
the model variable (line 5) is used as an argument to the constructor. This
argument is the value returned by getModel, and since they are both of the
same type, the mentioned cast is guaranteed to succeed.

public final class MatchPanel extends JPanel implements Observer {
private final JZebraTable matchTable;
public MatchPanel() {
super (new GridBaglLayout());
DefaultTableModel model = new DefaultTableModel();
/7 [...]
matchTable = new JZebraTable(model) {
@Override
public boolean isCellEditable(int rowIndex, int colIndex) {
return false;
}
B§
3
/7 [...]
private void observe(GamerCompletedMatchEvent event) {
DefaultTableModel model = (DefaultTableModel) matchTable.getModel();
model.setValueAt("Inactive”, model.getRowCount() - 1, 4);

b http:/ /bitly/ggp_org_ggp_base_2SAEXHu

Detection. The implementation of the two variants, StaticResource and Tag,
is application-specific. Thus, detecting them is often impractical. How-
ever, if the methods that perform the specified patterns are known, e.g.,
findViewById, then the automatic detection becomes trivial. On the other
hand, the following query detects the LookupByld variant.


http://bit.ly/proninyaroslav_libretorrent_2TxpZCM
http://bit.ly/ggp_org_ggp_base_2SAEXHu
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class LookupByIdCast extends { QL

MethodAccess ma;

Method getterMethod;

FieldAccess constant;

LookupByIdCast() {
ma = getExprOrDef() and getterMethod = ma.getMethod() and
not getterMethod.isVarargs() and getterMethod.isPublic() and
getterMethod.getNumberOfParameters() = 1 and
getterMethod.getParameterType (@) instanceof TypeString and
getterMethod.getReturnType() instanceof TypeObject and
ma.getArgument (@) = constant and
constant.getField().isFinal() and constant.getField().isStatic()

Listing 4.14. Detection of the LookupByld variant

Issues. This pattern suggests a heterogeneous dictionary. In our manual
inspection, all dictionary keys and the resulting types are known at compile
time, however a cast is needed because the dictionary type does not encode
the relationship between key values and the result type. Casts in this pat-
tern are typically not guarded indicating that the programmer knows the
source of the cast based on the value of the key. The LookupByld variant
could be replaced by strongly typed heterogeneous collections [Kiselyov
et al 2004] although implementing it in Java would be more verbose.

The StaticResource variant is often seen in Android applications. The
Butter Knife framewor@ uses annotations to avoid the “manual” casting.
Instead, code is generated that casts the result of findViewById to the ap-
propriate type. These casts could be solved by using code generation, or
partial classes like in C#. Since the contents of the resource file are known at
compile time, code generation could be used to generate the corresponding
Java code. In our sample, however, this variant only appears in application
code.

The Tag variant can also be used to fetch a value from a collection (as
in LookupByld). The main difference is “locality”. That is, in the Tag variant
the cast value is set “locally”, i.e., in the same method or class, whereas the
cast value in the LookupByld variant is usually set in another class.

Since this pattern casts a value to a known type from a method invoca-
tion, it can be seen as a kind of KNOWNRETURNTYPE| pattern.

28http://jakewharton.github.io/butterknif"e/
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4.5.5 Factory

Description. Creates an object based on some arguments to a method call.
Since the arguments are known at compile time, cast of the specific type. In
this pattern, the arguments resemble a “type tag” descriptor (cf. [TYPECASE).

This pattern is characterized by a cast of a method call passing one or
more arguments. The method call needs to create an object based on those
arguments. Usually the arguments that determine the run-time type to be
returned are known at compile time.

Instances: 378 (7.56%). We found 144 in application code, 146 in test code,
and 88 in generated code. The following snippet shows an instance of the
FacTtory pattern. The cast is applied to the result of invoking keyPair.get-
Private (line 6). The variable keyPair is assigned the result of pairGen.-
generateKeyPair (line 3). At the same time, the pairGen variable is as-
signed the value returned by KeyPairGenerator.getInstance("RSA"). The
argument "RSA" indicates the algorithm to use. The method@ will return
a reference to the private key component, and this is determined by the
algorithm argument described above.

KeyPairGenerator pairGen = KeyPairGenerator.getInstance("RSA");
pairGen.initialize(1024);
KeyPair keyPair = pairGen.generateKeyPair();
/7 [...]
RSAKey rsaJWK2 = new RSAKey.Builder((RSAPublicKey) keyPair.getPublic())
.privateKey((RSAPrivateKey) keyPair.getPrivate())
.keyID("2")
.build(); http:/ /bit.ly /connect2id_oauth_2_0_sdk_with_2HvRIUX

Similar to the above snippet, the next example shows an instance of
this pattern where a cast is performed on the result of the openConnection
metho (line 2). The method is declared to return URLConnection but can
return a more specific type based on the URL string. The openConnection
method is applied to the url variable, which is assigned in line 1 using the
URL constructor. The argument to the constructor is an http URL, thus the
result is cast of HttpURLConnection.

29https://docs.oracle.com/javase/8/docs/api/java/security/KeyPair.html#
getFrivate()
Yhttps://docs.oracle.com/javase/8/docs/api/java/net/URL . html#openConnection--


http://bit.ly/connect2id_oauth_2_0_sdk_with_2HvRlUX
https://docs.oracle.com/javase/8/docs/api/java/security/KeyPair.html#getPrivate()
https://docs.oracle.com/javase/8/docs/api/java/security/KeyPair.html#getPrivate()
https://docs.oracle.com/javase/8/docs/api/java/net/URL.html#openConnection--
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URL url = new URL("http://localhost:8088/ws/v1/cluster/apps”);
HttpURLConnection conn = (HttpURLConnection) url.openConnection();

http:/ /bit.ly/apache_hadoop_2E6KY6T

The following example shows how a cast (line 3) is being determined
by the argument to the CertificateFactory.getInstance method (line 1).
The argument is the string "X.509", therefore the method generateCRL will
return a value of type X509CRL.

CertificateFactory cf = CertificateFactory.getInstance(”X.509", "BC");
/7 [...]
X509CRL crl = (X5@9CRL)cf.generateCRL (new ByteArrayInputStream(directCRL));

http:/ /bit.ly /begit_bc_java_2TEVScM

In our last example the cast instance (line 2) is applied to the result of
parse method. The return type of parse is of type Statement, but, since the
statement is a SELECT statement, the value returned by the parse method is
known to be of type Select and the cast should succeed.

statement = "SELECT * FROM mytable WHERE mytable.col = 9 LIMIT :param_name";
select = (Select) parserManager.parse(new StringReader(statement));
public class Select implements Statement {

/7 [...]
3
public class CCJSqlParserManager implements JSqlParser {
@Override
public Statement parse(Reader statementReader) throws JSQLParserException {
/7 [...]
3
} http:/ /bit.ly /J[SQLParser_]SqlParser_2TecMyB

In some cases of this pattern, a cast is applied to a method invocation
where one of its arguments is a class literal. The target type of the cast is
determined by this class literal, like in the following snippets.

final ILiferayServerBehavior liferayServerBehavior =
(ILiferayServerBehavior) moduleServer.getServer()
.loadAdapter( ILiferayServerBehavior.class, null );

http:/ /bit.ly/liferay_liferay_ide_2FMGOf6

CFArray o = (CFArray) CFType.Marshaler.toObject(CFArray.class, handle, flags);
http:/ /bit.ly /robovm_robovm_2FMFWvS


http://bit.ly/apache_hadoop_2E6KY6T
http://bit.ly/bcgit_bc_java_2TEVScM
http://bit.ly/JSQLParser_JSqlParser_2TecMyB
http://bit.ly/liferay_liferay_ide_2FMG0f6
http://bit.ly/robovm_robovm_2FMFWvS
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Detection. The detection of this pattern requires to analyse the factory
method being called. This is not always possible in QL, since QL does not
analyse project dependencies.

In several instances, to manually determine when a cast belongs to this
pattern, we had to look-up the method implementation in external source
code repositories.

Issues. In some situations, the use of this pattern can be seen as break-
ing the contract between the caller and the callee. This happens because
the caller needs to know how the method is implemented in order to deter-
mine the run-time return type. In FACTORY, there is a known type hierarchy
below the return type and the caller casts to a known subtype in that hier-
archy based on the arguments passed into the factory method.

The [KNOWNRETURNTYPE| pattern is similar to FACTORY, since both de-
pend on the knowledge that a method returns a more specific type.

This pattern is prevalent in test code 38.62%. This is because when
testing, known parameters are given to factory methods. In these situations,
a test method needs to know a more specific type—by using a cast—to
properly check for a test condition.

4.5.6 KnownReturnType

Description. There are cases when a method’s return type is less specific
than the actual return type value. This is often to hide implementation
details, but may also be because the method overrides another method with
a less-specific type and the return type is not changed covariantly.

This pattern is used to cast from the method’s return type to the known
actual return type. This pattern is characterized by a method that always
returns a value of the same type, a subtype of the declared return type,
regardless of the context or the arguments to the method call.

Instances: 89 (1.78%). We found 61 in application code, 23 in test code,
and 5 in generated code. In the following example, a cast is performed to
a call to the getRealization method (line 1). Its implementation returns a
value of type CubeInstance (line 9).

final List<CubeSegment> mergingSegments = ((Cubelnstance) seg.getRealization())
.getMergingSegments((CubeSegment) seg);
public class CubeSegment implements IBuildable, ISegment, Serializable {
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/7 L...]
private Cubelnstance cubelnstance;
/7 [...]

public IRealization getRealization() {
return cubelnstance;

3
3
public class CubeInstance
extends RootPersistentEntity implements IRealization, IBuildable {

70 Loood
b http:/ /bit.ly /apache_kylin_2SIjooO

In the following example, a cast is applied to the result of an invocation
to the createDebugTarget method. This method is known to return a value
of type PHPDebugTarget, which implements IPHPDebugTarget.

debugTarget = (PHPDebugTarget) createDebugTarget(/* [...] */);

protected IDebugTarget createDebugTarget(/x [...] */) throws CoreException {
return new PHPDebugTarget(/* [...] */);
} http:/ /bit.ly /eclipse_pdt_2Ekeu9v

In some situations, an API method is designed to return an abstract
class or interface. This API allows the developer to then choose which
implementation to use at run time. The following example shows this sit-
uation. The cast is applied to the getLogger method—with return type
org.slf4j.Logger—in line 4. But the developer set up the application to
use ch.qos.logback.classic.Logger instead.

import ch.qos.logback.classic.Logger;
import org.slf4j.LoggerFactory;

Logger rootLogger = (Logger) LoggerFactory.getlogger(Logger.ROOT_LOGGER_NAME);
http:/ /bit.ly/skylot_jadx_2HIoR9X

Detection. Similar to the pattern, KNOWNRETURNTYPE requires
analysis of the method implementation called in the cast expression. Ex-
pressing this kind of analysis in QL becomes impractical.

Issues. This pattern usually indicates an abstraction violation: the caller
needs to know the method implementation to know the correct target type.


http://bit.ly/apache_kylin_2SIjooO
http://bit.ly/eclipse_pdt_2Ekeu9v
http://bit.ly/skylot_jadx_2HIoR9X
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The [COVARIANTRETURNTYPE| pattern can be considered a special case of
this pattern where the return type is known to vary with the receiver type.
Like that pattern, associated types [Chakravarty et al., 2005] in languages
like Haskell or Rust could be used to avoid the cast.

4.5.7 Deserialization

Description. This pattern is used to deserialize an object at run time.
In its more common form, this pattern is characterized for a cast of the
readObject method on an ObjectInputStream object.

Instances: 71 (1.42%). We found 37 in application code, 12 in test code,
and 22 in generated code. The following example shows how the DESERI-
ALIZATION pattern is used to create objects from a file system (line 9).

FileInputStream fis = new FileInputStream(serialize);
ObjectInputStream ois = new ObjectInputStream(fis);
CrawlURI deserializedCuri = (CrawlURI)ois.readObject();
deserializedCuri = (CrawlURI)ois.readObject();
deserializedCuri = (CrawlURI)ois.readObject();
assertEquals(”...", this.seed.toString(), deserializedCuri.toString());
http:/ /bit.ly /internetarchive_heritrix3_2SF4j7k

Detection. The following query detects DESERIALIZATION with the fact
that the readObject method family is used to deserialize objects. For other
deserialization frameworks, it would require to analyse external dependen-
cies.

class DeserializationCast extends { QL
DeserializationCast() {
getExprOrDef (). (MethodAccess) .getMethod() instanceof ReadObjectMethod
}

Listing 4.15. Detection of the DESERIALIZATION pattern.

Issues. The serialization API dates back to Java 1.1 in 1997. Since then,
newer serialization APIs have been developed. For instance, Apache Avr

31https://avro.apache.org/docs/current/
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uses generics and class literals to specify the expected type of an object
read. In some languages, type-safe serialization and deserialization boiler-
plate code can be automatically generated, for instance in Rust, the Serde
library>”| can generate code to serialize most data types in a variety of for-
mats.

Both this pattern and the NEWDyYNAMICINSTANCE| pattern create objects
by using reflection. While it might be considered a special case of
DEsERIALIZATION differs in that the run-time result type of
the readObject depends on the state of the input stream and can change
depending on context.

4.5.8 NewDynamiclnstance

Description. In the NEWDYNAMICINSTANCE pattern, a new object or array
is created by means of reflection. The type of the object being created is
determined at run time, and the new object is cast of some statically known
supertype of the run time type.

The newInstance method family declared in the Class Arra and
Constructor@ classes creates an object or array dynamically by means of
reflection, i.e., the type of object being created is not known at compile
time. This pattern consists of casting the result of these methods to the
appropriate target type.

Instances: 59 (1.18%). We found 44 in application code, 5 in test code, and
10 in generated code. The following example shows a cast of the result of
the Class.newInstance() method.

logger = (AuditlLogger) Class.forName(className).newInstance();
http:/ /bit.ly/apache_hadoop_2HC3IPg

The following example shows how to dynamically create an array, using
the Array class.

32https://serde.rs/

33https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#newInstance--

34https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Array.html#
newlnstance-java.lang.Class-int-

https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Array.html#
newInstance-java.lang.Class-int...-

3Ohttps://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Constructor.
html#newInstance-java.lang.Object.. .-


http://bit.ly/apache_hadoop_2HC3IPg
https://serde.rs/
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#newInstance--
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Array.html#newInstance-java.lang.Class-int-
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Array.html#newInstance-java.lang.Class-int-
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Array.html#newInstance-java.lang.Class-int...-
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Array.html#newInstance-java.lang.Class-int...-
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Constructor.html#newInstance-java.lang.Object...-
https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Constructor.html#newInstance-java.lang.Object...-
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return list.toArray( (T[1) Array.newInstance( componentType, list.size()));
http:/ /bit.ly /neo4j_neo4j_2Hp5Hqc

Whenever a constructor other than the default constructor is needed,
the newInstance method declared in the Constructor class should be used
to select the appropriate constructor, as shown in the following example.

return (Exception) Class.forName(className)
.getConstructor(String.class)
.newInstance(message);
http:/ /bit.ly/gradle_gradle_2HsUgOo

The following example shows a guarded instance of the NEwDynaM-
ICINSTANCE pattern. This seems rather unusual, as this pattern is not
guarded.

private static List<String> getMapperMethodNames(final Class clazz) {
try {
if (clazz != null) {
Object obj = clazz.newlInstance();
if (obj instanceof BaseMethodMapper) {
return ((BaseMethodMapper) obj).getAllFunctionNames();
3
3
} catch (Exception e) {
e.printStackTrace();

3

return null;
} http:/ /bit.ly/alibaba_LuaViewSDK_2HC33xg

There are cases when the cast is not directly applied to the result of the
newInstance method. The following snippet shows such a case. The cast
is used to convert from Class<?> to Class<ConfigFactory> (line 4). The
invocation to the newInstance method then does not need a direct cast (line
8) given the definition of the clazz variable (line 2). Nevertheless, the cast
is unchecked, and a checkcast instruction will be emitted anyway for the
result of the newInstance invocation.

ClassLoader tccl = Thread.currentThread().getContextClasslLoader();
final Class<ConfigFactory> clazz;
if (tccl == null) {
clazz = (Class<ConfigFactory>) Class.forName(factoryName);
} else {
clazz = (Class<ConfigFactory>) Class.forName(factoryName, true, tccl);


http://bit.ly/neo4j_neo4j_2Hp5Hqc
http://bit.ly/gradle_gradle_2HsUgOo
http://bit.ly/alibaba_LuaViewSDK_2HC33xg
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}
final ConfigFactory factory = clazz.newInstance();
http:/ /bit.ly /pacdj_pac4j_2H]JtXUn

Detection. The Query detects the NEWDYNAMICINSTANCE pattern.
The QL NewDynamicInstanceAccess class checks where the cast expression
is the newInstance method on the aforementioned classes.

class NewDynamicInstanceCast extends { QL
NewDynamicInstanceCast() {
getExprOrDef () instanceof [NewDynamicInstanceAccess|

b

Listing 4.16. Detection of the NEWDYNAMICINSTANCE pattern.

Issues. The cast here is needed because of the dynamic nature of reflec-
tion. This pattern is usually unguarded, that is, the programmer knows
what target type is being created.

Generics could be used to avoid the cast on newInstance, assuming the
Class instance is not a raw type or a Class<?>. However, the usual API
for getting a class instance Class. forName returns such a type. Indeed, the
following two snippets:

Class<?> ¢ = Class.forName("”java.lang.String");
String pf = (String) c.newInstance();
Class<String> c = (Class<String>) Class.forName("java.lang.String");

String pf = c.newlnstance();

compile to the same bytecode below.

ldc "java.lang.String” Bytecode
invokestatic java.lang.Class.forName()

astore_1

aload_1

invokevirtual java.lang.Class.newInstance()
checkcast java.lang.String


http://bit.ly/pac4j_pac4j_2HJtXUn
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In the first case, the cast is to the newInstance method, an instance of the
NEwDYNAMICINSTANCE pattern. In the second case, the cast is to the call to
Class.forName, an instance of the pattern.

This pattern is related to |DESERIALIZATION| since both create an object
dynamically. It is also related to [REFLECTIVEACCESSIBILITY, where both re-
trieve objects by using reflection.

4.5.9 Composite

Description. The CoMPOSITE pattern is characterized by a cast of another
element of a composite data structure, typically a tree, where the target
type is known because of its position in the data structure.

Instances: 21 (0.42%). All 21 instances were found in application code.
The following example shows a cast from a Box—as returned by the get-
PreviousSibling method—to a TableSectionBox. The programmer reasons
that the cast will succeed because the source of the cast is a sibling of an-
other TableSectionBox.

public class TableBox extends BlockBox {
protected TableSectionBox sectionAbove(TableSectionBox section /x[...]1*/) {
TableSectionBox prevSection = (TableSectionBox)section.
getPreviousSibling();

b

}
public abstract class Box implements Styleable {

public Box getPreviousSibling() { }
3 http:/ /bit.ly/flyingsaucerproject_flyingsaucer_2N2nYbY

Detection. Since the COMPOSITE pattern resembles the pattern, its
detection suffers the same inconveniences.

Issues. The pattern is typical of hierarchical data structures such as ab-
stract syntax trees, document models, or Ul layouts. Based on the grammar
of the data structure, the types of adjacent objects in the structure can be
known. The cast succeeds if the data structure is well-formed. This pat-
tern is only seen in application code, since it is used when designing an
extensible APL


http://bit.ly/flyingsaucerproject_flyingsaucer_2N2nYbY
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More precise typing of the links in the data structure could eliminate
the need for the casts. For example, in the above example, the sibling of a
TableSectionBox might be declared to have type TableSectionBox. How-
ever, this may require the programmer to override methods to refine return
types covariantly. Language features available in other languages like gen-
eralized algebraic data types (GADTs) [Peyton Jones et al., 2006] or self
types [Bruce, 2003; Odersky and Zenger, 2005] could also be used to pro-
vide a more precise typing.

The pattern can be thought of as a more dynamic variant of the
pattern. Rather than reasoning that the cast will succeed because of the
source type’s relative position in the class hierarchy, the cast will succeed
because of the source value’s position in a composite data structure.

Covariance Group

Patterns related to different kinds of covariance.

4.5.10 Family

Description. The FamILY pattern implements casts to provide a sort of
family polymorphism [Ernst, 2001]]. A “family” consists of multiple mutually-
dependent types designed to collaborate with each other. Each type has a
role in the family. Deriving from a base family to form another family
requires subclassing all the members of the base family, with the subclasses
in the new family retaining their roles in the new family.

Because method parameter types are invariant in Java and because co-
variant parameter types are unsound in general, the method parameter
types in the derived family are the same as in the base family. Casts are
therefore necessary for one member of a derived family to access another
member using its derived family type rather than its base family type.

Instances: 343 (6.86%). We found 256 in application code, 37 in test code,
and 50 in generated code. The following example shows an instance of this
pattern. In this case, the interfaces StepInterface, StepMetalnterface, and
StepDatalnterface are part of a base family and the stopRunning method
has parameters of these types. In the derived family the roles of these three
interfaces are implemented by the classes DynamicSQLRow, DynamicSQLRow-
Meta, and DynamicSQLRowData. A cast is applied to the parameter smi of



O ® N G e W N e

o e
IS S R N =]

© ® N G oA W N =

— s s s e
= o o= o

94 4.5 Cast Usage Patterns

stopRunning in DynamicSQLRow (line 12). This cast is necessary to convert
the method parameter, of the base family type StepDatalInterface, into the
derived family type with the same role.

public interface StepInterface extends VariableSpace, HasLogChannelInterface {
/7 [...]
public void stopRunning( StepMetalnterface stepMetalnterface,
StepDatalnterface stepDatalnterface ) throws KettleException;
3
public class DynamicSQLRow extends BaseStep implements StepInterface {
private DynamicSQLRowMeta meta;
private DynamicSQLRowData data;
/7 C...]
public void stopRunning( StepMetalnterface smi, StepDatalnterface sdi )
throws KettleException {
meta = (DynamicSQLRowMeta) smi;
data = (DynamicSQLRowData) sdi;
/7 [...]
3
} http:/ /bit.ly /pentaho_pentaho_kettle_2FN59]8

The next example is similar to the previous one. The masked parameter
is cast of DoubleColumnVector (line 5). It is so because the masked variable
is expected to hold an instance of DoubleColumnVector when the maskData
method is applied to an object of type DoubleIdentity.

public class DoubleIdentity implements DataMask {
@0verride
public void maskData(ColumnVector original, ColumnVector masked, int start,
int length) {
DoubleColumnVector target = (DoubleColumnVector) masked;
DoubleColumnVector source = (DoubleColumnVector) original;
/7 [...]
3
3

public interface DataMask {
/7 [...]
void maskData(ColumnVector original, ColumnVector masked,
int start, int length);
3 http:/ /bit.ly/apache_orc_2SE4C2m

In both previous examples, casts were applied to a parameter in an over-
riding method. In the next example, the cast instance is applied to super-
class field (line 12). The field is declared in the BaseExchange class (line 20).
However, the field is initialized with a BitflyerMarketDataService value in
line 5.


http://bit.ly/pentaho_pentaho_kettle_2FN59J8
http://bit.ly/apache_orc_2SE4C2m
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public class BitflyerExchange extends BaseExchange implements Exchange {

/7 [...]

@Override

protected void initServices() {
this.marketDataService = new BitflyerMarketDataService(this);
/7 [...]

}

/7 L...]

@Override

public void remoteInit() throws IOException, ExchangeException {
BitflyerMarketDataServiceRaw dataService =

(BitflyerMarketDataServiceRaw) this.marketDataService;

List<BitflyerMarket> markets = dataService.getMarkets();
exchangeMetaData = BitflyerAdapters.adaptMetaData(markets);

3
}

public abstract class BaseExchange implements Exchange {
/7 C...]
protected MarketDataService marketDataService;
// [...]
} http:/ /bit.ly /knowm_XChange_2UPPDj9

Detection. To detect this pattern, the cast needs to be applied to a family.
The detection would need application-specific knowledge of whether a field
or parameter has similar roles in different class hierarchies (families). Since
this leads to many variations, writing a QL query would be impractical.

Issues. Java itself does not support statically type-safe family polymor-
phism directly and so casts are often necessary. Various proposals have
been made to better support family polymorphism (and the related “ex-
pression problem” [Wadler, 1998]) in object-oriented languages, including
the use of design patterns [Wang and Oliveira, 2016; Oliveira and Cook)
2012; Nystrom et al., [2003], and type systems [Ernst, 2000; Odersky and
Zenger, 2005; Myers, 2006; Oliveira et al., 2016; Kiselyov et al., 2009] that
permit some restricted form of covariant method parameters.

4.5.11 CovariantReturnType

Description. The CovARIANTRETURNTYPE pattern is used to cast a call to a
method that returns an instance of a type that is covariant with the receiver
type. Commonly the method returns an instance of the receiver type itself.


http://bit.ly/knowm_XChange_2UPPDj9
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Instances: 106 (2.12%). We found 85 in application code, 3 in test code,
and 18 in generated code. A common instance of this pattern is for calls
to the clone method of java.lang.Object (70 instances), which returns an
object of the same type as the receiver, but whose static type is Object. The
following snippet shows a cast of the clone method.

@Override
public ListTagsForResourceResult clone() {
try {
return (ListTagsForResourceResult) super.clone();
} catch (CloneNotSupportedException e) {
throw new IllegalStateException(/* [...] */);

3
} http:/ /bit.ly/aws_aws_sdk_java_2GvHhYt

In the following example, the unmarshall method overrides a superclass
method with a covariant return type. A cast is used on the call to the
superclass method to change the type of the return value to match the
more precise return type.

public class ResourceContentionExceptionUnmarshaller
extends StandardErrorUnmarshaller {

public ResourceContentionExceptionUnmarshaller() {
super (ResourceContentionException.class);

3

public AmazonServiceException unmarshall(Node node) throws Exception {
String errorCode = parseErrorCode(node);
if (errorCode == null || !errorCode.equals("ResourceContention”))

return null;
ResourceContentionException e =
(ResourceContentionException) super.unmarshall(node);

return e;

} http:/ /bit.ly /aws_amplify_aws_sdk_android_2FVWI13

The initCause method—from the java.lang.Throwable class—has re-
turn type Throwable. Nevertheless, this method returns the receiver (af-
ter setting the cause exception). Therefore a cast is needed to recover the
original exception type, as shown in the following example. This use case

resembles the [FLUENTAPI| pattern.

throw (IllegalArgumentException)
new IllegalArgumentException(”Invalid broker URI: " + brokerURL)
.initCause(e);
http:/ /bit.ly /apache_activemq_2EnSivc


http://bit.ly/aws_aws_sdk_java_2GvHhYt
http://bit.ly/aws_amplify_aws_sdk_android_2FVWl13
http://bit.ly/apache_activemq_2EnSivc
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Detection. The Query approximates the detection of the Covari-
ANTRETURNTYPE pattern when a cast is applied to a method in a super
class, e.g., in the first two examples shown above.

class CovariantReturnTypeCast extends { QL
Method m;
MethodAccess ma;
CovariantReturnTypeCast() {
getExpr() = ma and ma.isOwnMethodAccess() and
getEnclosingCallable() = m and m.overrides(ma.getMethod())

Listing 4.17. COVARIANTRETURNTYPE detection query.

Issues. The situation of returning this could be avoided if Java supported
self types [Bruce, 2003]. More generally, associated types [Chakravarty
et al., 2005] can provide a statically typed solution, for instance in the sec-
ond example above.

4.5.12 FluentAPI

Description. A fluent API is an API that allows the developer to oper-
ate on the same object using method chaining. This pattern is exhibited
when the receiver (this reference) is cast of a type parameter which is itself
bounded by the self type.

Instances: 23 (0.46%). We found 18 in application code, 0 in test code, and
5 in generated code. In the following snippet, the receiver (this) is cast of
a type parameter (B) (line 5). This allows subclasses to reuse the methods
in the base class without overriding them just to change the return type.

public class ClockBuilder <B extends ClockBuilder<B>> {
/7 [...]
public final B alarms(final Alarm... ALARMS) {
properties.put(”alarmsArray”, new SimpleObjectProperty<>(ALARMS));
return (B) this;

} http:/ /bit.ly/HanSolo_Medusa_2TyBObH


http://bit.ly/HanSolo_Medusa_2TyBObH
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The following example implements FLUENTAPI by directly casting the
receiver (this) in line 3. Similarly to the addA11Thrown method, the rest of
methods in the enclosing class perform a cast of this. Although there is a
lot of boilerplate code, this instance happens in generated code. The cast
succeeds because there is a guard (line 8) in the constructor that guarantees

the receiver is of the appropriate type (cf. [TYPECASE).

public final EncodedElement.Builder addAllThrown(
Iterable<? extends Type> elements) {
this. thrown.addAll(elements);
return (EncodedElement.Builder) this;

}

public Builder() {
if (!(this instanceof EncodedElement.Builder)) {
throw new UnsupportedOperationException("/x [...] x/");

3
} http:/ /bit.ly /immutables_immutables_254Bo]s

Detection. The Query detects the FLUENTAPI pattern. The query
detects the case like the first example.

class FluentAPICast extends { QL
TypeVariable x;
GenericType enclosingClass;
FluentAPICast() {
getExpr() instanceof ThisAccess and
getParent() instanceof ReturnStmt and
x = getTargetType() and
enclosingClass = getExpr().getType() and
x.hasTypeBound() and
x.getFirstTypeBound().getType() = enclosingClass and
x.getFirstTypeBound().getType() . (GenericType) .getATypeParameter() = x

Listing 4.18. Detection of the FLUENTAPI pattern.

Issues. In most cases, this pattern is concerned with a particular imple-
mentation of fluent APIs where recursive generics are used to mimic self
types [Bruce, 2003]. Other implementations of fluent APIs simply return
this without a cast, but these are less extensible.


http://bit.ly/immutables_immutables_2S4BoJs
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Generics Group

Patterns related to use or misuse of generics.

4.5.13 UseRawType

Description. A cast is in the USERAWTYPE pattern when a raw type is used
rather than a generic type. Methods of raw types typically return Object
rather than a more specific type.

Instances: 335 (6.70%). We found 176 in application code, 18 in test code,
and 141 in generated code. For example, in the following code, the collec-
tion ¢ and iterator it are declared to be of the raw types Collection and
Iterator rather than as parameterized types. The call to next on line 4
must be cast of a more specific type because static type information was
lost by the use of raw types.

Collection ¢ = recipients.getRecipients();
assertTrue(c.size() >= 1 && c.size() <= 2);

Iterator it = c.iterator();
verifyRecipient((RecipientInformation)it.next(), privKey);

http:/ /bit.ly/begit_bc_java_2SD2HLm

The following example uses the Comparable interface (line 1). This in-
terface is genericm but in this case the developer is using its raw type.
Therefore a cast is needed in line 5.

public class McpSettlementDetailDto implements Comparable {

/7 [...]

@Override

public int compareTo(Object 0){
McpSettlementDetailDto mcpSettlementDetailDto=(McpSettlementDetailDto)o;
Integer newConsume=(int)mcpSettlementDetailDto.getConsume();
Integer temp=((int)this.consume);
return temp.compareTo(newConsume);

} http:/ /bit.ly/fangjie008_tiexue_mcp_parent_2FSZKzm

In the following snippet, a cast is applied to the result of the doPrivi-
leged method in lines 3 and 4. This method takes a PrivilegedAction<T>,
but the cast is needed because it is invoked with a raw type, e.g., new

37https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html


http://bit.ly/bcgit_bc_java_2SD2HLm
http://bit.ly/fangjie008_tiexue_mcp_parent_2FSZKzm
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
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PrivilegedAction(). Inspecting further the source code application, we
found that it might be a requirement to be compatible with the JDK 1.2.
Generics were added to Java 5. Thus, this cast might be still necessary.

class SecuritySupport12 extends SecuritySupport {
ClassLoader getSystemClasslLoader() {
return (ClasslLoader)
AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {
ClassLoader cl = null;
try {
cl = ClasslLoader.getSystemClasslLoader();
} catch (SecurityException ex) {}
return cl;
3
s
3
3
public final class AccessController {
public static <T> T doPrivileged(PrivilegedAction<T> action) {
return action.run();
3
3

public interface PrivilegedAction<T> {
public T run();
} http:/ /bit.ly /robovm_robovm_2FAI5x5

Detection. The Query detects a variation of the USERAWTYPE pattern,
e.g., only the first example shown above. That is, when a cast is applied to a
method declared as returning a generic type, but the method is invoked on
an object defined as a raw type.


http://bit.ly/robovm_robovm_2FAI5x5
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class UseRawTypeCast extends { QL
MethodAccess ma;
RawType rt;

UseRawTypeCast() {
ma = getExpr() and
rt = ma.getQualifier().getType() and
ma.getMethod() .getSourceDeclaration().getReturnType()
instanceof TypeVariable

3
MethodAccess getMethodAccess() {
result = ma

b

Listing 4.19. Detection of the USERAWTYPE pattern.

Issues. Raw types exist in Java to support legacy code. Best practice
would be to rewrite the code to use generics, but this is not always fea-
sible or cost effective.

This pattern is prevalent in generated code (42.09% of generated in-
stances). Since these casts will not be seen by a developer, code generators
make less effort to avoid them.

Casts among generic types and between raw types and generic types
are unchecked at run time, although other casts are typically inserted by
the compiler to ensure type safety dynamically. When these inserted casts
fail, the reported location of the failure may not match the programmer’s
expectation. Indeed, this is similar to the problem of blame in gradually
typed languages [Wadler and Findler, 2009]. In this setting, when a run-
time cast fails the blame should be put on the appropriate programmer-
inserted cast, not on a compiler-inserted cast.

4.5.14 RemoveWildcard

Description. A cast is in the REMOVEWILDCARD pattern when a wildcard
type is used rather than a generic type.

Instances: 33 (0.66%). We found 26 in application code, 7 in test code, and
0 in generated code. In the following example, unit is declared as Unit<?>,
but to actually be able to use it a cast of a concrete type is needed.
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copy.setUnitOfMeasure( (Unit<Length>) unit );
http:/ /bit.ly/eclipse_jetty_project 2WMIOLd

Detection. The following query detects the REMOVEWILDCARD pattern.
The query checks that the type of the cast operand is a wildcard, or a
parameterized type containing a wildcard.

predicate containsWildcard(Type t) { QL
t instanceof Wildcard or
containsWildcard( t.(ParameterizedType).getATypeArgument() )

3

class RemoveWildcardCast extends {
RemoveWildcardCast() {
containsWildcard(getExpr().getType())
}

Listing 4.20. Detection of the REMOVEWILDCARD pattern.

Issues. Wildcard types are a form of existential type and consequently can
limit access to members of a generic type. Casts are used to restore access
at a particular type.

Since this pattern is an unchecked cast, the discussion about compiler-

inserted casts and blame is similar to the pattern.

4.5.15 CovariantGeneric

Description. The COVARIANTGENERIC pattern occurs when a cast is used
to use an invariant generic type as if it were covariant. It can be imple-
mented by casting a generic type like List<S> to a raw type (List), which
can then be assigned to a variable of List<T>, where S is a subtype of T.

Instances: 10 (0.20%). We found 8 in application code, 2 in test code, and
0 in generated code. In the following snippet we show an instance of this
pattern.


http://bit.ly/eclipse_jetty_project_2WMI0Ld
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private final List<VariableExpression> dataProcessorVars = new ArraylList<>();
new ArrayExpression(ClassHelper.OBJECT_TYPE, (List) dataProcessorVars);
public class ArrayExpression extends Expression {
public ArrayExpression(ClassNode elementType, List<Expression> exprs) {}
T http:/ /bit.ly /spockframework_spock_2UYEsF5

Issues. |Altidor et al|[2011] define a type system that adds definition-site
variance to Java. This could reduce the need for this pattern, although not
in the instance above since List is invariant. Scala addresses this issue by
taking advantage of definition-site variance in the collections library, for
instance by providing a covariant immutable list type.

4.5.16 SelectTypeArgument

Description. This pattern is used to prevent the compiler from inferring
a collection element type that is too precise. It guides the type checker to
provide the right return type of a generic method.

Instances: 9 (0.18%). We found 4 in application code, 5 in test code, and
0 in generated code. In the following snippet, an upcast is performed
to ensure that the inferred type of the call to singletonList (line 3) is

List<Framedata> rather than List<FrameBuilder>. Because List<FrameBuilder>

is not a subtype of List<Framedata>, a compilation error would occur if the
cast were omitted.

public List<Framedata> createFrames( String text, boolean mask ) {
FrameBuilder curframe = new FramedataImpli();
return Collections.singletonlList( (Framedata) curframe );

3
public interface FrameBuilder extends Framedata {
} http:/ /bit.ly/arpruss_raspberryjammod_2USL7Ai

Similar to the previous example, in the following case, an upcast is per-
formed to change the return type of the Matcher<T> equalTo(T) method.

@Test
public void testUpdateReturnBoolean() throws Exception {
/x [...] %/

List<Object> args = boundSql.getArgs();
assertThat(args.get(0), equalTo((Object) "ash"));


http://bit.ly/spockframework_spock_2UYEsF5
http://bit.ly/arpruss_raspberryjammod_2USL7Ai
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public static <T> Matcher<T> equalTo(T operand) {
/7 [...]
3 http:/ /bit.ly /jfaster_mango_2EhXzUW

Instead of an upcast, in this example, a cast of null is performed to
change the return type. This use case resembles the [SELECTOVERLOAD| pat-
tern.

assertThat(result.queryValue(memberOne, DefaultFlag.BUILD), is((State) null));
public static <T> Matcher<T> is(T value) {

/7 [...]
3 http:/ /bit.ly /EngineHub_WorldGuard_2IVUOx1

Detection. The Query detects when a cast is used to select the return
type of a generic method.

class CovariantGenericCast extends { QL
Argument arg;
Call call;
Callable m;

CovariantGenericCast() {
this = arg and
call = arg.getCall() and
arg.getCall().getCallee() = m and

(
m.getReturnType() . (ParameterizedType) .getATypeArgument() =
m.getParameterType(arg.getPosition()). (TypeVariable) or
m.getReturnType() . (TypeVariable) =
m.getParameterType(arg.getPosition()). (TypeVariable)
)

Listing 4.21. Query to detect the SELECTTYPEARGUMENT pattern.

Issues. In some cases, instead of casting, this pattern could be avoided us-

ing explicit type arguments, e.g., Collections.<Framedata>singletonList(curframe).

With Java 8 this cast became unnecessary due to better type inference@

38https://docs.oracle.com/javase/specs/jls/se8/html/jls—18.html#jls—18.5


http://bit.ly/jfaster_mango_2EhXzUW
http://bit.ly/EngineHub_WorldGuard_2IVUOx1
https://docs.oracle.com/javase/specs/jls/se8/html/jls-18.html#jls-18.5
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4.5.17 GenericArray

Description. A cast due to the instantiation of an array with a parame-
terized base type. In Java these arrays cannot be instantiated, instead an
Object[] or an array of raw types must be created. The cast is necessary to
use the array at the intended type.

Instances: 5 (0.10%). We found 5 in application code, 0 in test code, and
0 in generated code. In the following snippet, a cast is required when
accessing an element in the array (line 4). The array is created using the
raw type List[1[] and assigned to a variable of using the wildcard type
List<?>[1[] (line 1). It is not possible to simply allocate a List<byte[]>.

List<?>[][] partialResults = new List[th][tw];

for (...) {
partialResults[ty][tx] = build(tx, ty, order, cCompatibility);
layers.addAll((List<byte[]>) partialResults[y][x]);

}

List<byte[]> build(int tx, int ty, ByteOrder order, boolean cCompatibility);
http:/ /bit.ly /ppiastucki_recast4j_2EM7zWK

Instead of casting individual elements, the following example shows a
cast applied directly when the array is created.

TL] newArray = (T[]) new Object[growSize(currentSize)];
http:/ /bit.ly /seven332_Nimingban_2UdBwIL

Detection. The following queries detect different variations of the GENER-
ICARRAY pattern. The first one detects when a generic cast is applied to the
array, e.g., (EL]1) new Object[length].

class OnArrayGenericArrayCast extends { QL
OnArrayGenericArrayCast() {
getTargetType(). (Array) .getComponentType() instanceof TypeVariable and
getExpr().getType() instanceof Array

The following query detects the case when the target type of the cast
is a type variable used to get an element from the array. For instance, (T)


http://bit.ly/ppiastucki_recast4j_2EM7zWK
http://bit.ly/seven332_Nimingban_2UdBwIL

© ® N G oA W N =

11

106 4.5 Cast Usage Patterns

events[i], where the events array is defined as EventObject[] and T is
declared as T extends EventObject.

class TypeVariableGenericArrayCast extends { QL
TypeVariableGenericArrayCast() {
getExprOrDef () instanceof ArrayAccess and
getTargetType() instanceof TypeVariable

Our last query for this pattern is similar to the previous one. But in this
case, the component type of the array is either a raw type or a wildcard type
(e.g., List<?>). For instance, a cast (Any<T>) entries[i] where entries is
defined as Any[] entries = new Any[n]. In this example, Any is a generic
type, but the array is using the raw type instead.

class OnElementGenericArrayCast extends { QL
OnElementGenericArrayCast() {
(

getExprOrDef (). (ArrayAccess) .getArray().getType() . (Array)
.getComponentType() instanceof RawType or
containsWildcard( getExprOrDef (). (ArrayAccess).getArray()
.getType(). (Array) .getComponentType() )
) and
getTargetType() instanceof ParameterizedType

Issues. This pattern occurs because generic type parameters are not rei-
tied at run time, but array types are reified. To create a generic T[], for
instance, since the parameter T is not known statically, the compiler can-
not know the run-time representation of the array. The Java specification
just forbids these problematic cases and therefore requires programmers to
create arrays of raw types and to use casts.

4.5.18 UnoccupiedTypeParameter

Description. This pattern occurs when a generic type changes its type
parameter, but the new type parameter holds no values.
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Instances: 1 (0.02%). This instance was found in application code. This
cast is used to implement an Either type. A value of type Either<L, R>
can be either a value of type L or of type R. In this instance, the receiver—of
type Either<L, R>—is cast of Either<U, R> (line 9). There is no subtype
relation between L and U. However, the cast succeeds because the program-
mer ensures (using the guard isLeft in line 6) that no value of type U is
accessible from this. Note that this cast does not conform to the
pattern, despite the guard, because the target type is not a subtype
of the cast operand. The cast succeeds only because of Java’s type erasure
implementation.

public interface Either<L, R> extends Value<R>, Serializable {
@SuppressWarnings("unchecked")
default <U> Either<U, R> mapLeft(

Function<? super L, ? extends U> leftMapper) {
Objects.requireNonNull(leftMapper, "leftMapper is null");
if (isLeft()) {

return Either.left(leftMapper.apply(getLeft()));
} else {

return (Either<U, R>) this;
3

3 http:/ /bit.ly/vavr_io_vavr_2SMIfI2

Detection. To detect this pattern, application-specific knowledge is re-
quired. The developer knows that no value of a type parameter is ever
being created. Thus, automatic detection of this pattern seems infeasible.

Issues. This pattern is related to the use of phantom types in parametrically
polymorphic languages [Leijen and Erik, |1999; Cheney and Hinze| 2003].
Phantom types are type parameters used solely for type checking and are
not occupied by any value.

This pattern also occurs with empty collections. For instance, the Java
standard library implementation of the method Collections.<T>emptyList
casts a private constant with raw type List to a List<T>. This is safe because
the list is empty and has no elements of type T.

Scala has an unoccupied Nothing type to handle this situation. For in-
stance, an (immutable) empty list has List[Nothing], which is a subtype of
List[T] for any type T.


http://bit.ly/vavr_io_vavr_2SMIfI2
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Type-Hacking Group

Casts due to hacking the type system.

4.5.19 SelectOverload

Description. This pattern is used to select the appropriate version of an
overloaded method@ where two or more of its implementations differ only
in some argument type.

A cast of null is often used to select against different versions of a
method, i.e., to resolve method overloading ambiguity. Whenever a null
value needs to be an argument, a cast is needed to select the appropriate
implementation. This is because the type of null has the special type nul@
which can be treated as any reference type. In this case, the compiler cannot
determine which method implementation to select.

Another use case is to select the appropriate the right argument when
calling a method with variable arguments.

Instances: 97 (1.94%). We found 51 in application code, 45 in test code,
and 1 in generated code. The following listing shows an example of the
SELECTOVERLOAD pattern. In this example, there are three versions of the
onSuccess method. The cast (String) null is used to select the appropriate
version (line 7), based on the third parameter, between overloaded methods
that differ only in their argument type (the third one).

onSuccess(statusCode, headers, (String) null);
public void onSuccess(

int statusCode, Header[] headers, JSONObject response) { /x [...]1 %/ }
public void onSuccess(

int statusCode, Header[] headers, JSONArray response) { /*x [...]1 */ }
public void onSuccess(

int statusCode, Header[] headers, String responseString) { /* [...] */ }

http:/ /bit.ly /loopj_android_async_http_2FENovD

In the following example actual.data() returns a boxed Long. Because
implicit upcasts have precedence over implicit unboxing conversions, the
call is needed to invoke the method that takes a long (line 3) rather than
the method that takes an Object (line 2).

$Using ad-hoc polymorphism [Strachey, 2000].
40https://docs.oracle.com/javase/specs/jls/se8/html/jls—4.html#jls—4.1


http://bit.ly/loopj_android_async_http_2FENovD
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.1
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assertEquals(expected, (long) actual.data());

public static void assertEquals(Object expected, Object actual) { /* [...] */ }

public static void assertEquals(long expected, long actual) { /x [...]1 */ }
http:/ /bit.ly /spullara_redis_protocol _2FC9LIb

The following snippet is similar to the previous example, but notice how
that the cast is applied to a primitive—non-reference—type.

assertEquals((byte) 0x1, record.getSpacing());
http:/ /bit.ly /apache_poi_2StrlOn

In the last example of SELECTOVERLOAD, an upcast of a generic type is
performed to select the appropriate overload of the max method.

public static <T> T max(Iterator<T> self, Comparator<T> comparator) {
return max((Iterable<T>)tolList(self), comparator);

3

public static <T> List<T> tolList(Iterator<T> self) {
// L...]

3

@Deprecated

public static <T> T max(Collection<T> self, Comparator<T> comparator) {
/7 C...]

3

public static <T> T max(Iterable<T> self, Comparator<T> comparator) {
/7 [...]

} http:/ /bit.ly /groovy_groovy_core_2HDAKkbF

Detection. The Query detects when a cast is used as an argument of
an overloaded method. A cast returned by this query needs to be either a
cast of null or an upcast. This is an approximation because the query does
not check whether the overloaded method differs only on the type of the
argument that is cast.


http://bit.ly/spullara_redis_protocol_2FC9Llb
http://bit.ly/apache_poi_2StrlOn
http://bit.ly/groovy_groovy_core_2HDAkbF
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class SelectOverloadCast extends { QL
SelectOverloadCast() {
(getExpr() instanceof NullLiteral or this instanceof and
this instanceof [OverloadedArgument|

3
Callable getOverload() {
result = this. (OverloadedArgument)) .getAnOverload()

}

Listing 4.22. Query to detect the SELECTOVERLOAD pattern.

Issues. Casting the null constant seems rather artificial. This pattern
shows either a lack of expressiveness in Java or a bad API design. Pass-
ing null to a method might better be handled by using overloading with
fewer parameters or by using default parameters. Several other languages
support default parameters, e.g., Scala, C# and C++. Adding default pa-
rameters might be a partial solution.

In addition, a pure object-oriented language would not distinguish be-
tween primitives and objects, avoiding the need for autoboxing to be visible
at the type level.

Oostvogels et al.| [2018] propose an extension to TypeScript to express
constraints between properties, which can then be mapped onto optional
parameters.

Both the |ACCESSSUPERCLASSFIELD| and this pattern are used to select
class members. While this pattern is used to select the appropriate over-
loaded method, the |[AcCESSSUPERCLASSFIELD| is used to select a field in a
superclass.

4.5.20 SoleSubclassImplementation

Description. The SOLESUBCLASSIMPLEMENTATION occurs when an inter-
face or abstract class has only one implementing subclass. Casting the in-
terface to this class must succeed because it cannot possibly be an instance
of another class.

Instances: 57 (1.14%). We found 28 in application code, 6 in test code, and
23 in generated code. In the following example the jobId variable is cast
of the sole implementation (JobIdImpl).
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return Longs.compare(id, ((JobIdImpl) jobId).id);
http:/ /bit.ly/ow2_proactive_scheduling_2Ulcjfs

Similar to the previous example, the variable user is cast of the known
implementation (UserImpl).

for (User user : api.getUsers()) {
if (channelld.equals(((ImplUser) user).getUserChannelId())) {
return user;

}
} http:/ /bit.ly /Javacord_Javacord_2GwGjuV:

Detection. The following query returns all casts such that the type—class
or interface—of the expression being cast has only one subtype. The tran-
sitive closure symbol + indicates that getASubtype may be followed one or
more times.

class SoleSubclassImplementation extends { QL
SoleSubclassImplementation() {
count (RefType rt |
rt = getExpr().getType() and rt.fromSource() |
rt.getASubtype+() ) =1

Listing 4.23. Detection of the SOLESUBCLASSIMPLEMENTATION pattern.

Issues. This pattern occurs when there is high cohesion between super
and subclass. In some cases, the cast instance appears in a generated class.
This mechanism allows the developer to extend this class to add custom
code. Therefore, this high cohesion is acceptable. The developer assumes
that there is no other implementation of the base class, otherwise the cast
instance fails.

4.5.21 ImplicitIntersectionType

Description. This pattern occurs when there is a downcast of reference v
of type T to a target interface type I. Although T does not implement I, the
cast succeeds because all possible run-time types of v do implement I.


http://bit.ly/ow2_proactive_scheduling_2Ulcjfs
http://bit.ly/Javacord_Javacord_2GwGjuV
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Instances: 45 (0.90%). We found 19 in application code, 21 in test code,
and 5 in generated code.  For instance, in the following example the
method call returns a Number, which does not implement Comparable; how-
ever, all values that could be returned by the method are subclasses of
Number in java.lang that do implement Comparable.

final Comparable max = (Comparable) properties.getMaxValue();
http:/ /bit.ly /senbox_org_snap_desktop_2FQOt4v

This pattern can be used to implement a dynamic proxy. In the follow-
ing example, pyObjectValue is a proxy to PyObjectValue. Nevertheless, a
cast of Proxy is needed to invoke the setHandler.

PyObjectValueProxyClass proxyClass = getProxyClass(pyObject);
PyObjectValue pyObjectValue = (PyObjectValue) proxyClass.getConstructor()
.newInstance(proxyClass.getParams());
((Proxy) pyObjectValue).setHandler(
new PyObjectValueMethodHandler (content, sensitive, pyObject));
http:/ /bit.ly /CloudSlang_cloud_slang 2EkgP4l

Detection. The Query [4.24]detects this pattern. Usually, in a downcast (T)
e, the class or interface T is a subtype of e’s class or interface. This query
essentially detects whether T has no subtyping relation with the type of e.

class ImplicitIntersectionTypeCast extends { QL
ImplicitIntersectionTypeCast() {

getTargetType() instanceof Interface and
not isSubtype(getTargetType(), getExpr().getType()) and
not this instanceof Upcast and
not getExpr() instanceof NulllLiteral and
[notGenericRelated|(getTargetType()) and
[notGenericRelated|(getExpr().getType())

Listing 4.24. Detection of the IMPLICITINTERSECTIONTYPE pattern.

Issues. The cast could be avoided by having the operand type implement
the target type interface or by introducing a more precise interface. In the


http://bit.ly/senbox_org_snap_desktop_2FQOt4v
http://bit.ly/CloudSlang_cloud_slang_2EkgP4l
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tirst example, one could imagine an interface ComparableNumber that ex-
tends both Number and Comparable. Scala supports interface types, allowing
the type Number with Comparable to be used directly.

Fourtounis et al.| [2018] propose a static analysis of dynamic proxies,
which are a special case of this pattern. To implement their analysis, they
have used Doop [Bravenboer and Smaragdakis, al.

4.5.22 ReflectiveAccessibility

Description. This pattern accesses a field of an object by means of reflec-
tion. Typically reflection is used because the field is private and therefore
inaccessible at compile time and the developer cannot change the field dec-
laration itself. In this case, the method Field::setAccessible(true) is in-
voked on the field before getting the value of the field. The cast is needed
because Field: :get returns an Object.

Instances: 26 (0.52%). We found 21 in application code, 5 in test code, and
0 in generated code. The following two snippets show how this pattern is
used:

f.setAccessible(true);
HttpEntity wrapped = (HttpEntity) f.get(entity);
http:/ /bit.ly /loopj_android_async_http_2SOISRr

Field fieldPosition=ChangesOutputter.class.getDeclaredField("changesPosition");
fieldPosition.setAccessible(true);
ChangesOutputter changesDisplayBis = output(changes);
PositionWithChanges<ChangesAssert, ChangeAssert> positionBis =
(PositionWithChanges) fieldPosition.get(changesDisplayBis);
http:/ /bit.ly /joel_costigliola_assertj_db_2Ip1Rho

Detection. The Query detects this pattern. The query looks for a
cast applied to a get or invoke method in an object o of type Field or
Method respectively. Moreover, it checks that setAccessible(true) has been
invoked in o. However, this query does not check that setAccessible(true)
has been invoked before the cast.


http://bit.ly/loopj_android_async_http_2SOISRr
http://bit.ly/joel_costigliola_assertj_db_2Ip1Rho
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class ReflectiveAccessibilityCast extends { QL
Variable fieldVariable;
[ReflectiveMethodAccess| reflectiveMethodAccess;
|SetAccessibleTrueMethodAccess| satma;
ReflectiveAccessibilityCast() {
reflectiveMethodAccess = getExprOrDef () and
fieldVariable.getAnAccess() =
getExprOrDef (). (MethodAccess) .getQualifier(). (VarAccess) and
fieldVariable.getAnAccess() = satma.getQualifier()

Listing 4.25. Detection of the REFLECTIVEACCESSIBILITY pattern.

Issues. Using reflection to access a field is a common workaround to tight
access control restrictions. However, it should generally be regarded as a
code smell.

As with [DESERIALIZATION| this pattern is necessary because a library
method can return values of many different types at run time, and so is
declared to return Object.

4.5.23 AccessSuperclassField

Description. Perform an upcast of access a field of a superclass of the cast
operand.

Instances: 4 (0.08%). All 4 instances were found in generated code. The
following snippet shows an instance of this pattern.

public abstract class StudentsPerformanceReport_Base extends QueueJobWithFile {
/7 [...]
public ExecutionSemester getValue(StudentsPerformanceReport ol1) {
return ((StudentsPerformanceReport_Base)ol).executionSemester.get();

3
private OwnedVBox<ExecutionSemester> executionSemester;
3
public class StudentsPerformanceReport extends StudentsPerformanceReport_Base {

/7 [...]
} http:/ /bit.ly /FenixEdu_fenixedu_academic_25Qx1kC
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Detection. The Query detects the two variants of this pattern. The
first variant, as shown in the example below, is when an upcast is per-
formed to access a field when the subclass does not have access privileges
to access the field. In this case, the field is declared as either private or
protected in the superclass. On the other variant—not found in our manual
sample—an upcast is performed to access a field declared in a superclass,
when the subclass declares a field with the same name.

class AccessSuperclassFieldCast extends { QL
FieldAccess fa;
AccessSuperclassFieldCast() {
this instanceof Upcast and
fa.getQualifier().getProperExpr() = this and (
getExpr().getType(). (RefType).declaresField(fa.getField().getName()) or
( fa.getField().isPrivate() or fa.getField().isProtected() )

)

Listing 4.26. Detection of the ACCESSSUPERCLASSFIELD pattern.

As in our first example, the following snippet shows an example of the
second variant mentioned above.

private SomeObject from = new SomeObject(100);

assertThat(((InheritMe) to).privatelnherited)
.isNotEqualTo(((InheritMe) from).privateInherited);

static class InheritMe {
protected String protectedInherited = "protected”;

private String privatelnherited = "private”;
}
public static class SomeObject extends InheritMe {
} http:/ /bit.ly /mockito_mockito_2vF51Em

Issues. The particular instance we encountered has a method whose pa-
rameter is a subclass of the current class. The cast is needed to access a
private field of the current class. Being an upcast, the cast is always safe.
More problematic is the strong coupling between the base class and the de-
rived class, however the base class is generated code; possibly, a manually
written version would just combine the two classes.


http://bit.ly/mockito_mockito_2vF51Em
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Another use of the pattern, not found in our sample however, is to up-
cast a value to access a field of a superclass which is shadowed by another
field of the same name in the subclass.

The [REFLECTIVEACCESSIBILITY| pattern is also used to access private or
protected fields, albeit fields of unrelated classes that cannot be accessed
simply by casting to another type. Like [SOLESUBCLASSIMPLEMENTATION|
this pattern occurs when there is high cohesion between super and subclass.

Both the [SELECTOVERLOAD|and this pattern are used to select class mem-
bers. While this pattern is used to select a field in a superclass, the

is used to select the appropriate overloaded method.

Code Smell Group

The patterns in this group are regarded as code smells.

4.5.24 Redundant

Description. A redundant cast is a cast that is not necessary for compi-
lation. The cast could be removed from source code without affecting the
application.

To detect the REDUNDANT pattern, the expression being cast needs to be
of the same type as the type being cast of.

Instances: 117 (2.34%). We found 64 in application code, 12 in test code,
and 41 in generated code. The following listing exhibits an instance of the
REDUNDANT pattern. A redundant cast is applied to a lambda expression
(line 8). This cast is not needed a Java compiler can infer that the lambda
expression is of type TransactionCallback<Void> (defined in line 22).

public class FlywayTest {
private TransactionTemplate transactionTemplate;
@Test
public void test() {
/7 [...]
transactionTemplate.execute(
(TransactionCallback<Void>) transactionStatus -> {
Post post = new Post();
entityManager.persist(post);
return null;

1
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3
public interface TransactionStatus { /* [...] */ }
@Functionallnterface
public interface TransactionCallback<T> {
T doInTransaction(TransactionStatus status);
3
public class TransactionTemplate {
<T> T execute(TransactionCallback<T> action) { /* [...] %/ }
3 http:/ /bit.ly /vladmihalcea_high_performance_java_persistence_2FWXw2e

The next cast instance is trivially redundant: both the target type and
the static type of the operand count(b), are BigDecimal.

@Override
public void accumulate(Tuple b) throws IOException {
/7 L. ]
BigDecimal count = (BigDecimal)count(b);
/7 [...]
3
static protected BigDecimal count(Tuple input) throws ExecException {
/7 [...]
b http:/ /bit.ly /sigmoidanalytics_spork_2SIqWYq

In the following cast instance, a cast is applied to the node.right field
(line 9). Nevertheless, the right field of the Node class is already defined as
Node<T>, rendering the cast redundant.

public class ImplicitKeyTreap<T> implements IList<T> {
protected Node<T> root = null;
/7 [...]
private int getIndexByValue(T value) {
final Node<T> node = (Node<T>)root;
if (value == null || node == null)
return Integer . MIN_VALUE;
final Node<T> 1 = (Node<T>)node.left;
final Node<T> r = (Node<T>)node.right;
/7 [...]
return i;
}
public static class Node<T> {
private T value = null;
private int priority;
private int size;
private Node<T> parent = null;
private Node<T> left = null;
private Node<T> right = null;
/7 [...]


http://bit.ly/vladmihalcea_high_performance_java_persistence_2FWXw2e
http://bit.ly/sigmoidanalytics_spork_2SIqWYq
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} http:/ /bit.ly /phishman3579_java_algorithms_implementation_25GcH6w

There are cases when code generators insert superfluous casts to null.
The following cast instance could be removed since in this case the cast of
null is not needed.

public groovy.lang.MetaClass getMetaClass() {
return (groovy.lang.MetaClass) null;
3 http:/ /bitly/togglz_togglz_2SGncXB

Detection. The following query returns casts where the static type of the
cast expression is exactly the same as the target type. That is, casts (T)
e where e is declared as T. The query also detects a redundant upcast,
ie., an upcast that is not used for neither the [SELECTOVERLOAD| nor the
(COVARIANTGENERIC| patterns.

class RedundantCast extends { QL
RedundantCast() {
getExpr().getType() = getTargetType() or (
this instanceof and
not this instanceof
not this instanceof

and

Listing 4.27. Detection query for the REDUNDANT pattern

Issues. Redundant casts are generally upcasts or casts involving erased
type parameters. This pattern arises often in generated code. It may also
appear due to code refactoring that change a type and therefore make the
cast redundant.

4.5.25 VariableSupertype

Description. This pattern occurs when a cast is applied to a variable (local
variable, parameter, or field), that has usually been assigned just once and
is declared with a proper supertype of the value assigned into it. The type
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of the value being assigned to can be determined locally either within the
enclosing method or class.

To detect this pattern, a cast needs to be applied to a variable whose
value can be determined simply by looking at the enclosing method or
class.

Instances: 64 (1.28%). We found 53 in application code, 8 in test code,
and 3 in generated code. The following snippet shows an example of
the VARIABLESUPERTYPE pattern (line 4). The samlTokenRenewer variable is
being cast of the SAMLTokenRenewer class. The variable is declared with
type TokenRenewer (superclass of SAMLTokenRenewer) in line 1. However, the
variable is being initialized with the expression new SAMLTokenRenewer().
Thus, the cast instance could be trivially avoided by changing the dec-
laration of the samlTokenRenewer variable to SAMLTokenRenewer instead of
TokenRenewer.

TokenRenewer samlTokenRenewer = new SAMLTokenRenewer();
samlTokenRenewer.setVerifyProofOfPossession(false);
samlTokenRenewer.setAllowRenewalAfterExpiry(true);
((SAMLTokenRenewer)samlTokenRenewer) . setMaxExpiry (1L);

http:/ /bit.ly /apache_cxf_2SNoUXj

The following listing shows an example of the VARIABLESUPERTYPE pat-
tern. The field uncompressedDirectBuf is being cast of the java.nio.Byte-
Buffer class (line 13) but it is declared as java.nio.Buffer (line 3). Nev-
ertheless, the field is assigned only once in the constructor (line 7) with a
value of type java.nio.ByteBuffer. The value assigned is returned by the
method allocateDirect from the ByteBuffer classﬂ Inspecting the enclos-
ing class, there is no other assignment to the uncompressedDirectBuf field,
thus making possible to declare it as final. Therefore, the cast pattern in
line 13 will always succeed. Any other similar use of the uncompressed-
DirectBuf field needs to be cast as well.

public class SnappyCompressor implements Compressor {

/7 [...]

private Buffer uncompressedDirectBuf = null;

/7 [...]

public SnappyCompressor(int directBufferSize) {
/7 [...]

41https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html#
allocateDirect(int)
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uncompressedDirectBuf = ByteBuffer.allocateDirect(directBufferSize);

/7 [...]
3
/7 [...]
synchronized void setInputFromSavedData() {
/7 L. ]
((ByteBuffer) uncompressedDirectBuf).put(userBuf, userBufOff,
uncompressedDirectBuflLen);
/7 [...]
3
/7 L. ]
} http:/ /bit.ly / facebookarchive_hadoop_20_2FuDeO7

In the next cast instance, the parameter k1 is cast of the Comparable class
(line 7). k1 is declared as E (line 5), an unbounded type parameter (line
1). The developer likely designed the class so that E must be Comparable
only if comparator is null, providing an API with two ways to compare list
elements.

public class SortedArrayList<E> extends ArraylList<E> {
protected final Comparator<kE> comparator;
/7 [...]
@SuppressWarnings( {"unchecked"})
protected int compare(final E k1, final E k2) {
if (comparator == null) {
return ((Comparable) k1).compareTo(k2);
3

return comparator.compare(kl, k2);

3 http:/ /bit.ly/oblac_jodd_2UKxm6H

In the next example, the ir field is cast of DirectoryReader (line 11).
The ir field is declared as IndexReader (superclass of DirectoryReader)
in line 1. The cast of ir is performed using the value of the expression
readers.get (@) (line 10). But readers is defined as ArrayList<Directory-
Reader> (line 3), making the cast superfluous if an extra variable of type
DirectoryReader had been used.

private IndexReader ir = null;
/7 [...]
ArraylList<DirectoryReader> readers = new ArraylList<DirectoryReader>();
for (Directory dd : dirs) {
DirectoryReader reader;
reader = DirectoryReader.open(dd);
readers.add(reader);
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3
if (readers.size() == 1) {

ir = readers.get(0);

dir = ((DirectoryReader)ir).directory();
} else {

ir = new MultiReader(

(IndexReader[])readers. toArray(new IndexReader[readers.size()]));

} http:/ /bit.ly /tarzanek_luke_20hDT60

Detection. This pattern contains many variations that require manual in-
spection. To detect this pattern an interprocedural data-flow analysis would
be required, since the value being cast could be assigned in another method.

However, for some cases (e.g., the first example), some query approx-
imations would be possible, since the cast and the assignment are in the
same method. The following query shows how to approximate the de-
tection in this case. The forex quantifier asserts that for every Type t =
getADef () .getType(), then t = getTargetType(), and that at least exists
one t satisfying the condition, i.e., t = getTargetType().

class VariableSupertypeCast extends { QL

VariableSupertypeCast() {
forex (Type t | t = getADef().getType() | t = getTargetType()) and
[[sSubtype|(getTargetType(), getExpr().getType())

Listing 4.28. Detection of the VARIABLESUPERTYPE pattern.

Issues. In most the cases this can be considered as a bad practice or code
smell. This is because by only changing the declaration of the variable to a
more specific type, the cast can be simply eliminated.

This pattern sometimes related to the pattern. Although
VARIABLESUPERTYPE is not redundant, by only changing the declaration of
the variable to a more specific type, the cast becomes redundant.

4.5.26 ObjectAsArray

Description. In this pattern an array is used as an untyped object. A cast
is applied to a constant array slot, e.g., (String) array[1].
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Instances: 47 (0.94%). We found 36 in application code, 10 in test code,
and 1 in generated code. The following example shows an instance of
this pattern. The variable currentState contains an Object[] with a fixed
schema@ Then, a cast is performed of a constant array slot, (BitSet)
currentState[3] on line 5.

BitSet thelLoadedFields = (BitSet)currentState[2];
for (int i = 0; i < this.loadedFields.length; i++) {
this.loadedFields[i] = thelLoadedFields.get(i);
3
BitSet theModifiedFields = (BitSet)currentState[3];
for (int i = 0; i < dirtyFields.length; i++) {
dirtyFields[i] = theModifiedFields.get(i);
3
setVersion(currentStatel[1]);
http:/ /bit.ly/datanucleus_datanucleus_core_2S1L5Zf

Detection. The following query detects when the cast expression is an
array access, and that access is indexed with a compile-time constant.

class ObjectAsArrayCast extends { QL
ArrayAccess arr;
ObjectAsArrayCast() {
arr = getExprOrDef() and
arr.getIndexExpr() instanceof CompileTimeConstantExpr and
arr.getArray().getType(). (Array).
getElementType() instanceof TypeObject

Listing 4.29. Detection of the OBJECTASARRAY pattern.

Issues. This pattern usually suggests an abuse of the type system. Using
an object with statically typed fields might be a better alternative.

42http://www.datanucleus.org/javadocs/core/S.0/0rg/datanucleus/enhancement/
Detachable.html
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4.6 Discussion

There are common aspects shared by several patterns. Table 4.3 presents a
summary of the patterns and their different aspects. The table consists of
the following columns:

* Pattern Indicates the name of the pattern.

* Guarded The patterns here are guarded casts. A guarded cast is a cast
such that before the cast is applied, some condition—the guard—needs
to be verified. The condition to be verified guarantees that the cast
will not fail at run time (unless there is a bug in the application), i.e.,
the cast will not throw a ClassCastException. Some kind of guards
ensure that the cast will not fail at the language-level, while others
only can guarantee it at the application-level.

* Language These casts could be ameliorated if there is enough lan-
guage support by changing the type system.

* Tools The casts in this group could be checked with new analysis or
compiler tools.

* Auto These casts are related to generated or boilerplate code.

* Refactor The casts with this aspect can be simply removed by the
developer, can be removed with little refactoring, or suggest a code
smell in the source code.

* Generics The casts in this category are related to generics or reified
generics.

* Boxing These casts are related with explicit boxing/unboxing opera-
tions, i.e., explicit converting values of primitive types to boxed types
and vice versa.

* QL A half sign (%) in this column indicates that a pattern is partially
detected in QL, a check mark (v) indicates that we have provided a
QL query for automatic detection, and an empty cell indicates that is
infeasible or impractical to detect this pattern in QL.
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Table 4.3. Categorization of Cast Usage Patterns

)
§ |l | SIS SF s | F
Pattern O N & Ao & O B QL
v v v 1z
v v v
v v
v v %3
v
v v
[DESERIALIZATIO v i)
|[NEWDYNAMICINSTANCH v v
(COMPOSITE, v
[Famic v
COVARIANTRETURNTYPE| v %3
FLUENTAP v v 1%
[OsERAW IYPE v v v v
|[REMOVEWILDCARD v v v
COVARIANTGENERIC| v v v i)
SELECTTYPEARGUMENT' v v v %3
(GENERICARRAY| v v v 4
NOCCUPIEDTYPEPARAMETERI v v
SELECTOVERLOAD| v 4 4
SOLESUBCLASSIMPLEMENTATIONI v v
IMPLICITINTERSECTIONTYPEl v v
REFLECTIVEACCESSIBILIT! v v v
‘mF v v
REDUNDANT] v 4
VARIABLESUPERTYPE| v %3
BJECTASARRAY| v %3

Many programming languages provide features to ameliorate the more
common use cases of casts. For instance, Kotlin’s smart casts couple to-
gether the instanceof operator and cast operation on value, providing di-
rect support for the [IyrECcAasg| and [EQUALS| patterns. More generally, ML-
style pattern matching subsumes this pattern. Smart casts do not apply

directly to the pattern, since it is dispatched depending on
some application-specific control state.

Other language features that might at least partially obviate the need for
some of the patterns are intersection types (cf. [MPLICITINTERSECTIONIYPE),
and self types or associated types (cf. [FACTORY| [KNOWNRETURNTYPE| [DESE-|
IRTALIZATION|, [COVARIANTRETURN TYPE, [FLUENTAPI). Virtual classes [Ernst,
2000; Odersky and Zenger, 2005] and languages that support family poly-
morphism [Ernst, 2001] would help with casts in the pattern.

Some cast can be automatically generated. The StaticResource variant
in could be generated by a GUI editor, given that it is most seen
in Android applications. The pattern is composed of boilerplate
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code. For instance, Scala’ solves this issue by introducing case classes, which
among other features, provide equality out of the box.

Patterns like are prevalent in test code, because when testing
the developer calls the factory methods with known-parameters. The Stati-
cResource appear only in source code. This could be because of our sample
does not contain any code generation for Android, e.g., Butter Knife.
is prevalent in generated code. In those cases, code generators do
not make the effort to avoid these casts. In our sample, the |ACCESSSUPER-|
pattern only appears in generated code. However, we found
other instances using QL.

Our study also suggests analyses could be performed to improve code
quality and eliminate some cast usages, for instance finding opportunities
to use generics instead (cf. [UsERAWTYPE), removing redundant casts (cf.
[DUNDANT]), or locating and removing code smells (cf. KNOWNRETURNTYPE|,
|VARIABLESUPERTYPE|, and [OBJECTASARRAY).

The |REMOVEWILDCARD| [GENERICARRAY| and [COVARIANTGENERIC| pat-
terns are used to workaround the erasure of generic type parameters in
Java; while the [UNoccUPIEDTYPEPARAMETER| pattern is used to take advan-
tage of it. Reified generics or definition-site, rather than use-site, variance
annotations [Altidor et al., 2011] would reduce the need for these patterns.
There is an ongoing proposa [Smith, 2014] to enhance Java with this fea-
ture.

The [UseERaw TYPE| [COVARIANTGENERIC, and (GENERICARRAY|patterns use
either boxing or unboxing because of the interplay between primitive types
and generics. The JEP 218 Generics over Primitive Typeﬁ [Goetz, 2014]
could ameliorate the situation in this respect. On the other hand, the
ISELECTOVERLOAD| pattern uses boxing/unboxing to select the appropriate
method, while the |[REFLECTIVEACCESSIBILITY| pattern uses unboxing when
the field being accessed is of a primitive type.

The QL column shows whether a pattern can be automatically detected
using QL. Currently we have 11 patterns for which we can automatically
detect them, and 9 where at least we can partially detect them. Just 6
patterns (out of 26 or 23.08%) are impractical to automatically detect.

To detect patterns like [TYPECASE| [EQUALS, and only a lo-
cal analysis (within a method) is needed. Some generic related patterns,
e.g., |USERAWTYPE, REMOVEWILDCARD| and [GENERICARRAY| are local. On

43https ://openjdk. java.net/jeps/300
44https ://openjdk. java.net/jeps/218
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the other hand, patterns like [VARIABLESUPERTYPE| and [UNOCCUPIED TYPEPA-|
require a non-local analysis. However, the [VARIABLESUPERTYPE|
pattern can be detected when is instantiated locally, i.e., the cast and the
variable assignment are in the same method. Generic related patterns like
I[FLUENTAPI| and [COVARIANTGENERIC]| require a non-local analysis as well.

There are patterns that depend exclusively on known methods, e.g.,
INEWDYNAMICINSTANCE| and [REFLECTIVEACCESSIBILITY, These patterns are
easily detectable. Although a pattern like |DESERIALIZATION| depends on a
well-known method—readObject—an application could use others deseri-
alization mechanisms.

Some other patterns are inherently complex to detect, e.g.,
and Recognition of these patterns would

require to take into account many different variants, which makes auto-
matic detection impractical. Manually inspection would be better suited in
these cases.

Detection of patterns like [FAcTORY| and [KNOWNRETURNTYPE| requires to
look-up method definitions, often define in external dependencies. At the
time of this writing, QL does not permit to analyse external dependencies.

4,7 Conclusions

The cast operator in Java bridges the gap between compile-time and run-
time safety. We have discovered several cast usage patterns. We found the
rationale behind some cast patterns is due to the inexpressiveness of Java’s
type system. On the other hand, there are patterns that abuse or misuse it.

Many of the patterns we found should be unsurprising to most object-
oriented programmers. That nearly 45% of casts are (possibly) unguarded
suggests that developers use application-specific knowledge that cannot be
easily encoded in the type system to ensure the absence of run-time type
errors.

Our study provides insight on the boundary between static and dynamic
typing, which may inform research on both static and dynamic, as well as
gradual type systems [Siek and Tahal 2006]. Conversely, this research can
inform the design of extensions of the Java type system to reduce the need
for casting.



Chapter 5

Conclusions

In this thesis I have presented the research I carried out together with my
advisors to fullfill the requirements for the Ph.D. degree. We empirically
studied how two mechanisms—Unsafe API and casting—are used by Java
developers. We performed qualitative analyses on source code text. In
particular, we manually inspected source code text to devise usage patterns.
We have discovered common usage patterns for the Java Unsafe API. We
discussed several current and future alternatives to improve the Java lan-
guage. This work has been published in [Mastrangelo et al., 2015]. On the
other hand, we complement our Unsafe API study with our casting study.
This study was accepted for publication to the OOPSLA’'19 conference. We
have discovered common usage patterns that involve the cast operator.

5.1 Research Questions

Throughout this dissertation we have proposed a set of research questions,
and give an answer to them. Here is a summary of our research questions
and their answers.

Unsafe API

To what extent does the Unsafe API impact common applica-
tion code? We found that sun.misc.Unsafe is heavily used di-
rectly in only 1% of artifacts. However, 47% of artifacts directly
or indirectly depend on sun.misc.Unsafe.
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How and when are Unsafe features used? We have identified
which features—methods—of sun.misc.Unsafe are most often
used. We have discovered Unsafe usage patterns. sun.misc.-
Unsafe is mostly used to improve performance.

Casting

How frequently is casting used in common application code?
The cast operator is used in 93% of projects in the Igtm database.

How and when casts are used? We have devised cast usage
patterns. Some patterns are due to the inexpressiveness of Java’s
type system, while others are because developers abuse Java’s
type system.

How recurrent are the patterns for which casts are used? We
give an estimation of how often each pattern is used.

5.2 Java’s Evolution

The Java language is evolving constantly. There are several proposals to
improve different aspects of the language. The proposal JEP 193 [Lea, 2014]
that introduces Variable Handles is already accepted and included in Java 9.
The GC algorithm introduced in JEP 189 Shenandoah [Christine H. Flood),
2014] is included as an experimental feature in Java 12.

There is an ongoing proposalﬂﬂ [Goetz, 2017a] to add pattern match-
ing to the Java language. The proposal explores changing the instanceof
operator in order to support pattern matching. Java 12 extends the switch
statement to be used as either a statement or an expressio [Goetz, 2017b;
Bierman, 2019]. This enhancement aims to ease the transition to a switch
expression that supports pattern matching.

On the other hand, JEP 191 Foreign Function Interface [Nutter, 2014],
JEP 169 Value Objects [Rose, |2012a]], and JEP 300 Augment Use-Site Vari-
ance with Declaration-Site Defaults [Smith| 2014] are still in draft status.

1ht’cps ://openjdk. java.net/jeps/305
2https ://cr.openjdk.java.net/~briangoetz/amber/pattern-match.html
3https://openjdk.java.net/jeps/325
4ht‘cps ://openjdk. java.net/jeps/354
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5.3 Limitations

Both our Unsafe and casting studies rely on manual inspection to devise
usage patterns. The main issue with manual inspection is that it relies
heavily on the personal experience of the authors. Different authors could
devise different sets of patterns.

For our casting study, we do not claim that our list of patterns is exhaus-
tive. Although our methodology should ensure that any pattern that occurs
more than 0.1% of the time has a small probability of being excluded. More-
over, we assume that casts are uniformly distributed, otherwise our pattern
distribution would not reflect reality.

Whenever practical, we have used QL to automatically detect some
patterns in our casting study. For some other patterns, it is infeasible to
perform automatic detection because QL—and the Igtm dataset—currently
analyse a given project, not its dependencies. Furthermore, some patterns
require application-specific knowledge to be detected, which cannot be ex-
pressed in QL.

To detect the libraries used by a project, we have used the project de-
pendencies as declared in the Maven project files (POM). However, the use
of the Maven dependencies is only an approximation of the real dependen-
cies of a project. It could happen that a declared dependency in Maven
is actually not used in the project. Analogously, a project might use a li-
brary that is not declared in the POM file. A finer-grained dependency
detection is by using the static call graph. Although it is more precise than
using Maven dependencies, dependencies using static call graph are still
not entirely precise due to the presence of reflection and dynamic binding.

5.4 Future Work

As we mentioned at the beginning of Chapter [8|and in Section[4.2|the wrong
use of both the Unsafe API and the cast operator can lead to bugs in the
application. For instance, a developer applying the wrong cast target or a
deserialization method with Unsafe using the wrong field name or type can
lead to a runtime exception (only when executed). Having usage patterns
can be useful for language designers to understand what kind of idioms
developers write. With these patterns, a language designer can decide what
features to include in a given language and what they impact will be. In line
with language designers, tool builders can for instance provide refactoring
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analysis according to some patterns. For developers, these patterns can be
used as a guideline when solving recurrent problems, c.f. Design Patterns.
Moreover, they can provide a reference for the developer to know when she
is not abusing both the Unsafe API and the cast operator.

Another possible future work could be to run our detection queries on
the entire Igtm database. This can open up the possibility to devise new
usage patterns, or to refine existing ones. Moreover, by running our queries
at large-scale we can corroborate—or refute—the distribution of patterns
given in both Sections 4.4 and

Conducting ultra-large scale studies, either on source code or compiled
code, is not a trivial task. There are several factors to consider when doing
these kind of studies, e.g., downloading, storing, parsing, compiling, and
analysing software repositories. Services like Boa and Igtm make conduct-
ing this kind of studies easier. In recent versions [Dyer et al., 2015], Boa
added support to conduct studies on open source projects from GitHub and
Qualitas Corpus [Tempero et al., 2010]. However, at the time we conducted
our study on Unsafe, this support was not included yet.

We could recast our Unsafe study to use Boa on the GitHub dataset, or
Igtm through QL queries, although as mentioned above, we will not be able
to analyse project dependencies. The patterns we have already devised for
the Unsafe study could be formalized using QL [Avgustinov et al., 2016].

To conduct our studies, we have used static analysis. Static analyses
are always more conservative than dynamic analyses. Another possible
future direction could be to complement the static analyses with dynamic
ones. For the Unsafe study, we found that it is used in 1% of the Maven
Central artifacts. Using project dependencies, 25% of artifacts depend on
sun.misc.Unsafe. A dynamic analysis could actually measure how often
the Unsafe API is invoked at run time, thus giving more precision about its
usage. As for the casting study, using a dynamic analysis could measure
how many casts fail with ClassCastException.

The two studies we conducted in this thesis analyse a single snapshot
of a project, i.e., we did not look into the evolution of a project. Some pat-
terns could be better understood in terms of their history. Questions like
How did they solve this problem before using Unsafe?, or Why is this cast redun-
dant? could be answered by analysing the project’s history. For instance,
we found that sun.misc.Unsafe is heavily used in only 1% of analysed ar-
tifacts (48,139 call sites). By looking into the project’s history it would be
possible to understand why this happened. Source code management tools,
e.g., Git, maintain a detailed track of changes, which can point out the pre-
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cise moment in time when an Unsafe operation or cast was introduced in a
project.

5.5 Lessons Learned

In this dissertation we have discovered a set of usage patterns for both
the Unsafe API and casting. We believe having a taxonomy of usage pat-
terns can shed light on how Java developers give up static type checking.
We hope the results in these studies can aid developers to avoid certain
language abuse, while it can assist language designers to make informed
decisions about programming languages. Furthermore, our patterns can
serve as a starting point for new analyses to improve code quality.

In particular, throughout my Ph.D. studies I carried out several research
projects. Here are a few lessons I learned in each of them.

Unsafe API. For our Unsafe study, we have engineered a software repos-
itory mining infrastructure from scratch. In particular, we learned about
the internals of the Maven Central repository. This requires a considerable
amount of time to be implemented properly, and for a research project can
be of little value.

Cast operator. The cast operator in statically typed languages provides
a bridge between compile time and run time checking. Developers need to
resort to the cast operator due to the inexpressiveness of Java’s type system.

On the other hand, we have discovered QL, a powerful query language
for static analysis. Researchers can use QL in mining software repositories,
while software engineers can use it to find vulnerabilities in their code.

Java bytecode instrumentation. Data-flow analysis is complex. The
bytecode verification through stack map frames introduced in Java 6 re-
quires implementing a data-flow analysis at bytecode level. Making an
industrial-strength implementation is not trivial and requires a lot of care-
ful design.

5.6 Artifacts

In each of these research projects, I have produced several artifacts. Here
are the artifacts mentioned throughout this dissertation.
Unsafe API.
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® https://gitlab.com/acuarica/java-unsafe-analysis: The Complete SCI‘iptS and
results used for this study.

® http://dx.doi.org/10.1145/2814270.2814313: Companion artifact that aims
to reproduce the results found in this study. The companion artifact
can be found in the Source Materials tab in the ACM Digital Library.

Cast operator.

® https://gitlab.com/acuarica/java-cast-oopsla-19-aec: Git repository of the
companion artifact for the cast operator study.

® https://zenodo.org/record/3369397: Archive of the companion artifact for
the cast operator study

® https://gitlab.com/acuarica/phd-thesis/blob/master/analysis/casts.csvi Comma-
separated values (CSV) table. Each row represents a cast instance.
This table contains 6 columns. The last two columns—Iink and value—
are the link to the source code file in Igtm and the result of the manual
inspection.

® https://gitlab.com/acuarica/phd-thesis/blob/master/analysis/analysis.r: The
script to process the results of the manual inspection.

® https://gitlab.com/acuarica/java-cast-queries: QL detection queries.

® https://gitlab.com/acuarica/java-cast-inspection: Early prototype of our
cast study using javalang and a custom javac plug-in.

® https://gitlab.com/acuarica/java-cast-study: Early prototype of our cast
study using JavaParser.

Java bytecode instrumentation.
® https://gitlab.com/acuarica/jnif: JNIF source code.

® http://acuarica.gitlab.io/jnif: JNIF user documentation.
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Appendix A

Automatic Detection of Patterns
using QL

QL [Avgustinov et al,2016] is “a declarative, object-oriented logic program-
ming language for querying complex, potentially recursive data structures
encoded in a relational data model”. QL allows us to analyse programs at
the source code level. QL extracts the source code of a project into a Data-
log model. Besides providing structural data for programs, i.e., ASTs, QL
has the ability to query static types and perform data-flow analysis.

In addition to gather cast usage data using QL, given its powerfulness,
we have used QL to approximate the automatic detection of some cast pat-
terns. This appendix gives an introduction to QL. Section provides the
definition of several additional classes and predicates used in Chapter 4

A.1 Introduction to QL

QL is logic query language, with a syntax that resembles both SQL and
Java. It is built up of logical formulas. QL uses logical connectives, e.g., or
and not, quantifiers exists and forall, and logical predicates. QL is highly
optimized to support recursive queries. It is possible to use aggregates, e.g.,
count or sum, in QL as well.

The source code ASTs are modeled as QL classes, e.g., the CastExpr class
represents the table of cast expressions. Unlike Java, QL “classes are just
logical properties describing sets of already existing Values.’ﬂ For instance,
Query gets all cast expressions in a given project. The from and select

lhttps://help.semmle.com/QL/learn—ql/ql/about—ql.html
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clauses have similar semantics as in SQL. The import clause is used to select
the language to be analysed. QL supports analysis of several languages, e.g.,
JavaScript, Python, C/C++, and C#.

1 import java QL
2
3 from CastExpr ce
4+ select ce
Listing A.1. Query to fetch all cast expressions in a project.

The where clause is used to constraint the results. The Query re-
turns all unused parameters. It selects both the unused parameter and the
method where it is declared. In this case, where is used similarly to a SQL
join clause. The getAnAccess class predicate returns any access—read or
write—to that parameter.

1 import java QL
2
3 from Parameter p, Method m
4+ where not exists(p.getAnAccess())
5 and m.getAParameter() = p
6 and not m.isAbstract()
7 select p, m
Listing A.2. Query to fetch unused parameters.

The following query demonstrates how to use the count aggregate. In
this example it returns the number of methods with body, i.e., neither
abstract nor native.

1 import java QL

2
3 select count(Method m | exists(Block b | m.getBody() = b))

Listing A.3. Query to count methods with implementation.

QL permits to define custom classes to refine query results. For exam-
ple, the following query fetches all primitive cast expressions. A primitive
cast is a cast where both the target type and the type of the operand are
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primitive types. This excludes any boxed type. The class predicate defined
in line 2 is called the characteristic predicate or character of a class. It is the
predicate that determines which values correspond to a given class. Thus,
it is similar to filter out results using the where clause.

class PrimitiveCast extends CastExpr { QL
PrimitiveCast() {
getExpr().getType() instanceof PrimitiveType and
getTypeExpr().getType() instanceof PrimitiveType

b

from PrimitiveCast ce
select ce

The following section describes the additional classes and predicates
used throughout Chapter

A.2 Additional QL Classes and Predicates

All cast pattern classes inherit from this base class. As we have seen before,
the CastExpr is the QL class that represents all casts. Note that this class
does not provide a characteristic predicate. It just adds helper predicates to
be used by detection patterns.

class Cast extends CastExpr { QL
Type getTargetType() { result = getTypeExpr().getType() }
Expr getExprOrDef() {
result = getExpr() or
exists (VariableAssign def |
defUsePair(def, getExprOrDef()) and
result = def.getSource()

Listing A.4. Cast class definition.

This class represents all upcasts. An upcast (T) e happens when the
type of e is a subtype of T. Since to detect an upcast is needed to look-up in
the class hierarchy, the + operator—transitive closure operator—is used.
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class Upcast extends { QL
Upcast() {
getExpr().getType(). (RefType).getASupertype+() = getTargetType()
3

Listing A.5. Upcast class definition

The following class represents when an argument is used in an over-
loaded method.

class ArgumentEx extends Argument { QL
Parameter param;
ArgumentEx() {
call.getCallee().getParameter(pos) = param
}
3

class OverloadedArgument extends ArgumentEx {

Callable target;

Callable overload;

OverloadedArgument() {
target = call.getCallee() and
overload = target.getDeclaringType().getACallable() and
overload.getName() = target.getName() and
target != overload

}

Callable getTarget() { result = target }

Callable getAnOverload() { result = overload }

Listing A.6. OverloadedArgument class definition.

This class represents a cast applied to a variable. A QL variable is a field,
a local variable or a parameter. The getADef class predicate returns any def-
inition for the variable being cast. This is used in the [VARTABLESUPERTYPE|
pattern.
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class VarCast extends { QL
Variable var;
VarCast() { var.getAnAccess() = getExpr() }
Variable getVar() { result = var }
Expr getADef() {
exists (VariableAssign def |
defUsePair(def, getExpr()) and
result = def.getSource()

Listing A.7. VarCast class definition.

The following predicate holds with expressions e, f, and ¢ such that
either if (e == f) ¢; or if (e !=f) /x...%/ else c; . Expressions e and f

are interchangeable.

predicate controlByEqualityTest(Expr e, Expr f, Expr c) { QL
exists (ConditionBlock cb, EqualityTest eqe |
ege.hasOperands(e, f) and eqe = cb.getCondition() and (
(ege.getOp() ="
(eqge.getOp() = " I=

n

== " and cb.controls(c.getBasicBlock(), true)) or
" and cb.controls(c.getBasicBlock(), false))

Listing A.8. controlByEqualityTest predicate definition.

Similar to the previous predicate, this predicate holds with expressions
e, f, and c such that if (e.equals(f)) c; . Expressions e and f are inter-

changeable.
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predicate controlByEqualsMethod(Expr e, Expr f, Expr c) { QL
exists (ConditionBlock cb, MethodAccess ema |
ema.getMethod() instanceof EqualsMethod and (
(ema.getQualifier() = e and ema.getArgument(0)
(ema.getQualifier() = f and ema.getArgument(0)
) and (
ema = cb.getCondition() and cb.controls(c.getBasicBlock(), true)

f) or
e)

)

O 0 N U = W =

Listing A.9. controlByEqualsMethod predicate definition.

This predicate holds whenever sub is direct or indirect subclass of sup,
or whenever both are the same type.

1 predicate isSubtype(RefType sub, RefType sup) { QL
2 sub.getASupertype*x() = sup
3 3

Listing A.10. isSubtype predicate definition.

The following class represents all casts guarded with a getClass com-
parison in an equals method.

class GetClassGuardsVarCast extends { QL
GetClassMethodAccess tma;
GetClassMethodAccess oma;
GetClassGuardsVarCast() {
tma.isOwnMethodAccess() and
oma.getQualifier() = this.(VarCast).getVar().getAnAccess() and
(

[controlByEqualityTest|(tma, oma, this) or
[controlByEqualsMethod|(tma, oma, this)

O ® N G R W N =

11 }
12 }

Listing A.11. GetClassGuardsVarCast class definition.

These classes define the AutoValue related classes used in the
pattern.



139 A.2 Additional QL Classes and Predicates

class AutoValueAnnotation extends Annotation { QL
AutoValueAnnotation() {
getType().hasQualifiedName("com.google.auto.value”, "AutoValue")
3
3

class AutoValueClass extends Class {
AutoValueClass() {
getAnAnnotation() instanceof AutoValueAnnotation and
isAbstract()

b

class AutoValueGenerated extends Class {
AutoValueGenerated() {
count (getASupertype()) = 1 and
getASupertype() instanceof AutoValueClass

Listing A.12. AutoValueGenerated class definition.

This class represents a newInstance method, used in the detection of the
INEWDYNAMICINSTANCE| pattern.

class NewDynamicInstanceAccess extends MethodAccess { QL
NewDynamicInstanceAccess() {
getCallee() .hasName("newInstance”) and (
getCallee().getDeclaringType() instanceof TypeClass or
getCallee() .getDeclaringType() instanceof TypeConstructor or
getCallee().getDeclaringType() instanceof TypeArray

Listing A.13. NewDynamicInstanceAccess class definition.

These classes represent either a Method. invoke or Field.get method ac-
cess. It is used in the detection of the [REFLECTIVEACCESSIBILITY| pattern. To
implement this query, we made the ReflectiveMethodAccess class abstract.

In QL, abstract classes allow the developer “to think of a class as being
the union of its subclasses” | The semantics of an abstract class is as fol-

2https://help.semmle.com/QL/learn—ql/ql/advanced/abstract—classes.html
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lows: “an abstract class has one or more superclasses and a characteristic
predicate. However, for a value to be in an abstract class, it must not only
satisfy the character of the class itself, but it must also satisfy the charac-
ter of a subclass.” Thus, for a value—here, a method access—to be in the
ReflectiveMethodAccess class, it needs to be either a method access in the
MethodInvokeMethodAccess or FieldGetMethodAccess classes.

abstract class ReflectiveMethodAccess extends MethodAccess {} QL

class MethodInvokeMethodAccess extends ReflectiveMethodAccess {
MethodInvokeMethodAccess() {
getMethod() . hasName("invoke") and
getMethod () . getDeclaringType()
.hasQualifiedName("”java.lang.reflect”, "Method")

3

class FieldGetMethodAccess extends ReflectiveMethodAccess {
FieldGetMethodAccess() {
getMethod() .hasName("get"”) and
getMethod() .getDeclaringType()
.hasQualifiedName("”java.lang.reflect”, "Field")

Listing A.14. ReflectiveMethodAccess class definition.

The following class represents an invocation to the setAccessible(true)
method either on a Field or Method object. It is used in the detection of the
IREFLECTIVEACCESSIBILITY| pattern.
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class SetAccessibleTrueMethodAccess extends MethodAccess { QL
Argument flagArgument;
SetAccessibleTrueMethodAccess() {
getMethod() .hasName ("setAccessible”) and
getMethod() .getDeclaringType()
.hasQualifiedName("java.lang.reflect”, "AccessibleObject”) and
(
(getNumArgument() = 1 and flagArgument = getArgument(0)) or
(getNumArgument() = 2 and flagArgument = getArgument(1))
) and
flagArgument. (BooleanLiteral).getBooleanValue() = true

Listing A.15. SetAccessibleTrueMethodAccess class definition.

This predicate holds whenever type is neither a raw type (e.g., List),
a parameterized type (e.g., List<String>), nor a bounded type (i.c., a type
parameter or a wildcard). It is used in the detection of the [[MPLICITINTER-|
SECTION I YPE

predicate notGenericRelated(Type type) { QL
not type instanceof RawType and
not type instanceof ParameterizedType and
not type instanceof BoundedType

Listing A.16. notGenericRelated predicate definition.
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Appendix B

JNIF: Java Native Instrumentation

This appendix presents JNIF, our library to instrument Java applications
in native code using C/C++. Although the material presented here is not
directly related to this thesis, we have used JNIF in several experiments
during the development of both Chapters[3|and 4] The original article have
been published in Mastrangelo and Hauswirth|[2014]. Moreover, the source
code of JNIF can be found online[]

B.1 Introduction

Program analysis tools are important in software engineering tasks such as
comprehension, verification and validation, profiling, debugging, and op-
timization. They can be broadly categorized either as static or dynamic,
based on the input that they take. Static analysis tools carry out their task
using as input only a program in a given representation, e.g., source code,
abstract syntax tree, bytecode, or binary code. In contrast, dynamic analysis
tools observe the program being analysed by collecting runtime informa-
tion. Many dynamic analysis tools rely on instrumentation to achieve their
goals.

In the context of the JVM, static analysis and instrumentation for dy-
namic analysis often happens on the level of Java bytecode. Analysis tools
thus need to decode and analyse—and in the case of instrumentation also
edit and encode—Java bytecode. Given the relative complexity of the Java
class file format, a diverse set of libraries (see Section has been created
for this purpose. All those libraries are implemented in Java.

lht‘cps ://gitlab.com/acuarica/jnif
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Instrumentation at bytecode level can be done in two ways: using a Java
instrumentation agent or using a native JVMTI agentﬂ A Java instrumen-
tation agent is written in Java and runs in the same JVM as the application.
This leads to two main problems: poor isolation and poor coverage. It pro-
vides poor isolation because to instrument the VM, the agent’s classes must
be loaded in the same VM, and this can lead to perturbation in the VM.
It provides poor coverage because an instrumentation agent (implemented
in Java) will require some runtime library classes to be loaded before it can
start instrumenting, and those runtime classes thus cannot be instrumented
at load time.

A native JVMTI agent can instrument every class that the VM loads,
including runtime classes. The main issue when using JVMTI is that in-
strumentation must be done in a native language, usually C or C++. Using
C/C++ as the instrumentation language can be problematic, because of the
lack of a C/C++ library for Java bytecode rewriting. Therefore developers
have been using an extra JVM as an “instrumentation server” in which they
could use Java-based bytecode rewriting libraries. The C/C++ JVMTI agent
thus only has to send code to the server, and no native bytecode rewriting
library is needed. However, this approach has a drawback: it requires an
additional JVM, and it causes IPC traffic between the observed JVM and
the instrumentation server.

We created JNIF to overcome this problem. To the best of our knowl-
edge, JNIF is the first native Java bytecode rewriting library. JNIF is a C++
library for decoding, analysing, editing, and encoding Java bytecode. The
main benefit of JNIF is that it can be plugged into a JVMTI agent for in-
strumenting all classes in a JVM transparently, i.e., without connecting to
another JVM and without perturbing the observed JVM.

Starting with Java 6, class files can include stack maps to simplify byte-
code verification for the JVM. Java 7 made those stack maps mandatory.
Thus, unless one wants to disable the JVM'’s verifier, code rewriting tools
need to also generate stack maps. Stack maps contain, for each basic block,
type information for each local variable and operand stack slot. To gener-
ate stack maps, a bytecode rewriting tool needs to perform a static analysis.
Due to the fact that bytecode does not contain type declarations of variable
slots and local variables, these types have to be inferred using an intra-
procedural data flow analysis. For reference types, computing the least up-
per bound of two types in a join point of a control flow graph even requires

2http: //docs.oracle.com/javase/7/docs/technotes/guides/jvmti/index.html
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access to the class hierarchy of the program. Thus, the seemingly innocuous
requirement for stack maps significantly complicates the creation of a byte-
code rewriting library. JNIF solves these issues, also thanks to the fact that
it can be used in-process in a JVMTI agent, and thus can determine the nec-
essary subtyping relationships by requesting the bytes of arbitrary classes
loaded or loadable at any given point in time. This works for classes loaded
via user-defined class loaders as well as for classes generated dynamically
on-the-fly.
Overall, the main contributions of this paper are:

* We present JNIF, a C++ library for decoding, analysing, editing, and
encoding Java class files.

¢ JNIF includes a data-flow analysis for stack map generation, a com-
plication necessary for any library that provides editing and encoding
support for modern JVMs with split-time verification.

¢ We evaluate JNIF by comparing its performance against the most
prevalent Java bytecode rewriting library, ASM.

The rest of this chapter is organized as follows: Section |B.2| presents re-
lated work. In Section we show how to use the JNIF API. Section
describes the design of JNIF. Section explains how we validated JNIF.
Section [B.6| evaluates JNIF’s performance against the mainstream bytecode
manipulator, ASM. Section discusses limitations, and Section con-
cludes.

B.2 Related Work

We now discuss low-level Java bytecode rewriting libraries, JVM hooks for
dynamic bytecode rewriting, high-level dynamic bytecode rewriting frame-
works, and how they relate to JNIE.

Low-level Rewriting Libraries

JNIF certainly is not the first Java bytecode analysis and instrumentation
framework. The probably earliest is BCELEL a well-designed Java library

3ht‘cp: //commons. apache.org/bcel/
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with a tree-based API. ASMY [Bruneton et al), [2002b; [Kuleshov| 2007] is
probably the most prevalent, which aims to be more efficient, especially due
to the addition of a visitor-based streaming API, but which has a somewhat
less encapsulated design.

SOOTH [Vallée-Rai et al., [1999] is a Java bytecode optimization frame-
work supporting whole-program analysis with four different intermediate
representations: Baf, which is simple to manipulate, Jimple, which is easy
to optimize, Shimple, an SSA-based variant of Jimple, and Grimp, focused
on decompilation.

WALAH is a framework for static analysis, which also includes SHRIKEEL
a library for instrumenting bytecode using a patch-based approach.

Unlike the above libraries, ]avassisiﬂ [Chiba and Nishizawa, 2003] pro-
vides an API for editing class files like they were Java source code, thereby
enabling developers who do not understand bytecode to instrument class
files.

Dynamic Instrumentation Hooks

The most limited way for dynamically rewriting Java classes at run time is
the use of a custom class loader. This requires modifications to the appli-
cation, so that it uses that class loader. This can be problematic for appli-
cations, especially for large programs based on powerful frameworks, that
already use their own class loaders. This limitation can be circumvented
by using dynamic instrumentation hooks provided by the JVM [Lindholm
et al.]. Java provides two such hooks: Java agents and JVMTIL Java agentsﬂ
are supported via the -javaagent JVM command line argument. They are
implemented in Java and use the java.lang.instrument package to interact
with the JVM. This allows them to get notified when classes are about to
get loaded, and it allows them to modify the class bytecode. They can also
modify and reload already loaded classes, however the kinds of transfor-
mations allowed with class reloading are severely limited. JVMTI (the Java
Virtual Machine Tool Interface) is a native API into the JVM that, amongst

4http://asm.owZ.org/

Shttp://www.sable.mcgill.ca/soot/

6http://wala.sourceforge.net/

7http://wala.sourcefor‘ge.net/wiki/index.php/Shrike_technical_overview

8http://www.javassist.org/

9http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/
package-summary.html
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many other things, provides hooks that allow the rewriting of bytecode.
The advantage of JVMTI over Java agents is that JVMTI allows the instru-
mentation of all Java classes, including the entire runtime library. Java also
provides ]DIE (the Java Debug Interface), a high-level interface on top of
JVMTI to control a running application in a remote JVM.

High-level Dynamic Analysis Frameworks

We now discuss dynamic analysis frameworks that are built on top of the
previously mentioned rewriting libraries and use the above instrumenta-
tion hooks. These frameworks do not allow arbitrary code transformations
and they shield the developer from the necessary instrumentation effort.
SofyaE [Kinneer et al,, 2007] is a dynamic analysis framework that runs
the analysis in a separate JVM from the observed application. It provides
analysis developers with a set of observable events, to which the analy-
ses can subscribe. Sofya combines bytecode instrumentation using BCEL
with the use of JDI for capturing events. FERRARI [Binder et al., |2007]
is a dynamic bytecode instrumentation framework that combines static in-
strumentation of runtime library classes with dynamic instrumentation of
application classes to achieve full coverage. FERRARI hooks into the JVM
using a Java agent. DiSL [Marek et al., [2012a/b|] is a domain-specific aspect
language for dynamic analysis. It eliminates the need for static instrumen-
tation from FERRARI by using a separate JVM for instrumentation. It uses
JVMTI to hook into the JVM and forwards loaded classes to an instrumen-
tation server, where it performs instrumentation using the ASM rewriting
library. Turbo DiSL [Zheng et al., 2012] significantly improves the per-
formance of DiSL by partially evaluating analysis code at instrumentation
time. RoadRunneﬂ [Flanagan and Freund, 2010] is a high-level frame-
work for creating dynamic analyses focusing on concurrent programs. An
analysis implemented on top of RoadRunner simply consists of analysis
code in the form of a class that can handle the various event types (such
as method calls or field accesses) that RoadRunner can track. RoadRunner
uses a custom classloader to be able to rewrite classes at load time, and
it uses ASM for bytecode rewriting. Btrac is an instrumentation tool
that allows developers to inject probes based on a predefined set of probe

10ht’cps ://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/
llhttp: //sofya.unl.edu
2http://dept.cs.williams.edu/~freund/rr/
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types (such as method entry, or bytecode for a specific source line number).
Btrace uses the Java agent hooks and builds on top of ASM for instrumenta-
tion. Chor [Naik, 2011] is a static analysis framework based on Datalog.
It uses joeq'| to decode classes and convert bytecode into a three-address
quadcode internal representation for static analysis. Chord also supports
dynamic analysis, for which it instruments programs using Javassist.

How JNIF Differs

Similar to BCEL, JNIF is a low-level library that uses a clean object model to
represent java class files. However, unlike all the libraries described above,
JNIF is not implemented in Java, but in C++. This allows JNIF to be used
directly inside a JVMTI agent. Java-based libraries do not allow dynamic
instrumentation in this way: they either are limited to Java agents (which
only provide limited coverage), or they require out-of-process instrumen-
tation inside a second JVM (a so-called instrumentation server), and inter-
process communication between the JVMTI agent and the instrumentation
server.

JNIF simplifies the development and deployment of full-coverage dy-
namic analysis tools, because one does not need to run an instrumentation
server in a separate JVM process. The fact that this is essential is demon-
strated by the HPROPE profiling agent coming with the JVM. HPROF does
not use Java libraries for rewriting bytecode, but implements (a limited
form of) class file instrumentation as native code inside a JVMTI agent.

The high-level frameworks described above all abstract away from the
underlying instrumentation approach. Thus, they could make use of JNIF
to provide their users with full-coverage while eliminating the need for a
separate instrumentation server.

B.3 Using JNIF

This section shows common use cases of the JNIF library, such as writing
instrumentation code and analysing class files, thus giving an overview of
the library. Its components are explained in more detail in Section [B.4, JNIF
can be used both in stand-alone tools or embedded inside a JVMTI agent.

14http: //pag.gatech.edu/chord/
15http: //joeq.sourceforge.net
16ht‘cp: //docs.oracle.com/javase/7/docs/technotes/samples/hprof.html
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The complete API documentation and more extensive examples are avail-
able onlinelﬂ We present the examples in an incremental fashion, adding
complexity in each example. In order to be able to work with class files,
they must me parsed. Given a buffer with a class file and its length, List-
ing [B.1| shows how to parse it.

const char*x data = ...; C++
int len = ...;

jnif::ClassFile cf(data, len);

Listing B.1. Decoding a class

The class ClassFile represents a Java class file and contains the defini-
tion for each method and fields. Besides providing access to all members
of a class, ClassFile also provides access to the constant pool via methods
like getUtf8() and addMethodRef ().

Once a class file is correctly parsed and loaded it can be manipulated
using the methods and fields in ClassFile. For instance, in order to write
back the parsed class file in a new buffer, the write method is used in
conjunction with the computeSize method as shown in listing

const charx data = ...; C++
int len = ...;

jnif::ClassFile cf(data, len);

int newlen = cf.computeSize();

ul* newdata = new ul[newlen];

cf.write(newdata, newlen);

// Use newdata and newlen

delete [] newdata;

Listing B.2. Encoding a class

The ClassFile class has a collection of fields and methods which can
be used to discover the members of the class file. The listing prints
in the standard output every method’s name and descriptor in a class file.

17http://acuarica.gitlab.io/jnif/
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Note that every jnif class overloads the operator<< in order send it to an

std: :ostream.

const charx data = ...;

int len = .. .;

jnif::ClassFile cf(data, len);

for (jnif::Methodx* : cf.methods) {
cout << "Method: ";
cout << cf.getUtf8(m->nameIndex);
cout << cf.getUtf8(m->descIndex);
cout << endl;

Listing B.3. Traversing all methods in a class

C++

To hook every invocation of a constructor, a method named <init> in
Java bytecode, one can traverse the method list and check whether the cur-
rent method is an <init> method. Once detected, it is possible to add
instrumentation code, like for instance call a static method in a given class.
Figure [B.4 shows how to add instruction to the instruction list.

ConstIndex mid = cf.addMethodRef(ci, "alloc”, "(Ljava/lang/Object;)V"); C++

for (Methodx* : cf.methods) {
if (method->isInit()) {

InstList& instList = method->instList();

Inst* p = xinstList.begin();

instList.addZero(OPCODE_aload_0, p);
instList.addInvoke (OPCODE_invokestatic, mid, p);

Listing B.4. Instrumenting constructor entries

Another common use case is to instrument every method entry and exit.
In order to do so, one can add the instrumentation code at the beginning
of the instruction list to detect the method entry. To detect method exit,
it is necessary to look for instructions that terminate the current method
execution, i.e., XRETURN family and ATHROW as showed in figure
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ConstIndex sid = cf.addMethodRef (proxyClass, "enterMethod”, C++
"(Ljava/lang/String;Ljava/lang/String;)V");

ConstIndex eid = cf.addMethodRef (proxyClass, "exitMethod"”,
"(Ljava/lang/String;Ljava/lang/String;)V");

ConstIndex classNameIdx = cf.addStringFromClass(cf.thisClassIndex);

InstList& instList = method->instList();
ConstIndex methodIndex = cf.addString(m->namelndex);
Inst* p = *instList.begin();

instList.addLdc(OPCODE_ldc_w, classNameIdx, p);
instList.addLdc(OPCODE_ldc_w, methodIndex, p);
instList.addInvoke (OPCODE_invokestatic, sid, p);

for (Instx : instlList)
if (inst->isExit()) {
instList.addLdc(OPCODE_ldc_w, classNameIdx, inst);
instlList.addLdc(OPCODE_ldc_w, methodIndex, inst);
instList.addInvoke (OPCODE_invokestatic, eid, inst);

Listing B.5. Instrumenting <init> methods

B.4 JNIF Design and Implementation

JNIF is written in C++11 [ISO), 2012], in an object-oriented style similar to
Java-based class rewriting APIs.

Design

JNIF consists of five main modules: model, parser, writer, printer, and anal-
ysis. Model implements JNIF’s intermediate representation. It is centered
around its ClassFile class. It is possible to create and manipulate class files
from scratch. Parser implements the parsing of class files from a given byte
array. The parser parses a byte array and translates it to the model’s IR.
Once a ClassFile is created by the parser, it can be manipulated with the
methods available in the model. Writer and printer represent two back-ends
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for the model. Writer serializes the entire ClassFile into a byte array ready
to be loaded inside a JVM. Printer instead serializes the ClassFile into a
textual format useful for debugging. Finally, analysis implements the static
analyses necessary for computing stack maps.

JVM-Independence

JNIF is a stand-alone C++ library that can be used outside a JVM. It does
not depend on JVMTI or JNI. However, for the purpose of stack map gen-
eration, it may need to determine the common super class of two classes.
For this it will need to retrieve a class file given the name of an arbitrary
class. This functionality is provided by a plugin that implements JNIF’s
IClassPath. JNIF comes with such a plugin that uses JNI in case it is run-
ning inside a JVM.

Explicit Constant Pool Management

Unlike some other class rewriting libraries, JNIF exposes the constant pool
instead of hiding it. Our reasons for this design decision were two-fold: (1)
We wanted to fully control the structure of the class file, and for that it is
necessary to expose the constant pool. To reduce the additional complexity,
we provide a rich set of methods that facilitate constant pool management.
(2) We wanted to preserve, whenever possible, the original structure of the
class file. This means that if one parses and then writes a class file, the
original bytes will be obtained. This decreases the perturbation done by the
instrumentation and allows for better testing.

Memory Management

Given that JNIF is implemented in an unmanaged language, we have to
worry about memory deallocation. Our API follows a simple ownership
model where all IR objects are owned by their enclosing objects. This
means, that the ClassFile object owns the complete IR of a class. Our API
design enforces this ownership model by requiring IR objects to be created
by their enclosing objects. For example, to create a Method, one has to use
the ClassFile: :addMethod() factory method instead of directly allocating a
new Method object.
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Stack Map Generation

When encoding a ClassFile into a byte array, JNIF needs to generate stack
maps. The necessary static analyses are implemented in the analyser mod-
ule. This module uses data flow analysis and abstract interpretation to
determine the types of operand stack slots and local variables. The analy-
sis module first builds a control flow graph of the method. The data flow
analysis associates to each basic block an input and output stack frame,
which represents the types of the local variables and operand stack slots
at that point in the code. The input frame represents the type before any
instruction in the basic block is executed. The output frame is computed
by abstract interpretation of each instruction in the basic block. The entry
basic block has an empty stack and each entry in its local variable table is
set to top. Then the algorithm starts from the entry block and follows each
edge. If a basic block is reachable from multiple edges, then a merge is
involved.

Merging involves finding the least upper bound of multiple incoming
types. While this is trivial for primitive types, it can require access to the
class hierarchy for reference types. This requirement represents a severe
complication for binary rewriting tools: when rewriting a single class, they
may require access to many other classes in the program. JNIF solves this
problem by providing the IClassPath interface. Different IClassPath im-
plementations can provide different ways for getting access to classes. For
example, a static instrumentation tool may use a user-defined class path to
tind classes, while a dynamic instrumentation tool may use JNI to request
the bytes of a class given that class’ name.

Running JNIF Inside a JVMTI Agent

When using JNIF inside a JVMTI agent, JNIF uses an IClassPath imple-
mentation that uses JNI to load the bytes of classes required for least upper
bound computations during stack map generation.

Avoiding Premature Static Initialization

Using JNI to load a class (with ClassLoader.loadClass()), however, will
call that class’ static initializer. This is a side effect that may change the
observable behavior of the program under analysis. To avoid this, one can
request the bytes of the class (with ClassLoader.getResourceAsStream())
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instead of loading the class. It can then parse the bytes of the class into its
IR to determine that class’ supertypes.

Avoiding the Loading of the Class Being Instrumented

If during the instrumentation of a class X JNIF needs to perform a least
upper bound computation involving type X, then using ClasslLoader.load-
Class to load class X would cause an infinite recursion. The above solution
with getResourceAsStream() also prevents this problem.

Avoiding Premature ClassNotFoundException

If during the instrumentation of a class X JNIF needs to perform a least up-
per bound computation involving a type Y, and if class Y cannot be found,
then throwing a ClassNotFoundException at that time would be prema-
ture (because without instrumentation, such an exception would only be
thrown later). We solve that problem by assuming a least upper bound of
java.lang.Object in that case.

B.5 Validation

We used a multitude of testing strategies to ensure JNIF is working cor-
rectly.

The JNIF parser and writer makes no extra modification to the class
tile, thus it is an exact representation of the class file. This property makes
the parser and writer returns the identical same byte stream which can be
useful for testing purposes.

Unit Tests

JNIF includes a unit test suite that tests individual features of its various
modules.

Integration Tests

Our integration test suite includes six different JNIF clients we run on over
40000 different classes. Each test reads, analyses, and possibly modifies,
prints, or writes classes from the Java runtime library (rt.jar), and all Dacapo
benchmarks, Scala benchmarks, and the JRuby compiler.
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testPrinter. This test parses and prints all classes. Its main goal is to cover
the printing functionality. It has no explicit assertions. We consider it
passed if it does not throw any exceptions.

testSize. This test covers the decoding and encoding modules. It asserts
that the encoded byte array has the same length as the original byte
array.

testWriter. This is similar to testSize, but it asserts that the contents of the
encoded byte array is identical to the original bytes.

testNopAdderInstrPrinter. This also tests the instrumentation functional-
ity, by injecting NOP instructions and dumping the result. It passes if
it does not throw any exceptions.

testNopAdderInstrSize. This is similar to testSize, however it performs
NOP injection. The resulting size must be identical to the original
size plus the size of the injected NOP instructions.

testNopAdderInstrWriter. This is similar to testNopAdderInstrSize, but it
asserts that the resulting array is identical except for the modified
method bytecodes.

The “size” and “writer” tests work thanks to the fact that JNIF produces
output identical to its input as long as classes are not modified and stack
maps do not need to be re-generated.

Live Tests

Our live tests use JNIF inside a JVMTI dynamic instrumentation agent to
ensure that the output of JNIF can successfully be loaded, verified, and run
by a JVM. In addition to the aspects covered by the unit and integration
tests, the live tests also validate that stack map generation works correctly,
essentially by using the JVM’s verifier to check correctness. For the live
tests, we run a set of microbenchmarks, the Dacapo benchmarks, the Scala
Benchmarking Project@ and a microbenchmark using the JRuby compiler,
with the goal of including InvokeDynamic bytecode instructions generated
by JRuby.

18ht‘cp: //www.benchmarks.scalabench.org/
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Assertions and Checks

The JNIF code is sprinkled with calls to Error::assert that check precon-
ditions, postconditions, and invariants. To provide a developer experience
similar to Java’s, all assertion violations print out call stack traces in addi-
tion to understandable error messages.

Moreover, JNIF checks its inputs (such as class files while parsing, or
instrumented code while generating stack maps), and it calls Error: : check

to throw exceptions with stack traces and helpful messages when checks
fail.

B.6 Performance Evaluation

We evaluated the performance of a JNIF-based dynamic instrumentation
approach versus an approach using an ASM-based instrumentation server.

Measurement Contexts

We ran our experiments on three different machines: (1) A machine with
two Intel Xeon E5-2620 2 GHz CPUs, each with 6 cores and 2 threads per
core, and 8 GB RAM, running Debian Linux x86 64 3.10.11-1. (2) A Dell
PowerEdge M620, 2 NUMA node with 64 GB of RAM, Intel Xeon E5-2680
2.7 GHz CPU with 8 cores, CPU frequency scaling and Turbo Mode dis-
abled, running Ubuntu Linux x86 64 3.8.0-38. For consistent memory access
speed, we bound our program to a specific NUMA node using numactl. (3)
A MacBook Pro with an Intel Core i7 2.7 GHz CPU with 4 cores and 16 GB
running Mac OS X 10.8.2.

Benchmarks

We used the Dacapo benchmarks, except for tradebeans and tradesoap,
which suffer from a well known issue[l’] We also include the Scala bench-
marks (except for the subset identical to Dacapo).

19ht‘cp: //sourceforge.net/p/dacapobench/bugs/70/
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Subjects

We compare JNIF to ASM for the purpose of performing dynamic instru-
mentation. For JNIF we built a JVMTI agent that directly includes JNIF to
instrument loaded classes. For ASM, we use a JVMTI agent that forwards
loaded classes to an instrumentation server that uses ASM’s streaming API
(which is faster than ASM’s tree API).

Results

Figure B.1{shows the results of our performance evaluation in terms of time
spent instrumenting classes. The figure shows the results from our first
machine. The other machines produced results similar to Figure The
figure shows box plots summarizing five measurement runs. It shows one
box for JNIF and two boxes for ASM. The “ASM Server” box represents the
time as measured on the instrumentation server. This is equivalent to the
time a static instrumentation tool would take. It excludes the time spent
in the JVMTI agent and the time for the IPC between the agent and the
server. The “ASM Server on Client” box represents the total time needed
for instrumentation, as measured in the JVMTI agent, and thus includes the
IPC and JVMTI agent time.

Each chart in the figure consists of five groups of boxes: “Empty” is
the time when using a JVMTI agent that does not process bytecodes at all.
“Identity” is for an agent that simply decodes and encodes each class, with-
out any instrumentation, and without recomputing stack maps. “Compute-
Frames” also includes recomputing stack maps. “Allocations” represents a
useful dynamic analysis that captures all allocations. “Nop Padding” is a
different dynamic analysis that injects NOPs after each bytecode instruc-
tion.

The figure shows that frame computation adds significant overhead, on
ASM as well as JNIF. Moreover, it shows that except for dacapo-eclipse,
dacapo-jython, and scala-scalatest, JNIF is faster even than just the ASM
Server time.

Reproducibility

To run these evaluations, a Makefile script is provided in the git repository.
These tasks take care of the compilation of the JNIF library and also all java
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tiles needed. The repository is self-contained, no need to download dacapo
benchmarks separately.

> make testapp

Listing B.6. Running testapp

> make testapp

Listing B.7. Running dacapo
To run a particular dacapo benchmark with default settings
> make dacapo BENCH=avrora
Listing B.8. Running dacapo

To run a full evaluation with all dacapo benchmarks in all configuration
a task -eval- is provided. You can set how many times run each configura-
tion with the variable times, like

> make eval times=5

Listing B.9. Running full eval five times

Finally, there is a task to create plots for the evaluation. This task needs
R with the package ggplot2.

> make plots

Listing B.10. Plots

B.7 Limitations

JNIF still has some limitations.
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jsr/ret. JNIF does not support stack map generation for jsr and ret.
Class files requiring stack maps do not include jsr/ret. The jsr/ret in-
structions make the control flow graph generation difficult, because a ret
instruction can jump to multiple targets instead of a predefined one.

invokedynamic. JNIF’s support for invokedynamic is not yet fully tested
but our initial tests with JRuby have been successful. Dacapo bach was re-
leased in 2009, before the creation of Java 7, which introduces the invoke-
dynamic instruction. Thus it does not contain any benchmark with invoke-
dynamic. Instead we use JRuby 1.7 in order to create a self-contained jar file.
This jar file does not contain any invokedynamic instruction, but it does con-
tain the JRuby compiler, that when specified via -Djruby.compile.invoke-
dynamic=true it will generate class files with invokedynamic. We tested our
parser and writer with this settings with successful results.

Stack map generation with full coverage. When the JVM loads the first
few runtime library classes, and calls the JVMTI agent to have those classes
instrumented, it is still too early to use JNI for loading classes needed for
computing least upper bounds for stack map generation. For this reason,
we do not generate stack maps for runtime library classes. This no problem,
because the JVM does not verify the runtime library classes by default, and
thus it does not need stack maps for those classes. However, should devel-
opers decide to explicitly turn on the verification of runtime library classes
(with -Xverify:all), the verifier would complain because JNIF would not
have generated stack maps.

To get full coverage for the instrumentation inside a JVMTI agent, it is
necessary to instrument every class, even the whole java class library. If
the instrumentation needs to change or add branch targets, the compute
frames option must be used, but it cannot be used against the class library,
because to compute frames, the class hierarchy must be known, and this
imposes a dependency with a classloader which is not yet available.

Luckily, by default the Java library classes are not verified, because they
are trusted. Thus the instrumentation only needs to compute frames on
classes not belonging to the Java library.

B.8 Conclusions

Until now, full-coverage dynamic instrumentation in production JVMs re-
quired performing the code rewriting in a separate JVM, because of the lack
of a native bytecode rewriting framework. This paper introduces JNIF, the
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tirst full-coverage in-process dynamic instrumentation framework for Java.
It discusses the key issues of creating such a framework for Java—such as
stack-map generation—and it evaluates the performance of JNIF against
the most prevalent Java-level framework: ASM. We find that JNIF is faster
than using out-of-process ASM in most cases. We hope that thanks to JNIF,
and this paper, a broader number of researchers and developers will be en-
abled to develop native JVM agents that analyse and rewrite Java bytecode
without limitations.
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